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Range expansions are becomingmore frequent due to environmental
changes and rare long-distance dispersal, often facilitated by anthro-
pogenic activities. Simple models in theoretical ecology explain many
emergent properties of range expansions, such as a constant expan-
sion velocity, in terms of organism-level properties such as growth
and dispersal rates. Testing these quantitative predictions in natural
populations is difficult because of large environmental variability.
Here, we used a controlled microbial model system to study range
expansions of populations with and without intraspecific coopera-
tivity. For noncooperative growth, the expansion dynamics were
dominated by population growth at the low-density front, which
pulled the expansion forward. We found these expansions to be in
close quantitative agreement with the classical theory of pulled
waves by Fisher [Fisher RA (1937) Ann Eugen 7(4):355–369] and
Skellam [Skellam JG (1951) Biometrika 38(1-2):196–218], suitably
adapted to our experimental system. However, as cooperativity
increased, the expansions transitioned to being pushed, that is,
controlled by growth and dispersal in the bulk as well as in the
front. Given the prevalence of cooperative growth in nature, un-
derstanding the effects of cooperativity is essential to managing
invading species and understanding their evolution.

Allee effect | Fisher wave | biological invasion

From a local disturbance by an invasive species to the global
expansion of the biosphere after an ice age, range expansions

have been a major ecological and evolutionary force (1, 2). Range
expansions and range shifts are becoming increasingly frequent due
to the deliberate introduction of foreign species (3, 4), unintentional
introductions caused by global shipping (5), and temperature
changes associated with climate change (6, 7). Many invasions dis-
turb ecosystem functions, reduce biodiversity, and impose signifi-
cant economic costs (8, 9). The interest in invasion forecasting and
management resulted in a substantial effort to develop predictive
mathematical models of range expansions (4, 10–13), but empirical
tests of these models have been less extensive.
Species invade new territory through a combination of dis-

persal and local growth. Mathematically, these dynamics can be
described by a variety of models depending on the details of the
species ecology or simplifying assumptions (14). For example, the
invasion of house finches in North America has been successfully
modeled with integrodifference equations (4). Continuous reaction–
diffusion equations have been used to describe the expansion of
trees following the end of an ice age and the expansion of muskrats
from central Europe (15), whereas metapopulation models with
disjoint patches of suitable habitat and discrete generations are
more appropriate for certain butterflies living in temperate climates
(16). One of the great achievements of mathematical ecology is the
discovery that all these diverse models of population expansion can
be divided into two broad classes of pulled and pushed expansions
with very different properties.
The class of the expansion is determined by how the per capita

growth rate depends on population density (17–19). Whereas some
populations experience only intraspecific competition and grow
best at very low densities, others exhibit an Allee effect and grow

best at intermediate densities, due to intraspecific cooperation,
higher chances of finding mates, or other factors (20–23). These Allee
effects may be weak (reduced but positive growth rate at low density)
or strong (inability to survive at low density). Pulled expansions occur
when Allee effects are small, and the expansion velocity depends only
on the growth rate at low densities and the rate of dispersal. Such
expansions are dominated by the dynamics at the very edge of the
expanding wave front, which effectively pulls the wave forward (17,
18, 24). As a result, pulled invasions are known to be sensitive to
demographic fluctuations and lead to rapid loss of genetic diversity
because the population size at the expansion edge is very small
(25–29). When the Allee effect is more severe, including but not re-
stricted to the case of strong Allee effects, the expansions are pushed.
In contrast to the simple and universal theory of pulled expansions,
the velocity and other properties of pushed expansions depend on the
per capita growth rate at all population densities, and thus are sen-
sitive to all of the details of the species ecology (17, 18, 24).
Because direct observations of the Allee effect are often chal-

lenging, it is important to find alternative ways to distinguish pulled
and pushed expansions. Unfortunately, these two invasion classes
share many generic properties. In particular, both expansions ad-
vance as population waves that move at constant velocity and
maintain a constant shape of the expansion front. Even the qual-
itative shape of the expansion front is the same for pulled and
pushed waves because population densities decay exponentially at
the expansion edge in both cases (17, 18). Thus, one needs quantitative
rather than qualitative comparison between theory and observations to
distinguish pulled and pushed waves.

Significance

Species undergo range shifts in response to changing climate
or following an introduction to a new environment. Invasions
often incur significant economic cost and threaten biodiversity.
Ecological theory predicts two distinct types of expansion
waves, pulled and pushed, depending on the degree of coop-
erativity in the population. Although pulled and pushed inva-
sions differ dramatically in how population-level properties
such as the expansion rate depend on the organism-level
properties such as rates of growth and dispersal, these theo-
retical predictions have not been tested empirically. Here, we
use a microbial model system to perform these tests and
demonstrate that pulled and pushed waves can be distin-
guished based on their dynamics.
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Although high-quality quantitative data on range expansions is
often limited, several studies have successfully tested theories of
range expansions in natural and laboratory populations. Veit and
Lewis (4) could accurately describe the spread of house finches
in North America by incorporating an Allee effect and long-
distance dispersal. Importantly, this was one of the early studies
highlighting the difference between pulled and pushed invasions.
Lewis and Kareiva (30) had earlier shown that the rate of spread
also depends on the initial spatial abundance profile of the in-
vader. Melbourne and Hastings (31) have carried out a very
detailed comparison between theory and experiment for a lab-
oratory population of flour beetles and showed that the un-
avoidable heterogeneity of the founding organisms leads to large
variation in the rate of spread between replica populations. At
the microscopic scale, Wakita et al. (32) tested the expected
relation between the rate of spread and nutrient availability in
Escherichia coli, and Giometto et al. (33) used the theory of
pulled waves to describe the expansion of tetrahymena in linear
channels. All of these studies, however, focused only on the rate
of invasion and did not test theoretical predictions for the shape
of the invading fronts. More importantly, these studies were
conducted in a single environment and did not attempt to dis-
tinguish pulled and pushed expansions, in part because there was
no experimental population that could undergo both pulled and
pushed expansions.
Experimental microbial populations are a tractable system to

study ecological phenomena without the overwhelming com-
plexity of the natural world. However, such experiments can
guide our thinking, show which theoretical predictions may be
observable in nature (34, 35), and help develop new models (36).
For example, range expansions of microbial populations have
revealed the dependence of the invasion velocity on the supply of
resources (37) and demographic stochasticity (33). Experiments
with microbes have also demonstrated the strong effect of range
expansion on competition (38–44) and neutral evolution via the
founder effect or gene surfing (45, 46). In this study, we focus on
expansions with and without the Allee effect and quantify their
differences. Because it is possible to control and measure pop-
ulation sizes in microbial populations over a few orders of
magnitude, our experimental system is particularly well-suited
for studying the shape of the expansion fronts, as well as for
future investigations on the rates of diversity loss and effects of
habitat fragmentation such as invasion pinning (47, 48).
To recreate a range expansion in the laboratory, we used a

metapopulation of budding yeast Saccharomyces cerevisae. Yeast
grows best at low densities on simple sugars such as glucose or
galactose but has a well-characterized Allee effect in the disaccha-
ride sucrose (49–52). Sucrose is digested cooperatively because the
yeast cells secrete an enzyme to hydrolyze extracellular sucrose into
glucose and fructose, which are then transported into the cell.
Higher cell densities facilitate the utilization of glucose, and there-
fore the growth rate of yeast on sucrose is maximum at inter-
mediate population densities, where glucose utilization is high
but competition is not yet strong. Importantly, the strength of the
Allee effect can be controlled by tuning the relative concentrations
of glucose and sucrose in the growth medium. Using this experi-
mental system, we tested nontrivial properties of invasions including
the exponential spatial decay of population density at the front. We
then observed the transition from pulled to pushed expansion waves
as the Allee effect was made more severe and found signatures of
this transition in the expansion velocity and front shape. Our work
confirms that Allee effects substantially affect invasion dynamics
and demonstrates that pushed and pulled invasions can be distin-
guished by quantitative measurements.

Results
Experimental System. To study range expansions, we allowed the
yeast populations to expand in one dimension along the columns
of a 96-well plate. Each well represented a patch of suitable
environment in a metapopulation where growth and death cycles
occurred via a resupply of nutrients and dilution. Dispersal was

achieved via exchange of small volumes of the growth media,
corresponding to the migration rate (m), between the nearest
wells (Fig. 1A and SI Appendix, Fig. S14). The experiments were
started with a steep exponential initial population density profile,
and after the profiles equilibrated over a few cycles we used flow
cytometry to measure the density profiles of the emergent waves.
This allowed us to measure with high accuracy the velocity (v) and
the spatial decay rate of the exponential front (λ) over multiple
orders of magnitude of population density (Fig. 1 B and C).
Range expansions of yeast in our metapopulations are well

described by a simple model incorporating growth and nearest-
neighbor dispersal. Assuming that an unconnected population
starting at some density n grows to a final density given by gΔtðnÞ
in one cycle of length Δt, the dynamics in connected populations,
which have dispersal followed by growth, are given by

nt+Δt,x = gΔt

�
nt,x +Deff

Δt
Δx2

�
nt,x+Δx + nt,x−Δx − 2nt,x

��
. [1]

Here, t and x are time and position, Δt and Δx are time of the
dilution cycles and separation between the wells, and Deff is the
dispersal rate determined by how much fluid is exchanged be-
tween the wells (see SI Appendix, Eq. S12 for the relationship
between Deff and the experimental parameter, m). Note that, in
the limit of small Δt and Δx, this discrete model is equivalent to
the well-known equation proposed by Fisher, Kolmogorov, and
Skellam to describe biological invasions:

∂n
∂t

=D
∂2n
∂x2

+ nrðnÞ. [2]

Thus, our experiments can be viewed as both mimicking metapopu-
lation dynamics typical for many ecosystems and approximating the
continuous dynamics frequently assumed in mathematical ecology.
The dynamics of pulled expansions are completely determined

by linearized growth [gΔtðnt,xÞ≈ nt,xer0Δt; r0 = rðn= 0Þ] and the ex-
pansion velocity is given by

vlin =minλ>0

�
1
λΔt

ln
�
er0Δt

�
1+

DeffΔt
Δx2

ðcoshðλΔxÞ− 1Þ
��	

≈ 2
ffiffiffiffiffiffiffiffi
r0D

p
,

[3]

where the population density at the front decays exponentially
with a rate λ, such that the velocity is minimized (SI Appendix,
Eq. S10). In the limit of vanishing Δt and Δx, this gives the classic
Fisher velocity, v= 2

ffiffiffiffiffiffiffiffiffiffiffiffi
r0Deff

p
, and the spatial decay rate of the

population density at the expansion edge, λ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0=Deff

p
.

In sharp contrast, the knowledge of linearized growth is not
sufficient to determine the velocity of a pushed expansion, be-
cause immigration from fast-growing regions behind the front
increases the rate of invasion. Therefore, the deviations between
the velocity and decay rate observed in the experiment and the
corresponding values given by Eq. 3 indicate that the expansion
is pushed, not pulled. In our analysis, we use this difference
between the observed expansion velocity and the linearized
growth velocity to distinguish between pulled and pushed waves.

Testing the Theory of Pulled Waves. A surprising prediction for
pulled waves is that the emergent properties of the wave front, its
velocity ðvÞ and spatial decay rate (λ), depend on the per capita
growth rate of the population only at low density, r0, and not at
higher densities. To the first order, v∝

ffiffiffiffi
r0

p
, and consequently, an

apparently healthy population that grows to a very high carrying
capacity can in fact be a poor invader if it grows slowly, compared
with a fast-growing population that saturates at lower densities. To
test this hypothesis, we compared the range expansion of S. cerevisae
in two different media: 0.125% glucose and 0.5% galactose. In both
media, growth was exponential at low densities (Fig. 2A), but the
two carbon sources showed a trade-off between faster low-density
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growth versus higher carrying capacity. Specifically, yeast cells
initially grew at a faster rate in glucose but saturated to a lower
carrying capacity compared with galactose (Fig. 2B). Further-
more, there was not a measurable Allee effect in either medium
(SI Appendix, Fig. S2), and so we expected the expansions in both
media to be pulled, and hence dependent only on the low-density
growth rate. Consistent with the pulled-wave prediction, the
resulting expansion waves indeed had a higher velocity in glu-
cose, even though the bulk grew to a larger density in galactose
(Fig. 2C).
To further quantify the qualitative agreement with theory that we

observed above, we repeated the range-expansion experiment in a
wide range of environmental conditions, with the same two media,
0.125% glucose or 0.5% galactose. We varied the migration rate
(m = 0.4,m = 0.5) and the death rate (dilution factors of 2, 2.5, 3.3,
and 4), which resulted in invasion velocities ranging from 0.2 wells
per cycle up to 0.9 wells per cycle. Because the growth rate at very
low densities needs to be known accurately, flow cytometry was used
to count the number of divisions (fold growth) that cells undergo
over the course of each 4-h cycle (SI Appendix, Figs. S2 and S10).
We found excellent agreement between the experimentally ob-
served velocities and the linearized growth velocities predicted
based on the rates of dispersal and growth at low densities alone
(Fig. 3A). Although this agreement is expected given the near-
logistic growth in glucose and galactose, it provides a quantitative
confirmation of the theory of pulled waves.
A similar comparison between the observed and predicted

spatial decay rates was more challenging due to stochastic effects
and long equilibration times. Stochastic effects appear due to the
small number of individuals at the front and create much larger
deviations between the deterministic theory (Eq. 1) and the actual

population dynamics for the spatial decay rate compared to the
velocity (SI Appendix, Fig. S4). These deviations are known to
make the fronts steeper (larger λ) (53, 54). Instead of using the
analytical approximations that account for the stochastic effects,
we chose a more direct and precise approach to test the theory of
pulled waves. Because the distinction between pulled and pushed
waves lies only in the degree to which the growth dynamics can
be linearized, we performed individual-based simulations that
included demographic fluctuations using only the growth rate
measured at low densities. For pulled, but not pushed, waves the
observed velocity and spatial decay rates must match simula-
tions. As expected for expansions in glucose and galactose en-
vironments, the observed spatial decay rate was generally close
to simulated values, confirming that these expansions are pulled
(Fig. 3B). However, moderate deviations were observed under
some experimental conditions. All four of these outliers occurred
when the predicted spatial exponent was much smaller than that
of the initial profile. As a result, these expansion profiles re-
quired a much longer time to reach their equilibrium shape and
could still be out of equilibrium by the end of our experiments.
Thus, the observed deviations might be due to insufficient ob-
servation time rather than the deviations from the theory of
pulled waves.

Expansions Transition from Pulled to Pushed as Cooperativity Increases.
Populations in which the per capita growth rate decreases mono-
tonically with increasing density always expand as pulled waves (55);
similarly, expansions of populations with a strong Allee effect are
always pushed (17). However, populations with a weak Allee effect
may be either pulled or pushed, depending on the magnitude of the
Allee effect (Fig. 4A). Thus, the transition from pulled to pushed

A B CFig. 2. In pulled waves, expansion velocity de-
pends on the growth rate only at low densities
irrespective of the carrying capacity. (A) A pop-
ulation of S. cerevisae grows exponentially at
low densities in 0.125% glucose and 0.5% galac-
tose. Growth rate at low densities is higher on
0.125% glucose compared with 0.5% galactose and
decreases monotonically in both environments.
(B) The galactose environment has a higher carrying
capacity compared with glucose. The two environ-
ments thus show a trade-off between the low-density
growth rate and the carrying capacity. (C) Although the galactose environment is more favorable in terms of the total nutrient availability (carrying capacity),
expansions are faster in glucose because the populations grow faster in glucose at low density.

A C

B

Fig. 1. Theoretical predictions for the velocity and
spatial density profile of pulled and pushed waves
were quantitatively tested in metapopulations of
budding yeast, S. cerevisae, in a controlled experi-
mental setup. (A) Yeast populations expanded along
the columns of a 96-well plate. The experiments were
started with an exponentially decaying spatial density
profile. After every growth cycle of 4 h, cells were
diluted into fresh media (dilution factor, df) and dis-
persal was achieved by transferring small amounts of
media to neighboring wells along the columns. (B)
Optical density measurements at the end of each cycle
revealed an emergent wave traveling at constant ve-
locity. (C) At later times, after allowing the fronts to
equilibrate, the density profiles were also measured
using flow cytometry. These high-resolution measure-
ments at the low density fronts showed exponential
fronts extending over four orders of magnitude in
density. The spatial decay rate, λ, was estimated by
averaging over density profiles over the last few cycles,
after the expansion wave had equilibrated. The pro-
files measured using flow cytometry were also used to
measure the velocity more accurately (Materials and
Methods).
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waves occurs at some intermediate magnitude of the Allee effect,
within the weak Allee effect regime (Fig. 4B).
To study this transition from pulled to pushed waves with in-

creasing magnitude of the Allee effect, we studied the expansion of
yeast when growing on the sugar sucrose, where growth is known to
be cooperative. In our experiments, low-density growth rate mea-
surements in 2% sucrose showed an Allee effect over densities
ranging from ∼103 to 105 cells per well, where the per capita growth
rate increased with cell density (Fig. 5A). We note that this region of
inverse density dependence is two orders of magnitude below the
carrying capacity. As a result, the Allee effect would not have been
visible with optical density measurements alone, and it was only
revealed by fold-growth measurements using flow cytometry—
a situation that parallels the difficulty of detecting Allee effects in
natural populations. We show below that even this weak Allee ef-
fect was sufficient to make the expansion in 2% sucrose pushed
instead of pulled.
We tuned the magnitude of the Allee effect by modulating the

amount of sucrose in the media. As the sucrose concentration is
increased, the growth rate at very low densities increases slowly,
because only a fraction of the hydrolysis products can be cap-
tured by the cells before they diffuse away (SI Appendix, Fig. S5).
In contrast, the maximal per capita growth rate, observed at inter-
mediate cell densities, increases much more rapidly because dense
populations use sucrose more efficiently (SI Appendix, Fig. S10). As
a result, the magnitude of the Allee effect, measured as the dif-
ference between the low-density and the maximal per capita growth
rate, increases with increasing sucrose concentration (SI Appendix,
Fig. S6). Because the migration rates were known and the low-
density growth rates were measured, we could directly compute the
linearized growth velocity in each of the environments and compare
it to the experimentally measured rate of invasion. For sucrose
concentrations below ∼0.025%, the observed velocities were close
to the linearized growth velocities, indicating that the expansions
were pulled. However, as the Allee effect increased in magnitude,
the observed and linearized growth velocities started to differ,
reflecting the transition to pushed expansions (Fig. 5B).

To confirm that the observed differences between the pushed
and the pulled waves were statistically significant, we focused
on expansions in glucose (pulled waves) and three sucrose
concentrations: 0.22%, 0.67%, and 2% (pushed waves).
Whereas the velocities of pulled waves fluctuated in a small
region around the linearized growth velocities due to demo-
graphic and environmental stochasticity, the expansion veloci-
ties at high sucrose concentrations were much larger than, and
well separated from, the corresponding linearized growth ve-
locities (P = 0.0015; Fig. 5C). Thus, our experiments indeed
demonstrated a transition from pulled to pushed waves.
A mechanistic model of yeast growth further confirmed that the

departure from the theory of pulled waves resulted from an Allee
effect due to the cooperative breakdown of sucrose (SI Appendix,
section 3). Briefly, we assume that yeast cells consume glucose and
grow following Monod kinetics. Small amounts of glucose are
present initially, but the bulk of glucose is produced through sucrose
hydrolysis with a rate proportional to the total yeast concentration.
The collective hydrolysis gives rise to an increasing Allee effect with
increasing sucrose concentration, and the model generically predicts
a transition from pulled to pushed waves (SI Appendix, Fig. S7). We
inferred the model parameters from the measurements of yeast
growth rates across different cell densities and sucrose concentrations
(SI Appendix, section 4). The model, thus parameterized, predicted
expansion velocities that closely matched our experimental obser-
vations (Fig. 5B), demonstrating that the transition from pulled to
pushed waves was indeed caused by a greater Allee effect at higher
sucrose concentrations. Further supporting this conclusion, our es-
timates of the model parameters agreed well with previous mea-
surements (SI Appendix, Table S1).
To demonstrate an important difference between pulled and

pushed waves, we compared a pulled expansion in glucose to a
pushed expansion in sucrose with the same velocity and dispersal
rate. If both waves are pulled, the density profiles must have
identical spatial decay rates, but if the expansion in sucrose is
pushed, then it must have a steeper front. Keeping all other ex-
perimental parameters the same, the two media allowed such a

A B

Fig. 3. For pulled waves, the growth rate at low density is sufficient to de-
termine the emergent wave properties quantitatively. Over a wide range of
environmental conditions, the observed expansion velocities and the spatial
decay rates (SDR) of the population density at the front closely match the
predictions based on the measured low-density growth rate. (A) Predicted and
observed velocities in two different media are shown (glucose in blue, galac-
tose in green). The migration rate (triangles:m = 0.5, squares:m = 0.4) and the
death rate (darker colors are smaller death rates) were varied. Independently
measured growth rates, only at low densities, in the two different media were
sufficient to predict the velocities accurately. (B) A similar comparison for the
spatial decay rates (λ, well−1) also shows close agreement for steep predicted
fronts (large λ). However, shallow predicted fronts deviated slightly from
predictions, which may be a consequence of the long relaxation time to
equilibrium for such fronts. x-axis error bars: SEM of the measured low-density
growth rates, propagated to the errors in predicted velocity (A) and spatial
decay rate (B). y-axis error bars: (A) SD of velocity measured for five different
thresholds, and (B) SD in spatial decay rate measured over three different
regions of the front.

A B

Fig. 4. Expansions transition from pulled to pushed waves at an interme-
diate strength of Allee effect within the weak regime. (A) Three different
growth profiles displaying increasing magnitude of Allee effect (growth
profile 0 is purely logistic; 1 and 2 have a weak Allee effect), but with the
same low-density growth rate. Unlike pulled waves, the velocities of ex-
pansion in the three cases are not the same. In particular, both logistic (0)
and the less-severe Allee effect (1) result in pulled waves with the same
velocity, given by 2

ffiffiffiffiffiffiffiffi
r0D

p
. In contrast, condition 2, with a larger but still weak

Allee effect, leads to a pushed wave with velocity greater than 2
ffiffiffiffiffiffiffiffi
r0D

p
. (B) In

a generic model of the Allee effect (SI Appendix, Eq. S13), it can be shown
that the transition from pulled to pushed waves occurs at a threshold
magnitude of Allee effect that is different from the onset of a weak Allee
effect. B shows the theoretical prediction for expansion velocity as the
magnitude of the Allee effect (difference between maximal and low density
per capita growth rate) is increased slowly, keeping the growth rate at low
density constant. No change is seen in the dynamics of the expansion when a
weak Allee effect is introduced. However, as the magnitude of the Allee
effect is increased further, the expansion dynamics undergo a transition at a
threshold magnitude of the Allee effect (vertical red line). The red curve is
the actual expansion velocity, and the gray line is the velocity of a pulled
wave with the same low density growth rate, r0.
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comparison: 0.125% glucose and 2% sucrose. The low-density
growth rate in 0.125% glucose was marginally higher than in 2%
sucrose (Fig. 5A), and the velocity of expansion in both the glucose
and sucrose environments was nearly the same within measurement
error. However, the spatial decay rates of the wave fronts were very
different for the two waves. As predicted, the wave profile in su-
crose was steeper than that in glucose, providing additional support
to our finding that expansion in sucrose was a pushed wave (Fig.
5D) and demonstrating that the differences in the decay rates can
also be used for distinguishing pushed from pulled expansions.

Discussion
Although range expansions have been studied extensively in
ecology, many theoretical predictions remain untested. Because

pulled and pushed waves appear qualitatively similar, with a
constant expansion velocity and exponential fronts, expansions
are often assumed to obey the universal theory of pulled waves.
Our study provides a proof of principle that pulled and pushed
waves can be distinguished with quantitative measurements. We
demonstrated that these two classes of expansions can be em-
pirically distinguished based on the violation of the expected
relationship between the velocity and either the front shape or
the low-density growth rate. At the same time, our work also
shows that such measurements are difficult even in controlled
laboratory settings.
Distinguishing between pushed and pulled expansions is im-

portant for forecasting invasion dynamics and understanding
species evolution. Predicting the rate of colonization may be
particularly challenging for pushed waves because they can ad-
vance slowly in the beginning due to an Allee effect but accel-
erate later as the bulk density increases (47, 56). Pushed waves
are also expected to have slower rates of neutral evolution and
diversity loss compared with pulled expansions (26, 57). The
conservation strategies to limit pulled and pushed invasions
could also be very different. For pulled waves, the best way to
limit the expansion is to eradicate the invaders at the very edge
of the expansion. In contrast, a balanced eradication strategy
over the entire invasion front is more effective for pushed waves
(47, 58).
Beyond the specific results described above, our work established

a tractable experimental system where many ecological and evolu-
tionary scenarios or theories can be tested. Given the increasing rate
of range shifts, it is important to experiment with how populations
respond to unavoidable changes in their spatial distribution as well
as to specific ecological perturbations designed as mitigation mea-
sures. Laboratory microbial systems could be very useful for
studying such phenomena in greater detail, complementing more
realistic but less tractable field studies.
Some questions that can be immediately investigated in our

experimental system are the response of invasions to envir-
onmental fragmentation and the effects of range expansions on
species evolution. Habitat fragmentation is likely to increase due
to anthropogenic activities and might be especially important for
species moving to barely hospitable regions as they escape the
warming climate. Theory predicts that pushed, but not pulled,
waves can become pinned or stuck in a fragmented environment,
yet empirical tests of this prediction are scarce. Species evolution
also depends critically on whether it invades as a pulled or a
pushed wave. For example, the founder effect has a much greater
role in pulled compared with pushed invasions. Quantitative
experiments in controlled laboratory settings are likely to pro-
vide valuable insights into these important phenomena.

Materials and Methods
Strains. The yeast strain used is the same as the cooperator strain in ref. 59,
derived from haploid cells BY4741 [mating type a, European Saccharomy-
ces Cerevisiae Archive for Functional Analysis (EUROSCARF)]. It has a yellow
fluorescent protein (yEYFP) expressed constitutively by the TEF1 promoter
inserted into the HIS3 locus using the backbone plasmid pRS303.

Experimental Protocols. All cultures were grown at 30 °C in standard synthetic
media (yeast nitrogen base and complete supplement mixture). The two
media used for pulled wave experiments had 0.125% glucose and 0.5%
galactose. The media used for studying the transition from pulled to pushed
waves consisted of 0.008% background glucose (to reduce the sensitivity of
the low-density growth rate to sucrose hydrolysis), in addition to 2, 0.67,
0.22, 0.07, 0.025, 0.008, 0.003, and 0.001% sucrose. All concentrations
throughout the text are in percent weight per volume.

All experiments were performed in 200-μL batch culture in BD Biosciences
Falcon 96-well Microtest plates. Range expansions were carried out along
the columns of the plate, in 24- to 32-well-long landscapes. Migrations and
dilutions were performed every 4 h using the Tecan Freedom EVO 100 robot.
Plates were not shaken during growth. This resulted in a slightly lower
growth rate and yield (58) compared with measurements in a platereader
(compare Fig. 2 and SI Appendix, Fig. S2). Optical densities were measured
on the robot before every dilution cycle in the Tecan Sunrise platereader

A B

C D

Fig. 5. Populations expand as pulled waves when Allee effect is small, but a
large Allee effect makes populations expand faster than predicted based on
linearized growth. (A) Experimental measurement of growth rates in sucrose
(red) and glucose (blue). The growth rate in glucose decreases monotonically
with increasing population density, and thus exhibits no Allee effect. In con-
trast, the per capita growth rate in sucrose increases with population density
(between 103 and 105 cells per well) and thus exhibits a weak Allee effect. (B)
By adding sucrose to the growth media, we increased the strength of the Allee
effect (SI Appendix, Fig. S6) and observed a transition from pulled to pushed
waves. Below sucrose concentration of 0.025%, observed expansion velocities
(red dots) matched pulled-wave predictions based on linearized-growth (gray
dots). For higher sucrose concentrations, we observed a significant deviation in
observed velocities from the linearized growth velocities, indicating that ex-
pansions had become pushed. The error bars on the measured velocity (red
points) are SD. Error bars are obtained on the linearized growth velocities (in
gray) by bootstrapping on the growth rate measurements at low density. The
observed velocities match well with the predictions of a mechanistic model (SI
Appendix, section 4) shown in red shading. The model also captures the
transition from pulled to pushed waves as the deviation between observed
and linearized-growth velocities (gray shading) around sucrose concentration
of 0.025%. The width of the shaded regions is the SD of simulation results for
89 parameter sets obtained by bootstrapping over the growth rate measure-
ments and fitting the model to it. (C) The data at low sucrose concentrations
(0.001, 0.003, and 0.008%; pulled regime) in blue and high sucrose concen-
trations (0.22, 0.67, and 2.0%; pushed regime) in red demonstrates the sta-
tistical significance of our results. When the Allee effect is small the difference
in observed and linearized growth velocities is indistinguishable from zero, but
the difference is large and highly significant for a large Allee effect (P =
0.0015). (D) Pushed waves are expected to have steeper profiles than pulled
waves when expanding at the same velocity (and with the same migration
rate). We found that a pulled wave in 0.125% glucose (blue) and a pushed
wave in 2% sucrose (red) have approximately equal velocities, and, as expec-
ted, population densities declined much faster in space for the pushed wave.
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with 600-nm light. Cell densities for selected cycles were also measured in the
MacsQuant flow cytometer after dilution in phosphate buffered saline (PBS),
using the yellow fluorescence channel. Preliminary growth rate measure-
ments on glucose and galactose were performed using overnight optical
density measurements every 15 min. The more sensitive low-density growth
rate measurements were performed in 96-well plates without shaking, by
measuring initial and final cell densities over four dilution cycles of 4 h each,
and ignoring the first two cycles for transient effects. Cultures were started at
different initial densities for these measurements (SI Appendix, Fig. S10).

In the analysis, front positions were determined as the interpolated well po-
sition where the density (as measured by flow cytometry) crossed a fixed
threshold. These were then used to calculate the velocity of expansion. The final
velocitywas obtainedby averagingovermultiple thresholds rangingbetween100

and 1,000 cells per well. The thresholds were chosen so as to be sensitive to the
dynamics at low density but at the same time not too low to be affected by
Poisson errors in cell counting. Spatial decay ratesweremeasured after translating
the profiles at different times so that they coincide, and using the combined data
to obtain a reliable fit to the exponentially decaying profile (Fig. 5D).
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Supplementary Information Appendix 
 

1. Reaction-diffusion models for one-dimensional range expansions 
Populations expanding via short-range migration in one spatial dimension are often modeled by a 

reaction-diffusion equation, which is continuous in space and time: 
డ
డ௧ = ܦ డమ

డ௫మ +  S1     . (݊)ݎ݊
Here n(x,t) is the density of population at position x at time t; D is the dispersal coefficient, which is 
assumed to be constant in the simple model, and ݎ(݊) is the density-dependent per capita growth rate of 
the population. Many properties of this model can be obtained analytically by linearizing the growth term, 
(݊)ݎ݊ ≈  . When colonization dynamicsݎ as (0)ݎ at low densities (Fig. S1); we will also denote (0)ݎ݊
are determined by the dynamics at the expansion edge, this approximation is quite accurate because 
population densities are low at the expansion front. Kolmogorov et. al. proved that, when ݎ(݊) is a 
monotonically decreasing function, this linearization is guaranteed to capture the expansion dynamics 
(55). Expansions described by the linearized growth term are called pulled because they advance via 
growth at the low-density front, which effectively pulls the waves forward. Importantly, the condition 
derived by Kolmogorov et. al. is sufficient but not necessary. In particular, the linear approximation 
continues to hold even when a small Allee effect is present. For larger Allee effects, dispersal from the 
faster growing high density region of the front dominates the growth at the low-density expansion edge, 



effectively pushing the wave forward. These 'pushed’ waves advance at a higher velocity than one would 
predict using just (17) (0)ݎ. 

Although the model (eqn. S1) can be analyzed in numerous ways (17, 18, 24), a solution using 
Fourier transforms is most useful for extending the results to the case of discrete space and time systems, 
such as in our experiments. Here, we briefly outline the solution to the continuous model using Fourier 
modes as described by van Saarloos (17). We then apply a similar analysis to a model appropriate for our 
experimental system, which was used to predict the linearized-growth-velocities in the main text. 

The spatial Fourier modes of the front can be written as: 
݊(ݍ, (ݐ =  ,ݔ)݊ݔ݀ ௫ஶି݁(ݐ

ିஶ      S2 
where ݍ is the wave number of the Fourier modes. To obtain the spreading speed of a front, we start with 
an Ansatz assuming the Fourier modes are of the form ݊(ݍ, (ݐ = ݊(ݍ)݁ିఠ()௧. Substituting back in eqn. 
S1 gives the dispersal relationship (߱(ݍ) = ݎ)݅ −  ଶ)). Assuming that the front moves with someݍܦ
constant asymptotic velocity, ݒ∗, we perform inverse Fourier transforms in the coordinate frame moving 
with the front (ߞ = ݔ −  :(ݐ∗ݒ

,ߞ)݊ (ݐ = ଵ
ଶగ  ିሾఠ()ି௩∗ሿ௧ஶ݁ ݍ݀

ିஶ      S3 
In the large time limit, only those modes near the saddle point of [ω(q) −  q] survive (60), which∗ݒ
results in the following condition: 

∗ݒ = ௗఠ
ௗ ቚ∗       S4 

where ݍ∗ is the saddle point. Further, in the co-moving reference frame, the wave profile neither grows 
nor decays in time, so the imaginary part of the exponent must vanish: 

൯(∗ݍ)൫߱݉ܫ − ∗ݒ(∗ݍ)݉ܫ = 0     S5 
This gives the set of relationships that can be used to calculate the asymptotic velocity: 

∗ݒ = ூ(ఠ())
ூ () ቚ∗ = ௗఠ

ௗ ቚ∗             S6 



The above two relationships uniquely determine the asymptotic speed ݒ and ݍ∗. The exponential decay 
rate of the population density at the front then follows eqn. S3 since ߣ =  The results are .(∗ݍ) ݉ܫ

∗ݒ = 2ඥݎܦ, ߣ = ටబ
  .     S7 

 
2. Expansions in discrete space and time models 
The discretized form (corresponding to the experimental protocol) of the F-KPP equation can be 

written as: 
݊௫,௧ା௧ = ݃௧ ൬݊௫,௧ + 

ଶ ൫݊௫ା௫,௧ + ݊௫ି௫,௧ − 2݊௫,௧൯൰,    S8 
where ݔ is the spatial coordinate, ݐ is the cycle number, and  ݃௧(݊) describes total growth rate, i.e. 
݃௧(݊) is the product of the per capita growth rate and the population density. Upon linearization ݃௧(݊)  
can be written as: 

݃௧(݊) = ݊ ೝబ
ௗ௨௧,      S9 

which corresponds to exponential growth at rate ݎ followed by a dilution. Substituting the Fourier mode 
݊௫෦ = ݁௫ି  in the above linearized equation gives the dispersion relation: 

݁ିఠ௧ = ೝబ
ௗ௨௧ ሾ1 + (ݔݍ݅−)ℎݏܿ)݉ − 1)ሿ    S10 

Following the analysis of the continuous case, we use the saddle point approximation and require that the 
front is not changing in the co-moving reference frame. The resulting equations are similar to eqn. S6 and 
can be recast in a simpler form with the definitions of two real parameters  ߣ = ݏ and (ݍ)݉ܫ =  (߱)݉ܫ
and an observation that these equations correspond to the requirement that 

ݒ = ݉݅݊ఒவ ቄݏ
ቅߣ ; 

compare to eqn. 3 in the main text. 
For small ݐ߂, one can analytically obtain corrections to the continuous results in eqn. S7 due to the 

discreteness of space. However, since in our experiments, ݐ߂ ∼ 4 hrs, which is longer than the time scale 



set by the growth rate (~2 hrs), the velocity and spatial decay rate have to be evaluated by minimizing 
eqn. S10 numerically. 

The magnitude of deviations between the continuous and discrete models are shown in Fig. S3. Note 
that the discrete dynamical equation describing the experiment is not the same as the discretized version 
of the F-KPP equation, which can be written as: 

݊௫,௧ା௧ = ݊௫,௧݁బ,௧ + ܦ ௧
௫మ ൫݊௫ା௫,௧ + ݊௫ି௫,௧ − 2݊௫,௧൯   S11 

Comparing eqns. S9 and S11, the effective growth and diffusion rates in the continuous model should be 
expressed in terms of experimental parameters as follows: 

,ݎ = ݎ − (ௗ௨௧)
௧   

ܦ = 
ଶ

Δ௫మ
௧ (1 +  S12         (ݐΔݎ

ݐ߂) = 4 hr, ݔ߂ = 1 well). The effective parameters can then be used in continuous models to compare 
them to the discrete space-time experimental model and evaluate the magnitude of 'corrections' that are 
introduced due to the discretization. 

The finite number of organisms per spatial patch also changes the velocity and spatial decay rate. 
Although stochastic effects obviously cause fluctuations in the velocity, the expectation value of the 
velocity is also reduced as compared to predictions that do not incorporate demographic stochasticity. The 
deviations have been shown to be of the order of  1

୪୭మ ே , where N is the number of individuals per unit 
length, when space and time are continuous (54). Moreover, the fronts have been shown to be steeper 
when demographic stochasticity is added (53, 54). We see this in our experiments, where, without 
accounting for the demographic stochasticity, the observed spatial decay rate is larger than predicted. This 
discrepancy vanished when we incorporated the effects of stochasticity in our predictions (Fig. S4).  

3. Cubic model of the Allee effect 
A generic model of the Allee effect was used for making the cartoon in Fig. 4 in the main text. In this 

model, the density dependence of growth is given by: 



ଵ


ௗ
ௗ௧ = బ

 ቀ1 − 
ቁ (݊ + ܽ)     S13 

This model shows no Allee effect for ܽ > ݇ (per capita growth rate monotonically decreases with 
increasing density), and a weak Allee effect for ܽ < ݇. Further, as ܽ is varied, the growth rate at low 
density remains constant and is given by ݎ. The transition from pulled to pushed waves occurs at 
ܽ = ݇/2 inside the weak Allee effect regime (64). 

 
4. A mechanistic growth model captures the Allee effect and shows a transition from pulled to 

pushed waves with increasing sucrose 
We developed a mechanistic model for yeast growth in our experiments. The model incorporates 

previously well-studied mechanisms such as Monod growth on glucose (61) and a Michaelis-Menten 
kinetics of sucrose hydrolysis (49, 52, 63). Using previously measured values of the model parameters 
(Table S1), we found that the magnitude of the Allee effect increases with the amount of sucrose in the 
medium. Importantly, the model also displayed a transition from pulled to pushed waves, consistent with 
the experimental observations in Fig. 5 (Fig. S7). This transition was observed for a wide range of model 
parameters and is a generic prediction of the model. To test for quantitative agreement between the model 
and the experiments, we fitted the parameters of the model to our independent measurements of the 
growth rates, and confirmed that the predicted velocities closely match experimental observations (Fig. 
S8). 

The model describes growth of yeast in the presence of glucose and sucrose, and assumes that there 
are no other limiting resources. Furthermore, while glucose is metabolized directly by the yeast, sucrose 
needs to be hydrolyzed to monosaccharides before it can be utilized. Although sucrose is hydrolyzed to 
glucose and fructose, we treat these sugars equivalently and refer to the combined concentration of the 
monosaccharides as the glucose concentration (49). This hydrolysis reaction is catalyzed by an enzyme 
invertase produced by yeast cells. Most of the invertase stays attached to the cell surface resulting in 
higher rates of hydrolysis in the immediate vicinity of the cell and creating a local cloud of glucose in 



excess of the bulk glucose concentration. Thus, yeast cell benefit from both the glucose produced by 
themselves and from the glucose produced by their neighbors (49). These dynamics are captured by the 
following Monod growth law and glucose consumption equation: 

ଵ


ௗ
ௗ௧ = 

ା  ௫      S14ߛ
ௗ
ௗ௧ = −ܻ ௗ

ௗ௧ + ܸ݊      S15 
Here, the first equation describes cell division, where ݊ is the cell density, ݃ is the local glucose 

concentration around each cell, ݇ is the Michaelis-Menten constant for glucose utilization and ߛ௫ is 
the maximum division rate. The second equation gives the corresponding rate of utilization of glucose 
(݃), which is proportional to the division rate of the cells (the proportionality constant, ܻ, determines the 
carrying capacity of the population). The additional term, ܸ݊, corresponds to the production of glucose 
due to sucrose hydrolysis. The per capita rate of sucrose hydrolysis, ܸ, is given by 

ܸ = ௦ݒ ௦
௦ାೞ = − ଵ


ௗ௦
ௗ௧,      S16 

where ݏ is the sucrose concentration, ݒ௦ is the maximum rate of sucrose hydrolysis, and  ݇௦ is the 
Michaelis-Menten constant. Finally, the local glucose concentration around the cell is the sum of the bulk 
glucose concentration, and the additional cloud of glucose due to the sucrose hydrolysis on the cell 
surface. The contribution of this cloud is proportional to the rate of sucrose hydrolysis, and thus 

݃ = ݃ + ܸ݃,      S17 
where ݃ is the proportionality constant that accounts for the glucose escape through diffusion (49). 

To infer model parameters, we measured growth rates in varying sucrose concentrations, and different 
cell densities. The growth rate measurements and the corresponding range expansions were carried out in 
9 different media: 0.125% glucose, and 0.008% glu + varying amounts of sucrose.  

Before we describe the specifics of how the model parameters were determined from the 
experimental data, it is important to discuss how each parameter contributes to the different aspects of the 
experimental data and demonstrate that the data contains sufficient information to constrain the model 



parameters. The yield parameter, ܻ, determines the number of cells that can be produced given a certain 
amount of glucose. For the growth rate measurements in pure glucose, ܻ therefore controls the population 
densities at which the growth rate precipitously drops to zero. We determined ܻ by fitting the model 
prediction to our growth measurement at high cell densities in 0.125% glucose (Fig. S9). The growth rate 
at low cell densities in pure glucose media is completely determined by ߛ௫  ܽ݊݀ ݇, and our data 
contained sufficient information to infer these parameters because we had low-density growth rate 
measurements in pure glucose as well as in several sucrose concentrations that produced varying local 
concentrations of glucose as specified by eqn. S17. The low-density growth rates at different sucrose 
concentrations also depend on ݇௦ ܽ݊݀ ݒ௦݃; therefore, we could use our low-density measurements to 
infer four model parameters ߛ௫ , ݇, ݇௦ ܽ݊݀ ݒ௦݃. 

The dynamics at high population densities depend not only on the product of ݒ௦ and ݃, but on the 
individual values of these parameters. In particular, higher values of ݒ௦ and lower values of ݃ (keeping 
their product fixed) result in a larger Allee effect and more cooperative growth because of the faster 
sucrose hydrolysis and greater sharing of glucose via diffusion away from the cell. Therefore the 
magnitude of the Allee effect at high sucrose concentration provided the last necessary constraint to 
determine all of the model parameters. 

Instead of directly fitting to the entire data set simultaneously, we used a modular approach of fitting 
the growth dynamics at low-density and high-density separately. We also bootstrapped on our data to 
determine the uncertainty in model parameters and model predictions. 

To obtain a set of low density growth parameters, we bootstrapped over the measured values of 
growth rates in each of the media, and fitted the parameters by minimizing the squared distance from the 
bootstrapped data using Python package scipy (curve_fit). All data at starting densities below OD 0.004 
was included, as indicated in Fig. S10. However, all outliers more than 2.5 SD away from the mean, were 
excluded from the analysis. Moreover, growth was unusually slow in one of the measurements, in 0.003% 



sucrose. This is the regime where the low-density growth rate is independent of sucrose concentration, 
since the concentration of sucrose is lower than that of glucose, which was 0.008%. Therefore, we 
excluded this particular condition while fitting the parameters. The bootstrapping procedure was repeated 
to obtain 100 sets of low-density growth parameters, ߛ௫ , ݇, ݇௦ ܽ݊݀ ݒ௦݃. Out of these, a few 
iterations of the curve_fit routine did not converge on the fit, leaving 89 sets of parameters for 
downstream analysis. Fig. S11 shows the low-density growth rates that the model predicts for each of the 
parameter sets. 

Next, for each of the 89 sets obtained above, we determined the individual parameters, ݒ௦ and ݃, 
keeping the product constant. As noted earlier, the relative magnitudes of these two parameters control 
the magnitude of the Allee effect. Therefore, parameters ݒ௦ and ݃were determined by minimizing the 
squared distance from growth rates at intermediate densities in 2%, 0.67% and 0.22% sucrose – the media 
that exhibit a substantial Allee effect. The sum of squared distance from all the data points in the selected 
regions of the cell densities was calculated for values of ݒ௦ ranging from 0.2 to 4 % OD-1hr-1, and the 
value of ݒ௦ minimizing the sum was chosen. These regions of cell densities were selected such that the 
growth rates increase with density (i.e. exhibit an Allee effect) and are summarized below: 

2% sucrose: OD 5x10-3 to 2x10-1, 

0.67% sucrose: OD 5x10-3 to 2x101, 

0.22% sucrose: OD 5x10-3 to 3x10-1. 

 Table S1 shows a comparison between the previously reported values of the parameters for yeast, 
and the median parameter values that we have obtained by the procedure described above. The 
distribution of parameter values is shown in Fig. S12. Most of the fitted values were consistent with 
literature. The exception is ݃, which is an order of magnitude larger than previously reported. 
However, this parameter depends strongly on the diffusion rate of glucose, such that slower diffusion 
leads to larger ݃. Since the cells in our experiments are not being shaken (both during range 



expansions as well as in the experiments we performed to measure growth rates), most of the hydrolysis 
products remain in the vicinity of the cell, resulting in lower diffusion, and a larger ݃. Other factors 
that affect ݃ such as genetic background, cell size, etc. could also contribute to the observed difference 
with previous measurements. The lack of mixing is also consistent with the slightly lower ݒ௦ that we 
estimate compared to literature, since the efficiency of hydrolysis is reduced. 

These 89 parameter sets fit the observed growth rates well over the entire range of cell densities and 
sucrose concentrations as shown in Fig. S13. 

We then simulated expansions using the mechanistic growth model and the 89 parameter sets 
obtained above. The simulations exactly follow the experiments, and have cycles of migration/dilution 
followed by growth, with eqn. S14-S17 giving the dynamics in the growth phase (Fig. S14, SI section 5, 
SI simulation code). The simulated velocities for each of the 89 parameter sets all show a transition from 
pulled to pushed waves with increasing sucrose concentration, and are distributed closely around 
experimentally observed velocities (Fig. S8). 

The excellent agreement between the model and the experimental observations further supports our 
conclusions that the break-down of the theory of pulled waves at high sucrose concentrations is due to an 
increasing strength of the Allee effect makes yeast expand as a pushed wave. 

5. Simulations 

Stochastic simulations were performed for computing the rate of exponential density decay at the 
front as well as for testing the predictions of the mechanistic growth model. In the simulations, the 
expansions were allowed to proceed for longer times than in the experiment, so as to completely remove 
all transients. Expansions were typically simulated for 60 cycles across a sufficiently long landscape so 
that the waves do not reach its edge. The total carrying capacity in each spatial patch was the same as in 
the experiments. 



The simulations reflect exactly the dynamics in our experiments (Fig. S14). The cells start with an 
exponential spatial density profile. For each cycle, logistic model (in simulations for calculating the 
exponent at the front) or the mechanistic growth model is integrated over a period of 4 hours to obtain the 
final population density in each well. Growth is thus deterministic in the simulations. At the end of the 
growth cycle, the number of cells is rounded off to the nearest integer. Binomial sampling is used to 
determine the number of cells that are transferred for the next cycle, taking into account the migration rate 
as well as the dilution rate. This step therefore accounts for the demographic fluctuations. 

Finally, since growth in the mechanistic model explicitly depends on sugar concentrations, we also 
include the effects of sugar transfer due to migration and dilution in the simulations (Fig. S14). 

Velocities in the simulations are calculated in the same way as experiments (Materials and Methods). 
A threshold density of 2000 cells per well and the location of the wavefront is defined as the position at 
which the profile crosses this threshold. Velocity is then calculated by obtaining a linear fit between the 
position and time. 



Parameter Median Literature References  
Maximal growth rate on glucose, ߛ௫ [hr-1] 0.390 0.3 – 0.55 (0.39) 39, 49-51 
 ெ for growth on glucose, ݇ [% w/v] 0.0019 0.002 – 0.003 (0.002) 63ܭ
  ெ for sucrose hydrolysis, ݇௦ [% w/v] 0.781 0.5 – 1.5 (0.8) 49, 61-62ܭ
Maximal sucrose hydrolysis rate, ݒ௦ [% OD-1 hr-1] 0.833 2.4 (2.4) 49  
Privatization parameter, ݃ [OD hr] 0.02 0.0015 (0.0015) 49 
Yield on glucose, ܻ [% OD-1] 0.057 – (0.07) –  
 
Table S1 
The table shows a comparison between previously reported and median values of model parameters obtained by fitting the model to measured growth rates. Values in brackets under the literature column are used for the simulation in Figure S7. 
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#	Growth	cycle	integration
def	grow(N,	G,	S,	**kwargs):
				'''
				Takes	into	account	the	glucose	and	sucrose	transferred	over
				'''
				pars	=	kwargs['growth_params']
				model	=	kwargs['model']
				Nf,	gf,	sf	=	[],	[],	[]
				for	i	in	range(len(N)):
								n,	g,	s	=	N[i],	G[i],	S[i]
								concs	=	integrator(array([n,	g,	s]),	4,	model,	pars,	res=0.01)[0].T
								Nf.append(concs[0][-1])
								gf.append(concs[1][-1])
								sf.append(concs[2][-1])
				return	array(Nf),	array(gf),	array(sf)

#	Final	routine	for	each	cycle
def	simulate_expansion(**kwargs):
				num_cycles	=	kwargs['cycles']
				num_patches	=	len(kwargs['N_connected'])
				#dsc	=	kwargs['dscz']
				Npop	=	zeros((num_cycles,	num_patches))	#	Preallocate	memory	for	the	simulation
				glu,	suc	=	ones((num_cycles,	num_patches))*kwargs['g'],	ones((num_cycles,	num_patches))*kwargs['s']
				Npop[0]	=	array(kwargs['N_connected'])	#	Initialize	the	first	row

				#	Run	simulation	for	num	cycles
				for	i	in	range(1,	num_cycles):

								#	Migrate
								Npop[i]	=	simulation2.discretize(simulation2.migrate(Npop[i-1],	kwargs['m'],	**kwargs),	1)
								df	=	kwargs['dilution_factor']
								m	=	kwargs['m']
								gSize	=	len(glu[i-1])
								left	=	arange(-1,	gSize	-	1)	%	gSize
								right	=	arange(1,	gSize	+	1)	%	gSize
								glu[i]	=	(1.-1./df)*glu[i]	+	1./df*((1-m)*glu[i-1]+m/2.*(glu[i-1][left]	+	glu[i-1][right]))
								suc[i]	=	(1.-1./df)*suc[i]	+	1./df*((1-m)*suc[i-1]+m/2.*(suc[i-1][left]	+	suc[i-1][right]))
								
								#	Run	Growth	cycle
								Npop[i],	glu[i],	suc[i]	=	grow(Npop[i]/od_scale/volume,	glu[i],	suc[i],	**kwargs)
								Npop[i]	=	simulation2.discretize(Npop[i]*od_scale*volume,	1)
				
				if	'ret_all'	in	kwargs.keys():
								return	Npop,	glu,	suc
				return	Npop

#	Parameters
def	gen_pardict(cycles=60,	size=45,	m=0.5,	df=2,	migrate='s',	dilute='s',	g=0.125,	s=0,
																growth_pars=(0.39,	0.0019,	0.02,	0.057,	0.833,	0.781),	model=jg2):
				par_dict	=	{
								'cycles'	:	cycles,
								'N_connected'	:	r_[zeros(size)],
								'm'	:	m,
								'dilution_factor'	:	df,
								'migrate'	:	migrate,
								'dilute'	:	dilute,
								'g'	:	g,
								's'	:	s,
								'growth_params'	:	growth_pars,
								'model'	:	model
				}
				par_dict['N_connected'][0]	=	0.9
				par_dict['N_connected'][1]	=	0.9
				par_dict['N_connected'][2]	=	0.09
				par_dict['N_connected'][3]	=	0.009
				par_dict['N_connected'][4]	=	0.0009
				par_dict['N_connected'][5]	=	0.00009
				par_dict['N_connected'][6]	=	0.000009
				par_dict['N_connected'][7]	=	0.0000009
				par_dict['N_connected'][8]	=	0.00000009
				par_dict['N_connected'][9]	=	0.000000009
				par_dict['N_connected']	=	array(par_dict['N_connected']*od_scale*volume,	int)



				
				return	par_dict

def	integrator(v_i,	t,	model,	params,	res=0.001):
				n	=	int(t/res)
				arr	=	zeros((n,	len(v_i)))
				tarr	=	zeros(n)
				arr[0]	=	v_i
				for	i	in	range(1,	n):
								arr[i]	=	arr[i-1]	+	model(arr[i-1],	n*res,	0,	*params)*res
								arr[i][where(arr[i]	<	0)]	=	0
								tarr[i]	=	i*res
				return	arr,	tarr

#	Growth	model
def	jg2(v,	t,	verb,	gamma,	kappa,	geff,	alpha,	beta,	ks):
				'''
				1.	Monod	growth	on	glucose,	with	some	background	concentration	of
							glucose	(preferential	access	to	hydrolyzed	sucrose/diffusion,
							now	proportional	to	rate	of	sucrose	hydrolysis)
				2.	Glucose	is	absorbed	at	a	rate	proportional	to	the	division	rate
				3.	Michaelis-Menten	sucrose	hydrolysis
				'''
				n,	g,	s	=	v
				ds	=	-n*beta*s/(s+ks)
				gloc	=	geff*beta*s/(s+ks)
				dn	=	n*gamma*(g+gloc)/(g+gloc+kappa)
				dg	=	n*beta*s/(s+ks)	-	alpha*dn
				
				if	verb:
								print	'dn/dt:	%.3f	OD/hr,	dg/dt:	%.3f%%/hr,	ds/dt:	%.3f%%/hr,	g_loc:	%.4f%%'%(dn,	dg,	ds,	gloc)
				
				return	array([dn,	dg,	ds])

#	Calculating	velocities	using	a	threshold
def	gen_velocities(gpars,	opops={},	model=jg2,	thresh=2000,	log_only=0):
				vvels,	vlvels,	vlog_par,	pops	=	{},	{},	{},	{}
				for	media	in	range(1,	10):
								if	not	log_only:
												if	media	not	in	opops.keys():
																pars	=	gen_pardict(g=g[media],	s=s[media],	growth_pars=gpars,	df=10./3.,	m=0.5,

model=model)
																pops[media]	=	analyzer(simulate_expansion(**pars).T,	m=0.5,	df=10./3.)
												else:
																pops[media]	=	opops[media]
												vvels.update({media	:	pops[media].velocity_threshold(thresh,	pops[media].times[-20:])[0]})
								else:
												pops[media]	=	analyzer([[],[]],	m=0.5,	df=10./3.)
												vvels.update({media	:	0})
								vlog_par.update({media	:	log(comp_fold_growth([1e-7],	g[media],	s[media],	gpars)[0][0]/1e-7)/4.})
								vlvels.update({media	:	pops[media].param_logistic(g=vlog_par[media])[0]})
				return	vvels,	vlvels,	vlog_par,	pops
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