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Abstract

Many of today’s critical infrastructures are organized in the form of networks, which
are dependent on one another. A particular example is the power grid and the commu-
nication network used to control the grid. While this dependence is beneficial during
normal operation, as it allows for more efficient operation, it can be harmful when the
networks are under stress. Indeed, in such interdependent network infrastructures, a
cascade of failures may occur where power failures can lead to communication failures,
which, in turn, lead to cascading power failures. Therefore, it is necessary to develop
proper models and analytical tools to asses the robustness of interdependent networks
to failures. In this thesis, we develop such models with emphasis on interdependent
power grids and communication networks.

Initially, we focus on the abstract modeling of interdependent networks. In par-
ticular, we propose a new model for interdependent networks with known topologies,
define and analyze metrics for assessing the robustness of such networks to cascading
failures, and propose algorithms for robust design of interdependent networks.

Next, we focus on the interactions between power grids and communication and
control networks. We model the cascading failures in the power grid using the power
flow equations, and use the communication network to implement a control policy in
the power grid which mitigates cascading failures in interdependent networks. Using
this model, we show that the interdependent power grids are more robust than isolated
ones.

Finally, we model the impact of communication loss on the performance of power
grids under two different control scenarios. The first one is the emergency control
mechanism where failures in the power grid should be monitored and mitigated by the
control center. In this case, we investigate the impact of simultaneous communication
failures on the performance of such control mechanisms. In particular, we propose
new emergency control schemes for partial communication networks, and investigate
the network parameters that are most effective in causing the cascade of failures
from communication networks to the power grid. The second control mechanism
is distributed frequency control in power grids. We show that the optimal solution
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will not be achieved under communication link failures. We propose a novel control
mechanism that uses the power dynamics instead of direct information from the
communication network, and show that it achieves the optimal solution and is globally
asymptotically stable. We also analyze the impact of discrete-time communication
on the performance of distributed frequency control. We show that the convergence
time increases as the time interval between two messages increases, and propose a
new algorithm that uses the dynamics of the power grid to decrease the convergence
time.

Thesis Supervisor: Eytan Modiano
Title: Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Motivation

Many of today’s critical infrastructures are organized in the form of networks, which

are dependent on one another. A particular example is the power grid and the commu-

nication network used to control the grid. While this dependence is beneficial during

normal operation, as it allows for more efficient operation, it can be harmful when the

networks are under stress. Indeed, in such interdependent network infrastructures, a

cascade of failures may occur where power failures can lead to communication failures,

which, in turn, lead to cascading power failures.

The monitoring and control of today’s power grid relies on a Supervisory Con-

trol and Data Acquisition (SCADA) system. One of the main control operations

is the Automatic Generation Control (AGC) which is used to match power supply

with demand in the grid through frequency control. This is done both at the local

(generator) level, and the wide-area level. AGC systems rely on communications in

order to disseminate control information, and the lack of communications, or even

delay in communications can cause AGC systems to malfunction and fail, leading to

wide-scale power outages [3, 4].

In August 2003, lack of real-time monitoring and rapid control decisions for mit-

igating failures led to a catastrophic blackout which affected 50 million people in

Northeast America. According to the final report of the 2003 blackout [1], this black-
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out started with the loss of three transmission lines in Ohio. However, the operators

did not realize these failures due to insufficient monitoring; thus, no remedial action

was taken at that time which triggered a very fast cascade, and led to a full blackout

in the Northeast United States and parts of Canada. The reports in [5] and [2] indi-

cate that the reason for tripping of many generators and transmission lines was power

imbalance in the control areas and lack of communication between the operators for

mitigating the failures.

It is thus essential to design the communication and control network together with

control policies that facilitate widespread monitoring of the power grid, and enables

the power grid to react to rapid changes and unexpected failures in the network.

Moreover, for cost and sustainability considerations, the communication equipment

often receive the power for operation directly from the power grid. However, this

creates a strong interdependency between the two networks, where the operation

of the power grid is dependent on receiving control signal from the communication

network, and the operation of the communication network is dependent on receiving

power from the grid. Therefore, in the case a power blackout, power outages lead to

communication failures which in turn lead to additional power outages.

1.2 The 2003 Blackout

In August 14, 2003, a massive blackout occurred in the northeast United States and

Ontario, Canada, where 50 million people lost power for a significant amount of time.

This blackout started with the loss of transmission lines in Ohio due to inadequate

tree trimming.

The operators did not realize the failure of Ohio transmission lines due to insuffi-

cient monitoring; thus, no remedial action was taken at that time. In the subsequent

hour, several transmission lines and generators tripped due to overheating of power

lines and local generator controls. These initial failures triggered a very fast cascade,

which occurred in less than 5 minutes and led to a full blackout in Northeast America.

Table 1.1 shows the sequence of key failures over time [5].
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Monitoring
14:02 Transmission line disconnects in southwestern Ohio

15:05:41 - 15:41:33 Transmission lines disconnect between eastern Ohio and
northern Ohio

15:45:33 - 16:08:58 Remaining transmission lines disconnect from eastern into
northern Ohio

Control
16:08:58 - 16:10:27 Transmission lines into northwestern Ohio disconnect,

and generation trips in central Michigan
16:10:00 - 16:10:38 Transmission lines disconnect across Michigan and northern

Ohio, generation trips off line in northern Michigan and
northern Ohio, and northern Ohio separates from Pennsylvania

16:10:40 - 16:10:44 Four transmission lines disconnect between Pennsylvania
and New York

16:10:41 Transmission line disconnects and generation trips in northern
Ohio

16:10:42 - 16:10:45 Transmission paths disconnect in northern Ontario and
New Jersey, isolating the northeast portion of the Eastern
Interconnection

16:10:46 - 16:10:55 New York splits east-to-west. New England (except
southwestern Connecticut) and the Maritimes separate
from New York and remain intact

16:10:50 - 16:11:57 Ontario separates from NY west of Niagara Falls and west of
St. Lawrence. Southwestern Connecticut separates from NY
and blacks out.

16:13 Cascade Completed

Table 1.1: Key Failures in 2003 blackout in Northeast America

As can be seen from Table 1.1 and Figure 1-1, most of the failures occurred during

a 5 minute period through a rapid succession of tie lines and generators tripping. As

we discuss below, much of this failure cascade was a result of “inadequate situational

awareness” and could have been prevented using reliable communications and control.

In fact, according to the final report by NERC, although the first stage of failures

occurred slowly, operators could not stabilize the power grid due to inadequate situ-

ational awareness.

In a subsequent stage, lack of control and a large power imbalance in the grid led

to tripping of tie lines and generators. According to the report by NY-ISO [2], at

16:10:39 EDT, the tie lines between Pennsylvania and New York were highly loaded
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simultaneously, commonly used protective relays
that measure low voltage and high current cannot
distinguish between the currents and voltages
seen in a system cascade from those caused by a
fault. This leads to more and more lines and gener-
ators being tripped, widening the blackout area.

How Did the Cascade Evolve on
August 14?

A series of line outages in northeast Ohio starting
at 15:05 EDT caused heavy loadings on parallel
circuits, leading to the trip and lock-out of FE’s
Sammis-Star 345-kV line at 16:05:57 Eastern Day-
light Time. This was the event that triggered a cas-
cade of interruptions on the high voltage system,
causing electrical fluctuations and facility trips
such that within seven minutes the blackout rip-
pled from the Cleveland-Akron area across much
of the northeast United States and Canada. By
16:13 EDT, more than 508 generating units at 265
power plants had been lost, and tens of millions of
people in the United States and Canada were with-
out electric power.

The events in the cascade started relatively
slowly. Figure 6.1 illustrates how the number of
lines and generation lost stayed relatively low dur-
ing the Ohio phase of the blackout, but then
picked up speed after 16:08:59 EDT. The cascade
was complete only three minutes later.

Chapter 5 described the four phases that led to the
initiation of the cascade at about 16:06 EDT. After
16:06 EDT, the cascade evolved in three distinct
phases:

� Phase 5. The collapse of FE’s transmission sys-
tem induced unplanned shifts of power across
the region. Shortly before the collapse, large
(but normal) electricity flows were moving
across FE’s system from generators in the south
(Tennessee and Kentucky) and west (Illinois
and Missouri) to load centers in northern Ohio,
eastern Michigan, and Ontario. A series of lines
within northern Ohio tripped under the high

74 � U.S.-Canada Power System Outage Task Force � August 14th Blackout: Causes and Recommendations �

Impedance Relays

The most common protective device for trans-
mission lines is the impedance (Z) relay (also
known as a distance relay). It detects changes in
currents (I) and voltages (V) to determine the
apparent impedance (Z=V/I) of the line. A relay
is installed at each end of a transmission line.
Each relay is actually three relays within one,
with each element looking at a particular “zone”
or length of the line being protected.

� The first zone looks for faults over 80% of the
line next to the relay, with no time delay before
the trip.

� The second zone is set to look at the entire line
and slightly beyond the end of the line with a
slight time delay. The slight delay on the zone
2 relay is useful when a fault occurs near one
end of the line. The zone 1 relay near that end
operates quickly to trip the circuit breakers on
that end. However, the zone 1 relay on the
other end may not be able to tell if the fault is

just inside the line or just beyond the line. In
this case, the zone 2 relay on the far end trips
the breakers after a short delay, after the zone 1
relay near the fault opens the line on that end
first.

� The third zone is slower acting and looks for
line faults and faults well beyond the length of
the line. It can be thought of as a remote relay
or breaker backup, but should not trip the
breakers under typical emergency conditions.

An impedance relay operates when the apparent
impedance, as measured by the current and volt-
age seen by the relay, falls within any one of the
operating zones for the appropriate amount of
time for that zone. The relay will trip and cause
circuit breakers to operate and isolate the line.
All three relay zone operations protect lines from
faults and may trip from apparent faults caused
by large swings in voltages and currents.

Figure 6.1. Rate of Line and Generator Trips During
the Cascade

Figure 1-1: Rate of Line and Generator Trips During Blackout 2003 - source [1]

due to large power imbalance between the areas; these tile lines tripped within 6

seconds. One second later, the tie-lines between New England and New York became

overloaded and tripped within two seconds. Finally, two seconds later, the tie lines

between Ontario and New York tripped within less than one second. Figures 1-2 show

the loss of tie lines connected to New York which led to a large amount of power loss

in the area [2].

In addition, lack of proper monitoring and control led to the rapid tripping of

generators. According to the final report on the 2003 Blackout, at least 265 power

plants with more than 508 individual generating units shut down [1]. The NY ISO

reported the detailed time scale of generators tripping [2]. The sequence of failures

occurred in rapid succession over a period of 35 seconds: 16:11:04, 16:11:05, 16:11:06,

16:11:08, 16:11:09, 16:11:10, 16:11:13, 16:11:14, 16:11:17, 16:11:19, 16:11:22, 16:11:23,

16:11:27, 16:11:28, 16:11:38, 16:11:39.

Investigations show that the response of local protection devices was the cause
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 NYISO Interim Report August 14, 2003 Blackout 

 28 January 8, 2004 
 
  
  

In the western island, the severe frequency oscillations resulted in the tripping of the large 
nuclear and combined cycle units in the Oswego area.  Some of the fossil fueled generation in 
western New York tripped by relay protection, and some units were tripped by operator action 
because the units were becoming thermally unstable (boiler or fuel issues).  This operator 
action, in several cases, insured the quick restart of these units during the restoration. 
 
 
H. End State of the August 14th Event 
 
 

 
 

Figure 2.14 
 
A major portion of the northern section of the Eastern Interconnection was blacked out.  Some 
isolated areas of generation and load remained online for several minutes.  Some of those areas 
in which a close generation-demand balance could be maintained remained operational; other 
generators ultimately tripped offline and the areas they served were blacked out. 
 
At 16:08, just prior to the event, the NYISO was serving approximately 28,700 MW of load.  
Ten minutes later, the load was 5,716 MW, representing a loss of 22,984 MW.  Automatic 
under-frequency load shedding disconnected a total of 10,648 MW statewide. 
 

Figure 1-2: Failure of Tie lines between NYISO and PJM, NE-ISO, IMO - source [2]

of most of generators tripping. In fact, since there was no coordination between the

generators and ISOs when applying the load shedding schemes, relays in generators

did not tolerate the under/over frequency in the area and tripped. However, in

the presence of a communication network between ISOs, a fast frequency wide-area

controller could have changed the set points of generators, avoid the failures and help

the grid to recover.

Another reason for tripping of some generators was the loss of power in local

controllers. According to the final report, some generators received power from the

grid in order to control their system. Since the grid could not supply the plant’s

in-house power needs reliably, the generators tripped and led to further power loss.

This is a direct example of the cascading affect between communications and control

even within the local control area.

21



1.3 Our Contributions

We now give an overview of the contributions of this thesis. Motivated by the 2003

blackout in Northeast America, we first propose a new abstract model for interdepen-

dent networks with known topologies. We define and analyze metrics for assessing

the robustness of such networks to cascading failures, and propose algorithms for ro-

bust design of interdependent networks. Next, we focus on the case of power grids

and communication networks. We model the cascading failures in the power grid

using the power flow equations, and use the communication network to implement

a control policy in the power grid which mitigates cascading failures in interdepen-

dent networks. Using this model, we show that interdependent power grids are more

robust than isolated ones. Then, we model the impact of communication loss on

the performance of power grid under emergency control, and investigate the network

properties which are more effective in cascading the failures from communication net-

works to the power grid. Finally, we analyze the effect of communication loss on

the performance of optimal distributed frequency control in power grids. In partic-

ular, we show that the optimal solution will not be achieved under communication

link failures. We propose a novel control mechanism that uses the dynamics of the

power grid instead of information from the communication network and prove that it

achieves the optimal solution and is globally asymptotically stable. In the following,

we describe our contributions throughout this thesis in more details.

1.3.1 Abstract Interdependency Model

In Chapter 2, we propose a new model for interdependent networks with “known”

topologies. We consider two networks 𝐴 and 𝐵, where every node in 𝐴 is connected

to source node 𝑆𝐴 via a path in network 𝐴, and every node in 𝐵 is connected to

source node 𝑆𝐵 via a path in 𝐵. In addition, the interdependency between networks

𝐴 and 𝐵 is described as follows. Every node in network 𝐴 receives at least one

incoming edge from a node in network 𝐵, and every node in network 𝐵 receives at

least one incoming edge from a node in network 𝐴. Figure 1-3 shows an example of
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our interdependent network.

SA

A2

A1

A3

A4

B1

B2

B3

SB

Network A Network B

Figure 1-3: Interdependency Model - Dotted lines represent links of type A and solid
lines represent links of type B. According to our model, a node in network 𝐴 is
operating if (a1) it is connected to source 𝑆𝐴 via a path of operating nodes in 𝐴, and
(a2) it is connected to at least one operating node in network 𝐵. Similarly, a node 𝐵
is operating if (b1) it is connected to source 𝑆𝐵 via a path of operating nodes in 𝐵,
and (b2) it is connected to at least one operating node in network 𝐴.

We consider both unidirectional and bidirectional interdependent edges. In order

to analyze the robustness of networks, we define several metrics for identifying the

critical nodes in interdependent networks:

∙ Min-Node-Cut: minimum number of node removals in network 𝐴 that lead to

the failure of a single node in network 𝐵;

∙ Min-Total-Failure: minimum number of node removals from both networks that

lead to the failure of entire network 𝐵;

∙ Min-Partial-Failure: minimum number of node removals from network 𝐴 that

lead to the failure of 𝐷 nodes in network 𝐵.

We analyze the complexity of each metric for both cases of unidirectional and

bidirectional networks. In particular, we prove that all metrics are NP-complete

for networks with unidirectional interdependency. On the other hand, metrics Min-

Node-Cut and Min-Total-Failure can be evaluated in polynomial time for networks
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with bidirectional interdependency, where metric Min-Partial-Failure remains NP-

complete under bidirectional interdependency. We propose several heuristics to ap-

proximate the NP-complete metrics.

Next, we prove that for any set of interdependent networks with similar physical

properties, bidirectional interdependent networks are more robust than unidirectional

interdependent networks. Moreover, we propose algorithms for explicit design of

robust bidirectional interdependent networks [6, 7].

We analyze the abstract models of interdependent networks in Chapter 2; however,

in reality, networks such as power grids and communication networks have more

complex behaviors. In the next chapters, we focus on the interactions between these

two networks.

1.3.2 Interdependent Power Grid and Communication Net-

works

In Chapter 3, we analyze the interdependency between power grids and communi-

cation networks by considering the power flow dynamics inside the power grid, and

control mechanisms applied by the communication networks.

A simple model for analyzing the behavior of the power grid is the DC power flow

model which has been widely used in the literature (see [8] for a survey on the power

flow models). When a power node or line fails, its load is shifted to other elements

of the grid. During this process, the flow in one or more lines may be pushed beyond

their capacity which leads to the failure of the overloaded lines. Similarly, failure of

these lines redistributes power and may lead to further “Cascading Failures".

In Chapter 3, we model the cascading failures inside the power grid using power

flow equations. We also assume that each communication node requires a certain

amount of power from the grid to operate; thus, lack of power would lead to failures

in the communication network. Note that in reality, communication nodes can be

supported by back up batteries or generators; thus, disconnection from the power

grid may not lead to the failure of communication nodes.
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Moreover, we propose an intelligent load shedding policy applied by the control

and communication network to mitigate the cascade of failures inside the power grid.

We simulate our model of interdependent power grid and communication networks,

and show a counter-intuitive result where interdependent power grids are more robust

than isolated ones (See Figure 1-4). This is due to the fact that although some

power nodes will be lost due to interdependent cascade of failures, the cascading

failures inside the power grid can be mitigated using the control scheme applied by

the communication network [9].

(a) No Control- Interdependent networks are
more vulnerable.

(b) Control - Interdependent networks are more
reliable.

Figure 1-4: Comparing yield of interdependent and isolated power grids. The yield (the
ratio of served load to the initial load) in interdependent power grid and communication
network without control is lower than the isolated power grid (Figure 1-4(a)). However,
when intelligent control is applied to the interdependent network, the yield is higher than
the isolated power grid (Figure 1-4(b)).

In Chapter 3, we use a simplistic assumption that a power node fails if it loses its

connection to the communication networks. In the next two chapters of this thesis,

we focus on two different control mechanisms inside the power grid, and investigate

the impact of communication loss on their performances.

1.3.3 Modeling the Impact of Communication Loss on the

Power Grid

There are many control mechanisms inside the power grid that serve different pur-

poses. Some of these control mechanisms may not require a communication network,
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such as the primary frequency controller, and some may require communication net-

works, such as the AGC or economic dispatch. However, each of these control mech-

anisms have different communication requirements. For example, AGC is updated

every 2 to 4 seconds, whereas economic dispatch is updated every 10-15 minutes.

Therefore, the effect of communication loss or delay on the performance of control

mechanisms in the power grid should be analyzed separately.

In Chapter 4, we analyze the impact of communication failures on the emergency

control of the power grid. Figure 1-5 shows an example of the case where simultaneous

failures occur in both the power grid and communication networks. Therefore, the

control center cannot control some parts of the power grid due to partial loss of

communication. We design a centralized emergency control scheme under both full

and partial communication network which mitigates the cascading failures in the

power grid by shedding the minimum amount of load. We use our emergency control

scheme to model the impact of communication loss on the power grid. We show

that unlike previous models used in the literature, power nodes that have lost their

connection to the communication network, and consequently the control center, do

not always fail; i.e. the “point-wise” failure model is not appropriate. In addition,

we show that the impact of communication loss is a function of several parameters

such as the size and structure of the power and communication failure, as well as the

operating mode of power nodes disconnected from the communication network [10,11].

In Chapter 5, we analyze the impact of communication failures on the perfor-

mance of optimal distributed frequency control. We consider a consensus-based con-

trol scheme, and show that it does not converge to the optimal solution when the

communication network is disconnected. We propose a new control scheme that uses

the power dynamics to replicate the information not received from the communication

network, and prove that it achieves the optimal solution under any single commu-

nication link failure. Figure 1-6 shows an example of disconnected communication

network and the updated control scheme.

In addition, we show that this control improves cost under multiple communication

link failures. In addition, we analyze the impact of discrete-time communication on
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Figure 1-5: Dotted lines indicate dependency of power nodes on communication nodes.
Power nodes that have lost their connection to the communication network become
“uncontrollable". Note that uncontrollable nodes may operate fine using localized
control, but cannot be controlled remotely because they are not reachable.

the performance of distributed frequency control. In particular, we show that the

convergence time increases as the time interval between two messages increases. We

propose a new algorithm that uses the dynamics of the power grid, and show through

simulation that it improves the convergence time of the control scheme significantly

[12].

1.4 Related Work

The concept of interdependency was first introduced by Rinaldi et. al. in [13], where

the authors described different types of interdependencies as well as different types of

failures that can occur in interdependent systems. In 2008, Rosato et. al. explored

the impact of failures in the power grid on the performance of communication net-

works [14]. Moreover, the authors in [15, 16] studied the impact of power failures on

multilayer communication networks whereas the authors in [17] studied the effect of

geographically correlated failures on interconnected power-communication networks.
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Node k updates its control using the 
direction information it receives from 
node j via communication network

k

i j
Nodes i & j updateNodes i & j update 
their control ONLY
based on power flow fij

power
communication

3
Figure 1-6: Power Grid and Communication Network - Solid lines are power lines
and dashed lines are communication lines. When nodes 𝑖 and 𝑗 become disconnected,
the optimal solution will not be achieved under the original distributed control. We
design a new control where nodes 𝑖 and 𝑗 update their local control decision only
based on the power flow between nodes 𝑖 and 𝑗, and prove that the optimal solution
can be achieved.

In 2010, Buldyrev et. al. developed the first mathematical model for describing

interdependency between two networks [18]. They modeled each network as a ran-

dom graph and assumed there exists a one-to-one interdependency between the two

networks. They considered two networks 𝐴 and 𝐵, where node in network 𝐴 can

operate if it is connected to the largest connected component in network 𝐴 and its

correspondent node in network 𝐵 is also operating. Using percolation theory, they

showed that failures spread more in interdependent networks than isolated networks;

thus, interdependent networks are more vulnerable. Since then, there have been many

follow-up works on the model by Buldyrev et. al., studying the asymptotic behav-

ior of random networks [19–22]. However, in reality networks are not random, and

models and analytical tools are needed for studying networks with known topology.

There are very few papers on the interdependent networks with known topologies.

In [23], the authors identified the most critical nodes by defining a new centrality

measurement for interdependent networks. The authors of [24] and [25] extended the

model to multilayer networks where different types of interdependency exist and a
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node depends on multiple types of nodes for operation. They proposed ILP formu-

lations to find the most vulnerable nodes under several network settings. Finally,

in [26], the authors used the Moore-Penrose pseudo-inverse of the graph Laplacians

to show some topological properties of the interdependency between networks.

This abstract model cannot describe the complex behavior of power grids and

communication networks. In a power grid the flows are driven by Kirchoff’s laws,

and cannot be described by a network flow model. Thus, when a failure occurs in a

power grid, the power flow is redistributed on the the rest of the network and some

elements could overload and fail, leading to “Cascading Failures”. The cascade of

failures in the power grid is a very complex phenomena, and several models have

been introduced for explaining its behavior (see for example [27–31]).

In order to prevent these failures, there are special remedial systems in the power

grid that help to stabilize the grid during a disturbance. One of these remedial actions

is changing the power injection at nodes (minimum load and generator shedding) so

that grid’s constraints are satisfied. A closely related problem in terms of formulation

is the Optimal Power Flow (OPF) problem where the objective is minimizing the

total cost of power generation. In our case, this can be replaced by the total cost of

power loss. The OPF problem in the DC model is a well-studied problem with many

extensions such as OPF with Transmission Switching [32].

The future power grid is going to integrate renewable energy resources. This will

increase the fluctuations in the generation, and requires more reserve capacity to

balance the power. One of the approaches to balancing power without having large

reserve capacities is demand response, where loads are “adjustable” and participate

in balancing the power. Since the number of loads is large, they cannot be controlled

in a centralized manner. Thus, it is essential to use “distributed” control for demand

response that incorporates all three stages of traditional frequency control.

Recently, there have been many attempts to develop distributed frequency con-

trol mechanisms. In particular, in [33], the authors designed a distributed frequency

controller which balances the power under unknown changes in the amount of gener-

ation and load, and compared its performance with a centralized controller. In [34],
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the authors proposed a primary control mechanism, similar to the droop control, for

microgrids leading to a desirable distribution of power among the participants, and

proposed a distributed integral controller to balance the power. These results are ex-

tended in [35], where the authors used a similar averaging-based distributed algorithm

to incorporate all three stages of frequency control in microgrids. Finally, in [36], the

authors proposed a similar consensus-based algorithm for optimal frequency control

in transmission power grid.
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Chapter 2

Abstract Modeling of Interdependent

Networks

In this chapter, we study the robustness of interdependent networks where two net-

works are said to be interdependent if the operation of one network depends on the

operation of the other one, and vice versa. We propose a new model for analyzing

interdependent networks with known topology under both unidirectional and bidirec-

tional interdependencies. We define several metrics for finding the most critical nodes

in such interdependent networks, evaluate their complexity and propose heuristics for

NP-complete metrics. Finally, we introduce two closely related definitions for robust

design of interdependent networks; propose algorithms for explicit design, and demon-

strate the relation between robust interdependent networks and expander graphs.

2.1 Introduction

Many of today’s infrastructures are organized in the form of networks and are be-

coming increasingly interdependent. For example, the power grid and communication

networks have a cyber-physical interdependency where the power nodes depend on

the control signals coming from the communication nodes and communication nodes

operate using the power coming from the power nodes. As another example, the

power grid and gas networks have a physical-physical interdependency where the
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compressors in gas networks require power from the power grid to transmit gas and

the gas generators in the power grid require gas to generate power.

Although interdependency is required for the operation of both networks under

normal conditions, if a failure happens inside one of the networks it can cascade to

the other network. For example, if a failure occurs inside the power grid, some of the

communication nodes will lose their power and fail. As a result, new power nodes

lose their control and fail which can lead to the failure of additional communication

nodes. Thus, a cascade of failures can occur between the two networks due to the

strong interdependency.

The concept of interdependency was first introduced by Rinaldi et. al. in [13],

where the authors described different types of interdependencies as well as different

types of failures that can occur in interdependent systems. In 2010, Buldyrev et. al.

developed the first mathematical model for describing interdependency between two

networks [18]. They modeled each network as a random graph and assumed there

exists a one-to-one interdependency between the two networks. They consider two

networks 𝐴 and 𝐵, where node in network 𝐴 can operate if it is connected to the

largest connected component in network 𝐴 and its correspondent node in network 𝐵

is also operating. Using percolation theory, they showed that failures spread more

in interdependent networks than isolated networks; thus, interdependent networks

are more vulnerable. Using this model, Parshani et al. showed that reducing the

dependency between the networks makes them more robust to random failures [19].

In [37], the robustness of a slightly different version of interdependent networks was

investigated where mutually dependent nodes have the same number of connectivity

links. A discussion of follow-up works on Buldyrev’s model can be found in [20].

The robustness of interdependent networks under targeted attacks was studied

in [21]. The stability of interdependent spatially embedded networks, and the impact

of geographical attacks on the robustness of two interdependent spatially embedded

networks was studied in [38] and [39], respectively. Moreover, in [40], the notion

of interdependency was generalized to more than two networks, and the ability of

networks to tolerate certain structural attacks was investigated.
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There have also been some efforts on designing robust interdependent networks.

The authors in [41] proposed a strategy based on “betweenness" centrality measures

to make a minimum number of nodes resilient such that the overall robustness of

networks is increased. In [42] a dynamic enhancing model was studied, where the

authors defined a healing process, where an interdependency link is formed with

some given probability. They showed that there is a threshold for this probability

where catastrophic failures occur below the threshold and do not occur above the

threshold. Finally, the authors in [22] showed that the robustness of interdependent

networks depends on the allocation of the interdependency links, and characterized

an optimum allocation against random attacks.

As described above, most of the literature on interdependency follows the model

of [18], and relies on the asymptotic behavior of random networks. However, in reality

networks are not random, and models and analytical tools are needed for studying

networks with known topology.

In this chapter, we propose a new model for interdependent networks, and we

consider two types of interdependency links: bidirectional and unidirectional. We

propose several metrics for identifying the impact of failures in one network on the

vulnerability of the other one due to interdependency, analyze the complexity of our

metrics, and propose algorithms for approximating them.

Next, we prove that interdependent networks with bidirectional edges are more ro-

bust than those with unidirectional edges, and propose two closely-related definitions

for robust interdependent networks: (1) a lexicographic definition which guarantees

that networks robust to large failures are also robust to small failures, and (2) a rel-

ative definition which guarantees that the ratio of the size of the initial failure to the

size of the final failure is large.

Finally, we propose explicit algorithms for robust design of networks under the first

definition and showed the relation of robust interdependent networks with expander

graphs under the second definition.

The rest of this chapter is organized as follows. In Section 2.2, we introduce our

model for interdependent networks. In Section 2.3, we introduce two closely-related
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metrics for vulnerability assessment of interdependent networks, and in Sections 2.4

and 2.5, we analyze these metrics in networks with unidirectional and bidirectional

interdependency, respectively. In Section 2.6, we compare the robustness of these two

interdependency models. Next, in Section 2.7, we introduce two definitions for robust

networks and propose algorithms for allocating the interdependency links in order

to obtain the most robust bidirectional interdependent networks. Finally, in Section

2.8, we discuss the robustness of interdependent networks with general topologies,

and conclude in Section 2.9.

2.2 Model

Consider network 𝐴 with 𝑁1 nodes and a set of robust source nodes 𝑆𝐴
1 where every

node in 𝐴 is connected to at least one source node in 𝑆𝐴 via a path in network 𝐴.

Similarly, network 𝐵 has 𝑁2 nodes and a set of robust source nodes 𝑆𝐵 where every

node in 𝐵 is connected to at least one source node in 𝑆𝐵 via a path in 𝐵. Without

loss of generality, we assume that each network has exactly one source node, where

one can replace all source nodes in 𝑆𝐴 (𝑆𝐵) with one dummy node called 𝑆𝐴 (𝑆𝐵).

In addition, there exists an interdependency between nodes in networks 𝐴 and 𝐵 as

follows: every node in network 𝐴 receives at least one incoming edge from a node in

network 𝐵, and every node in network 𝐵 receives at least one incoming edge from a

node in network 𝐴. See Figure 2-1 for an example of our interdependent network.

According to our model, a node in network 𝐴 is operating if (a1) it is connected

to source 𝑆𝐴 via a path of operating nodes in 𝐴, and (a2) receives an incoming edge

from at least one operating node in network 𝐵. Similarly, a node 𝐵 is operating if

(b1) it is connected to source 𝑆𝐵 via a path of operating nodes in 𝐵, and (b2) receives

an incoming edge from at least one operating node in network 𝐴. Note that condition

(a2) guarantees the connection of node 𝐴 to source 𝑆𝐵, as well. This is due to the fact

that an operating node of type 𝐵 should be connected to 𝑆𝐵. Similarly, condition

(b2) guarantees the connection of node 𝐵 to source 𝑆𝐴.

1We assume that source nodes do not fail.
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It is worthwhile to note the critical difference between the interdependent networks

and isolated networks which makes the analysis of interdependent networks more

complex. According to our model, in interdependent networks, every node of type

𝐴 will be operational if it is receiving incoming edges from both type 𝐴 and type 𝐵

nodes; however, its outgoing edge will be “only" of type 𝐴. Therefore, although each

operational node is connected to both sources 𝑆𝐴 and 𝑆𝐵 via two paths, the type of

nodes in each path also matters.

SA

A2

A1

A3

A4

B1

B2

B3

SB

Network A Network B

Figure 2-1: Interdependency Model - Dotted lines represent links of type A and solid
lines represent links of type B.

This network can be seen as an abstract model of power grid and communication

networks interdependency. Suppose network 𝐴 is the power grid and network 𝐵 is

the control and communication network. Sources in network 𝐴 are the generators and

nodes are the substations, and every substation receives its power from the generator

via a path. Moreover, sources in network 𝐵 are the control centers and nodes are

the routers, and every router receives the control signals from the control center

via a path. Finally, every router has at least one incoming edge from the power

grid to receive power, and every substation has at least one incoming edge from the

communication network to receive control signals.
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2.2.1 Effect of a Single Failure

We start with an example demonstrating that a single failure can cascade multiple

times within and between networks 𝐴 and 𝐵 (Figure 2-2). Suppose that initially node

𝐴4 fails (Step 1). As a result, all the edges attached to 𝐴4 fail, and node 𝐵3 loses its

connection to network 𝐴 and fails (Step 2); Consequently, node 𝐴1 and 𝐴3 lose their

connection to network 𝐵, and node 𝐵2 loses its connection to source 𝑆𝐵, and all fail

(Step 3). Finally node 𝐵1 loses its connection to network 𝐴, and substation 𝐴2 loses

its connection to source 𝑆𝐴, and both fail (Step 4).
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Network A Network B

(a) Step1 - 𝐴4 fails, initially

SA

A2

A1

A3

B1

B2

B3

SB

Network A Network B

(b) Step2 - 𝐵3 fails
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B2
SB

Network A Network B

(c) Step3 - 𝐴1, 𝐴3 and 𝐵2 fail

SA

A2

B1

SB

Network A Network B

(d) Step4 - 𝐵1 and 𝐴2 fail

Figure 2-2: Cascade of a single failure in an interdependent model

In this chapter, the interdependent networks 𝐴 and 𝐵 have special star topologies ;

i.e. every node is directly connected to the source in that network. In a star topology,

failure of a node in network 𝐴 cannot disconnect other nodes in network 𝐴 from

source 𝑆𝐴; and similarly, failure of a node in network 𝐵 cannot disconnect other

nodes in network 𝐵 from source 𝑆𝐵. Therefore, any cascading failure in the system

would be only due to the interdependency between the networks. We consider this

topology as it gives us the opportunity to investigate the impact of interdependency
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on the robustness of networks. Then, we extend our analysis to networks with acyclic

topologies; i.e. trees.

2.2.2 Types of Interdependency

One can consider both unidirectional and bidirectional interdependencies. In unidi-

rectional interdependency, interdependent edges are unidirectional; i.e. if node 𝑖 in

network 𝐴 supports node 𝑗 in network 𝐵, it is not necessarily supported by node 𝑗.

In bidirectional interdependency, interdependent edges are bidirectional; i.e. if node

𝑖 in network 𝐴 supports node 𝑗 in network 𝐵, it is also supported by node 𝑗 (See

Figure 2-3).

Network BNetwork A

A1

A2

B1

B2

(a) Unidirectional Interdependency

Network BNetwork A

A1

A2

B1

B2

(b) Bidirectional Interdependency

Figure 2-3: Graph structure under different interdependency models

The main difference between the cascade of failures in these two networks is the

fact that in unidirectional networks, a failure can cascade in multiple stages, whereas

in a bidirectional network, a failure cascades only in one stage 2 (See [6] for more

details). Later, we will see that the bidirectional interdependent networks are more

robust than the unidirectional interdependent networks due to this difference.

2.3 Metrics

In order to find the most influential nodes in an interdependent network, we define

two closely related metrics.
2Suppose failure cascades from 𝑖1 to 𝑖2 to 𝑖3; i.e. two stages. This means that node 𝑖2 has two

neighbors ; i.e. two incoming edges; thus, loss of neighbor 𝑖1 does not lead to the failure of node 𝑖2
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Definition 1. Metric ℳℛ(𝐷) denoting the minimum number of node removals from

network 𝐴 which causes the failure of 𝐷 arbitrary nodes in network 𝐵.

Definition 2. Metric ℳℛℬ(𝐷) denoting the minimum number of node removals

from both networks which causes the failure of 𝐷 arbitrary nodes in network 𝐵.

Note that metric ℳℛ(𝐷) for 𝐷 = 1 can be interpreted as the Min-Node-Cut;

i.e. the minimum number of node removals in network 𝐴 that lead to the failure of a

single node in network 𝐵. In addition, metric ℳℛ(𝐷) for 𝐷 = 𝑁2 can be interpreted

as the Min-Total-Failure; i.e. the minimum number of node removals from network

𝐴 that lead to the failure of entire network 𝐵. Finally, metric ℳℛ(𝐷) for arbitrary

values of 𝐷 can be interpreted as the Min-Partial-Failure; i.e. the minimum number

of node removals from network 𝐴 that lead to the failure of 𝐷 nodes in network 𝐵.

The same interpretation holds for the metric ℳℛℬ(𝐷).

2.4 Unidirectional Interdependency

In the this section, we consider the interdependent networks with unidirectional in-

terdependent edges. First, we analyze the complexity of metrics. Then, we formulate

them as ILP formulations; and finally, we propose heuristic algorithms for evaluating

them.

2.4.1 Complexity

We will start with evaluating a special case of ℳℛℬ(𝐷) where 𝐷 = 𝑁2; i.e. minimum

node removals from both networks that lead to the failure of the entire network 𝐵.

Note that failure of all nodes in network 𝐵 leads to the failure of all nodes in network

𝐴, too. In the following we show that evaluating ℳℛℬ(𝐷 = 𝑁2) is in fact a hitting

cycle problem, and prove that it is an NP-complete problem. In order to do so we

start with the following lemmas:

Lemma 1. A network with one or more operating nodes has at least one cycle of

operating nodes.
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Proof. We prove by contradiction that no node in a network can operate if there is

no cycle in the network. Suppose that there is no cycle, i.e. all nodes are connected

through one or more paths. First, remove all of the non-operating nodes; hence,

the remaining nodes are operating, and the network is still acyclic. Now consider

the starting node of one of the paths which is either a node in network 𝐴 (𝐴𝑖) or

a node in network 𝐵 (𝐵𝑗). This starting node does not have any incoming edges;

therefore, it cannot operate which is a contradiction with the assumption of nodes

being operating.

Now we show that existence of at least one cycle is sufficient to have an operating

node. In a bipartite graph, every node in network 𝐴 (network 𝐵) in a cycle receives

an incoming edge from a node in network 𝐵 (network 𝐴) in that cycle; thus, the nodes

in that cycle can operate. If all the other nodes of the network receive an incoming

edge directly or through a path starting from a node in that cycle, those nodes will

be operating, too.

Lemma 2. To stop the operation of any cycle, one of the nodes in the cycle should

be removed (Cycles are Stable Components, i.e. the operation of nodes inside the

cycle is not affected by the failure of outside nodes).

Proof. By definition, every substation (router) in the bipartite graph remains operat-

ing if it has an incoming edge from an operating router (substation). Every node in a

cycle receives at least one incoming edge from the nodes inside that cycle; therefore,

the removal of nodes outside the cycle will not affect the operation of the nodes inside

that cycle. As a result, to stop the operation of a cycle, one of its nodes must be

removed.

Note that stopping the operation of a cycle is not equivalent to stopping the

operation of all the nodes inside the cycle. If the nodes inside a cycle are isolated

from the other nodes, removing exactly one node from the cycle will stop all of them

from operating. However, if nodes inside a cycle receive incoming edges from other
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nodes outside of the cycle, more node removals are needed to cause the failure of all

of the nodes in that cycle.

Lemma 3. For the failure of the entire network, at least one node from every cycle

should be removed .

Proof. By contradiction - Suppose that there exists a cycle so that none of its nodes

are removed. By lemma 2, all of the nodes inside that cycle remain operating, which

contradicts the assumption of total failure.

Theorem 1. The minimum number of nodes that hit all of the cycles in a bipartite

graph is the optimal solution for the ℳℛℬ(𝐷 = 𝑁2) problem.

Proof. Immediate from lemma 3.

Corollary 1. Finding the ℳℛℬ(𝐷 = 𝑁2) in star networks with unidirectional in-

terdependency is NP-complete.

Proof. By Theorem 1, evaluating metric ℳℛℬ(𝐷 = 𝑁2) is a hitting cycle prob-

lem which is equivalent to the well-known problem of Feedback Vertex Set (FVS).

By definition, FVS in a graph finds the smallest set of nodes so that their removal

makes the graph acyclic; and it is known to be NP-complete for general graphs [43].

Moreover, Yannakakis proved that FVS is NP-complete for bipartite graphs [44].

Therefore, evaluating ℳℛℬ(𝐷 = 𝑁2) which is finding FVS in bipartite graphs is

also NP-complete.

Corollary 2. Finding the ℳℛℬ(𝐷) in star networks with unidirectional interde-

pendency is NP-complete for any arbitrary value of 𝐷.

Proof. Since ℳℛℬ(𝐷 = 𝑁2), which is a special case of this problem, is NP-complete.

An alternative version of the problem is the minimum number of edges needed to

be removed to cause a total failure. Similar to lemmas 2 and 3, to stop the operation

of any cycle, one should remove one of its edges, and to have a total failure, at least

one edge from every cycle should be removed. Consequently, we have the following

results:
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Theorem 2. The minimum number of edges that hit all of the cycles is the optimal

solution for the Edge-ℳℛℬ(𝐷 = 𝑁2) problem.

Corollary 3. Finding the minimum edge removals for total failure in the star net-

works with unidirectional interdependency is NP-complete.

Proof. By Theorem 2, minimum edge removals problem is the edge version of the

hitting cycle problem which is exactly equivalent to the well-known problem of Feed-

back Edge Set (FES). Similar to FVS, FES finds the smallest set of edges whose

removals make the graph acyclic, and it is known to be NP-complete for general

graphs [43]. Furthermore, Guo et al. proved that FES is NP-complete for bipartite

tournaments [45]. Since finding FES in bipartite tournaments is a special case of the

our problem, it is also NP-complete.

2.4.2 Formulation

It was shown in lemma 3 that finding the ℳℛℬ(𝐷 = 𝑁2) is a hitting cycle problem.

Next, we present a cycle-based Integer Linear Programming (ILP) formulation for this

problem, assuming that all of the cycles are given. Let 𝑁 be a 𝑛 × 1 binary vector

so that each component 𝑁𝑗 takes values 1 if node 𝑗 is removed and 0 otherwise. Let

matrix 𝐴 ∈ 𝑅𝑚×𝑛 be a mapping between the 𝑚 cycles and 𝑛 nodes, where 𝐴𝑖𝑗 = 1 if

cycle 𝑖 contains node 𝑗 and 𝐴𝑖𝑗 = 0 otherwise. Let 𝑒 be a 𝑚× 1 vector of ones. Our

problem can be formulated as follows.

minimize
𝑛∑︁

𝑗=1

𝑁𝑗 (2.1)

subject to 𝐴×𝑁 ≥ 𝑒 (2.2)

𝑁𝑗 ∈ {0, 1}, 𝑗 = 1, · · · , 𝑛 (2.3)

In this formulation, the objective is to minimize the number of node removals.

Every row 𝑖 of constraint (2.2) requires that at least one of the removed nodes should

hit cycle 𝑖. In the following, we develop heuristics to solve the problem.
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2.4.3 Heuristics

Since computing the ℳℛℬ(𝐷 = 𝑁2) is computationally difficult, we consider approx-

imation algorithms that give a near-optimal set of node removals in polynomial time.

As explained in Section 2.4, the node removal problem is equivalent to a hitting cycle

problem. Thus, if we have the set of all cycles in the graph, we can apply a greedy

algorithm devised for solving the hitting set problem [46]. The input to the algorithm

is the set of cycles (each cycle is defined as the set of nodes it contains), and the set of

nodes in the graph. This cycle-based algorithm is an iterative algorithm that works

as follows. In each iteration, it removes the node that is shared among maximum

number of cycles, updates the set of cycles, and repeats until no cycle remains.

This cycle-based algorithm needs the set of all cycles as input; however, in general,

a graph may have an exponential number of cycles. To overcome this deficiency, we

devise a new algorithm that relies on the degree of the nodes instead of the cycles.

The input to the algorithm is the adjacency matrix of the graph. The algorithm is

iterative: Each iteration starts with a pruning stage in which the algorithm removes

all of the edges that do not belong to a cycle. In the next stage of the iteration,

it removes the node that has the maximum outgoing degree. Next, the algorithm

removes all nodes that fail as a result of the cascading effect of that removal. Finally,

the algorithm updates the adjacency matrix of the graph and repeats the iteration

until no node remains.

In the following, we compare the performance of these algorithms with the optimal

solution. We consider a random bipartite graph with 𝑁 nodes on each side. Note that

we use random graphs to analyze our algorithms, but they apply to any deterministic

graph. Since enumerating all the cycles requires exponential time, we keep the size of

𝑁 small, and limit the graph to have small cycles. To do that, instead of randomly

generating edges, we randomly generate cycles of size 6 or smaller until all the nodes

have at least one incoming edge. For each value of 𝑁 , we generate 100 random

graphs and then apply our algorithms to each graph in order to find the minimum

node removals. Moreover, for the optimal solution, we solve the hitting cycle problem
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as given by (2.1)-(2.3) using CPLEX. As can be seen from Figure 2-4, on average,

the degree-based algorithm gives a slightly larger number of nodes compared with the

cycle-based algorithm and the optimal solution; however, it is very fast as it does not

need to enumerate all of the cycles.
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Figure 2-4: Comparing different algorithms with optimal solution

2.5 Bidirectional Interdependency

In this section, we will analyze the robustness of interdependent networks with bidi-

rectional interdependent edges.

We start by showing that for any given set of final failures, the set of initial

removals can be found in polynomial time.

Lemma 4. In bidirectional interdependent networks with star topologies, the smallest

set of nodes in network 𝐴 whose removals lead to the failure of a given set of 𝐷 nodes,

namely 𝑌𝐷, in network 𝐵 is the set of direct neighbors of nodes in 𝑌𝐷, namely 𝒩 (𝑌𝐷).

Proof. This is due to the fact that in bidirectional interdependent networks with star

topologies, failures cascade only in one stage.

Note that by Lemma 4,

ℳℛ(𝐷) = min{𝒩 (𝑌𝐷) : ∀𝑌𝐷 ∈ 𝐵, |𝑌𝐷| = 𝐷} (2.4)
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By Lemma 4, It is easy to see that in bidirectional interdependent networks with

star topology, metric ℳℛℬ(𝐷) can be obtained directly from metric ℳℛ(𝐷) via

equation 2.5. Thus, it is enough to only focus on evaluating metric ℳℛ(𝐷)

ℳℛℬ(𝐷) = min{ℳℛ(𝐷 − 1) + 1,ℳℛ(𝐷)}

= min
𝑖=0,··· ,𝐷

{ℳℛ(𝑖) +𝐷 − 𝑖} (2.5)

Next, we analyze the complexity of metrics in bidirectional interdependent net-

works; then, provide ILP formulations; and finally, we present heuristic algorithms to

evaluate the metrics. It’s worth noting that all the analysis in the rest of this section

are focused on “bidirectional” interdependent networks with “star” topology unless

mentioned otherwise.

2.5.1 Complexity

In this section, we show that evaluating ℳℛ(𝐷) and ℳℛℬ(𝐷) are NP-complete

problems in general; however, for certain values of 𝐷, they can be solved in polynomial

time.

Theorem 3. For arbitrary values of 𝐷, finding the ℳℛ(𝐷) in a bidirectional inter-

dependent network with star topology is an NP-complete problem.

Proof. The proof is based on a reduction from the problem of balanced complete

bipartite subgraph which is known to be NP-complete [43]. Consider graph 𝐺 as a

bidirectional interdependent network. According to Lemma 4, nodes in set 𝑌 ∈ 𝐵

fail if all of their direct neighbors, namely nodes in 𝑋 ∈ 𝐴, are removed. Note that

nodes in 𝑋 can have direct neighbors other than nodes in 𝑌 ; i.e. nodes in set 𝐵 ∖ 𝑌

(See Figure 2-5(a)). Finding ℳℛ(𝐷) in graph 𝐺 is equivalent to finding the smallest

set 𝑋 whose removal leads to the failure of set 𝑌 with at least 𝐷 nodes.

In order to prove the hardness of finding ℳℛ(𝐷), we construct a new bipartite

graph 𝐺′ as the complement of graph 𝐺 where all of the interdependent edges are

44



removed, and all disjoint pairs are connected with a bidirectional edge (See Figure

2-5(b)). Since there is no connection between nodes in sets 𝑌 and 𝐴 ∖ 𝑋 in graph

𝐺, subgraph (𝑌,𝐴 ∖𝑋) forms a complete bipartite graph (biclique) in 𝐺′. Therefore,

finding ℳℛ(𝐷) is equivalent to finding the largest set 𝐴 ∖𝑋 where (𝐴 ∖𝑋, 𝑌 ) is a

biclique and 𝑌 contains at least 𝐷 nodes.

X

A\X

Y

B\Y

Network BNetwork A

(a) Graph 𝐺

Network BNetwork A

X

A\X

Y

B\Y

(b) Graph 𝐺′

Figure 2-5: Graph Topologies in Proof of Theorem 3

Next we show that finding such biclique is an NP-complete problem. The proof

of hardness is based on a reduction from the problem of balanced complete bipartite

subgraph which is known to be NP-complete [43].

Definition 3. Balanced Complete Bipartite Subgraph: Given a bipartite graph 𝐺 =

{𝑉,𝐸} and a positive integer 𝐾 ≤ |𝑉 |, are there two disjoint subsets 𝑉1, 𝑉2 ⊂ 𝑉 such

that |𝑉1| = |𝑉2| = 𝐾 and any pair of nodes in (𝑉1, 𝑉2) be an edges in 𝐸?

Next, we show that if we can solve our problem in graph 𝐺 for every value 𝐷,

then we can solve the Balanced Complete Bipartite Subgraph problem in graph 𝐺′

for every value 𝐾 = 𝐷 as follows. Suppose that ℳℛ(𝐷) can be evaluated in graph

𝐺 in polynomial time. Thus, for every value of 𝐷, we can find the largest 𝐴 ∖ 𝑋

subgraph of 𝐺′ in polynomial time so that (𝐴 ∖ 𝑋, 𝑌 ) is complete and |𝑌 | ≥ 𝐷. If

|𝐴 ∖ 𝑋| ≥ 𝐷, there exists a complete bipartite graph of size 𝐷 in graph 𝐺′, and if

|𝐴 ∖𝑋| < 𝐷, there exists no complete bipartite graph of size 𝐷 in 𝐺′. Therefore, we

can decide if there exists a balanced complete bipartite subgraph of size 𝐾 = 𝐷 in
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Figure 2-6: Conversion of subnetwork 𝐺 to subnetwork 𝐺′

𝐺′ in polynomial time which is a contradiction. Thus, our problem is NP-complete.

Corollary 4. For arbitrary values of 𝐷, finding the ℳℛℬ(𝐷) in a bidirectional

interdependent network with star topology is an NP-complete problem.

Proof. The proof is based on a reduction from NP-complete problem ℳℛ(𝐷) (The-

orem 3). For an arbitrary bipartite network 𝐺, construct network 𝐺′ as follows.

Replace every node 𝑖 ∈ 𝐵 with a cluster of 𝑊 nodes, where 𝑊 is a very large number

(𝑊 > 𝑁1 + 𝑁2). For every node 𝑗 ∈ 𝐴 connected to node 𝑖 ∈ 𝐵 in network 𝐺,

connect 𝑗 ∈ 𝐴 in network 𝐺′ to all 𝑊 nodes replacing 𝑖 ∈ 𝐵 (See Figure 2-6). Now it

is enough to show that if metric ℳℛℬ(𝐷) can be evaluated in polynomial time for

network 𝐺′, metric ℳℛ(𝐷) can also be evaluated in polynomial time for network 𝐺,

which is a contradiction to Theorem 3.

Suppose one can evaluate ℳℛℬ(𝐷) in network 𝐺′ for failure of 𝐷′ = 𝑊𝐷 nodes

in 𝐵 in polynomial time. It is easy to see that for any removal of nodes 𝑋 ∈ 𝐴 in

network 𝐺 leading to 𝐷 failures in 𝐵, removal of the same exact nodes from 𝐴 in

network 𝐺′ leads to the failure of 𝐷′ = 𝐷𝑊 nodes in 𝐵 and vice versa. This is due

to the fact that in network 𝐺′, all edges between every 𝑗 ∈ 𝐴 and a cluster of 𝑊

node in 𝐵 are mapped according to edges in graph 𝐺. Moreover, since 𝑊 > 𝑁1+𝑁2,

all removals will be only from network 𝐴. Thus, ℳℛℬ(𝐷) for 𝐷′ = 𝐷𝑊 failures in

network 𝐺′ is exactly the same as ℳℛ(𝐷) for 𝐷 failures in network 𝐺.
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Proposition 1. ℳℛ(𝐷) can be found in polynomial time for values of 𝐷 = 𝑘 and

𝐷 = 𝑁2−𝑘 where 𝑘 is a constant. In particular, for 𝐷 = 1, ℳℛ(𝐷) is the minimum

degree of nodes in network 𝐵, and for 𝐷 = 𝑁2, ℳℛ(𝐷) is the size of network 𝐴; i.e.

𝑁1.

Proof. By Lemma 4, ℳℛ(𝐷) = min{𝒩 (𝑌𝐷) : ∀𝑌𝐷 ∈ 𝐵}. For 𝐷 = 𝑘 and 𝐷 = 𝑁2−𝑘,

the number of combinations of 𝑌𝐷 is polynomial in 𝐷 (i.e., 𝐶(𝑁2, 𝑘) = 𝐶(𝑁2, 𝑁2−𝑘) =

𝑂(𝑁𝑘
2 )); thus, ℳℛ(𝐷) can be found in polynomial time.

For 𝐷 = 1, clearly the target node in network 𝐵 is the one with the minimum

number of neighbors in network 𝐴; thus, ℳℛ(𝐷) is the minimum degree of nodes in

network 𝐵.

For 𝐷 = 𝑁2, we prove our claim by contradiction. Suppose node 𝑖 ∈ 𝐴 has not

been removed. Since failures cascade only in one stage, removal of no set of nodes in

network 𝐴 can lead to the failure of node 𝑖 ∈ 𝐴. Thus, 𝑖 remains an operating node,

which means that it is connected to at least one node 𝑗 ∈ 𝐵. Therefore, node 𝑗 ∈ 𝐵

is operating, too; i.e. 𝐷 < 𝑁2 which is a contradiction.

Proposition 2. ℳℛℬ(𝐷 = 𝑁2) can be found in polynomial time.

Proof. As discussed before, in bidirectional interdependent networks, edges are cycles

of length two, and hitting cycles of length two guarantees hitting cycles of larger size.

On the other hand, hitting at least one node in every cycle of size two is equivalent to

finding the minimum vertex cover in bipartite graphs. By K𝑜nig’s Theorem, finding

the minimum vertex cover in bipartite graph is equivalent to maximum matching,

which is polynomially solvable [47]. Thus, finding the minimum node removals from

both networks to cause the failure of the entire network is polynomially solvable.

Next, we show that not only one cannot evaluate the exact value of ℳℛ(𝐷) in

polynomial time (unless 𝒫 = 𝒩𝒫), one cannot approximate this metric in polynomial

time.
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Theorem 4. There exists no PTAS to provide an r-approximation for the ℳℛ(𝐷)

for some values of 𝑟 > 1.

Proof. The proof is based on the inapproximability of the balanced biclique problem

[48,49]. The details can be found in Appendix 2.10.1.

In the following, we formulate the problem as an ILP and then, show several

heuristics that provide nearly-optimal approximations for metric ℳℛ(𝐷) in practice.

2.5.2 Formulation

Here, we provide an ILP formulation for evaluating metric ℳℛ(𝐷). Let 𝑁1 denote

the number of nodes in network 𝐴 and 𝑁2 denote the number of nodes in network

𝐵. Moreover, let 𝑋 denote the set of binary variables associated to the nodes in

network 𝐴 where 𝑋𝑖 = 1 if node 𝑖 is removed, and 𝑋𝑖 = 0 otherwise. Similarly, let 𝑌

denote the set of binary variables associated to the nodes in network 𝐵 where 𝑌𝑗 = 1

if node 𝑗 fails due to the cascading effect, and 𝑌𝑗 = 0 otherwise. Our formulation is

as follows.

min

𝑁1∑︁
𝑖=1

𝑋𝑖 (2.6a)

s.t. 𝑌𝑗 ≤ 𝑋𝑖 (𝑖, 𝑗) ∈ 𝐸 (2.6b)
𝑁2∑︁
𝑗=1

𝑌𝑗 ≥ 𝐷 (2.6c)

𝑋𝑖, 𝑌𝑗 ∈ {0, 1} (2.6d)

Here, the objective is to minimize the number of node removals from network 𝐴.

Constraint (2.6b) shows that node 𝑌𝑗 from network 𝐵 fails if all of its direct neighbors

in network 𝐴 are removed. Moreover, constraint (2.6c) enforces the failure of at least

𝐷 nodes in network 𝐵.
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2.5.3 Heuristics

In this section, first we propose three heuristics and then, compare their performances

using simulation results.

Greedy Algorithm

The first algorithm is a Greedy approach that only uses the adjacency matrix of the

network, and works as follows.

Greedy Algorithm
1 Initialize the removal and failure sets as 𝑅 = 𝜑 and 𝐹 = 𝜑;
2 Select the node with minimum degree in network 𝐵, and add it to 𝐹 ;

If there are several nodes with minimum degree, select one randomly;
3 Remove all nodes in network 𝐴 that are attached to the node selected in

Step 2. Add these nodes to set 𝑅;
4 Remove all the edges attached to the nodes in 𝐹 and 𝑅. Update degrees;
5 Repeat previous steps until |𝐹 | = 𝐷;
6 Return |𝑅|.

In each iteration, the greedy algorithm removes the minimum number of nodes

from network 𝐴 required for the the failure of one additional node in network 𝐵.

Therefore, after at most 𝐷 iterations, removal of nodes in set 𝑅 leads to the failure

of 𝐷 nodes in network 𝐵; i.e. set 𝐹 .

Proposition 3. In the worst case, the solution of greedy algorithm is no more than

𝐷 times the optimal solution.

Proof. By contradiction - Suppose that ℳℛ(𝐷) = 𝑋; thus, the degree of each node

in the optimal failure set in network 𝐵 is at most 𝑋. Moreover, suppose that the

greedy algorithm returns a removal set of size 𝑋 ′ where 𝑋 ′ > 𝐷𝑋. Thus, greedy

algorithm has selected a node in network 𝐵 with degree of larger than 𝑋. This is

contradiction to the fact that greedy starts by selecting nodes in network 𝐵 with

minimum degree, and there are at least 𝐷 nodes with degree smaller than or equal

to 𝐷.

Next, we show that this bound can be tight. Consider a bipartite graph where

network 𝐴 has 𝑋(𝐷+1) nodes divided into 𝐷+1 batches of equal sizes, and network
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𝐵 has 2𝐷 nodes divided into two batches of equal sizes. Connect each node 𝑖 in the

first batch of network 𝐵 to all the 𝑋 nodes in the 𝑖𝑡ℎ batch in network 𝐴. Moreover,

connect all of the 𝐷 nodes in the second batch in network 𝐵 to all of the 𝑋 nodes

in the last batch in network 𝐴 (See Figure 2-7). It is easy to see that ℳℛ(𝐷) = 𝑋

where the greedy algorithm could select 𝑋𝐷 nodes. This is due to the fact that all

nodes in network 𝐵 have degree 𝑋. Thus, greedy algorithm could select all nodes

from the first batch in network 𝐵 which requires 𝑋𝐷 removals from network 𝐴.

D+1 Batches; 
Each X Nodes

Network A
Network B

2 Batches; 
Each D Nodes

Figure 2-7: A scenario where worst-case bound of greedy algorithm is tight.

Note that in the example of Proposition 3, all nodes in network 𝐵 have equal
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degrees, and the greedy algorithm selects one of them randomly. Therefore, although

this algorithm could achieve the worst-case solution, the probability of this event is

(1− 𝐷
2𝐷

)(1− 𝐷−1
2𝐷−1

) · · · (1− 1
𝐷+1

) which becomes very small as 𝐷 increases. Later, in the

simulation section, we will show that the greedy algorithm has a good performance

in most scenarios.

Randomized Rounding

The second algorithm is a modified randomized rounding. Randomized rounding is

a widely used technique to solve difficult integer optimization problems. In general,

it solves the Linear Program (LP) relaxation of the original ILP formulation, and

rounds the solution randomly. In our case, we relax the constraint (2.6d) so that 𝑋

and 𝑌 can take any real value in range [0, 1].

Let 𝑋*
𝑖 and 𝑌 *

𝑗 be the optimal values of the relaxed LP problem. Our randomized

rounding algorithm works as follows.

Randomized Rounding
1 Initialize the removal and failure sets as 𝑅 = 𝜑 and 𝐹 = 𝜑;
2 Select each node 𝑌𝑗 ∈ 𝐵 with probability 𝑌 *

𝑗 , and add it to set 𝐹 ;
3 Repeat step 2 until |𝐹 | = 𝐷; i.e. 𝐷 nodes fail;
4 Find all the nodes in network 𝐴 that are attached to the nodes in the failure

set 𝐹 . Add all these nodes the set of removals 𝑅;
6 Return |𝑅|.

In this algorithm, we select nodes from network 𝐵 randomly and independently

until 𝐷 nodes are selected for the failure set 𝐹 . Clearly, nodes with larger values of

𝑌 *
𝑗 have a higher chance to be part of set 𝐹 . Later, we will see in the simulation

section that for networks that 𝑌 *
𝑗 has values close to either 1 or 0, the randomize

rounding algorithm provides a nearly-optimal solution.

Simulated Annealing

Simulated Annealing is a random search strategy that can be used to find the near

optimal solutions for integer problems [50]. Here, we propose two versions of the SA

where the difference is in selecting the neighbors.
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The first algorithm selects a random neighbor 𝑅′ of current removal set 𝑅 by

adding, removing or replacing nodes in 𝑅, and then checking for feasibility; i.e. check-

ing if the new removal set 𝑅′ leads to the failure of 𝐷 nodes in network 𝐵. If the

neighbor set 𝑅′ is feasible and has smaller or equal number of nodes, algorithm moves

to 𝑅′ with probability 1. If 𝑅′ is feasible but larger; i.e. has an additional node

𝑖 ∈ 𝑅′∖𝑅, the algorithm moves to 𝑅′ with some positive probability proportional to

the degree of node 𝑖 such that neighbors with larger degree nodes are more likely to

be selected.

Let 𝑑(𝑖) denote the degree of node 𝑖. The details of first SA algorithm are as

follows.

Simulated Annealing 1
1 Start with an initial set of node removals 𝑅 = 𝑅0 from 𝐴 that lead to the

failure of 𝐷 nodes in 𝐵; Set initial temperature 𝑇 , final temperature 𝑇𝐹 ,
and reduction parameter 𝑟 ∈ (0, 1);

2 Repeat the followings for 𝐿 times:
a) Pick a neighbor of 𝑅, namely 𝑅′, by either adding, removing or
replacing one random node in 𝑅;
b) set Δ = 1, if |𝑅′| > |𝑅|; and set Δ = −1, otherwise;
c) If 𝑅′ is feasible; i.e. removal of nodes in 𝑅′ leads to the failure of 𝐷
nodes in 𝐵, move to the new neighbor according to the following rules:

i) if Δ = −1, set 𝑅 = 𝑅′ and 𝐹 = 𝐹 ′;
ii) if Δ = 1, set 𝑅 = 𝑅′ and 𝐹 = 𝐹 ′ with probability
𝑒𝑥𝑝(− 1

𝑇
(1− 𝑑(𝑖)∑︀𝑁1

𝑖=1 𝑑(𝑖)
));

3 Set 𝑇 = 𝑟𝑇 ;
4 Repeat steps 2 and 3 until 𝑇 < 𝑇𝐹 ;
5 Return |𝑅|.

Next, we propose another Simulated annealing algorithm which selects a random

neighbor 𝐹 ′ of failure set 𝐹 such that |𝐹 ′| ≥ 𝐷. This guarantees that the removal

set 𝑅′ associated to failure set 𝐹 ′ is always feasible. Under this selection, if 𝑅′ has

smaller or equal number of nodes than 𝑅, the algorithm moves to the new neighbor;

otherwise, it moves to the larger neighbor with some positive probability proportional

to the increase in size of removal set, where larger 𝑅′ has lower probability to be

selected. The details of algorithm is as follows.

In practice, we initialize both simulated annealing algorithms with the solution of
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Simulated Annealing 2
1 Start with an initial set of node removals 𝑅 = 𝑅0 from 𝐴 that lead to the

failure of 𝐷 nodes in 𝐵; Set initial temperature 𝑇 , final temperature 𝑇𝐹 ,
and reduction parameter 𝑟 ∈ (0, 1);

2 Repeat the followings for 𝐿 times:
a) Pick a feasible neighbor of 𝐹 , namely 𝐹 ′, according to the following rules:

i) if |𝐹 | = 𝐷, either add or replace a random node in 𝐹 (call it 𝐹 ′),
and find the set of removals 𝑅′ for failure of 𝐹 ′;
ii) if |𝐹 | > 𝐷, randomly add or remove a node from 𝐹 (call it 𝐹 ′),
and find the set of removals 𝑅′ for failure of 𝐹 ′;

b) set Δ = 1, if |𝑅′| > |𝑅|; and set Δ = −1, otherwise;
c) Move to the new neighbor according to the following rules:

i) if Δ = −1, set 𝑅 = 𝑅′ and 𝐹 = 𝐹 ′;
ii) if Δ = 1, set 𝑅 = 𝑅′ and 𝐹 = 𝐹 ′ with probability
𝑒𝑥𝑝(− |𝑅′|−|𝑅0|

𝑇
);

3 Set 𝑇 = 𝑟𝑇 ;
4 Repeat steps 2 and 3 until 𝑇 < 𝑇𝐹 ;
5 Return |𝑅|.

greedy algorithm to have a good starting point. In addition, instead of returning the

final removal set, the algorithm returns the smallest |𝑅| found during all iterations.

Comparison

In this section, we compare the performances of our algorithms by running simulations

over a set of networks. We also obtain the optimal solution by solving the ILP

formulation given by equations (2.6a)-(2.6d) using CPLEX. The ILP can be solved

for small networks; thus, we can compare the performance of our algorithms with the

optimal solution.

Since the networks in this section have bipartite topologies, we generate random

bipartite graphs according to the Molloy and Reed model, where every pair of nodes

are randomly connected based on the degree of all nodes (See [51] for more details).

Here, we consider networks with two types of degree distributions: Type (1) all 𝑁

nodes on both sides have a binomial degree distribution with average 𝑘3, and Type

(2) half of nodes in each side has a binomial degree distribution with average 𝑘1 and

3We also generated random regular bipartite graphs with degree 𝑘; since the behavior of regular
graphs was very close to graphs with binomial distribution, we do not show the simulation results
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the other half has a binomial distribution with average 𝑘2.

Figures 2-8(a)-2-8(d) show the performances of our algorithms for type(1) net-

works of size 𝑁 = 100 and average degrees 𝑘 = 1, · · · , 4. It can be seen that for

𝑘 = 1, the randomized rounding is nearly optimal. However, as 𝑘 increases, its per-

formance degrades. This is due to the fact that for small degree networks, the optimal

solution of the relaxed LP achieves values close to 0 or 1. Thus, approximating these

values will give a nearly optimal solution. However, as the degree increases, the values

of variables in the relaxed LP are no longer close to 0 or 1; thus, the approximation

of these values is no longer close to the optimal solution.

Moreover, as 𝑘 increases, the performance of the greedy algorithm improves. The

reason is that in networks with small degrees, there are fewer nodes in network 𝐵 that

have common neighbors in 𝐴. Therefore, the greedy algorithm has a lower chance to

find them. However, when the degree increases, more nodes share neighbors; thus, the

greedy algorithm performs better (See Proposition 3 for a more detailed argument).

Finally, as expected both simulated annealing algorithms perform better than

greedy algorithm. This is due to the fact that the starting point of the simulated

annealing algorithm is selected to be the output of the greedy algorithm.

Figures 2-9(a)-2-9(d) show the runtime of the algorithms for the same set of net-

works. It can be seen that greedy and randomized rounding are very fast, and the

runtime for the optimal solution becomes prohibitive as the size of the network in-

creases. Moreover, it can be seen that the first simulated annealing algorithm has

an almost constant run time for all values of average degree 𝑘 and final failures 𝐷,

whereas the runtime of the second simulated annealing algorithm remains constant

for all values of average degree 𝑘, but increases as 𝐷 increases.

We also analyze the performances of our algorithms for the same set of networks

but larger values of 𝐷. Figures 2-10(a)-2-10(d) show that the behavior of the algo-

rithms remains the same, and the the first simulated annealing algorithm performs

nearly-optimal.

Next, we analyze the performances of our algorithms for type(2) networks of size

𝑁 = 100 and average degrees of 𝑘1 = 2 and 𝑘2 = 20. It can be seen from Figure
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Figure 2-8: Minimum Node Removal vs Final Failure Size, Type(1) network of size
𝑁 = 100, Failure sizes 𝐷 ∈ [1, 2, 3, 4, 5]

2-11 that the first simulated annealing algorithm provides the best performance. We

also observed that the randomized rounding algorithm performs poorly in this set of

networks.

Finally, we consider larger networks of size 𝑁 = 1000. For this size of network,

the ILP formulation cannot be solved optimally anymore as the run-time becomes

prohibitive. Thus, we only compare the performances of the heuristic algorithms.

Figures 2-12 and 2-13 illustrate the results of networks of type(1) and type(2). It

can be seen that the simulated annealing algorithms do not provide a significant

improvement in the size of initial removals compared to the greedy algorithm, while

their run time is much larger than the greedy algorithm.

Another interesting point is that for large networks, the second simulated an-
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Figure 2-9: Run-time vs Final Failure Size, Type(1) network of size 𝑁 = 100, Failure
sizes 𝐷 ∈ [1, 2, 3, 4, 5]

nealing algorithm outperforms the first one. Moreover, the run time of the second

simulated annealing algorithm remains constant, while the run time of the first sim-

ulated annealing algorithm increases as 𝐷 increases.

2.6 Comparing the interdependency models

We have seen that when networks have unidirectional interdependency, finding the

ℳℛℬ(𝐷 = 𝑁2) is NP-complete; however, it can be solved in polynomial time when

the networks have bidirectional interdependency. Here, we try to explain by way of

an example why the analysis of unidirectional interdependency is more difficult than

bidirectional interdependency. Figures 2-3(a) and 2-3(b) show two networks with the
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(a) k=1 (b) k=2

(c) k=3 (d) k=4

Figure 2-10: Minimum Node Removal vs Final Failure Size, Type(1) network of size
𝑁 = 100, Failure sizes 𝐷 ∈ [45, 46, 47, 48, 49, 50]

same topology under the different interdependency models. Suppose that in both

networks, node 𝐴1 is intentionally removed. It can be seen that the removal of 𝐴1

in network 2-3(a) leads to the sequential failure of nodes 𝐵2, 𝐴2, and finally 𝐵1.

However, removal of 𝐴1 in network 2-3(b) can only cause failure of node 𝐴2. These

observations indicate that in the case of unidirectional interdependency, a failure can

cascade multiple times between the networks. However, in the case of bidirectional

interdependency, a failure cascades only in one stage: either from network 𝐴 to

network 𝐵 or from network 𝐵 to network 𝐴. This makes the analysis of bidirectional

interdependent networks more tractable.

Next we compare the robustness of the interdependency models. We use the

random graphs generated in section 2.4.3 to generate a new set of graphs with the
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Figure 2-11: Minimum Node Removal vs Final Failure Size, Type(2) network of size
𝑁 = 100 and 𝑘1, 𝑘2 = [2, 20], Failure sizes 𝐷 ∈ [1, · · · , 20]

(a) Minimum Node Removal vs Final Failure
Size

(b) Run-Time vs Final Failure Size

Figure 2-12: Minimum Node Removal and Run-Time vs Final Failure Size, Type(1)
network of size 𝑁 = 1000, Failure sizes 𝐷 ∈ [1, · · · , 20]

same number of edges but bidirectional dependency. To compare the robustness of

the two models, we find the optimal solution in the unidirectional graphs by solving

the hitting set problem using CPLEX, and bidirectional graphs by solving the vertex

cover problem. It can be seen from Figure 2-14 that for all values of 𝑁 , networks

with bidirectional dependency need more node removals; therefore, they are more

robust to failures. This observation shows that the existence of more disjoint cycles

and shorter cycles makes a network more robust.

In the following theorem, we prove that for any two interdependent networks with

similar physical properties, the network with bidirectional edges is more robust than

the one with unidirectional edges.
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(a) Minimum Node Removal vs Final Failure
Size

(b) Run-Time vs Final Failure Size

Figure 2-13: Minimum Node Removal and Run-Time vs Final Failure Size, Type(2)
network of size 𝑁 = 1000 and 𝑘1, 𝑘2 = [2, 20], Failure sizes 𝐷 ∈ [1, · · · , 20], Two
Binomial Distribution

Theorem 5. Consider the set of all operating interdependent networks, namely 𝐺,

with 𝑁1 nodes in network 𝐴, 𝑁2 nodes in network 𝐵, 𝐸 edges from network 𝐴 to 𝐵

and 𝐸 edges from network 𝐵 to 𝐴, where 𝐴 and 𝐵 have star topologies and every

node has at least one outgoing edge. For any arbitrary value of 𝐷, the network with

largest ℳℛ(𝐷) has bidirectional edges.

Proof. By contradiction - Let 𝐺1 ∈ 𝐺 be the set of bidirectional interdependent

networks and 𝐺2 ∈ 𝐺 be the set of unidirectional interdependent networks, where

𝐺1 ∪ 𝐺2 = 𝐺. Moreover, for any subset of 𝐷 nodes in network 𝐵, namely 𝑌𝐷, let

𝑋(𝑌𝐷) denote the minimum node removal from network 𝐴 for the failure of 𝑌𝐷.

Suppose 𝐺*
1 ∈ 𝐺1 is the bidirectional network that has the largest ℳℛ(𝐷) = 𝑋*

among all networks in 𝐺1. Next, we prove by contradiction that there exists no

unidirectional interdependent network with larger ℳℛ(𝐷).

Consider an arbitrary unidirectional interdependent network in 𝐺2. In order to

cause the failure of any subset 𝑌𝐷 with minimum node removal (𝑋(𝑌𝐷)), one should

either remove its direct neighbors 𝑁(𝑌𝐷) (i.e. the set of nodes in network 𝐴 that

provide direct incoming edges to nodes in 𝑌𝐷) or the nodes that their failure leads

to the failure of 𝑁(𝑌𝐷). Thus, 𝑋(𝑌𝐷) ≤ 𝑁(𝑌𝐷). Suppose there exists 𝐺*
2 ∈ 𝐺2 with

ℳℛ(𝐷) > 𝑋*. It means that there exists an allocation of 𝐸 edges from network 𝐴
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Figure 2-14: Comparing the robustness of interdependency models

to 𝐵 such that for any 𝑌𝐷 ∈ 𝐵, 𝑋* < 𝑋(𝑌𝐷) ≤ 𝑁(𝑌𝐷). Thus, one can construct a

bidirectional network with the same allocation such that 𝒩 (𝑌𝐷) > 𝑋*, for all 𝑌𝐷 ∈ 𝐵.

Therefore, ℳℛ(𝐷) = min{𝒩 (𝑌𝐷) : ∀𝑌𝐷 ∈ 𝐵} > 𝑋* which is a contradiction.

2.7 Robust Design

In this section, our goal is to design the interdependency between two given networks

𝐴 and 𝐵 with star topologies such that network 𝐵 is robust to failures in network

𝐴 and network 𝐴 is robust to failures in network 𝐵. For simplicity, we assume that

both networks have the same number of nodes 𝑁𝐴 = 𝑁𝐵 = 𝑁 . We also assume that

the number of edges between the networks is 𝐸.

We introduce two definitions for robustness, and propose algorithms for robust

design under each definition.

Definition 4. Lexicographic Robustness: Network 𝐺* is 𝐾−robust if for every

𝐷 ∈ {1, · · · , 𝐾}, it has the largest ℳℛ(𝐷) among all networks 𝐺 with the same

number of nodes and edges.

Definition 5. Relative Robustness: Network 𝐺* is the most robust network if it

has the largest lower bound on the relative ℳℛ(𝐷) for all values of 𝐷 ∈ {1, · · · , 𝑁};
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i.e. largest min1≤𝐷≤𝑁
ℳℛ(𝐷)

𝐷
.

2.7.1 Design Under Lexicographic Definition

Proposition 4. Consider the set of bidirectional interdependent networks with 𝑁

nodes and 𝑘𝑁 edges. The 𝑘-regular network is the 1-robust network.

Proof. By contradiction - By Proposition 1, in a 𝑘-regular network, ℳℛ(𝐷 = 1) = 𝑘.

Suppose that the 1-robust network is irregular. This means that there exist at least

one node with degree less than 𝑘; thus, ℳℛ(𝐷 = 1) < 𝑘 which is a contradiction.

Note that for arbitrary values of 𝐸, the 1-robust network contains a 𝑘-regular

subnetwork with 𝑘 = ⌊𝐸
𝑁
⌋ .

Next, we want to design a 2-robust network. By definition, a 2-robust network

is 1-robust, as well. Thus, it is a regular graph by Proposition 4. However, it can

be seen from Figure 2-15 that not all regular graphs have the same 2-robustness. In

particular, it can be seen that the minimum number of node removals from network 𝐴

(𝐵) to cause the failure of any two nodes in network 𝐵 (𝐴) is 3. However, in network

𝐺2 this value is 2. Comparison of the structures of graphs 𝐺1 and 𝐺2 shows that 𝐺2

has a more clustered structure than 𝐺1. Our goal is to find the structure of the most

2-robust network.

In order to find the structural pattern of the 2-robust networks, we formulate the

optimal design problem as an ILP (See Appendix 2.10.2 for the formulation details).

Figure 2-16 shows the pattern of ℳℛ(𝐷) for networks with different network sizes

and node degrees. It can be seen that for any give degree 𝑘, as number of nodes 𝑁

increases, ℳℛ(𝐷) increases until it reaches a threshold. This observation is summa-

rized as follows.

Let 𝑁0 = 𝑘(𝑘−1)+1 where 𝑘 ≥ 2. Any 2-robust network with 𝑁 ≥ 𝑁0 nodes and

degree 𝑘 has ℳℛ(𝐷 = 2) = 2𝑘 − 1. Moreover, any 2-robust network with 𝑁 < 𝑁0

nodes and degree 𝑘 has ℳℛ(𝐷 = 2) < 2𝑘 − 1.

In the following, we prove the correctness of our observation.
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Figure 2-15: Regular Interdependent networks with robustness for two failures. In
network 𝐺1, minimum node removal to cause the failure of any two nodes is 3, where
in network 𝐺2, the minimum node removals is 2.

Lemma 5. For 𝑁 = 𝑁0 and 𝑘 ≥ 2, one can construct a 2-robust network with 𝑁

nodes and degree 𝑘 such that ℳℛ(𝐷 = 2) = 2𝑘 − 1.

Proof. By construction - Divide the nodes in network 𝐴 and 𝐵 into four groups as

in Figure 2-17. From left, group 1 has a single node from network 𝐴, group 2 has 𝐾

nodes from network 𝐵, group 3 has 𝑘 batches of 𝑘 − 1 nodes from network 𝐴, and

finally group 4 has 𝑘− 1 batches of 𝑘− 1 nodes from network 𝐵. Note that the total

number of nodes in both networks 𝐴 and 𝐵 is 𝑘(𝑘 − 1) + 1.

Next, we connect the nodes as follows. Connect the single node in group 1 to all

the 𝑘 nodes in group 2. Next, connect node 𝑖 in group 2 to all the 𝑘− 1 nodes inside

batch 𝑖 in group 3. Finally, connect node 𝑖 from the last batch of group 3 to all the

𝑘 − 1 nodes of batch 𝑖 in group 4. So far, all the nodes in group 1, group 2 and the

last batch of group 3 has degree 𝑘. Moreover, every pair of nodes in group 2 (part of

network 𝐵) share exactly one neighbor which is the single node in group 1. Next, we

connect the nodes in the batches 1, · · · , (𝑘 − 1) in group 3 to batches 1, · · · , (𝑘 − 1)

in group 4 as follows.

For 𝑖, 𝑗 ∈ {1, · · · , 𝑘−1}, connect node 𝑖 in batch 𝑗 of group 3 to node 𝑖 (mod 𝑘−1)

in batch 1 of group 4, node 𝑖 + 𝑗 − 1 (mod 𝑘 − 1) in batch 2 of group 4, ... , node
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Figure 2-16: ℳℛ(𝐷) for 2-robust networks with different sizes and node-degrees.

𝑖+ 𝑗 + 𝑘 − 3 (mod 𝑘 − 1) in batch 𝑘 − 1 of group 4

This rule satisfies the following conditions:

1. every node is connected to 𝑘 − 1 new edges;

2. every node from group 3 is connected to exactly one node inside each batch in

group 4;

3. no pair of nodes inside a batch in group 3 share a neighbor in group 4;

4. every pair of nodes from two different batches in group 3 share exactly one

neighbor in group 4;

5. every node from group 4 is connected to exactly one node inside each of the

first (𝑘 − 1) batches of group 3;

6. no pair of nodes inside a batch in group 4 share a neighbor in the first (𝑘 − 1)

batches of group 3;

7. every pair of nodes from two different batches in group 4 share exactly one

neighbor in the first (𝑘 − 1) batches of group 3.
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Note that conditions (2)-(4) guarantee that every pair of nodes in network 𝐴 share

exactly one neighbor. In addition, conditions (5)-(7) guarantee that any pair of nodes

inside group 4 or between groups 2 and 4 share exactly one neighbor.

Therefore, we have constructed a graph with 𝑁0 nodes where every node has

degree 𝑘, and every pair of nodes in either network 𝐴 or network 𝐵 share exactly one

neighbor; i.e. ℳℛ(𝐷) = 2𝑘 − 1.

Lemma 6. For 𝑁 ≥ 𝑁0 and 𝑘 ≥ 2, there exists no regular network with 𝑁 nodes

and degree 𝑘 such that ℳℛ(𝐷 = 2) > 2𝑘 − 1.

Proof. Since each node has degree 𝑘, no two nodes can be connected to more than 2𝑘

nodes; i.e. ℳℛ(2) ≤ 2𝑘. Next, suppose that there exists a 𝑘−regular network with

ℳℛ(𝐷 = 2) = 2𝑘. Thus, every pair of nodes in network 𝐵 are exactly connected to

2𝑘 nodes; i.e. each node in network 𝐵 is connected to 𝑘 distinct nodes. Equivalently,

no node in network 𝐴 is connected to two nodes in network 𝐵; i.e., every node in

network 𝐴 has degree 1, which is a contradiction to 𝑘 ≥ 2.

Lemma 7. For 𝑁 < 𝑁0 and 𝑘 ≥ 2, there exists no regular network with 𝑁 nodes

and degree 𝑘 such that ℳℛ(𝐷 = 2) ≥ 2𝑘 − 1.

Proof. Suppose 𝑁 = 𝑁0 − 1 = 𝑘(𝑘 − 1). Consider an arbitrary node 𝑖 from network

𝐴. Node 𝑖 is connected to 𝑘 nodes in network 𝐵, namely set 𝑋, where each of these

nodes are also connected to 𝑘−1 nodes in network 𝐴, namely set 𝑌 . Note that 𝑖 /∈ 𝑌 .

Since the total number of nodes in each network is 𝑘(𝑘−1), |𝑌 | ≤ 𝑘(𝑘−1)−1. Thus,

there exist at least two nodes in 𝑋 that share a neighbor in 𝑌 . On the other hand,

all nodes in 𝑋 share node 𝑖 as their neighbor, too. Therefore, there exist at least

two nodes in network 𝐵 that share more than one node in network 𝐴. The same

argument holds for network 𝐴. Thus, ℳℛ(𝐷 = 2) < 2𝑘−1 for 𝑁 = 𝑁0−1. Clearly,

as the total number of nodes decreases, ℳℛ(𝐷 = 2) decreases, too. Thus, for any

regular network with 𝑁 < 𝑁0, ℳℛ(𝐷 = 2) < 2𝑘 − 1.

In order to design a 3-robust network under the definition of Lexicographic robust-

ness, one should search among the 2-robust networks which becomes very complicated.
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Figure 2-17: An example of construction of a 2-robust network. Black links denote
the first set of edges connecting the nodes in group 1, group 2 and the last batch of
group 3. Green links denote the set of edges connecting the nodes in group 3 and
group 4.
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In the next section, we consider the relative robustness and show its relation with

expander graphs.

2.7.2 Design under Relative Robustness

First, we show that by definition, a network with large relative ℳℛ(𝐷) has also a

large node expansion. Then, we show the construction of expander graphs.

Definition 6. The Node Expansion of a bipartite graph 𝐺 = {𝐴,𝐵}, denoted by

ℎ(𝐺), is defined as:

ℎ(𝐺) = min
𝑆⊆𝐵

|𝒩 (𝑆)|
|𝑆|

(2.7)

where 𝒩 (𝑆) denotes the neighbor nodes of set 𝑆.

Lemma 8. Under relative robustness definition, the most robust network has the

largest node expansion.

Proof.

min
1≤𝐷≤𝑁

ℳℛ(𝐷)

𝐷
= (2.8a)

min
1≤𝐷≤𝑁

min𝑌𝐷⊂𝐵,|𝑌𝐷|=𝐷 |𝒩 (𝑌𝐷)|
𝐷

= (2.8b)

min
𝑆⊆𝐵

|𝒩 (𝑆)|
|𝑆|

= ℎ(𝐺) (2.8c)

Lemma 8 shows that in order to design a robust interdependent network, it is

enough to design a network with large node expansion; i.e. an expander bipartite

graph. Analysis and design of node and edge expander graphs is a well-studied topic

(See [52, 53]). It has been shown that some random graphs share the properties of

expander graphs, and they have been used to prove the existence of expander graphs.

However, explicit construction of an expander graph is more difficult and there exist

only three main strategies for designing them (See [54,55] for more details).
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In the following, we mention one of the main results regarding random graphs and

their relation with expander graphs.

Let a bipartite graph 𝐺 = {𝐴,𝐵} be a (𝐷, 𝑟) node expander if for all sets 𝑆 ⊆ 𝐵

of size at most 𝐷, the neighborhood 𝒩 (𝑆) is of size at least 𝑟|𝑆|. Moreover, let 𝐵𝑖𝑝𝑁,𝑘

be the set of bipartite graphs that have 𝑁 nodes on each side and are 𝑘-Bregular,

meaning that every node in network 𝐵 has degree 𝑘.

Theorem 6. For every constant 𝑘, there exists a constant 𝛼 > 0 such that for all

𝑁 , a uniformly random graph from 𝐵𝑖𝑝𝑁,𝑘 is an (𝛼𝑁, 𝑘 − 2) node expander with

probability at least 1
2
.

Proof. See [53] for proof.

Note that for every 𝑆 ⊆ 𝐵, the largest possible neighbor has size of 𝑘|𝑆|, and

Theorem 6 denotes that in a uniform random graph, every 𝑆 ⊆ 𝐵 of size 𝛼𝑁 has

neighbors of size (𝑘 − 2)|𝑆| with probability more than half.

2.8 Discussion

Throughout this chapter, we analyzed the robustness of interdependent networks for

star topologies. We defined metric ℳℛ(𝐷) and proved the hardness of evaluating

this metric for arbitrary values of 𝐷 in both unidirectional and bidirectional interde-

pendent networks. We also proved that uniform distribution of edges in a network

would result in more robustness. A natural direction of future research would be ana-

lyzing more general topologies for interdependent networks which makes the problem

more complicated. In fact, we prove that for the tree topologies, evaluating metric

ℳℛℬ(𝐷) in bidirectional interdependent networks becomes NP-complete even for

the special case of total failure in network 𝐵; i.e. 𝐷 = 𝑁2. This is due to the fact

that failures cascade both inside the networks and between the networks.

Theorem 7. For 𝐷 = 𝑁2, finding the ℳℛℬ(𝐷) in a bidirectional interdependent

network with tree topology is an NP-complete problem.
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Figure 2-18: Graph Topologies for Proof of Theorem 7

Proof. The proof is based on a reduction from the problem of finding ℳℛℬ(𝐷) in a

unidirectional interdependent network with star topology which is proved to be NP-

complete [6]. Consider graph 𝐺, an arbitrary unidirectional interdependent network

with star topology, with nodes {𝐴1, · · · , 𝐴𝑁1} in network 𝐴, nodes {𝐵1, · · · , 𝐵𝑁2}

in network 𝐵 and two sources 𝑆1 and 𝑆2 which are directly connected to nodes in

network 𝐴 and 𝐵, respectively. Let 𝐸𝐴𝐵 represent the set of edges from network 𝐴 to

network 𝐵. Similarly, let 𝐸𝐵𝐴 represent the set of edges from network 𝐵 to network

𝐴.

Construct graph 𝐺′, a bidirectional interdependent network with tree topology,

using graph 𝐺 as follows. Generate graph 𝐺′ similar to graph 𝐺, and remove all

the edges 𝐸𝐴𝐵 and 𝐸𝐵𝐴. For each node 𝐴𝑖, generate a child node 𝐴𝑖𝑖 with an edge

from 𝐴𝑖 to 𝐴𝑖𝑖. Similarly, for each node 𝐵𝑗, generate a child node 𝐵𝑗𝑗 with an edge

from 𝐵𝑗 to 𝐵𝑗𝑗. For every edge in 𝐸𝐴𝐵 connecting node 𝐴𝑖 to node 𝐵𝑗, connect the

child node 𝐴𝑖𝑖 to node 𝐵𝑗 . Similarly, for every edge in 𝐸𝐵𝐴 connecting node 𝐵𝑗 to

node 𝐴𝑖, connect the child node 𝐵𝑗𝑗 to node 𝐴𝑖 (See Figure 2-18). This construction

guarantees that removal of any set of parent nodes 𝑋 in both graphs 𝐺 and 𝐺′ would

lead to the failure of the same parent nodes 𝑌 in both graphs. Moreover, note that

under this construction, failure of any parent node in graph 𝐺′ guarantees failure of

its child.
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Next, we show that if ℳℛℬ(𝐷 = 𝑁 ′
2) in graph 𝐺′ can be found in polynomial

time, ℳℛℬ(𝐷 = 𝑁2) in graph 𝐺 can also be found in polynomial time which is a

contradiction [6].

Suppose 𝑅′ is the optimal set of node removals that lead to the failure of the entire

network 𝐵 in graph 𝐺′. Note that 𝑅′ could contain both parent and child nodes;

however, it is clear that the effect of removal of any parent node 𝐴𝑖 (respectively,

parent node 𝐵𝑗) is more than or equal to the effect of removal of its child node 𝐴𝑖𝑖

(respectively, child node 𝐵𝑗𝑗). Thus, we replace all the child nodes in 𝑅′ to the parent

nodes, and call the new set 𝑅′
𝑃 . It is enough to show that 𝑅′

𝑃 is also the optimal

removal set in graph 𝐺.

Due to the construction of graph 𝐺′ from 𝐺, removal of 𝑅′
𝑃 in 𝐺 leads to the total

failure of network 𝐵. Next, we prove by contradiction that it is also the optimal solu-

tion. Suppose that 𝑅 is the optimal removal in 𝐺 where |𝑅| < |𝑅′
𝑃 |. By construction,

removal of nodes 𝑅 in 𝐺′ will lead to the total failure of network 𝐵; thus, 𝑅′
𝑃 is not

optimal which is a contradiction.

In Theorem 7, we proved that finding the optimal removal sets in graph 𝐺 and 𝐺′

are equivalent. This was due to the fact that under our construction, parent nodes

could replicate the entire cascading failure process. However, this is not true for

any arbitrary bidirectional interdependent network with tree topology. Consider the

following example.

Example- Consider the network in Figure 2-19. Here, nodes 𝐴1, 𝐴2, 𝐴3 and 𝐵1 are

the parent nodes directly connected to the sources, and the rest of nodes are children.

Moreover, the nodes between the two networks are connected via bidirectional edges.

Suppose parent node 𝐴2 fails. Thus, child nodes 𝐴21, 𝐵21 and 𝐵22 fail which leads to

the failure of parent node 𝐴3.

This example illustrates that the failure of a parent node in network 𝐴 can lead

to the failure of another parent node in network 𝐴 without affecting any parent node

in network 𝐵. Therefore, there are no graph structural mapping to replicate the cas-

cade of failures from bidirectional networks to unidirectional ones with star topology.
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Figure 2-19: An example of bidirectional interdependent networks with tree topology.
Here, the failure of parent node 𝐴2 leads to the failure of parent node 𝐴3 without
affecting any parent node in network 𝐵.

Thus, despite the fact that star topologies illustrate many important properties of in-

terdependent networks, the analysis of general topologies cannot be a direct extension

of star topologies and requires extensive analysis.

2.9 Conclusion

In this chapter, we studied the robustness of interdependent networks. We proposed

a new model for analyzing interdependent networks with given topologies. We fo-

cused on the networks with star topologies to capture the effect of cascading failures

due to interdependency. We defined the metrics ℳℛ(𝐷) and ℳℛℬ(𝐷) as the min-

imum number of nodes that should be removed from network 𝐴 or both networks

to cause the failure of 𝐷 nodes in network 𝐵. We proved that evaluating these

metrics is not only NP-complete, but also inapproximable. Moreover, we proposed

several algorithms based on greedy, randomize rounding and simulated annealing for

evaluating our metrics and compared their performances using simulation results.

We proved that in the networks with the same number of nodes and edges, those

with bidirectional interdependency are more robust than the ones with unidirectional
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interdependency. Next, we introduced two closely related definitions for robust inter-

dependent networks, proposed algorithms for explicit design, and showed the relation

of robust interdependent networks with expander graphs. Finally, we discussed some

ideas about analysis of interdependent networks with general topologies.

2.10 Chapter Appendix

2.10.1 Inapproximability of metric ℳℛ(𝐷)

Consider networks 𝐺 and 𝐺′ in Figure 2-5. For simplicity, we assume that 𝑁1 = 𝑁2 =

𝑁 . Let 𝑊𝐷 be the approximation of ℳℛ(𝐷) in network 𝐺 where 𝑊 *
𝐷 is the optimal

value. Suppose there exists a PTAS which approximates ℳℛ(𝐷) within factor of

𝑟 > 1; i.e. 𝑊 *
𝐷 ≤ 𝑊𝐷 ≤ 𝑟 · 𝑊 *

𝐷. Moreover, define variables 𝑍𝐷 = 𝑁 − 𝑊𝐷 and

𝑍*
𝐷 = 𝑁 −𝑊 *

𝐷.

Moreover, let 𝑋* be the largest balanced biclique in network 𝐺′. It is easy to

see that 𝑋* = max1≤𝐷≤𝑁 min{𝑍*
𝐷, 𝐷}. Similarly, let 𝑋 be the largest balanced

biclique in network 𝐺′ found using the approximated value of metric ℳℛ(𝐷); i.e.

𝑋 = max1≤𝐷≤𝑁 min{𝑍𝐷, 𝐷}.

Suppose 𝑍*
𝐷 ≥ 𝑁

𝑘
for some constant 𝑘 > 1 4. Then, the following equations hold.

Equations (2.9a)-(2.9h) indicate that for any 1 ≤ 𝑟 ≤ 1 + 1−𝑚·.𝑁−𝜖

𝑘−1
where 𝑚 and

𝜖 are some positive constants, if there exists an r-approximation for ℳℛ(𝐷), there

exists an 𝑚 ·𝑁−𝜖 approximation for the maximum balanced biclique (MBB) problem

which is a contradiction [48,49].

4Note that for constant values of 𝐷 or 𝑍*
𝐷, one can find an exact balanced biclique in polynomial

time by an argument similar to Proposition 1. Therefore, the difficulty is for non-constant values of
𝐷 and 𝑍*

𝐷; i.e. 𝐷 and 𝑍*
𝐷 are a fraction of network. Thus, 𝑘 will a constant value.

71



𝑊 *
𝐷 ≤ 𝑊𝐷 ≤ 𝑟 ·𝑊 *

𝐷 (2.9a)

⇒𝑁 − 𝑟 ·𝑊 *
𝐷 ≤ 𝑁 −𝑊𝐷 ≤ 𝑁 −𝑊 *

𝐷 (2.9b)

⇒−𝑁(𝑟 − 1) + 𝑟 · 𝑍*
𝐷 ≤ 𝑍𝐷 ≤ 𝑍𝐷* (2.9c)

⇒[𝑟 − 𝑘(𝑟 − 1)] · 𝑍*
𝐷 ≤ 𝑍𝐷 ≤ 𝑍𝐷* (2.9d)

⇒min{𝐷, [𝑟 − 𝑘(𝑟 − 1)] · 𝑍*
𝐷} ≤ min{𝐷,𝑍𝐷}

≤ min{𝐷,𝑍*
𝐷} ∀𝐷 ∈ {1 ≤ 𝐷 ≤ 𝑁} (2.9e)

⇒[𝑟 − 𝑘(𝑟 − 1)] ·min{𝐷, ·𝑍*
𝐷} ≤ min{𝐷,𝑍𝐷}

≤ min{𝐷,𝑍*
𝐷} ∀𝐷 ∈ {1 ≤ 𝐷 ≤ 𝑁} (2.9f)

⇒[𝑟 − 𝑘(𝑟 − 1)] · max
1≤𝐷≤𝑁

min{𝐷, ·𝑍𝐷}

≤ max
1≤𝐷≤𝑁

min{𝐷,𝑍*
𝐷} ≤ max

1≤𝐷≤𝑁
min{𝐷,𝑍*

𝐷} (2.9g)

⇒[𝑟 − 𝑘(𝑟 − 1)] ·𝑋*
𝐷 ≤ 𝑋𝐷 ≤ 𝑋*

𝐷 (2.9h)

2.10.2 ILP formulation for 2-robust design

Here, we formulate the problem of allocating edges in a 2-robust bidirectional inter-

dependent network. As discussed previously, by definition 4, a 2-robust network is

also 1-robust. Thus, we search for the optimal allocation in regular networks.

Let 𝑁 be the number of nodes in networks 𝐴 and 𝐵, and 𝑘 be the degree of

each node. Let 𝑋 denote the lower bound on the number of neighbors of any pair of

nodes; i.e. 𝑋 = ℳℛ(𝐷 = 2). Let 𝐸 ∈ {0, 1}𝑁×𝑁 be a binary matrix where 𝐸𝑖𝑗 = 1

if node 𝑖 ∈ 𝐴 is connected to node 𝑗 ∈ 𝐵, and 𝐸𝑖𝑗 = 0 otherwise. Moreover, let 𝑍𝑗𝑟
𝑖

be a binary variable where 𝑍𝑗𝑟
𝑖 = 1 if node 𝑖 ∈ 𝐴 is a neighbor of node 𝑗 ∈ 𝐵 or

node 𝑟 ∈ 𝐵, and 𝑍𝑗𝑟
𝑖 = 0 otherwise. Furthermore, let 𝑌 𝑖𝑟

𝑗 be a binary variable where

𝑌 𝑖𝑟
𝑗 = 1 if node 𝑗 ∈ 𝐵 is a neighbor of node 𝑖 ∈ 𝐴 or node 𝑟 ∈ 𝐴, and 𝑌 𝑖𝑟

𝑗 = 0

otherwise. The ILP formulation is as follows.
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max 𝑋 (2.10a)

s.t.
𝑁∑︁
𝑖=1

𝐸𝑖𝑗 = 𝑘 𝑗 ∈ 1, · · · , 𝑁 (2.10b)

𝑁∑︁
𝑗=1

𝐸𝑖𝑗 = 𝑘 𝑖 ∈ 1, · · · , 𝑁 (2.10c)

𝑍𝑗𝑟
𝑖 ≤ 𝐸𝑖𝑗 + 𝐸𝑖𝑘 𝑗 ∈ 1, · · · , 𝑁 − 1; 𝑟 ∈ 𝑗 + 1, · · · , 𝑁

𝑖 ∈ 1, · · · , 𝑁 (2.10d)

𝑋 ≤
𝑁∑︁
𝑖=1

𝑍𝑗𝑘
𝑖 𝑗 ∈ 1, · · · , 𝑁 − 1; 𝑘 ∈ 𝑗 + 1, · · · , 𝑁 (2.10e)

𝑌 𝑖𝑟
𝑗 ≤ 𝐸𝑖𝑗 + 𝐸𝑟𝑗 𝑖 ∈ 1, · · · , 𝑁 − 1; 𝑟 ∈ 𝑖+ 1, · · · , 𝑁

𝑗 ∈ 1, · · · , 𝑁 (2.10f)

𝑋 ≤
𝑁∑︁
𝑗=1

𝑌 𝑖𝑟
𝑗 𝑖 ∈ 1, · · · , 𝑁 − 1; 𝑟 ∈ 𝑖+ 1, · · · , 𝑁 (2.10g)

𝐸𝑖𝑗 ∈ {0, 1} 𝑖 ∈ 1, · · · , 𝑁, 𝑗 ∈ 1, · · · , 𝑁 (2.10h)

𝑍𝑗𝑟
𝑖 ∈ {0, 1} 𝑖 ∈ 1, · · · , 𝑁 ; 𝑗, 𝑟 ∈ 1, · · · , 𝑁 (2.10i)

𝑌 𝑖𝑟
𝑗 ∈ {0, 1} 𝑗 ∈ 1, · · · , 𝑁 ; 𝑖, 𝑟 ∈ 1, · · · , 𝑁 (2.10j)

Here, the objective is to maximize the lower bound 𝑋; i.e. maximize metric

ℳℛ(𝐷 = 2). Constraints (2.10b) and (2.10b) guarantee that the degree of each

node is 𝑘. Moreover, Constraints (2.10d) and (2.10e) find the neighbors of any pair of

nodes in network 𝐵 and set 𝑋 as the lower bound on the number of these neighbors.

Similarly, Constraints (2.10f) and (2.10g) find the neighbors of any pair of nodes in

network 𝐵 and set 𝑋 as the lower bound on the number of these neighbors. Finally,

constraints (2.10h-2.10i) sets the variables to be binary.
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Chapter 3

Interdependent Power Grid and

Communication Networks

In this chapter, we study the interdependency between the power grid and the com-

munication network used to control the grid. A communication node depends on

the power grid in order to receive power for operation, and a power node depends

on the communication network in order to receive control signals. We demonstrate

that these dependencies can lead to cascading failures, and it is essential to consider

the power flow equations for studying the behavior of such interdependent networks.

We propose a two-phase control policy to mitigate the cascade of failures. In the

first phase, our control policy finds the unavoidable failures that occur due to phys-

ical disconnection. In the second phase, our algorithm redistributes the power so

that all the connected communication nodes have enough power for operation and

no power lines overload. In particular, we show that using our mitigation policy, the

interdependent power grid is more robust than the isolated one. We also perform a

sensitivity analysis to evaluate the performance of our control policy, and show that

our control policy achieves close to optimal yield for many scenarios. This analysis

can help design robust interdependent grids and associated control policies.
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3.1 Introduction

One of the main challenges for sustainability of future power grids is the increased

variability and uncertainty caused by integrating renewable sources into the grid.

In order to address this challenge, the future grid must be equipped with real-time

monitoring and be controlled with fast and efficient control algorithms [56].

The monitoring and control of today’s power grid relies on a Supervisory Control

and Data Acquisition (SCADA) system. One of the main control operations is the

Automatic Generation Control (AGC) which is used to match power supply with

demand in the grid through frequency control. This is done both at the local (gen-

erator) level, and the wide-area level. AGC systems rely on communication in order

to disseminate control information, and the lack of communication, or even delay in

communication can cause AGC systems to malfunction and fail, leading to wide-scale

power outages [3, 4].

In August 2003, lack of real-time monitoring and rapid control decisions for mit-

igating failures led to a catastrophic blackout which affected 50 million people in

Northeast America. According to the final report of the 2003 blackout [1], this event

started with the loss of transmission lines in Ohio due to inadequate tree trimming.

However, the operators did not realize these failures due to insufficient monitoring;

thus, no remedial action was taken at that time. In the subsequent hour, several

transmission lines and generators tripped due to overheating of power lines and local

protections in generators1. These initial failures triggered a very fast cascade, which

occurred in less than 5 minutes and led to a full blackout in the Northeast United

States and parts of Canada. The reports in [5] and [2] indicate that the reason for

tripping of many generators and transmission lines was power imbalance in the control

areas and lack of communication between the operators for mitigating the failures.

It is thus essential to design a communication network together with control policies

that facilitate widespread monitoring of the power grid, and enables the power grid

to react to rapid changes and unexpected failures in the network.

1Local protections are systems that trip the generator when abnormal changes such as over/under
frequency occur in the grid.
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Moreover, for cost and sustainability considerations, the communication equip-

ment often receives the power for operation directly from the power grid. However,

this creates a strong interdependency between the two networks, where the operation

of the power grid is dependent on receiving control signals from the communication

network, and the operation of the communication network is dependent on receiving

power from the power grid.

As discussed in the previous chapter, the concept of interdependencies between

infrastructures was first introduced in [13]. In [14], Rosato et al. studied the impact

of failures in the power grid on the performance of communication networks. In [18],

Buldyrev et al. presented a model for analyzing the robustness of interdependent

random networks and investigated asymptotic connectivity to a “giant component".

They showed that interdependent networks are more vulnerable to failures than indi-

vidual networks in isolation. The authors in [6] modified the model of [18] to account

for connectivity to generators and control centers, and studied connectivity in the

non-asymptotic regime.

Figure 3-1(a) shows the impact of failures on interdependent networks by con-

sidering two random Erdos-Renyi graphs and a one-to-one interdependency between

power and communication nodes. Here, we simulated the cascading failure process

described by Buldyrev’s model in [18]. The result of our simulation shows that indeed

the interdependent networks are more vulnerable to failures than isolated networks,

and there is a notable drop in the size of the largest connected component when the

percentage of initial node removals is more than 50% of total nodes.

However, in a power grid the flows are driven by Kirchoff’s laws, and cannot be

described by a network flow model. Thus, when a failure occurs in a power grid,

the power flow is redistributed on the the rest of the network and some elements

could overload and fail, leading to “Cascading Failures". Since this behavior is not

captured in the abstract models of [18] and [6], we generated random power grids

and implemented the model of cascading failures from [27] in conjunction with the

model introduced in [6]. As can be seen from Figure 3-1(b) when taking power failure

cascades into account, there exists no large component for any size of initial failure.
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Thus, it is critical to consider the actual power flow in analyzing the behavior of the

power grid.

(a) Random Erdos-Renyi Graph - The size of
largest component is close to the size of network
for small sizes of failure, and there is a drop at a
failure rate of about 50%.

(b) Random Power Grid - No large component
exists for any size of failure.

Figure 3-1: Ratio of largest component to the number of remaining nodes for different
sizes of initial failures; Each network has 500 nodes with expected degree 4. We
randomly selected 1/5𝑡ℎ of the nodes in the power grid and communication network as
generators and control centers, respectively, and there is one-to-one interdependency
between the two networks. For the power grid, we considered unit reactance for all
power lines, and attributed a random amount of power in the range [1000, 2000] to
all generators and loads.

Figure 3-1(b) focused on connectivity. However, in power grids, the metric of

interest is yield, which is the percentage of served load, not the the size of largest

component. Figure 3-2 shows the yield vs the initial node removals in the interde-

pendent Random power grid as described in Figure 3-1(b). It can be seen that the

yield in an interdependent power grid is much smaller than the yield in an isolated

power grid.

Figure 3-2: Comparing Yield in single and interdependent Power Grid after cascading
failures. Increasing the size of failure results in a smaller yield.
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As was discussed previously, it is necessary to design a communication network

intertwined with the power grid in order to provide real-time monitoring and control

for the grid. Therefore, a proper analysis of interdependent networks should account

for the availability of control schemes that can mitigate cascading failures. In this

chapter, we propose a new load shedding scheme to control the cascade of failures

both inside and between the networks. To the best of our knowledge, this work is

the first attempt to design control policies for mitigating failures in interdependent

networks.

The rest of this chapter is organized as follows. We explain the model of inter-

dependent power grid and communication network in Section 3.2. In Section 3.3,

we present a simple control policy followed by a load control policy that mitigate

the cascading failures in interdependent networks in one stage. Finally, we perform

sensitivity analysis for our load control policy in Section 3.4 and conclude in Section

3.5.

3.2 Model

An interdependent network consists of three subnetworks: the Power grid, the commu-

nication network and the interdependency network. In the following, we will explain

the model of each subnetwork.

3.2.1 Power Grid

The power grid can be modeled as a graph 𝐺𝑃 = (𝑉𝑃 , 𝐸𝑃 ) where 𝑉𝑃 and 𝐸𝑃 are

power nodes and lines, respectively. There are three types of power nodes in a grid:

Generators that generate power, Loads that consume power and Substations that

neither generate nor consume power. The flow in power lines cannot be controlled

manually; instead, it is determined based on the principles of electricity. In order to

analyze the behavior of the power grid, we use the well-known DC power flow model,

explained in equation 3.1, that has been widely used in the literature (see [8] for a

survey on the power flow models).
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Let 𝑃 be a |𝑉𝑃 |×1 vector such that 𝑃𝑖 denotes the power injection at power node

𝑖 ∈ 𝑉𝑃 . Let 𝐴 ∈ 𝑅|𝑉𝑃 |×|𝐸𝑃 | be the adjacency matrix where 𝐴𝑖𝑗 = 1 if link 𝑗 starts

from node 𝑖, 𝐴𝑖𝑗 = −1 if link 𝑗 ends in node 𝑖 and 𝐴𝑖𝑗 = 0 otherwise. Moreover,

let 𝑋 ∈ 𝑅|𝐸𝑃 |×|𝐸𝑃 | be the reactance matrix associated to the power grid where 𝑋𝑖𝑖

denotes the reactance of 𝑖𝑡ℎ power line and 𝑋𝑖𝑗 = 0 for 𝑗 ̸= 𝑖. Let 𝑓 ∈ 𝑅|𝐸𝑃 |×1 be the

vector of power flows in transmission lines and 𝜃 ∈ 𝑅|𝑉𝑃 |×1 denote the phases at all

power nodes. A DC power flow can be modeled as follows.

𝐴𝑓 = 𝑃 (3.1a)

𝐴𝑇 𝜃 = 𝑋𝑓 (3.1b)

Constraint 3.1a is a network flow constraint which guarantees that power at every

node is balanced. In addition, constraint 3.1b replicates Ohm’s law where the amount

of power flowing in a power line is equal to the difference in phase angles 𝜃𝑖 and 𝜃𝑗

divided by the reactance of line (𝑖, 𝑗).

When a power node or line fails, its load is shifted to other elements of the grid.

During this process, the flow in one or more lines may be pushed beyond their capacity

which leads to the failure of the overloaded lines. Similarly, failure of these lines

redistributes power and may lead to further “Cascading Failures".

The cascade of failures in the power grid is a very complex phenomena, and several

models have been introduced for explaining the behavior of cascading failures (see

for example [27–30]). In this chapter, we will use the deterministic model explained

in [27]. In this model, each power line is associated with a capacity which is considered

to be a factor of safety (𝐹𝑜𝑆) typically set to 1.2 times the amount of flow on that

line. When a failure occurs, the power will be redistributed to the rest of the grid

and the lines with flow more than their capacity will fail. The cascading model can

be explained using the following steps.

1. Balance the power in the grid; i.e. if the grid is overloaded, decrease the amount

of power at all loads uniformly to match the generation and if the grid is un-
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derloaded, decrease the amount of power at all generators to match the load.

2. Resolve the DC power flow model in equations 3.1.

3. Remove all the overloaded power lines; i.e. 𝑓 > 𝑓𝑚𝑎𝑥.

4. If there are no overloaded lines in step 3, the cascade ends. Otherwise, repeat

the four steps.

3.2.2 Communication Network

The communication and control network can be modeled as a graph 𝐺𝐶 = (𝑉𝐶 , 𝐸𝐶)

where 𝑉𝐶 and 𝐸𝐶 are communication nodes and links, respectively. There are two

types of communication nodes: routers that are responsible for transmitting informa-

tion, and control centers that are responsible for making control decisions.

In order to have a fully monitored and controlled power grid, every power node is

equipped with a communication node (router). These nodes receive information from

the power nodes and relay it to the control center through other routers. The control

center makes the control decisions and sends them back to the routers located at

power nodes. In our model, when a communication node fails, all the communication

nodes that become disconnected from the control centers can no longer function.

3.2.3 Interdependency

Dependency of Communication Network on the Power Grid

The communication nodes receive the power for their operation from power grid. In

order to model this dependency, we associate each communication node 𝐶𝑗 with a

load 𝑃𝐶𝑗
that is connected to the power grid (Figure 3-3). Let 𝑃 𝑟𝑒𝑞

𝐶 be the required

amount of power for operation of the communication node. Thus, communication

node 𝐶𝑗 operates if 𝑃𝐶𝑗
≥ 𝑃 𝑟𝑒𝑞

𝐶 and it fails otherwise.

In our model, the loads associated to the communication nodes are located in

the distribution system and multiple communication nodes can receive power from
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Figure 3-3: Modeling Dependency of Communication Network on Power Grid

one power node in the transmission system (Figure 3-3). We assume that the com-

munication and control nodes have the highest priority in the distribution system;

thus, they will receive power as long as the power nodes have sufficient power to

meet their demand. We model this part using network flow equations, where the

sources are the loads 𝑃𝑖 in the power grid and the destinations are loads 𝑃𝐶𝑗
located

at communication nodes.

Dependency of Power Grid on the Communication Network

Next, we model the impact of loss of communication on the operation of the power

grid. As explained in the introduction, AGCs control the operation of generators by

setting the amount of power they should generate. If a generator becomes discon-

nected from the controller, the local controller tries to adjust the generation within

a small range of changes in frequency. When the power grid is under stress (e.g.

due to failures in the grid), power imbalance can lead to rapid frequency changes; in

which case local protection schemes will be activated and trip the generators [1,3,4].

Similarly, if a substation loses its control, then the relays cannot be accessed remotely

and when the system is under stress, transmission lines will be overloaded and trip.

Based on the 2003 blackout report, the large power imbalance in the system and lack

of fast control and communication led to tripping of many transmission lines and

generators [1].
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In this chapter, we analyze the cascade of failures in the power grid when the

system is under stress. We say that if a power node loses its correspondent communi-

cation and control node(s), it cannot be controlled and fails. This is a deterministic

model that can be extended to a probabilistic model where the power node fails

randomly with some probability.

In the next section, we will propose control schemes that mitigate cascade of

failures by shedding loads and re-dispatching generators. In our analysis, we do not

study the transient behaviors of the grid after applying control decisions. Instead,

we assume that due to a wide-area control implemented by the communication and

control network, all the power nodes are aware of the transient changes in the system

and local protections do not activate. This is essential as in the 2003 blackout, many

generators tripped due to fluctuations resulting from intentional load sheddings [1].

3.3 Control Policies

3.3.1 Simple Load Shedding Mechanism

In this Section, we apply a simple load shedding control scheme in order to mitigate

failures inside the power grid. This control scheme changes the power injection at

power nodes so that the total power in the grid is balanced and the flow in transmission

lines is below their capacity; thus, no failure cascades in the power grid. Different

versions of this algorithm exist in the literature (see for example [57,58]). The simple

mitigation policy can be expressed in terms of the linear programming formulation

in equation 3.2. Notice that notation “updated" indicates that the power grid and

communication network have been updated after initial failure. Let 𝑃 𝑜𝑙𝑑, 𝑃 𝑛𝑒𝑤 ∈

𝑅|𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃 |×1 denote the power injections at power nodes before and after applying

the simple mitigation policy. Moreover, let vector 𝑓𝑚𝑎𝑥 denote the capacity of power

lines.

The objective function 3.2a is to minimize the total change in the power. Con-

straints 3.2e and 3.2f enforce that the only possible controls are to shed loads and
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reduce power at generators. This is due to the fact that generators can ramp down

much faster than they can ramp up. Since this control decision should be applied

very rapidly in order to keep the network stable, we only allow ramping down; i.e.

decreasing generation. Moreover, we assume there is no minimum threshold on the

amount of power generation or consumption.

minimize 𝑒𝑇 (|𝑃 𝑛𝑒𝑤 − 𝑃 𝑜𝑙𝑑|) (3.2a)

subject to 𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑓 = 𝑃 𝑛𝑒𝑤 (3.2b)

(𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑)𝑇 𝜃 = 𝑋𝑓 (3.2c)

𝑓 ≤ 𝑓𝑚𝑎𝑥 (3.2d)

0 ≤ 𝑃 𝑛𝑒𝑤
𝑖 ≤ 𝑃 𝑜𝑙𝑑

𝑖 ∀𝑖 ∈ 𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃,𝑔𝑒𝑛 (3.2e)

𝑃 𝑜𝑙𝑑
𝑖 ≤ 𝑃 𝑛𝑒𝑤

𝑖 ≤ 0 ∀𝑖 ∈ 𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃,𝑙𝑜𝑎𝑑 (3.2f)

We apply this mitigation policy to the random interdependent power grid gener-

ated in Section 3.1 (Figure 3-1’s caption). The only difference is that communication

nodes receive power only from loads; thus, it is not a fully one-to-one interdependent

topology. However, we try to create as many one-to-one interdependencies as possible;

i.e a load is dependent on the communication node that it provides power to. Pre-

vious studies have shown that one-to-one interdependent networks are more robust

to failures [6]. We observed that although applying this control policy can mitigate

failures inside the power grid, the failures still cascade between the communication

network and the power grid. Thus, we apply the control algorithm iteratively until

no further failures occur. Clearly, the yield in any interdependent topology would be

upperbounded by the yield in an isolated power grid. We use this upperbound to

examine the performance of our control scheme.

Figure 3-4 shows the yield after applying the simple mitigation policy. It can be

seen that although the control policy has improved the yield (when the failure rate is

small), there is a dramatic drop in yield when the failure rate exceeds 10%. This is due
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Figure 3-4: Applying Simple Mitigation Policy to Interdependent Power Grids for
controlling Cascading failures. Here, the total power required by communication
network is 10−4 times total load in the power grid.

to the fact that loss of loads leads to the loss of communication nodes that are used

to control the generators and thus, the generators fail. Therefore, it is much harder

to mitigate the cascading failures in interdependent networks. This simple policy

is meant to demonstrate that even simple controls can reduce cascades. Inspired by

this observation, we develop a control scheme that aims to keep communication nodes

operating.

3.3.2 Load Control Mitigation Policy

It was seen in Section 3.3.1 that a simple mitigation policy cannot mitigate failures

in interdependent networks, as failures in the power grid propagate to the communi-

cation network and cause additional failures both inside the communication network

and in the power grid. In order to avoid such propagations, we propose a novel con-

trol policy that consists of two phases: in the first phase, it predicts the unavoidable

failures in the power grid and the communication network and removes these nodes

from the network. In the second phase, it changes the power injection at power nodes

so that (1) power in all transmission lines is below their capacity and (2) all the re-

maining communication nodes keep operating; i.e. 𝑃𝐶𝑗
≥ 𝑃 𝑟𝑒𝑞

𝐶 . This guarantees that
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no further failures occur in the power grid and that the failures do not propagate to

the communication network. Thus, the cascade of failures will be mitigated in one

stage. In the following, we explain these phases in more details.

Phase I

In this phase, we ignore the power flows in the power grid and find the nodes whose

failure cannot be avoided by changing the power injection at nodes due to loss of

connectivity. Algorithm I describes how to find such failures in polynomial time.

input : Topology of interdependent network and the set of initial node removals
repeat

1. For every power node 𝑖, check if there exists a path
from a generator to node 𝑖 and it receives an incoming edge from the
communication network;

2. For every communication node 𝑗, check if there exists
a path from a control center to node 𝑗 and it receives
an incoming edge from power grid;

3. Remove all the nodes that do not satisfy the properties in steps 1 and 2;

4. Remove all isolated generators;

5. Remove all the links connected to the removed nodes.

until No node can be removed ;
output: Set of all removed nodes

Algorithm 1: Cascade Algorithm

Phase II

In this phase, our objective is to find a set of feasible power injections so that the

minimum amount of load is shed and no control node fails due to loss of power. Let

𝐸𝐶𝑃 denote the adjacency matrix modeling the dependency of the communication

network on loads. Let vector ℎ denote the amount of power flowing from loads

located in the power transmission grid 𝑃𝑖 to loads located in the power distribution

grid 𝑃𝐶𝑗
that support the communication network (See Figure 3-3). Moreover, let 𝑏

be a two part power vector. The first part represents the amount of power injection
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at loads in the transmission grid with positive sign as these are source nodes; i.e.

−𝑃𝑖 since loads 𝑃𝑖 are originally modeled with negative values. Similarly, the second

part represents the amount of power injection at loads in the distribution grid with

negative sign as these are destination nodes; i.e. 𝑃𝐶𝑗
since loads 𝑃𝐶𝑗

are originally

modeled with negative values. Moreover, notice that notation “updated" indicates

that the power grid and communication network have been updated by removing the

nodes that fail in Phase I.

minimize 𝑒𝑇 (|𝑃 𝑛𝑒𝑤 − 𝑃 𝑜𝑙𝑑|) (3.3a)

subject to 𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑𝑓 = 𝑃 𝑛𝑒𝑤 (3.3b)

(𝐴𝑢𝑝𝑑𝑎𝑡𝑒𝑑)𝑇 𝜃 = 𝑋𝑓 (3.3c)

𝑓 ≤ 𝑓𝑚𝑎𝑥, ∀(𝑖, 𝑗) ∈ 𝐸𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃 (3.3d)

0 ≤ 𝑃 𝑛𝑒𝑤
𝑖 ≤ 𝑃 𝑜𝑙𝑑

𝑖 ∀𝑖 ∈ 𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃,𝑔𝑒𝑛 (3.3e)

𝑃 𝑜𝑙𝑑
𝑖 ≤ 𝑃 𝑛𝑒𝑤

𝑖 ≤ 0 ∀𝑖 ∈ 𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝑃,𝑙𝑜𝑎𝑑 (3.3f)

𝑃𝐶𝑗
≤ −𝑃 𝑟𝑒𝑞

𝐶 ∀𝑗 ∈ 𝑉 𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝐶 (3.3g)∑︁

𝐸𝑢𝑝𝑑𝑎𝑡𝑒𝑑
𝐶𝑃 ℎ = 𝑏 (3.3h)

ℎ ≥ 0 (3.3i)

Constraint 3.3g guarantees that every remaining communication node receives

the minimum amount of power required for operation. Constraint 3.3h models the

power flowing from the power grid to the communication network with a network flow

model. Constraint 3.3i enforces that the direction of power flow is from power nodes to

communication nodes. The combination of these three constraints changes the power

injection at power nodes so that the communication nodes remaining from Phase I will

continue operating. The rest of constraints are similar to the Simple mitigation policy

and set the power injections so that no transmission line is overloaded. Similarly, the

objective function is minimizing the total amount of load shedding. Note that this

ILP may be infeasible. In such cases the yield would be zero, showing that our control
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policy is not capable of controlling the failures in the network.

Figure 3-5: Comparing performances of control policies

Figure 3-5 compares the performance of load control mitigation and simple mit-

igation policies. It can be seen that the yield after applying the load control policy

is improved with respect to the simple mitigation policy and it is close to the upper-

bound.

Figure 3-6 compares the isolated and interdependent power grids with and without

intelligent mitigation policies. As can be seen, the yield (the ratio of served load to the

initial load) in interdependent power grid and communication network without control

is lower than the isolated power grid (Figure 3-6(a)). However, when intelligent

control is applied to the interdependent network, the yield is higher than the isolated

power grid (Figure 3-6(b)).

3.4 Sensitivity Analysis

We analyze the performance of our control policy with respect to changes in the

communication network and the interdependency between the power grid and com-

munication network. The parameters we study are the amount of power that commu-

nication nodes require (𝑃𝐶𝑗
), size of communication network, the average number of
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(a) No Control- Interdependent networks are
more vulnerable.

(b) Control - Interdependent networks are more
reliable.

Figure 3-6: Comparing yield of interdependent and isolated power grids.

power nodes supporting each communication node, namely “Communication Interde-

pendence Degree" and finally, the average number of communication nodes supporting

each power node, namely “Power Interdependence Degree".

We generate 30 random networks as in Section 3.1 (Figure 3-1’s caption, where

communication nodes receive power only from loads) and test their feasibility by

applying our control policy. If the entire network fails in the first phase, the network

is not feasible; i.e. no control policy can survive it. We average the yield found by

our control policy over the feasible networks.

Figure 3-7: Impact of Load Factor on the Yield; 500 communication nodes; 20% of
nodes are randomly selected as control centers
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We define the “Load Factor" (LF) as the ratio of power required by the commu-

nication network to the total load in the power grid. In the previous simulations LF

was set to be 10−4. Figure 3-7 shows that by increasing LF, the yield decreases as it

is harder to provide the required amount of power for all loads supporting communi-

cation network.

We analyze the performance of our policy with respect to the size of communica-

tion network; i.e. number of communication nodes. Figure 3-8 shows that for small

values of LF, the larger networks have higher yield. However, by increasing LF, the

yield of larger networks decreases more; thus, the smaller networks perform better for

large LF. This is intuitive as more communication nodes provide more diversity, but

also require more power.

Figure 3-8: Impact of Number of Communication Nodes on the Yield; 20% of com-
munication nodes are randomly selected as control centers; initial removal=5%

The next parameter that we study is the average number of power nodes that

support every communication network (interdependence degree). Figure 3-9 shows

that the average yield increases by increasing the interdependence degree.

Finally, we investigate the impact of the average number of communication nodes

supporting each power node. It can be seen from Figure 3-10 that increasing degree

has positive impact on the yield and feasibility; however, it is not as strong as the

impact of communication interdependence degree. The reason is due to the structure
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Figure 3-9: Impact of Communication Interdependence Degree on the Yield; initial
removal=10%; load factor=0.1

of our control policy that tends to sustain all of the communication network. Thus,

if the control policy is feasible, the communication network remains operating, which

results in the operation of the power nodes supported by these communication nodes.

Therefore, in these scenarios, increasing the support for power grid cannot help. The

small improvement that we see here is related to the reduction of failures due to

disconnection.

Figure 3-10: Impact of Power Interdependence Degree on the Yield; initial re-
moval=10%; load factor=0.1
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3.5 Conclusion

In this chapter, we showed that it is essential to consider the power flow equations for

analyzing the behavior of interdependent power grid and communication networks.

We argued that in order to analyze the robustness of interdependent networks, one

should consider the control schemes for controlling cascading failures both inside and

between the power grid and communication network. We proposed a new control

scheme that mitigates failures in one stage and keeps the yield close to the maximum

possible value. Our policy only allows the failures due to disconnection from gener-

ators and control centers. Thus, a connectivity model can be used to describe the

process of cascading failures in interdependent topologies. In addition, we tested the

performance of our load control policy with respect to changes in several parameters

such as load factor (power needed by communication) and interdependence degree.
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Chapter 4

Modeling the Impact of

Communication Loss on the Power

Grid under Emergency Control

In this chapter, we study the interaction between the power grid and the communica-

tion network used for its control under emergency situations. We design a centralized

emergency control scheme under both full and partial communication support, to

improve the performance of the power grid, and use our emergency control scheme to

model the impact of communication loss on the grid. We show that unlike previous

models used in the literature, the loss of communication does not necessarily lead

to the failure of the correspondent power nodes; i.e. the “point-wise" failure model

is not appropriate. In addition, we show that the impact of communication loss is

a function of several parameters such as the size and structure of the power and

communication failure, as well as the operating mode of power nodes disconnected

from the communication network. Our model can be used to design the dependency

between the power grid and the communication network used for its control, so as to

maximize the benefit in terms of intelligent control, while minimizing the risks due

to loss of communication.
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4.1 Introduction

During normal operation, primary and secondary frequency controls are responsible

for stabilizing the grid. In particular, primary frequency control is a local controller

which reacts to local changes in frequency and adjusts the generation to keep the

frequency within an acceptable range. The secondary controller is responsible for

setting the frequency back to its nominal value (e.g. 60𝐻𝑧 in US) where it uses the

generator’s reserves to balance the power. However, during large failures the normal

operation controllers cannot stabilize the grid. Therefore, the future smart grid should

be equipped with a Communication and Control Network (CCN) that allows rapid

monitoring of the power grid and provides intelligent centralized control actions that

can mitigate cascade of failures. The centralized control actions to stabilize the grid

during catastrophic failures are referred to as “Emergency Control”.

There are several studies proposing Emergency control schemes for changing the

power generation as well as load shedding so that the grid can be stabilized before any

cascading failures occur [28, 57–59]. Although, using this extra information/control

improves the performance of the grid, it creates a dependency between the power grid

and the communication and control network.

During normal operations, loss of communication is unlikely to lead to significant

power failures as local controllers can stabilize the grid. However, when the grid is

under stress, lack of situational awareness and control can lead to catastrophic failures.

Such events may result from a natural disaster that affects both the communication

network and the power grid or the failure of communication components due to loss

of power coming from the grid. Therefore, it is very important to study the impact

of communication loss on the power grid’s stability during a large disturbance.

The impact of communication on the power grid’s performance and vice versa was

recently studied using an abstract form of interdependency. Buldyrev et al. in [18]

showed that if there exists a one-to-one interdependency between the nodes of the

grid and the communication network, interdependent networks are more vulnerable

to failures than isolated networks. In their “point-wise" interdependency model, a
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power node fails if it loses its connection to the communication network, and a com-

munication node fails if it loses its connection to the power grid. Similar results were

obtained in [6,20]. Recently, [9] showed that it is critical to use the power flow equa-

tions to model the power grid, and interdependency could benefit the power grid if

the communication network is used for mitigating the cascade of failures (See Figure

3-6).

In this chapter, we carefully model the function of emergency control of the grid

using the communication and control network. Using this model, we show that the

loss of any communication network component may lead to the loss of situational

awareness and control, and impact the performance of the grid. In particular, we show

that the point-wise failure model is not suitable for modeling interdependent power-

communication networks. Moreover, we show that the impact of communication loss

on the power grid is a function of several parameters such as size and structure of the

communication and power failures.

The rest of this chapter is organized as follows. In Section 4.2 we describe the

power-communication dependency. In Section 4.3, we formulate the emergency con-

trol problem with full and partial communication. Finally, in Section 4.4, we provide

simulation results and conclude in Section 4.5.

4.2 Model

4.2.1 PowerGrid-Communication Dependency

Figure 4-1 shows an abstract model of the future control and communication network

for an interconnected grid. In this model, each region is supported by a dedicated

communication network (intra-region communication network) that monitors all parts

of the grid, and sends the information to the control center. The control decisions

made by the control center are sent back to the grid via the same communication

network. Moreover, the grid regions are connected to each other via several tie lines

that allows transmission of power from one region to the other. Therefore, a failure
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in one region could cascade to the other regions. In order to avoid such failures,

the control centers are connected to each other with an inter-region communication

network that allows them to share state information and regional control decisions.

Figure 4-1: Future Power Grid equipped with communication networks and control
centers for online monitoring and control; dotted lines indicate dependency of power
nodes on communication nodes; 𝐺 denotes generator, and 𝐶𝐶1 and 𝐶𝐶2 denote
control centers. Power nodes that have lost their connection to the communication
network become “uncontrollable". Note that uncontrollable nodes may operate fine
using localized control, but cannot be controlled remotely because they are not reach-
able.

It can be seen from Figure 4-1 that communication failures could occur either

between the regions or inside the regions. Inter-region failures can degrade or

disconnect the communication between the control centers in different regions. In

contrast, Intra-region failures can cause some of the power nodes to be disconnected

from the communication network and unable to send information to or receive the

control decisions from the control center.
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Figure 4-2: Dotted lines indicate dependency of power nodes on communication nodes.
Power nodes that have lost their connection to the communication network become
“uncontrollable". Note that uncontrollable nodes may operate fine using localized
control, but cannot be controlled remotely because they are not reachable.

In this chapter, we study the case of intra-region failures. In particular, we focus on

the case where we are able to observe the power failures; i.e. we have communication

to the failed power nodes (See Figure 4-2).

4.2.2 Power Grid

The power grid consists of nodes and power lines where power nodes are of three types:

Generators (𝐺) that generate power; Loads (𝐿) that consume power and Buses (𝐵)

that allow the transmission of power through them, but neither generate nor consume

power. In our model, each generator or load is connected to the rest of the grid via a

single bus and each bus can be connected to any number of buses. Figure 4-3 shows

an example of our system.

In this chapter, we study the steady-state behavior of the grid. We also assume

that power lines are loss-less; i.e. can be modeled only by their reactance 𝑋. Thus,

the flow in a power line is described by a DC model as follows: 𝑓𝑖𝑗𝑋𝑖𝑗 = Δ𝜃𝑖𝑗 where
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𝑓𝑖𝑗 is the amount of power in line (𝑖, 𝑗), 𝑋𝑖𝑗 is the reactance of line (𝑖, 𝑗) and Δ𝜃𝑖𝑗

represents the difference in the voltage phase of nodes 𝑖 and 𝑗.

The generators are modeled as synchronous generators with the following swing

equation:

𝑀𝑖�̇�𝑖 = 𝑃𝐺𝑖 −𝐷𝑖(𝜔𝑖 − 𝜔𝑠)− (
∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖) (4.1)

where 𝑃𝐺𝑖 denotes the mechanical power, and 𝐷𝑖 and 𝑀𝑖 are generator’s damping

and inertia, respectively. Moreover, the difference in the flow passing through the

generator (
∑︀

𝑗∈𝐸 𝑓𝑖𝑗 −
∑︀

𝑗∈𝐸 𝑓𝑗𝑖) denotes the amount of generated electrical power.

Finally, 𝜔𝑖 is the frequency of node 𝑖 and 𝜔𝑠 is the synchronous frequency [see [60]

for more details]. Considering the steady-state behavior (�̇�𝑖 = 0), the equation for

synchronous generators will reduce to:

𝑃𝐺𝑖 −𝐷𝑖(𝜔𝑖 − 𝜔𝑠) =
∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖 (4.2)

The damping coefficient 𝐷𝑖 is often 0.02 per unit or less (See [61]-pp. 657-663 for

more details). This model describes the reaction of generator to the changes in power;

if generation is greater than the load, the frequency increases, and if the generation

is smaller than the load, the frequency decreases. In order to avoid sharp changes

in frequency, we also model the local frequency-droop control (also called primary

frequency control) in the grid that is responsible for modifying the amount of power

generation based on the changes in frequency; i.e. increases the power generation as

frequency drops and decreases the power generation as frequency rises. The droop-

control can be written as follows.

Δ𝑃𝐺𝑖 = − 1

𝑅𝑖

(𝜔𝑖 − 𝜔𝑠) (4.3)

where 𝑅𝑖 is the regulation constant. In a per unit system, the standard value of

regulation constant is 0.05 per unit. Thus, in our model of a 60𝐻𝑧 system, 𝑅𝑖 =

60*0.05
𝑃𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑖
where 𝑃𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑖 is the initial mechanical power of generator 𝑖 before any

disturbance ( [61]-pp. 657-663). The combination of 𝑃𝐺𝑖 in equation 4.2 and Δ𝑃𝐺𝑖
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in equation 4.3 models the response of generator 𝑖 to the changes in power using the

local controller:

𝑃𝐺𝑖 − (𝐷𝑖 +
1

𝑅𝑖

)(𝜔𝑖 − 𝜔𝑠) =
∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖 (4.4)

For the rest of this chapter, we define 𝛼𝑖 = 𝐷𝑖 +
1
𝑅𝑖

.

Finally, we consider protection relays located at every power node. The control

role of these relays is explained in section 4.2.4.

4.2.3 Communication Network

We consider a zero-delay communication network that supports every power node; i.e.

collects synchronous information from every power node, sends it to the control center

and sends back the control decision from the control center to all power nodes. The

set of collected information by the communication network includes: (i) Magnitude

of voltage at node 𝑘 (𝑉𝑘(𝑡)); (ii) Phase of voltage at node 𝑘 (𝜃𝑘(𝑡)); (iii) Frequency

of node 𝑘 (𝜔𝑘(𝑡)); (iv) Flow in power line (𝑘, 𝑗) (𝑓𝑘𝑗(𝑡)); (v) on/off State of element

𝑗 (𝑆𝑗(𝑡)).

Note that since we use the DC model in the chapter, the magnitude of voltage

𝑉𝑘(𝑡) is constant and equal to 1 for all nodes. Moreover, the “off" state of an element

means that it has failed.

4.2.4 Control Actions

Next, we describe both types of local and centralized control actions needed for op-

eration of the power grid.

Local Control Actions: All power nodes are equipped with local controllers that

do not require connection to the communication network and their actions include:

(i) droop control at generators : Droop control can increase or decrease the amount of

generation based on the changes in the frequency as described by equations 4.3 and

4.4; (ii) Over-frequency generator tripping (protection): the protection relays will trip
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the generator if the frequency exceeds the maximum threshold 𝜔𝑚𝑎𝑥 due to excess

generation in the system; (iii) Under-frequency load shedding (protection): the pro-

tection relays will shed the load if the frequency drops below the minimum threshold

𝜔𝑚𝑖𝑛 due to excess load in the system; (iv) Overloaded line tripping (protection): the

protection relays will trip the line if the power in that line exceeds the capacity.

Central Control Actions: All power nodes are equipped with sensors/actuators

connected to the control center via the communication network. The central control

actions include: (i) Ramping down generators : if power generation is greater than

consumption, the controller decreases the generation to keep the frequency within

the acceptable range; (ii) Intelligent load shedding : if the power generation is lower

than consumption, the controller sheds some load to keep the frequency within the

acceptable range; (iii) Intelligent line tripping : can be used for changing the topology

of the grid or islanding some areas of the power grid. Since in our model every

power node is equipped with an actuator, a power line can be tripped by either of its

end-nodes.

4.3 Emergency Control

In this Section, we design the optimal emergency control used for mitigation of failures

in the power grid in the presence of a fully or partially operational communication

network. We can then use these control policies for evaluating the performance of the

grid under different communication failure scenarios.

4.3.1 Full Communication

In this case, the power grid is fully supported by a communication network; thus,

every generator, load and line can be centrally controlled. The optimal emergency

control is the set of central and local control actions that maximizes the served load

while keeping the power balanced, maintaining the frequency within an acceptable

range and keeping the flows in the power lines within their capacity. We use the

control model with full communication as a basis for modeling the control with partial
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communication.

In eq. (4.5), we formulate the problem of optimal control with the objective of

maximizing served load while stabilizing the grid. Let, 𝑉𝐺, 𝑉𝐿 and 𝑉𝐵 denote the set of

generators, loads and bus nodes after the initial power failure, respectively. Moreover,

let 𝜔𝑚𝑖𝑛
𝑖 and 𝜔𝑚𝑎𝑥

𝑖 denoted the minimum and maximum frequency thresholds. In

addition, 𝐸 denotes the set of power lines after the initial failure, and 𝑋𝑖𝑗 represents

the reactance of line (𝑖, 𝑗). Finally, let 𝑀 be a large constant.

The variables 𝑓𝑖𝑗 and Δ𝜃𝑖𝑗 denote the amount of flow in line (𝑖, 𝑗) as well as the

phase difference of voltages at nodes 𝑖 and 𝑗. In addition, variables 𝑃𝐺𝑖, 𝑃𝐿𝑖 and 𝜔𝑖

denote the amount of generation, load and frequency at node 𝑖. Note that 𝑃𝐺𝑖 and

𝑃𝐿𝑖 take positive and negative values, respectively. Finally, 𝑧𝑖𝑗 is a binary variable

associated to line (𝑖, 𝑗) that takes value of 1 if line (𝑖, 𝑗) is connected and 0 if that

line is tripped (modeled in constraint (4.5k)).

As mentioned previously, the objective is to serve the maximum load while sta-

bilizing the grid. Constraints (4.5b,4.5c,4.5d) ensure that the flow conservation is

satisfied in generators, loads and buses where generation and load values 𝑃𝐺𝑖 and

𝑃𝐿𝑖 can change by central controller and term 𝛼𝑖(𝜔𝑖 − 𝜔𝑠) models the local droop

controller at the generators. Constraint (4.5e) models the DC power flow in line (𝑖, 𝑗)

if it remain connected; i.e. 𝑧𝑖,𝑗 = 1; note that there is no relation between the phases

at nodes 𝑖 and 𝑗 if the line is tripped (𝑧𝑖,𝑗 = 0). Constraint (4.5f) guarantees that

the flow in line (𝑖, 𝑗) is within the capacity if the line is not tripped, and constraint

(4.5g) ensures that all nodes in a connected area have the same frequency. Finally,

constraints (4.5h, 4.5i, 4.5j) guarantee that the values of frequency, generation and

load are maintained within the acceptable range.
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min
∑︁
𝑖∈𝑉𝐿

𝑃𝐿𝑖 (4.5a)

∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖 = 𝑃𝐺𝑖 − 𝛼𝑖(𝜔𝑖 − 𝜔𝑠) ∀𝑖 ∈ 𝑉𝐺 (4.5b)

∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖 = 𝑃𝐿𝑖 ∀𝑖 ∈ 𝑉𝐿 (4.5c)

∑︁
𝑗∈𝐸

𝑓𝑖𝑗 −
∑︁
𝑗∈𝐸

𝑓𝑗𝑖 = 0 ∀𝑖 ∈ 𝑉𝐵 (4.5d)

−𝑀(1− 𝑧𝑖𝑗) ≤ 𝑋𝑖𝑗𝑓𝑖𝑗 −Δ𝜃𝑖𝑗 ≤ 𝑀(1− 𝑧𝑖𝑗)∀(𝑖, 𝑗) ∈ 𝐸 (4.5e)

−𝑧𝑖𝑗𝑓
𝑚𝑎𝑥
𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝑧𝑖𝑗𝑓

𝑚𝑎𝑥
𝑖𝑗 ∀(𝑖, 𝑗) ∈ 𝐸 (4.5f)

−𝑀(1− 𝑧𝑖𝑗) ≤ 𝜔𝑖 − 𝜔𝑗 ≤ 𝑀(1− 𝑧𝑖𝑗) ∀(𝑖, 𝑗) ∈ 𝐸 (4.5g)

𝜔𝑚𝑖𝑛
𝑖 ≤ 𝜔𝑖 ≤ 𝜔𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝑉𝐺 (4.5h)

𝑃𝐺𝑚𝑖𝑛
𝑖 ≤ 𝑃𝐺𝑖 − 𝛼𝑖(𝜔𝑖 − 𝜔𝑠) ≤ 𝑃𝐺𝑚𝑎𝑥

𝑖 ∀𝑖 ∈ 𝑉𝐺 (4.5i)

𝑃𝐿𝑚𝑎𝑥
𝑖 ≤ 𝑃𝐿𝑖 ≤ 0 ∀𝑖 ∈ 𝑉𝐿 (4.5j)

𝑧𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐸 (4.5k)

4.3.2 Partial Communication

Next, we consider the case that in addition to the power failure, a part of the com-

munication network fails as well. Thus, parts of the grid lose their connection to

the communication network and control center. Our objective is to design an emer-

gency control policy that maximizes the served load and stabilizes the grid using the

controllable nodes.

Figure 4-3 shows an example of such power grid with power failures and control-

lable/uncontrollable areas. In the following, we define each area mathematically, and

explain the set of control actions available in each.

The components that have not initially failed in the power grid can be divided

into 3 areas described as follows:
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Figure 4-3: Power Grid Model after Communication Loss and Power Failure

Uncontrollable Area: Let 𝐺1 = {𝑉1, 𝐸1} denote the uncontrollable subset of power

grid, where 𝑉1 denotes the set of power nodes that are disconnected from the com-

munication network, and 𝐸1 denotes the set of power lines that connect any pair of

nodes in 𝑉1. Without loss of generality, we can divide subgraph 𝐺1 into 𝑘 disjoint

subgraphs 𝐺𝑘
1 = {𝑉 𝑘

1 , 𝐸
𝑘
1} such that nodes inside 𝑉 𝑘𝑖

1 are connected and for any 𝑗 ̸= 𝑖

nodes in 𝑉 𝑘𝑖
1 and 𝑉

𝑘𝑗
1 are not connected. Note that depending on the structure of

the network, 𝑘 could be any number equal or greater than 1. The only possible cen-

tralized control in these areas is islanding of the entire area by tripping border lines.

All of the local controllers described in Section 4.2.4; i.e. droop control and protec-

tion schemes, are available. In addition, we have a local controller that switches the

nodes in the uncontrollable areas to a pre-defined mode of operation as soon as they

are disconnected from the communication network. In this chapter, we consider two

possible modes: 𝑃𝑖𝑛𝑖𝑡 which corresponds to keeping all nodes operating at their last

state, and 𝑃𝑧𝑒𝑟𝑜 which corresponds to tripping all nodes.

Controllable Area: Let 𝐺2 = {𝑉2, 𝐸2} denote the controllable subset of the power

grid, where 𝑉2 is the set of power nodes that are connected to the communication

network (𝑉2 ∩ 𝑉1 = ∅ and 𝑉2 ∪ 𝑉1 = 𝑉 where 𝑉 is the set of all power nodes), and
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𝐸2 is the set of power lines connecting any pair of nodes in 𝑉2. All central and local

controllers described in Section 4.2.4 are available in the controllable areas.

Border Lines: Let 𝐸𝑘
12 denote the set of power lines that connect the uncontrollable

nodes in 𝑉 𝑘
1 to the controllable nodes in 𝑉2. Border lines can be tripped centrally

using the relay in its controllable node. All local controllers at its end-nodes are

available.

In eq. (4.6), we formulate the optimal emergency control problem subject to loss

of communication. Given the set of control actions, the behavior of the controllable

areas can be modeled as described in previous section with Full Control; i.e., eq.

(4.6b). However, the nodes in the uncontrollable areas cannot employ centralized

control and must rely on localized control and/or islanding as described next. The

following ILP shows the general description of optimal emergency control.

min
∑︁
𝑖∈𝑉𝐿

𝑃𝐿𝑖 (4.6a)

s.t. Constraints(4.5𝑏− 4.5𝑘) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉2, (𝑖, 𝑗) ∈ 𝐸2 ∪ 𝐸𝑘
12 (4.6b)

Constraints(4.7𝑎− 4.7𝑖) ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑉 𝑘
1 , (𝑖, 𝑗) ∈ 𝐸𝑘

1 (4.6c)

In the following, we describe constraints (4.7a-4.7h) related to the control actions

in the uncontrollable areas. Let
∑︀

(𝑖,𝑗)∈𝐸𝑘
12
𝑧𝑖𝑗 = 0 if the uncontrollable area 𝐺𝑘

1 is

isolated from the rest of grid; i.e. all the border lines are tripped, and
∑︀

(𝑖,𝑗)∈𝐸𝑘
12
𝑧𝑖𝑗 > 0

if it is connected. Moreover, let 𝐼𝑘 be a binary variable (modeled in constraint (4.7i))

associated with the uncontrollable area 𝐺𝑘
1 where 𝐼𝑘 = 0 if the isolated uncontrollable

area cannot be stabilized just by the local droop controller, and 𝐼𝑘 = 1 if that area

is stabilized (i.e. power is balanced just by using droop control and frequency and

power flows are within the acceptable range).

Constraints (4.7a-4.7h) model the control decision in the uncontrollable areas.

Note that 𝑃𝐺𝑖𝑛𝑖𝑡
𝑖 and 𝑃𝐿𝑖𝑛𝑖𝑡

𝑖 denote the values of generators and loads in uncontrol-

lable area after going to mode 𝑃𝑖𝑛𝑖𝑡; i.e. the last values of generators and loads right
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before disconnection from communication network. If the mode is set to 𝑃𝑧𝑒𝑟𝑜, 𝑃𝐺𝑖𝑛𝑖𝑡
𝑖

and 𝑃𝐿𝑖𝑛𝑖𝑡
𝑖 in constraints (4.7b) and (4.7c) will be set to zero. Constraint (4.7a)

denotes that if the uncontrollable area is unstable (𝐼𝑘 = 0), it has to be islanded

(
∑︀

(𝑖,𝑗)∈𝐸𝑘
12
𝑧𝑖𝑗).

∑︁
(𝑖,𝑗)∈𝐸𝑘

12

𝑧𝑖𝑗 ≤ 𝑀𝐼𝑘 ∀𝑘 ∈ 𝐾 (4.7a)

−𝑀(1− 𝐼𝑘) ≤
∑︁
𝑗

𝑓𝑖𝑗 −
∑︁
𝑗

𝑓𝑗𝑖 − 𝑃𝐺𝑖𝑛𝑖𝑡
𝑖 + 𝛼𝑖(𝜔𝑖 − 𝜔𝑠)

≤ 𝑀(1− 𝐼𝑘) ∀𝑖 ∈ 𝑉 𝑘
𝐺1,∀𝑘 ∈ 𝐾 (4.7b)

−𝑀(1− 𝐼𝑘) ≤
∑︁
𝑗

𝑓𝑖𝑗 −
∑︁
𝑗

𝑓𝑗𝑖 − 𝑃𝐿 𝑖𝑛𝑖𝑡
𝑖 ≤ 𝑀(1− 𝐼𝑘)

∀𝑖 ∈ 𝑉 𝑘
𝐿1,∀𝑘 ∈ 𝐾 (4.7c)

−𝑀(1− 𝐼𝑘) ≤
∑︁
𝑗

𝑓𝑖𝑗 −
∑︁
𝑗

𝑓𝑗𝑖 ≤ 𝑀(1− 𝐼𝑘)

∀𝑖 ∈ 𝑉 𝑘
𝐵1,∀𝑘 ∈ 𝐾 (4.7d)

−𝑀(1− 𝐼𝑘) ≤ 𝑋𝑖𝑗𝑓𝑖𝑗 −Δ𝜃𝑖𝑗 ≤ 𝑀(1 − 𝐼𝑘)

∀(𝑖, 𝑗) ∈ 𝐸𝑘
1 ,∀𝑘 ∈ 𝐾 (4.7e)

−𝑓𝑚𝑎𝑥
𝑖𝑗 𝐼𝑘 ≤ 𝑓𝑖𝑗 ≤ 𝑓𝑚𝑎𝑥

𝑖𝑗 𝐼𝑘 ∀(𝑖, 𝑗) ∈ 𝐸𝑘
1 ,∀𝑘 ∈ 𝐾 (4.7f)

−𝑀(1− 𝐼𝑘) ≤ 𝜔𝑖 − 𝜔𝑗 ≤ 𝑀(1− 𝐼𝑘) ∀(𝑖, 𝑗) ∈ 𝐸𝑘
1 ,∀𝑘 ∈ 𝐾 (4.7g)

𝜔𝑚𝑖𝑛
𝑖 𝐼𝑘 ≤ 𝜔𝑖 ≤ 𝜔𝑚𝑎𝑥

𝑖 𝐼𝑘 ∀𝑖 ∈ 𝑉 𝑘
𝐺1,∀𝑘 ∈ 𝐾 (4.7h)

𝐼𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝐾 (4.7i)

When an uncontrollable area can be stabilized just by local controllers; i.e. 𝐼𝑘 = 1,

constraints (4.7a-4.7h) will be active. In particular, constraints (4.7b-4.7d) model the

power balance in the area using only the droop control at generators, and constraint

(4.7e) models the DC power flow in line (𝑖, 𝑗). Moreover, constraint (4.7f) guaran-

tees that flow is within the line capacities, constraint (4.7g) forces all the connected

nodes to have the same frequency and constraint (4.7h) guarantees that the frequency
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remains within the acceptable range.

Note that when 𝐼𝑘 = 0, the uncontrollable area is unstable; i.e. either power

cannot be balanced just by droop controller or some lines are overloaded. Thus, the

frequency and line protection relays will be activated to trip the generators, shed the

load and trip the lines. This causes extra failures which activates more protection

relays. The cascade of failures continue until power is balanced, and frequency and

power flows are within their acceptable ranges. We model the cascading failures

separately for each uncontrollable area 𝑘 after observing its correspondent 𝐼𝑘 value.

4.4 Simulation Results

We analyze the data from the Italian power grid which consists of 310 buses, 113

generator units and 97 loads. The power failures are considered to be generators.

We assume that any arbitrary area in the power grid can lose its connection to the

communication network, and investigate the impact of these uncontrollable areas on

the performance of the grid. The metric that we use for our analysis is “yield" defined

as the ratio of served load 1 to the initial load.

Simulation results show that loss of communication can indeed impact the per-

formance of the power grid and lead to a lower yield. For example, we observed a

scenario where loss of 10 power nodes led to 6% load shedding under full communica-

tion and 23% load shedding under partial communication (See [11]). In this section,

we would like to find the parameters that have the greatest impact on performance.

4.4.1 Effect of size and structure of uncontrollable areas

We consider different number of uncontrollable nodes with different clusterings. In

particular, we define a cluster as a set of connected nodes where a cluster of size

1 means that no two uncontrollable nodes are connected and a cluster of size 10

means that the uncontrollable area can be divided into disjoint subareas, each with

1Served Load is considered to be the sum of power from controllable areas, stable uncontrollable
areas and unstable uncontrollable areas that have experienced cascading failures.
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10 connected nodes.

Figure 4-4: Average yield vs. Number of uncontrollable power nodes; 𝑃𝑖𝑛𝑖𝑡 mode.

Figure 4-4 shows that for a given size of power disturbance, the average yield

(over 100 scenarios) decreases as the number of uncontrollable nodes increases. In

addition, it shows that for the same number of uncontrollable nodes, the average

yield decreases as the size of cluster increases. We observed that for the cases that all

the uncontrollable areas can be stabilized using droop control; i.e. 𝐼𝑘 = 1, the yield

of partial communication is very close to the yield of full communication. However,

for the cases that at least one uncontrollable area is unstable, the yield decreases

significantly. Since large clusters could contain more generators and loads, the effect

of loss of such clusters is more severe. Moreover, Figure 4-5 shows the impact of size

and structure of uncontrollable areas on their stability. It can be seen that as the size

of uncontrollable area increases the fraction of unstable cases increases. In addition,

it can be seen that as the size of clusters increases, it is less probable to lose a cluster.

This is due to the fact that a large cluster could contain more power, and losing it

could cause a significant loss of power. Finally, observations from Figures 4-4 and

4-5 show that every uncontrollable power node does not fail; i.e. “point-wise" failure

model is not appropriate for power-communication interdependency.
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Figure 4-5: Fraction of cases with unstable islands vs. Number of uncontrollable
power nodes; 𝑃𝑖𝑛𝑖𝑡 mode.

4.4.2 Effect of Size of Power Loss

Next, we consider the effect of size of power failure on performance. Figure 4-6 shows

that as the size of power failure increases, the average yield decreases. Moreover,

it shows that the impact of communication loss increases as the number of power

failures increases. This is due to the fact that for larger sizes of uncontrollable areas,

it is harder to control a power disturbance and the impact on the yield is more severe.

Figure 4-6: Average yield vs. Number of initially failed power nodes; 𝑃𝑖𝑛𝑖𝑡 mode.
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4.4.3 Effect of Different Modes

Finally, we compare the impact of different predefined modes 𝑃𝑖𝑛𝑖𝑡 and 𝑃𝑧𝑒𝑟𝑜 described

in Section 4.3.2. By simulating different failure scenarios under both modes, we

observed that there exist scenarios where controlling the grid under 𝑃𝑧𝑒𝑟𝑜 mode leads

to higher yield than 𝑃𝑖𝑛𝑖𝑡 mode. In fact, in such scenarios, keeping the uncontrollable

area operating at the 𝑃𝑖𝑛𝑖𝑡 mode was infeasible; thus, they were islanded due to

instability. But, under 𝑃𝑧𝑒𝑟𝑜 mode, it is possible to keep an uncontrollable area and

use the buses in that area for transmitting power. Figure 4-7 shows that although

in most cases the 𝑃𝑖𝑛𝑖𝑡 mode results in a higher yield, the fraction of scenarios with

𝑌 (𝑃𝑧𝑒𝑟𝑜) > 𝑌 (𝑃𝑖𝑛𝑖𝑡) increases as the number of uncontrollable nodes or failed power

nodes increases. In particular, we observed that for the cases where 𝑃𝑖𝑛𝑖𝑡 has the

higher yield, the average difference in yield is 7% and for the cases where 𝑃𝑧𝑒𝑟𝑜 has

the higher yield, the average difference is 8%.

Figure 4-7: Fraction of cases with (𝑌 (𝑃𝑧𝑒𝑟𝑜) > 𝑌 (𝑃𝑖𝑛𝑖𝑡)) vs. Number of initially failed
power nodes.

4.5 Conclusion

In this chapter, we showed that although controlling the power grid using the com-

munication network could be very beneficial, it could be harmful if we lose part of
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the control and communication network. Therefore, it is essential to have a thorough

analysis on the impact of communication network on power grid to identify the vul-

nerabilities of the system. In particular, we showed that this impact is a function

of several parameters including the size and structure of the communication loss.

Therefore, it is very important to not only design a robust communication network,

but also allocate the communication nodes to the power grid so that the negative im-

pact of communication loss is minimized. Another direction of research is to design

more intelligent local controllers so that in the lack of communication, the nodes can

stabilize the grid even during large disturbances.
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Chapter 5

Distributed Frequency Control in

Power Grids under Limited

Communication

In this chapter, we analyze the impact of communication failures on the performance

of optimal distributed frequency control. We consider a consensus-based control

scheme, and show that it does not converge to the optimal solution when the com-

munication network is disconnected. We propose a new control scheme that uses the

dynamics of power grid to replicate the information not received from the commu-

nication network, and prove that it achieves the optimal solution under any single

communication link failure. In addition, we show that this control improves cost

under multiple communication link failures.

Next, we analyze the impact of discrete-time communication on the performance

of distributed frequency control. In particular, we show that the convergence time

increases as the time interval between two messages increases. We propose a new

algorithm that uses the dynamics of the power grid, and show through simulation

that it improves the convergence time of the control scheme significantly.
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5.1 Introduction

The main objective of a power grid is to generate power, and transmit it to the

consumers. The power grid balances supply and demand through frequency control.

This is done both at the local (generator) level, and the wide-area level as follows.

1. Primary Frequency Control (Droop Control): A local frequency con-

troller that balances the power by speeding up or slowing down the generators;

i.e. creating deviation from the 60Hz nominal frequency; this controller re-

sponds to the changes in power within milliseconds to seconds.

2. Secondary Frequency Control (AGC): AGC is a centralized frequency

controller that re-adjusts the set points of generators to balance the power and

restores the nominal frequency; this is a close-loop automatic controller that is

applied every 2-4 seconds and requires communication network between AGC

and generators.

3. Economic Dispatch: This is a centralized controller that reschedules the

generators to minimize the cost of generation; this control decision is made by

the ISO every 10-15 minutes, and requires communication network between ISO

and generators.

The future power grid is going to integrate renewable energy resources. This will

increase the fluctuations in the generation, and requires more reserve capacity to

balance the power. One of the approaches to balancing power without having large

reserve capacities is demand response, where loads are “adjustable” and participate

in balancing the power. Since the number of loads is large, they cannot be controlled

in a centralized manner. Thus, it is essential to use “distributed” control for demand

response that incorporates all three stages of traditional frequency control.

Recently, there have been many attempts to develop distributed frequency control

mechanisms. In [62], the authors consider the case that the total amount of required

power is known, and designed a distributed algorithm that determines the amount

of load participation to minimize the cost. In [33], the authors design a distributed
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frequency controller which balances the power under unknown changes in the amount

of generation and load, and compare its performance with a centralized controller.

In [34], the authors propose a primary control mechanism, similar to the droop

control, for microgrids leading to a desirable distribution of power among the par-

ticipants, and propose a distributed integral controller to balance the power. These

results are extended in [35], where the authors use a similar averaging-based dis-

tributed algorithm to incorporate all three stages of frequency control in microgrids.

Moreover, in [36], the authors propose a similar consensus-based algorithm for optimal

frequency control in transmission power grid.

In [63], the authors use a primal-dual algorithm to design a primary frequency

control for demand response in power grids. The results are extended in [64] and [65],

where the authors design a primal-dual algorithm to model all three stages of a

traditional frequency control in the power grid.

Although there exist several different distributed frequency control mechanisms

in the literature, they all rely on the use of communication to exchange control infor-

mation (e.g., Lagrangian multipliers). Moreover, convergence to an optimal solution

requires the underlying communication network to be connected. In addition, in the

design and analysis of all these controllers, it is assumed that the communication

messages between neighboring nodes are transmitted in continuous time; however,

in practice, these messages will be transmitted in discrete time. In this chapter, we

analyze the performance of a consensus-based control scheme under communication

failures. We show that when the communication network is disconnected, the control

scheme balances the power by retrieving the normal frequency; however, its cost is

not optimal. Moreover, we analyze the effect of discrete-time communication on the

convergence time of this control scheme.

Next, we propose a novel control algorithm which uses the information from the

power flow to replicate the direct information received from the communication net-

work. We prove that our algorithm achieves the optimal solution under any single

communication link failure. We also show via simulation results that our algorithm

improves the cost under multiple communication failures. Finally, we propose a se-
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quential algorithm based on our control mechanism, and show that it improves the

convergence time under discrete-time communication.

The rest of this chapter is organized as follows. In Section 5.2, we describe the

power grid’s model. In Section 5.3, we describe a consensus-based distributed fre-

quency control, and analyze it under communication link failures and discrete-time

communication. In Section 5.4, we will propose a novel decentralized control for a

two-node system and prove its optimality and stability, and in Section 5.5, we extend

our control mechanism for multi-node systems under disconnected communication

networks. Next, in Section 5.6, we propose a sequential control algorithm that im-

proves the convergence time under discrete-time communication. Finally, we conclude

in Section 5.7.

5.2 System Model

Let 𝒢𝒫 = {𝒩𝒫 , ℰ𝒫} be the power grid, where 𝒩𝒫 denotes the set of power nodes,

and ℰ𝒫 denotes the set of power lines. The power at every node 𝑗, whether it is a

generator or a load, consists of adjustable and unadjustable parts. The unadjustable

part is the amount of power that cannot be changed; i.e. fixed demand or generation.

The adjustable part is the amount of power that can be changed; i.e. controllable

load or generation. The sum of the total power determines the amount of power

imbalance in the grid, which leads to the frequency deviation. The role of a controller

is to balance the power by using the adjustable power at all nodes with minimum

cost. Next, we describe the dynamics of the power grid which translate the power

imbalance to frequency deviation. Then, we describe the optimal control policy.

Let 𝑀𝑗 be the inertia of node 𝑗, and 𝐷𝑗 be the droop coefficient of node 𝑗.

Moreover, let 𝑝𝑗(𝑡) be the unadjustable power and 𝑢𝑗(𝑡) be the adjustable power

(control) at node 𝑗 and at time 𝑡. In addition, let 𝐵𝑗𝑘 be the susceptance of power

line (𝑗, 𝑘), and 𝑓𝑗𝑘(𝑡) be the amount of power flow from node 𝑗 to node 𝑘 at time 𝑡.

We can describe the dynamics of the power grid using the swing equation at every

node and the power flow equation at every line as follows.
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𝑀𝑗𝜔𝑗(𝑡) = −𝐷𝑗𝜔𝑗(𝑡) + 𝑝𝑗(𝑡) + 𝑢𝑗(𝑡)−
∑︁

𝑘:(𝑗,𝑘)∈ℰ𝒫

𝑓𝑗𝑘(𝑡)

𝑗 ∈ 𝒩𝒫 (5.1a)

˙𝑓𝑗𝑘(𝑡) = 𝐵𝑗𝑘(𝜔𝑗(𝑡)− 𝜔𝑘(𝑡)) (𝑗, 𝑘) ∈ ℰ𝒫 (5.1b)

The objective of our control is to minimize the total cost of adjustable power at

steady-state while balancing power. Let 𝑝*𝑗 be the steady-state unadjustable power,

and 𝑢*
𝑗 be the steady-state adjustable power (control) at node 𝑗. Moreover, let 𝑓 *

𝑗𝑘 be

the steady-state power flow from node 𝑗 to node 𝑘. The optimal steady-state control

can be formulated as follows.

min
𝑢*,𝑓*

∑︁
𝑗∈𝒩𝒫

1

2
𝐶𝑗𝑢

*2
𝑗 (5.2a)

𝑠.𝑡. 𝑝*𝑗 + 𝑢*
𝑗 −

∑︁
𝑘:(𝑗,𝑘)∈ℰ𝒫

𝑓 *
𝑗𝑘 = 0 𝑗 ∈ 𝒩𝒫 (5.2b)

It was shown in [36] and [35] that the optimal solution to equation (5.2) has the

form of 𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 , where

∑︀
𝑗∈𝒩 𝑢*

𝑗 = −
∑︀

𝑗∈𝒩 𝑝*𝑗
1.

5.3 Distributed Control

Let the power grid be supported by a connected communication network 𝒢𝒞 = {𝒩𝒞, ℰ𝒞},

where 𝒩𝒞 denotes the set of communication nodes, and ℰ𝒞 denotes the set of com-

munication links. The optimal distributed frequency control can be described by the

following differential equation.

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝐶𝑖

∑︁
𝑗:(𝑖,𝑗)∈ℰ𝒞

(𝐶𝑖𝑢𝑖(𝑡)− 𝐶𝑗𝑢𝑗(𝑡)) 𝑖 ∈ 𝒩𝒫 (5.3)

1Note that satisfying condition 𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 can also be interpreted as fairness in sharing the

loads.
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Accordingly, the distributed control works as follows: node 𝑖 measures the local

frequency 𝜔𝑖, receives the information 𝐶𝑗𝑢𝑗(𝑡) from the neighbor nodes via the com-

munication network, and updates the local control value 𝑢𝑖(𝑡). It is shown in [36]

and [35] that if the communication network is connected, the control mechanism in

equation (5.3) converges to the optimal solution, which is globally asymptotically

stable.

5.3.1 Impact of Communication Link Failures

The control mechanism in equation (5.3) will achieve the optimal solution if the

communication network is connected. However, if the communication network is

disconnected, while power will be balanced, optimal cost may not be achieved; i.e. it

cannot guarantee that 𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 for all 𝑖, 𝑗 nodes. Next, we show via an example

that the impact on the cost could be significant.

Consider the power grid in Figure 5-1 (The data of the grid and the costs can

be found in Appendix 5.8.1). In this example, the communication network has the

same topology as the power grid. The total load in this grid is 25 p.u., and we

increase the load in node 3 by 5 p.u. (20% total increase). Simulation results show

that the optimal cost, by applying control mechanism 5.3 under a fully connected

communication network, is 23.27. If the communication link between nodes 2 and 7

fails, the cost increases to 35.69, while the cost under no communication is 39.11. This

example shows that the failue of only one communication link could have a significant

impact on the cost of distributed control.

5.3.2 Impact of Discrete-time Communication

In the design and analysis of the distributed control mechanism described in equation

(5.3), it is assumed that the communication messages are updated in continuous time.

However, in reality, the communication messages will be updated in discrete time. Let

𝑇 be the time interval between two communication messages. Then, the distributed

control can be described as follows.
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Figure 5-1: Power Grid Toy Example - Solid lines are power lines and dashed lines
are communication lines.

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝐶𝑖

∑︁
𝑗:(𝑖,𝑗)∈ℰ𝒞

(𝐶𝑖𝑢𝑖(𝑡)− 𝐶𝑗𝑢𝑗(𝐾𝑇 ))

𝑖 ∈ 𝒩𝒫 , 𝐾𝑇 ≤ 𝑡 ≤ (𝐾 + 1)𝑇 (5.4)

Define the convergence time 𝑡* to be the first time such that |(𝐶𝑜𝑠𝑡(𝑡*)−𝐶𝑜𝑠𝑡*)| <

0.01, where 𝐶𝑜𝑠𝑡(𝑡*) is the cost at time 𝑡* and 𝐶𝑜𝑠𝑡* is the optimal cost. By running

the control in equation (5.4) on the power grid in Figure 5-1 for different values of 𝑇 ,

it can be seen that the time of convergence increases as 𝑇 increases (See Figure 5-2).

5.4 Decentralized Control for Two-node System

In this section, we consider a two-node system connected by a power line and com-

munication link as in Figure 5-3(a). As described, when the communication link fails,

node 𝑖 does not receive information 𝐶𝑗𝑢𝑗(𝑡) and node 𝑗 does not receive information

𝐶𝑖𝑢𝑖(𝑡). Therefore, the optimal cost cannot be achieved. Next, we propose a con-

trol algorithm that uses the dynamics of the power grid instead of direct information

𝐶𝑖𝑢𝑖(𝑡) and 𝐶𝑗𝑢𝑗(𝑡), and still achieves the optimal solution.

Previously, the adjustable power at both nodes 𝑖 and 𝑗 was updated based on
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Figure 5-2: Convergence Time increases as 𝑇 increases.

the local frequency and the information received from the neighboring node. In our

control scheme, we update the adjustable power at every node based on the local

frequency and a local artificial variable, where this variable is updated based on the

power flow dynamics between the two nodes. Since the changes in the flow is a

function of the frequency at both nodes, it contains some indirect information about

the adjustable control as well as the cost of the neighbor node. We prove that this

information is enough to guarantee the optimality of the our control scheme.

Let 𝑞𝑖 and 𝑞𝑗 be the two artificial variables at nodes 𝑖 and 𝑗, respectively. Our

decentralized control for the two-node system can be described as follows.

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝑞𝑖(𝑡) (5.5a)

𝐶𝑗𝑢𝑗(𝑡) = −𝜔𝑗 − 𝑞𝑗(𝑡) (5.5b)

𝑞𝑖(𝑡) = − 𝑓𝑖𝑗
𝐵𝑖𝑗

− 2𝑞𝑖(𝑡) (5.5c)

𝑞𝑗(𝑡) =
𝑓𝑖𝑗
𝐵𝑖𝑗

− 2𝑞𝑗(𝑡) (5.5d)

As described, control at node 𝑖 is updated only based on the local frequency 𝜔𝑖
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and the value of artificial variable 𝑞𝑖. Moreover, value of 𝑞𝑖 is updated based on

the derivative of flow 𝑓𝑖𝑗 which can be observed locally. Similarly, control at node 𝑗

depends on the local frequency 𝜔𝑗 and the derivative of flow 𝑓𝑗𝑖 which can be observed

locally. Thus, there is no need to a communication network between nodes 𝑖 and 𝑗.

Next, we claim that the new control achieves the optimal solution (See Figure 5-3).

(a) Two-Node System with Communication (b) Two-Node System without Communication

Figure 5-3: Let 𝑡0 be the time failure: node 𝑖 knows 𝑐𝑗𝑢𝑗(𝑡0) and node 𝑗 knows 𝑐𝑖𝑢𝑖(𝑡0);
Nodes 𝑖 and 𝑗 can initialize 𝑞𝑖(𝑡0) and 𝑞𝑗(𝑡0) properly to guarantee optimality

Using the new control as in equations (5.5), the dynamics of the system can be

written as follows.

𝑀𝑖�̇�𝑖(𝑡) = −𝐷𝑖𝜔𝑖(𝑡) + 𝑝𝑖(𝑡) + 𝑢𝑖(𝑡)− 𝑓𝑖𝑗(𝑡) (5.6a)

𝑀𝑗𝜔𝑗(𝑡) = −𝐷𝑗𝜔𝑗(𝑡) + 𝑝𝑗(𝑡) + 𝑢𝑗(𝑡) + 𝑓𝑖𝑗(𝑡) (5.6b)

𝑓𝑖𝑗(𝑡) = 𝐵𝑖𝑗(𝜔𝑖(𝑡)− 𝜔𝑗(𝑡)) (5.6c)

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝑞𝑖(𝑡) (5.6d)

𝐶𝑗𝑢𝑗(𝑡) = −𝜔𝑗(𝑡)− 𝑞𝑗(𝑡) (5.6e)

𝑞𝑖(𝑡) = −(𝜔𝑖(𝑡)− 𝜔𝑗(𝑡))− 2𝑞𝑖(𝑡) (5.6f)

𝑞𝑗(𝑡) = −(𝜔𝑗(𝑡)− 𝜔𝑖(𝑡))− 2𝑞𝑗(𝑡) (5.6g)

In the following, we will prove the optimality and stability of the dynamical system

described in equation (5.6).
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5.4.1 Optimality

Theorem 8. Let 𝑞𝑖(𝑡0) = −𝑞𝑗(𝑡0) = 𝐶𝑖𝑢𝑖(𝑡0)−𝐶𝑗𝑢𝑗(𝑡0). Then, the equilibrium point

of the system described in equation (5.6) achieves the optimal cost.

Proof. In order to prove the optimality, we need to show that equation (5.6) guaran-

tees 𝜔*
𝑖 = 𝜔*

𝑗 = 0 and 𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 at the equilibrium point; i.e. power is balanced,

and cost is minimized.

At the equilibrium, all of the derivatives in equation (5.6) are equal to zero.

Therefore, we will have the following equations.

𝜔*
𝑖 − 𝜔*

𝑗 = 0 (5.7a)

𝜔*
𝑖 − 𝑞*𝑖 = 0 (5.7b)

𝜔*
𝑗 − 𝑞*𝑗 = 0 (5.7c)

− (𝜔*
𝑖 − 𝜔*

𝑗 )− 2𝑞*𝑖 = 0 (5.7d)

− (𝜔*
𝑗 − 𝜔*

𝑖 )− 2𝑞*𝑗 = 0 (5.7e)

Solving equations (5.7) results in 𝜔*
𝑖 = 𝜔*

𝑗 = 0, which guarantees that power is

balances at the equilibrium point. In addition, we will have 𝑞*𝑖 = 𝑞*𝑗 = 0.

Equations (5.6f) and (5.6g) show that 𝑞𝑖(𝑡) = −𝑞𝑗(𝑡) for all time 𝑡 ≥ 𝑡0. Since we

have initialized 𝑞𝑖(𝑡0) = −𝑞𝑗(𝑡0), it is easy to see that 𝑞𝑖(𝑡) = −𝑞𝑗(𝑡) for 𝑡 ≥ 𝑡0.

Next, we subtract equation (5.6e) from equation (5.6d). Thus, we will have 𝐶𝑖�̇�𝑖−

𝐶𝑗𝑢𝑗 = −(𝜔𝑖 − 𝜔𝑗) − 2𝑞𝑖 which is equal to the equation (5.6f). Therefore, 𝑞𝑖 =

𝐶𝑖�̇�𝑖 − 𝐶𝑗𝑢𝑗.

By taking integral over both sides from 𝑡 = 𝑡0 to infinity, we will have (𝐶𝑖𝑢
*
𝑖 −

𝐶𝑖𝑢𝑖(𝑡0))−(𝐶𝑗𝑢
*
𝑗−𝐶𝑗𝑢𝑗(𝑡0)) = 𝑞*𝑖 −𝑞𝑖(𝑡0), and assumption 𝑞𝑖(𝑡0) = 𝐶𝑖𝑢𝑖(𝑡0)−𝐶𝑗𝑢𝑗(𝑡0)

results in 𝑐𝑖𝑢
*
𝑖−𝐶𝑗𝑢

*
𝑗 = 𝑞*𝑖 . Since 𝑞*𝑖 = 0, 𝐶𝑖𝑢

*
𝑖 = 𝐶𝑗𝑢

*
𝑗 which guarantees the optimality

of the equilibrium point.
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5.4.2 Stability

Next, we prove that the equilibrium point of the dynamical system described in

equation (5.6) is globally asymptotically stable. Since our dynamical system is linear,

it is enough to show that the roots of the characteristic polynomial of the system are

all located in the negative side of the plane.

Let 𝐷,𝑀,𝐶 ∈ 𝑅2×2 be diagonal matrices denoting the droop coefficient, inertia

and cost at nodes 𝑖 and 𝑗, respectively. Let 𝐵 be the susceptance of the power line

between nodes 𝑖 and 𝑗. Moreover, let 𝐴𝑝 ∈ 𝑅2×1 be the node-edge incidence matrix,

𝐿𝐵
𝑝 = 𝐴𝑝𝐵𝐴𝑇

𝑝 be the weighted laplacian matrix of the power grid, and 𝐿𝑐 ∈ 𝑅2×2

be the laplacian matrix of the communication network. Finally, let 𝑠(𝜆) be the

characteristic polynomial of the system.

Let the state vector of the two-node system be [𝜔𝑖, 𝜔𝑗, 𝑓𝑖𝑗, 𝑢𝑖, 𝑢𝑗, 𝑞𝑖, 𝑞𝑗]. We can

rewrite the state matrix of our dynamical system as follows.

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑀−1𝐷 −𝑀−1𝐴𝑝 𝑀−1𝐼2×2 02×2

𝐵𝐴𝑇
𝑝 01×1 01×2 01×2

−𝐶−1 02×1 02×2 −𝐶−1

−𝐿𝑐 02×1 02×2 −2𝐼2×2

⎤⎥⎥⎥⎥⎥⎥⎦
Let 𝑠(𝜆) = 𝑑𝑒𝑡(𝐴− 𝜆𝐼) be the characteristic polynomial of matrix 𝐴.

𝑠(𝜆) = 𝑑𝑒𝑡

⎡⎢⎢⎢⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼2×2 −𝑀−1𝐴𝑝 𝑀−1𝐼2×2 02×2

𝐵𝐴𝑇
𝑝 −𝜆 01×2 01×2

−𝐶−1 02×1 −𝜆𝐼2×2 −𝐶−1

−𝐿𝑐 02×1 02×2 −(2 + 𝜆)𝐼2×2

⎤⎥⎥⎥⎥⎥⎥⎦
By schur complement formula,

𝑠(𝜆) = (2 + 𝜆)2𝑑𝑒𝑡

⎡⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼2×2 −𝑀−1𝐴𝑝 𝑀−1

𝐵𝐴𝑇
𝑝 −𝜆 01×2

𝐶−1[ 𝐿𝑐

2+𝜆
− 𝐼2×2] 02×1 −𝜆𝐼2×2

⎤⎥⎥⎥⎦
Next, we take (2+𝜆)2 into the matrix by multiplying the last row with (2+𝜆)𝐼2×2.
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Thus, 𝑠(𝜆) = 𝑑𝑒𝑡

⎡⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼2×2 −𝑀−1𝐴𝑝 𝑀−1

𝐵𝐴𝑇
𝑝 −𝜆 01×2

𝐶−1[𝐿𝑐 − (𝜆+ 2)𝐼] 02×1 −𝜆(𝜆+ 2)𝐼2×2

⎤⎥⎥⎥⎦
Next, we take out [𝐿𝑐 − (𝜆+ 2)𝐼] from the big matrix as follows.

𝑠(𝜆) = 𝑑𝑒𝑡(−[𝐿𝑐−(𝜆+2)𝐼])𝑑𝑒𝑡

⎡⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼2×2 −𝑀−1𝐴𝑝 𝑀−1

𝐵𝐴𝑇
𝑝 −𝜆 01×2

−𝐶−1 02×1 𝜆(𝜆+ 2)[𝐿𝑐 − (𝜆+ 2)𝐼]−1

⎤⎥⎥⎥⎦
By simplifying the matrices, we will get the following.

𝑠(𝜆) = 𝜆(𝜆+ 2)𝑑𝑒𝑡

⎡⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼 −𝑀−1𝐴𝑝 𝑀−1

𝐵𝐴𝑇
𝑝 −𝜆 01×2

−𝐶−1 02×1 −𝐿𝑐 − 𝜆𝐼

⎤⎥⎥⎥⎦
By schur complement formula,

𝑠(𝜆) = 𝜆(𝜆+ 2)𝑑𝑒𝑡(𝐿𝑐 + 𝜆)𝑑𝑒𝑡

⎡⎣−𝑀−1𝐷 − 𝜆𝐼 −𝑀−1(𝐿𝑐 + 𝜆𝐼)−1𝐶−1 −𝑀−1𝐴𝑝

𝐵𝐴𝑇
𝑝 −𝜆

⎤⎦
We apply the schur complement formula, one more time.

𝑠(𝜆) = 𝜆2(𝜆+2)𝑑𝑒𝑡(𝐿𝑐+𝜆)𝑑𝑒𝑡
[︁
−𝑀−1𝐷 − 𝜆𝐼 −𝑀−1(𝐿𝑐 + 𝜆𝐼)−1𝐶−1 − 1

𝜆
𝑀−1𝐴𝑝𝐵𝐴𝑇

𝑝

]︁
𝑠(𝜆) = (𝜆+ 2)𝑑𝑒𝑡(𝑀−1)𝑑𝑒𝑡(𝐿𝑐 + 𝜆)𝑑𝑒𝑡

[︁
𝜆𝐷 + 𝜆2𝑀 + 𝜆(𝐿𝑐 + 𝜆𝐼)−1𝐶−1 + 𝐿𝐵

𝑝

]︁
𝑠(𝜆) = (𝜆+ 2)𝑑𝑒𝑡(𝑀−1)𝑑𝑒𝑡

[︁
𝜆(𝐿𝑐 + 𝜆)𝐷 + 𝜆2(𝐿𝑐 + 𝜆)𝑀 + 𝜆𝐶−1 + (𝐿𝑐 + 𝜆)𝐿𝐵

𝑝

]︁
𝑠(𝜆) = (𝜆+ 2)𝑑𝑒𝑡(𝑀−1)𝑑𝑒𝑡(𝐻(𝜆)), where

𝐻(𝜆) =
[︁
(𝜆2𝐷 + 𝜆3𝑀 + 𝜆𝐶−1) + (𝜆𝐿𝑐𝐷 + 𝜆2𝐿𝑐𝑀 + (2 + 𝜆)𝐿𝐵

𝑝 )
]︁

Since the system is linear, it is enough to show that the real parts of all roots of

characteristic polynomial 𝑠(𝜆) are negative.

Theorem 9. The conditions in equation (5.8) are sufficient to guarantee that the

equilibrium point of the system described in equation 5.6 is globally asymptotically

stable.
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𝑀 ≻ 0 (5.8a)
1

2
(𝐿𝑐𝑀 +𝑀𝐿𝑐) +𝐷 ≻ 0 (5.8b)

1

2
(𝐿𝑐𝐷 +𝐷𝐿𝑐) + 𝐿𝐵

𝑃 + 𝐶−1 ≻ 0 (5.8c)

𝜆𝑚𝑖𝑛[(𝐿
𝐵
𝑝 +

1

2
(𝐿𝑐𝐷 +𝐷𝐿𝑐) + 𝐶−1)]×

𝜆𝑚𝑖𝑛[(
1

2
(𝐿𝑐𝑀 +𝑀𝐿𝑐) +𝐷)] > 4𝐵max{𝑀1,𝑀2} (5.8d)

Proof. Roots of 𝑠(𝜆) are 0, −2 and roots 𝑑𝑒𝑡(𝐻(𝜆)). Thus, it is enough to show

that under the conditions in equations 5.8, 𝑑𝑒𝑡(𝐻(𝜆)) does not have a root on the

right-hand side of the plane.

The necessary condition for 𝑑𝑒𝑡(𝐻(𝜆)) = 0 is that there exists eigenvector 𝑦 ̸= 0

such that 𝐻(𝜆)𝑦 = 0. Therefore, 𝑦*𝐻(𝜆)𝑦 = 0.

We show that under the conditions in equations 5.8, for any 𝑥 ̸= 0, roots of

𝑥*𝐻(𝜆)𝑥 = 0 will be in the left-hand side of the plane; thus, it is a sufficient condition

for the stability of our system.

Without loss of generality, we assume 𝑥*𝑥 = 1, and rewrite 𝑥*𝐻(𝜆)𝑥 as follows.

𝑥*𝐻(𝜆)𝑥 = 𝑎0+𝑎1𝜆+𝑎2𝜆
2+𝑎3𝜆

3 = 0, where 𝑎0 = 𝑥*(2𝐿𝐵
𝑝 )𝑥, 𝑎1 = 𝑥*(𝐿𝐵

𝑝 +𝐿𝑐𝐷+

𝐶−1)𝑥, 𝑎2 = 𝑥*(𝐿𝑐𝑀 +𝐷)𝑥 and 𝑎3 = 𝑥*(𝑀)𝑥.

Under the conditions in equations 5.8, coefficients 𝑎1, 𝑎2, 𝑎3 are all positive.

- 𝑎1 = 𝑥*(𝐿𝐵
𝑝 + 𝐿𝑐𝐷 + 𝐶−1)𝑥 = 𝑥*(𝐿𝐵

𝑝 + 1
2
(𝐿𝑐𝐷 +𝐷𝐿𝑐) + 𝐶−1)𝑥; 𝐿𝐵

𝑝 is positive

semidefinite, and 𝐶−1 is positive definite. 1
2
(𝐿𝑐𝐷+𝐷𝐿𝑐) is also positive definite

by conditions in 5.8.

- 𝑎2 = 𝑥*(𝐿𝑐𝑀+𝐷)𝑥 = 𝑥*(1
2
(𝐿𝑐𝑀+𝑀𝐿𝑐)+𝐷)𝑥; 𝐷 is a positive definite matrix;

1
2
(𝐿𝑐𝑀 +𝑀𝐿𝑐) is also positive definite by conditions in 5.8.

- 𝑎3 = 𝑥*(𝑀)𝑥 > 0, since 𝑀 is a positive definite matrix.
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However, since 𝐿𝐵
𝑝 , the laplacian matrix of the power grid, is a positive semidefinite

matrix, the coefficient 𝑎0 will be nonnegative; i.e. 𝑎0 = 𝑥*(2𝐿𝐵
𝑝 )𝑥 ≥ 0. We consider

both cases where 𝑎0 = 0 and 𝑎0 > 0, and show that in each case, the roots of 𝑑𝑒𝑡(𝐻(𝜆))

will be in the left-hand side of the plane.

Case I: Let 𝑎0 = 0; Thus, 𝑥*𝐻(𝜆)𝑥 = 𝑎1𝜆+𝑎2𝜆
2+𝑎3𝜆

3 = 𝜆(𝑎1+𝑎2𝜆+𝑎3𝜆
2) = 0.

One root of the above equation is 𝜆 = 0, and since 𝑎1, 𝑎2, 𝑎3 > 0, the other two roots

will be in the left-hand side of the plane by the Routh-Hurwitz stability criteria.

Case II: Let 𝑎0 > 0. By Routh-Hurwitz stability criteria, roots of 𝑥*𝐻(𝜆)𝑥 will

have negative real values, if 𝑎𝑖 > 0 for 𝑖 = 0, 1, 2, 3, and 𝑎0𝑎3 < 𝑎1𝑎2.

𝑎1𝑎2 = [𝑥*(𝐿𝐵
𝑝 + 𝐿𝑐𝐷 + 𝐶−1)𝑥][𝑥*(𝐿𝑐𝑀 + 𝐷)𝑥] > [𝑥*(2𝐿𝐵

𝑝 )𝑥][𝑥
*(𝑀)𝑥] = 𝑎0𝑎3 if

and only if

[𝜆𝑚𝑖𝑛(𝐿
𝐵
𝑝 + 𝐿𝑐𝐷 + 𝐶−1)][𝜆𝑚𝑖𝑛(𝐿𝑐𝑀 +𝐷)] > 𝜆𝑚𝑎𝑥(2𝐿

𝐵
𝑝 )𝜆𝑚𝑎𝑥(𝑀)

Next, we argue that sufficient conditions in equations (5.8a)-(5.8d) often hold in

practice. Condition (5.8a) holds as inertia is a positive value. Condition (5.8b) holds

as the inertia of nodes in a distribution network is very small; and the matrix becomes

strictly diagonally dominant. Conditions (5.8c) and (5.8d) hold if the cost values are

scaled down; i.e. increase 𝐶−1. Note that the only requirement for optimality of the

control is that the ratio of power distribution be proportional to the inverse ratio of

costs. Thus, scaling all the cost values will not affect the solution.

5.5 Control under Communication Link Failures

In this section, we extend the idea in Section 5.4 to multi-node systems. In particular,

we introduce a new control mechanism that uses the dynamics of the power flow

between adjacent nodes to replicate the direct information transmitted between them

via a communication link. We show that our new control mechanism achieves the

optimal solution under single communication link failure, and improves the cost under

multiple communication link failures.
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5.5.1 Single Communication Link Failure

Consider the power grid and communication network in Figure 5-4. Suppose the

communication link between nodes 𝑖 and 𝑗 fails. We claim that if nodes 𝑖 and 𝑗

update their local control decision only based on the power flow between nodes 𝑖 and

𝑗, and the rest of the nodes keep their previous control rule, the dynamical system

will converge to the optimal solution. The new control mechanism can be described

as follows.

𝐶𝑘𝑢𝑘(𝑡) = −𝜔𝑘(𝑡)− 𝐶𝑘

∑︁
𝑙:(𝑘,𝑙)∈ℰ𝒞

(𝐶𝑘𝑢𝑘(𝑡)− 𝐶𝑙𝑢𝑙(𝑡))

𝑘 ∈ 𝒩∖{𝑖, 𝑗} (5.9a)

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝑞𝑖(𝑡) (5.9b)

𝐶𝑗𝑢𝑗(𝑡) = −𝜔𝑗(𝑡)− 𝑞𝑗(𝑡) (5.9c)

𝑞𝑖(𝑡) = −(𝜔𝑖(𝑡)− 𝜔𝑗(𝑡))− 2𝑞𝑖(𝑡) (5.9d)

𝑞𝑗(𝑡) = −(𝜔𝑗(𝑡)− 𝜔𝑖(𝑡))− 2𝑞𝑗(𝑡) (5.9e)

Figure 5-4: Power Grid and Communication Network - Solid lines are power lines and
dashed lines are communication lines.
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According to equation (5.9), all the nodes that are connected to node 𝑖 via the

communication network, receive the information 𝑐𝑖𝑢𝑖(𝑡) from node 𝑖; however, node

𝑖 does not update its control based on the information received from other nodes

via communication network. Similarly, all the nodes connected to node 𝑗 via the

communication network, update their control based on the information 𝐶𝑗𝑢𝑗 they

receive from node 𝑗; however, node 𝑗 does not use the information it receives from

other nodes via the communication network. Instead, nodes 𝑖 and 𝑗 update their

control only based on their local frequency and the power flow between nodes 𝑖 and

𝑗. This control rule can be interpreted as a master/slave algorithm, where nodes 𝑖

and 𝑗 are the master nodes that guarantee 𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 , and the rest of nodes are

the slave nodes that follow the changes in nodes 𝑖 and 𝑗.

Theorem 10. Suppose the communication link between nodes 𝑖 and 𝑗 fails at time

𝑡0, but they are connected via a power line. By updating the control mechanism

according to equation (5.9), and initializing 𝑞𝑖(𝑡0) = −𝑞𝑗(𝑡0) = 𝐶𝑖𝑢𝑖(𝑡0) − 𝐶𝑗𝑢𝑗(𝑡0),

the optimal solution will be achieved.

Proof. Equation (5.9a) guarantees that 𝐶𝑘𝑢
*
𝑘 = 𝐶𝑙𝑢

*
𝑙 for all 𝑘 ∈ 𝒩∖{𝑖, 𝑗}. In par-

ticular, for any node 𝑘 connected to node 𝑖, 𝐶𝑘𝑢
*
𝑘 = 𝐶𝑖𝑢

*
𝑖 , and for any node 𝑘 con-

nected to node 𝑗, 𝐶𝑘𝑢
*
𝑘 = 𝐶𝑗𝑢

*
𝑗 . On the hand, equations (5.9b)-(5.9e) guarantee that

𝐶𝑖𝑢
*
𝑖 = 𝐶𝑗𝑢

*
𝑗 (See Theorem 8 for optimality of a two-node system). Therefore, the

equilibrium point is optimal.

Corollary 5. Suppose the power grid has a connected topology, and the original

communication network contains a subtree of the power grid. Then, the control

mechanism described in equation (5.9) achieves the optimal solution, under any single

communication link failure.

Proof. Let an arbitrary communication link (𝑖, 𝑗) fail. If there does not exist a power

line between nodes 𝑖 and 𝑗, the communication topology is guaranteed to remain

connected as it still contains a subtree of the power grid. Thus, the control mechanism

will not be updated, and the optimal solution will be achieved. If there exists a power
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line between nodes 𝑖 and 𝑗, the control mechanism will be updated as in equation

(5.9), which guarantees to achieve the optimal solution.

Similar to the two-node system, one can find sufficient conditions under which the

updated control mechanism in equation (5.9) is globally asymptotically stable for a

multi-node system. For more details See Appendix 5.8.2.

Consider Figure 5-1, and suppose that the communication link between nodes 2

and 7 fail. Under the original control mechanism, the cost increases from 23.27 to

35.69. However, the new control mechanism will achieve the optimal solution.

We compare the frequency response of the original control under full communi-

cation and the new control under single communication link failure. For simplicity,

we only show the angular velocities at nodes 2 and 7 in Figures 5-5(a) and 5-5(b);

however, the same results hold for all the other nodes. We observed that for all nodes,

the frequency response of the two control mechanisms are very similar, indicating that

the new control mechanism will not create any abrupt changes in the frequency of

the system.

(a) Frequency Response of Original Control un-
der Full Communication

(b) Frequency Response of New Control under
Single Link Communication Failure

Figure 5-5: Comparing the frequency responses

5.5.2 Multiple Communication Link Failures

In this section, we consider the case that multiple communication links fail (See

Figure 5-6 as an example.) We generalize the control mechanism described for the
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single communication link failures as follows.

Figure 5-6: Power Grid and Communication Network - Solid lines are power lines and
dashed lines are communication lines.

Consider pairs of nodes that have lost their communication links, but they are con-

nected via power lines. Let 𝐹 be the set of such nodes. Moreover, let 𝑞𝑖 be the artificial

variable for every node 𝑖 ∈ 𝐹 , and initialize it as 𝑞𝑖(𝑡0) =
∑︀

𝑗∈𝐹 :(𝑖,𝑗)∈𝐸𝑃
(𝐶𝑖𝑢𝑖(𝑡0) −

𝐶𝑗𝑢𝑗(𝑡0)).

The update control rule can be written as follows.

𝐶𝑟𝑢𝑟(𝑡) = −𝜔𝑟(𝑡)− 𝐶𝑟

∑︁
𝑙:(𝑟,𝑙)∈ℰ𝒞

(𝐶𝑟𝑢𝑟(𝑡)− 𝐶𝑙𝑢𝑙(𝑡)) 𝑟 ∈ 𝒩∖𝐹 (5.10a)

𝐶𝑖�̇�𝑖(𝑡) = −𝜔𝑖(𝑡)− 𝑞𝑖(𝑡) 𝑖 ∈ 𝐹 (5.10b)

𝑞𝑖(𝑡) = −
∑︁

𝑗∈𝐹 :(𝑖,𝑗)∈𝐸𝑃

(𝜔𝑖(𝑡)− 𝜔𝑗(𝑡))− 2𝑞𝑖(𝑡) (5.10c)

It can be seen from equation (5.10) that every pair of node 𝑖 and 𝑗 that have

lost their communication link, but are connected via a power line will switch to the

new control rule, where the control rule at the rest of nodes remains the same. This

control rule does not guarantee to achieve the optimal solution; however, we show
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that in practice it improves the cost.

Consider the power grid in Figure 5-1, and assume that the communication links

between nodes 1 and 2 and nodes 2 and 5 have failed. Under the original control,

the cost increases from 23.27 to 36.87 which is 58% increase in the optimal cost.

However, our control described in equation (5.10) achieves a cost of 25.45, which is

only 9% increase in the optimal cost (49% improvement). In addition, we observed

that the new control policy will not lead to any unacceptable changes in the frequency

response.

5.6 Control with Discrete-Time Communication

In this Section, we study the impact of discrete-time communication on the perfor-

mance of distributed frequency control. As discussed in Section 5.3.2, when the time

interval between communication messages increases, the convergence time increases.

In this Section, we propose an algorithm that sequentially updates the control of

pairs of nodes using the dynamics of the power flow between them. Using simulation

results, we show that the new algorithm converges much faster than the original one.

Let 𝑇 be the time interval between communication messages. Let ℰ𝒮 = {𝑒1, · · · , 𝑒𝑚} =

ℰ𝒫 ∩ ℰ𝒞 be the set of pairs of nodes that share the power lines and communication

links. The algorithm is as follows.

Let communication messages update at time instants 𝐾𝑇 , where 𝐾 ≥ 0. At

each time interval 𝐾𝑇 ≤ 𝑡 < (𝐾 + 1)𝑇 , the algorithm selects a link 𝑒𝑟 ∈ 𝐸𝑆, and

updates the control according to equations (5.9), where 𝑖 and 𝑗 are the end-nodes

of the selected link 𝑒𝑟. The only difference is in equation (5.9a), where the control

should be updated based on the most recent communication message received at time

𝐾𝑇 ; i.e. 𝐶𝑘𝑢𝑘(𝑡) = −𝜔𝑘(𝑡) − 𝐶𝑘

∑︀
𝑙:(𝑘,𝑙)∈ℰ𝒞(𝐶𝑘𝑢𝑘(𝑡) − 𝐶𝑙𝑢𝑙(𝐾𝑇 )) ∀𝑘 ̸= 𝑖, 𝑗. At the

beginning of next time interval, new communication messages will be received, and

the algorithm selects the next link in 𝐸𝑆. The algorithm keeps iterating on the links

in sequence until convergence is achieved.

Figure 5-7 shows the sequence of link selection and control updates at nodes.
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This algorithm improves the convergence rate because during each interval, it uses

the additional information from the dynamics of the power grid to update the control

at each node.

Figure 5-7: Power Grid and Communication Network - Solid lines are power lines and
dashed lines are communication lines. The shared edges between the power grid and
communication network are (2, 3), (3, 4), (3, 5), (5, 6), and the algorithm sequentially
selects one of these edges, and uses its power flow to control the power changes at
nodes.

We applied the original control scheme as well as the new control scheme to the

power grid in Figure 5-1. For simplicity, we only show the results for two nodes 1

and 5; however, the results are the same for the rest of nodes. Figures 5-8(a) and

5-8(b) show that increasing the value of 𝑇 increases the convergence time under the

original control. Figures 5-8(c) and 5-8(d) indicate that by applying the new control

mechanism, the convergence time for 𝑇 = 1𝑠 is similar to the convergence time of the

original control for 𝑇 = 1𝑚𝑠. In addition, it can be seen that although the general

behavior of the power under both control mechanisms are similar, there are some

fluctuations in the value of power under the new control algorithm. However, by

comparing the frequency response of the control mechanisms in Figures 5-8(e) and

5-8(f), it can be seen that the fluctuations in the frequency response of nodes under

the new algorithm are negligible.
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(a) T=1ms; Original Control (b) T=1s; Original Control

(c) T=1ms; Original Control (d) T=1s; New Control Algorithm

(e) Frequency Response of Original Control for
T=1ms

(f) Frequency Response of New Control for T=1s

Figure 5-8: Comparing the power and frequency response for large T under new
control with small T under the original control
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5.7 Conclusion

In this chapter, we analyzed the impact of communication failures as well as discrete-

time communication messages on the performance of optimal distributed frequency

control. We considered the consensus-based algorithm proposed in [36] and [35], and

showed that although the control mechanism can balance the power, it will not achieve

the optimal solution under communication failures.

Next, we proposed a novel control mechanism that uses the dynamics of the power

flow between two nodes instead of the information received directly from the com-

munication link between them. We proved that our algorithm achieves the optimal

solution under any single communication link failure. We also used simulation results

to show that the new control improves the cost under multiple communication link

failures.

Finally, we showed that the convergence time of the distributed control increases as

the time between two communication messages increases. We proposed a sequential

control scheme which uses the dynamics of the power grid, and using simulation

results, we showed that it improves the convergence time significantly.

5.8 Chapter Appendix

5.8.1 Data of the power grid in Figure 5-1

Inertia, initial power, droop control and cost of adjustable control at nodes 1 to 10

are as follows.

𝑀 = [0.01, 0.02, 0.01, 0.1, 0.05, 0.8, 0.05, 1, 0.1, 0.01]

𝑃0 = [1, 5,−2, 6,−5,−10,−4, 8, 5,−4]

𝐷 = |𝑃0|
3

∼ [0.33, 1.67, 0.67, 2, 1.67, 3.33, 1.33, 2.67, 1.67, 1.33]

𝐶𝑜𝑠𝑡 = [10, 10, 100, 100, 5, 10, 7, 9, 5, 10]

Reactance of lines 1 to 10 are as follows.

𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑐𝑒 = [1, 2, 3, 1, 5, 4, 6, 1, 9, 1]
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5.8.2 Stability of Multi-Node System

Simplifying 𝑠(𝜆) for Multi-Node System

Let 𝐷,𝑀,𝐶 ∈ 𝑅𝑁𝑃×𝑁𝑃 be the diagonal matrices of droop, inertia and cost values of

the all nodes in the power grid. Moreover, let 𝐼 ∈ 𝑅𝑁𝑃×𝑁𝑃 be the identity matrix.

Suppose that we label the nodes such that nodes 𝑁𝑃 and 𝑁𝑃 − 1 be the nodes

that have lost their communication link. Let 𝐴𝑝 be the adjacency matrix of the power

grid. Moreover, let 𝐿𝑐 be the laplacian matrix of the communication network. Finally,

define 𝐿*
𝑐 =

⎡⎣ 𝐿𝑐1

02×𝑁−2|𝐿𝑐2𝐶
−1
2

⎤⎦, where

𝐿𝑐1 = 𝐿𝑐[1 : 𝑁𝑃 − 2, 1 : 𝑁𝑃 − 2] and 𝐿𝑐2 =

⎡⎣ 1 −1

−1 1

⎤⎦ be the laplacian matrix of a

two-node system.

Then, the characteristic polynomial of our multi-node system is as follows.

𝑠(𝜆) = 𝜆(𝜆+ 2)

𝑑𝑒𝑡

⎡⎢⎢⎢⎣
−𝑀−1𝐷 − 𝜆𝐼𝑁×𝑁 −𝑀−1𝐴𝑝 𝑀−1𝐼𝑁×𝑁

𝐵𝐴𝑇
𝑝 −𝜆𝐼𝐸×𝐸 0𝐸×𝑁

−𝐶−1 0𝑁×𝐸 −𝐿*
𝑐𝐶 − 𝜆𝐼𝑁×𝑁

⎤⎥⎥⎥⎦
Using the same techniques as in Section 5.4, the characteristic polynomial can be

simplified as follows.

𝑠(𝜆) = 𝜆1+𝐸(𝜆+ 2)𝑑𝑒𝑡(𝐿*
𝑐𝐶 + 𝜆)

𝑑𝑒𝑡
[︁
−𝑀−1𝐷 − 𝜆𝐼 −𝑀−1(𝐿*

𝑐𝐶 + 𝜆𝐼)−1𝐶−1 − 1
𝜆
𝑀−1𝐴𝑝𝐵𝐴𝑇

𝑝

]︁
Let 𝐿𝐵

𝑝 be the weighted laplacian matrix of the power grid, where 𝐿𝐵
𝑝 = 𝐴𝑝𝐵𝐴𝑇

𝑝 .

Therefore,

𝑠(𝜆) = (−1)𝑁𝜆1+𝐸−𝑁(𝜆+ 2)𝑑𝑒𝑡(𝑀−1)𝑑𝑒𝑡(𝐻(𝜆)),

where 𝐻(𝜆) = (𝜆2𝐷 + 𝜆3𝑀 + 𝜆𝐶−1)

+ (𝜆𝐿*
𝑐𝐶𝐷 + 𝜆2𝐿*

𝑐𝐶𝑀 + (𝐿*
𝑐𝐶 + 𝜆)𝐿𝐵

𝑝 )
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Proof of Stability

In this section, we claim that the following conditions are sufficient for the stability

of the multi-node system.

𝑀 ≻ 0 (5.11a)
1

2
(𝐿*

𝑐𝐶𝑀 +𝑀𝐶𝐿*𝑇
𝑐 ) +𝐷 ≻ 0 (5.11b)

𝐿𝐵
𝑝 +

1

2
(𝐿*

𝑐𝐶𝐷 +𝐷𝐶𝐿*𝑇
𝑐 ) + 𝐶−1 ≻ 0 (5.11c)

[𝜆𝑚𝑖𝑛(𝐿
𝐵
𝑝 + 𝐿*

𝑐𝐶𝐷 + 𝐶−1)][𝜆𝑚𝑖𝑛(𝐿
*
𝑐𝐶𝑀 +𝐷)]

> 𝜆𝑚𝑎𝑥(𝐿
*
𝑐𝐶𝐿𝐵

𝑝 )𝜆𝑚𝑎𝑥(𝑀) (5.11d)

Similar to the two-node system, in order to prove the stability of the multi-node

system, it is enough to show that the real-parts of all eigenvalues are negative. This

is due to the fact that we have a linear system. Thus, we need to prove that the all

the roots of 𝑠(𝜆) are in the negative-side of the plane.

Since the power grid is a connected network, it contains a subtree; thus, 𝐸 ≥ 𝑁−1.

Therefore, the roots of 𝑠(𝜆) are 0, −2 and roots 𝑑𝑒𝑡(𝐻(𝜆)). Thus, it is enough to

show that 𝑑𝑒𝑡(𝐻(𝜆)) does not have a root on the right-hand side of the plane.

Similar to the two-node system, the necessary condition for 𝑑𝑒𝑡(𝐻(𝜆)) = 0 is that

there exists eigenvector 𝑦 ̸= 0 such that 𝐻(𝜆)𝑦 = 0. Therefore, 𝑦*𝐻(𝜆)𝑦 = 0.

We show that under conditions 5.11, for any 𝑥 ̸= 0, roots of 𝑥*𝐻(𝜆)𝑥 = 0 will be

in the left-hand side of the plane; thus, these conditions are sufficient for the stability

of our system.

Without loss of generality, we assume 𝑥*𝑥 = 1, and rewrite 𝑥*𝐻(𝜆)𝑥 as follows.

𝑥*𝐻(𝜆)𝑥 = 𝑎0 + 𝑎1𝜆 + 𝑎2𝜆
2 + 𝑎3𝜆

3 = 0, where 𝑎0 = 𝑥*(𝐿*
𝑐𝐶𝐿𝐵

𝑝 )𝑥, 𝑎1 = 𝑥*(𝐿𝐵
𝑝 +

𝐿*
𝑐𝐶𝐷 + 𝐶−1)𝑥, 𝑎2 = 𝑥*(𝐿*

𝑐𝐶𝑀 +𝐷)𝑥 and 𝑎3 = 𝑥*(𝑀)𝑥.

Similar to the two-node system, we first show that under conditions 5.11, coeffi-

cients 𝑎1, 𝑎2, 𝑎3 are positive.

- 𝑎1 = 𝑥*(𝐿𝐵
𝑝 +𝐿*

𝑐𝐶𝐷+𝐶−1)𝑥 = 𝑥*(𝐿𝐵
𝑝 + 1

2
(𝐿*

𝑐𝐶𝐷+𝐷𝐶𝐿*𝑇
𝑐 )+𝐶−1)𝑥 > 0. This
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is guarantees under condition 5.11c.

- 𝑎2 = 𝑥*(𝐿*
𝑐𝐶𝑀 +𝐷)𝑥 = 𝑥*(1

2
(𝐿*

𝑐𝐶𝑀 +𝑀𝐶𝐿*𝑇
𝑐 )+𝐷)𝑥 > 0. This is guarantees

under condition 5.11b.

- 𝑎3 = 𝑥*(𝑀)𝑥 > 0, which is guaranteed under condition 5.11a.

However, since 𝐿𝐵
𝑝 , the laplacian matrix of the power grid, is a positive semidefinite

matrix, the coefficient 𝑎0 will be nonnegative; i.e. 𝑎0 = 𝑥*(𝐿*
𝑐𝐶𝐿𝐵

𝑝 )𝑥 ≥ 0. We consider

both cases where 𝑎0 = 0 and 𝑎0 > 0, and find the sufficient conditions for each case

under which the roots of 𝑑𝑒𝑡(𝐻(𝜆)) are in the left-hand side of the plane.

Case I: Let 𝑎0 = 0; Thus, 𝑥*𝐻(𝜆)𝑥 = 𝑎1𝜆+𝑎2𝜆
2+𝑎3𝜆

3 = 𝜆(𝑎1+𝑎2𝜆+𝑎3𝜆
2) = 0.

One root of the above equation is 𝜆 = 0, and since 𝑎1, 𝑎2, 𝑎3 > 0, the other two roots

will be in the left-hand side of the plane by the Routh-Hurwitz stability criteria.

Case II: Let 𝑎0 > 0. By Routh-Hurwitz stability criteria, roots of 𝑥*𝐻(𝜆)𝑥 will

have negative real values, if 𝑎𝑖 > 0 for 𝑖 = 0, 1, 2, 3, and 𝑎0𝑎3 < 𝑎1𝑎2.

𝑎1𝑎2 = [𝑥*(𝐿𝐵
𝑝 + 𝐿*

𝑐𝐶𝐷 + 𝐶−1)𝑥][𝑥*(𝐿*
𝑐𝐶𝑀 + 𝐷)𝑥] > [𝑥*(𝐿*

𝑐𝐶𝐿𝐵
𝑝 )𝑥][𝑥

*(𝑀)𝑥] =

𝑎0𝑎3 if and only if

[𝜆𝑚𝑖𝑛(𝐿
𝐵
𝑝 + 𝐿*

𝑐𝐶𝐷 + 𝐶−1)][𝜆𝑚𝑖𝑛(𝐿
*
𝑐𝐶𝑀 +𝐷)] > 𝜆𝑚𝑎𝑥(𝐿

*
𝑐𝐶𝐿𝐵

𝑝 )𝜆𝑚𝑎𝑥(𝑀)
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Chapter 6

Conclusion

In this thesis we modeled and analyzed the robustness of interdependent networks.

First, we proposed a new abstract model for analyzing interdependent networks

with known topologies. We considered two types of unidirectional and bidirectional

interdependency. We defined several metrics for finding the most critical nodes in

such interdependent networks, evaluated their complexity and proposed heuristics for

their evaluation. We introduced two closely related definitions for robust design of

interdependent networks; proposed algorithms for explicit design, and demonstrated

the relation between robust interdependent networks and expander graphs.

Next, we studied the interdependency between the power grid and the communica-

tion network used to control the grid. We considered the case where a communication

node depends on the power grid in order to receive power for operation, and a power

node depends on the communication network in order to receive control signals. We

demonstrated that these dependencies can lead to cascading failures, and it is essential

to consider the power flow equations for studying the behavior of such interdependent

networks. We proposed a two-phase control policy to mitigate the cascade of failures.

In the first phase, our control policy finds the unavoidable failures that occur due to

physical disconnection. In the second phase, our algorithm redistributes the power so

that all the connected communication nodes have enough power for operation and no

power lines overload. In particular, we showed that using the intelligent mitigation

policy, the interdependent power grid is more robust than the isolated one. We also
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performed a sensitivity analysis to evaluate the performance of our control policy, and

showed that our control policy achieves close to optimal yield for many scenarios.

Next, we studied the impact of communication loss on the power grid under emer-

gency control in more details. We designed a centralized emergency control scheme

under both full and partial communication support, to improve the performance of

the power grid. We used our emergency control scheme to model the impact of com-

munication loss on the grid. We showed that unlike previous models used in the

literature, the loss of communication does not necessarily lead to the failure of the

correspondent power nodes; i.e. the “point-wise" failure model is not appropriate. In

addition, we showed that the impact of communication loss is a function of several

parameters such as the size and structure of the power and communication failure,

as well as the operating mode of power nodes disconnected from the communication

network.

Finally, we analyzed the impact of communication failures on the performance

of optimal distributed frequency control. We considered a consensus-based control

scheme, and showed that it does not converge to the optimal solution when the com-

munication network is disconnected. We proposed a new control scheme that uses the

power dynamics to replicate the information not received from the communication

network, and proved that it achieves the optimal solution under any single commu-

nication link failure. In addition, we showed that this control improves cost under

multiple communication link failures. We also analyzed the impact of discrete-time

communication on the performance of distributed frequency control. In particular,

we showed that the convergence time increases as the time interval between two mes-

sages increases. We proposed a new algorithm that uses the dynamics of the power

grid, and showed through simulation that it improves the convergence time of the

control scheme significantly.
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