
Multilingual Techniques for Low Resource

Automatic Speech Recognition

by

Ekapol Chuangsuwanich

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Dr. James Glass

Senior Research Scientist
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Multilingual Techniques for Low Resource Automatic Speech

Recognition

by

Ekapol Chuangsuwanich

Submitted to the
Department of Electrical Engineering and Computer Science

on May 20, 2016, in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy

Abstract

Out of the approximately 7000 languages spoken around the world, there are only
about 100 languages with Automatic Speech Recognition (ASR) capability. This is
due to the fact that a vast amount of resources is required to build a speech recog-
nizer. This often includes thousands of hours of transcribed speech data, a phonetic
pronunciation dictionary or lexicon which spans all words in the language, and a text
collection on the order of several million words. Moreover, ASR technologies usually
require years of research in order to deal with the specific idiosyncrasies of each lan-
guage. This makes building a speech recognizer on a language with few resources a
daunting task.

In this thesis, we propose a universal ASR framework for transcription and key-
word spotting (KWS) tasks that work on a variety of languages. We investigate
methods to deal with the need of a pronunciation dictionary by using a Pronuncia-
tion Mixture Model that can learn from existing lexicons and acoustic data to generate
pronunciation for new words. In the case when no dictionary is available, a graphemic
lexicon provides comparable performance to the expert lexicon. To alleviate the need
for text corpora, we investigate the use of subwords and web data which helps im-
prove KWS spotting results. Finally, we reduce the need for speech recordings by
using bottleneck (BN) features trained on multilingual corpora. We first propose
the Low-rank Stacked Bottleneck architecture which improves ASR performance over
previous state-of-the-art systems. We then investigate a method to select data from
various languages that is most similar to the target language in a data-driven manner,
which helps improve the effectiveness of the BN features. Using techniques described
and proposed in this thesis, we are able to more than double the KWS performance
for a low-resource language compared to using standard techniques geared towards
rich resource domains.

Thesis Supervisor: Dr. James Glass
Title: Senior Research Scientist

Acknowledgments

It has been almost seven years since I started here at MIT, and almost thirteen years

in the US. Along the journey to complete my PhD degree, I have encountered so

many wonderful people who made the time here much more fulfilling.

First, I would like to thank my advisor Jim Glass. To me, Jim is both a friend

and a mentor. As an advisor, he gives meaningful advice and support for my work

here at MIT. He also gives me plenty of liberty to pursue any particular aspect of the

work I would like to work on. As a friend, we chat about non work-related things

while partying at his house, at the Muddy, or even during regular lunch. I also would

like to thank my committee, Regina Barzilay and Victor Zue, who provide guidance

for the thesis. Victor, with his linguistic and ASR expertise, and Regina, bringing in

another point of view from the NLP side, really help shape the direction of some of

the work in this thesis.

The work here at MIT has been enjoyable because of the people here, especially the

SLS group which includes (students, visitors, and staff; past and present) Ann, Carrie,

Chen, Daniel, Dave, Eann, Felix, Hassan, Hung-an, Hung-yi, Ian, Ibrahim, Jackie,

Jennifer, Jingjing, Kevin, Lee, Leo, Mandy, Marcia, Michael, Mitch, Mitra, Najim,

Patrick, Scott, Sean, Sree, Stephanie, Stephen, Timo, Tuka, Wei-Ning, William, Xue,

Yaodong, Yonatan, Yu, and Yushi. My interactions with them are very fruitful, and

their feedback really helps me and my research grow. My 32-G442 officemates (past

and present), in particular, are really helpful ranging from the most trivial matters to

research discussion on our always messy whiteboard (and now quoteboard). Hung-

an who was a senior student when I first joined, really helped me get started with

SUMMIT and other SLS tools. Yaodong helped start the SLSDBM toolkit which

I used extensively in this thesis. Yu worked with me on Babel for many years and

helped me in the many of the work that went into this thesis. Leo also helped with

SLSDBM and many Babel-related infrastructures. Stephen (yes, you were here for

a Summer and still pokes in everyday anyway), who joined MIT the same year and

will be graduating the same time as me, really makes life in MIT enjoyable. As one

of the few native speaker in SLS, he also helped proofread all of my papers. I also

would like to especially thank the SLS people whose work went directly into this

thesis, including Ian with his PMM, Hung-yi who helped with KWS, and Dave who

took over Ian’s PMM and exchanged many fruitful conversations. The support and

technical staff here are also very prompt and caring; Marcia who takes care of the

mundane yet important matters, Lee who maintained SUMMIT while he was here,

Najim who helped with the Babel project on feature normalization and shared various

discussions in life and research, and Scott who I got to work closely with during the

forklift project and various server related issues. My work here would be a lot tougher

without them.

Next, I would like to thank the Babelon Team, which consist of BBN, BUT, JHU,

LIMSI, and NWU. Our weekly calls encompass a lot of the work done in this thesis.

I would like to especially thank Stavros for leading the team and facilitate many of

the collaborations. With a project as large as Babel, I had to rely on many people

along the way; Damianos for his help on KWS. Rich for his insight and suggestions,

especially on the frame selection work. Le for the web data and scoring. Frantisek,

Igor, Karel, and Martin from BUT who provide many infrastructure in Kaldi, various

resources, and discussion about DNN training. Marelie and Charl for the syllabication

and phone mapping. Lori for providing VAD segmentations, and various discussions.

Karthik for the morph segmentations.

Over the years I am fortunate to be able to collaborate with many great people.

First, I’d like to thank Professor Richard Stern, my advisor at CMU, who made me

fall in love with the field which I still continue to work on to this day. My brief time

with Seth Teller, who leaded the forklift project, as my first real world application

project was enjoyable and eye-opening. I was able to work with people at NTT,

such as Hori-san and Watanabe-san which solidifies many of my understanding about

Bayesian models and ASR in general. I got a chance to work with Ian again during

an internship at Google, where I got to apply some of my multilingual framework in

real world applications. The people there, especially, Carolina, Guoguo, Rohit, and

Tara really provides a lot feedback and suggestion both for the work there and the

work here in MIT. Guoguo, in particular, really helped me with KWS-related issues.

I also would like to thank my friends, family, and the Thai community in the

Boston area, such as TSMIT and OSK New England, without their love and support.

I would not have made it this far.

Last but not least, all this would not have happened without the generous support

from my sponsors. The Thai government had been funding my education in the US

for around a decade. Without them, especially the support staff in OEADC and

OCSC, all this would not have been possible. Next, I would like to thank IARPA for

providing the research funding and data. The data really helps boost the community’s

interest in low resource ASR research.

This work was supported in part by the Intelligence Advanced Research Projects

Activity (IARPA) via Department of Defense US Army Research Laboratory contract

number W911NF-12-C-0013. The U.S. Government is authorized to reproduce and

distribute reprints for Governmental purposes notwithstanding any copyright anno-

tation thereon. Disclaimer: The views and conclusions contained herein are those

of the authors and should not be interpreted as necessarily representing the official

policies or endorsements, either expressed or implied, of IARPA, DoD/ARL, or the

U.S. Government.

7

8

Contents

Cover page 1

Abstract 3

Acknowledgments 5

Contents 9

List of Figures 15

List of Tables 19

1 Introduction 23

1.1 Effect of training data size on ASR performance 24

1.2 Low Resource Languages . 26

1.3 Automatic Speech Recognition for Low Resource Languages 27

1.4 Main Contributions . 28

1.5 Thesis Overview . 28

2 Background 31

2.1 Introduction . 31

2.2 Automatic Speech Recognition . 31

2.2.1 Discriminative Training . 33

2.2.2 Lattice and N-best . 33

2.2.3 Language Models . 34

9

2.2.4 Word Error Rate (WER) . 35

2.3 Acoustic Features and Feature Transforms 35

2.3.1 Perceptual Linear Prediction features 35

2.3.2 Cepstral Mean and Variance Normalization (CMVN) 37

2.3.3 Vocal Tract Length Normalization (VTLN) 37

2.3.4 Delta Features . 38

2.3.5 Dimensionality Reduction and Decorrelation Techniques 38

2.3.6 Maximum Likelihood Linear Transform (MLLT) and Feature-

Space Maximum Likelihood Linear Regression (fMLLR) 39

2.4 Keyword Spotting (KWS) . 39

2.4.1 Averaged Term Weighted Value (ATWV) 40

2.4.2 Score Normalization . 41

2.5 Deep Neural Networks (DNN) . 42

2.5.1 Neurons . 42

2.5.2 Softmax Layer . 44

2.5.3 Neural Network Training . 44

2.5.4 Cross Entropy Criterion . 45

2.5.5 Neural Network Initialization . 46

2.5.6 DNN Training in Practice . 46

2.5.7 DNN in Acoustic Modeling . 47

2.5.8 Hybrid vs. Tandem . 49

2.6 IARPA-Babel Corpus . 49

2.6.1 Corpus Structure . 50

2.6.2 Lexicon . 51

2.6.3 Evaluation Metric . 52

2.6.4 Evaluation Keywords . 52

2.6.5 Languages and Training Packs 52

3 Monolingual Systems 57

3.1 Introduction . 57

10

3.2 Multilingual Features . 57

3.2.1 Fundamental Frequency Features 58

3.2.2 F0 Experiments . 58

3.3 Lexicon . 59

3.3.1 Pronunciation Mixture Models (PMM) 60

3.3.2 PMM Experiments . 61

3.4 OOV Handling . 62

3.4.1 Subwords . 63

3.4.2 Phonetic Matching . 64

3.4.3 OOV Handling Experiments . 65

3.5 Web Data Usage . 66

3.6 Summary . 69

4 Basic Multilingual Systems 71

4.1 Introduction . 71

4.2 Model Sharing Using Shared Phonemes 71

4.3 Global Phoneset Experiments . 72

4.4 Analysis . 75

4.5 Summary . 75

5 Low-rank Stacked Bottleneck Architecture 77

5.1 Introduction . 77

5.2 Model Description . 78

5.2.1 Low-rank Matrix Factorization 78

5.2.2 Stacked Bottleneck (SBN) Features 78

5.2.3 Low-Rank Stacked Bottleneck (LrSBN) 79

5.3 LrSBN Experimental Description . 80

5.3.1 Baseline HMM Systems . 80

5.3.2 Baseline Hybrid DNN Systems 81

5.3.3 LrSBN systems . 81

5.4 Analysis of LrSBN Features . 82

11

5.4.1 Context-independent (CI) vs Context-Dependent (CD) Labels . 82

5.4.2 The Best Layer for Bottleneck Placement 83

5.4.3 Low-rank on the Softmax Layer 84

5.4.4 Results on Larger tasks and Different Languages 84

5.4.5 Speaker Adaptation on the First BN Output 86

5.5 Multilingual Training of SBNs . 86

5.6 Summary . 88

6 Multilingual Transfer Learning Using Language Identification 91

6.1 Introduction . 91

6.2 Language Pair Transfer Learning . 92

6.2.1 A Case Study on Assamese and Bengali 92

6.2.2 Other Language Pairs . 94

6.2.3 Language Identification for Source Language Selection 94

6.3 Transfer Learning Experiments . 97

6.3.1 Adaptation Strategies . 97

6.3.2 LID-based adaptation Results 100

6.3.3 No Data like Similar Data . 101

6.4 Frame Selection for SBN Training . 103

6.4.1 Frame Selection DNNs . 103

6.4.2 Frame Selection Experiments . 104

6.4.3 LID DNN Analysis . 105

6.4.4 Frame Selection DNN Analysis 107

6.4.5 Recognition System . 108

6.4.6 Keyword Spotting . 109

6.4.7 Frame Selection Experiments . 110

6.5 The Final Systems . 111

6.5.1 Results . 112

6.6 Summary . 114

12

7 Conclusion 115

7.1 Summary . 115

7.2 Future Work and Directions . 116

7.2.1 Handling Dialects and Accented Speech 116

7.2.2 ASR with Zero Transcription . 117

7.2.3 Mis-match Crowd-Sourcing for ASR 117

7.2.4 ASR for Languages without a Writing System 118

7.2.5 Multilingual Techniques for Language Modeling 118

7.3 Closing Statement . 118

Glossary of Acronyms 123

A Global phone mappings 125

B Babel data 131

Bibliography 133

13

14

List of Figures

1-1 WERs of various conversational telephone transcription tasks. Num-

bers compiled from the following sources [19, 43, 46, 50, 53, 78, 82, 84, 86] 25

2-1 PLP features extraction pipeline. The input waveforms are windowed

and passed through a STFT for time-frequency analysis. The criti-

cal band filters, equal loudness pre-emphesis, and intensity loudness

conversion are used to transform the spectrum in order to mimic the

human auditory system. LPC can then be used to approximate the

transformed spectrum. Finally, cepstral coefficients can be computed

for each input window. 36

2-2 Coefficient values of Mel-frequency filterbanks. The filters are wider in

the higher frequencies to imitate human perception. 37

2-3 An illustration of a neuron. First, a weighted combination of the input,

X, with a bias term, b, is computed. It is then passed through a non-

linearity function, F, yielding the output, O. A hidden layer is formed

by multiple neurons. A DNN is a series of hidden layers, where the

output of the previous layer is the input of the next layer. 43

2-4 Two approaches for using DNNs in ASR, the Tandem and hybrid ap-

proach. The top part of the figure shows the hybrid DNN-HMM ap-

proach where the observation probabilities are generated by the DNN.

The bottom shows the Tandem approach. A DNN with a bottleneck

layer is used to extract BN values which are combined with traditional

features to use as input to a traditional GMM-HMM. 48

15

2-5 Languages available in the Babel corpus marked by location of recording. 50

2-6 Example lexicon entries in the Babel corpus. 51

3-1 Examples of the pronunciation of new words learned by the PMM.

Baseline pronunciations are pronunciations from the FLP lexicon. . . . 62

3-2 Transcription OOV rate as a function of the amount of vocabulary

added from web data. The starting vocab is the VLLP condition. . . . 67

3-3 Keyword OOV rate as a function of the amount of vocabulary added

from web data. The starting vocab is the VLLP condition. 68

4-1 A simplified view of how a multilingual ASR can be trained and ap-

plied to a target language based on using a common global phoneset.

The numbers represent phones in the global phoneset, while the dif-

ferent characters represent the phonemes in different languages. The

multilingual AM can be trained by mapping different phonemes to the

same global phoneme. Finally, an ASR system can be built for the

target language by using a lexicon that uses the global phoneset. . . . 73

5-1 Diagram of the low-rank factorized DNN. The left side of the picture

represents a typical DNN with h hidden units and s target labels. The

right side of the picture shows the low-rank bottleneck DNN. The final

layer is now replaced by two set of weights with a linear activation

function in between. Bottleneck features can be extracted from the

DNN by taking the output of the linear activations. 79

16

5-2 Diagram of the stacked bottleneck neural network feature extraction

framework [101]. Two DNNs are combined together in a series. Start-

ing from the left side of the picture, original input features are passed to

the first low-rank BN network. The activations of the linear layer are

extracted, and combined with activations computed from four other

frames with time offsets -10,-5,+5,+10. The stacked feature is then

used as input features to the second BN network. Finally, the LrSBN

features can be extracted from the BN layer of the second DNN. . . . 80

5-3 Diagram of the feature extraction used for the input to the DNN. The

top portion of the figure follows a typical log-critical band spectrogram

generation process. F0 and PoV features are then augmented to the

spectrogram. Finally, a DCT of size 11 are computed across time to

extract modulation frequency information. 82

5-4 One softmax multilingual training. The target labels from multiple

languages are combined into one large softmax layer. 87

5-5 Block softmax multilingual training. Each language has its own sepa-

rate softmax layers while the hidden layers are shared. 87

6-1 Training and testing of the LID DNN. In the training stage, frames

from the source languages are used to train a DNN with language

labels as the output target. At test time, the DNN is then used to

compute posteriors scores which are then averaged over all frames. . . 96

6-2 Adaptation of the SBN using the Multi method. The first and the

second DNN are adapted using the data from the target language se-

quentially. 98

6-3 Adaptation of the SBN using the Mono re-train method using the LID

scores. The first DNN is adpated from the multilingual first DNN.

However, the second DNN is adapted from the DNN already trained

on the closest language. 99

17

6-4 Adaptation of the SBN using the Mono method using the LID scores.

The first DNN is adpated from a multilingual first DNN. BN features

are extracted from the adapted DNN and used to train a new DNN on

the closest language from random initialization. The DNN is finally

adapted to the target language. 99

6-5 The frame selection process. N pair-wise DNNs are trained for each

source language pair. Then, frames from each language can be ranked

by using its corresponding DNN. 104

6-6 A heat map of the averaged posterior scores for the source languages.

Each row indicates the misclassification from each language. 105

6-7 A heat map of the averaged posterior scores for each speaker from

Cebuano. Each row in the figure refers to a speaker. Each column

refers to the language output class. The speakers below the red dashed

line are from wideband recordings. 106

6-8 LID averaged posterior scores for each target language (in percent).

Only the frames from narrowband utterances are used. 107

6-9 Probability of being the target language averaged over all frames of

each source language. For each source-target pair, the posteriors are

computed using the corresponding frame selection DNN. Values are

shown in percent. 108

6-10 Percentage of frames from each phoneme selected from each source

language for Cebuano is the target language. 109

18

List of Tables

2.1 Comparison between Hybrid and Tandem approaches. 49

2.2 Language statistics in the Babel corpus for the FLP condition. Tones

are the amounted of tones indicated in the lexicon provided. Zulu is

tonal but not marked in the Babel corpus. The hours column is the

total sum of segments of audio that contains speech based on the tran-

scriptions. Segments in Cantonese include large amounts of silence.

The total amount of real speech is around 72 hours. “Wideband” in-

dicates whether the language pack contains some amount of wideband

recordings. “Graphs” indicates the number of unique characters in the

training pack. The “Words” column shows the number of words in the

transcription, while “Vocab” only counts unique words. 53

3.1 WER comparisons between systems trained with and without F0 and

PoV features. Vietnamese and Cantonese are tonal languages, while

Turkish and Tagalog are non-tonal. “Cantonese (no tone)” indicates a

Cantonese system trained using a lexicon without any tone information. 59

3.2 WER comparisons between systems trained with a phonetic (expert)

lexicon and a graphemic lexicon. 60

3.3 WER comparison between systems trained using the FLP lexicon and

the PMM lexicon. 61

3.4 Keyword OOV rate for various amounts of training data in four lan-

guages. 63

3.5 Keyword OOV rate using different subword units on the VLLP condition. 64

19

3.6 MTWV results on Swahili’s dev set using different subword units. . . . 65

3.7 Text data available for four languages. 66

3.8 Perplexity of LMs trained with and without web data. 67

3.9 WER and MTWV comparisons of models with and without web data. 68

4.1 WER on the source languages using for the model trained on the multi-

lingual phoneset. The Babel lexicon column indicates systems trained

on the original phoneset, while the Multilingual lexicon column in-

cludes system that uses the global phone mapping. Monolingual GMM

indicates that the system is trained on one language, while the multi-

lingual GMM system is trained on all four languages. For Monolingual

GMM systems, the language used for training is the same as the one

used to evaluate the system. 74

4.2 WER on the target language, Vietnamese, using the model trained on

the multilingual phoneset. The multilingual GMM is trained on the

source languages which do not include Vietnamese. 75

5.1 WER comparison on Turkish LLP for BN systems trained using CI or

CD labels. 83

5.2 DNN Comparisons of average CE per frame on Bengali LLP. ‘Last’

refers to putting the BN layer right before the softmax layer. 83

5.3 WER comparison on Bengali LLP between different BN DNN setups.

SBN refers to a normal stacked bottleneck architecture with Sigmoid

non-linearities. LrSBN refers to the proposed method which used a

linear layer for the BN layer. 84

20

5.4 WER comparisons between hybrid and tandem approaches on Bengali

and Assamese LLP with different recognition setups. Three different

sets of acoustic modeling techniques can be applied. The simplest

system uses just the Maximum Likelihood (ML) training. LDA+MLLT

feature transforms can be learned to train a stronger system. Finally,

speaker adaptation (fMLLR) and discriminative training (sMBR) can

be used for further improvements. 85

5.5 WER comparisons between hybrid and tandem approaches on Bengali

FLP. 86

5.6 WER after applying SAT on the first BN. 86

5.7 WER comparison between one softmax and block softmax for training

multilingual BN features. The target language is Cebuano VLLP. . . . 88

6.1 WER on Bengali with different data usage scenarios. Assamese FLP

data is used to train BN features to use in Bengali. The numbers under

the BN and GMM columns refer to the amount of acoustic training

data in hours used to train the bottleneck and the GMM, respectively. 93

6.2 WER using between different language pairs. Numbers in parenthesis

are Limited Monolingual BN baseline. 94

6.3 Average posteriors for the initial LID experiment. 95

6.4 LID posteriors of the 5 source languages languages. 100

6.5 WER on Lao and Assamese LLP using different adaptation strategies.

Letters in parentheses denote the source language used for the mono-

lingual DNNs; Tagalog (T), Pashto (P), Turkish (U), Cantonese (C),

and Vietnamese (V) . 101

6.6 Effect of source data selection on Turkish LLP. 102

6.7 ASR and KWS results. For MTWV, * indicates the value is signifi-

cantly different from one in the row above (5% significance) using the

Student’s t-test. 110

21

22

6.8 ASR and KWS results on Swahili for different recognizers and decoding

units. 113

A.1 Global phoneset. 126

A.2 Global phoneset (cont.). 127

A.3 Extra mappings for Cantonese. 128

A.4 Extra mappings for Turkish. 128

A.5 Extra mapping for Turkish. 128

A.6 Extra mappings for Tagalog. 128

A.7 Extra mappings for Vietnamese. 129

B.1 Language pack version for each language. 132

Chapter 1

Introduction

Automatic Speech Recognition (ASR) research has grown significantly over the past

decade. With the emerging trend of smart devices and big data, companies and

government agencies have invested heavily in speech technology. The ‘naturalness’ of

spoken interfaces helps alleviate the need for physical input interfaces. Collections of

video and audio data, such as on Youtube, need ASR capability for efficient search

and other downstream processing such as translation and summarization.

However, amongst the approximately 7000 languages spoken around the world,

there are only around 100 languages with speech recognition capability [66]. This is

because to create a reliable recognition system requires a large amount of annotated

data and linguistic knowledge. The standard recipe for building a speech recognizer

typically requires: (1) thousands of hours of transcribed speech for the statistical

learning of the acoustic model, (2) a phonetic pronunciation dictionary which deter-

mines how words of the language are decomposed into smaller phone-like units, and

(3) a large collection of text to create the language model. Because of the expensive

process to generate these three language resources, most of the research in ASR tech-

niques has been predominately focused on English and a few other major languages.

Moreover, even with the aforementioned resources, because of language specific traits,

it typically requires several months to years of research effort to push the performance

on any particular language to be in line with the languages which researchers have

been working on for decades. Thus, the time from the point where the need for ASR

24 CHAPTER 1. INTRODUCTION

on any particular language arises, to the time of system deployment can take years,

which in many cases might be too late for the target application.

To address the data limitations, we must come up with a training framework

that requires less annotated resources, is language independent to minimize human

experts, and can be deployed in a reasonable time frame. In this thesis, we propose

a method that can better identify and utilize the similarity in acoustics between

languages to introduce data sharing from rich resource languages in a multilingual

manner to alleviate the acoustic data requirements. Since the underlying structure

that humans use to produce speech sounds are the same across languages, we expect

the models learned in this manner to have properties that can be transferred to use

in languages with limited resource.

1.1 Effect of training data size on ASR perfor-

mance

To better illustrate how lack of training data can affect ASR performance, Figure

1-1 shows the Word Error Rate (WER) as a function of training data (in hours)

for various telephone conversational speech transcription tasks. It is estimated that

human performance on this task is around 4% WER [51]. For ASR, there are experi-

ments conducted by IBM [78] and Microsoft [82] using around 2000 hours transcribed

data, with a WER as low as 8%, doubling human performance. Then, there are ASR

systems trained on the Switchboard corpus, using 300 hours of training data, that

perform between the 13-20% WER range [84, 86]. However, on non-English tasks, the

amount of available training data can be a lot smaller, since transcribing 1 minute of

spontaneous speech can take 7-9 minutes to transcribe properly [2]. The WER goes

up to 35% with 150 hours on training data on Mandarin [50] and Spanish [46]. With

10 hours of training data, around half of the hypothesized words will be wrong. With

3 hours of training data, in some languages such as Kurmanji and Telugu, the WER

can shoot up above 80%. Above 80% WER, ASR systems are no longer reliable, even

1.1. EFFECT OF TRAINING DATA SIZE ON ASR PERFORMANCE 25

for simpler downstream tasks such as keyword spotting.

0

10

20

30

40

50

60

70

80

90

100

1 10 100 1000 10000

WER (%)

Training data (hours)

Figure 1-1: WERs of various conversational telephone transcription tasks. Numbers
compiled from the following sources [19, 43, 46, 50, 53, 78, 82, 84, 86]

Lowering the amount of the training data not only directly impact the robustness

of the acoustic model, it also indirectly limits the amount of vocabulary the system is

exposed to, leading to a high Out-of-Vocabulary (OOV) rate, a rate which describes

how often a spoken word is not included in the vocabulary of an ASR system. Since

ASR systems can only generate a hypothesis that exists in its vocabulary, the OOV

rate imposes a lower-bound on how low the WER can be. Moreover, the language

models, which require large amounts of training text to estimate robust models, also

degrade in a low resource setting. These combined issues lead to the undesirable

performance of ASR systems when the training data is small.

26 CHAPTER 1. INTRODUCTION

1.2 Low Resource Languages

There is no single official definition on what makes a language low resource, and

the meaning usually shifts depending on the target application. A language can

be considered low resourced when typical methods can no longer be used, or they

perform poorly. In general, a language with fewer native speakers tends to have less

available data. Only around 400 languages out of the 7,000 languages have more

than 1 million speakers [49]. However, languages with over millions of speakers can

be considered low resource too in a time critical application such as responding to a

natural disaster. With the time constraint, it is often hard to collect the sufficient

amount of resources. For applications such as machine translation, which requires

parallel text in both languages, many language pairs can be considered low resourced

too even if the language themselves have many speakers [67].

From an ASR perspective, a low resource language can be considered as a language

that is missing or lacking any of the three main components of a speech recognizer

mentioned earlier. For example, the recognizer described in [78] uses around 2000

hours of transcribed speech, a lexicon containing more than 30,000 words, and a text

corpus of 24 million words. Of the three resources, transcribed speech recordings

are often considered the hardest and most time consuming part to collect, especially

in languages with fewer speakers. Having fewer speakers not only implies the lower

amount of speech recordings, but it also makes it harder to find people to transcribe

those recordings. A pronunciation dictionary can sometimes be limited or not easily

available in certain languages, since it requires an expert linguist to create. Finally,

the text collection required for language modeling is often lacking when dealing with

colloquial speech since it requires transcribed speech rather than web text.

1.3. AUTOMATIC SPEECH RECOGNITION FOR LOW RESOURCE LANGUAGES 27

1.3 Automatic Speech Recognition for Low Re-

source Languages

Researchers have been using multilingual resources to tackle the low resource problem.

While a system trained solely on resources from a single language, e.g., a monolingual

system, can perform poorly, a system trained on a pool of resources from various

languages, e.g., a multilingual system1, can provide substantial gains in performance

[80]. Researchers often refer to the pool of languages, which can be either a low or

rich resource, used in training as source languages, while the language of the target

application is referred to as the target language. Approaches such as in [6, 69] try

to learn a common lower-dimensional subspace across languages in order to reduce

the amount of parameters that need to be learned for the target language. The term

cross-lingual is often used in this type of methods for the case when a model is first

trained in one language and then applied or adapted to another.

Recent progress on Deep Neural Networks (DNNs) has greatly improved ASR per-

formance on many tasks [35]. One way to apply DNNs in ASR is via Bottleneck (BN)

features [75, 92, 97, 98]. In this approach, a standard DNN with one smaller hidden

layer, called the bottleneck layer, is trained. Then, the outputs of the bottleneck layer

are used in conjunction with other features to train a standard recognizer that uses

Gaussian Mixture Models.

Researchers have also used BN features to leverage out-of-domain resources, that

are either multilingual [93, 95], or cross-lingual [85]. With access to larger amounts of

data, the DNN can make use of the larger variability seen in training to extract better

features, and ultimately improve the performance on the target language. These

approaches not only alleviate the lack of training data, they also save the amount of

time required to train DNNs for the target languages.

When multilingual resources are rich and diverse, one question that arises is how

to best take advantage of the resources. Although it can be beneficial to use more

1Not to be confused with a system that can output multiple languages. In this thesis, our
multilingual systems output one language just like monolingual systems.

28 CHAPTER 1. INTRODUCTION

of the available languages [26], there is also evidence that a source language that is

close to the target language is more beneficial than a random one [29].

In this thesis, we propose methods to identify the best source languages for each

target language, and to train better BN systems for low resource languages. These

methods can also be used in systems that are not based on BN features such as

hybrid-DNNs.

1.4 Main Contributions

The main contributions of this thesis can be summarized as follows:

• Developed techniques for building ASR systems that work on a variety of low-

resource languages with minimal human intervention.

• Proposed a method for extracting better feature representations using DNNs.

This technique achieved state-of-the-art results on monolingual tasks. It can

also be easily applied in a multilingual framework to help improve ASR systems

for low resource languages.

• Investigated the use of transfer learning on low resource languages.

• Investigated the need for selecting appropriate data for multilingual training.

We proposed two methods that can select at the language level or the frame

level to isolate acoustical and linguistical effects. Results showed significant

improvement over naive multilingual systems on both transcription and keyword

spotting (KWS) tasks.

1.5 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 reviews concepts related to ASR, KWS, and DNNs. It also provides

descriptions about the corpus and metrics used in the thesis.

1.5. THESIS OVERVIEW 29

• Chapter 3 goes over the details on how to build a robust monolingual system

for both transcription and keyword spotting applications.

• Chapter 4 describes a basic multilingual system based on prior works which

inspires the work in this thesis.

• Chapter 5 describes our proposed method to extract better feature representa-

tions and how it can be used in a multilingual setting.

• Chapter 6 investigates transfer learning for low resource languages and how

data selection plays a significant role in performance.

• Chapter 7 summarizes the key concepts of the thesis and provides directions for

future work.

30 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

In this chapter we will describe some of the building blocks used in this thesis ranging

from ASR basics to DNN usage in an ASR system. We will also describe the Babel

corpus which we use heavily in this thesis.

2.2 Automatic Speech Recognition

Automatic Speech Recognition (ASR) is the process of transcribing speech auto-

matically using machines, and is typically comprised of three main components, the

lexicon, the acoustic model (AM), and the language model (LM).

The speech signal is typically transformed into a sequence of observation, X, that

capture short-term temporal-spectral fluctuations. Typically A feature vector is ex-

tracted on a small time window of speech usually on the order of 25 ms. These

windows, or frames in ASR jargon, are usually computed every 10 ms. Standard

features used in ASR includes the Mel-frequency cepstral Coefficients (MFCCs) and

Perceptual Linear Prediction (PLP) [12].

Given the observation sequence, X, extracted from a speech waveform, we want

to find the best word sequence W∗ that maximizes the posterior probability P(W | X)

32 CHAPTER 2. BACKGROUND

ass

W∗ = argmaxWP(W | X) (2.1)

Using Bayes’ Rule we can consider the above equation as

W∗ = argmaxW
P(X |W)P(W)

P(X)

= argmaxWP(X |W)P(W)

(2.2)

where the term P(X) can be simply dropped since it is fixed in the maximization.

The first term P(X |W) is generally referred to as the likelihood of the data.

Note that the likelihood term is usually modeled by Hidden Markov Models

(HMMs) where the output probabilities are generated from Gaussian Mixture Models

(GMMs). In this manner, a sequence of frames is generated from a sequence of hidden

states, S. These hidden states typically represent a subword/phonetic segmentation

of each word. For example, the word “cat” can be represented using a sequence of

three hidden states each representing the phonemes, /k/, /æ/, and /t/, respectively.

In other words, we would like to model

W∗ = argmaxW
∑
S

P(X,S |W)P(W) (2.3)

Under the Markov assumption, the equation becomes

W∗ = argmaxW
∑
S

∏
t

P(xt | st)P(S |W)P(W) (2.4)

where xt and st are the observation and hidden state at time t, respectively. These

three terms are typically considered the main building blocks of a speech recognizer.

P(xt | st) is called the Acoustic Model and provides a scoring mechanism for the frame

observations given the state sequence. P(S | W) is called the lexicon and provides a

mapping between words and subwords/phonemes. P(W) is typically modeled by a

Language Model. In practice, the hidden states are typically modeled by 3-state

triphones. A triphone, a phone with a left and right phonetic context, is used in

2.2. AUTOMATIC SPEECH RECOGNITION 33

order to handle co-articulation effects. Each triphone is also usually modeled by 3

left-to-right states to handle the transient acoustic dynamics such as coarticulation

during the production of a phone in context. Systems that model triphones (or any

phoneme tuples) are usually referred to as having context dependent (CD) models,

while systems that model just the single phonemes without any context use context

independent (CI) models.

The parameters of the HMM acoustic model can be estimated in a Maximum

Likelihood (ML) fashion using the Forward-Backward algorithm. At test time, the

maximization can be solved by using the Viterbi Algorithm. Readers are invited to

refer to [68] for more details.

2.2.1 Discriminative Training

In practice, the models trained using the ML criterion do not yield the best results,

since the model conditional independence assumptions do not hold for speech data. To

improve performance, discriminative training methods have been proposed. Instead

of maximizing the likelihood of the data, discriminative training tries to minimize

the confusion in the training data. In general, discriminative training relies on con-

structing an objective function that captures the degree of confusion and modifies

the model parameters according to the objective. Commonly used objectives are

Maximum Mutual Information (MMI) [1], Minimum Phone Error (MPE) [61], and

state-level Minimum Bayes Risk (sMBR) [62], which try to minimize the errors in the

frame, phone, and state level, respectively. We mainly use sMBR in this thesis, since

it is often reported to yield the best performance [14, 94]

2.2.2 Lattice and N-best

In a practical speech recognizer, the number of hidden states can be on the order

of tens of thousands. This makes solving for the best path in the HMM infeasible

to be done exactly. ASR systems usually employ a time-synchronous beam search

with pruning to help reduce the computation load. In the beam search, only a fixed

34 CHAPTER 2. BACKGROUND

number of alternatives are considered at each time frame, while the paths with lower

scores are discarded. This makes the beam search a trade-off between computation

and correctness. The final product of the beam search is a lattice or graph, which

represents a set of possible transitions of the hidden states with their associated

scores. The best scoring path through the lattice is called the “best path” or the 1-best

output. This is generally the main output of the speech recognizer. Depending on the

application, the recognizer can also generate N-best hypothesis sentences generated

from N best scoring paths through the lattice.

2.2.3 Language Models

The standard Language Models (LMs) used in ASR are n-grams. N-gram models

represent the probability of generating the next word given the previous N−1 words.

The LM usually assumes a fixed set of possible words. These words are considered

in-vocabulary (IV). The number of words in the vocabulary is often referred to as the

vocabulary size. Any word outside of the vocabulary is called an Out-Of-Vocabulary

(OOV) word. Generally, any OOV word cannot be generated by the ASR.

Recently, researchers have looked into using Recurrent Neural Networks (RNNs)

for language modeling as well [57]. However, due to the recurrent nature of the model,

LMs based on RNNs are only for re-scoring the lattice or the N-best list after the

beam search is completed.

One metric to evaluate language models is to compute the perplexity on heldout

data, defined as:

Perplexity = 2− 1
n log2(P(W)) (2.5)

where n is the number of words in the heldout data, and P(W) is the probability

of the data estimated by the model [73].

2.3. ACOUSTIC FEATURES AND FEATURE TRANSFORMS 35

2.2.4 Word Error Rate (WER)

WER is a standard metric used to measure ASR performance. It can be considered

as the word-level edit distance from the ground truth transcription. It is composed

of three kinds of errors, substitution errors, insertion errors, and deletion errors.

Substitution Error =
of substitution errors

#of ground truth words

Insertion Error =
of insertion errors

#of ground truth words

Deletion Error =
of deletion errors

#of ground truth words

WER = Substitution Error+ Insertion Error+Deletion Error

(2.6)

WER is often reported as a percentage. A perfect transcription will have 0%

WER. Note that since we can have insertions, WER can be higher than 100%.

For Cantonese and other character-based languages, WER is often calculated at

the character level instead of the word level (Character Error Rate or CER), but for

the sake of simplicity we will use the term WER for Cantonese as well.

One caveat of the WER metric is that it weights all errors equally. A substitution

of “Sheet” with “Cheat,” which sound very similar, counts the same as substituting

“Sheet” with “Kittens.” In this sense, under certain conditions such as high WER,

an improvement in WER does not necessarily mean a better system.

2.3 Acoustic Features and Feature Transforms

In this section we describe some of the features used in this thesis. We will also

discuss some standard techniques that can be used to improve those features.

2.3.1 Perceptual Linear Prediction features

One of the features we used in most of our systems is Perceptual Linear Prediction

(PLP) coefficients. The Perceptual Linear Prediction (PLP) method was proposed

by Hermansky in [33]. It is a based on Linear Predictive Coding (LPC), which tries

36 CHAPTER 2. BACKGROUND

to model the spectral envelope of a signal using an all-pole model [54]. The main

difference is that PLP tries to model a transformed spectrum that tries to mimic the

human auditory system. The extraction process of the PLP features is summarized

in Figure 2-1.

STFT | |2
Critical
band
filters

Equal
Loudness

Pre‐
emphasis

Intensity‐
loudness
conversion

LPC
Extract
Cepstral

coefficients
PLP features

Figure 2-1: PLP features extraction pipeline. The input waveforms are windowed
and passed through a STFT for time-frequency analysis. The critical band filters,
equal loudness pre-emphesis, and intensity loudness conversion are used to transform
the spectrum in order to mimic the human auditory system. LPC can then be used to
approximate the transformed spectrum. Finally, cepstral coefficients can be computed
for each input window.

First, Short-Time Fourier Transform (STFT) is computed on each frame to extract

the information in each frequency bin of the signal. We take the power of the complex-

valued output to estimate the power spectrum. The power spectrum is then passed

through Mel-frequency filterbanks. The Mel-frequency is an estimate of the frequency

scale that is perceived by humans [59]. An example of the Mel-frequency filterbanks

is shown in Figure 2-2. Then, an equal loudness pre-emphasis is applied to amplify

the power of the higher frequencies. The equalized values are transformed according

to the intensity-loudness power law by taking the cubic root [15]. LPC is applied on

the normalized power spectrum values. Finally, cepstral coefficients can be extracted

from the LPC values by solving a set of recursive equation [37]. The benefit of being

in the cepstral domain, the log of the power spectrum, is that one can apply mean

subtraction to remove channel effects.

2.3. ACOUSTIC FEATURES AND FEATURE TRANSFORMS 37

Figure 2-2: Coefficient values of Mel-frequency filterbanks. The filters are wider in
the higher frequencies to imitate human perception.

2.3.2 Cepstral Mean and Variance Normalization (CMVN)

CMVN is a method use to normalize the effects due the difference in the recording

conditions, such as different microphones or recording rooms. These recording effects

are often model as a convolutive noise in the time domain. The convolutive noise

becomes an additive noise in the cepstral domain. One method to normalize the

convolutive noise is to remove the means in the cepstral domain. This can be done by

removing the mean, accumulated over the entirety of each recording, in each cepstral

coefficient. Researchers also often normalize the features to unit variance so that they

fit better to the GMM models.

2.3.3 Vocal Tract Length Normalization (VTLN)

Due to the difference in size of the vocal tracts between each person, the speech

produced by each talker are slightly different. Differences in vocal tract length are

related to resonance frequencies, e.g. formant frequencies. To account for the changes,

38 CHAPTER 2. BACKGROUND

(VTLN) was proposed by Cohen et al. to normalize the effect [11]. VTLN can

be implemented by scaling the frequency axis in the filterbank analysis mentioned

previously to normalize the difference shifts introduced by each speaker’s vocal tract.

To estimate the scaling factor for each speaker, one can search through different

scaling factors and compare likelihoods obtained from the GMM-HMM model.

2.3.4 Delta Features

One of the key assumptions of the HMM model is conditional independence: given the

hidden state, observations are independent of each other. However, this assumption

does not hold for ASR where adjacent frames can be highly correlated. Moreover,

some phonemes are characterized by their dynamics rather than a single static snap-

shot that is captured by a single frame. To alleviate this, researchers often additionally

compute derivatives or “delta” features (∆), which capture the dynamics of the origi-

nal features. Delta features are often calculated by computing the difference between

features of the previous and the next frame. Higher order derivatives, such as the

delta-delta (∆2), can also be computed from the delta features and used in the same

manner. Delta and delta-delta features are typically concatenated with the original

features to create a large feature vector.

2.3.5 Dimensionality Reduction and Decorrelation Techniques

ASR models often use diagonal covariance GMMs. However, the features used in

speech recognition can be highly correlated. Sometimes the features extracted can

also have too many dimensions to model sufficiently with existing data. Researchers

often use linear transforms such as Principle Component Analysis (PCA) or Linear

Discriminant Analysis (LDA) to perform dimensionality reduction and whiten the

data [4]. PCA, which is an unsupervised method, tries to find directions of maximum

variability in the data, is mainly used for dimensionality reduction of single frames.

On the other hand, LDA, which attempts to find directions that can best separate

the classes, are often used to perform dimensionality reduction on a set of features

2.4. KEYWORD SPOTTING (KWS) 39

concatenated from multiple frames, i.e. stacked frames. The class labels used to

perform LDA estimation are the hidden state labels.

2.3.6 Maximum Likelihood Linear Transform (MLLT) and

Feature-Space Maximum Likelihood Linear Regression

(fMLLR)

Another linear transform that is often used in ASR is MLLT. The objective of MLLT

is to find a global linear feature transform that maximizes the average frame level

likelihood given the model, i.e. the HMM-GMM. MLLT, LDA, and the HMM-GMM

parameters are often estimated together iteratively. Concretely, first, train a HMM-

GMM model, then estimate the LDA and MLLT transforms. At certain iterations of

the HMM-GMM training, re-estimate the LDA and/or MLLT transforms.

fMLLR is an affine transform on the input features that also tries to maximize the

likelihood of the model. fMLLR is typically used to estimate speaker specific trans-

forms for speaker adaptation, while MLLT is applied on globally on every speaker.

In fact, MLLT estimation can be considered as a simplified version of fMLLR (if esti-

mated on the whole dataset). Many of the experiments in this thesis deals with long

recordings on the order of 5 minutes, making fMLLR a very powerful tool. fMLLR

is also known as Global Constrained Maximum Likelihood Linear Regression (CM-

LLR) in the literature [63]. For more details on how these feature transforms can be

estimated and used in practice refer to [21].

2.4 Keyword Spotting (KWS)

One of the downstream tasks that uses the output generated from an ASR system is

Keyword Spotting (KWS). Keyword spotting is a detection task that tries to search

for all occurrences of the key term or phrase in a spoken database with the lowest

number of false alarms. KWS can be used for search and retrieval of terms in a large

database. KWS can also provide acceptable performance even when the WER is as

40 CHAPTER 2. BACKGROUND

high as 70%, making it an ideal application for low-resource language ASR. A human

user can search for a particular key term and listen to the snippet of the audio rather

than go through the entire database.

In this thesis, a keyword can be just a simple word, or a whole phrase. The

simplest solution for KWS is to search for the 1-best output from the ASR system

by string matching. This usually yields undesirable results since the ASR system is

erroneous. A smarter solution is to search in the lattice or N-best which is more likely

to contain the correct transcript. By searching in the lattice, the KWS performance

can be very accurate even when the 1-best results get every other word incorrect.

The score of a keyword hit is typically the score or probability associated with the

lattice arc of the keyword. The score is then compared against a threshold to decide

whether or not the hypothesis should be accepted. An accepted hypothesis is often

called a keyword hit.

2.4.1 Averaged Term Weighted Value (ATWV)

ATWV is a standard metric to evaluate KWS tasks [18]. ATWV views KWS as

a detection task, where the score is calculated based on the trade off between the

percentage of correct detections and the number of false alarms.

The equation to calculate the ATWV is as follows:

ATWV = 1 −
1

K

K∑
k=1

(
#miss(k)

#ref(k)
+ β

#fa(k)

T − #ref(k)
) (2.7)

where K is the total number of keywords, #miss(k) is the number of reference

tokens for keyword k that are not detected, #ref(k) is the total number of reference

tokens for keyword k, #fa(k) is the total number of false alarms for keyword k, T is

the total length of the audio in seconds, β is the trade-off between false alarms and

miss detections which is set to 999.9.

A perfect ATWV is 1.0, while a system that yields no output will have 0.0 ATWV.

A system with too many false alarms can have a negative ATWV.

A related metric to the ATWV is the Maximum Term Weighted Value (MTWV),

2.4. KEYWORD SPOTTING (KWS) 41

which is defined as the maximum ATWV over all decision thresholds. In this thesis,

we will mostly use MTWV as a metric when evaluating acoustic models. In practice,

ATWV and MTWV are usually very close, since estimating the correct threshold can

be done accurately using the development set.

As mentioned earlier, KWS is usually done on the lattices instead of the 1-best

results like in the transcription task. Thus, for higher WER tasks ATWV is considered

to give a better metric for the system in question.

There are two caveats regarding how ATWV is calculated. First, rare terms are

weighted more per occurrence. Missing one rare term can hurt ATWV more than

missing one term that appears thousands of times. This makes sense from the user

stand point. This also emphasizes the weak points of statistical models where rare

terms are harder to model properly. Many methods are needed to circumvent this

problem, from generating larger lattices so that rare terms appear in the lattice instead

of getting pruned away, or using a different pruning threshold for rare words.

Second, the threshold used in the KWS is a global threshold. However, longer or

rarer terms usually have lower scores than shorter ones. Thus, it is also important to

apply normalization techniques so that the scores are comparable.

2.4.2 Score Normalization

To compensate for the discrepancy in scores for each keyword, it is important to

normalize the score of each hit. Let hi,k be the score of the ith hit for the kth

keyword, we compute the normalized score h ′i,k using the following methods:

• Sum-to-one normalization [55]

h ′i,k =
hi,k∑
i hi,k

(2.8)

• Exponential Normalization with Keyword-specific Thresholding [42]

thr(k) =
Ntrue(k)

T/β+ β−1
β
Ntrue(k)

(2.9)

42 CHAPTER 2. BACKGROUND

h ′i,k = h
(− 1

log(thr(k)))

i,k (2.10)

where Ntrue(k) is an estimate of how many time the keyword k appears in the

transcript. thr(k) is the estimated keyword dependent threshold which can be

used to scale hi,k. Ntrue can be estimated by summing all the posteriors of the

hits for keyword k scaled by some factor to account for occurrences that were

missed by the recognizer.

In practice, these methods do not differ much in terms of performance as long as

you use one of them. We use the Exponential Normalization with Keyword-specific

Thresholding for the rest of this thesis.

2.5 Deep Neural Networks (DNN)

Recently there has been an explosion of interest in Neural Network models for AM,

LM, and the entire ASR pipeline. DNNs, just like the name suggests, are a variant of

Neural Networks, where there are many hidden layers. This was made possible by the

recent availability of more powerful hardware such as GPUs. glsDNN computations

typically require many large matrix multiplications which can be parallelized easily

in the GPU. In ASR, researchers have shown 5-30% relative improvement on various

tasks [35]. The power of DNNs are often believed to come from the fact that the

representation and the classification are trained jointly. In the following segments we

will discuss the components of the neural network and how it can be trained and used

in an ASR setting.

2.5.1 Neurons

Neurons are the most basic unit of a DNN. A neuron is usually characterized by a

set of input weights W, a bias b, and a non-linearity function F. In general, a neuron

2.5. DEEP NEURAL NETWORKS (DNN) 43

computes

o = F(WX+ b) (2.11)

where o is the output of the neuron. An example neuron is shown in Figure 2-3.

Figure 2-3: An illustration of a neuron. First, a weighted combination of the input,
X, with a bias term, b, is computed. It is then passed through a non-linearity function,
F, yielding the output, O. A hidden layer is formed by multiple neurons. A DNN is
a series of hidden layers, where the output of the previous layer is the input of the
next layer.

A neural network layer consists of a number of neurons taking the same set of

input X. A deep neural network can then be constructed by stacking multiple layers

(typically more than 3 to be considered deep).

The non-linearity is important to ensure that the stacking of the hidden layers is

not just a cascade of linear transforms. Many kinds of non-linearities have been used

by the community. The Sigmoid non-linearity is the most popular within the ASR

community. Rectified Linear Units (ReLUs) are also widely used since they offer a

faster and more stable convergence. However, Sigmoids typically outperform ReLUs

44 CHAPTER 2. BACKGROUND

slightly when the model converges.

Fsigmoid(x) =
1

1 + e(−x)

FReLU(x) = max(0, x)

(2.12)

2.5.2 Softmax Layer

The final layer of the DNN is usually a classification layer called the softmax layer.

For a N-class classification task, the softmax layer consists of N output nodes, yi.

The classification output can be computed using the equation

yi =
exp(wix)∑N
k=1 exp(wkx)

(2.13)

where wi is the weight vector associated with the ith output.

2.5.3 Neural Network Training

A neural network can be trained using an algorithm called Stochastic Gradient De-

scent (SGD) [35] (Other variants and methods also exist, but SGD is most widely

used in practice). SGD is a gradient descent approach with a slight modification

where the true gradient is estimated by the gradient of a small subset of the training

examples, called a mini-batch. When the learning rate is controlled appropriately

SGD is guaranteed to converge to a local minima. The algorithm for SGD can be

summarized as follows:

2.5. DEEP NEURAL NETWORKS (DNN) 45

Algorithm 1 Stochastic Gradient Descent Algorithm

1: Initialize the weights and bias, θ, of neural network

2: repeat

3: Shuffle the training set, partitioning it into M mini-batches

4: for all mini-batch, m, do

5: Compute the objective given the current weights O(θ,m)

6: Compute the gradient from the objective ∇O(θ,m)

7: Update the model according to the learning rate n

w := w− n∇O(θ,m)

8: end for

9: until some criterion is achieved.

Each pass through the entire training data, i.e., step 3, is called an epoch. The

stopping criterion is usually the objective function computed on some heldout set.

Note that it is important for speech applications that the input examples are shuffled

to get a good estimate of the objective function. Adjacent input frames are highly

correlated, i.e. same phonemes. Frames from the recordings are also correlated in

terms of speaker, noise, and channel characteristics. Not shuffling the frames properly

can lead to a degradation in performance, for example Su et al.. reported a 7% relative

loss in WER for shuffling only utterances but not frames [87].

2.5.4 Cross Entropy Criterion

The objective function typically used in ASR is the Cross Entropy (CE) criterion.

Assuming hard input label decisions (i.e. the probability of the target label taking

a value of only 0 or 1), this can be calculated from the output of the softmax layer,

yit, and the target label dt for each given frame t as follow

O = −
∑
t

log(ydtt) (2.14)

46 CHAPTER 2. BACKGROUND

2.5.5 Neural Network Initialization

There are many ways to initialize the DNN. Since SGD is only guaranteed to find

the local minima, initialization can play a crucial role. Researchers employ various

methods to initialize the network, such as unsupervised pre-training [36]. For larger

speech tasks (more than 100 hours of training data), pre-training usually does not

provide additional gains. A simple initialization heuristic is typically enough. In this

work, we follow the initialization method by [24] where the weights and biases are

initialized according to the number of input and output connections of the hidden

units (fan-in and fan-out) from the Uniform distribution according to the following

equation:

W ∼ Uniform(0,
1√

FanIn+ FanOut
) (2.15)

2.5.6 DNN Training in Practice

In practice, many researchers apply tricks to increase the training speed and avoid

bad local minimas.

• New Bob algorithm [16]

The New Bob algorithm is a training schedule where the training is done until

the objective on the heldout set is worse than the previous epoch. When this

happens, the learning rate is halved and the training restarts with the model in

the previous epoch. This method typically improves the performance on TIMIT

by 5-10% relative.

• Momentum

To speed up training we also apply momentum, where part of the gradient from

the previous mini-batch is kept for the next update. The momentum is used

after the first epoch. The momentum is also reset at every halving step.

• Class balancing (silence removal)

Silence can total to more than 30% of the training frames. This large imbal-

2.5. DEEP NEURAL NETWORKS (DNN) 47

ance of the labels can degrade the performance of the DNN. In practice, we

find keeping just 5 frames of silence before and after speech frames improves

performance and reduces the training time.

2.5.7 DNN in Acoustic Modeling

Putting it all together, we can now train a DNN given input frames and output labels.

In ASR, the output labels are typically the hidden state labels, as described in Section

2.2. Thus, training of a DNN-based ASR system usually starts with a baseline speech

recognizer for frame-level output target labels. This is usually done by force aligning

the transcription with the input speech. The input frames are typically MFCCs, filter

banks outputs, or Bottleneck features [35]. This means that the DNN is trying to

emulate the Acoustic Model P(xt | st) in Equation 2.4. However, since DNNs typically

produce posteriors rather than likelihoods, we need to normalize the DNN outputs

using the class priors. This method of using the DNN for acoustic modeling in ASR

is usually called the “hybrid DNN-HMM.”

Another approach widely used is called the Tandem approach [27]. Similar to

the hybrid DNN-HMM approach, the DNN is trained using the hidden state target

labels. However, instead of using the target output of DNNs to replace the like-

lihoods, the DNN is used to generate input features to feed into another generic

HMM speech recognizer (GMM-HMM). The input feature can be extracted from the

outputs of some hidden layer in the DNN. Typically that layer is forced to have a

smaller number of neurons, i.e. a bottleneck (BN), to force the DNN to encapsulate

all the relevant information into a smaller dimensionality that is preferred by a typi-

cal GMM-HMM system. The extracted features are concatenated with regular ASR

inputs such as MFCCs and used in Tandem for the new GMM-HMM. Since the DNN

trained the input representation in a discriminative manner, this usually outperforms

handcrafted features such as MFCCs and PLPs. The hybrid DNN-HMM and the

Tandem approach are depicted in Figure 2-4.

48 CHAPTER 2. BACKGROUND

DNN
b1
b2
b3

Hybrid DNN‐HMM approach

s1 s2 s3

GMM‐HMM

MFCC/PLP features

DNN s1 s2 s3

b1 b2 b3

Tandem features

Tandem approach

HMM

Figure 2-4: Two approaches for using DNNs in ASR, the Tandem and hybrid
approach. The top part of the figure shows the hybrid DNN-HMM approach where the
observation probabilities are generated by the DNN. The bottom shows the Tandem
approach. A DNN with a bottleneck layer is used to extract BN values which are
combined with traditional features to use as input to a traditional GMM-HMM.

2.6. IARPA-BABEL CORPUS 49

2.5.8 Hybrid vs. Tandem

The pros and cons of the two approaches are summarized in Table 2.1.

Table 2.1: Comparison between Hybrid and Tandem approaches.

Hybrid Tandem

• Less training steps • More training steps

• Typically performs better in CE • Performs worse in CE due to the BN

• Cannot use existing HMM-GMM • Can build on existing

techniques techniques such as speaker adaptation

• Output is task specific • Output (the BN) can be used

in other tasks

In this thesis we will mostly use the Tandem approach. However, many techniques

can also be applied in the Hybrid approach, and ultimately the combination of the

two approaches work the best, as we will report later.

2.6 IARPA-Babel Corpus

Most of the experiments in this thesis use the Babel corpus. The Babel program is a

project funded by IARPA with a goal to improve ASR technologies for low resource

languages. The program has two main focii. First is to improve the ASR and KWS

spotting capability with limited human supervision and supervised resources such as

transcribed speech, lexicon, domain knowledge, etc. Second, it aims to reduce the

time to develop such a system in the face of some unforeseen time critical crisis, since

typical ASR systems typically require development time to identify and cope with

special language characteristics in order to reach a certain performance threshold.

To this end, the program emphasizes the need for technology that can be applied to

every kind of languages in a fast and efficient manner.

Currently the corpus consists of 24 languages from all over the world: Amharic,

Assamese, Bengali, Cantonese, Cebuano, Dholou, Guarani, Haitian, Igbo, Javanese,

Kazakh, Kurmanji, Lao, Lithuanian, Mongolian, Pashto, Swahili, Tagalog, Tamil,

Telugu, Tok Pisin, Turkish, Vietnamese, and Zulu. As shown in Figure 2-5, the

50 CHAPTER 2. BACKGROUND

languages in the Babel corpus span many regions around the globe, covering various

language families and writing systems.

1 Amharic
2 Assamese
3 Bengali
4 Cantonese
5 Cebuano
6 Dholuo
7 Guarani
8 Haitian
9 Igbo
10 Javanese
11 Kazakh
12Kurmanji

13 Lao
14 Lithuanian
15 Mongolian
16 Pashto
17 Swahili
18 Tagalog
19 Tamil
20 Telugu
21 Tok Pisin
22 Turkish
23 Vietnamese
24 Zulu

1
23 4

5
6

7

8
9

10

11
12

13

14
15

16

17

18
19
20

21

22

23

24

Figure 2-5: Languages available in the Babel corpus marked by location of recording.

2.6.1 Corpus Structure

The corpus structure for each language in the Babel corpus is organized in a similar

manner. The recordings consist of two main types, prompted speech, and conversa-

tional speech. The prompted recordings are short answers to various kinds of ques-

tions such as “What is the current time?” “Read this address” “What is your name?”

The second kind of recordings is conversational speech. In this type, the volunteer

calls someone he or she knows and start a conversation. This type of recording is

usually 10 minutes per conversation (2-sided for 20 minutes in total). The volunteers

are asked to make this call at their own choosing meaning they can be in a car,

restaurant, using landlines or telephones, and the other side of the call can be in a

different kind of environment. Since these conversations are recorded over telephone

lines, they are sampled at 8kHz.

Some conversational recordings are collected in a specified manner, e.g. with a pre-

determined microphone, in a specific room and noise condition. These recordings are

recorded 48kHz. From the nature of the sampling rate, we will call this type of data

the wideband recordings, and the 8k recordings, narrowband recordings. There are

up to 8 pre-determined microphone types in each language (some unseen in training

2.6. IARPA-BABEL CORPUS 51

and dev). These wideband recordings are usually less than 10% of the whole corpus

and pose a very difficult challenge. In this thesis, we treat the wideband recordings

the same way we treat the narrowband recordings. The wideband recordings are

downsampled to 8kHz.

Each language’s recordings also contains various amounts of transcribed data. The

scripted speech are all transcribed. However, only a portion of the conversational

data is transcribed. This ranges from 40 to 80 hours depending on the language

(including silence, the actual speech amount is lower). The rest of the recordings are

un-transcribed. The un-transcribed data can range from 0 to 40 hours.

Every recording is marked with speaker gender, dialect, recording device, recoding

environment, and telephone provider. The transcriptions also mark hesitations (ah,

umm), noise, laughter, cough, and other non-speech artifacts such as background

noise or dial tones. This makes the Babel corpus very flexible for various kinds of

speech related techniques and tasks.

Each language consists of 3 standard subsets called training, (train) development

(dev), and evaluation (eval). The dev and eval sets only contain conversational record-

ings.

2.6.2 Lexicon

The lexicon for every language is provided in SAMPA phonetic format. SAMPA is

a phonetic symbol set that is entirely ASCII compatible, unlike IPA. Some examples

of the lexicon in the corpus can be found in Figure 2-6.

Pashto:
اخراجات AixorAjAto e x . 4 A . " dZ A t

Cantonese:
一三二零 yat1saam1yi6leng4 j 6 t _1 . s a: m _1 . j i: _6 . l E: N _4

Figure 2-6: Example lexicon entries in the Babel corpus.

The first column is the original script. The second column is the Romanized

52 CHAPTER 2. BACKGROUND

version of the original script (if the language uses non-Roman characters). Then, it

is followed by the SAMPA phones. Syllables are marked with . And ‘ marks stressed

syllables. Tones are indicated by numbers preceded by . If multiple pronunciations

exist, all will be provided (to the extent possible). Note that SAMPA phones are not

standardized across languages in the Babel corpus, meaning the same symbol might

represent different phonemes or tones across languages. However, most are relatively

consistent.

2.6.3 Evaluation Metric

The target applications for the Babel program are automatic transcription and key-

word spotting (KWS). For the two tasks, the program uses two standard evaluation

metrics, the WER and ATWV mentioned in Section 2.2.4 and 2.4.1.

2.6.4 Evaluation Keywords

There are two main lists of keywords for each language, the dev keywords (kwlist2)

and the eval keywords (kwlist4 or kwlist5). The dev keywords are automatically

generated from the training set transcription by the method mentioned in [90]. The

eval keywords are provided by the Babel program for the purpose of the evaluation.

There are around 2000 dev keywords for each language, while the eval keywords range

from 3000 to 7000 keywords. Each keyword can be a single word or a phrase, since

some of these are automatically generated, they are not guaranteed to be meaningful

keywords.

2.6.5 Languages and Training Packs

Table 2.2 summarizes the languages and the data amount for each language.

The Babel corpus defines 4 different training conditions, each with varying amount

of training data:

2.6. IARPA-BABEL CORPUS 53

Table 2.2: Language statistics in the Babel corpus for the FLP condition. Tones
are the amounted of tones indicated in the lexicon provided. Zulu is tonal but not
marked in the Babel corpus. The hours column is the total sum of segments of
audio that contains speech based on the transcriptions. Segments in Cantonese in-
clude large amounts of silence. The total amount of real speech is around 72 hours.
“Wideband” indicates whether the language pack contains some amount of wideband
recordings. “Graphs” indicates the number of unique characters in the training pack.
The “Words” column shows the number of words in the transcription, while “Vocab”
only counts unique words.

Language Phones Tones hours Speakers Wideband Graphs Words Vocab

Cantonese 37 6 141 952 no 3322 892k 19939

Vietnamese 68 6 88 954 no 100 923k 5439

Tagalog 48 n/a 85 966 no 35 595k 22203

Pashto 44 n/a 78 959 no 54 888k 18750

Turkish 42 n/a 79 990 no 42 589k 40801

Bengali 53 n/a 62 720 no 92 481k 26531

Assamese 50 n/a 61 720 no 92 451k 23927

Zulu 47 n/a 62 718 yes 53 406k 60254

Haitian 32 n/a 67 724 yes 37 625k 13719

Tamil 34 n/a 69 724 yes 75 486k 58493

Lao 43 6 66 733 yes 59 597k 6614

Cebuano 28 n/a 41 478 yes 34 328k 15317

Kazakh 61 n/a 39 494 yes 71 270k 22291

Kurmanji 37 n/a 41 502 yes 38 346k 14317

Telugu 50 n/a 41 482 yes 68 267k 37646

Lithuanian 89 n/a 42 480 yes 43 351k 32586

Tok Pisin 37 n/a 39 480 yes 34 324k 6237

Swahili 38 n/a 44 491 yes 35 287k 25115

Mongolian 53 n/a 46 492 yes 42 403k 21016

Amharic 59 n/a 43 478 yes 253 281k 32815

Javanese 39 n/a 45 480 yes 33 309k 13860

Dholou 43 n/a 41 486 yes 34 360k 16488

Guarani 49 n/a 42 486 yes 49 311k 25270

Igbo 78 n/a 43 479 yes 34 490k 15872

54 CHAPTER 2. BACKGROUND

Full Language Pack (FLP)

The FLP condition includes all the transcribed data listed in Table 2.2 and and the 10

hour dev sets used for both tuning and evaluation. There is also an official evaluation

set. However, most of the transcription for the eval set are not available. Therefore,

most research reports performance on the dev as if it is an evaluation set.

Limited Language Pack (LLP)

The LLP includes a 10 hour subset of the FLP. In selecting the subset of the data,

whole recordings are selected and used in their entirely. The dev and eval set are the

same as the FLP condition.

Very Limited Language Pack (VLLP)

This condition includes a 3-hour subset of the LLP. This condition also uses its own

3 hour dev set called the tune set. The construction of this subset is slightly different

from the LLP. First, the recordings from the 10 hour LLP subset are divided for

VLLP tune and VLLP train. Then, select equally from each recording (starting from

the middle of the conversation) until the 3 hours is reached. This is done to ensure

speaker diversity. The VLLP tune is constructed in the same manner. For the VLLP

condition, the FLP dev can only be used for evaluation. Due to the selection process,

VLLP tune is harder than the dev set. All VLLP training data are conversational.

Active Learning Language Pack (ALP)

This condition is designed for research in active learning, e.g. selecting the subset of

data to transcribe that best improves the recognizer. The ALP starts with a fixed

initial 1 hour of transcribed data (a strict subset of the training set in VLLP). Then,

2 hours of additional speech data can be chosen from the FLP training set (excluding

the VLLP dev) to be transcribed and used in training for the final system. The

dev set for the ALP is the same as VLLP dev. In this thesis, we will not work on

this condition. Researchers found that using active learning, the ALP condition can

2.6. IARPA-BABEL CORPUS 55

slightly outperform the VLLP [19]. However, the use of active learning in practice

is still under debate, since it takes longer to transcribe snippets of sentences out

of context than transcribing the full conversation. The gains from active learning

also come mostly from vocabulary expansion, e.g. finding regions that contain OOV

words. However, the gain diminishes with web data augmentation, which alleviates

the OOV problem.

Note that the Babel corpus is an actively growing corpus. Languages and training

packs have been regularly added over the 5 year period from 2010 to 2016. The choice

of the language and training packs used in each experiment are often affected by the

availability of the training packs at the time of the experiment. We present the work

out of chronological order for a more coherent story, so there might be inconsistencies

between experiments in terms of the training packs used. The exact version numbers

for each training pack used can be found in Appendix B.

56 CHAPTER 2. BACKGROUND

Chapter 3

Monolingual Systems

3.1 Introduction

In this chapter we investigate several issues related to ASR for low resource languages.

Concretely, we will try to answer the following issues

• What would be ideal features that work for all languages?

• What is the extent of needing an expert lexicon?

• How can we cope with OOV terms?

• What gains do additional web data provide?

In answering these issues, we will also develop a set of techniques that will be used

with our multilingual systems.

3.2 Multilingual Features

Features like MFCCs and PLPs have been widely used in the speech recognition

community. These features, which were developed for English ASR systems, do not

capture some information used in other language such as tones. We also would like

features that are more robust to noise in real world environments. To this end we

will investigate features that generalize well across different kind of languages.

58 CHAPTER 3. MONOLINGUAL SYSTEMS

3.2.1 Fundamental Frequency Features

Tones are associated with dynamics of the fundamental frequency (F0), thereby mak-

ing F0 features useful for tonal languages. There are many methods to extract F0. One

common method is via autocorrelation, which computes the autocorrelation of the

signal within a frame. The second highest peak of the autocorrelation will typically

represent the fundamental frequency of the speech signal. Other more sophisticated

techniques build on this observation for better accuracy such as tracking the peak of

the autocorrelation across frames [88], or normalizing the autocorrelation according

to the analysis window [5] so that it is more robust to noise.

F0 feature is often coupled with the Probability of Voicing (PoV), which tries to

predict whether the frame is voiced or unvoiced. PoV is usually a by-product of

the autocorrelation, by using the value of the 2nd highest peak. This measures how

strong the periodicity of the signal is. F0 values and PoV are usually smoothed over

time so that they fit better with the GMM-HMM framework. For this work we follow

the implementation in Kaldi [22] to extract F0 and PoV features.

3.2.2 F0 Experiments

To evaluate the effectiveness of pitch features, we conducted experiments using the

FLP of four languages Turkish, Tagalog, Vietnamese, and Cantonese, which were the

languages available at the the time of the experiment. Vietnamese and Cantonese

are tonal languages. We trained a 3-state CD HMM-GMM recognizer using Kaldi,

an opensource speech recognizer [65]. We used 13-dimensional PLP features with

delta and delta-delta coefficients. There are several fundamental frequency estima-

tors in Kaldi. We selected “KaldiPitch” which has been reported to provide the best

results. The features were normalized using Cepstral Mean and Variance Normaliza-

tion (CMVN). For lexicons, we used the ones provided in the Babel corpus. Trigram

language models were trained on the transcriptions from the training set. The stan-

dard tri5 recipe in Kaldi was used. This recipe includes Linear Discriminant Analysis

(LDA) feature transform, speaker adaptation (fMLLR), and discriminative training

3.3. LEXICON 59

(sMBR) which we described in Chapter 2.

For Cantonese, we also trained two different versions. One used the lexicon pro-

vided in the corpus which has tone information, the other used a modified lexicon

which no longer has tone information. Table 3.1 summarizes the results:

Table 3.1: WER comparisons between systems trained with and without F0 and
PoV features. Vietnamese and Cantonese are tonal languages, while Turkish and
Tagalog are non-tonal. “Cantonese (no tone)” indicates a Cantonese system trained
using a lexicon without any tone information.

Language Without F0 and PoV features With F0 and PoV features

Vietnamese 64.0% 58.0%

Cantonese 59.0% 53.5%

Cantonese (no tone) 59.3% 54.9%

Turkish 57.3% 55.0%

Tagalog 56.1% 54.2%

As shown from the Table, using F0 features helps improve the WER on tonal lan-

guages by around 6%. They also help, to a lesser extent, non-tonal languages such

as Turkish and Tagalog as well, making them a good feature to use in a multilingual

ASR framework. Interestingly, losing the tone information in the lexicon only de-

grades the system slightly when no F0 features are used. However, The gaps becomes

1.4% when F0 are used. This shows that the F0 features are providing the needed

information to distinguish tones. From this point onwards, we will always include F0

and PoV features in feature set.

3.3 Lexicon

One of the main problems with ASR for a low resource language is the need for a

pronunciation lexicon. The lexicon is usually handcrafted by linguists who are experts

on the language. It is also prone to errors, or omission of alternative pronunciations,

which is especially challenging in languages with diverse dialects. In a time and

resource limited scenario, crafting a lexicon from scratch is impractical. One possible

alternative to the lexicon is to use graphemes as the phonetic representation. For

60 CHAPTER 3. MONOLINGUAL SYSTEMS

example, a graphemic lexicon entry for the word “apple” would be

apple: a p p l e

This makes lexicon creation a trivial task.

We conducted experiments to compare recognizers trained with and without the

expert lexicon. The recognizer setup follows the previous section, except for the

training data size, which is the VLLP condition (3 hours) to observe the effect of the

graphemic lexicon in the extreme case. We randomly picked four languages which

have the VLLP condition defined. We compare the graphemic lexicon with the expert

lexicon on various languages in Table 3.2.

Table 3.2: WER comparisons between systems trained with a phonetic (expert)
lexicon and a graphemic lexicon.

Language Phonetic Graphemic

Kazakh 76.8% 77.0%

Kurmanji 85.5% 85.1%

Telugu 86.3% 87.0%

Cebuano 75.7% 75.9%

As shown, the WER performance of the system trained with a graphemic lexicon

is in line with the expert lexicon, and in one case the expert lexicon performs slightly

worse. This trend is also observed in other training conditions such as the the LLP

which has 10 hours of training data [47]. Note that many of these languages have

a rather simple character to phoneme mapping. However, even in harder languages

such as English, the degradation is still often acceptable [31], especially if the ultimate

goal is keyword spotting.

3.3.1 Pronunciation Mixture Models (PMM)

Another way to reduce the amount of expert knowledge required to generate a lex-

icon is by learning from speech recordings in a data-driven manner. Mcgraw et al..

proposed Pronunciation Mixture Models which generate a more robust lexicon from

an existing lexicon or can learn pronunciations for new words [56]. The PMM can be

summarized as follows:

3.3. LEXICON 61

Algorithm 2 Pronunciation Mixture Models

1: Learn a Grapheme-to-Phoneme (G2P) model based on the existing lexicon.

2: Over generate the pronunciations of each word (including words not in the lexicon)

to create a new lexicon.

3: Use the new lexicon to generate forced alignments on the training data.

4: Counts the expected counts for each pronunciation to estimate the weight for

each pronunciations.

A G2P model is a model that predicts the pronunciation based on the graphemic

representation of the word. For our application we use the model proposed in [3]

which is a model based on letter n-grams.

3.3.2 PMM Experiments

We conducted experiments to evaluate the effectiveness of the PMM to generate

pronunciation for new words. We trained systems on the FLP condition on Turkish

and Pashto. However, instead of using the FLP lexicon, we started with the LLP

lexicon instead. The LLP lexicon was used to train a G2P, which was then used to

generate pronunciations for all words that exists in the FLP. A PMM was then applied

to relearn pronunciation weights. Ultimately, we only kept the top 5 pronunciations

for each word. The acoustic model setup was very similar to the previous experiments

except for the features, which are BN features generated by the Brno Institute of

Technology as outlined in [41] for a more robust system.

Table 3.3: WER comparison between systems trained using the FLP lexicon and
the PMM lexicon.

Language FLP lexicon baseline PMM lexicon

Turkish 51.4% 51.3%

Pashto 53.1% 53.0%

Table 3.3 summarizes the WER results on the PMM experiments. As shown, the

PMM model works just as well as the FLP lexicon even though it starts with only a

subset of the full lexicon. Further analysis shows that the original lexicon sometimes

62 CHAPTER 3. MONOLINGUAL SYSTEMS

includes too many rare pronunciations which can hurt performance. Figure 3-1 shows

examples of the expert pronunciations and the ones learned by the PMM, which all

seem reasonable. This experiment shows that we can reduce the amount of expert

knowledge required in generating the pronunciation lexicon. However, we still need

a starting lexicon for this setup to work. On the other hand, the graphemic lexicon

which requires no existing lexicon or knowledge about the phoneme inventory can

offer comparable results as described previously.

Method Weight Pronunciation

Baseline t 1 r a f o 5 a r d a n

PMM 0.78 t r a f o 5 a r d a n

PMM 0.22 t 1 r a f o 5 a r d a n

Method Weight Pronunciation

Baseline S y p e l e n i j o r u m

Baseline S y p h e l e n i j o m

Baseline S y p h e l e n i j o r u m

PMM 1.0 S y p e l e n i j o m

Method Weight Pronunciation

Baseline w a l i:

PMM 0.41 w a l i:

PMM 0.39 w @ l i:

PMM 0.20 w a l e

Method Weight Pronunciation

Baseline o z a n

PMM 0.60 o z a n

PMM 0.21 a z a n

PMM 0.19 o: z a n

OzanTrafolardan

şüpheleniyorum ولي

Figure 3-1: Examples of the pronunciation of new words learned by the PMM.
Baseline pronunciations are pronunciations from the FLP lexicon.

We would like to end this section with a note about logographic languages such

as Cantonese. It is not possible to use a graphemic lexicon for Cantonese. However,

there are workarounds such as using pinyin to represent the characters, or using a

small starting lexicon to learn the pronunciation of the rest of the characters from

transcribed data in a data-driven manner such as the PMM we described or the

method described in [9].

3.4 OOV Handling

Another issue that arises from limited transcribed data is the OOVs which we dis-

cussed in Section 2.2.3. The smaller amount of training text comes with a smaller

3.4. OOV HANDLING 63

vocabulary size, and thus higher OOV rate. Table 3.4 shows a plot of how much the

vocabulary size and the keyword OOV rate varies as we increase the amount of tran-

scribed training data. The statistics were computed using the evaluation keywords.

Here we define keyword OOV rate as follows:

Keyword OOV Rate = 1 −
of keywords with at least one OOV word

of keywords
(3.1)

Table 3.4: Keyword OOV rate for various amounts of training data in four languages.

Amount of Training data Cebuano Kurmanji Telugu Swahili

40 hours (FLP) 11.84% 7.47% 13.93% 11.80%

10 hours (VLP) 37.27% 27.53% 33.14% 39.60%

3 hours (VLLP) 50.57% 41.68% 47.92% 54.81%

At 3 hours of training the data, the keyword OOV rate is around 50%. Even

with a rather large amount of transcribed data the OOV rate still remains at 10%.

In a naive implementation, performing KWS on an OOV term will return no results.

Thus, it is important to be able to handle OOV terms even in a setup with a higher

amount of transcription. For the rest of this section, we will focus mainly on the

VLLP which has the highest OOV rate.

3.4.1 Subwords

Often times words can be broken down into smaller units, such as syllables or mor-

phemes. Narasimhan et al.. proposed a method to use subword units for KWS [60].

Subwords can be used as the vocabulary words for decoding instead of words. The

pronunciations of the subwords can either be generated by a G2P for the case of a

phonetic system or be entirely graphemic. The LM can be trained by splitting the

original text into subwords. Using these units, we might be able to represent OOV

terms with known units. Table 3.5 summarizes the keyword OOV rate for different

subword units on the VLLP condition.

64 CHAPTER 3. MONOLINGUAL SYSTEMS

Table 3.5: Keyword OOV rate using different subword units on the VLLP condition.

decoding unit Cebuano Kurmanji Telugu Swahili

word 50.57% 41.68% 47.92% 54.81%

morph 17.21% 9.02% 11.46% 9.63%

syllable 7.62% 1.59% 4.14% 8.31%

As shown in the table, subword units can reduce the effective OOV rate signifi-

cantly. Syllable units are more effective in reducing keyword OOV rate, since they

are shorter, making them more flexible. The keyword OOV rate can be as low as 2%

as in the case for Kurmanji.

3.4.2 Phonetic Matching

As shown in Table 3.5, there are still some OOV terms left even after using subwords.

These are often names or foreign terms. As a result we also need another granularity

to search for OOV terms. Phonetic matching is often used as a final method to be

able to catch all the OOV terms.

First, the keyword is expanded into a list of possible phone sequence using a G2P

(or converted directly to a sequence of graphemes). The list is often expanded further

using a phoneme confusion matrix which specifies which phonemes are easily mistaken

for which other phonemes by the recognizer. The confusion matrix can be constructed

by aligning the recognition results with the ground truth phonetic sequence. The

confusion matrix can also include insertion and deletion possibilities. This process

will give a new set of phone sequences as the search terms. This expansion is often

referred to as “Fuzzy Matching”.

On the lattice side, we first generate a normal word or subword lattice [48]. The

lattice is then broken down into a phonetic lattice. This works better than a phonetic

decoder since there is a word language model that helps constrain the recognizer.

3.4. OOV HANDLING 65

3.4.3 OOV Handling Experiments

To evaluate the effectiveness of these techniques in handling OOV keywords. We con-

ducted KWS experiments on Swahili VLLP, which is the language for the OpenKWS

2015 evaluation. We trained a CD 3-state HMM-GMM recognizer using the graphemic

lexicon in the same manner as described in Section 3.2.2. This baseline ASR system

operates at 68.2% WER. The morphemes were generated using the Morphological

Chains model [60]. The syllables were generate using the method described in [13].

The method assigns each grapheme a label of either consonant or vowel. A syllable

can then be assigned based on the vowel locations.

For system combination of the KWS outputs, we used a simple method of averag-

ing the scores from multiple systems if the hypothesis overlapped. We kept only the

top 100 scoring hypothesis for each keyword to reduce the amount of false alarms.

Table 3.6: MTWV results on Swahili’s dev set using different subword units.

IV Keywords OOV Keywords All keywords

Word 0.2745 0.0000 0.1736

Syllable 0.1833 0.1500 0.1701

Morpheme 0.2512 0.1721 0.2205

Phoneme 0.2349 0.0076 0.1512

Combination 0.3469 0.3546 0.3449

Table 3.6 summarizes the effect of using the subword and phonetic search. As

shown in the table, for IV terms, word systems usually perform the best. How-

ever, for OOV keywords, the system cannot produce any hypothesis, thereby it re-

ceives a MTWV of 0. Comparing the results of syllables with morphemes shows

that morpheme-based lattices outperformed grapheme-based for both IV and OOV

keywords. This is because grapheme are generally longer units, and thus offers more

reliable scores. The system based on phonemes perform relatively well in IV keywords,

but poorly on OOV keywords due to generating too many false alarms. Finally, these

systems are highly complimentary. The combination of the four systems gives another

0.07 increase for IV and 0.17 for OOV over the best performing system.

Note that even more sophisticated techniques such as searching for an acoustically

66 CHAPTER 3. MONOLINGUAL SYSTEMS

similar sounding word that exists in the vocabulary instead of the original OOV

keyword [8] can improve the MTWV on OOV keywords even further.

3.5 Web Data Usage

Web crawling is often used to acquire a large amount of text data to train stronger

LMs. Web data also gives access to a larger set of vocabulary terms which helps

reduce the OOV rate. However, web crawling is not a trivial task for low resource

languages. Often times web resources are corrupted with other languages such as

English for languages which use Roman alphabets. It is important to clean and filter

web data before using it. The details of how such a process can be done can be found

in [99]. The amount of text web data after filtering are summarized in Table 3.7.

Table 3.7: Text data available for four languages.

Cebuano Kurmanji Telugu Swahili

Word count 38M 49M 6M 16M

Using web data, we can add the most frequent words into the vocabulary. Figure

3-2 and 3-3 show the reduction in keyword OOV rate and transcription OOV rate as

we add more words into the vocabulary. The transcription OOV rate is defined as

follows:

Transcription OOV Rate =
of OOV words in the transcription

of words in the transcription
(3.2)

As shown from the figures, web data augmentation can greatly reduce the OOV

rate. By the time 30,000 words are added, both OOV rates are almost halved in all

languages except Telugu. Telugu with its rich morphology has a larger vocabulary,

so the OOV rate remains high even after 50,000 words are added.

Since written text is usually different from conversational speech, it is often the

case that the LM perplexity barely improves over the original LM without web data.

Table 3.8 shows the LM perplexity on the dev data with and without web data. Here

3.5. WEB DATA USAGE 67

0

10

20

30

40

50

60

0 10000 15000 20000 25000 30000 35000 40000 45000 50000

Ke
yw

or
d
O
O
V
Ra

te
 (%

)

Amount of web vocabulary added (words)

Cebuano
Kurmanji
Telugu
Swahili

Figure 3-2: Transcription OOV rate as a function of the amount of vocabulary
added from web data. The starting vocab is the VLLP condition.

we added only the 30,000 most frequent words into the vocabulary. We also include

the LM interpolation weight for the VLLP text when we include an LM trained on web

data. As shown, the perplexity is better with the web LM. However, because of the

larger vocabulary size, the perplexity is often worse compared to the original VLLP

LM. The interpolation coefficient for the VLLP LMs are all very high, signalling a

mismatch between conversational speech and text from the web.

Table 3.8: Perplexity of LMs trained with and without web data.

Cebuano Kurmanji Telugu Swahili

LM without web data 132 168 312 246

LM with web vocab 185 250 583 382

LM with web vocab and text 170 220 485 307

Interpolation coefficient for VLLP LM 0.81 0.70 0.51 0.71

We then compare the LMs in the context of ASR. We built simple baselines

with PLP, F0, and PoV features using the setup described in Section 3.2.2. Table

68 CHAPTER 3. MONOLINGUAL SYSTEMS

0

5

10

15

20

25

0 10000 15000 20000 25000 30000 35000 40000 45000 50000

Tr
an

sc
rip

tio
n
O
O
V
Ra

te
 (%

)

Amount of web vocabulary added (words)

Cebuano
Kurmanji
Telugu
Swahili

Figure 3-3: Keyword OOV rate as a function of the amount of vocabulary added
from web data. The starting vocab is the VLLP condition.

Table 3.9: WER and MTWV comparisons of models with and without web data.

Cebuano Kurmanji Telugu Swahili

WER without web data 75.7% 85.5% 86.3% 68.2%

WER with web data 75.9% 86.4% 86.9% 66.3%

MTWV without web data 0.0869 0.0133 0.0166 0.1736

MTWV with web data 0.1312 0.0178 0.0215 0.2525

3.9 compares the WER and MTWV between systems built with and without web

data on the dev set. As shown in the table, the MTWV always improves with web

data. However, only Swahili got an improvement in WER after adding web data. In

general, augmenting with web data will hurt WER because of the language mismatch.

However, the richer vocabulary helps to improve KWS because it performs better

when keywords are in-vocabulary.

From here on, whenever we use data augmentation from the web, we will include

only the most frequent 30,000 words. This is chosen from the trade-off between

3.6. SUMMARY 69

computation efficiency and OOV reduction rate.

3.6 Summary

In this chapter, we described many techniques that can be used to help improve

ASR and KWS performance for low-resource languages. We started from exploring

F0 features that not only help tonal languages but also improve performance on non

tonal languages. Due to its robustness, we will include F0 and PoV features in all of

our experiments from this point.

For lexicons, there are two possible approaches depending on the available re-

source. In the case where there is some initial lexicon, the PMM can be used to learn

pronunciation of new words. The learned lexicon works as well as an expert lexicon

for the languages we tried. In the case where there is no lexicon at all, we found

graphemic lexicons to be an acceptable solution.

Finally, we looked into the problem of limited text data, especially the problem

of OOVs which can greatly effect KWS spotting performance. We found that using

subwords such as morphemes and syllables can greatly reduce the keyword OOV rate

and improve KWS results on both IV and OOV keywords. Using web data also leads

to an improvement in KWS due the reduction in OOV rate.

70 CHAPTER 3. MONOLINGUAL SYSTEMS

Chapter 4

Basic Multilingual Systems

4.1 Introduction

Using multilingual acoustic modeling to combat the insufficient data problem has

been studied by many researchers. However, due to the limitation of available corpora

most research had been forced to use rich resource languages, such as work by Burget

et al.. [6] which used English, Spanish, and German which are languages that are

closely related, so the conclusions might not apply in general. Besides the Babel

corpus, there exists another smaller corpus that is tailored specifically for multilingual

ASR research, the GlobalPhone corpus [79]. In this chapter, we will explore, as a

baseline, the methods used widely on the GlobalPhone corpus, namely training a

shared acoustic model on a shared phoneset [81].

4.2 Model Sharing Using Shared Phonemes

The paradigm used in many of the experiments conducted on GlobalPhone (or pre-

vious research in general) is based on the assumption that phonemes across different

languages are similar, so the phonemes can be used as a language independent unit

to share acoustic training examples between languages. In other words, there exists

a global phoneset that contains all the phonesets from each language and is highly

shared between the languages. Examples of such phonesets can be based on the In-

72 CHAPTER 4. BASIC MULTILINGUAL SYSTEMS

ternational Phonetic Alphabet (IPA) symbols [38] or other schemes such as Speech

Assessment Methods Phonetic Alphabet (SAMPA) [96] or Worldbet [34].

Thus, one method to train a multilingual speech recognizer is to first map all

the phones of each language into a common phoneset. The phoneset should also

be compact in the sense that languages should share the same symbols as much as

possible. Using a shared pool of phonemes will give more training examples to better

estimate models for each phoneme. The hope is that the recognizer trained on this

global phoneset would be a language independent acoustic model that can be used on

a target language not seen in training. To use the recognizer on a target language, one

would just construct the lexicon of the target language based on the global phoneset,

and tie it with the language-independent acoustic model.

Figure 4-1 depicts the training and testing process of the language independent

acoustic model using a global phoneset

4.3 Global Phoneset Experiments

We conducted experiments to see the effectiveness of this framework on the Babel

Corpus. We chose the LLP datasets of Turkish, Pashto, Tagalog, and Cantonese as

the source languages. These are the languages that were first available in the Babel

corpus. For the target language we picked Vietnamese, which is linguistically similar

to Cantonese. Vietnamese was also the language for the OpenKWS 2013 evaluation.

We trained a simple 3 state HMM-GMM recognizer using features consisting of 13

dimensional PLP, F0, and probability of voicing as explained in Section 3.2. We also

include the ∆ and ∆2 of all the features making it 45 dimensional in total.

We created a pool of 67 phonemes based on SAMPA phones. Language specific

phonemes that did not appear in the global phoneset were either mapped to an

existing phone or split into the one of the global phones, e.g. phoneme /kw/ in

Cantonese was split into /k/ and /w/. Tones are ignored. For the full list of the

mappings see Appendix A.

Table 4.1 shows the recognition results of the model when tested on the four source

4.3. GLOBAL PHONESET EXPERIMENTS 73

a

b
c

d

e

AB

CD

ก
ข

ค

1

2

3

4

a

B
d

A

Cค

ข

ก
b

e

Lang 1

Lang 2

Lang 3

Multilingual AM
trained using a
global phoneset

c

Source Languages

cat : 4 2 1
dog : 1 3 4

Target language
lexicon in the
global phoneset

Target language ASR

Target
language LM

Figure 4-1: A simplified view of how a multilingual ASR can be trained and ap-
plied to a target language based on using a common global phoneset. The numbers
represent phones in the global phoneset, while the different characters represent the
phonemes in different languages. The multilingual AM can be trained by mapping
different phonemes to the same global phoneme. Finally, an ASR system can be built
for the target language by using a lexicon that uses the global phoneset.

74 CHAPTER 4. BASIC MULTILINGUAL SYSTEMS

languages. We also include the performance of the system trained on the original

lexicon provided in the corpus. From the results, there is no real difference between

using the original lexicon and the mapped lexicon based on the global phoneset, which

means our mapping is working correctly. However, there are WER degradations of

around 3% in the multilingual training for all languages. This is consistent with

the work in [81]. Since the multilingual training adds additional confusibility to the

model, the model degrades for the source languages.

Table 4.1: WER on the source languages using for the model trained on the multi-
lingual phoneset. The Babel lexicon column indicates systems trained on the original
phoneset, while the Multilingual lexicon column includes system that uses the global
phone mapping. Monolingual GMM indicates that the system is trained on one lan-
guage, while the multilingual GMM system is trained on all four languages. For
Monolingual GMM systems, the language used for training is the same as the one
used to evaluate the system.

Babel lexicon Multilingual lexicon

Monolingual GMM Monolingual GMM Multilingual GMM

Cantonese 76.1% 76.0% 77.8%

Pashto 79.6% 79.5% 82.0%

Turkish 80.8% 80.9% 84.4%

Tagalog 81.5% 81.8% 84.8%

Table 4.2 shows the recognition results of the model when tested on the target

language, Vietnamese. As a baseline, we also include the performance for systems

trained on only Vietnamese data. From the table, the multilingual acoustic model

performs much worse than the monolingual baseline. Upon further analysis of the

WER, most of the errors are deletion errors. The multilingual recognizer tends to

generate �foreign� and �unintelligible� tokens rather than actual words when

tested on Vietnamese. The work in [81] applied two additional training passes to

adapt the multilingual model for some gain in performance. Our model, however,

degrades when the same adaptation is applied. This might be because the original

WER is too high.

4.4. ANALYSIS 75

Table 4.2: WER on the target language, Vietnamese, using the model trained on
the multilingual phoneset. The multilingual GMM is trained on the source languages
which do not include Vietnamese.

Babel lexicon Multilingual lexicon

Monolingual GMM Monolignual GMM Multilingual GMM

Vietnamese 80.7% 81.3% 95.2%

With Adaptation n/a n/a 96.2%

4.4 Analysis

The recordings in GlobalPhone are read speech which are carefully recorded in a very

uniform recording conditions. However, the Babel corpus consists of conversational

speech in noisy conditions which is inherently harder (The WER on GlobalPhone are

mostly in the 30% WER range). Conversational speech causes the multilingual model

to become too broad which causes the �foreign� and �unintelligible� models to

dominate in mismatched conditions. Another important factor is the channel effect

due to the different cellular carriers in each country. The mismatch in acoustic condi-

tions can cause the models to perform poorly. Ragni et al.. showed that Cantonese’s

acoustic models are very different from other language [70]. We will also present

evidence supporting channel effects in Section 6.4.3.

Note that mapping phonesets requires an existence of the lexicon and linguistic

knowledge of the target language, which we might not have access to in certain

scenarios. There are methods that can learn the mapping automatically [28], but a

starting lexicon and a working recognizer in the target language are still required.

4.5 Summary

In this chapter, we applied a baseline method for training Multilingual ASR to the

Babel corpus. A global phoneset is constructed to represent all possible speech

phonemes. The lexicons are then mapped to the phoneset in order to train a sin-

gle multilingual ASR using training data from multiple source languages. Unlike

previous work which used the GlobalPhone corpus, we noticed a large degradation

76 CHAPTER 4. BASIC MULTILINGUAL SYSTEMS

using this technique due to the fact that recordings in Babel are less uniform due to

the spontaneous nature and channel variations. These observations have also been

confirmed by Knill et al. [45].

Chapter 5

Low-rank Stacked Bottleneck

Architecture

5.1 Introduction

In Section 2.5 we described two frameworks for incorporating DNNs in a recognizer,

namely the hybrid DNN-HMM approach, and the Tandem approach. The Tandem

approach uses a DNN as a feature extractor for a standard GMM-HMM recognizer.

This approach has the benefit of being able to use existing techniques developed for

the GMM-HMM framework such as discriminative training, or speaker adaptation.

Having access to robust features also makes it easy to work in a low resource setting.

One can easily train the feature extractor on a high-resource language and use it on a

low-resource language. However, there usually exist a gap in performance between the

Tandem approach and the hybrid approach, since the existence of the low-dimensional

bottleneck layer reduces the effectiveness of the DNN. In this chapter, we propose a

method to improve existing Tandem approaches to be more in line with the hybrid

approach1.

1Many of the findings in this Chapter were published in [101].

78 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

5.2 Model Description

Before we describe the proposed method, we provide an overview of two related efforts

that inspired our BN architecture: low-rank matrix factorization for DNN weights,

and the Stacked Bottleneck (SBN) framework.

5.2.1 Low-rank Matrix Factorization

The left side of Figure 5-1 shows a typical ASR DNN architecture, where there is

a stack of hidden layers followed by a softmax layer. In the figure, the nonlinear

activation function F are Sigmoids functions. If the top hidden layer has h hidden

units, and there are s targets labels, the weight matrix will be of size h ∗ s. Following

Sainath et al., [76] we investigate a low-rank approximation to the weights of the

softmax layer of the network. By considering the weights of the softmax layer as

a matrix, we can factorize the weight matrix into two matrices of lower rank. As

illustrated by the right side of Figure 5-1, this is done by replacing the usual softmax

layer weights by a linear layer with a small number of hidden units followed by a

softmax layer. More specifically, a new BN output layer with r linear hidden units is

inserted into the last weight matrix with a hidden layer of size h, and a softmax layer

with s state posterior outputs. This changes the number of parameters from h ∗ s to

r ∗ (h+ s). Notice that there is no non-linearity for this BN output layer. Instead of

using this structure for hybrid DNNs, we use it for extracting BN features. There are

two benefits of using this method. First, it ensures the best achievable frame accuracy

even with a relatively small r. Second, the linearity of the outputs for the BN layer

prevents the loss of information when we treat the DNN as a feature extractor.

5.2.2 Stacked Bottleneck (SBN) Features

The idea of using hierarchical processing of DNNs has been explored by several re-

searchers. Valente et al. uses a second NN to help correct the posterior outputs of

the first DNN by feeding it a different set of features [91]. For low-resource languages,

SBN features have shown promising results in [41]. One argument for the the used of

5.2. MODEL DESCRIPTION 79

Weights h*s
Low rank
factorization

Weights r*s

Weights h*r

Linear

Bottleneck Features

Softmax LayerSoftmax Layer

Sigmoid

Figure 5-1: Diagram of the low-rank factorized DNN. The left side of the picture
represents a typical DNN with h hidden units and s target labels. The right side of
the picture shows the low-rank bottleneck DNN. The final layer is now replaced by
two set of weights with a linear activation function in between. Bottleneck features
can be extracted from the DNN by taking the output of the linear activations.

these cascading structures is that they enable more information, such as additional

context, to be used more effectively [40].

5.2.3 Low-Rank Stacked Bottleneck (LrSBN)

Figure 5-2 gives an overview of our proposed low-rank SBN (LrSBN) feature extrac-

tion framework. The BN outputs from the first DNN are concatenated with context

expansion and fed to the second DNN. Context expansion is done by concatenating

frames with time offsets −10,−5, 0, 5, 10. We always place the linear BN layer (for

the low-rank factorization) in the last hidden layer instead of a sigmoid BN layer in

the middle of the network such as ones in [40, 95]. Experiments in [76] have shown

that the hidden layers do not have the same low-rank properties as the weights in the

softmax layer. We also use tied-states as the output targets instead of CI targets.

80 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

I
n
p
u
t

f
e
a
t
u
r
e
s

Context +/- 15
down sampled by

factor 5

Second stage network

LrSBN features

First stage network

Low-rank matrix
factorization

Low-rank matrix
factorization

Figure 5-2: Diagram of the stacked bottleneck neural network feature extraction
framework [101]. Two DNNs are combined together in a series. Starting from the
left side of the picture, original input features are passed to the first low-rank BN
network. The activations of the linear layer are extracted, and combined with activa-
tions computed from four other frames with time offsets -10,-5,+5,+10. The stacked
feature is then used as input features to the second BN network. Finally, the LrSBN
features can be extracted from the BN layer of the second DNN.

5.3 LrSBN Experimental Description

5.3.1 Baseline HMM Systems

Our baseline HMM systems were trained using the Kaldi ASR toolkit [65]. We used

13 dimensional PLP features concatenated with F0 estimates and the PoV [89] as

described in Section 3.2. Conversation-based mean and variance normalization was

applied in both training and testing stages. The resulting 15-dimensional features

were concatenated using ±4 frames before and after the middle frame resulting in 135

dimensional vectors. LDA and MLLT [21] were applied to reduce the dimensionality

and orthogonalize the features. Finally, a global fMLLR [20] was applied to normalize

inter-speaker variability. For acoustic modeling, we used phonetic decision-based tied-

state triphone CD-HMMs with ∼2500 states and 18 Gaussian components per state.

Trigram language models were created from training data transcripts.

5.3. LRSBN EXPERIMENTAL DESCRIPTION 81

5.3.2 Baseline Hybrid DNN Systems

The hybrid DNN systems were also created using Kaldi [65]. The DNNs had 6 hidden

layers. The output layer was a softmax layer with target outputs corresponding to

CD-HMM states. The network inputs were the speaker adapted features from the

CD-HMM baseline (both for training and test) and concatenated using ±5 frames (the

total size is 40 ∗ 11 = 440). We used 1024 hidden units for each hidden layer. The

nonlinearities in the hidden layers were sigmoid functions, and the objective function

is the cross-entropy criterion. The alignment of CD states to frames was derived from

the CD-HMM baseline systems and remained fixed during training.

The DNN was pre-trained by restricted Boltzmann machines and fine-tuned using

the “new-bob” algorithm as described in Section 2.5.6. The initialization of the

network and the learning rate followed the setting in [71]. We also perform sequence

training with the sMBR criterion [94] to achieve the best possible results.

5.3.3 LrSBN systems

The input features for the first DNN (Figure 5-2) follows the method of [41] which ex-

tracts a kind of modulation frequency features. 23 critical-band energies are obtained

from a Mel filterbank, with conversation-side-based mean subtraction. These features

are augmented with F0 and PoV features as described in Section 3.2. 11 consecutive

frames are stacked together (110 ms). Each of the 23+2 dimensions is then multiplied

by a Hamming window across time, and a Discrete Cosine Transform (DCT) is ap-

plied for dimensionality reduction. The 0th to 5th coefficients are retained, resulting

in a feature of dimensionality (23 + 2) ∗ 6 = 150. The feature extraction process is

illustrated in Figure 5-3

The input features of the second DNN are the outputs of the BN layer from

the first DNN. Context expansion is done by concatenating frames with time offsets

−10,−5, 0, 5, 10. Thus, the overall time context seen by the second DNN is 31 frames

(310 ms). Both DNNs use same setup of 5 hidden sigmoid layers and 1 linear BN

layer. Both use tied-states as target outputs. The targets are generated by forced

82 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

STFT | |2 log
Speaker
CMVN

F0, PoV
extractor

Mel
Filters

Log‐critical
band
spectrogram

DCT‐11
in time

DCT‐11
in time

DCT‐11
in time

Input feature
to the DNN

Take 0th‐5th DCT coefficients

Figure 5-3: Diagram of the feature extraction used for the input to the DNN. The
top portion of the figure follows a typical log-critical band spectrogram generation
process. F0 and PoV features are then augmented to the spectrogram. Finally, a DCT
of size 11 are computed across time to extract modulation frequency information.

alignment from the HMM baseline. No pre-training is used. Finally, the raw BN

outputs from the second DNN are whitened using a global PCA, and used as features

for a conventional CD-HMM system.

5.4 Analysis of LrSBN Features

5.4.1 Context-independent (CI) vs Context-Dependent (CD)

Labels

In [41], a DNN was trained to classify CI states. However, we have found, as have

others [98], that using CD targets produces better results. Table 5.1 compares WERs

between BN systems trained from CI versus CD labels on the Turkish LLP task. Note

that we train CD GMM-HMMs using the extracted BN features whether or not the

BN was trained using CI or CD targets. The PLP-based baseline for this task had

5.4. ANALYSIS OF LRSBN FEATURES 83

a WER of 75.0%. The first column in the table shows that if CD labels are used to

train a single stage network, a 1.2% WER gain is obtained over CI labels. We also

compare WER difference between single DNNs and a stacked architecture. A gain of

2.2% is obtained when CD labels are used to train the stacked network. Therefore,

in all subsequent experiments described, we use only CD labels for SBN training.

Table 5.1: WER comparison on Turkish LLP for BN systems trained using CI or
CD labels.

of target labels Single DNN Stacked DNN

CI targets 132 69.6% 68.8%

CD targets 1950 68.4% 66.6%

5.4.2 The Best Layer for Bottleneck Placement

Past research [76] has shown that DNN hidden layers do not all have the same low-

rank properties. Following this observation, we compare the cross entropy per frame

for different DNN configurations. Table 5.2 shows the average cross entropy (CE)

per frame on the cross validation set for different BN placements on the Bengali LLP

data. In all setups, the BN layers have 80 hidden units. As the table shows, putting

a low-rank linear layer in the middle performs worse than a typical sigmoid BN layer.

On the other hand, the low-rank softmax layer also has the lowest cross entropy per-

frame. Thus, for all remaining experiments, we put the BN layer as the last hidden

layer.

Table 5.2: DNN Comparisons of average CE per frame on Bengali LLP. ‘Last’ refers
to putting the BN layer right before the softmax layer.

BN Type Sigmoid layer Low-rank linear layer

BN Location Middle Last Middle Last

Avg. CE 0.253 0.250 0.257 0.245

84 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

5.4.3 Low-rank on the Softmax Layer

In order to determine whether the low-rank factorization on the softmax layer is

necessary, we also evaluated the features generated by different activation functions

on the Bengali Limited condition. The PLP-based GMM-HMM baseline for this

task achieved 75.3% WER. In Table 5.3, we compare the results we achieve with BN

features using a standard sigmoid on the softmax layer (SBN) with those obtained

using the low-rank formulation (LrSBN). We also considered two BN derivations. In

the first row of Table 5.3, we use the BN feature directly without any post-processing.

In the second row, we do PCA on raw BN features, and reduce the dimensionality

from 80 to 30. We then add ∆ and ∆2 BN features to model additional contextual

information. It can be seen that for both conditions, the LrSBN achieves better

performance.

Table 5.3: WER comparison on Bengali LLP between different BN DNN setups.
SBN refers to a normal stacked bottleneck architecture with Sigmoid non-linearities.
LrSBN refers to the proposed method which used a linear layer for the BN layer.

SBN LrSBN

raw BN 70.8% 69.2%

raw BN (PCA) + ∆ + ∆2 68.1% 67.2%

5.4.4 Results on Larger tasks and Different Languages

Further evaluation of the proposed method was performed on different languages

with a speaker-adapted model. On this task, we compared the baseline GMM-HMM

system, the hybrid DNN-HMM system, and the LrSBN system. The top of Table 5.4

shows that with standard ML training, an improvement of over 10% relative could be

achieved when using LrSBNs. This result is even better than a hybrid DNN system

that uses speaker-adapted input features. After speaker-adaptive training (fMLLR)

and state-level minimum Bayes risk (sMBR) discriminative training [23] on the LrSBN

features, the performance of the LrSBN system is similar to the hybrid DNN system

with sequence training (SQ) in Bengali, while performing 0.6% better in the Assamese

5.4. ANALYSIS OF LRSBN FEATURES 85

case.

Table 5.4: WER comparisons between hybrid and tandem approaches on Bengali
and Assamese LLP with different recognition setups. Three different sets of acoustic
modeling techniques can be applied. The simplest system uses just the Maximum
Likelihood (ML) training. LDA+MLLT feature transforms can be learned to train
a stronger system. Finally, speaker adaptation (fMLLR) and discriminative training
(sMBR) can be used for further improvements.

AM Training ML LDA+MLLT fMLLR+sMBR

Bengali LLP

PLP+F0 75.3% 74.4% 71.8%

DNN-HMM n/a n/a 68.0%

DNN-HMM+SQ n/a n/a 66.1%

LrSBN+∆+∆2 67.2% n/a 66.0%

Assamese LLP

PLP+F0 74.6% 73.0% 70.5%

DNN-HMM n/a n/a 67.2%

DNN-HMM+SQ n/a n/a 65.7%

LrSBN+∆+∆2 65.8% n/a 65.2%

In addition to examining the limited condition training task, we also quantified

the performance of the LrSBN features on the Bengali Full condition task. The WER

comparisons are shown in Table 5.5. It can be seen the gain compared to the PLP

baseline is even larger than for the limited condition case, with a 12.6% relative gain.

It is also better than the Hybrid DNN system, improving the performance from 59.4%

to 56.4%. Compared to the hybrid system with sequence training, the performance is

still slightly better. Note that using sequence training has its disadvantages in terms of

training time. For example, using a Tesla K20 GPU, an iteration of sequence training

took up to 6 hours compared to the 40 minutes for cross entropy training. This

can be an important constraint for the Babel project which emphasizes rapid system

deployment. Using BN features also better lends itself to further improvements using

standard techniques. Such improvements include better use of context information

via discriminative training [64], and using speaker-adapted features as DNN inputs

which we will describe in the following section.

86 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

Table 5.5: WER comparisons between hybrid and tandem approaches on Bengali
FLP.

AM Training ML LDA+MLLT fMLLR+sMBR

PLP+F0 69.2% 68.4% 64.5%

DNN-HMM n/a n/a 59.4%

DNN-HMM+SQ n/a n/a 55.6%

LrSBN+∆+∆2 59.6% n/a 55.4%

5.4.5 Speaker Adaptation on the First BN Output

Since the output of the first DNN can be used as an input to a regular GMM-HMM

system, speaker adaptation techniques such as fMLLR [20] can also be applied on the

first BN output for further gains.

Even though DNNs have the power to normalize the inputs from noise and other

variabilities, they do so on a much smaller time scale, e.g. in frames. On the other

hand, the transform learned in fMLLR is estimated over the entire 5 minutes record-

ing, thereby offering complementary gains. Table 5.6 summarizes the improvement

after we apply SAT on the first BN output, which seems to yield a gain of around

0.5% absolute improvement.

Table 5.6: WER after applying SAT on the first BN.

Language LrSBN+∆+∆2 with SAT

Bengali LLP 66.0% 65.4%

Bengali FLP 55.4% 55.0%

Assamese LLP 65.2% 64.9%

5.5 Multilingual Training of SBNs

Each DNN in the SBN can be trained in a multilingual fashion just like how one would

train a multilingual DNN [28]. There are several methods for training multilingual

DNNs. In [28, 44], a multilingual phoneset is created, and all the phonemes from

the source languages are mapped to the set. However, in Chapter 4, we have found

that using a multilingual phoneset might give worse results due to mismatches in

5.5. MULTILINGUAL TRAINING OF SBNS 87

the data. The work in [28, 93] shows that a simpler scheme of concatenating each

language outputs in the softmax layer can perform just as well. To do so, there are

two different approaches depicted in Figure 5-4 and Figure 5-5

• One softmax The target output from each language are pooled together into

one single big softmax layer. This has an effect of doing discrimination against

all targets of the other language as well.

Shared hidden layers

Lang A Lang B Lang C Lang N

bottleneck

Input frames from
multiple languages

Figure 5-4: One softmax multilingual training. The target labels from multiple
languages are combined into one large softmax layer.

• Block softmax The task is now considered as a multi-task training, where each

language is considered as its own task with its own softmax with shared hidden

layers. It is important that each mini-batch still includes all the languages used

so that the parameters do not favor any particular language.

Shared hidden layers

Lang A Lang B Lang C Lang N

bottleneck

Input frames from
multiple languages

Figure 5-5: Block softmax multilingual training. Each language has its own separate
softmax layers while the hidden layers are shared.

88 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

To compare the two training methods, we trained four different bottleneck DNNs.

The first two were trained using the FLP of 5 languages, Cantonese, Pashto, Taga-

log, Turkish, and Vietnamese, totalling 300 hours of training data. The other Two

were trained using 11 languages, 500 hours of training data total. The additional 6

languages were Assamese, Bengali, Haitian, Lao, Tamil, and Zulu. We then used the

DNNs to extract features to train recognizers on Cebuano VLLP. Table 5.7 summa-

rizes the difference between each training methods.

Having more languages helps improve performance by 2% for both training meth-

ods, showing the power of language diversity. When comparing training methods,

one softmax works as well as block softmax when the number of languages is small.

Once there are more languages, block softmax does slightly better, possibly due the

increased difficulty to differentiate between the same phonemes in different languages

during training. However, one softmax is faster to train due to the simplicity of the

model.

Table 5.7: WER comparison between one softmax and block softmax for training
multilingual BN features. The target language is Cebuano VLLP.

Cebuano VLLP One softmax Block softmax

5 languages 72.4% 72.3%

11 languages 70.3% 70.0%

5.6 Summary

In this chapter we described the Low-rank Stacked Bottleneck (LrSBN) architecture.

By placing a low-dimensional linear layer right before the softmax layer, we were able

to exploit the low-rank properties of the softmax layer and extract better features.

Using a hierarchical structure to exploit longer context frames also helped improve

performance of the BN feature even further. Our LrSBN model was able to improve

over the standard HMM-GMM models by 10% absolute WER, and over the hybrid

DNN-HMM by 4% in the FLP condition. Since the publication of this work, using

a linear layer for extracting bottleneck features has become the standard in the ASR

5.6. SUMMARY 89

community [30, 45, 58, 74]. We have also looked into two different approaches for

multilingual training of DNNs. We found block softmax, which train each language

using its own softmax in a multi-task manner, to outperform simple concatenation of

labels from each languages.

90 CHAPTER 5. LOW-RANK STACKED BOTTLENECK ARCHITECTURE

Chapter 6

Multilingual Transfer Learning

Using Language Identification

6.1 Introduction

In the previous chapter, we described how one can use DNNs to learn better repre-

sentations from acoustic data by using the LrSBN. Researchers have also used BN

features to leverage out-of-domain resources, by training the DNN in a domain with

rich resources and applying it on domains with limited resources, a technique often

called transfer learning [85, 93, 95]. The resource used to train the DNN does not

need to come from one language, but can come from a variety of languages. This so

called multilingual training help make the DNN becomes more language independent,

since it is trained on many kinds of phenomena that might exist in certain languages

[93]. In [30], the target language data is also used for adaptation of the multilingual

DNN by doing additional fine-tuning steps. These approaches not only alleviate the

lack of training data, they also reduce the amount of time required to train DNNs for

the target languages.

None of the work mentioned above addresses the issue of what to do when there

are multiple source BN systems to choose from, i.e. having one BN system for each

language. This is not an unrealistic scenario, as researchers often have multiple

recognizers on hand. Since there is evidence that transfer learning works better when

92 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

the domains are closer, picking the correct source language for the target language

would be more beneficial. Another related question is what are good languages to

include when training multilingual DNNs. In this chapter, we will try to answer these

two related questions.

In this chapter, we propose an effective Language Identification (LID) method

to select possible candidate languages for transfer learning in the LrSBN framework.

The same method can also be used to identify data that is most useful for multilingual

training, which ultimately improves the ASR system on both transcription and KWS

tasks1.

6.2 Language Pair Transfer Learning

In this section, we motivate the potential benefits of language pair transfer learning,

and whether these systems, especially the trained DNNs, can be used to facilitate the

training of new target languages.

6.2.1 A Case Study on Assamese and Bengali

We start by looking at the best case scenario possible, namely the language pair of

Assamese and Bengali. Assamese and Bengali are spoken in adjacent regions in In-

dia. They are known to be linguistically close, with overlapping phoneme inventories

[72]. We used LLP Bengali and FLP Assamese as the target and source languages,

respectively. The transfer learning was done by using the LrSBN architecture trained

on FLP Assamese data to extract BN features for LLP Bengali. Tied-state triphone

CD-HMMs, with 2500 states, and 18 Gaussian components per state, were used for

acoustic modeling. We used the same input features as the ones described in Section

5.3.3. Discriminative training was done using the Minimum Bayes risk (MBR) crite-

rion [23]. For language modeling, a trigram LM was learned from only the training

data transcripts. We used the provided phonetic lexicon in this experiment.

1Many of the experiments in this chapter were first published in [100] and [10].

6.2. LANGUAGE PAIR TRANSFER LEARNING 93

Table 6.1: WER on Bengali with different data usage scenarios. Assamese FLP
data is used to train BN features to use in Bengali. The numbers under the BN and
GMM columns refer to the amount of acoustic training data in hours used to train
the bottleneck and the GMM, respectively.

System
Bengali data Assamese data WER

BN GMM BN (%)

(a) LLP PLP 10 10 0 71.8

(b) FLP PLP 62 62 0 64.5

(c) LLP BN 10 10 0 66.0

(d) LLP + FLP Assamese BN 0 10 61 64.6

(e) LLP + Adapted FLP Assamese BN 10 10 61 63.7

(f) LLP + FLP Bengali BN 62 10 0 61.6

(g) FLP BN 62 62 0 55.4

Instead of just using the DNNs trained on Assamese data, we also adapted them.

This was done by replacing the original softmax layer with a randomly initialized

Bengali softmax layer, and performing additional fine-tuning iterations on the Bengali

LLP. Replacing the softmax layer completely eliminates the need to do phoneme map-

ping between languages, which can sometimes be complicated and does not guarantee

good performance, as mentioned in Chapter 4. This adaptation process is equivalent

to using the Assamese data to “pre-train” the Bengali network, which helps initialize

the DNNs into a better starting point. With the better initialization the network

typically converges in 5 epochs instead of the 10 epochs needed for a randomly ini-

tialized network. The adaptation is done on both DNNs, one at a time starting from

the first DNN.

Table 6.1 summarizes the results of the experiments. As we have shown in the

previous chapter, the LrSBN systems significantly outperform the standard PLP sys-

tems (a vs. c and b vs. g). The BN system trained on just 10 hours of data performs

almost as good as the PLP system trained on 60 hours, which shows the effective-

ness of having stronger features. The FLP BN system also has 10.6% lower WER

compared to the LLP counterpart (c vs. g.).

Using the Assamese BN features trained on 60 hours of data improved the WER

94 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Table 6.2: WER using between different language pairs. Numbers in parenthesis
are Limited Monolingual BN baseline.

Target (Limited)
Source BN (Full)

Bengali Assamese Lao Turkish

Bengali (66.0) 63.7 65.1 64.2

Assamese (65.2) 61.2 62.9 62.1

Lao (62.3) 59.8 60.1 60.0

Turkish (63.9) 61.8 63.1 63.3

by 1.4% absolute over the 10 hour Bengali BN baseline system (d vs. c). Adapting

the DNN to 10 hours of Bengali data reduces the WER even further to 63.7% (e).

As an Oracle baseline, we also use a BN system trained on FLP Bengali to extract

features for the LLP Bengali system (f). The WER of this setup is 61.6%, 4.4% lower

than the baseline LLP BN system. Thus, transfer learning is able to improve the

performance on 10 hours of Bengali data from 66.0% to 63.7%, which is around half

of the gain of the oracle system where the BN features are trained on matched data.

6.2.2 Other Language Pairs

To look at the possibility of transfer learning in a broader scenario, where the lan-

guages are less similar, we expand our experiments to include two more languages,

namely Lao and Turkish. Lao is a tonal language in the Tai-Kadai language family,

while Turkish is in the Turkic language family. These two languages are unrelated

to the Assamese and Bengali and, thus, chosen as contrastive languages. Table 6.2

summarizes the BN feature transfer learning WERs with target language adaptation

on the four languages. As expected, the closest language pair of Assamese and Ben-

gali seems to mutually benefit the most. Bengali also seems to be a good language in

general for the other three languages.

6.2.3 Language Identification for Source Language Selection

Although the experiments in Section 6.2.2 are promising, we would like to avoid

relying on expert knowledge on which language pairs would prove useful. Moreover,

6.2. LANGUAGE PAIR TRANSFER LEARNING 95

Table 6.3: Average posteriors for the initial LID experiment.

Input frames
Predicted posteriors (Averaged)

Bengali Assamese Lao Turkish

Bengali 0.57 0.21 0.09 0.13

Assamese 0.21 0.57 0.11 0.11

Lao 0.08 0.11 0.71 0.10

Turkish 0.13 0.12 0.10 0.65

in most cases language similarities are far from obvious from the limited pool of

available source languages. The prospect of trying out all possible source languages

might not be time efficient. We propose to use Language Identification (LID) as a

way to determine which language to use as the source language. The LID system

is a DNN with 2 hidden layers and 512 hidden units per layer for LID on the four

languages. To compute the LID scores given a source language, we compute the

posterior probabilities averaged across all frames in the target language. The LID

scores should correspond to how close the target language is to each source language.

The process is shown in Figure 6-1.

We randomly selected 90% of the Limited training sets for training the network.

Unlike the DNN-based LID work in [100], we use the same input features as the ones

described in Section 5.3.3. This is to make the LID DNN decide which languages are

similar based on what the BN DNN would observe. We then use the DNN to classify

the remaining 10% of the (held out) data. Table 6.3 summarizes the posteriors of each

language, averaged across all frames. The closeness between Assamese and Bengali

are again confirmed by the LID results, with average posteriors of 0.21. Turkish is

also closest to Bengali, which is consistent with our previous experiment. Less similar

pairs seem to also correspond to worse WERs in the previous experiment. The only

language that does not follow the predicted trend seems to be Lao. However, the

WER difference between using the closest language (in the LID sense) and the best

possible outcome is only 0.3%. Thus, we believe that LID is a reasonable method to

select a source language for transfer learning.

96 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Lang 1
Lang 2

Lang 3 Lang N

Language Labels

Target
Language

Average over all
frames

LID scores for each source language

Source languages

Training Testing

Figure 6-1: Training and testing of the LID DNN. In the training stage, frames
from the source languages are used to train a DNN with language labels as the output
target. At test time, the DNN is then used to compute posteriors scores which are
then averaged over all frames.

6.3. TRANSFER LEARNING EXPERIMENTS 97

6.3 Transfer Learning Experiments

In this section, we compare different multilingual strategies and their training time

trade-off. For a stronger baseline, we modified the BN features described in Section

5.3.3 as follows: The filterbank inputs were processed with VTLN warping factors

[77]. Speaker adaptation is also applied to the outputs of the first BN DNN before

feeding it to the second BN DNN as described in Section 5.4.5. Cantonese, Turkish,

Pashto, Tagalog and Vietnamese are chosen as source languages.

A multilingual stacked bottleneck DNN is trained on the Full condition of all

source languages which consists of ∼300 hours. The DNN training follows the One

Softmax method described in Section 5.5. Language-specific speaker adaptation is

then applied on the outputs of the first DNN. Similarly, the monolingual versions of

all source languages are trained using this procedure.

6.3.1 Adaptation Strategies

Since there are two DNNs in the LrSBN architecture, several adaptation strategies

are available. In [30], they observed that it is beneficial to adapt the first DNN.

However, the second DNN should be either adapted, or trained from scratch using

the target data only, depending on the target language. Thus, for our experiments,

we always adapt the first DNN from either the multilingual DNN or the monolingual

DNNs from the source languages. For the second DNN, the following approaches

were considered:

Target only

The second DNN is trained from random initialization using only the target language

data with the BN output from the first DNN as input features.

Multi

The second DNN is adapted from the corresponding multilingual DNN, as depicted

in Figure 6-2.

98 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

First DNN

Second DNN

Training Progress

Multi‐
lingual

Multi‐
lingual

Adapt

Purely
Multilingual
Features

Target
lang

Target
lang

Target
lang

Target
lang

Target
Language
Features

Adapted Multilingual SBN

Adapt

Figure 6-2: Adaptation of the SBN using the Multi method. The first and the
second DNN are adapted using the data from the target language sequentially.

Mono

The second DNN is adapted from an existing monolingual DNN from a source lan-

guage. The source language can either be selected at random, or selected using the

LID scores. We depicted the case where we use the closest language according to the

LID scores in Figure 6-3.

Mono re-train

Re-train from a random initialization the monolingual DNN using the features from

the first multilingual DNN which is already adapted to the target language. Then,

use the target language data to do adaptation as depicted in Figure 6-4. Just like the

mono case, the source language can either be selected at random, or selected using

the LID scores.

Multi re-train

Re-train from a random initialization the multilingual DNN using the features from

the first multilingual DNN which is already adapted to the target language. Then,

6.3. TRANSFER LEARNING EXPERIMENTS 99

Closest
Language

First DNN

Second DNN

Training Progress

Multi‐
lingual

Adapt

Target
lang

Target
lang

Target
lang

Target
lang

Target
Language
Features

Adapt

Figure 6-3: Adaptation of the SBN using the Mono re-train method using the LID
scores. The first DNN is adpated from the multilingual first DNN. However, the
second DNN is adapted from the DNN already trained on the closest language.

Closest
Language

First DNN

Second DNN

Training Progress

Multi‐
lingual

Multi‐
lingual

Adapt

Purely
Multilingual
Features

Target
lang

Target
lang

Closest
Language

Adapt

Target
lang

Target
lang

Target
Language
Features

Random Initialization

LID-based multilingual SBN

Figure 6-4: Adaptation of the SBN using the Mono method using the LID scores.
The first DNN is adpated from a multilingual first DNN. BN features are extracted
from the adapted DNN and used to train a new DNN on the closest language from
random initialization. The DNN is finally adapted to the target language.

100 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Table 6.4: LID posteriors of the 5 source languages languages.

Input frames
Predicted posteriors (Averaged)

Tagalog Pashto Turkish Cantonese Vietnamese

Lao 0.25 0.08 0.14 0.16 0.37

Assamese 0.31 0.18 0.19 0.06 0.26

use the target language data to do adaptation.

While the original multilingual DNN can be trained in advance, we do not consider

multi re-train since re-training the multilingual DNN would take longer than one

week. Re-training a Full condition’s worth of data (mono re-train) would take around

13 hours. The adaptation of the DNNs with 10 hours of target language data (all

methods) can be done in less than one hour.

6.3.2 LID-based adaptation Results

For our multilingual experiments we chose LLP Lao and LLP Assamese as our target

languages. A DNN for LID was trained for the five source languages languages as

described in Section 6.2.3. The average predicted posteriors from the Limited con-

dition of the two target languages are summarized in Table 6.4. Lao is closest to

Vietnamese, while Assamese is closest to Tagalog. Note that Pashto and Assamese

fall under the same language family of Indo-Iranian, but Pashto is placed fourth in

terms of LID similarity to Assamese.

Table 6.5 shows the results of the different adaptation strategies where LID de-

notes using the monolingual DNN from the closest source language language. For

comparison, we also use Pashto as another possible source language. The baseline

BN systems using only the target language data have a WER of 61.5% and 63.3% for

Lao and Assamese, respectively. All the multilingual systems perform better than the

baseline, showing the benefits of using additional resources to facilitate low-resource

ASR. Adapting both DNNs improves the WER in all cases. As expected, using the

closest language DNN performs better than Pashto (d vs. e). More importantly,

using the monolingual DNN from the closest languages for the first and second DNNs

6.3. TRANSFER LEARNING EXPERIMENTS 101

Table 6.5: WER on Lao and Assamese LLP using different adaptation strategies.
Letters in parentheses denote the source language used for the monolingual DNNs;
Tagalog (T), Pashto (P), Turkish (U), Cantonese (C), and Vietnamese (V)

DNN for adaptation WER (%)

1st stage 2nd stage Lao Assamese

a target only target only 61.5 63.3

b multi target only 59.0 61.2

c multi multi 57.5 59.4

d multi mono 58.0 (P) 60.1 (P)

e multi LID 57.5 (V) 59.4 (T)

f LID LID 56.8 (V) 59.3 (T)

g LID LID re-train 56.5 (V) 59.0 (T)

h multi LID re-train 56.0 (V) 58.5 (T)

i multi mono re-train 56.7 (P) 58.8 (P)

works slightly better than the multilingual counterparts (f vs. c). The multilingual

DNN seems to help when coupled with re-training of the second DNN using the clos-

est language (h), improving the WER by another 0.8% for both Lao and Assamese.

This, however, comes with a slightly longer training time.

6.3.3 No Data like Similar Data

The experiments in the previous section show that the language identified as the

closest identified language alone can achieve comparable performance to the combined

multilingual training. Yet, the data used in the monolingual systems are strictly

subsets of the multilingual data. This seems to imply that including other languages

which are “further away” can hurt performance. To this end, we re-visit the Lao-

Turkish (source-target) language pair, which provided the least performance gain in

Section 6.2.2.

In the same way that LID can identify which language is closest to the target

data, LID can also be used as a selection tool to determine which portion of the data

is most useful for the target language. Suppose we train a LID DNN using all the

data from the Limited condition of Lao and Turkish. Then, for BN DNN training,

102 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Table 6.6: Effect of source data selection on Turkish LLP.

Amount Lao data usage WER (%)

0 None (Turkish only) 63.9

10hrs LLP data 64.4

10hrs Furthest utterances 66.5

10hrs Closest utterances 63.8

10hrs Closest frames 63.1

65 hrs FLP data 63.3

32.5 hrs Random utterances 64.0

32.5 hrs Closest utterances 62.8

32.5 hrs Closest frames 62.4

we select Lao data at either the frame or utterance level. At the utterance level,

the frame posteriors are averaged across each utterance. The frames/utterances with

highest posteriors are then used to train the source BN DNN for further adaptation.

Table 6.6 summarizes the different data selection strategies. Using the provided

Limited Lao subset, the performance is even worse than the baseline with no Lao

data at all. Unsurprisingly, the performance degrades even further if 10 hours of the

furthest utterances from FLP Lao are used. Using 10 hours of the closest utterances,

however, can achieve a WER of 63.8%, slightly better than the Limited Turkish

baseline. Selecting based on frames gives a slightly better WER than utterance-

based selection. The best performing system based on 10 hours of Lao data selects

only the closest frames and attains an WER of 63.1%. With only one-sixth of the

data, we do as well as if we had used the FLP Lao. Selecting the closest half of the

frames yields a WER of 62.4%, a 0.9% absolute improvement.

From the results, having data that is similar to the target data seems to be more

important than having more source data. This anecdotal observation seems to suggest

that adequately robust BN features can be trained without much data, especially

when the resulting DNNs are used as a starting point for adaptation. As less similar

data would put the DNNs into worse initializations, perhaps we should exercise more

care in selecting data for multilingual adaptation.

6.4. FRAME SELECTION FOR SBN TRAINING 103

6.4 Frame Selection for SBN Training

In the previous section, we observed that selecting the closest subset from a particular

source language can sometimes be more beneficial than using all of it. This offers some

explanation to why the multilingual SBN can perform worse than the closest language

setup. However, it has also been observed that in a multilingual setting, having more

source languages usually helps due to better coverage of phonemes and acoustical

phenomena, as well as the simple fact that there is more data [29, 44]. From these

observations we propose an improvement over the closest language training scheme

by selecting frames from all source languages that are closest to the target language

to train the second DNN.

6.4.1 Frame Selection DNNs

To select the closest frames from the multilingual pool, we need a way to score and

rank all the frames. We can do so by training N frame selection DNNs, one for

each source-target pair, as shown in Figure 6-5. Each frame selection DNN is a

two-class DNN where the training data are the frames from the source and target

languages with their corresponding language labels. The score of a frame from any

source language is then the posterior probability of that frame coming from the target

language computed by using the corresponding DNN. Although each frame selection

DNN is trained independently from the rest of the source languages, we observe that

the distribution in the rankings of all source language frames correlates well with the

scores given by the LID DNN; the languages with higher LID scores have more highly

ranked frames.

We train N frame selection DNNs for the ranking instead of one single DNN with

N+2 output labels (the sources, SIL, and the target) because the existence of a close

language pair in the source pool can skew the ranking of the frames. For example,

consider the case when the source languages are Assamese, Bengali, and Zulu, and the

target language is Telugu. Assamese, Bengali, and Telugu are all Indian Languages,

so we expect the frames from the Assamese and Bengali to have higher probabilities of

104 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

DNN‐1

Source‐1Source‐1 targettarget

DNN‐N

Source‐NSource‐N targettarget

DNN‐1

Source‐1Source‐1 targettarget

DNN‐N

Source‐NSource‐N targettarget

Training Selection

Source
N

Source
N

Target

Target

Source
1

Source
1

Select
top
frames

Figure 6-5: The frame selection process. N pair-wise DNNs are trained for each
source language pair. Then, frames from each language can be ranked by using its
corresponding DNN.

being Telugu than frames from Zulu. However, since Assamese and Bengali are very

similar languages (more similar together than to Telugu), the posterior probability

for an Assamese frame will mostly be biased towards Bengali. On the other hand, a

Zulu frame would have no such effect and may have a higher posterior for Telugu.

After selecting the closest frames, the training for the DNN based on frame selec-

tion follows the same procedure the multi-retrain method discussed in Section 6.3.1.

However, unlike re-training using the full multilingual pool which can potentially take

a long time to train, we only need to use the subset of the multilingual data.

6.4.2 Frame Selection Experiments

We use 11 languages (FLP) as the source languages, namely Cantonese, Vietnamese,

Tagalog, Pashto, Turkish, Bengali, Assamese, Zulu, Tamil, Haitian, and Lao. For

target languages, we chose Cebuano, Telugu, and Swahili (VLLP). Just like in the

transfer learning experiments in Section 6.3, we train a LID DNN using the 11 source

languages, with one modification: we also add a silence target label in the softmax

layers, so there are 12 labels total. The silence label eliminates the needs to filter

out silence frames when computing posterior scores which helps in simplifying the

process. We also train 11 frame selection DNNs for each target language, meaning

6.4. FRAME SELECTION FOR SBN TRAINING 105

Figure 6-6: A heat map of the averaged posterior scores for the source languages.
Each row indicates the misclassification from each language.

we trained 33 frame selection DNNs in total.

6.4.3 LID DNN Analysis

We start by analyzing the LID DNN in identifying the closeness between the source

languages. We compute the LID scores using the dev set of the source language to

generate a confusion matrix as depicted in Figure 6-6. As shown from the picture,

the diagonals are always the highest value which indicates that the LID DNN is

behaving as expected. The obvious Bengali-Assamese pair is also highly confusable.

One interesting note is the fact that Cantonese is not confusable with any of the

other source languages; even Vietnamese which is known to be similar linguistically.

We believe this is due to a channel effect by the cellphone carriers in China. An

independent study by IBM which tried to identify the closeness between languages

using metrics derived from the GMM-HMM acoustic model trained on each language

also pointed out that Cantonese is an outlier language [70].

To look at how the recording channel can effect the closeness between the data,

106 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Figure 6-7: A heat map of the averaged posterior scores for each speaker from
Cebuano. Each row in the figure refers to a speaker. Each column refers to the
language output class. The speakers below the red dashed line are from wideband
recordings.

we analyze the most obvious difference in recording conditions, namely the wideband

and narrowband recordings. Figure 6-7 shows a heat map of the averaged posteriors

for each dev set speaker in Cebuano generated by the LID DNN. As shown by the

figure, for the majority of the speakers, Tagalog yields the highest posterior score.

This makes sense because both the Cebuano and Tagalog corpora were recorded in

the Philippines. Linguistically and acoustically (channel effects) they should be the

most similar. However, we also notice that the wideband recordings from Cebuano

prefers languages that also include wideband recordings, while the languages without

wideband recordings get little to no posterior values. This is clear evidence that the

LID DNN also takes into account the acoustics as well as the linguistics, which can be

more preferable than just selecting the closest language based on linguistic knowledge.

This heat map also points out the need for selecting just a portion of the data from a

language, since the scores can vary greatly within a source language due to different

recording conditions.

We then evaluate the averaged posteriors for each target language to identify the

6.4. FRAME SELECTION FOR SBN TRAINING 107

0

2

4

6

8

10

12

14

16

18

cebuano telugu swahili

sil
cant
viet
taga
pash
turk
beng
assa
zulu
hait
tami
lao

Figure 6-8: LID averaged posterior scores for each target language (in percent).
Only the frames from narrowband utterances are used.

closest language, which we summarize in Fig. 6-8. To avoid the bias generated by the

wideband recordings, we only use the narrowband portion to compute the average.

Cebuano identifies Tagalog as the closest language followed by Lao. The top three

for Telugu are Tamil, Assamese, and Bengali which are all Indian languages. Lastly,

Swahili prefers Zulu. Thus, the LID DNN was able to identify the linguistically

appropriate languages without any human knowledge. Note that in Section 6.3.2,

we presented evidence that show a case where the LID DNN can identify a better

language for cross language transfer learning than just pure linguistic knowledge.

6.4.4 Frame Selection DNN Analysis

We then analyze the posteriors generated by the frame selection DNNs. Figure 6-9

shows the posterior values averaged over all frames for each source-target pair. The

overall rankings from the LID DNN and the frame selection DNN are similar. When

Telugu is the target language, Assamese, Bengali, and Tamil still remain noticeably

108 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION
Frame selection average posteriors

0

5

10

15

20

25

30

35

cebuano telugu swahili

.
cant
viet
taga
pash
turk
beng
assa
zulu
hait
tami
lao

Figure 6-9: Probability of being the target language averaged over all frames of
each source language. For each source-target pair, the posteriors are computed using
the corresponding frame selection DNN. Values are shown in percent.

higher than the rest of the source languages. The highest match for Cebuano is now

Assamese, but Tagalog follows closely behind. Lastly, Zulu is still favored by Swahili.

However, the scores are lower compared to the other two target languages. This

indicates that the source languages might not be as helpful for Swahili.

We also look into whether the LID DNN can select linguistically relevant frames.

Figure 6-10 shows how many frames from the phonemes /s/ and /sh/ are selected

from each source language (in %) when Cebuano is considered as the target language.

Cebuano only has the phoneme /s/ but not /sh/. From the figure, we notice that

/s/ frames are more likely to get selected over /sh/ for languages that have both /s/

and /sh/. This shows that the LID-based frame selection framework selects based on

both acoustic and linguistic effects.

6.4.5 Recognition System

For each language, we used tied-state triphone CD-HMMs, with 2500 states and 18

Gaussian components per state. For the target languages we used a grapheme-based

dictionary as described in Section 3.3. All the output targets of the SBN DNNs

(including the multilingual SBN) were from CD states. We used the Block Softmax

6.4. FRAME SELECTION FOR SBN TRAINING 109

Analysis of frames selected

• Cebuano has /s/ but not /sh/
• Frames selected for Cebuano favor /s/ over
/sh/

Portion of frames selected from phoneme /s/ and /sh/ in each language

Figure 6-10: Percentage of frames from each phoneme selected from each source
language for Cebuano is the target language.

method to train the multilingual SBN. We also kept only the SIL frames that appear

5 frames before and after actual speech. This reduced the total amount of frames for

the multilingual DNN to around 520 hours. We observed no loss in accuracy from

doing so, and it also reduced the training time significantly. Discriminative training

was done on the CD-HMMs using the Minimum Bayes risk (MBR) criterion [23]. In

this experiment, we also include web data as described in Section 3.5. The web data

was cleaned and filtered using techniques described in [99]. For language modeling,

n-gram LMs were created from training data transcripts and the web data. The LMs

were then combined using weighted interpolation. The vocabulary included words

that appeared in the training transcripts augmented with the top 30k most frequent

words from the web.

6.4.6 Keyword Spotting

Keyword Spotting was done using a simplified version of what was described in Section

3.4. For this experiment, we report the KWS done using the development keywords

on the 10 hour dev set. We did KWS on lattices using exact word matches, since we

wanted to focus more on the difference in the recognizer. For this purpose, we only

report the KWS numbers on in-vocabulary (IV) keywords only.

110 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

Table 6.7: ASR and KWS results. For MTWV, * indicates the value is significantly
different from one in the row above (5% significance) using the Student’s t-test.

Method
Cebuano Telugu Swahili

WER MTWV WER MTWV WER MTWV

Monolingual SBN 73.5 86.4 65.8

Adapted multilingual 65.0 0.2259 78.0 0.1269 54.9 0.3983

Closest language (mono re-train) 63.7 0.2526* 75.8 0.1682* 54.2 0.4225

100 hr closest frames 63.0 0.2513 76.0 0.1711* 52.4 0.4244*

200 hr closest frames 63.1 0.2531* 76.0 0.1756* 52.4 0.4233

All frames 63.0 0.2376* 75.8 0.1528* 52.4 0.4262*

6.4.7 Frame Selection Experiments

We compare the results between the three methods described earlier, namely a mul-

tilingual SBN adapted to the target language, a SBN trained by using the closest

language as described in Section 6.3, and a SBN trained using frame selection. For

frame selection, we have two configurations with 100 hours and 200 hours worth of

closest frames. We did not go below 100 hours because there were too many class

outputs that had no or too few frames. We also report the extreme situation where

all 520 hours worth of frames are selected. Note that this is slightly different than the

adapted multilingual SBN, since the second DNN for this case is trained on adapted

BN features from the first BN. As a point of comparison, we also include a completely

monolingual SBN trained only on the 3 hour VLLP data.

Table 6.7 summarizes the ASR and KWS results. As shown, monolingual SBNs

perform significantly worse than multilingual techniques. This shows the strength of

using multilingual data to help ASR in languages with limited resources. Using the

closest source language to train the second DNN yields a noticeable improvement over

the adapted multilingual SBN in both ASR and KWS. However, the gain in WER is

smaller for Swahili. This can be attributed to the fact that the candidates for Swahili

are worse than the other two languages, as noted in Section 6.4.4.

In terms of KWS, frame selection systems are significantly better than the ones

using just the closest language. The best performance is achieved at 200 hours for

6.5. THE FINAL SYSTEMS 111

Cebuano and Telugu, and 100 hours for Swahili because Swahili has lower frame

selection scores. The gain from frame selection over the closest language is higher in

Telugu than in Cebuano. Telugu has more than one closest language so we expect

more gain from using multiple languages. Frame selection scores for the case of Telugu

are also higher than Cebuano signifying better synergies between the source and target

language. Finally, using all frames performs worse than any kind of selection except

for the case of Swahili where the frame selection scores are noticeably lower so the

effect of having more data prevails. We believe that both the amount and the closeness

of the data play a role in determining the benefits from multilingual training. Note

that re-training 520 hours worth of frames is infeasible in a short time frame which

might not be desirable for applications that require rapid deployment.

6.5 The Final Systems

Using all the techniques described in this thesis, we participated in the 2015 Babel

OpenKWS Evaluation as part of the Babelon team. The target language for the

evaluation was Swahili VLLP condition. We trained two speech recognizers as follows:

• Multilingual LrSBN system using LID-based adaptation

This system is similar to the closest language system described in Section 6.4.7.

However, we used the top 100,000 web words instead of the 30,000 used pre-

viously to push the OOV rate as low as possible since the main task is KWS.

We did not use the frame selection method since re-training using the closest

frames would take too long according the the evaluation rules which tries to

limit the total development time to two weeks.

• Hybrid DNN-HMM Recurrent Neural Network system

Recent advances in deep learning have improved the DNN architectures tremen-

dously, making the hybrid DNN-HMM approach more competitive. Ideally, we

would like to make use of the recent advances as well. To this end, used a

novel model, the Prediction-Adaptation-Correction Recurrent Neural Network

112 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

(PACRNN), for acoustic modelling. PACRNN is a hybrid DNN-HMM system

that has the ability to predict what you want to say ahead of time, adapts your

listening effort according to the prediction, and finally do a correction once the

information arrives [102]. Note that the methods we have described in this the-

sis, namely the BN features and LID-based transfer learning, can still be applied

to hybrid architectures. The PACRNN was trained on BN features extracted

from the first DNN of the adapted multilingual SBN. It was first trained on

FLP Zulu (the closest language) and then adapted to Swahili using the same

transfer learning techniques described in Section 6.3. With transfer learning,

the PACRNN system improves by 1% absolute WER compared to training with

just VLLP Swahili.

For each recognizer, we generated lattices based on three decoding units, words,

morphemes, and syllables using the techniques described in Section 3.4.

6.5.1 Results

Table 6.8 summarizes the WER and MTWV results on dev and tune sets using their

respective keyword lists. When considering whether a keyword is IV or OOV, we use

the augmented vocabulary. PLP-word is a GMM-HMM system trained using PLP, F0,

and PoV features. The setup is otherwise the same as the SBN HMM-GMM system.

However, in this setting, discriminative training failed to improve the recognition

results, so we report the results when no discriminative training is applied. There

is also no usage of web data. It is supposed to represent what happens when one

attempts to build a traditional system on a low resource setup. The second baseline,

Mono SBN-word, is a LrSBN system train on VLLP Swahili, e.g. a monolingual

system. This represents a more modern baseline since it includes DNNs. Using the

SBN features, discriminative training now improves the recognition results. Just like

the PLP-word baseline, there is no usage of web data.

As shown from the table, the PACRNN systems which use the SBN HMM-GMM

system as input features outperform the SBN systems in every case. This shows the

6.5. THE FINAL SYSTEMS 113

Table 6.8: ASR and KWS results on Swahili for different recognizers and decoding
units.

System
tune dev tune MTWV dev MTWV

WER WER IV OOV ALL IV OOV ALL

SBN-word 57.8 52.9 0.3172 0.0000 0.2805 0.4494 0.0000 0.3885

SBN-morph 0.2915 0.1177 0.2701 0.3732 0.2411 0.3541

SBN-syl 0.2485 0.2512 0.2477 0.3389 0.4199 0.3495

PAC-word 55.1 49.5 0.4106 0.0000 0.3631 0.4859 0.0000 0.4200

PAC-morph 0.2899 0.1343 0.2702 0.4186 0.2558 0.3950

PAC-syl 0.3074 0.3711 0.3140 0.3754 0.5186 0.3946

All above 0.5220 0.5454 0.5249

PLP-word 71.5 68.2 0.1197 0.0000 0.1058 0.1924 0.0000 0.1663

Mono SBN-word 68.4 66.5 0.1410 0.0000 0.1246 0.2106 0.0000 0.1821

power of more sophisticated hybrid models over the SBN. However, the two set of

systems combine very well as the system combination results (marked “All above”)

achieve 0.5249 MTWV, a 25% relative performance gain over our best single system.

Using subword units, our performance on OOV keywords is even better than the IV

words, showing the effectiveness of the subword methods.

Comparing against the monolingual baselines, SBN-word outperforms Mono SBN-

word by more than twice in MTWV and 14 % absolute WER, which shows the power

of multilingual training. Finally, the Mono SBN-word outperforms the PLP-word

system by 0.02 in MTWV and 2% in WER, confirming the effectiveness of the SBN

framework. Note that the evaluation goal was to exceed 0.3 MTWV, which all of our

individual systems did, while none of the monolingual systems exceeded 0.2 MTWV.

OpenKWS 2015 Evaluation consists of two sponsored participants and several

international teams of volunteers. To offer some perspective on our performance, our

team, a sponsored participant, achieved 0.6006 ATWV on the dev set after combining

15 different systems, including ours. A system can have several decoding units, for

example, we used two systems, the SBN and the PACRNN, with three decoding units,

words, morphs, and syllables.

The best performing volunteer team obtained 0.5722 MTWV after system combi-

114 CHAPTER 6. MULTILINGUAL TRANSFER LEARNING USING LANGUAGE IDENTIFICATION

nation [7]. Cai et al. combined 11 systems, each with up to two decoding units, i.e.

words and morphs. Their best performing single system achieved 0.4829 and 0.3570

MTWV for word- and morph-based recognizers, respectively. They also incorporate

the proxy keyword technique [8] where words that sound similar to the OOV key-

words are searched instead, so their word systems can also handle OOV keywords.

Note that sponsored and volunteer participants have access to different sets of re-

sources, so the numbers are not directly comparable. However, Cai et al. also used

a variant of BN features trained on multilingual data which shows the effectiveness

leveraging multilingual data.

6.6 Summary

In this chapter, we presented a method to investigated the use of transfer learning for

low resource language ASR. To get the best performance it is important to identify

the source language that is most similar to the target language. We proposed a

framework that can be used to measure language similarity in a data-driven manner

by using DNNs. This method not only is able to identify language based on linguistic

closeness, but it also can take into account of the acoustic conditions of the recordings.

We also investigated the best method in adapting a multilingual SBN to any target

language. We found using the closest language, identified by the LID, to initialize

the second DNN to work best. This method can also be improved even further by

selecting frames from the entire pool of source languages.

The LID-based transfer learning technique is not limited to just Tandem meth-

ods, it also applies to hybrid DNN-HMM models which ultimately produce the best

results.

Chapter 7

Conclusion

7.1 Summary

In this thesis, we took on the challenge of low resource ASR for the applications of

automatic transcription and KWS. The research is motivated by the fact that most

languages of the world are still lacking the ASR capabilities while the need for ASR

has grown ever larger with the spread of mobile and personal recording devices. The

three building blocks of ASR, the acoustic model, the lexicon, and the language model,

all require resources on the order that might not be available for most languages.

We investigated techniques that helped these three components. To deal with the

need for a lexicon, a graphemic lexicon can be used to completely ignore the issue with

some small degradation in performance. If a small starting lexicon exists, techniques

such as the Pronunciation Mixture Model (PMM) can generate reasonable lexicons

in a data-driven manner. For the language model, we have investigated the use of

web data and subword units for improving KWS performance. Although web data

can sometimes hurt transcription performance due to the style mismatch, it helps

improve KWS by reducing the number of OOV keywords.

For better acoustic models, we proposed a method to learn better feature repre-

sentations using the Low-rank Stacked Bottleneck Network (LrSBN). This method,

albeit developed for the use of low resource ASR in mind, also helped improve ASR

performance in larger tasks. Using the LrSBN we applied multilingual techniques via

116 CHAPTER 7. CONCLUSION

the use of transfer learning which helped alleviate the lack of acoustic data. We also

proposed a method to select the source language for transfer learning by using a DNN

trained for Language Identification. The data selection can also be done on the frame

level to help improve the performance even further. Using techniques described and

proposed in this thesis, we were able to more than double the KWS spotting per-

formance for low resource language compared to using standard techniques geared

towards rich resource domains.

7.2 Future Work and Directions

There are short term improvements that can be done with regards to the LrSBN

model. One is to investigate more sophisticated DNN architectures such as Con-

volutional Neural Networks (CNNs) to help handle the variability due to the vocal

tract. More investigation also needs to be done in order to make the frame selection

framework to work in a scenario with a tight time constraint. One solution might be

to use parallel training methods instead of using a single GPU.

Since LrSBN is, in essence, a feature extractor, it can in theory be used for other

speech related task such as Speaker Identification or Language Identification. There

is some preliminary exploration on Language Identification showing promising results

[17]. It is also worth investigating to see if such a multi-task training approach can

be used to extract features for auditory scene analysis, the task of analysing what is

happening in an audio recording.

There are also directions of potential research that this thesis does not address

but are important for the development of low resource ASR.

7.2.1 Handling Dialects and Accented Speech

In this thesis, we completely ignored the dialect variants in each language. ASR per-

formance on the Babel corpus can vary greatly between dialects depending on which

dialect dominates the training data. A possible venue for exploration includes having

dialect specific models that are adapted from the dialect-independent model (just

7.2. FUTURE WORK AND DIRECTIONS 117

like how we trained model for the target language using a more general multilingual

model). Another related issue, is accented speech recognition. Multilingual ASR can

potentially improves the performance of accented speech due to its ability to model

the characteristics of more than just a single language.

7.2.2 ASR with Zero Transcription

All work done in this thesis still relies on some amount of transcribed speech. An

even more challenging task is what can one do with just speech data. Work in [45]

had attempted this using the Babel corpus, but the performance is far from usable

even from the KWS point of view. They also assumed the existence of a lexicon in the

target language, an assumption that might not hold true. A related issue with zero

transcription and no lexicon is how can one relate letters of the language with sounds

of the language, since the two are no longer in parallel, a task of decipherment.

7.2.3 Mis-match Crowd-Sourcing for ASR

In general, finding recordings of a low resource language is easier than finding tran-

scribed recordings. When the language has few speakers it is often hard to find

transcribers even when the recordings are plentiful. This is especially true in the

Internet era. One possible solution to this problem is to have a non-speaker of the

language transcribe the recordings into sounds or words of his own language. The

task, called mis-match crowd-sourcing, has been explored in [39, 52]. However, the

exploration is still preliminary and mostly done on the phoneme level rather than

as a Large Vocabulary Continuous Speech Recognition (LVCSR) task. The crowd-

sourced transcription can be used to augment the available transcribed data. Again,

an existing phonetic lexicon in the target language is assumed. Otherwise, this is also

a decipherment task if there are no zero transcription by speakers of the language.

118 CHAPTER 7. CONCLUSION

7.2.4 ASR for Languages without a Writing System

Every language in the Babel corpus has a writing system that are more or less stan-

dardized. In some languages such as Hokkien, there is no standardized writing system

(even the set of characters/alphabets may not be standardized). In this case, the ASR

system needs to be able to handle noise in the transcription. There are also languages

with no writing systems at all, for example the Wu dialect of Chinese. Can one make

an ASR system which generates no tangible output? A solution might be to tie ASR

with specific tasks that requires no written form. Possible applications are Query by

example related applications, translation, and dialogue systems. Query-by-example is

a task where given a speech input, find all the occurrences of that term in the database

of recordings. The search target might not necessary be a spoken document. One can

say “give me pictures of oranges” and the system should show pictures of oranges.

One such system is already being explored in [32].

7.2.5 Multilingual Techniques for Language Modeling

The sharing of multilingual resources in this thesis are primarily on acoustic data.

Lamel et al.. had explored the use of machine translation for augmenting the text used

for language modeling [25]. However, it is often hard to find parallel text especially for

low-resource languages. Just like how the sounds of different language can be similar,

there are also strong correspondence between languages in syntax and grammar. One

example is the work by Snyder et al. which used a multilingual corpora to better

learn morphological segmentations [83]. One would wonder whether multilingual

data sharing can be used to improve the language model in a data-driven manner

with little linguistic knowledge.

7.3 Closing Statement

In closing, it is worth remembering some of the original motivation for this work.

There are around 7,000 languages in the world. In this thesis, we have presented

7.3. CLOSING STATEMENT 119

work conducted on 18 languages. Although the techniques presented in this work are

not specific to any particular language, there is still much work to be done to reach

the full coverage of all the world’s languages. We hope that the work conducted in

this thesis will help the effort in diffusing ASR technologies to everyone across the

globe. Many of the languages now only have just a handful of speakers, which might

once again requires another shift in the ASR paradigm.

120 CHAPTER 7. CONCLUSION

Glossary of Acronyms

F0 Fundamental Frequency. 58

∆ Delta features. 38

∆2 Delta-delta features. 38

ALP Active Learning Language Pack. 54

AM Acoustic Model. 31

ASR Automatic Speech Recogition. 31

ATWV Averaged Term Weighted Value. 40

BN Bottleneck. 47

CD Context Dependent. 33

CE Cross Entropy. 45

CER Character Error Rate. 35

CI Context Independent. 33

CMLLR Constrained Maximum Likelihood Linear Regression. 39

CMVN Cepstral Mean and Variance Normalization. 37

FLP Full Language Pack (40-80 hours). 54

122 Glossary of Acronyms

fMLLR Feature-Space Maximum Likelihood Linear Regression. 39

GMM Gaussian Mixture Model. 32

HMM Hidden Markov Model. 32

IPA International Phonetic Alphabet. 72

IV In-Vocabulary. 34

KWS Keyword Spotting. 39

LDA Linear Discriminant Analysis. 38

LID Language Identification. 92

LLP Limited Language Pack (10 hours). 54

LM Language Model. 34

LPC Linear Predictive Coding. 35

LrSBN Low-rank Stacked Bottleneck. 79

MFCC Mel-frequency Cepstral Coefficients. 31

ML Maximum Likelihood. 33

MLLT Maximum Likelihood Linear Transform. 39

MMI Maximum Mutual Information. 33

MPE Minimum Phone Error. 33

MTWV Maximum Term Weighted Value. 41

OOV Out-of-Vocabulary. 34

PCA Principle Component Analysis. 38

Glossary of Acronyms 123

PLP Perceptual Linear Prediction. 35

PoV Probability of Voicing. 58

ReLU Rectified Linear Unit. 43

RNN Recurrent Neural Network. 34

SAMPA Speech Assessment Methods Phonetic Alphabet. 72

SBN Stacked Bottleneck. 78

SGD Stochastic Gradient Descent. 44

sMBR state-level Minimum Bayes Risk. 33

STFT Short-Time Fourier Transform. 36

VLLP Very Limited Language Pack (3 hours). 54

VTLN Vocal Tract Length Normalization. 38

WER Word Error Rate. 35

124 Glossary of Acronyms

Appendix A

Global phone mappings

In this segment, we present the phoneme mappings we used for the experiments in

Chapter 6.3. There are no extra mappings for Pashto.

126 APPENDIX A. GLOBAL PHONE MAPPINGS

Table A.1: Global phoneset.

phone description

1 p unvoiced labial stop

2 t unvoiced dental stop

3 c unvoiced palatal stop

4 k unvoiced velar stop

5 q unvoiced uvular stop

6 b voiced labial stop

7 d voiced dental stop

8 g voiced velar stop

9 t‘ unvoiced retroflex stop

10 d‘ voiced retroflex stop

11 ? glottal stop

12 ts unvoiced alveolar affricate

13 tS unvoiced palato-alveolar affricate

14 dz unvoiced alveolar sibilant affricate

15 dZ voiced palato-alveolar affricate

16 f unvoiced labial fricative

17 s unvoiced alveolar fricative

18 S unvoiced palato-alveolar fricative

19 C unvoiced palatal fricative

20 x unvoiced velar fricative

21 T unvoiced dental fricative

22 h glottal fricative

23 v voiced labio-dental fricative

24 z voiced alveolar fricative

25 Z voiced palato-alveolar fricative

26 G voiced velar fricative

27 j\ voiced palatal fricative

28 s‘ unvoiced retroflex fricative

29 z‘ voiced retroflex fricative

30 l alveolar lateral approximant

31 w labio-velar approximant

32 j voiced palatal approximant

33 5 velarized alveolar lateral approximant

34 r alveolar approximant

127

Table A.2: Global phoneset (cont.).

phone description

35 m labial nasal

36 n alveolar nasal

37 N velar nasal

38 n‘ palatal nasal

39 3 unrounded open-mid central

40 4 rhotic alveolar

41 i unrounded high front

42 i: long unrounded high front

43 I unrounded near-close near-front

44 I: long unrounded near-close near-front

45 y rounded high front

46 y: long high front

47 1 unrounded high back

48 1: long unrounded high back

49 u rounded high back

50 u: long unrounded high back

51 e unrounded close-mid front

52 e: long unrounded close-mid front

53 2 rounded close-mid front

54 2: long rounded close-mid front

55 @ schwa

56 o rounded close-mid back

57 o: long rounded close-mid back

58 E unrounded open-mid front

59 E: long unrounded open-mid front

60 9: long rounded close-mid central

61 O rounded open-mid back

62 O: long rounded open-mid back

63 a unrounded low front

64 a: long unrounded low front

65 6 near-open central

66 V unrounded open-mid back

67 A unrounded low back

128 APPENDIX A. GLOBAL PHONE MAPPINGS

Table A.3: Extra mappings for Cantonese.

original global phoneset

6j 6 j

6w 6 w

9y 9 y

O:j O: j

a:j a: j

a:w a: w

ej e j

gw g w

iw i w

kw k w

ow o w

u:j u: j

Table A.4: Extra mappings for Turkish.

original global phoneset

gj j

r\ r

Table A.5: Extra mapping for Turkish.

original global phoneset

gj g

r\ r

Table A.6: Extra mappings for Tagalog.

original global phoneset

ae a e

aj a j

aw a w

oj o j

129

Table A.7: Extra mappings for Vietnamese.

original global phoneset

1@I 1 @ I

1@ 1 @

1@U 1 @ U

1U 1 U

a:I a: U

aU a U

b < b

d < d

eU e U

EU E U

i@ i @

@:I @ I

@I @ I

@: @

i@U i @ U

iU i U

J\ z

oaI o a I

oaI: o a I:

Oa O a

Oa: O aa

OE O E

oI o I

OI O I

r\ r

t h t

ts‘ t‘

ue u e

ui: u i:

u@I u @ I

uI u I

uI@ u I at

u@ u @

u@: u @

@U @ U

130 APPENDIX A. GLOBAL PHONE MAPPINGS

Appendix B

Babel data

The version of the language packs used in this thesis are shown in Table B.1.

132 APPENDIX B. BABEL DATA

Table B.1: Language pack version for each language.

Language Version

Cantonese IARPA-babel101-v0.4c

Assamese IARPA-babel103b-v0.3

Bengali IARPA-babel102b-v0.4

Pashto IARPA-babel104b-v0.4aY

Turkish IARPA-babel105b-v0.4

Tagalog IARPA-babel106-v0.2g

Vietnamese IARPA-babel107b-v0.7

Haitian IARPA-babel201b-v0.2b

Swahili IARPA-babel202b-v1.0d-build

Lao IARPA-babel203b-v2.1a

Tamil IARPA-babel204b-v1.1b

Kurmanji IARPA-babel205b-v1.0a

Zulu IARPA-babel206b-v0.1e

Tok Pisin IARPA-babel207b-v1.0e-build

Cebuano IARPA-babel301b-v2.0b

Kazakh IARPA-babel302b-v1.0a

Telugu IARPA-babel303b-v1.0a

Lithuanian IARPA-babel304b-v1.0b

Guarani IARPA-babel305b-v1.0b

Igbo IARPA-babel306b-v2.0c

Amharic IARPA-babel307b-v1.0b

Mongolian IARPA-babel401b-v2.0b

Javanese IARPA-babel402b-v1.0b

Dholuo IARPA-babel403b-v1.0b

Bibliography

[1] L. Bahl, P. F. Brown, P. V. De Souza, and R. L. Mercer. Maximum mutual

information estimation of hidden markov model parameters for speech recogni-

tion. In Proc. ICASSP, 1986. 33

[2] T. Bazillon, Y. Esteve, and D. Luzzati. Manual vs assisted transcription of

prepared and spontaneous speech. In Proc. LREC, 2008. 24

[3] M. Bisani and H. Ney. Joint-sequence models for grapheme-to-phoneme con-

version. Speech Communication, 50:434 – 451, 2008. 61

[4] C. M. Bishop. Neural networks for pattern recognition. Oxford university press,

1995. 38

[5] P. Boersma. Accurate short-term analysis of the fundamental frequency and the

harmonics-to-noise ratio of a sampled sound. In Proc. the Institute of Phonetic

Sciences, 1993. 58

[6] L. Burget, P. Schwarz, M. Agarwal, et al. Multilingual acoustic modeling

for speech recognition based on subspace gaussian mixture models. In Proc.

ICASSP, 2010. 27, 71

[7] M. Cai, Z. Lv, C. Lu, J. Kang, L. Hui, Z. Zhang, and J. Liu. High-performance

Swahili keyword search with very limited language pack: The THUEE system

for the OpenKWS15 evaluation. In Proc. ASRU, 2015. 114

[8] G. Chen, O. Yilmaz, J. Trmal, D. Povey, and S. Khudanpur. Using proxies for

OOV keywords in the keyword search task. In Proc. ASRU, 2013. 66, 114

134 BIBLIOGRAPHY

[9] G. Chen, D. Povey, and S. Khudanpur. Acoustic data-driven pronunciation

lexicon generation for logographic languages. In Proc. ICASSP, 2016. 62

[10] E. Chuangsuwanich, Y. Zhang, and J. Glass. Multilingual data selection for

training stacked bottleneck features. In Proc. InterSpeech, 2016. 92

[11] J. Cohen, T. Kamm, and A. G. Andreou. Vocal tract normalization in speech

recognition: Compensating for systematic speaker variability. The Journal of

the Acoustical Society of America, 97(5):3246–3247, 1995. 38

[12] N. Dave. Feature extraction methods LPC, PLP and MFCC in speech recogni-

tion. International Journal for Advance Research in Engineering and Technol-

ogy, 1(6):1–4, 2013. 31

[13] M. Davel, E. Barnard, C. van Heerden, W. Hartmann, D. Karakos, R. Schwartz,

and S. Tsakalidis. Exploring minimal pronunciation modeling for low resource

languages. In Proc. InterSpeech, 2015. 65

[14] V. Doumpiotis, S. Tsakalidis, and W. Byrne. Discriminative training for seg-

mental minimum bayes risk decoding. In Proc. ICASSP, 2003. 33

[15] W. Ellermeier and G. Faulhammer. Empirical evaluation of axioms fundamen-

tal to stevenss ratio-scaling approach: I. loudness production. Perception &

Psychophysics, 62(8):1505–1511, 2000. 36

[16] D. Ellis. ICSI speech FAQ: 6.3 how are neural nets trained?,

Aug 2000. URL http://www1.icsi.berkeley.edu/speech/faq/

nn-train.html. 46

[17] R. Fér, P. Matějka, F. Grézl, O. Plchot, and J. Černockỳ. Multilingual bottle-

neck features for language recognition. In InterSpeech, 2015. 116

[18] J. Fiscus, J. Ajot, J. S. Garofolo, and G. Doddingtion. Results of the 2006

spoken term detection evaluation. In Proc. ACM SIGIR Workshop on Searching

Spontaneous Conversational Speech, 2007. 40

http://www1.icsi.berkeley.edu/speech/faq/nn-train.html
http://www1.icsi.berkeley.edu/speech/faq/nn-train.html

BIBLIOGRAPHY 135

[19] T. Fraga-Silva, J.-L. Gauvain, L. Lamel, A. Laurent, V.-B. Le, A. Messaoudi,

V. Vapnarsky, C. Barras, C. Becquey, D. Doukhan, et al. Active learning based

data selection for limited resource STT and KWS. In Proc. InterSpeech, 2015.

15, 25, 55

[20] M. J. F. Gales. Maximum likelihood linear transformation for HMM-based

speech recognition. In Comp.Speech & Language, 1998. 80, 86

[21] M. J. F. Gales. Semi-tied covariance matrices for hidden markov models. In

IEEE Trans. on Speech and Audio, 1999. 39, 80

[22] P. Ghahremani, B. BabaAli, K. R. D. Povey, J. Trmal, and S. Khudanpur. A

pitch extraction algorithm tuned for automatic speech recognition. In Proc.

ICASSP, 2014. 58

[23] M. Gibson and T. Hain. Hypothesis spaces for minimum bayes risk training in

large vocabulary speech recognition. In Proc. InterSpeech, 2006. 84, 92, 109

[24] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-

ward neural networks. In Proc. International conference on artificial intelligence

and statistics, 2010. 46

[25] A. Gorin, R. Lileikyte, G. Huang, L. Lamel, J.-L. Gauvain, and A. Laurent. Lan-

guage model data augmentation for keyword spotting in low-resourced training

conditions. In Proc. Interspeech 2016, In Review. 118

[26] F. Grézl and M. Karafiát. Adapting multilingual neural network hierarchy to

a new language. In Proc. SLTU, 2014. 28

[27] F. Grézl, M. Karafiát, S. Kontár, and J. Černocký. Probabilistic and bottle-neck

features for LVCSR of meetings. In Proc. ICASSP, 2007. 47

[28] F. Grézl, M. Karafiát, and M. Janda. Study of probabilistic and bottle-neck

features in multilingual environment. In Proc. ASRU, 2011. 75, 86, 87

136 BIBLIOGRAPHY

[29] F. Grézl, E. Egorova, and M. Karafiát. Further investigation into multilingual

training and adaptation of stacked bottle-neck neural network structure. In

Proc. SLT, 2014. 28, 103

[30] F. Grézl, M. Karafiát, and K. Veselý. Adaptation of multilingual stacked bottle-

neck neural network structure for new languages. In Proc. ICASSP, 2014. 89,

91, 97

[31] D. Harwath and J. Glass. Speech recognition without a lexicon-bridging the

gap between graphemic and phonetic systems. In Proc. InterSpeech, 2014. 60

[32] D. Harwath and J. Glass. Deep multimodal semantic embeddings for speech

and images. In Proc. ASRU, 2015. 118

[33] H. Hermansky. Perceptual linear predictive (PLP) analysis of speech. the Jour-

nal of the Acoustical Society of America, 87(4):1738–1752, 1990. 35

[34] J. L. Hieronymus. ASCII phonetic symbols for the worlds languages: Worldbet.

Journal of the International Phonetic Association, 23, 1993. 72

[35] G. Hinton, L. Deng, D. Yu, et al. Deep neural networks for acoustic modeling

in speech recognition. In IEEE Signal Processing Magazine, volume 28, pages

82–97, November 2012. 27, 42, 44, 47

[36] G. E. Hinton, S. Osindero, and Y.-W. Teh. A fast learning algorithm for deep

belief nets. Neural computation, 18(7):1527–1554, 2006. 46

[37] X. Huang, A. Acero, and H.-W. Hon. Spoken Language Processing: A Guide to

Theory, Algorithm, and System Development. Prentice Hall PTR, 1st edition,

2001. 36

[38] International Phonetic Association. Handbook of the International Phonetic As-

sociation: A guide to the use of the International Phonetic Alphabet. Cambridge

University Press, 1999. 72

BIBLIOGRAPHY 137

[39] P. Jyothi and M. Hasegawa-Johnson. Transcribing continuous speech using

mismatched crowdsourcing. In Proc. InterSpeech, 2015. 117

[40] M. Karafiát and F. Grézl. Hierarchical neural net architectures for feature

extraction in ASR. In Proc. InterSpeech, 2010. 79

[41] M. Karafiát, F. Grézl, M. Hannemann, K. Veselý, and J. H. Černocký. BUT

Babel system for spontaneous cantonese. In Proc. InterSpeech, 2013. 61, 78,

81, 82

[42] D. Karakos, R. Schwartz, S. Tsakalidis, L. Zhang, S. Ranjan, T. Ng, R. Hsiao,

G. Saikumar, I. Bulyko, L. Nguyen, J. Makhoul, F. Grezl, M. Hannemann,

M. Karafiat, I. Szoke, K. Vesely, L. Lamel, and V.-B. Le. Score normalization

and system combination for improved keyword spotting. In Proc. ASRU, 2013.

41

[43] K. Kirchhoff and D. Vergyri. Cross-dialectal data sharing for acoustic modeling

in Arabic speech recognition. Speech Communication, 46(1):37–51, 2005. 15, 25

[44] K. Knill, M. Gales, S. Rath, P. Woodland, C. Zhang, and S. Zhang. Investiga-

tion of multilingual deep neural networks for spoken term detection. In Proc.

ASRU, 2013. 86, 103

[45] K. Knill, M. J. Gales, S. P. Rath, P. C. Woodland, C. Zhang, and S.-X. Zhang.

Investigation of multilingual deep neural networks for spoken term detection.

In Proc. ASRU, 2013. 76, 89, 117

[46] G. Kumar, M. Post, D. Povey, and S. Khudanpur. Some insights from trans-

lating conversational telephone speech. In Proc. ICASSP, 2014. 15, 24, 25

[47] V. Le, L. Lamel, A. Messaoudi, W. Hartmann, J. Gauvain, C. Woehrling, J. De-

spres, and A. Roy. Developing STT and KWS systems using limited language

resources. In Proc. InterSpeech, 2014. 60

138 BIBLIOGRAPHY

[48] H. Lee, Y. Zhang, E. Chuangsuwanich, and J. Glass. Graph-based re-ranking

using acoustic feature similarity between search results for spoken term detec-

tion on low-resource languages. In Proc. InterSpeech, 2014. 64

[49] G. F. S. Lewis, M. Paul and C. D. Fennig. Ethnologue: Languages

of the World, Nineteenth edition. SIL International. Online version:

http://www.ethnologue.com, 2016. 26

[50] X. Li and X. Wu. Constructing long short-term memory based deep recurrent

neural networks for large vocabulary speech recognition. In Proc. ICASSP,

2015. 15, 24, 25

[51] R. P. Lippmann. Speech recognition by machines and humans. Speech commu-

nication, 22(1):1–15, January 1997. 24

[52] C. Liu, P. Jyothi, H. Tang, V. Manohar, M. Hasegawa-Johnson, and S. Khu-

danpur. Adapting ASR for under-resourced languages using mismatched tran-

scriptions. In Proc. ICASSP, 2016. 117

[53] A. L. Maas, P. Qi, Z. Xie, A. Y. Hannun, C. T. Lengerich, D. Jurafsky, and A. Y.

Ng. Building DNN acoustic models for large vocabulary speech recognition.

arXiv preprint arXiv:1406.7806, 2014. 15, 25

[54] J. Makhoul. Spectral linear prediction: properties and applications. IEEE

Trans. on Acoustics, Speech and Signal Processing, 23(3):283–296, 1975. 36

[55] J. Mamou, J. Cui, X. Cui, M. J. Gales, B. Kingsbury, K. Knill, L. Mangu,

D. Nolden, M. Picheny, B. Ramabhadran, et al. System combination and score

normalization for spoken term detection. In Proc. ICASSP, 2013. 41

[56] I. McGraw, I. Badr, and J. Glass. Learning lexicons from speech using a pro-

nunciation mixture model. IEEE Trans. on Acoustics, Speech, and Signal Pro-

cessing, 2012. 60

BIBLIOGRAPHY 139

[57] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Recurrent

neural network based language model. In Proc. InterSpeech, 2010. 34

[58] A. Mohan and R. Rose. Multi-lingual speech recognition with low-rank multi-

task deep neural networks. In Proc. ICASSP, 2015. 89

[59] B. C. J. Moore. An Introduction to the Psychology of Hearing. Academic Press,

1997. 36

[60] K. Narasimhan, D. Karakos, R. Schwartz, S. Tsakalidis, and R. Barzilay. Mor-

phological segmentation for keyword spotting. In Proc. EMNLP, 2014. 63,

65

[61] D. Povey. Discriminative training for large vocabulary speech recognition. PhD

thesis, University of Cambridge, 2005. 33

[62] D. Povey and B. Kingsbury. Evaluation of proposed modifications to MPE for

large scale discriminative training. In Proc. ICASSP, 2007. 33

[63] D. Povey and K. Yao. A basis method for robust estimation of constrained

MLLR. In Proc. ICASSP, 2011. 39

[64] D. Povey, B. Kingsbury, L. Mangu, et al. fMPE: Discriminatively trained fea-

tures for speech recognition. In Proc. ICASSP, 2005. 85

[65] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-

nemann, P. Motĺıček, Y. Qian, P. Schwarz, J. Silovský, G. Stemmer, and

K. Veselý. The Kaldi speech recognition toolkit. In Proc. ASRU, 2011. 58,

80, 81

[66] K. Precoda. Non-mainstream languages and speech recognition: some chal-

lenges. CALICO Journal, 21(2), January 2004. 23

[67] K. Probst. Learning transfer rules for machine translation with limited data.

PhD thesis, Carnegie Mellon University, 2005. 26

140 BIBLIOGRAPHY

[68] L. Rabiner and B.-H. Juang. Fundamentals of speech recognition. Prentice hall,

1993. 33

[69] A. Ragni, M. Gales, and K. Knill. A language space representation for speech

recognition. In Proc. ICASSP, 2015. 27

[70] A. Ragni, M. Gales, and K. Knill. A language space representation for speech

recognition. In Proc. ICASSP, 2015. 75, 105

[71] S. P. Rath, D. Povey, K. Veselý, and J. H. Černocký. Improved feature pro-

cessing for deep neural networks. In Proc. InterSpeech, 2013. 81

[72] P. S. Ray, M. A. Hai, and L. Ray. Bengali Language Handbook, chapter 1.

Center for Applied Linguistics, 1966. 92

[73] R. Rosenfeld. Two decades of statistical language modeling: Where do we go

from here? In Proc. of the IEEE, volume 88, 2000. 34

[74] R. Sahraeian and D. Van Compernolle. A study of rank-constrained multilingual

DNNs for low-resource ASR. In Pro. ICASSP, 2016. 89

[75] T. N. Sainath, B. Kingsbury, and B. Ramabhadran. Auto-encoder bottleneck

features using deep belief networks. In Proc. ICASSP, 2012. 27

[76] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhad-

ran. Low-rank matrix factorization for deep neural network training with high-

dimensional output targets. In Proc. ICASSP, 2013. 78, 79, 83

[77] T. N. Sainath, A. Mohamed, B. Kingsbury, and B. Ramabhadran. Deep con-

volutional neural networks for lvcsr. In Proc. ICASSP, 2013. 97

[78] G. Saon, H.-K. J. Kuo, S. Rennie, and M. Picheny. The IBM 2015 En-

glish conversational telephone speech recognition system. arXiv preprint

arXiv:1505.05899, 2015. 15, 24, 25, 26

[79] T. Schultz. GlobalPhone: a multilingual speech and text database developed

at Karlsruhe University. In Proc. InterSpeech, 2002. 71

BIBLIOGRAPHY 141

[80] T. Schultz and K. Kirchhoff. Multilingual Speech Processing. Elsevier, 2006. 27

[81] T. Schultz and A. Waibel. Language independent and language adaptive large

vocabulary speech recognition. In Proc. ICSLP, 1998. 71, 74

[82] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent

and its application to data-parallel distributed training of speech DNNs. In

Proc. InterSpeech, 2014. 15, 24, 25

[83] B. Snyder and R. Barzilay. Unsupervised multilingual learning for morpholog-

ical segmentation. In Proc. ACL, 2008. 118

[84] H. Soltau, G. Saon, and T. N. Sainath. Joint training of convolutional and

non-convolutional neural networks. In Proc. ICASSP, 2014. 15, 24, 25

[85] A. Stolcke, F. Grézl, M. Hwang, et al. Cross-domain and cross-language

portability of acoustic features estimated by multilayer perceptrons. In Proc.

ICASSP, 2006. 27, 91

[86] H. Su and H. Chen. Experiments on parallel training of deep neural network

using model averaging. arXiv preprint arXiv:1507.01239, 2015. 15, 24, 25

[87] H. Su, G. Li, D. Yu, and F. Seide. Error back propagation for sequence training

of context-dependent deep networks for conversational speech transcription. In

Proc. ICASSP, pages 6664–6668, 2013. 45

[88] D. Talkin. A robust algorithm for pitch tracking (RAPT). Speech coding and

synthesis, 495:518, 1995. 58

[89] D. Talkin. A Robust Algorithm for Pitch Tracking, chapter 4. Speech Coding

and Synthesis, 2013. 80

[90] S. Tsakalidis, X. Zhuang, R. Hsiao, S. Wu, P. Natarajan, R. Prasad, and

P. Natarajan. Robust event detection from spoken content in consumer do-

main videos. In Proc. InterSpeech, 2012. 52

142 BIBLIOGRAPHY

[91] F. Valente, J. Vepa, C.Plahl, et al. Hierarchical neural networks feature extrac-

tion for LVCSR system. In Proc. InterSpeech, 2007. 78

[92] K. Veselý, M. Karafiát, and F. Grézl. Convolutive bottleneck network features

for LVCSR. In Proc. ASRU, 2011. 27

[93] K. Veselý, M. Karafiát, F. Grézl, et al. The language-independent bottleneck

features. In Proc. SLT, 2012. 27, 87, 91

[94] K. Veselý, A. Ghoshal, and D. Povey. Sequence-discriminative training of deep

neural networks. In Proc. InterSpeech, 2013. 33, 81

[95] N. T. Vu, F. Metze, and T. Schultz. Multilingual bottle-neck features and its

application for under-resourced languages. In Proc. SLT, 2012. 27, 79, 91

[96] J. C. Wells et al. SAMPA computer readable phonetic alphabet. Handbook of

standards and resources for spoken language systems, 4, 1997. 72

[97] Z. J. Yan, Q. Huo, and J. Xu. A scalable approach to using DNN-derived fea-

tures in GMM-HMM based acoustic modeling for LVCSR. In Proc. InterSpeech,

2013. 27

[98] D. Yu and M. L. Seltzer. Improved bottleneck features using pretrained deep

neural networks. In Proc. InterSpeech, 2011. 27, 82

[99] L. Zhang, D. Karakos, W. Hartmann, R. Hsiao, R. Schwartz, and S. Tsaka-

lidis. Enhancing low resource keyword spotting with automatically retrieved

web documents. In Proc. InterSpeech, 2015. 66, 109

[100] Y. Zhang, E. Chuangsuwanich, and J. Glass. Language ID-based training of

multilingual stacked bottleneck features. In Proc. InterSpeech, 2014. 92, 95

[101] Y. Zhang, E. Chuangsuwanich, and J. Glass. Extracting deep neural network

bottleneck features using low-rank matrix factorization. In Proc. ICASSP, 2014.

17, 77, 80

BIBLIOGRAPHY 143

[102] Y. Zhang, E. Chuangsuwanich, J. Glass, and D. Yu. Prediction-Adaptation-

Correction recurrent neural networks for low-resource language speech recogni-

tion. In Proc. ICASSP, 2016. 112

	Cover page
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Effect of training data size on ASR performance
	1.2 Low Resource Languages
	1.3 Automatic Speech Recognition for Low Resource Languages
	1.4 Main Contributions
	1.5 Thesis Overview

	2 Background
	2.1 Introduction
	2.2 Automatic Speech Recognition
	2.2.1 Discriminative Training
	2.2.2 Lattice and N-best
	2.2.3 Language Models
	2.2.4 Word Error Rate (WER)

	2.3 Acoustic Features and Feature Transforms
	2.3.1 Perceptual Linear Prediction features
	2.3.2 Cepstral Mean and Variance Normalization (CMVN)
	2.3.3 Vocal Tract Length Normalization (VTLN)
	2.3.4 Delta Features
	2.3.5 Dimensionality Reduction and Decorrelation Techniques
	2.3.6 Maximum Likelihood Linear Transform (MLLT) and Feature-Space Maximum Likelihood Linear Regression (fMLLR)

	2.4 Keyword Spotting (KWS)
	2.4.1 Averaged Term Weighted Value (ATWV)
	2.4.2 Score Normalization

	2.5 Deep Neural Networks (DNN)
	2.5.1 Neurons
	2.5.2 Softmax Layer
	2.5.3 Neural Network Training
	2.5.4 Cross Entropy Criterion
	2.5.5 Neural Network Initialization
	2.5.6 DNN Training in Practice
	2.5.7 DNN in Acoustic Modeling
	2.5.8 Hybrid vs. Tandem

	2.6 IARPA-Babel Corpus
	2.6.1 Corpus Structure
	2.6.2 Lexicon
	2.6.3 Evaluation Metric
	2.6.4 Evaluation Keywords
	2.6.5 Languages and Training Packs

	3 Monolingual Systems
	3.1 Introduction
	3.2 Multilingual Features
	3.2.1 Fundamental Frequency Features
	3.2.2 F0 Experiments

	3.3 Lexicon
	3.3.1 Pronunciation Mixture Models (PMM)
	3.3.2 PMM Experiments

	3.4 OOV Handling
	3.4.1 Subwords
	3.4.2 Phonetic Matching
	3.4.3 OOV Handling Experiments

	3.5 Web Data Usage
	3.6 Summary

	4 Basic Multilingual Systems
	4.1 Introduction
	4.2 Model Sharing Using Shared Phonemes
	4.3 Global Phoneset Experiments
	4.4 Analysis
	4.5 Summary

	5 Low-rank Stacked Bottleneck Architecture
	5.1 Introduction
	5.2 Model Description
	5.2.1 Low-rank Matrix Factorization
	5.2.2 Stacked Bottleneck (SBN) Features
	5.2.3 Low-Rank Stacked Bottleneck (LrSBN)

	5.3 LrSBN Experimental Description
	5.3.1 Baseline HMM Systems
	5.3.2 Baseline Hybrid DNN Systems
	5.3.3 LrSBN systems

	5.4 Analysis of LrSBN Features
	5.4.1 Context-independent (CI) vs Context-Dependent (CD) Labels
	5.4.2 The Best Layer for Bottleneck Placement
	5.4.3 Low-rank on the Softmax Layer
	5.4.4 Results on Larger tasks and Different Languages
	5.4.5 Speaker Adaptation on the First BN Output

	5.5 Multilingual Training of SBNs
	5.6 Summary

	6 Multilingual Transfer Learning Using Language Identification
	6.1 Introduction
	6.2 Language Pair Transfer Learning
	6.2.1 A Case Study on Assamese and Bengali
	6.2.2 Other Language Pairs
	6.2.3 Language Identification for Source Language Selection

	6.3 Transfer Learning Experiments
	6.3.1 Adaptation Strategies
	6.3.2 LID-based adaptation Results
	6.3.3 No Data like Similar Data

	6.4 Frame Selection for SBN Training
	6.4.1 Frame Selection DNNs
	6.4.2 Frame Selection Experiments
	6.4.3 LID DNN Analysis
	6.4.4 Frame Selection DNN Analysis
	6.4.5 Recognition System
	6.4.6 Keyword Spotting
	6.4.7 Frame Selection Experiments

	6.5 The Final Systems
	6.5.1 Results

	6.6 Summary

	7 Conclusion
	7.1 Summary
	7.2 Future Work and Directions
	7.2.1 Handling Dialects and Accented Speech
	7.2.2 ASR with Zero Transcription
	7.2.3 Mis-match Crowd-Sourcing for ASR
	7.2.4 ASR for Languages without a Writing System
	7.2.5 Multilingual Techniques for Language Modeling

	7.3 Closing Statement

	Glossary of Acronyms
	A Global phone mappings
	B Babel data
	Bibliography

