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ABSTRACT 
 

In this study we determine a viable bioenergetic model for power allocation during a cycling 

race. Various models have been proposed to address power allocation in races with two models 

rising above others: the Morton-Margaria Three Tank model and the Skiba Energy Balance 

model. The energy balance model was implemented in MATLAB and compared against the gold 

standard implementation in Golden Cheetah to model the depletion of an athlete’s energy over 

the course a ride. The implementation of the model was successful as verified by ride data from a 

cyclist in the 2014 Tour de France. Additionally, the model was further tested with sample power 

profiles in order to understand the depletion of energy over the course of a ride.  

 

Two key findings emerged from the investigation. First, we require a better account of 

exhaustion in the energy balance model which can be achieved by weighting the time spent 

below critical power over the time spent above critical power. This is because a cyclist becomes 

more exhausted by efforts at higher power outputs compared to the recovery at an effort below 

critical power.  

 

Second, energy balance models should use a variable time constant as rides and races have 

highly variable recovery periods below critical power which affects the ability of an athlete to 

reconstitute their energy. Use of a variable time constant could address the weighting of efforts 

below critical power identified in the first finding as well.  

 

 

Thesis Supervisor:  Anette Hosoi 

Tile:  Professor of Mechanical Engineering 
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1. INTRODUCTION 

 

Athletes are increasingly seeking diminishing margins to optimize in order to distinguish 

themselves in their discipline. When podium places are separated by a few seconds, or even less, 

on races that vary from a few hundred meters to a few hundred miles, anything which can help 

an athlete cross the line a little faster can provide immense benefits. In the sport of cycling, 

performance optimizations can make a huge difference among athletes. In the 2009 Tour de 

France, 31 seconds separated the Levi Leipheimer, 3
rd

 place, from Alberto Contador who won 

the grueling stage race in 91 hours and 26 seconds (McGann Publishing LLC). The time 

difference between the podium finishers represents 0.009% of the overall race time. Indeed, 

every little bit counts when optimizing race performance.  

Cyclists have a singular goal while racing; to get across the finish line first. While the goal is 

simple, achieving it requires much more nuance. Like many modern sports, cycling is governed 

by numbers and metrics. For most metrics, the major unit of interest is watts, or energy over 

time. Watts are a measure of the power a cyclist puts into the bike and is dependent on how a 

cyclist allocates their energy over the duration of the race. Cyclists can choose to generate a lot 

of power for a short amount of time, or use less power over a long period of time. How a cyclist 

chooses to use their energy to generate power on the bike is a key differentiating factor in 

separating a first place finish from a mid-pack placing.  

The goal of this thesis is to determine a mathematical model and set of parameters which 

optimizes the power allocation of a cyclist in a competitive cycling event. This model will take 

into account factors like the individual power output of a cyclist, the geography of the course, the 

recovery time of the athlete, and other parameters to provide an individual recommendation for 

the optimal power output for a cyclist. A few theoretical models such as the 3-Tank, Exertion 
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Curve, and Skiba model have been proposed to allocate power but none have yet been verified 

with experimental data. Using these models, predicted cycling power output will be compared to 

actual power output and recovery times using data from elite cyclists’ training rides and 

professional cycling races in the Tour de France. A recommendation will be made for an optimal 

mathematical power model validated with real race data and with specific physiological 

parameters accounted for. This recommendation will be used to develop a model for cyclists to 

gauge real-time power output in a race with optimal power output. This model for cyclists would 

vastly improve the current real-time output of watts and turn data into actionable data, providing 

information on when to attack, when to ease up, and how much energy is remaining in an 

athlete’s gas tank for a final sprint.  

2. BUILDING THE OPTIMAL PACING STRATEGY 

2.1 Critical Power Curve 

 

Critical power (CP) is the maximum power level, in watts, that a cyclist can sustain for a 

given length of time. The maximum length of time a cyclist can hold a given power beginning 

with full energy constitutes a single data point on the critical power curve. For every watt value, 

there is a finite time period which a cyclist can hold a certain power. Each of these data points 

forms the critical power curve (CPC). Often, the shape of the graph follows a hyperbolic curve 

where time is along the x-axis and power is along the y-axis. This suggests that cyclists can hold 

extraordinarily high levels of power for a short duration (ex: in a sprint) while they can hold 

comparatively low levels of power for a much longer duration (ex: in a time trial). Fortunately, 

modern software suites such as Golden Cheetah and Strava, commonly used by cyclists, 

automatically calculate the critical power curve based on aggregated ride data from power 
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meters
1
.  The programs identify parts of rides that correspond to high power outputs and low 

power outputs along with the duration of time at which that power was maintained and form the 

critical power curve accordingly. Figure 2-1 shows an example critical power curve using data 

compiled by Golden Cheetah software.  

 
Figure 2-1: Example critical power curve plotted on a log time scale showing the decay 

of power as time increases. Log10(0.5) is equal to 3.2 seconds and Log10(4) is equal to 2.8 

hours.  

In conjunction with the critical power curve, another common term cyclists use is the 

functional threshold power (FTP). Functional threshold power is the average maximal power 

output a cyclist can sustain for one hour. When cyclists speak about their critical power, FTP is 

often used to describe their critical power with one value instead of the curve commonly used to 

give the full picture. 

Testing for FTP is difficult for many athletes since pacing a maximal effort for one hour is 

both challening to do and costly in terms of time required to recover from such an effort. As a 

result, many athletes complete a 20 minute average maximal power test in a time trial type of 

fashion on a straight flat course to get a critical power reading for the twenty minute interval. 

                                                 
1
 A power meter is a common tool used by cyclists which measures their power in real time either through the crank 

arms, the cassette, or pedal spindle depending on the brand of the power system. Common systems are the CycleOps 

PowerTap, Stages Power, and Quarq systems.  
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Then, FTP can be calculated by taking 95% of the average power from the 20 minute test 

(Wattbike). Together with the critical power curve, FTP provides a partial picture of a cyclist’s 

fitness level through their ability to generate maximal power on the bike. Furthermore, these 

tools also provide a point of comparison to objectively compare cyclists in terms of raw power 

output. However, a fairer comparison of power between cyclists would normalize by weight 

because heavier cyclists must generate more power to travel the same distance and speed as 

lighter cyclists. Thus, normalized power metrics like FTP and the CP curve in units of watts per 

kilogram are also common in the sport of cycling.  

Due to the fact that the critical power curve constitutes an athlete’s maximum average power 

output for a given length of time, an athlete may exceed or fall below this power value during the 

course of race. Because the critical power value is an average, it would imply that any deviation 

above the value is equally matched by a deviation below the critical power value. However, race 

data shows that this is not the case (Skiba, Chidnok and Vahatalo). Exceeding critical power for 

a given time is physiologically costly and requires much more time below critical power to 

recover than simply the amount of time to average out to the critical power value. As a result, it 

is advisable when optimizing pacing to stay as close to the optimal critical power as possible 

without exceeding it. Furthermore, research has also shown that the greater the deviation above 

the critical power threshold; the faster an athlete becomes exhausted or must take exceedingly 

longer to recover (de Lucas, de Souza and Costa). In other words, exceeding critical power by 

small amount for a moderate amount of time is often less physiologically costly than exceeding 

critical power by a great amount for a short amount of time. Athletes will often give anecdotal 

evidence of the increase in perceived effort and recovery times for sprints in short interval 

workouts versus longer above-threshold intervals. From these results, a linear averaging of 
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efforts above and below critical power would not be physiologically relevant. Rather, any efforts 

above critical power must be weighted much more heavily as they are physiologically more 

costly and the athlete must take longer to recover. In determining an optimal pacing strategy, a 

cyclist must consider this phenomenon when considering exceeding their critical power to stay 

with the pack up a hill, or in deciding whether to launch a sprint attack.  

2.2 Human Bioenergetic Models 

 

Once a cyclist determines their critical power curve, there is a simple first order calculation 

that can be performed to find the optimal power allocation for a given race. This can be done by 

calculating the total energy needed to complete the race, and dividing by a critical power value to 

determine the time it would take to complete the race at that given power. If the time to complete 

is equal to the time a cyclist can maintain that power output, then that is the optimal power 

allocation for that ride. However, this method fails in real races due to variable pacing and power 

requirements.  

To begin with, calculating the total energy needed to complete a race is difficult because of 

the variable forces that act upon a cyclist. There is a friction force which varies according to the 

road surface. The gravitational force would be relatively straightforward to calculate by taking 

the topology of the course into account and considering all elevation changes over the length of 

the course. There is also a drag force which varies according to a cyclist’s speed, wind direction 

and speed, humidity, elevation, whether a cyclist is drafting behind another rider, and many more 

factors. Accounting for all of these factors reliably and predicting them ahead of time to calculate 

the anticipated energy expenditure in a race is not a reliable way of determining the fastest way 

to win a bike race. 
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Because of this problem, a model is needed which accounts for real-time output of power and 

considers the physiological response of the athlete in a race. Power data from a typical ride is 

plotted in Figure 2-2 along with the critical power line for a ride of the specific duration for the 

athlete. The figure demonstrates the high variability both above and below critical power for a 

given ride. Accounting for the recovery time below critical power as well as the exertion above 

critical power requires an advanced power allocation model which accounts for physiological 

factors along with the physical geography and course conditions. Various models have been 

proposed to account for the physiological factors, each with slightly different methods of 

implementation. Two of the leading models include the Morton-Margaria 3-Tank model and the 

Skiba Energy Store model.  

 
Figure 2-2: Power data from a typical ride plotted along with the cyclists’ critical power 

line of 223 W for this ride length. The power data is highly variable with varying time 

intervals spent above and below the critical power threshold. Developing a model to 

account for recovery time below critical power and exertion above critical power is 

necessary to optimally allocate power in a cycling race.  

 

2.2.1 Morton-Margaria Three Tank Model  
 

The Morton-Margaria Three Tank model conceptualizes the human body as a series of 

vessels which follow the laws of fluid flow in determining work output (Morton). In accordance 

with the name of the model, there are three tanks which constitute the bioenergetics model and 

correspond to the body’s three ways of producing energy. The three tank model is depicted in 

Figure 2-3. Tank P represents the phosphagen system and is connected to the work output W 

Distance (km) 
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through tap T which regulates the flow of all net energy expenditure above rest. The phosphagen 

system contributes to adenosine triphosphate (ATP) production in the fastest manner by using 

stored creatine phosphate molecules and can operate anaerobically, which is to say, without 

oxygen (Karp). While the phosphagen system is the most efficient at energy production, it 

depletes quickly because the body does not store a lot of creatine phosphate and is really only 

used for extreme efforts for periods of up to 10 seconds (Karp).  

The O tank is only partially shown due to its infinite capacity because it represents the 

oxidative, also known as the aerobic, source. The O tank is connected to the P tank through the 

R1 tube. The aerobic system, in contrast to the phosphagen system, has a very low rate of ATP 

production, but its capacity is infinite (Karp). The infinite capacity allows people to do aerobic 

activities like walking for seemingly endless amounts of time.  

The last tank, the L tank, represents the glycolysis anaerobic energy production system. The 

upper level of the L tank is set at some height above the bottom level of the O tank but below the 

top level which means that the L tank only begins to fill the P tank when the O tank has partially 

emptied. Physiologically, this means that an athlete enters glycolysis anaerobic production at 

some point above rest but below the anaerobic threshold. Once an athlete exceeds the glycolysis 

rate of production, all they have remaining in terms of energy production is a small amount of 

creatine phosphate which the human body utilizes rapidly. Once depleted, the athlete must rest 

and recover to let their energy tanks refill. The L tank is connected to P through a one-way tube 

R2 and P is connected back to L through another one-way tube R3. R2 is a much thicker tube than 

R3 which means that L can empty into P much faster than it can be refilled by P. Incidentally, 

when an athlete has depleted all tanks and must rest, the reflow of energy comes from tank O as 

oxygen is used to produce more ATP, which is used as an energy source in the body to produce 
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the other molecules that are used in the phosphagen and glycolysis production systems. 

Effectively, this means that refill goes from tank O to tank P to tank L through tubes R1 and R3, 

respectively.  

The glycolysis production system is used for high intensity exercise lasting from about 30 

seconds to 2 minutes and produces ATP at a faster rate than the phosphagen system (Karp). The 

anaerobic energy production in the glycolysis system is responsible for the buildup of lactic acid 

in muscles (Karp). The buildup of lactic acid does a number of things in the body including 

inhibiting muscle contraction and interfering with electrical charges sent to the muscles (Karp). 

Thus, the body literally has an emergency stop mechanism built into this production system 

which forces the muscles to stop contracting and the athlete to rest when an athlete has emptied 

their tank and exceeded their ability to produce energy anaerobically.  

 
Figure 2-3: The Morton-Margaria Three Tank bioenergetics model. The model 

represents the three energy producing systems of the human body; oxidative, 

phosphagen, and glycolysis; as hydraulic tanks feeding into a work output, W for any 

energy expenditure.  
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While the Three Tank model provides an accurate conceptualization of energy flow through 

the body, Morton and Margaria did not quantify the flow rates which determine the model. It is 

known that the phosphagen and glycolysis anaerobic energy production is time limited and each 

system has less capacity than the oxidative system. An athlete’s recovery rate is also generally 

known as evidenced by oxygen uptake and heart rate. From this information, the refill time of the 

tanks could theoretically be determined. However, to find out the relative flow rates of R1, R2, 

and R3, one would have to come up with a novel testing scheme which may stretch the limits of 

the applicability of the hydraulic system metaphor. Alternatively, one could program the 

hydraulic fluid flow equations into a computer and match the parameters to work output data to 

try and fit the work curve as closely as possible. This last approach seems like the best possibility 

of quantifying this model until it is realized that this model does not factor in a criteria for 

exhaustion. In other words, an athlete exercising will eventually become exhausted with the 

emptying of the three tanks and will not perform according to the flow rates put forth by a curve 

matching algorithm. The Three Tank model, while appealing in its intuitiveness, does not lend 

itself well towards a quantitative model of work output and pacing optimization for cyclists. 

 

2.2.2 Skiba Energy Store Model 
 

The Skiba Energy Store model, like the Three Tank model, conceptualizes the human body 

in an intuitive way, this time by considering the body as a gas tank of energy storage. In the 

Skiba model, the primary parameter of interest is W’, which is the finite work capacity above 

critical power (Skiba, Chidnok and Vahatalo). For any ride of a given amount of time, a cyclist 

can maintain a work output less than or equal to their critical power for the entire duration of the 

ride, but as soon as a cyclist exceeds that critical power threshold, they start to use the finite 

amount of gas in their tank, W’. A parameter like W’ is much more suitable than the Three Tank 
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theory for modeling optimal pacing strategies in a race because it allows consideration of supra-

CP efforts like sprints or attacks which happen often in a cycling race to be factored into 

consideration. Furthermore, with modern cycling power meters, power output can be measured 

during the course of a ride thereby allowing W’ to be calculated in real time to accurately 

respond to changes and deviations from CP during a race.  

The calculation of W’ relies on the hyperbolic relationship between power, CP, and time. It 

was first mathematically formulated in the current accepted state in 2010 in a paper examining 

exercise tolerance and VO2 max (Jones, Vanhatalo and Burnley). P is equal to power output, and 

t is equal to the time to exhaustion at that power output (Jones, Vanhatalo and Burnley).  

 

 
𝑃 = (

𝑊′

𝑡
) + 𝐶𝑃 [1] 

 

The energy store model relies on three assumptions for calculating the balance of energy 

during a period of exercise. These assumptions are: 1) the expenditure of W’ begins when the 

athlete exceeds CP, 2) the energy balance begins to increase again when the athlete falls below 

CP, and 3) the reconstitution of W’ follows an exponential time recovery path which weights 

recent efforts more heavily than efforts further back in time (Skiba, Chidnok and Vahatalo). 

Given these assumptions, an equation can be formulated describing the balance of W’ (W’bal) 

where some amount of W’ was expended (W’exp): 

 

 
𝑊𝑏𝑎𝑙

′ = 𝑊′ −∫ 𝑊′
exp⁡(𝑡)

𝑡

0

𝑒
−
(𝑡−𝑢)

𝜏𝑊
′
𝑑𝑡 [2] 

 

where W’ is calculated from equation [1], (t – u) is the time in seconds between exercise 

segments above CP, and τW’ is the time constant for reconstituting W’. This formulation takes 



19 

 

into account the fading memory of W’ during recovery below CP in which recent efforts are 

weighted more heavily than efforts which occurred in the distant past of the particular workout.  

After a trial of seven subjects undergoing three different exercise tests to determine recovery 

rate, the recovery constant equation was determined as follows: 

 

 𝜏𝑊
′ = 546𝑒−0.01𝐷𝐶𝑃 + 316 [3] 

 

where DCP is the difference between recovery power and CP in the tests performed (Skiba, 

Chidnok and Vahatalo). To determine this equation, the data were best fit to an exponential 

regression with a close correlation of r
2
 = 0.77, especially given the low number of test subjects 

(Skiba, Chidnok and Vahatalo). The equation suggests that the minimum recovery time for a 

complete reconstitution of W’ upon emptying for an athlete is 316 seconds, a little over five 

minutes, with the recovery time increasing afterwards depending on the work output during the 

rest interval (DCP).  

The equations above, taken together, constitute a simple and practical application of real-time 

energy monitoring of athletes in competitive races. Modern cycling power meters can integrate 

data into these equations and provide actionable data in the form of W’, informing an athlete 

when it is necessary to recover or when it is permissible to attack given the history of work 

output in the race by the athlete.  

3. MODELING THE OPTIMAL PACING STRATEGY 
 

With the foundational equations in place, the optimal pacing strategy can be implemented in 

computer software. The ultimate goal is to create a real-time energy level indication for a cyclist 

while competing in a race. This can be done using equations [2] and [3] combined with data from 

a cyclist’s power meter. Alternatively, for running, swimming, and other sports, power can be 
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replaced by speed, critical power can be replaced by critical speed, and time can be replaced by 

distance. Using the equations above, a similar energy tank model could be constructed.  

The model was constructed using data posted online from various riders during the 2014 

Tour de France (TrainingPeaks). From this data, time and power were collected over the course 

of the race. The implementation of the energy storage equations was done in MATLAB, chosen 

for its ease of use and ability to handle large datasets. With one power data point for every 

second of a ride, considering that rides last several hours long there can be many thousands of 

data points for a single ride which must each be integrated over separately, a computationally 

expensive process. MATLAB is a well-suited program to handle such a task. 

Figure 3-1 below shows the calculation of W’ for a cyclist plotted over the same time period 

as the corresponding power for that ride. When the power exceeds the critical power threshold, 

indicated by the dashed blue line, the W’bal begins to decrease rapidly as a rider is drawing from 

their energy storage. However, when the cyclist falls below the critical power line, the W’bal 

begins to increase again, albeit slowly. The difference in steepness of the slopes for recovery and 

depletion of W’bal make intuitive sense; a cyclist must take a longer amount of time to recover 

than the time they spent above critical power. Furthermore, the closer to critical power that an 

athlete recovers at, the longer it will take to recover. Again, this makes intuitive sense as 

recovery at a very easy, low wattage output after an interval can be done much faster than 

recovery closer to critical power during a race. These two findings indicate that the change in 

W’bal is dependent both on whether an athlete is above or below critical power as well as the 

magnitude of deviation from critical power.  
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Figure 3-1: Modeled W’bal of a Tour de France cyclist during a race plotted against 

power output. When the cyclist exceeds their critical power, indicated by the dashed blue 

line, the W’bal falls sharply. When the cyclist enters recovery by cycling below their 

critical power, W’bal rises slowly until full recovery.  

Figure 3-2 shows the same ride plotted using the Golden Cheetah software. The Golden 

Cheetah implementation of W’bal is considered the gold standard in terms of fidelity to the 

original conception of the equation by Skiba (Mantica). For this reason, a close match to the 

Golden Cheetah W’bal equation will be considered to be an accurate implementation of the 

energy balance model.  

As shown in the figure, the Golden Cheetah software shows a similar energy balance profile 

for the ride compared to the MATLAB implementation. The same parameters; τW’, critical 

power, and W’ were used in each example which further validates the implementation of the 

W’bal equation in MATLAB.  
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Figure 3-2: Golden Cheetah produced plot of W’bal using the same τW’, critical power, 

and W’ parameters in the MATLAB implementation highlighting the similarities and 

repeatability of the energy balance model created.  

 

To further test and refine the model, example power profiles were created to determine if the 

model behaved as expected. These test cases included intervals above and below critical power 

varying in length of time and in magnitude of deviation above and below critical power. Figure 

3-3 shows four separate graphs consisting of different power profiles and the corresponding W’bal 

profile. The first profile shows power as a step function going from below critical power to 

above critical power. The second profile shows power as a linear function increasing with time. 

While this is not a realistic model while riding, it nonetheless accurately shows the response that 

the W’bal function decreases as the critical power threshold is approached and exceeded and 

furthermore, decreases more rapidly as critical power is increasingly exceeded. The third profile 

consists of a constant power function above critical power. This model is also outside of the 

realm of physiological possibility as W’bal has a minimum value of 0 which represents complete 

exhaustion. However, if an athlete were to continue above critical power indefinitely, their W’bal 

function would continue to decrease and become negative, as shown in the third graph. Lastly, 
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the fourth profile shows a square function alternating between equal periods of above and below 

critical power output. Although the deviation from critical power is the same number of watts on 

either side, the W’bal function progressively decreases. This is because W’bal accounts for the 

increased recovery needed after activities above critical power as the body takes longer to 

recover after bouts of intense exercise than the duration of exercise performed. Because the W’bal 

function closely follows the implementation in the Golden Cheetah program, it adequately 

handles the four described test cases, and is in agreement with physiological intuition.  

 
Figure 3-3: Four test cases of the W’bal function plotted on the same axes as power 

profiles. (clockwise from left) 1) Step function from below critical power to above critical 

power beginning at time t. 2) Linear power output increasing monotonically throughout 

the sample time. 3) Constant power output above critical power threshold. 4) Square 

function alternating evenly above and below critical power and showing the difference in 

recovery and exhaustion rates that W’bal predicts.  
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4. DISCUSSION 

4.1 Weighting Recovery Time 
 

After modeling the energy tank reserve of a cyclist, a key finding must be raised. That is, 

intuitively, recovery time for efforts above critical power should take much longer than the 

respective time interval above critical power. For example, a cyclist who sprints for five seconds 

should not be able to recover from the effort within five seconds. However, the current 

formulation of Skiba’s model does not consider any kind of weighting factor for recovery 

intervals after critical power is exceeded. In the most simple implementation of the weighting, a 

recovery constant, α(W’exp(t)), could be inserted in equation [2] and be implemented only when 

current power is below critical power. Since the recovery time interval for below critical power 

efforts should be longer, α should be less than or equal to one.  

 

 
𝑊𝑏𝑎𝑙

′ = 𝑊′ − 𝛼(𝑊′exp⁡(𝑡))∫ 𝑊𝑒𝑥𝑝
′ (𝑡)

𝑡

0

𝑒
−
(𝑡−𝑢)

𝜏𝑊
′
𝑑𝑡 

 

[4] 

 𝑤ℎ𝑒𝑟𝑒 𝛼 ≤ 1⁡⁡⁡⁡⁡⁡𝑖𝑓  ⁡𝑊′
𝑒𝑥𝑝 ≤ 𝐶𝑃  

 𝑎 = 1⁡⁡⁡⁡⁡⁡𝑖𝑓 𝑊′
𝑒𝑥𝑝 ≥ 𝐶𝑃    

 

 

 

The α value would be another rider parameter which could be derived from ride data or an 

equation could be fitted to it dependent on the rider similar to the variable τW’ in equation [3].  

4.2 Limitations of the Energy Balance Model 
 

The first limitation of the model is the data from the Tour de France rides, and indeed a ride 

from any athlete, does not imply that a rider will empty their tank. Since W’ is calculated based 

on previous rides, this is a value that will have to be recalculated and changed frequently 

depending on fitness and how hard a cyclist pushes themselves. This is because W’bal should 

never be below zero, which would signal a negative energy balance. If an inaccurate W’ is used 
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and an athlete enters a particularly hard effort, it is feasible that their W’bal could become 

negative if W’ is not calibrated correctly. Fortunately, a negative W’bal has no effect on the W’bal 

overall profile, only the specific value of W’bal. If W’bal were displayed on a cycling computer, it 

could cause confusion for the user but not disrupt the actual data. 

A good method of finding an upper limit of W’bal for cyclists would be to look at the W’bal of 

elite cyclists during monument races. Monument races are one day stage races which take place 

in Europe over the course of the spring and summer and are grueling six plus hour races in which 

riders push themselves as hard as they can to win. Monument races, as opposed to stage races or 

other forms of riding, are ideal because a rider is not consciously saving any energy over the 

course of the ride so the W’ calculation from an all-out race like a monument would be an 

excellent indication of the total energy balance of an athlete.  

Finally, a major assumption made in the calculation of W’bal is a constant τW’. As seen in 

equation [3], τW’ is variable based on the difference in recovery below critical power. However, a 

rider is hardly ever consistently constant in power while recovering over the course of a ride and 

the power data is quite noisy with variance of around 5% in most cases. This would mean that τW’ 

would have to be recalculated every second of the ride which is very computationally costly. Of 

course, τW’ would vary relatively little during each of these calculations because even deviations 

of 5% in power would affect τW’ in a relatively similar magnitude depending on the critical 

power and recovery power output of the rider.  

Following the practice set forth in the Skiba et al. paper, τW’ was calculated by taking the 

average power below critical power over the course of the ride and using that value to calculate 

DCP. For a first-order approximation, this assumption yields surprisingly accurate results, though 

consideration of a variable τW’ would yield more accurate results. Furthermore, this assumption 
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works relatively well while doing interval training where the recovery periods are similar 

following the work periods; however it breaks down when considering data from races. Because 

the course elevation and speed due to attacks vary greatly over the course of a race, deviations 

below critical power could be significant such as when a rider is coasting down a descent or they 

could be minor such as when a rider is sitting in the draft of the peloton. In this case, the 

assumption of a uniform τW’ for the whole ride fails due to the high variability of power exerted 

during sub-critical power periods. 

Implementing a variable τW’ could also account for the weighting factor necessary between 

efforts over and under critical power. For instance, an athlete recovering significantly below their 

critical power will regain their energy much faster than an athlete recovering near their critical 

power. As such, the DCP of the athlete recovering at a lower power output will be much higher, 

which will cause the recovery time constant to be lower, leading to a faster recovery. In this way, 

a variable DCP could allow consideration of recovery efforts at different power outputs to affect 

the speed at which a cyclist regains their energy after efforts above critical power.  

 

5. CONCLUSION 
 

To reiterate, the goal of this thesis is to build upon existing human bioenergetic models and 

provide recommendations for the optimal allocation of power for an athlete during a race. After 

evaluation of many models, the two most promising models considered were the Morton-

Margaria Three-Tank model and the Skiba Energy Balance model. However, the Morton-

Margaria model was discarded due to a lack of consideration for an exhaustion factor as well as a 

lack of data for determining flow rate parameters between an athlete’s energy tanks. 

Accordingly, the Energy Balance model was modeled in MATLAB using data from a cyclist 
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who rode in the 2014 Tour de France in order to test the validity of the model in predicting 

energy capacity and exhaustion in athletes. The derived model performed very well against the 

gold standard implementation of the model in the Golden Cheetah software suite. Additionally, 

characteristic power profiles were also tested on the model to see how it would account for 

variations in power and were validated against intuition about physiological responses to 

exertion. 

Two novel findings arose as a result of this investigation. First, the energy balance model 

must consider a weighting for recovery below critical power versus time spent above it. The 

present model uses an equal weighting for time spent above and below critical power when 

reconstituting energy. However, consideration of exhaustion by the athlete must be made as 

athletes become more exhausted exercising above critical power than a comparable amount of 

time spent riding below their critical power. Secondly, the assumption of a constant recovery rate 

τW’ used in the Skiba et al. paper is invalid due to the highly variable recovery outputs from 

cyclists over the course of a ride and especially in a race. Moving forward, implementations of 

W’bal should include a variable recovery rate dependent on the deviation below critical power for 

the recovery interval. Considering this, implementing the variable recovery rate could address 

the issue raised by the first finding by evaluating recovery intervals further below critical power 

with lower time constants signifying that athletes will regain their energy faster than recovery 

periods closer to the critical power threshold. With this in mind, implementing a variable 

recovery rate should be a top priority for future iterations of performance optimization models. 

Apart from the variable recovery rate, future work in the area of human bioenergetics models 

could examine modeling in other sports such as running and swimming. Although the 

implementation would switch critical power for critical speed and time for distance in both cases, 
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it is likely that the individual athlete parameters and equations are sport specific and would 

require reformulation using additional tests from athletes. Building future bioenergetics models 

more accurately could usher in a new level of performance optimization as athletes are able to 

determine how much energy their bodies have to guide their decisions during crucial moments in 

races. Formulating these models with data measured by various sport instruments turns data into 

more than simply a number; it becomes a guide for decision making. In short, bioenergetic 

models can turn data from numbers into actions.   
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