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Abstract

We present a new analysis of sparse oblivious subspace embeddings, based
on the ”matrix Chernoff” technique. These are probability distributions over
(relatively) sparse matrices such that for any d-dimensional subspace of Rn, the
norms of all vectors in the subspace are simultaneously approximately preserved
by the embedding with high probability–typically with parameters depending
on d but not on n. The families of embedding matrices considered here are
essentially the same as those in [NN13], but with better parameters (sparsity and
embedding dimension). Because of this, this analysis essentially serves as a “drop-
in replacement” for Nelson-Nguyen’s, improving bounds on its many applications
to problems such as as least squares regression and low-rank approximation.

This new method is based on elementary tail bounds combined with matrix
trace inequalities (Golden-Thompson or Lieb’s theorem), and does not require
combinatorics, unlike the Nelson-Nguyen approach. There are also variants of
this method that are even simpler, at the cost of worse parameters. Furthermore,
the bounds obtained are much tighter than previous ones, matching known lower
bounds up to a single log(d) factor in embedding dimension (previous results had
more log factors and also had suboptimal tradeoffs with sparsity).
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1 Introduction

Recently there has been substantial interest in the algorithms community in oblivious sub-

space embeddings (OSEs) and in particular sparse OSEs which can be applied efficiently. A

probability distribution over m by n matrices Π is defined to be a (d, ε, δ)-OSE if, for any

d-dimensional subspace S of Rn,

P [( max
x∈S,‖x‖=1

|‖Πx‖2 − 1|) > ε] < δ.

That is, oblivious subspace embeddings must, with some given probability, simultaneously

approximately preserve the norms of all vectors in a d-dimensional subspace, and furthermore

they must be oblivious, with no dependence on the specific subspace being embedded. Note

that for d = 1 the OSE property is essentially equivalent to the distributional Johnson-

Lindenstrauss property.

These embeddings, and their applications to randomized numerical linear algebra algo-

rithms, were popularized by [Sar06], which showed that Johnson-Lindenstrauss matrices of

dimension about d/ε2–notably, with no dependence on n–satisfied the property. However,

using standard, dense Johnson-Lindenstrauss matrices (such as i.i.d. Gaussian or sign ma-

trices) often does not lead to efficient algorithms, as multiplying by these matrices is slow.

This can often be improved by substituting “fast Johnson-Lindenstrauss transform” vari-

ants ([AC09, AL13])–but even these methods fail to exploit sparsity in their running time:

multiplying by any n-dimensional vector takes on the order of n log n time, even if it is very

sparse.

An alternative approach was introduced in [CW13, MM13, NN13]. These papers pro-

posed defining Π to be a sparse variant of random sign matrices: placing exactly s nonzero

entries in each column, sampled randomly without replacement (and independently across

columns), with each nonzero entry a random sign times a normalizer of 1√
s
. The simplest

and most extreme version of this approach is s = 1: choosing a single random nonzero entry

(with a random sign) for each column. This has a simple analysis based on the matrix second

moment method, showing that m = O
(
d2

ε2δ

)
suffices. Unfortunately, the d2 dependence is

known to be tight ([NN14]). Multiplying a vector (or another matrix) by such a matrix is

also extremely efficient, with runtime proportional only to its number of nonzero entries. In

the more general case, the runtime is proportional to s times this number of nonzero entries.

[NN13] also examined the case where s is small but larger than 1: in particular, between

Θ(1/ε) and Θ(polylog(d)/ε). In this range, the paper established a tradeoff between row

count and sparsity, obtaining a result showing that for any B > 2, m could be set to about

Bd log(d/δ)8/ε2 with s about logB(d/δ)3/ε. Notably, if B is set to dγ for any fixed γ > 0, and
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δ to any inverse polynomial in d, the logB(d/δ) factor is constant. Thus, the result shows

that if one is willing to tolerate a column sparsity of O(1/ε) rather than 1, the d2

ε2
result can

be replaced with any power of d larger than 1.

However, if B is set to grow slower than any fixed power of d, this tradeoff is unappealing,

with a cubic dependence in logB(d/δ). Furthermore, the row count has a large number of

logarithmic factors that are present no matter how small B is. Lower bounds ([NN14]),

on the other hand, suggest that the true tradeoff allows m = O(B(d + log(1/δ))/ε2) with

s = O(logB(d/δ)/ε).

An alternative analysis of these types of matrices was given in [BDN15], Section 4. That

obtained m of about d log2 d/ε2 and s about log4 d/ε2. This is much better than [NN13] in

terms of row count with small s, but allows no tradeoff between row count and sparsity and

does not come close to matching the lower bound.

In this paper, we provide an alternative analysis in the same setting. Unlike the ap-

proach in [NN13], which involved applying careful combinatorics to count the terms in an

expanded moment polynomial, or [BDN15], which used deep results on Gaussian processes,

this requires only simple probabilistic tools combined with a matrix trace inequality, the

Golden-Thompson inequality. It is a variant of the “matrix Chernoff bound” approach in-

troduced by [AW02] and largely popularized by [Tro12]. This result comes close to matching

the lower bound, obtaining m = O(Bd log(d/δ)/ε2) and s = O(logB(d/δ)/ε). The result

fails to be tight because of the extra multiplicative log(d/δ) on the row count, which should

not be necessary but appears to come from a fundamental limitation of the matrix Chernoff

approach.

We note that our approach also gives a novel analysis of sparse Johnson-Lindenstrauss

embeddings if one plugs in d = 1; the result matches [KN12]. This analysis would be

completely elementary, not requiring Golden-Thompson or any matrix trace inequalities.

Since the matrices in question are just the ones from [NN13], apart from being smaller

and sparser, the analysis improves bounds on the many algorithmic applications in that

paper.

2 Background

We define a distribution over m by n matrices Π as sparse embedding matrices with sparsity

s, as depending on random variables δr,i and σr,i (1 ≤ r ≤ m; 1 ≤ i ≤ n). Exactly s δr,i

in each column are uniformly selected without replacement to be 1, independently across

columns; the remainder of the δr,i are set to 0. Each σr,i is equal to an independent random

sign.
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Π is then defined as having its (r, i) entry equal to 1√
s
δr,iσr,i.

Note that there are other, similar distributions of random sparse matrices–for instance,

rather than uniformly selecting s entries per column without replacement, one may group the

rows into s “blocks” and randomly select a single nonzero from each block in each column.

The proofs in this paper can be straightforwardly adapted to that case. Unfortunately, they

still fall short of the generality of [NN13], which provides a systematic rule for analyzing

various such distributions, requiring only a simple anticorrelation property (which they called

the “OSNAP property”). It is not clear whether this paper’s analysis allows such a clean,

systematic approach for analyzing new distributions (although the two just mentioned are

the most important).

A key fact in proving subspace embedding properties is that they are equivalent to matrix

spectral norm error bounds. In particular, Π successfully embeds a subspace S if and only if

‖(ΠU )T (ΠU )−U TU ‖ ≤ ε

where U is an orthonormal basis for S. This follows from the fact that the spectral norm

of a symmetric matrix A is the maximum absolute value of eTAe over all unit vectors e ,

and for a vector e in the subspace,

eT ((ΠU )T (ΠU )−U TU )e = ‖Πe‖2 − ‖e‖2.

For vectors e outside S, the evaluation is equivalent to that on the orthogonal projection of

e on to S.

Thus, we will aim to establish this spectral norm result.

We will use the notation Ar to refer to the rth row of A, treated as a column vector.

3 Our Approach

As stated above, the bounds are obtained in the “matrix Chernoff” framework. In order to

motivate the full methods of this paper, we will begin by briefly sketching a simpler matrix

Chernoff-based analysis, and then sketching the additional techniques used in the proof of

the full result. The actual proof of the main result will be in the next section.

First, consider a standard, “black-box” matrix Chernoff bound, as can be found in e.g.

[Tro12]:

Theorem 3.1 (Matrix Chernoff). Let Ai be independent random positive semidefinite ma-

trices satisfying E
∑

iAi = I and, for all i, ‖Ai‖ ≤ α with probability 1. Then for any
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ε < 1,

‖
∑
i

Ai − I ‖ ≤ ε

with probability at least 1− 2d exp
(
− ε2

3α

)
.

In particular, for a sum of independent random positive semidefinite matrices, a uniform

spectral norm bound for the summands of α = O
(

log(d/δ)
ε2

)
suffices to obtain spectral norm

error no worse than ε with probability at least 1− δ.
Unfortunately, sparse embedding matrices, as defined above, do not seem to naturally

fit into this framework of sums of independent random matrices. Instead, we will consider

a slightly different family of random matrices: instead of randomly selecting s entries per

column to make nonzero, make each entry independently nonzero with probability s
m

. We

call these i.i.d. sparse embedding matrices. This family of matrices turns out to be worse

than the true sparse embedding matrices, but is simpler to analyze. Now, the rows of Π,

and thus of ΠU , are independent from each other, so the matrix

(ΠU )T (ΠU ) =
∑
r

(ΠU )r(ΠU )Tr

is a sum of indepedent random matrices, making it an attractive target for matrix Cher-

noff. There is still a small technical issue that we do not have a uniform upper bound on

‖(ΠU )r(ΠU )Tr ‖ = ‖(ΠU )r‖2 which holds with probability 1. This turns out not to be

a major obstruction; we may simply take a bound that holds with high probability and

slightly tweak the probability distribution of matrices to truncate those matrices with larger

norms. Using this kind of argument, we can show that when ε and δ are not worse than

inverse-polynomial in d, m = O(d log d/ε2) and s = O(log2 d/ε2) suffices. Note that this s

both contains two log factors and an ε2 rather than ε dependence.

The truncation argument, though, is intuitively lossy, since it effectively always assumes

the worst case scenario for the row norms. Since matrix Chernoff bounds are proved via

estimates of the matrix exponentials of the Ai, one may reasonably expect to be able to

avoid these truncation losses by directly estimating those matrix exponentials, rather than

just using an upper bound on the norm. One may construct a complete argument of this

sort by using the matrix exponential estimate lemma 4.5 and general matrix concentration

framework lemma 4.2 discussed later in this paper without any further tricks. This obtains

bounds of m = O(d log(d/δ)/ε2) and s = O(log(d/δ)/ε2). This is actually the optimal

sparsity that can be obtained for the i.i.d. sparse embeddng matrices. We need to analyze

the true sparse embedding matrices instead, handling the fact that the rows are no longer

independent and actually obtaining a win from the fact that the number of nonzeroes per
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column is fixed.

To handle lack of independence, we do a conceptually simple trick: we look at the

contribution of the first and second halves of the rows separately, and argue that each

half is, in a sense, almost as good as independent. The final bound can be obtained by

combining bounds on error incurred from the first and second halves. This trick alone would

suffice to extend the previously discussed analyses from i.i.d. sparse embedding matrices to

standard sparse embedding matrices. On its own, though, it would still leave the log(d/δ)/ε2

dependence in the sparsity. The other key trick we need is to separate out the contribution

of a row into “diagonal terms” and “cross-terms”. The fixed number of nonzero entries per

column turns out to guarantee that the diagonal terms add up to exactly the identity, allowing

one to look at the contribution only of the cross-terms of each row. This trick is essentially

identical to one used in [KN12] for analyzing sparse Johnson-Lindenstraus transforms. Once

we have these pieces, we can use standard tools such as decoupling to reduce the problem

to proving elementary inequalities.

4 Proof of main results

This section contains the proof of our main result, though an auxiliary inequality, lemma 4.5,

is deferred to appendix A.

First, we split (ΠU )T (ΠU ) as follows:

(ΠU )T (ΠU ) =
∑
r

(ΠU )r(ΠU )Tr

=
1

s

∑
r

(∑
i

δr,iσr,iu i

)(∑
i

δr,iσr,iu
T
i

)

=
1

s

∑
r

(∑
i

δr,iu iu
T
i

)
+

(∑
i 6=j

δr,iδr,jσr,iσr,ju iu
T
j

)

=
1

s

(∑
i

(∑
r

δr,i

)
u iu

T
i

)
+

1

s

(∑
r

∑
i 6=j

δr,iδr,jσr,iσr,ju iu
T
j

)

= U TU +
1

s

∑
r

∑
i 6=j

δr,iδr,jσr,iσr,ju iu
T
j .

This corresponds to separating the contribution of the diagonal and off-diagonal parts

of ΠTΠ; that the first term is simply U TU reflects that the the diagonal has all ones due

to the fixed number of nonzero entries per column. Since the first term is U TU , the error
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(ΠU )T (ΠU )−U TU is just the remainder. For convenience, we define

Z r =
∑
i 6=j

δr,iδr,jσr,iσr,ju iu
T
j (1)

representing the contribution of the off-diagonal part from a single row r of Π, so that

(ΠU )T (ΠU )−U TU =
1

s

∑
r

Z r (2)

Note that this expression is a matrix analogue of Equation 5 of [KN12].

An advantage of this expression is that the variation in the Z r comes only from the

“collisions” (i.e. multiple nonzeroes in the same row of Π) and not from individual nonzero

entries.

We might then hope to be able to apply matrix concentration machinery to the Z r.

However, there are two substantial obstructions. First, the definition of the Z r, as a sum

over i 6= j, is difficult to deal with. Second, and more seriously, the Z r are not independent.

The first issue can be dealt with by a standard trick, decoupling. Consider a new set of

{0, 1}-valued variables, wi. Now define

Z ′r = 2
∑

i,j|wi 6=wj

δr,iδr,jσr,iσr,ju iu
T
j (3)

Now, let the wi be i.i.d. random variables, with equal probability of choosing 0 or 1. Then

Lemma 4.1. Let f be any convex function. Then

Eδ,σ[f((ΠU )T (ΠU )−U TU )] ≤ Eδ,σ,w

[
f

(
1

s

∑
r

Z ′r

)]
.

In particular, if there is a uniform bound K such that

Eδ,σ

[
f

(
1

s

∑
r

Z ′r

)]
≤ K

for any fixed choice of w, then

Eδ,σ[f((ΠU )T (ΠU )−U TU )] ≤ K.
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Proof. For any i 6= j, P [wi 6= wj] = 1
2
. Thus, Ew[Z ′r] = Z r, so

Ew

[
1

s

∑
r

Z ′r

]
= (ΠU )T (ΠU )−U TU .

The claim then follows from the convexity of f .

This then reduces our problem to obtaining bounds for 1
s

∑
r Z
′
r for any fixed w. This is

substantially more tractable, since we may express

Z ′r = 2(x ry
T
r + y rx

T
r ) (4)

where

x r =
∑
i|wi=0

δr,iσr,iu i (5)

y r =
∑
i|wi=1

δr,iσr,iu i. (6)

Note that with wi fixed, x r is independent from y r.

However, we still need a strategy for dealing with the non-independent Z ′r. Recall that

independence is not strictly necessary for concentration bounds: for instance, there are

Chernoff-type bounds on martingales as well as sums of independent random variables.

However, they have strict requirements on the conditional distribution of each random vari-

able given the previous. Here, we will use the following simple form of matrix concentration

bound for non-independent random variables; it is similar to bounds given in and follows

from the same methods [AW02, Tro12, Tro11]:

Lemma 4.2. Let A =
∑

iAi be a sum of m random symmetric matrices such that for all i

and all allowable values A′1,A
′
2, ...,A

′
i−1,

‖E[exp(cAi) | A1 = A′1,A2 = A′2, ...Ai−1 = A′i−1]‖ ≤ C.

Then

E[tr(exp(cA))] ≤ dCm.

Note that this requires a uniform bound for the distribution of Ai conditioned on all

previous terms. Furthermore, it requires spectral norm bounds on the exponential moments

of each Ai, but only gives the trace of the exponential moment of A.
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As is typical with matrix Chernoff-type bounds, this can be proved using an exponential

trace inequality, the Golden-Thompson inequality (it can alternatively be proved using Lieb’s

concavity theorem).

Lemma 4.3 (Golden-Thompson). For any symmetric matrices A and B ,

tr(exp(A + B)) ≤ tr(exp(A) exp(B)). (7)

Note that this clearly holds with equality for scalars and for commuting matrices, while

the general inequality is substantially more difficult to prove.

We can then prove lemma 4.2:

Proof of lemma 4.2. Define S i =
∑i

j=1Ai, and without loss of generality assume c = 1

(since this effectively just scales A). Now, for any i > 0,

E[tr(exp(S i))] = ES i−1
[EAi

[tr(exp(S i−1 + Ai))]]

≤ ES i−1
[EAi

[tr(exp(S i−1) exp(Ai))]]

= ES i−1
[tr(exp(S i−1)EAi

[exp(Ai)])

≤ ES i−1
[‖EAi

exp(Ai)‖ tr(exp(S i−1))]

≤ CE[tr(exp(S i−1))].

The second line in the above follows from the Golden-Thompson inequality; the third fol-

lows from the linearity of trace and matrix product. Since E[tr(exp(S 0))] = d, we have

E[tr(exp(S i))] ≤ dCi and E[tr(exp(A))] ≤ dCm, as desired.

However, our variables Z ′r will not satisfy the hypotheses of lemma 4.2 for any reasonable

value of C. The problem is that for certain (highly improbable) cases, the conditional

distribution of Z ′r could be very bad. For instance, if each column of Π has had exactly

s− 1 nonzero entries before the last row, then the conditional distribution of δm,i is always

1, producing a much larger row of ΠU than average.

However, this problem only becomes serious after one has already chosen a large number

of rows. In particular, up to r = m/2, the conditional probability of δr,i can be no larger

than 2 s
m

(compared to the unconditional probability of s
m

. That suggests a simple solution:
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simply split out our quantity to be bounded into two matrices R1 and R2:

R1 =

m/2∑
r=1

Z ′r (8)

R2 =
m∑

r=m/2+1

Z ′r. (9)

R1 and R2 are not independent, but with only two terms this is not a serious problem and

only costs us constant factors. We now may actually apply lemma 4.2 directly to R1 and

R2.

Finally, we will use a helpful matrix inequality to analyze exponential moments for ma-

trices of the form of Z r:

Lemma 4.4. For any vectors x , y ,

cosh(c(2(xyT + yx T )))− I �

(exp(2c‖y‖2)− 1)(exp(2cxx T )− I ) + (exp(2c‖x‖2)− 1)(exp(2cyyT )− I ).

Here � represents the Louwner ordering. That is, for symmetric matrices A and B , we say

that A � B if and only if B −A is a positive semidefinite matrix. Additionally, we define

the hyperbolic cosine of a matrix by plugging the matrix into the Taylor series for cosh, or

equivalently, cosh(A) = exp(A)+exp(−A)
2

.

Proof. We may write

cosh(c(2(xyT + yx T )))− I

� cosh(4c‖x‖‖y‖)− 1

4‖x‖2‖y‖2
(xyT + yx T )2

� 2(exp(2c‖x‖2)− 1)(exp(2c‖y‖2)− 1)

4‖x‖2‖y‖2
(2‖y‖2xx T + 2‖x‖2yyT )

= (exp(2c‖y‖2)− 1)
exp(2c‖x‖2)− 1

‖x‖2
xx T + (exp(2c‖x‖2)− 1)

exp(2c‖y‖2)− 1

‖y‖2
yyT

= (exp(2c‖y‖2)− 1)(exp(2cxx T )− I ) + (exp(2c‖x‖2)− 1)(exp(2cyyT )− I ).

The first line here follows from the fact that cosh(x)−1
x2

is an increasing function in |x|; the

two sides have the same eigenspaces, and the ratio of their eigenvalues is never larger than
cosh(4c‖x‖‖y‖)−1

4‖x‖2‖y‖2 since no eigenvalue of 2(xyT +yx T ) is larger than 4‖x‖‖y‖. The second line

follows from the scalar inequality cosh(4cxy) − 1 ≤ (exp(2cx2) − 1)(exp(2cy2) − 1), which
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follows from direct examination of Taylor series (both have Taylor series with all positive

terms, and those of the latter dominate those of the former), plus the matrix inequality

(xyT + yx T )2 � 2‖y‖2xx T + 2‖x‖2yyT .

Finally, putting all of this together, we can show:

Theorem 4.1. Let c, C be such that for any probabilities pi ≤ 2 s
m

, if δi are independent

Bernoulli random variables with probabilities pi and σi are independent Rademacher random

variables, if we define

x =
∑
i

δiσiu i

we have

‖ exp

(
4c

s
xx T

)
− I ‖ ≤ C.

Then we have

E[tr(exp(c((ΠU )T (ΠU )−U TU )))] ≤ d exp(C2dm).

Proof. First, apply lemma 4.1, using the convexity of the function tr(exp(cA)), to show that

any bound on

E

[
tr

(
exp

(
c

s

∑
r

Z ′r

))]
= E

[
tr
(

exp
(c
s

(R1 + R2)
))]

that holds for arbitrary m also holds for

E[tr(exp(c((ΠU )T (ΠU )−U TU )))]

Now, use the convexity of the trace exponential again to show that

E
[
tr
(

exp
(c
s

(R1 + R2)
))]
≤ 1

2

(
E

[
tr

(
exp

(
2c

s
R1

))]
+ E

[
tr

(
exp

(
2c

s
R2

))])
= E

[
tr

(
exp

(
2c

s
R1

))]
.

The latter line here follows from the fact that R1 and R2 have the same distribution. Note

that this makes no assumption of the independence of R1 and R2, and is based solely on

convexity.

Next, note that

R1 =

m/2∑
r=1

Z ′r

14



with Z ′r = 2(x ry
T
r +y rx

T
r ). Furthermore, Z ′r is a symmetric random variable (since the case

that flips every σr,i with wi = 0 is equally probable), even when conditioning on previous

rows, so the conditional expectation of exp
(
2c
s
Z ′
)
− I is the same as that of cosh

(
2c
s
Z ′
)
−I .

Applying lemma 4.4, we get that this expectation is Louwner dominated by

E


(

exp

(
4c

s
‖y r‖2

)
− 1

)(
exp

(
4c

s
x rx

T
r

)
− I

)
+(

exp

(
4c

s
‖x r‖2

)
− 1

)(
exp

(
4c

s
y ry

T
r

)
− I

)
 .

Using the (conditional) independence of x r and y r, that is equal to

E

[
exp

(
4c

s
‖y r‖2

)
− 1

]
E

[
exp

(
4c

s
x rx

T
r

)
− I
]

+

E

[
exp

(
4c

s
‖x r‖2

)
− 1

]
E

[
exp

(
4c

s
y ry

T
r

)
− I
]
.

Now, x r and y r are each of the form of the x in the theorem statement (indices with the

opposite value of wi just have their pi set to 0). Thus the matrix expectations are upper

bounded by CI ; the scalar expectations are the traces of such matrices, so they are upper

bounded by Cd. Overall, the conditional expectation is Louwner upper bounded by 2C2dI .

This was a bound on the expectation of the exponential minus the identity; the actual

upper bound we have on the conditional expectation of exp
(
2c
s
Z ′
)

is (1 + 2C2d)I . This is

equivalent to saying that the spectral norm of that conditional expectation is at most

1 + 2C2d ≤ exp(2C2d).

Finally, given this we may apply lemma 4.2; since there are m
2

terms, each satisfying the

upper bound of exp(2C2d), our expected trace matrix exponential is at most d exp(C2dm),

as desired.

To get our main result, we will need a basic matrix exponential bound. We will use the

inequality

Lemma 4.5. There exist absolute constants D1, D2 such that for any set of vectors u i

satisfying ∑
i

u iu
T
i � I
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and nonnegative real numbers pd ≤ 1/10, pi ≤ p, and c ≤ log(1/(pd))
D1

, if we define

x =
∑
i

δiσiu i

where:

• δi are independent 0, 1 random variables, each 1 with probability pi.

• σi are independent random signs

then

‖E[exp(cxx T )− I ]‖ ≤ (exp(pd(exp(D2c)− 1))− 1)/d.

This is proved in appendix A.

We can now prove our main result:

Theorem 4.2. For any B > 2, δ < 1/2, ε < 1/2, a sparse embedding matrix Π with

m = O
(
Bd log(d/δ)

ε2

)
and s = O

(
logB(d/δ)

ε

)
satisfies

‖(ΠU )T (ΠU )−U TU ‖ ≤ ε

with probability at least 1− δ.

Proof. Apply theorem 4.1 and lemma 4.5 with c proportional to log(d/δ)/ε.

s

m
∼ ε

Bd

while
c

s
∼ logB

so we can get a bound from lemma 4.5 of C ∼ ε√
Bd

, so that C2dm in theorem 4.1 is equal to

1. Thus we have

E

[
tr

(
exp

(
log(d/δ)

ε
((ΠU )T (ΠU )−U TU )

))]
≤ ed.

Applying Markov’s inequality then gives the desired result.
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A Auxiliary inequalities

This section builds up the proof of lemma 4.5.

First, we will attack scalar tail bounds of this form.

Lemma A.1. For any list of real numbers ui satisfying∑
i

u2i ≤ 1

and nonnegative real numbers p ≤ 1/10 and pi ≤ p, define the random variable

x =
∑
i

δiσiui

where:

• δi are independent 0, 1 random variables, each 1 with probability pi.

• σi are independent random signs.

Then for any k, the probability that |x| > k is at most 2 exp(−k2 log(1/p)/4).

Proof. We will estimate exponential moments E[exp(cx)] for arbitrary c.

Since the random variables δiσiui for each i are all independent, we have:

E[exp(cx)] = E

[∏
i

exp(cδiσiui)

]
=
∏
i

E[exp(cδiσiui)]

= exp

(∑
i

log(E[exp(cδiσiui)])

)
.

18



Thus, it will be sufficient to bound
∑

i log(E[exp(cδiσiui)]). Now, we note that

E[exp(cδiσiui)] = 1 + p(cosh(cui)− 1).

This is in turn always at most cosh(cui) ≤ exp(c|ui|), so its logarithm is always at most

c|ui|. Furthermore, cosh(z)−1
z2

is an increasing function in |z|, so whenever c|ui| ≤ log(1/p) we

have:

1 + p(cosh(cui)− 1) = 1 + pc2u2i
cosh(cui)− 1

c2u2i

≤ 1 + pc2u2i
cosh(log(1/p))− 1

log(1/p)2

≤ 1 + pc2u2i
exp(log(1/p))

log(1/p)2

= 1 +
c2u2i

log(1/p)2
.

log(1 + z) ≤ z, so the logarithm of this is at most
c2u2i

log(1/p)2
. Now, when c|ui| > log(1/p),

we can use the bound of c|ui| ≤ c2u2i
log(1/p)

, and when it is ≤ log(1/p) we can use the bound
c2u2i

log(1/p)2
<

c2u2i
log(1/p)

. Thus we always have

log(E[exp(cδiσiui)] ≤
c2u2i

log(1/p)
.

Since
∑

i u
2
i ≤ 1, we then have

∑
i log(E[exp(cδiσiui)]) ≤ c2

log(1/p)
. We thus have

E[exp(cx)] ≤ exp(c2/ log(1/p))

Picking c = k log(1/p)/2 and applying a Markov bound (for both x > k and x < −k)

completes the proof.

This tail bound can be used to estimate quantities of the form E[exp(cx2)− 1]:

Lemma A.2. For all ui, pi, p, with x defined as in lemma A.1, and all nonnegative real

c ≤ log(1/p)/8, we have

E[exp(cx2)− 1] ≤ 5p(exp(4c)− 1).

Proof. We begin by noting that lemma A.1, plus the fact that the mean of x2 is at most p,

implies that that the probability distribution of x2 is second-order stochastically dominated
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by the distribution with probability density

(log(1/p)/2) exp(−l log(1/p)/4).

for l ≥ 4 which has no probability mass for 0 < u < 4 (we can use no probability mass for

p < 4 because the mean of this distribution is already greater than the true mean).∫ ∞
4

(log(1/p)/2) exp(−l log(1/p)/4)(exp(cl)− 1) dl.

This expands out to∫ ∞
4

(log(1/p)/2)(exp(−l log(1/p)/4 + cl)− exp(−l log(1/p)/4)) dl.

We may then explicitly compute the integral as

log(1/p)/2

log(1/p)/4− c
exp(− log(1/p) + 4c)− 2 exp(− log(1/p))

≤ (2 + 8c/ log(1/p))p exp(4c)− 2p

= (2 + 8c/ log(1/p)) p(exp(4c)− 1) + (8c/ log(1/p))p

≤ 4p(exp(4c)− 1) + (2p/ log(1/p))(exp(4c)− 1)

≤ 5p(exp(4c)− 1).

Next, we extend this bound to estimating the norm of a vector:

Lemma A.3. There exist absolute constants D3, D4 such that for any set of vectors u i

satisfying ∑
i

u iu
T
i � I

and ∑
i

‖u i‖2 = q

and nonnegative real numbers p ≤ 1/10, pi ≤ p, and c ≤ log(1/p)
D3

, if we define

x =
∑
i

δiσiu i
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with δi and σi defined as before, then

E[exp(c‖x‖2)− 1] ≤ exp(pq(exp(D4c)− 1))− 1.

Proof. First, we note that we may assume that q ≥ 1; otherwise, we would have
∑

i u iu
T
i �

qI , and could thus replace u i with ui√
q
, q with 1, and c with 1

q
, reducing to the q = 1 case.

We start by rewriting ‖x‖2:

‖x‖2 =

(∑
i

δiσiu i

)2

=
∑
i

∑
j

δiδjσiσju
T
i u j

=

(∑
i

δi‖u i‖2
)

+

(∑
i 6=j

δiδjσiσju
T
i u j

)
.

We let m be the exponential moment we are bounding:

m = E[exp(c‖x‖2)]

Then

m = E

[
exp

(
c
∑
i

δi‖u i‖2 + c
∑
i 6=j

δiδjσiσju
T
i u j

)]

≤ max

(
E

[
exp

(
2c
∑
i

δi‖u i‖2
)]

,E

[
exp

(
2c
∑
i 6=j

δiδjσiσju
T
i u j

)])

≤ max

(
exp(pq(exp(2c)− 1)),E

[
exp

(
2c
∑
i 6=j

δiδjσiσju
T
i u j

)])
.

The last line follows from bounding the left possibility with a Chernoff bound.

For the other input to the max, we perform decoupling using the convexity of the expo-

nential function, upper-bounding it by

E

exp

4c

(∑
i

δiσiu i

)T (∑
i

δ′iσ
′
iu i

) .
We define y =

∑
i δiσiu i and y ′ =

∑
i δ
′
iσ
′
iu i. Let a = ‖y‖ and b = yT y ′

‖y‖ ; then we are

21



upper bounded by

E[exp(4cab)] ≤ E
[√

exp (ca2) exp(16cb2)
]

≤
√

1 + 5p(exp(64c)− 1)E
[
exp

( c
2
a2
)]
.

Here the first line is by the AM-GM inequality applied to the exponent, and the second is by

bounding the conditional expectation of the second factor, for any given a, by lemma A.2.

Finally, we note that this latter expectation is at most
√
m.

Then assuming m ≥ exp(pq(exp(2c)− 1)), we have

m ≤
√

1 + 5p(exp(64c)− 1)
√
m

m ≤ 1 + 5p(exp(64c)− 1).

We now have the machinery needed to prove lemma 4.5.

Lemma 4.5. There exist absolute constants D1, D2 such that for any set of vectors u i

satisfying ∑
i

u iu
T
i � I

and nonnegative real numbers pd ≤ 1/10, pi ≤ p, and c ≤ log(1/(pd))
D1

, if we define

x =
∑
i

δiσiu i

where:

• δi are independent 0, 1 random variables, each 1 with probability pi.

• σi are independent random signs

then

‖E[exp(cxx T )− I ]‖ ≤ (exp(pd(exp(D2c)− 1))− 1)/d.

Proof. ‖E[exp(cxx T )− I ]‖ is equal to the max over unit vectors e of

E[eT (exp(cxx T )− I )e ].

We need to upper bound this expectation for any fixed unit vector e . To do this, we take
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the slightly strange step of “splitting” our random coin flips into two steps. We now define

x =
∑
i

δAi δ
B
i σiu i

where the δA, δB, and σ are all independent, δAi is a {0, 1} random variable which is 1 with

probability 1
d
, δBi is a {0, 1} random variable which is 1 with probability pid, and σi is a

random sign. This has the correct distribution, as δi has the same distribution as δAi δ
B
i .

We will look at the expectation in question as

EδA [EδB ,σ[eT (exp(cxx T )− I )e ]].

For a fixed choice of δA, we define

a =
∑
i

δAi (eTu i)
2

q =
∑
i

δAi ‖u i‖2.

Given δA, δB, σ, we define

z = max((eTx )2/a, ‖x‖2).

Then

eT (exp(cxx T )− I )e = (eTx )2
exp(c‖x‖2)− 1

‖x‖2

≤ az
exp(cz)− 1

z

= a(exp(cz)− 1).

For fixed δA, we then have

E[eT (exp(cxx T )− I )e ] = aE[exp(cz)− 1]

≤ a(E[exp(c(eTx )2/a)− 1] + E[exp(c‖x‖2)])

≤ a (5pd(exp(4c)− 1) + 5 (exp (qpd(exp(64c)− 1))− 1)) .
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Taking the expectation over δA gives

EδA,δB ,σ[eT (exp(cxx T )− I )e ]

≤ 5pd(exp(4c)− 1)EδA [a] + EδA [a (exp (qpd(exp(D4c)− 1))− 1)]

≤ 5p(exp(4c)− 1) +
1

d
EδA [exp ((q + 1)pd(exp(D4c)− 1))− 1] .

The second line follows from the fact that EδA [a] = 1
d
eT
∑

i(u i)
2e ≤ 1

d
, and from the

fact that the expected value of

exp (qpd(exp(D4c)− 1))

conditioned on any particular δAi = 1 is at most

EδA [exp ((q + 1)pd(exp(D4c)− 1))]

since ‖ui‖2 ≤ 1.

Finally, the desired result follows from a Chernoff bound applied to this expression.
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