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Abstract

The discovery of orbital angular momentum (OAM) sustaining modes established a
new degree of freedom by which to control not only the flow of light but also its
interaction with matter. However, OAM sustaining modes have yet to be used to
control the quantum dynamics of an electron in an atom or molecule due to the large
length scale discrepancy between the wavelength of light and the size of the electron's
orbital. In this work, we analyze the interaction between OAM carrying polariton
vortex modes (for plasmon and phonon polaritons) and a hydrogen atom, and show
that these modes can be used to engineer new selection rules in electronic transitions.
Moreover, we show that these selection rules are robust to the displacement of the
electronic system away from the vortex center. Perhaps more surprisingly, we find how
displacement can be used favourably to tune which absorption process is dominant.
Our findings are best suited to vortex modes that can be created in graphene, mono-
layer conductors, hBN, thin polar dielectrics, and many other polariton-sustaining
thin materials. Another platform for observing these effects could be quantum dots
interfaced with surface plasmons in-conventional metals.

Thesis Supervisor: Marin Solja'i
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Overview and Motivation

Electronic transitions in atomic systems have played a major role in Physics providing

a powerful tool for understanding many fundamental questions, including sparking

the ideas that led to Quantum Mechanism. As a result, understanding and controlling

electronic transitions is an important problem not only in probing the foundations

of quantum mechanics, but also as a means to uncover new physical phenomena. In

the quest for new and controllable light matter interactions, the discovery of orbital

angular momentum of light (OAM) has made a new degree of freedom available with

which to engineer electronic transitions. However the mismatch between the length

scales of electronic systems and the wavelength of light has prevented such transitions

to be experimentally meaningful. In a different area of Physics, surface polariton

(SP(h)P) modes, electromagnetic modes of radiation highly confined to the surface of

a material, have been extensively studied due to their variety of applications like light

based devices, radiation sources, novel energy transfer mechanisms at the nanoscale

and protein sensing.

In this work we combine the concepts of OAM and SP(h)P modes and add con-

trollable high Am transitions to the list of possible application of SP(h)Ps by present-

ing a new formalism for light-matter interaction with highly confined OAM carrying

SP(h)P vortex modes. We show that these modes enable new selection rules for
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electronic transitions based on the conservation of angular momentum and explain

how they enable a new degree of control over atomic selection rules. We also present

the robustness of this scheme by studying the effect of off-axis displacements of the

atom relative to the center of a polaritonic vortex, and study how the dominance of

different absorption processes depends on the radial displacement of the atom. We

find that the increase of confinement is associated with a decrease of the length scale

of the system, resulting in a trade-off between greater electronic absorption rates and

a more robust experimental setup. This is of particular interest in 2D conductors

like graphene where the confinement factor of these polaritonic excitations can be

externally tuned [6, 15].

1.2 Thesis Structure

This thesis is composed of 5 chapters. In chapter 2 we present an overview of the main

background concepts of orbital angular momentum (OAM), surface polarition modes

(SP(h)P) and atomic transitions required for the remainder of this work. Chapter 3

describes OAM carrying SP(h)P vortex modes and analyzes transition rates between

different electronic states due to the absorption of a single vortex mode when the

atom is at the center of the vortex mode. In this configuration we show the existence

of a selection rule based on the conservation of angular momentum. This work is

generalized in Chapter 4 where the atom is displaced from the center of the vortex.

In this more general configuration, we show that the atom centered selection rule

no longer applies, but that the angular momentum conserving transition is robust

for small displacements of the atom. We also describe how the displacement of the

atom from the center of the vortex mode enables new absorption processes to become

dominant in a predictive way. In this chapter we also study the impact of the con-

finement of our surface polariton mode on the properties of the system and show the

existence of a balance between an increase in the absorption rate and a decrease in

the length scale of the experiental system. Chapter 5 summarizes the work presented

and suggests future directions and applications.
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Chapter 2

Background Overview

In this chapter we introduce the main background concepts from which the work

presented in this thesis was built upon. The concept of orbital angular momentum is

introduced and is related to the possibility of new, yet unobserved electronic transi-

tions in electronic systems. Surface polariton modes are then discussed with emphasis

on their properties, conditions for existence and electromagnetic field profile. Finally,

a brief introduction to Fermi's Golden Rule and the dipole approximation is made to

provide context for the calculations made later in this thesis.

2.1 Orbital Angular Momentum

The concept of orbital angular momentum (OAM) of light was first introduced by

Allen et al. [1] in 1992. By studying Laguerre-Gaussian modes of light, with an

azimuthal dependence of e, the authors showed that the ratio of the flux of angular

momentum and the power of the mode were consistent with angular momentum of

hl being carried by each photon. The first experimental verification of light carry-

ing OAM was performed by He et al. [191 in 1995, however the experiment did not

demonstrate OAM was carried at the single photon level. More recent work in quan-

tum optics demonstrated that OAM is indeed carried by a single photon and is not

an ensemble effect of many photons [291, establishing a new degree of freedom with

which to control the flow of light and its interaction with matter at the single particle
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level.

The generality and power of OAM as a platform for novel light-matter interac-

tion can be understood by the numerous applications that have been developed in

recent years, which include angular velocity measurement [271, higher bandwidth com-

munication using novel OAM multiplexing techniques [51, 48], new quantum infor-

mation systems [331, quantum memories [351 and quantum sources of entanglement

[291 with applications to quantum cryptography implementations [32]. The same

concept of granting OAM by shaping the phase profile of light has been extended

to the Schr5dinger wave function for electrons with applications in beam physics

[3, 46, 47, 251.

Spectroscopy is an area where the application of OAM can open new possibilities,

but which has yet to be explored. The existence of extra angular momentum, be-

yond a photon's intrinsic spin of h, has the potential of enabling new and controllable

electronic transitions in atom-like systems including atoms, molecules and artificial

atoms like quantum dots. However, the new transitions are not expected to be ex-

perimentally meaningful since "even when compared with a tightly focused beam,

the effective cross section of the atom is extremely small; so the helical phase front

is locally indistinguishable from an inclined plane wave" [521. In other words, the

length scale mismatch between the radiation and the electronic system prevents the

electron to couple to multipole moments of radiation beyond dipole, restricting the

possible set of transitions it can undergo. In the dipole approximation, ubiquitous

in light-matter interaction literature, the only allowed transitions require a change

in quantum numbers of Al = +1 and Am = 0, 1 (a more detailed discussion can

be found in Appendix B). In order to use OAM to explore new electronic transi-

tions it becomes critical to match the photonic and electronic length scales. Surface

polaritons bridge that length scale gap.

16



2.2 Surface Polaritons Modes

Surface polariton (SP(h)P) modes, highly confined modes of light at the interface

between two materials, have excited the scientific community as they enable novel

phenomena to occur and be explored. These confined modes of light arise from

the oscillations of electrons (plasmons) or lattice vibrations (phonons) at the surface

of the material, forming a single excitation called surface plasmon polaritons (SPPs)

and surface phonon polaritons (SPhPs) respectively. Although SPP and SPhP modes

arise from very different physical mechanisms, both can be understood through the

linear response functions of the material, the electric permittivity E and the magnetic

permeability p, resulting in the same description of their electromagnetic field pro-

files. As a result, the two phenomena can be unified within the umbrella of surface

polaritons.

In this chapter we introduce the SPP and SPhP modes, and discuss their proper-

ties as an introduction to the rest of the work developed.

2.2.1 Surface Plasmon Polaritons

First introduced in 1952 by Pines and Bohm [381, a plasmon is an oscillatory excitation

of the electron density in a material, which arises from the Coulomb interaction

between the electrons in the material. The motion of the electrons generates an

oscillating electromagnetic field and the two components (electromagnetic field and

electron oscillation) composes the plasmon, or plasmon polariton.

Although the initial study considered excitations in the bulk of a material, previ-

ous studies by Zenneck [53 and Sommerfield [431 had looked into the oscillation of

electrons at the interface of a material. Nevertheless, Ritchie [39] in 1957 was the

first to consider surface electron oscillations as a type of plasmon mode and coin the

term of "surface plasmons", also known as surface plasmon polaritons (SPPs).

, In the years between Ritchie's paper and today, much work has been devoted to

SPP modes due to the profile of their electromagnetic field, in particular its accessi-

bility and confinement. Unlike bulk plasmons, the electromagnetic fields are confined

17



near the surface of the material, extending evanescently out of the material, which

enables outside radiation to excite the mode. This confinement occurs not only in

the out-of-plane direction but also the in-plane direction, where the field's wavelength

is much smaller than equally energetic free space radiation, enabling phenomena to

occur at lengths smaller than the diffraction limit (more details in Section 2.2.3).

These two properties of SPP, accessibility and confinement, enable a whole new

set of applications which include, but are not limited to, more efficient energy transfer

mechanisms [42, 211, plasmon based protein sensors [411, radiation sources [26, 24,

50, 2] and light-based computational devices [37].

2.2.2 Surface Phonon Polaritons

The phonon corresponds to a vibration of a crystal's lattice, responsible for many pro-

cesses of energy dissipation within the crystal. It was first proposed as a quantized

excitation by Einstein in 1906 [141 when he applied the concepts recently proposed by

Max Planck to vibrations in solids in order to explain their heat capacity at low tem-

peratures. Studied extensively in the previous century, recent interest has arisen in

surface phonons polaritons (SP(h)Ps) because, similarly to SPPs, an evanescent elec-

tromagnetic mode is present, enabling interesting applications like enhanced energy

transfer at the nanoscale distance [20, 421.

However, since they correspond to very different physical mechanisms within a

solid, SPhP and SPP yield different dispersion relations and operate at very differ-

ent frequencies, infrared and visible/ultraviolet respectively. Moreover SPhP usually

have lower losses, opening the possibility of longer propagation lengths, of interest in

telecommunication and nanophotonic applications [4].

2.2.3 Surface Polaritons at a Single Interface

Being interested in the electromagnetic profile of these modes, in this section we de-

scribe SP(h)P modes at the interface of two materials, as pictured in Fig.(2-1). In

particular we study the transverse magnetic (TM) modes, where the magnetic field

18
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Figure 2-1: SP(h)P mode at the interface of two materials with dielectric

permittivities of ql and C2. The oscillation of electron density/lattice at the in-

terface leads to the generation of a electromagnetic excitation that propagates along

with the electron oscillation. The arrows correspond to the mode profile, while on

the left, the exponential decay associated with the evanescent nature of the field is

pictured.

is parallel to the surface, as they are the only ones supported in parabolic materials,

although transverse electric (TE) modes have been predicted for graphene 1311. De-

spite the wavelength of SP(h)P modes being much smaller than free space radiation

of the same energy, it is still much larger than the unit cell of typical solids. As a

result. the response of the material is well characterized by the macroscopic response

functions of the material c and I and the atomistic details can be ignored. However,

in real materials the difference between magnetic permeabilities is very small, so, for

the remainder of this work, we take all magnetic permeabilities to equal the vacuum's

permeability po. Another assumption used throughout this work is that we are work-

ing in the lossless limit, meaning that the imaginary part of c is zero. Details of the

derivations in this section can be found in Appendix A.

Considering the single interface geometry between two materials, as depicted in

Fig.(2-1), the vector potential of planar SP(h)P is given in the electrostatic limit, 1y

[221:

A = AO ( Iz i(qp-wt) (2.1)
A r 2 (2 + ,ii) C-

19
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where A0 is the overall magnitude of the field, q is the in-plane momentum of the

mode, is the out-of-plane direction, p is the in-plane position, W is the frequency of

the mode, and hats correspond to unit vectors.

The dispersion relation, which relates q and w, is given by the dielectric function

of the materials at the interface as 1221:

W ~ r+ r2  (2.2)
C C rl+-- r2

where Cri is the relative electric permittivity of material i and c is the speed of light

in vacuum.

One of the requirements for the existence of SP(h)P plane modes (as mentioned

in Appendix A) is that 6i and 62 must have opposite signs, which can be obtained

if one of the materials is a metal and the other a dielectric. Moreover, since we are

interested in propagating modes, with q real, we also require 6r1 + Er2 < 0. Since eri

and Cr2 have opposite signs the denominator of Eq.(2.2) may be much smaller than

the numerator leading to an in-plane momentum q much larger than the free space

momentum of light w/c.

2.2.4 Surface Polaritons in Thin Film Materials

We now consider a slab of a metallic material surrounded by a dielectric above and

below (which may be different), as pictured in Fig.(2-2). For a large slab thickness

we expect both interfaces to support SP(h)P modes. As we decrease the thickness of

the material, these two modes will begin to hybridize. Surprisingly, in the limit as the

thickness goes to 0, only the TM mode is allowed [221, whose profile can be computed

with an ansatz similar as in the single interface case (more details in Appendix A).

Although the field profile of the mode in the dielectric matches the result we

obtained in the single interface case, the SP(h)P dispersion relation now depends on

the conductivity of the metal film as well as the dielectric constants of the surrounding
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Figure 2-2: SP(h)P mode at a thin metallic film surrounded on top(bottom)

by a dielectric with electric permittivity 61(C 2 ).The electric field parallel to the

thin field generates a surface current in the film., as a result ci and C2 need not have

have opposite signs. The arrows represent the field's direction while on the left its

magnitude is pictured.

dielectrics in the following form (in the electrostatic limit):

En + Er2 21iW
2 o(w. q)

(2.3)

where u(w, q) is the frequency and momentum dependent conductivity of the metal.

Although the formalism and approach presented in this work is general, of partic-

ular experimental interest are monolayers of metals or 2D materials, like graphene,

as they can be placed on top of a SiO 2 substrate. This 2D geometry enables the

development of integrated on-chip solutions with potential applications in novel com-

putational frameworks beyond electronics. The conductivity in this class of materials

in the SPP mode regime can be obtained through the Drude formulation which yields

1231:

2

QMetal = * L, IT and
C2 F '1

Jgraphene = LU + 'T' 7 OC-1::z~

where ny (n,) is the volume (surface) number density of electrons, m* is the effective

mass of the electron, IT the Fermi velocity in graphene, e the charge of the electron

21
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and 27rh is Planck's constant.

More generally, the dispersion relationship for an isotropic material can be written

as:

q = TW)- (2.5)
C

where TI, called the confinement factor, is an w dependent dimensionless parameter

which corresponds to the ratio of the wavelength of radiation in free space and of the

SP(h)P mode, for the same frequency.

The value of il provides a figure of merit for analyzing the length scale change when

free radiation is coupled in SP(h)P modes, as well as, for comparing different SP(h)P

supporting materials. The range of relevant materials and associated confinement

factors is vast and includes SPhP modes in SiC, where q can experimentally reach

values of 200 141; SPhP modes in hBN, where q has been experimentally observed

to be near 100 151 and where theoretical upper bounds are greater than 1000 1451;

SPP modes in monolayer films of metals like silver and berylium, where 71 can reach

values around 300 [341 and 350 112J, respectively; and SPP modes in graphene, where

measurements of y fall in the range of 150-240 122, 28, 49, 161 for different regimes

and where theoretical upper bounds are around 300 [221.

The large confinement of the electromagnetic field bridges the length scales be-

tween the photonic modes and the size of electronic systems, providing the framework

for electronic transitions beyond the dipole approximation 140].

2.3 Electronic Transitions in Atoms

Having described the background of SP(h)P modes, we address the formalism behind

the computation of transition rates between electronic states of the atom. In this

section the Hamiltonian of the system composed of the electron and the electromag-

netic field is presented, Fermi's Golden Rule is discussed as a perturbative method for

computing the transition rates, and the selection rules arising from the interaction of

an atomic system with free space radiation are discussed.
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2.3.1 Hamiltonian of the System

The last piece of theoretical machinery necessary to understand the electronic transi-

tions due to SP(h)P mode absorption is the description of the quantum dynamics of

the system, expressed by its Hamiltonian. There are three components of the Hamil-

tonian that need to be included, that of the electronic system, the electromagnetic

field, whose information is encoded in the vector potential, and the interaction be-

tween the two. In this work we consider the non-relativistic Hamiltonian for a charged

particle interacting with a electromagnetic field, given by [81:

H = Hatan + Hfield + Hint where (2.6)

Hatn = + V(r) , Held Z hwi ata + (2.7)

Hie=e-p p-) IA2  (2.8)
2m, 21n

where Hat, is the Hamiltonian of the electronic system, in this work assumed to be

the hydrogen atom, with V(r) corresponding to the Coulomb interaction between the

proton and the electron. A is the field operator, p is the momentum operator, a! is

the creation operator of a SP(h)P with frequency wi and m is the mass of the electron.

For the remainder of this work we will be working in a gauge where the potential of

the external radiation is zero, <O(r) = 0. Hfield corresponds to the Hamiltonian of the

electromagnetic field. In this quantum field approach, A is promoted to an operator

as:

A = a (eiai + e*a$) (2.9)

where ac is a normalization constant (discussed in more depth in Appendix C.2),

dependent on the field profile of the mode ej. ai has units of vector potential, while

ej is dimensionless.
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2.3.2 Fermi's Golden Rule and Transition Rates

We want to study the quantum dynamics of the electron in this system, so we take

the unperturbed Hamiltonian Hatom + Hfied and consider Hit a perturbation on the

system, assuming the field strength to be small. In this regime we can neglect the

contributions from the |Al 2 term. Another, more field theoretical explanation, is to

say we are only considering 1 SP(h)P processes, while IA 2 corresponds to a 2 SP(h)P

mechanism.

The calculation of the transition rates between the different electronic states

through the absorption of a SP(h)P mode is obtained through Fermi's Golden Rule,

which is given by:

r = I(t HitIti)2p(hW) (2.10)

where Iti) is the entire quantum state of the system, given by Isi) D In,,), where Isi)

is the electronic state of the electron, while In,) is the state of the field, given by n

SP(h)P excitations with frequency w; and p(hw) is the the density of states of the

SP(h)P modes with energy hw.

In order to compute the interaction between the atomic and photonic systems

knowledge of the solutions to the unperturbed systems is required. The solution to the

photonic OAM carrying vortex modes is addressed in Chap.(3), while the solution to

the atomic part of the problem can be found in any introductory Quantum Mechanics

textbook like [17, 71, and are simply quoted here:

(rIn, 1, m) =

2r 2V (n -- )!
- er/a ) a Y + L __1(2r/nao)Y1 "1 (0, #) (2.11)

nao nao 2n n + 0).

(n, 1, mrlfln, 1, ?) 3- .62V (2.12)
a-

where n, 1, n are the quantum numbers used to label the bound states. 1 and m are

related to the total angular momentum and the projection of the angular momentum
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onto one direction, chosen to be , by:

(n, 1, m~ iin, 1, m)= h21(1 1) and (n, 1, mLzn, 1, im) =hm (2.13)

The simplification of Eq.(2.10) for our particular application is done in Appendix

D.

2.3.3 Dipole Approximation and Selection Rules

Although Eq.(2.8) is the precise interaction Hamiltonian, in most cases it can be

simplified. This simplification arises whenever there is a great length scale mismatch

between the light wavelength and the size of the atomic system. As a result, the

electron only "sees" a constant electromagnetic field in the volume of its orbital so the

interaction Hamiltonian can be simplified.

In the case of the hydrogen atom, the size of the orbital is of order of the Bohr

radius ao ~ 5.29 x 10-11 m, while the difference between energy levels is at most

13.6 eV, which corresponds to a wavelength of A = 9.116 x 10-8 m, which is 500 times

larger than ao.

This approximation is known as the dipole approximation, because the interaction

between the field and the electronic system is simplified to the electric dipole matrix

element dotted with the, approximately constant, electric field at the location of the

atom (more details in Appendix B):

H = -Eo - (er) (2.14)

This simple interaction constrains the possible electronic transitions, such that

the the change of quantum numbers in the transitions is given by:

Al= l , Am = 1,0 (2.15)
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Chapter 3

Electronic Transitions in a Vortex

Centered Atom

In this chapter we describe OAM carrying vortex modes and study the transitions

rates of an electron associated absorption of one of these SP(h)P modes, pictured in

Fig.(3-1). In this chapter we consider atoms which are located exactly at the cen-

ter of the vortex mode and analyze how electronic transitions can be engineered by

designing the correct vortex mode supporting substrate. We focus our attention to

the family of transitions between initial principal quantum number 5 and final quan-

tum number 6 as there are many dipole allowed and forbidden transitions, providing

plenty of examples of the phenomena we are describing. Nevertheless, the phenomena

described here are completely general to other transitions in the hydrogen atom and

should translate to more complex atomic systems. More details on the calculation or

numerical code used can be found in Appendix D.

3.1 Description of Vortex Mode

A OAM carrying vortex mode can be obtained as the superposition of planar modes

coming from different angles with a phase shift linearly dependent on the incoming

angle 0. Experimentally this can be done by having the optical path increase with

incoming angle, as described in experiments [44, 10, 11]. Since the phase shift must
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match at each point modulus 27r, the vortex mode can be labeled by the winding

number m of its phase shift around a circle. The resulting radiation profile can be

written analytically as:

Am = I d Aqeira = Ao - 1wi'n-eqr cos() x (3.1)
27r J2v/-

X 2 Jrm(qp) [f cos(O) + O sin(0)] + imnv Jm(qp))
qp

+(J-_.-m(qp) - J1?fm(qp))[Ocos(O) - isin(6)1}

where Aq is the plane SP(h)P mode described in Eq.(A.8) with linear momentum q,

O corresponds to the angle between q and some reference direction t, set, without loss

of generality, to be ,, and J,(x) is the v-th degree Bessel function of the first kind.

The full derivation is contained in Appendix C, in agreement with the prediction in

[13] for graphene plasmons.

For the case of silver and gold plasmonic structures, these modes have been ob-

served via SPPs using slit based coupling [11, 101. The same procedure should be

applicable to other classes of plasmonic materials, where the confinement factors are

larger. It should also be applicable to materials sustaining SPhP, even though such

vortex modes have yet to be observed.

In order for our fully quantum formalism to be valid we need to properly normalize

the vortex modes. This normalization, derived in Appendix C.2 enables us to write

the field operator for SPP vortex modes as:

A q, + e*,rna i) (3.2)

where eq are the dimensionless field profiles defined in Eq.(C.9), e, is the average of

the dielectric constant of the materials above and below, co is the electric permittivity

of vacuum and L is the radius of the mode.
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Atom
SP(h)P supporting material

7oc
SPP Field

6

Figure 3-1: Schematic of the system composed of an electronic system and
OAM carrying vortex mode. An atom is placed a height aO above a surface which
supports OAM carrying SP(h)P vortex modes. Due to the evanescent nature of the

polaritonic mode the atom must be within 10's of nm from the surface of the material.

3.2 Absorption Rates of OAM SP(h)P vortex modes

Computing the absorption rate for the atom centered with the vortex mode center.

we obtain the results shown in Fig.(3-2). These results make evident the selection

rules associated with the conservation of angular momentum:

A71 =' Mortex (3.3)

where hAm is the change in z-projected angular momentum of the electron and

hivortex is the angular momentum of the vortex mode. By generating a single SP(h)P

vortex mode, we are able to control the electronic transitions of the atom, for arbitrar-

ilY large values of mvortea. This selection rule is exact and arises from the requirement

that the azimuthal phase term of the mode (e""-vorIe-o) and the orbital wavefunction

product (c-A") must cancel. This (mis)match of phase between the vortex mo(le

and atomic degrees of freedom is scienaticallv illustrated in the phase plots c) and
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b), respectively, on the right side of Fig.(3-2), each corresponding to different high-

lighted transitions on the left plot.

The impact of the confinement factor y on the transitions rates is also of impor-

tance as it guides the choice of material for possible future experiments. Its increase

leads to an increase in the absorption rate by many orders of magnitude, as the system

moves further away from the dipole approximation and the electron orbital is allowed

to couple to higher multipole modes of radiation, enabling processes that would occur

once every 10's of millions of years, to occur once every 10's of As. The access of

the system to higher multipole modes of radiation means that the allowed transitions

are only constrained by the conservation of angular momentum described in Eq. (3.3).

All the transitions fulfilling this condition yield non-zero transition rates, albeit with

different magnitudes.
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Figure 3-2: Single photon absorption rates due to absorption of a plane

SP(h)P and OAM carrying vortex SP(h)P for different transitions in the

family (5, 0, 0) -+ (6,4, Am) for two different values of confinement, 2 and

250, with zo = 10 nm. a) The vortex modes impose selection rules on the electronic

transitions, while the increase in confinement factor leads to an improvement of the

absorption rate by a factor of ~ 10", increasing the rate of occurrences from once

every 10's of millions of years to once every 10's of pm. b) and c) correspond to the

phase plots of the highlighted transitions of equal color, where the inside (outside) of

the circle corresponds to the electron orbital components (vortex mode). The size of

the atom was artificially increased tenfold for illustration purposes. d) corresponds

to the phase portrait of an atom displaced from the center of the vortex mode where

rotational symmetry has been broken, discussed in detail in Chap.(4). Although free

space OAM carrying radiation impose the same selection rules, the difference in length

scales between radiation and the atom size results in absorption rates too small for

experimental observation when the confinement factor i is of order unity. On the

other hand with SP(h)P modes the rates for these processes become experimentally

meaningful.
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Chapter 4

Electronic Transitions in a Displaced

Atom

The results presented in Chap.(3) depend on the rotational symmetry of the system

around the vortex mode center. In this chapter we consider the case when the atom

is no longer aligned with the vortex center, first describing a displaced vortex mode

in a convenient way and computing the associated absorption rates. We show that,

although the selection rule obtained in Chap.(3) are no longer exact, the transition

with Am =mL2 ortex is dominant over a displacement of the length scale of the vortex

mode, instead of the length scale of the electronic system, as one would intuitively

consider. We also show that as we increase the displacement of the atom, the domi-

nant transition changes in a simple and predictable way. As a result, a single vortex

mode can be used to investigate many different new absorption transitions. In this

chapter we also discuss the effect of the confinement factor on the transition rates

as a function of the distance, showing that there is a trade-off between a greater

absorption rate and a more robust experimental setup.

4.1 Displaced Vortex SP(h)P Modes

In order to study transitions rates for an atom displaced from the vortex center, it

is more convenient to consider the vortex mode to be displaced from the atom, as
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a vortex mode displaced by -D can be written as a superposition of vortex modes

centered around the atom, as described in Eq.(C.18):

00

A-,L - i" ne-i(frn)Oo J-J(qD)Aj (4.1)

where 0 is the angle D makes with i. This amazing property means that the tran-

sition rate of the atom by virtue of the displaced vortex can be understood through

the transition rates for the atom centered vortices.

4.2 Absorption Rates in a Displaced Atom

Intuitively, we expect the angular momentum selection rule in Eq.(3.3) to not apply

when the atom is displaced because angular momentum conservation is related to

rotational invariance, which the displacement of the atom breaks. Mathematically,

this intuition manifests itself in the fact that a displaced vortex is a superposition of

vortices with all possible angular momenta, as described in Eq.(4.1). The impact of

the atom's displacement from the vortex center is presented in Fig.(4-1) and Fig.(4-2)

for transitions in the family (5, 0, 0) -+ (6, 1, m).

Consider a vortex mode with OAM hmrte, displaced by D from our atomic sys-

tem. From Eq.(4.1), the magnitude of the overlap integral between the displaced mode

and a vortex mode with OAM hn centered with the atom is given by IJn-. (qD) 1,

where q is the mode's momentum. As a result, the transition rates of the displaced

atom can be understood based on the transition rates of the axially symmetric case.

For special values of D where J_ (qD) = 0, a transition of Am = n is truly

forbidden, meaning that there are concentric rings surrounding the vortex for which

certain transitions are exactly forbidden.

The transitions rates from a system initially in the state (5,0,0) as a function of

the distance D from the vortex center are studied in the left column of Fig.(4-1),

each row corresponding to a different value of OAM hrmnrtex carried by the vortex

mode. As expected, for D = 0 the selection rule Eq.(3.3) is always satisfied, however
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Figure 4-1: Dependence of the single photon absorption rates of a displaced

individual atom (left column) and normalized uniformed atomic distribu-

tion (right column) for transitions with initial state (5, 0, 0) and final prin-

cipal quantum number 6 at a confinement factor of q = 250 with zo nm.

As the rotational symmetry is broken, the selection rules discussed in Fig.(3-2) are

no longer valid and all Am transitions become allowed. As a result, the geometry

of the experiment, including the position of the atom, is of great importance to ac-

curately predict the observed transition. On the left column, the absorption rate

of a single atom is plotted for different vortex OAM (hmvotex) as a function of the

displacement D of the atom. The results matches the previous selection rules at

D = 0, and for small D this transition always dominates. For larger D, other tran-

sition become dominant, as the value of JO(qD) decreases and higher order Bessel

terms become comparable. In particular at the values where qD match a zero of

the Bessel function, the corresponding transition becomes forbidden. On the right

column the absorption rate is computed for a uniform distribution of atoms centered

with the vortex mode, as a function of the distribution radius R. By averaging over a

region, the absorption rates is smoothed, which means that for higher R transitions

with higher baseline rate dominate. This computation is of particular interest as a

model for effects like the uncertainty on the placement of the atom, the existence

of more than one atom per vortex mode or when considering a collection of similar

experimental setups.
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this transition rate is dominant over a distance of the order of the wavelength of

the vortex mode. This is surprising because, intuitively, one would expect that a

displacement by the size of the electronic orbital, much smaller than the wavelength of

radiation, would destroy any selectivity arising from the vortex mode as the orbital is

no longer sensitive to the complete phase winding of the mode. Equally interestingly,

is how increasing D yields a much richer set of transition rates, which is qualitatively

different for different m,,tex. The implication of this fact is that, given a single

mvortex supporting system, it is possible to tune the dominant transition using the

radial position of the atomic system, which provides an extra degree of freedom to

control light-matter interactions. The dependence of the absorption rate with the

radial displacement, for different mvotex, arises from the competition of two different

factors: the Bessel function term from the superposition coefficient; and the baseline

absorption rate, which corresponds to the absorption rate of a particular transition,

characterized by Am, when the atom is centered in a vortex mode with OAM of

hAm. The first term is responsible for the oscillatory behavior of the absorption rate,

while the second determines the overall scale. Since the coefficients Jnvoex(qD)

have zeros for various values of D, between two transitions of different Am there are

regions where one dominates over the other.

The previous discussion provides a framework for a single atomic system, whose

position is known perfectly. However, in a real experimental setting there is always

some inherent uncertainty associated with the position of the atom. Moreover, there

are great challenges in single atom experiments arising both from the manipulation

and preparation of the system, as well as the measurement of a meaningful spectro-

scopic signal. In real experimental settings we expect more than one atom interacting

with a vortex mode, providing a more robust experimental setting as well as a greater

signal.

Both experimental circumstances can be modeled through a probability distribu-

tion over the position of the atom. In this work we consider the radially uniform

distribution of radius R around the vortex center, which, despite its simplicity, pro-

vides the same qualitative results as more complex, vortex centered, distributions.
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In the right column of Fig.(4-1), the expected absorption rate is computed for such

distributions as a function of R. The impact of the probability distribution can be

understood as smoothing the single atom absorption rates, leading to two major con-

sequences: regions of dominance of transitions where Am k mvortex are moved further

away from the center, making transitions with Am = mvotex more robust; and, as we

increase D, the predominance of the transitions only evolves towards transitions with

larger baseline transitions rates as the oscillatory behavior from the Bessel function

coefficient is averaged out.

As mentioned before, the results presented here are not characteristic of the pre-

sented transitions, but are general considerations for all sets of transitions. In order

to demonstrate the robustness of the selection rules even for large Am , which would

be expected to be highly suppressed, in Fig.(4-2) we investigate the absorption of a

vortex mode with mv,tex = 5. As in Fig.(4-1), the left column corresponds to the

calculation of the absorption rate for a single atomic system, while the right column

corresponds to the absorption rate over a uniform probability rate of radius R. On

the top two plots, the case of mvotex = 1 is considered, which provides a direct

comparison to the new set of transition. The bottom two plots correspond to the

mvotex = 5 case, on which the dominance of the Am = 5 transition is present for

small radii, despite having a baseline rate much smaller than the remaining tran-

sitions. As the atom moves away from the center of the vortex, the predominant

transition has smaller Am, which corresponds to a transition with higher baseline

rate, since the lower mvtex, the larger the field strength near the center of the vortex

mode. The same smoothing observed in Fig.(4-1) is present in this case, which allow

us to predict the measured absorption rate for a given experimental atom placement

uncertainty. These two plots only contain the transitions which are dominant at

some radius; for a complete plot with all the transitions from (5, 0, 0) -+ (6, 1, m) for

mvortex = 5, please refer to Appendix E.

In real systems, the degeneracy between levels is lifted and they are characterized

by peaks of finite width, due to decaying processes. This finite width peak, may lead

to the overlap of different energy states, meaning that the choice of frequency is not
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Figure 4-2: Investigation of the single photon absorption rates for a highly
suppressed transition of Am = 5 as a function of the geometry of the sys-
tem with zo = 20 nm. Following the same organization as Fig. (4-1), on the left col-

umn, the absorption rates as function of the displacement of the atom are presented,
while on the right, we are varying the radius of a uniform probability distribution over
the position of the atom. Although the higher vortex transitions have much smaller
transition rate, there is always a region where these transitions dominate, due to the
behavior of the different order Bessel function for small argument. Although this
might be a small region, it enables, for the first time, to selectively absorb into a class
of electronic states through highly forbidden transition. If the region is too small
it can be made larger by decreasing the confinement factor, at the expense of the
absorption rate, as discussed in Section 4.3. The measured signal can be improved
by performing many parallel, using slit coupling 144, 10, 11], experiments on a single
substrate, as pictured in the inset schematic. A plot of the absorption rates of all
possible transitions is given in Fig.(E-1)
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enough to precisely transition to a particular level. OAM carrying SP(h)P modes add

a new degree of freedom that enables the selection of the final state of the electronic

transition, providing a higher degree of control in the experiment.

The ability to control the dominant transition through the displacement of the

atom with respect to the vortex mode center adds even more flexibility to our im-

plementation of these transitions. Consider the example of transitioning an electron

from (5, 0, 0) -+ (6,4,3). The most direct approach is to develop a substrate support-

ing a vortex mode with mvtex = 3 and place the atom at the center. However, for a

larger m,,tex the masks used in the generation of these modes have a greater number

of discontinuities 144, 10, 111, which correspond to an increase of edge effects resulting

in a less pristine vortex mode. An alternative would be to generate a mrn,,tex = 2

vortex mode, and place the atom at a distance which maximizes JI(qD), which cor-

responds to qD = 1.84 and JI(qD) = 0.58. Although there would be a reduction of

the absorption rate to about 33% with respect to the original value vortex centered

rate, this may be a smaller reduction that what would arise from the lower quality of

the mvtex = 3 mask with respect to the mvotex = 2 mask.

4.3 Effect of Confinement Factor on Transitions on

a Displaced Atom

To fully characterize the system it becomes important to also consider the impact

of the confinement factor on the absorption rates and their robustness. As shown in

Fig.(2) the increase in the confinement of the SP(h)P mode leads to an increase of

the absorption rates of the atom due to a better coupling between the orbitals and

radiation; however, it is also associated with an exponential decrease of the value of

the field at the location of the atom, due to the evanescent nature of the mode. The

competition between these two effects leads to a peak in the absorption rate where

the exponential decrease becomes the dominating effect, as illustrated in Fig.(4-3).

Another consequence of the increase in confinement factor is the overall decrease
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Figure 4-3: Single Photon absorption rate as a function of the confinement
factor of the system for different value of the atom's displacement away
from the vortex center for zo = 20 nm. The higher confinement factor leads to
an increase in the absorption rate until the exponential decay of the field strength
becomes the dominant dominant. At the same time, the increase in confinement factor
leads to a decrease of the system's length scale, as observed by the greater density
of absorption rate zeros (dips) at higher confinement factors. As a result, higher
confinement factor experimental setups require a higher experimental precision to
ensure the atom rest in the region where the transition of interest is dominant.
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in the length scale of the system, which leads to a decrease in the size of the regions

where the transitions of interest dominate, requiring a greater experimental precision,

as seen in Fig.(4-3) by the increase of the number of zeros of the transitions rates

as we increase the confinement qi. The balance between higher absorption rate and

increased experimental precision is an important consideration when designing an

experiment, in particular when choosing the SP(h)P supporting material.

Understanding the impact of the confinement factor in the experiment is of special

interest in graphene, where the confinement factor of SPP modes can be externally

tuned [6J, providing an extra degree of freedom for optimizing the experimental setup.

One consideration missing from our discussion is the presence of losses in the

materials, however our formalism can be generalized to include material losses as

shown in a previous work [401, allowing our results to be extended to a wider range

of materials.
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Chapter 5

Conclusion

In this thesis we have shown how orbital angular momentum carrying polaritonic

vortex modes can be used to selectively induce electronic transitions in nearby atomic

systems. We showed how new selection rules, corresponding to angular momentum

conservation, arise when the atom is aligned with the center of the vortex mode. In

the off-centered case, we showed how the transition that conserves angular momentum

(hAm = hm'ortex) is always dominant near the center. For larger displacement radius,

different transition become predominant at the length scale of the wavelength of the

mode instead, as one would expect, the electronic length scale. As a result, by varying

the radial position of our atomic system, a single experimental configuration is able

to access a variety of novel transitions.

In the long term, the ability to engineer the electronic transitions in a quantum

system, enabled by polaritonic modes, opens the doors for many applications which

depend on an usually inaccessible quantum state. The study of these previously

inaccessible states in simple table-top experimental setups may enable novel light

emmiting devices and even lasing technologies. At the same time, including OAM

carrying polariton modes in the toolbox of spectroscopists adds a new technique to

target particular electronic transitions and states in atomic systems.

This work also leads directly to some interesting experimental and theoretical

questions. On the experimental side, the ability of generating masks in substrates

which support a single OAM carrying vortex mode has already been demonstrated
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[44, 10, 111 and replicating the mask over a surface (as depicted in inset Fig.(4-3))

provides a simple experimental setup where the ideas presented in this work can

be tested and further explored. On the theoretical side, it would be of interest to

analyze higher-order absorption processes, in search of new methods for multi-photon

absorption and emission, with a possible impact on quantum information.

44



Appendix A

Mathematical Description of Surface

Polariton Modes

In this appendix we describe mathematically Surface Polaritons (SP(h)P), analyze

the conditions for their existence and deduce their dispersion relations.

A.1 Single Interface SP(h)P Modes

Consider the geometry represented in Fig.(2-1). We are interested in describing the

transverse magnetic (TM) SP(h)P mode, as the transverse electric (TE) are not

present for normal parabolic materials [311. The fields of the modes can be solved by

considering an ansatz and showing that it solves Maxwell's equations in this geometry.

To build this ansatz we note that each material is uniform, the field inside must be

exponential (propagating or decaying) in all direction. Since we expect the mode to

be propagating in the in-plane direction and evanescent in the out-of-plane direction,

corresponding to the following ansatz:

B1 = Bide-Qize -w') for z > 0 (A.1)

B2 = B241 eQ e ip-wl) for z < 0 (A.2)

where B is the magnetic field in material i, q is the in-plane momentum, 4j is the
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unit vector such that _ x 4 = , Qj is the inverse decay length of the field in the

out of plane direction for the i-th material, w is the frequency of the mode and Be

are the overall magnitudes of the field. The in-plane momentum is the same for both

the branches of the field by the translation symmetry of the system in the in-plane

direction.

By the imposition that the transverse magnetic is continuous over the interface

B1 = B2 = Bo, and assuming pt =/2 = po, where po is the magnetic permeability

of vacuum. The electric field can be obtained through Maxell equations:

_D_ B3 1
V x B1 = to = E1 = .oW (-Q1 - q )QZe-i(---wt) (A.3)

at -zO Cl~po
D2 Bo 1V x B 2 = to a E 2 = W 621 (WQ2 - iq)e 6 4 ~/1 (A.4)

By imposing that the transverse part of the electric field be continuous we can

related the two sides of the interface by:

Q1 Q2 Q1 F2---- = ---- = -(A .5)
Ei E2 Q2 (1

Since Qi must be positive, so our modes are not divergent, el and 62 must have

opposite signs for Eq.(A.5) to have a solution.

From the wave equation, in each material we obtain the relationship between Qj
and q as:

2

q- Q 2 ri (A.6)

where 6 ri is the relative permittivity of material i.

The dispersion relationship can be obtained by relating Eq.(A.6) for the two media,

with the result being:
W 6 r16 r2 (A.7)
C 'rl + 6

r2

where Eri can be frequency dependent, and c is the speed of light in vacuum. Note

that to have propagating modes (q real) we also require Er1 + Er2 < 0.

Using a gauge where the scalar potential is zero, we can obtain the expression for
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the vector potential of the upper region as:

A = - + i iq e-e P-' (A.8)

In the electrostatic limit, q >, q ~ Qj, and the vector potential becomes:

A -A 0 (, + ii) iq-PWt (A.9)

A.2 Thin film SP(h)P Modes

In the case of a thin metallic field between two dielectric materials, the procedure

is the same as described in Section A.1. However, between the two materials, the

existence of a metallic film enables surface current to appear, altering the magnetic

field boundary conditions to:

B1  B2

=P K (q)EI (A.10)

where K is the surface current at the interface, u(w, q) is the conductivity of the film

and Ell is the component of the electric field parallel to the surface. For most materials

the change in magnetic permeability is negligible so we consider p1 = p2 = /to. Even

with the presence of a surface current the parallel component of the electric field Ell

is continuous through the interface, which gives us the boundary condition:

Qi 1 Q2
Eil = E211 =-B = -j- B2 (A. 11)

Combining Eq.(A.10) and Eq.(A.11), and writing Ell in term of either B1 or B2

yields the following dispersion relationship.

T1+ '612 = '(w,q) (A.12)
Q v2 t v ow

The values of Qj can be related to the values of w and q by the wave equation,
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Eq. (A.6), yielding:
Eri + Cr2 _o (w, q) A.13)

q2 - ,rLJ -E22 IO

q 2 - EC9
2  z

which in the electrostatic limit q > w/c takes the form:

q = Eo r--i (A. 14)

where Eo is the electric permittivity of vacuum and c is the average of the electric

permittivities of the two dielectric materials.
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Appendix B

Derivation of the Dipole

Approximation

In this Appendix we derive the dipole approximation Hamiltonian starting from the

non-relativistic Hamiltonian of a particle in an electromagnetic field and analyze the

allowed transitions within this approximation.

B.1 Dipole Approximation Hamiltonian

We begin by considering a gauge where the scalar potential cancels exactly, O(r) = 0,

so the Hamiltonian is given by:

1

2m

where V(r) corresponds to a general potential. Although the atom's Coulomb po-

tential has also an electromagnetic origin, we can treat it as a generic potential V(r)

separately from the SP(h)P mode, whose gauge we choose to have the electric poten-

tial zero, O(r) = 0.

The simplification of the Hamiltonian arises from a gauge transformation. Let us

consider some eigenfunction [0) of H. We can rewrite as a function of some other
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state |#) multiplied by a factor related to the gauge of the system. If we choose:

)o eie.A'r/hI)

In this case the eigenvalue equation becomes:

ihOteieA.r/hI#) = (p - eA) 2 + V(r)] eieA-r/h 10)27n

ihOtIo) = (p + e(V -A)r)2 - er -E + V(r) )

where we used the definition of electric field generated by a vector potential:

E A
a t

From Eq.(B.5) we can also determine that V - A is

This leaves our Hamiltonian as:

12
Hdiple = I p2 - er - E + V(r) where

2m

zero, since V - E is also zero.

(B.6)

For a field E which does not vary significantly within the electron's orbital length

scale, the field can be approximated by a constant E0 , and the interaction Hamiltonian

becomes:

(B.7)

It is- called the dipole approximation, as the interaction between the electromag-

netic field and the atom can be simplified to the dipole term er of the electron.

B.2 Dipole Approximation Selection Rules

In this section we develop the selection rules that arise from the dipole approximation.

Consider a field E oriented in an arbitrary direction. From Eq.(B.6), the transition

rate between two energy levels Ini , l , nm) and Inf, if, mj) will be related to the matrix

50

(B.2)

(B.3)

(B.4)

(B.5)

Hd-jp,jin = -er - E
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element:

-e(nf, if, mf E - rini, 4i, mi) (B.8)

The matrix element will be proportional to:

(nf, 1,mfE - rni, i, mi) oc d d cos(6) Yrnf* x

x (E sin(6) cos(#) + E, sin(O) sin(#) + E, cos(O))Yl" (B.9)

where -Y"' is the spherical harmonic of degree I and order m. By the completeness of

the spherical harmonics, each of the trigonometric functions can be written as a sum

of spherical harmonics.

sin(6) cos(4) oc Y7 - Y , sin(O) sin(o) oc i(Y1 + Y7 1 ) , cos(9) oc Yj? (B.10)

In particular we are interested in the angular term of the integration

dI d cos(9) Yrlf*Yl"Y"" (B.11)

and understand when this term is exactly zero.

Using the orthogonality of spherical harmonics we know the term can ony be non-

zero when Y{jY'L"? is a superposition of spherical harmonics containing Y7"'. Luckily

the expansion of Y,"Y7"i can be obtained using Clebsch-Gordan coefficients as [301:

ZY"," 3=+1) (LO1OLO)(1mlmrnjLM)YLA" (B.12)
S4r(2L + 1)

where (lim1m|LM) is the overlap integral between the two single particle states

with a definite L and L, of 1j, mi and 1, m, with the two particle state with definite

total momentum J = L i 1 + 1 L Li of L and total z-component angular momentum

S= 1 + 1 0 Lz of M. By stating the problem in this framework, the results

from addition of angular momentum (as discussed in introductory quantum mechanics

books [17, 71) can be used. In particular the addition of angular momentum tells
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us that two particles with angular momentum Ii and 1 have a combined angular

momentum that lies in |li - 11 < L < li + 1, which means that Eq.(B.11) is only

non-zero when if = li t 1 or if = li. At the same time, the z projection of the angular

momentum adds normally, so we know that mf = mi 1 or mf = mi. Moreover

looking directly at Eq.(B.11), Yj" is an odd function so the parity of Yf* and Y"

must be different, which implies that the parity of li and If must be different. Putting

all these conditions together we reach the selection rules in the dipole approximation

regime:

Al = 1 and Am = t1, 0 (B.13)
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Appendix C

Vortex Mode Calculations

In this Appendix we derive the OAM carrying vortex modes as well as their proper-

ties. Using the correct normalization we also define the correct field operator for the

quantum treatment of our absorption problem.

C.1 Vortex Mode Derivation

A vortex OAM carrying mode can be obtained as the superposition of planar modes

coming from different angles with a phase shift linearly dependent on the incoming

angle 6. Since the phase shift, when going around a circle, must match at each point

modulus 27r, the vortex mode can be labeled by the winding number m of its phase

shift. The resulting radiation profile becomes:

Am = J dO Ae'r - Ao -_e _0 't dO (cos(O)d + sin(O) + i-4)e-iqcos(*~0)eim
27r J 2;r l/2 e

(C.1)

where 0 is, without loss of generality, the angle formed between the in plane momen-

tum q and , 0 is the angle formed between the in plane position p and i'. Using the
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Jacobi-Anger expansion [91, we obtain:

AA e~ e- d6 [e'o(S - iQ) + +-i'(, + i +i22] i" JI(qp)eir ei( -?)O
Tt=-x0

= Z n+1 e-qz[eim (:i -- i$),,+1(qpje** - ( + 4j)Jn-1(qp)e-'k + 2iJm(qp)]
2

(C.2)

Transforming into spherical coordinates yields:

Am Ao e iwt ene-qcos(O)

X 2J-7n(q )[ cos(0) + a sin(0)] + imrv2 Jn(qp)>
qp

+(J-1-m(qp) - Ji-m.(qp))[O cos(0) - i sin(0)] (C.3)

C.2 Orthogonality of the Vortex Modes

In this section we show that vortex modes with different values of q and m are

orthogonal and find the correct normalization factor such that they are orthonormal.

Using Eq.(C.2), and using the standard inner product we write:

(Anq, An,q) = 1 i" "n (j dz e-(q+q')z j d p dpe'("n")0 x
4 ( f) o 0

x {Jm+I(qp)J+I(q'p) + Jm-I(qp) J- 1(q'p) + 2Jm(qp)Jn(q'p)} (C.4)

The angular integration equals 27r for m = n and 0 otherwise, while the z integra-

tion yields 1/(q + q'). The p integration diverges linearly in a fashion analogous to

the normalization of momentum eigenstates in free space, meaning that our modes

are normalized by the size of the system L. The correct result can be obtained by

explicitly including the 1/I per mode and using the asymptotic form of the Bessel

functions of the first-kind:

J'.'(X) ~ cos (X - (C.5)gro \ 2 4/
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And the integral becomes:

(A7 l, A) = lim -Ao2 47 Ld 1 cos(qp) cos(q'p) (C.6)
L-+o (q + q') L o Tr y/q

where we removed all the phase factors from the asymptotic formula as they don't

alter the average value of the product of the cosines. In the case when q = q', the

integration goes to 0 as it corresponds sum of two cosines whose average is zero. For

q = q', the integrand is everywhere positive and the integral is non-zero. The integral

is periodic, with period 27/q, and the integral over a period is 7r/q, meaning that the

total integral is:

(Am, A) = lim 1 2jAo1 2 7r Lq | Aol 2  (C.7)
L-oo L q q227 q

Outside of the electrostatic limit, performing the same calculation we obtain a

slightly different normalization:

(AM,7 A,) - JAol 2 1 + (q/Q) 2  (C.8)
qQ 2

where Q is the out of plane inverse decay length.

The resulting normalized fields can be expressed as:

4C~ -qq,1 -7  q CwZn - IL~/ e li7noe - qr cos (0) X

x 2J-m,(qp)[f cos(O)+Osin(O)]+imV2- J #(qp))
qp

+(J-i-m(qp) - Ji-m(qp))[b cos(0) - i sin(0)] (C.9)

C.3 Field Operator for Vortex Modes

Having the field profiles properly normalized enables us to build the quantum field

operator. In this chapter we develop the field operator for thin film supported SPP

modes. The formalism can be expanded to SPhP modes, however the physical picture

does not change and its computation is less straightforward.

The most straightforward normalization condition is to equate the energy of the
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vacuum to hw/2, as prescribed in Eq.(2.7), by equating the energy of a vector po-

tential with normalization A to hw/2. From classical electromagnetism, within the

electrostatic regime, the energy of the electromagnetic field in a dispersive medium is

given by [361:

E= - dr |E|2 = and E = (C.10)
2 dw 2 Ot

There are three regions whose contributions we need to account for the energy

of the mode, the top material, the bottom material and the thin metalic film. We

assume the dielectric materials have a constant electric around the frequency of the

SP(h)P (0,E: 0). The thin film term is more complex and we will obtain its energy

contribution by considering a finite slab of thickness d and taking the limit as its

thickness goes to 0.

Considering first the dielectric materials we have the energy of the mode in both

dielectric materials is:

1 L L
Ede = CO--(Erl + Er2)W 2-2 = EOrTK2 (C.11)

2 q q

where eFr is the average of the relative electric permittivities of the two materials.

We now compute the energy contribution of the thin metallic film by first un-

derstanding the relationship of the conductivity and the electric permittivity of the

system. In particular, the dielectric constant and the conductivity, within the Drude

Model 118I, can be written as:

Efilm ( - ) 6(d/2 - 1) and u- = Z " to (C.12)

where wp is the plasmon frequency of the material, 0 is the heavy-side theta function

which is 1 when the argument is greater than 0 and 0 otherwise, and z is the out

of plane distance, where z = 0 is the center of the slab. In the limit of d -+ 0,
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0(d/2-zl) -+ 6(z). In metals, the plasma frequency is given by:

-> Er,fihn (d - W(z) (C.13)

where n, is the electron volume number density, n., the electron surface number

density and m* the electron's effective mass. This process corresponds to matching

the volume conductivity to the surface conductivity as we reduce the dimensionality

of the film.

The energy contribution of the thin film is given by, by computing the integral.:

Efil, = lim d2z Eo d + 1d 6(Z)W2-L2 = 2  (- 2 .14)
d--O 2 W2 q 2 q q2

The total energy of the electromagnetic mode is given by, using Eq.(A.14):

hwL 2
Et =i.= 2Eow2-A 2 > N2 = hq2 (C15)

2 4Lwe(

The field operator then becomes:

Z 4S (eq'aq, + e*,a (C.16)
q,l

C.4 Displaced Vortex Mode Decomposition

In order to compute the radiation profile of a vortex mode displaced by D, we proceed

with the calculation in Section C.1 with the position at which we evaluate the plane

wave fields shifted by -D:

A tD A qze-iw~t -,iq-(p-D) imrn
A1i 2 q7wZ- f dO (4 It (C-17)

The r 27r /2

The term e-""can be expanded using the Jacobi-Anger formula, and the result
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is:

AI i=J,(-qD)- A -qe-iw' dO (e+ij)e*Pei Oei"(O-") -

00 00

S(-)"Jj(qD)e-maAm+ = (C.18)
00 n=-oo

where a is the angle D makes with the reference direction, without loss of generality

set to I. A displaced vortex mode is a superposition of centered vortex modes, whose

superposition coefficients are given by i"-'Jnn-(qD)e-(f-rn)a.
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Appendix D

Computation of the Absorption Rate

of SP(h)P modes

In this appendix the absorption rate formula is simplified so as to ease its numericall

computation. Including information from the OAM carrying vortex modes described

in Chap.(3) and Chap.(4), the selection rules for the atom centered absorption rates

are derived. The atom displaced case is also investigated analytically and it is found

that the transition rates of the displaced atom case can be easily related to the

transitions of the atom centered transitions. The implementation is also discussed,

with emphasis on the ideas behind the simplifications and implementation used.

D.1 Simplification of Fermi's Golden Rule

As discussed in Section 2.3.2, the absorption rates of SP(h)P vortex modes can be

obtained by Fermi's Golden Rule Eq.(2.10), transcribed here for reference:

27r
rI = I(sf, (n - 1),1Hit Isi, t)I2p(hw) (D.1)

where Isi) and Isf) are the unperturbed electronic states described in Eq.(2.11), and

In,) is the field state with n excitations at energy hw, described by the field operator

in Eq.(C.16), and p(hw) is the density of states of the final field states.
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In this section we are interested in simplifying this expression by accounting the

particular details of our system.

D.1.1 Simplification of Matrix Element

Let us consider the interacting component of the Hamiltonian, in the gauge where

the scalar potential is zero, #(r) = 0, maintaining only one SP(h)P interaction terms:

ee
Hin = (A -p+ p -A) = -A -p

2m m
(D.2)

This result can be simplified by expanding p - A. Using Einstein's summation

convention:

pjA, = -ihjAj = -ih[(4.Aj) + AjOj = A41pi - ihV -A (D.3)

Where the last term cancels since, in classical electrodynamics, the dielectric, away

from the interface, is neutral.

V -A -dt V -E =0 Hm1t = A -p
J

(D.4)

It is also possible to use the definition of the field profiles Eq.(C.9) to show the

divergence is 0, however this argument is more physically motivated.

The matrix element is then simplified to:

-(sf, (n - 1),1A - p si, n,)
in

(D.5)

D.1.2 Density of States of Field States

Computing the density of states of a given vortex mode

definition we have:

p(hw) = f dq'6(hw' - hw) = h dw' 1  6 (w'- w)27r 27rh IV91

OAM mnh directly from its

L 1
= 1(D.6)

27th Iv9(w') =
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where vg(w) is the group velocity of the SP(h)P modes with a particular value of

OAM.

In the case of SPP modes, the dispersion relationship is quadratic in w, from

Eq.(2.3) and Eq.(2.4), yielding:

1 _dq 2q LI d =2q-:> p(hw) = q (D.7)
ivg(w)- dw -w rhc

There are two important points in this calculation:

" q can only take positive values based on the way we constructed the vortex

modes, meaning that there is no -q contribution at the same energy to include.

" there is no sum over the entire 7n label of the states since we are interested in

the density of states of a particular m.

More complex 7(w), as in SPhP modes, give rise to a quantitatively different

p(hw), however we will use the simpler 71(w) oc w as it qualitatively describes SP(h)P

modes.

D.1.3 Full simplification

Combining Section D.1.1 and Section D.1.2 enables us to write:

F h 2 q 2 7I'=gh 2 2 (sfleq,m-V2|Si)((n-1)wlag,mln.) - sWa aj(sfjdq,7n'Vxjsj)
c m 2,Eow er

(D.8)

where n is the number of excitations in the field, a is the fine structure constant and

ao is Bohr's radius.

D.1.4 Atom-Centered Transitions and Selection Rules

In the case when the atom is centered with the vortex mode, the system has rotational

symmetry, which implies, on the basis of symmetry as well as our calculations, that

the atom eigenstates and vortex modes azimuthal dependency is of the form e& for
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p c N, as corroborated by our expressions for the vortex modes, Eq.(C.9), and the

electronic wavefunction, Eq.(2.11).

Since the eigenstate In, 1, m) x ei"rt and Am,,, c eir"O we get:

(nf, if, mfdq,m * V.ni, li, mni) dr 6q,m -('*TVIfmf - nijn) Dc

cc Jdr ezrn e ini-mri)o = 0 m m -mi (D.9)

:/0 m =mf -mi

This relationship imposes a strict selection rule on the possible electronic transi-

tions due to the absorption of a SP(h)P mode. Note how Eq.(D.9) corresponds to a

conservation law of the angular momentum projected in the axis of symmetry.

D.1.5 Atom-Displaced Transitions

The case of an atom displaced from the center of the vortex mode by D, the direct

connection with the vortex-centered case in Section D.1.4, through the expansion

discussed in Eq.(4.1). The following argument is made within the classical electro-

dynamics, however it is straight forwards to generalize it to a quantum field, at the

expense of a more involved derivation and without a greater physical insight. For this

reason we present the classical argument.

Instead of considering the atom displaced from the vortex by D, we can consider

the vortex displaced from the atom by -D. Using Eq.(4.1), the matrix element

becomes:

- (sf, (n - 1).JAIM-Ps, ,,

0 r-'"e-qr -m)+o Jn-m(qD)(sj, (n - 1) IA -p~si, n ,)
n-o

=- ' " e'A'-"r JAzm-rn(qD)(sf, (n - 1).1AL\. -pls, ns ) (D.10)

where Am mf - mi is the change in projected angular momentum. In the last

step, the selection rules developed in Section D.1.4 were used to eliminate all zero
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elements in the sum. This result implies that the absorption rate pD when the atom

is displaced by D from a vortex with OAM hm can be related to the absorption rate

'rN,, when the atom is centered around a vortex whose OAM matches hAm by:

rD = I Jam-m(qD)?a (D.11

D.2 Numerical Calculation Code

The numerical code used in this work has been made available in https: //github.

com/Lactor/VortexModeAbsorptionRates.

In this section the code used is described and its implementation details discussed

with the goal of making the code usable by others interested in this area of Physics.

The purpose of the code is to compute the absorption rate of SP(h)P modes

through Fermi's Golden rule, as in Eq.(D.8), through numerical integration. It is

able to compute transition rates for plane SP(h)P modes or OAM carrying vortex

modes of a given confinement factor (variable s), although it can be expanded to

other modes, through the description of the appropriate vector potential profile.

D.2.1 Input and Output

The main function of the this numerical code is AbsorptionRate_ Final, which takes

as input:

" ni, i, mi - the quantum number of the initial orbital of the electron

" 1f, if, mf - the quantum number of the final orbital of the electron

" displacement = [dxdydz] - the displacement of the atom with respect to the

modes center. dz corresponds to the height of the atom with respect to the

SP(h)P supporting material's surface.
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. s - the confinement factor of the SP(h)P mode

" R - the dimensionaless integration radius for spherical and polar integrations.

The value of 300 was used throughout this work, however if interested in higher

order transitions this values shoul be increased so as it is larger than the expo-

nential decay of the atomic wavefunction.

" ivortex - the anguar momentum value of the vortex mode to be used. Only

works for non-negative Ivortex, as ivortex = -1 is reserved for the plane SP(h)P

mode.

As an output the function returns a single value through the variable Gamma,

which returns the value of the single photon absorption rate of an SP(h)P mode,

between the states (ni, 1i, mi) - (nf, lf, 'mf).

D.2.2 Normalization

In order to work with values closer to unity, all dimensions are normalized to the

Bohr radius (variable aO), which is the length scale of the electronic system. For

clarity in the code x refers to a normalized distance while r refers to a physical

distance. Working in dimensionless quantities, it is possible to define a dimensionless

wavefunction and gradient (as a derivative with respect to the dimensionless quantity

7r/ao), which enables our code to be more robust (less numerical problems), while at

the same time making clear which terms are large or small by their comparison to

1. The dimensionless gradient is related to the dimensionful gradient by ao 1 , which

cancels the ag in Eq.(D.8). The only dimensionful quantity becomes the frequency of

the mode.

D.2.3 Vortex Mode Implementation

The plane SP(h)P mode implementation is given directly within the body of the main

function A bsorptionRate_ Final, based on our result in Eq.(A.8) with appropriate nor-

malization constant, while the vortex modes are defined as separate functions in the
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bottom of the file AbsorptionRate_ Final.m based on Eq.(C.3). The implementation

of a displaced vortex mode is also included in the same file.

The implementation of the vortex modes transforms the dimensionless distances

into dimensionful distance as the momentum values are not made dimensionless

throughout the code.

There are two implementations of the vortex modes, one for the vortex mode cen-

tered with the coordinate system, and the other is for the displaced vortex mode. The

former corresponds to the functions VortexlSpX, VortexlSpT and VortexlSpP corre-

sponding to the i, 6 and q components of the vector potential respectively. The latter

corresponds to the VortexLDispX, VortexLDisp T and VortexLDispP, corresponding

to the i, 0 and components of the vector potential respectively, with respect to the

center of the vortex mode. As a result to relate it to the atom's degrees of freedom,

a change of basis is used to compute the inner product between the two coordinate

systems.

D.2.4 Vortex Mode Calculation

Although the different modes imply the computation of a three dimensional inte-

gral, each type of mode (plane, centered vortex and displaced vortex) is computed

differently.

The computation of the plane SP(h)P interaction is the most straightforward

corresponding to a simple three dimensional integral in spherical coordinates. This is

possible because the plasmon mode is already written in spherical coordinates which

matches the spherical coordinates of the atom, so the inner product between the field

and the gradient is simple since the basis vectors are orthonormal.

The computation of the centered vortex mode can be reduced to a two dimensional

integral due to the rotational symmetry of the problem. The vortex mode has an

azimuthal dependence which goes as eirro , where hm is the OAM of the mode, while

the wavefunction term goes as e-n*O, where hAm is the change in projected angular

momentum between the initial and final state. The azimuthal integral can be done

analytically and equals 27r6,roA.,, reducing the dimensionality of our problem and
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resulting in a much faster computation.

The displaced vortex mode computation is the more involved because there is

no simple analytic formula for the vector potential in the spherical coordinates of

the electronic system. As a result the field is computed in the spherical coordinates

whose origin matches on displaced vortex's center, and then related to the spherical

coordinated centered with the electronic system by a change of coordinate matrix. As

a result, the calculation is a three dimensional integral with a cumbersome integrand.

Since we have related the absorption rate of a displaced vortex mode with that of a

centered vortex mode in Eq.(D.11), this computation is only used as a confirmation

between the numerical and theoretical work.

D.2.5 Final Computation

Having computed the interaction matrix element, the computation of the final ab-

sorption rate is straightforward based on the Eq.(D.8), returning the absorption rate

in a system with a single photon in the mode of interest. The absorption rate in

a system with n photon just given by n times the result given. The single photon

transitions are the ones compared as they provide a meaningful comparison between

different values of confinement factor.
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Appendix E

Transition rates for all processes in

the (5, 0,0) -+ (6, m, l) family
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Figure E-1: Signle photon absorption rate of a vortex mode with OAM of 5h between the state (5,0.0) and all

states in the family (6, L n) with zo = 20 nm. This plot is based on Fig. (4-2) but includes all possible transitions to states in

(6, ,m). By including non-dominant transitions, the competition between the baseline absorption rate and the Bessel function

coefficient becomes more visible., even between transistions to the same value of I (same color). Moreover, for transitions with

the same m (same linestyle), they are exactly proportional to one another (vertical translations in this log-plot), as their Bessel

function coefficient is the same, and only the baseline absorption rate varies.
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