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Abstract

Many astrophysical environments are thought to contain force-free magnetic fields.
The sine field is an example of a force-free, helical magnetic field, whose field lines
are chaotic over the entire space. In this thesis, we examine the transport properties
of magnetic field lines and particles in three related systems: the sine field, the
sine field superimposed with a constant background field, and a time varying sine
field. We also compare results with the Arnold-Beltrami-Childress (ABC) field. In
the time-independent sine field, we find that particles exhibit chaotic motion, shown
by a non-zero distribution of Lyapunov exponents (LE). While for low energies the
asymtotic LE do not depend on initial particle position or angle with respect to the
local magnetic field line, these parameters are important for higher energies. On
larger time scales, we find that an ensemble of particles undergoes close to normal
diffusion for low energies and superdiffusion for high energies. This contrasts with
the superdiffusion found at low energies with the ABC field. Additionally, we find
that adding a constant magnetic introduces a saturation time scale in the cross field
diffusion. The saturatino can be both temporary or more long term. We find that
the low energy particle motion is ballistic. In contrast, for higher energies we find
widely varying behavior, ranging from superdiffusion to normal diffusion. At the
highest energies though, the behavior becomes uniformly superdiffusive. Futhermore,
we introduce a simple sinusoidal time variation into the sine field. We find that
in the pure sine field, the particle energy experiences subdiffusion throughout all
the time scales. With the constant field added, there is only energization at long
timescales, and although not completely conclusive, it looks to eventually undergo
normal diffusion in energy.

Thesis Supervisor: Abhay K. Ram
Title: MIT Plasma Science and Fusion Center
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Chapter 1

Introduction

Many different astrophysical plasma environments are thought to contain force-free

magnetic fields. A force-free magnetic field arises when the plasma pressure is small

compared to the magnetic pressure. In particular, the force free approximation holds

for conditions in the solar upper chromosphere and corona [19]. Because of the

ubiquity of these fields, it is important to study the spatial structure of these magnetic

fields and their effect on the motion, or spatial transport, of charged particles in such

plasmas. In addition, these astrophysical plasmas contain charged particles that have

been accelerated to energies much greater than the thermal energy. As a consequence,

it is also of interest to study the energization of these particles.

Force-free magnetic fields have the property

V x B = AB (1.1)

with A in general being an arbitrary function of position. The force-free magnetic

fields are mathematically equivalent to Beltrami flows [9], where V x u = Au with

u being the fluid velocity. The double Beltrami flow where V x V x u = A 2u is

also of interest. It has been shown that for a constant A, the Beltrami flows are

non-integrable [2]. Thus, we chose a constant A in our study.

In this thesis we consider a magnetic field structure similar to a double Beltrami

flow, the so-called sine magnetic field [1], and compare our results with a field that

9
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has the same properties as a single Beltrami flow, the Arnold-Beltrami-Childress

(ABC) field [8]. We study the spatial diffusion of magnetic field lines and of particles

across a wide energy range. We include low energy particles where the magnetic field

is approximately constant over the gyro orbit and high energy particles where the

field changes significantly over the particle orbit. We begin by considering only the

sine field. We characterize the chaotic orbit by the Lyapunov exponents and also

characterize diffusion to a scale of 100k orbits. We then treat the sine field as a

perturbation to a constant field, and describe the resulting differences in the particle

diffusion. Finally, we introduce a simple sinusoidal time variation in the sine field to

explore the particle energization effects.
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Chapter 2

Sine Magnetic Field

The ABC field is a particular solution of the force-free equation, Eq. ,in Carte-

sian coordinates . The ABC field takes on the form B = (AsinAz + CcosAy)i +

(BsinAx + AcosAz)9 + (AsinAy + CcosAx)2 where A, B, C are arbitrary constants and

i, , i are the principle unit vectors. We can normalize the distances by the constant

A, by replacing (Ax, Ay, Az) with dimensionless (x, y, z) and normalize the magnetic

field by a constant magnetic field BO, and then replacing constants (A/Bo, B/Bo, C/BO)

with (A, B, C). The resulting equation takes on the form similar to the above

B = (Asinz + Ccosy )& + (Bsinx + Acosz) + (Csiny + Bcosx) (2.1)

The parameters A,B,C are chosen such that A 2 = 1, B 2 = 2/3, and C2 = 1/3,

matching previously studied parameters [8] . Following [ 1] and [I], we set the cosine

terms in the ABC field to zero, and obtain a field with only the sine terms, the sine

flow. The resulting field is much different than the full ABC field in terms of the

structure of the field lines. The sine field is equivalent to a double Beltrami flow,

where V x V x B = A2B.

We use the equation
dx dy _ dz _ ds

B- - (2.2)

to solve for the magnetic field line as a function of the the path length s along the

field line.

11
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Figure 2-1: Poincare surface-of-section for x - y plane of ABC flow magnetic field

lines, A 2  1, B2  2/3, and C2 = 1/3. The contour lines for IBI are indicated.
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Figure 2-2: Poincare' surface-of-section for x - y plane of sine flow magnetic field lines.
The contour lines for JBI are indicated.
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Fig. shows the Poincare surface-of-section at z = 0 for ABC magnetic field

lines superimposed with the contours of constant magnitude of the field. The plot

clearly shows areas of non-chaotic and chaotic field lines. Fig. shows the Poincar6

surface-of-section at z = 0 for magnetic field line of the sine field, superimposed with

the contours of constant magnitude of the field. Since the magnetic field is periodic

in each spatial dimension with period 27r, we can take the modulus of the spatial

variables by the period. The white areas of the section correspond to areas where the

field lines are parallel to the x - y plane [ ]. The field lines are chaotic over the entire

space, unlike the ABC field, which contains islands of non-chaotic field lines. Thus,

for any initial condition of a field line, a field line will eventually sample the whole

space. Furthermore, even though the field is completely chaotic, the contours of the

field magnitude have an unchanging, symmetric, periodic structure. The contours are

symmetric about both the x and y axis. These structures seem to manifest themselves

in later plots of the asymptotic Lyapunov exponents for particles.

2.1 Lyapunov Exponents for Magnetic Field Lines

To study the non-linear behavior of the the magnetic field lines, we calculate the Lya-

punov exponents (LEs) of the field lines These exponents quantify how the field lines

diverge from each other in space. In other words, they characterize the linear stability

of a small, initial local system. To find these exponents, we linearize the differential

equation for the field lines. These equations are the tangent space equations. The

resulting solution gives the Lyapunov exponents, one exponent for each dimension of

phase space. The largest one characterizes the perturbations on the local system in

almost all of the directions in space [], so we only calculate the largest LE in our

exploration.

Furthermore, there are two sets of LEs. The first, the finite-time LEs [.], are

calculated after a short evolution, and the second, the asymptotic LEs [ i], are cal-

culated over a much longer evolution. The finite-time LEs describe how groups of

field lines diverge from a reference trajectory over a relatively short period of time

13
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Figure 2-3: Left: FT Lyapunov exponent for magnetic field for a uniform arrange-

ment of 300 by 300 lines, with x/27r and y/27r, for 250 orbits per field line with 2000
steps per orbit. There are several outliers with extremely large exponents. Right:
PDF of the LE showing peaks at 0.2 and 0.75.

(such that the linearization remains valid), while the asymptotic LEs characterize the

long-term behavior of the perturbations by linearizing the equations, calculating the

LE using Gram-Schmidt orthnormalization, and then repeating.

To study the FT LE of the magnetic field, we start 900 field lines (300 by 300) on

an evenly spaced grid over one spatial period x/27r, y/21r E [0, 1] in the x - y plane.

For the asymptotic LE, we use considerably a less number of field lines because the

calculation time is significantly longer than for the FT LE. We start 90 field lines (30

by 30 evenly spaced grid) again in the x - y plane over one spatial period.

In Fig. we consider the FT LE. The structure of the contours seen in Fig.

seems to roughly match the several of the extrema of contours in JBI, with higher

magnitude areas of LE 1 corresponding to lower areas of lower JBI e 0.3. Although

the similarly between the contours of field magnitude and LE is certainly not exact.

This is clear around x/2wr = y/21T = 0 for example, as there are both high and low LE

areas in similarly shaped JBI contours. The FT LE contours are also not symmetric

across the x = 0.5/27 or y = 0.5/27r lines.
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Figure 2-4: Asymptotic Lyapunov exponent for magnetic field with uniform arrange-

ment of 30 by 30 lines, with x/27r and y/2ir , for 1,000,000 orbits per field line

We expect the asymptotic LE contours to be much more uniform than in the finite-

time case because the field lines eventually lose the memory of the initial conditions

due to their chaotic nature, so their long-term behavior should be homogeneous. Fig.

clearly shows the uniformity (value of approximately 0.14) of the asymptotic LE

over the space.

The relative uniformity of aysmptotic LE (~ 0.14 in magnitude) for the field lines

is expected, as the surface of section showed the entire space to be chaotic. There is,

however, spatial structure in the FT LE shown by contour plots.

2.2 Spatial Diffusion of Magnetic Field Lines

We also directly explore the long time behavior of the magnetic field. For the magnetic

field we chose a reference point ro corresponding to a particular field line. We then

choose 40 field lines located at positions rj such that Irj - rol << 1 is satisfied and

constant, for j = 1, 2, ... 40, with each field line then uniformly spread around the cir-

cle centered around ro with radius rj -rol. We choose ro - r(0) - (0.15, 0.15, 0.1)/27r

and Jr. - rol = 0.01.

To examine the spatial diffusion of the field lines, we take the ensemble averaged

15
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Figure 2-5: Log-log plot of os(s), the variance, of the distance between 40 field lines

from the reference line, as a function of s. The red line shows the least-squares fit to

2 (S) over the range s/27 E [100, 105]. The fit yields o(s) = 1012s1.20

separation
N

PB (s) = k |ri(s) - ro(s)| (2.3)

which is the average distance from the reference line of all the other field lines at

a particular s for each field line. We then calculate the variance with respect to the

reference field line

O(s) = J (Ai(s) - PB(s))22.4)
i=1

where Ai(s) = Iri(s) - ro(s)I is the distance between the i-th field line and the

reference field line.

Fig. shows o(s) as a function of s. There is an initial interval s/27r C [0, 10]

where o (s) grows quickly. During this interval, the magnetic field lines experience

mixing because there is an initial anisotropy. In the remaining interval s/27r C [10, 105]

the field lines experience diffusion. The linear fit in the final regime results in the

power of s equal to 1.2, which indicates that the process is somewhat super diffusive,

but still close to normal diffusion. In this regime, the field lines diffuse isotropically,

in that the mean separation of the field lines for each coordinate x, y, and z looks

similar.
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2.3 Charged Particle Motion

Since we consider systems with a low plasma pressure, we can simply study the be-

havior of particle trajectories, without having to self-consistently evolve a distribution

of particles. Single particle tracking, originating from Robert Brown's observation of

pollen grain in a fluid, is a useful tool in studying the properties of a system. By

using various statistical techniques [i), one can analyze the particle trajectories and

characterize the influence of the environment on the particle motion . We have char-

acterized the magnetic field system that the particles move in. It is unclear how that

system's behavior then influences the complex particle behavior. In particular, we

later calcuate the time averaged mean square displacement (TA MSD) to study the

motion.

We describe the trajectories of the particles by the Lorentz equation

dr

dt (2.5)
dr _q

= -v x B(r)
dt m

where v is the velocity at time t, r is the position of the particle, q is the charge

and nt is its mass. The dimensionless equivalent using the parameters above is the

equation

dr
-= v

dt (2.6)
dv_(26
dT = v x B(r)
dT

where T = Qt, Q = qBo/m, and lvi is normalized by 9. We can define the nor-

malized energy of a particle, E = v2 = (v+ V) where v1 and v1 are the components

of the velocity perpendicular and parallel to the direction of the local magnetic field

line. Since the magnetic field is not changing with time in the system, the total

energy should be conserved. This is ensured by using a symplectic integration algo-

17



x/27r

Figure 2-6: Typical chaotic particle trajectory projection onto x - y plane for initial

position x/27r=0.995, y/27r=0.477 for 6000 orbits.

rithm. Furthermore, we define a parameter V , which represents the fraction of

the total velocity vector that is parallel to the local field line. That is, if ( 1, then

the velocity is parallel to the local field line, and if ( 0, the velocity is perpendicular

to the local field line.

Fig. shows a typical particle trajectory projection overlaid with the field

surface of section, for 6000 orbits. For a larger number of steps (on order of 10k)

the projection almost completely covers the plane, suggesting that the particle has

sampled the entire space. An interesting feature also shown is the particle 'sticking'

to certain locations for short periods of time.

2.4 Lyapunov Exponents for Particle Motion

As a particle moves through space, it is influenced by the local magnetic field line,

but is not completely tied to it. The particle can jump field lines, diffusing across

them over time. Consequently, we do not expect the values or structure of the LE

contours for the field lines to completely match those of the particles. We follow the

same procedure for finding the LE as with the field lines, except linearizing Eq.

To find the contours for the particle FT LE, we fill one spatial period (x/27r, y/27r E

18
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[0, 1]) uniformly in the x - y plane with an array of 300 by 300 particles all with the

same initial conditions in v/E and , only differing in position, and then calculate the

FT LE for each particle. The FT LE are calculated over 6000 orbits, with 500 steps

per orbit. However, there are more parameters that can influence the LE contours for

the particles than for the magnetic field lines. The energy and initial orientation ()

to the local field line of each particle affect the resulting motion, and thus LE of the

particles. To study the affects of on the contours, we chose two different values of :

= 1 and = 0. Because the field lines are chaotic, it is reasonable to assume that

an initial orientation with respect to a local field line will not dramatically change the

particle asymptotic LE, as the information eventually is lost. For some parameters

this is true. However, some initial conditions, like higher energies, do result in a

different spatial structure.

To examine the effects of energy on the contours, we choose four different values

of s/5, each increasing by an order of magnitude: v/E = 0.01, 0.1, 1.0, and 10.0. Fig.

summarizes these results. For small energies, the time step of 500 steps/orbit is

sufficiently small compared to the particle gyrofrequency, so that the orbit is resolved.

For the larger energies considered, it is possible that this resolution is not sufficient.

However, for the largest energy, VE = 10, even doubling the resolution to 1000

steps/orbit and then doubling again to 2000 steps/orbit did not significantly change

the contour plots of FT and asymptotic LE for several representative runs. So the

time step used for all of the LE calculations is sufficient to resolve the motion. For

brevity, we present the contour plots for = 0. The contour plots for = 1 are

mostly similar and it is noted when they are not.

For /E = 0.01 the FT LE is relatively uniform in certain areas across the space

with a value around 0.06. The other non-uniform areas have a vortex-like structure

with many small and closely spaced contours. It is clear that the contours are similar

to the IBI contours in Fig. . The location of the areas with non-uniform FT

LE closely corresponds relatively closely to the areas of low IBI contours, where the

normalized magnetic field strength was about 0.2 (around three times lower than the

surrounding areas). The areas of more uniform LE lie around the local maximum

19



(IBI > 0.8) and saddle points of the JBI contours. Looking closer at the non-uniform

regions reveals small areas with much higher FT LE than the surrounding particles.

These small areas could correspond to the LE values calculated from a few or even

a single particle. A similar contour structure results from = 1, with the initial

particle velocity parallel to the local field line. In this case, the initial orientation

of the velocity with respect to the local field line does not seem to matter. This is

expected because the particles eventually lose memory of the initial condition. The

structure of the contours changes slightly when the energy is increased by an order of

magnitude to VE = 0.1. Most of the space has a FT LE of about 0.04, but there are

now significantly larger areas with LE below 0.02. However, for even larger energies,

the exponents across the space are no longer as uniform. For example, for VE = 1

(three orders of magnitude larger than in the first plot) a large portion of the space

has an exponent of about 0.25 and is not uniform.

The initial orientation of the velocity also changes the contour plot. For ( 0,

the structure becomes non-uniform and similar values compared with = 1 were

found, although the structure between them was different. For VET = 10 the structure

of the contours changes significantly. The LE are mostly around 0.15 (similar to

previous plots), but there are areas of the space where the LE are failed to compute

properly, most likely due to the large energy. The contours for VE = 10 and = 1

have similar values, but different structure. Interestingly, the contour plots for VE

10, are similar to their counterpart plots with the asymptotic LE.

Fig. summarizes the results for the asymptotic LE. For the asymptotic LE

we see much more uniformity in the values across the space. For v/E = 0.01, the

LE is small at about 10-4, but non-zero, for most of the space. In the figure, we

plot the log of the LE, to better show the results. For VE = 0.1, we see that the

LE remains relatively uniform, but has grown in magnitude compared to the smaller

energy results. For larger energies with begin to see results that match the FT LE.

For F/5 = 1.0 the peak in the asymptotic PDF is around 0.23, at the same location

for the FT LE. The only difference is a larger spread for the FT LE. At VE = 10.0,

the asymptotic LE and FT LE have a very similar structure. It is possible that this

20
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similarity at larger energies is caused by the larger energy particles exploring a large

portion of the phase space even in the short calculation time for the FT LE, so it

effectively matches the asymptotic result.

2.5 Diffusion

For the particles we calculate the time averaged mean square displacement (TA MSD)

and then ensemble average: [12]

1 N1  
N-k

7p2 N-1Z(NkZ ((r)(P) rP)) (2.7)
p =1 i=1

where Np is the total number of particles, N is the total number of orbits, and

k = 0, 1, 2, ... K with K < N. The outer sum represents the ensemble average and

the inner sum represents the mean square displacement for data points separated

by time At = kot. In many cases, like Brownian motion, in the limit of infinite

time a single particle TA MSD approaches the ensemble-averaged, mean-squared

displacement [I]:

(r2 (t)) = j r 2 P(r, t)dV = 2dKbtb (2.8)

where P(r,t) is the particle probability density at a given radial distance and

time, d is the dimension of the isotropic system, and Kb is the diffusion coefficient.

Such systems are ergodic. For non-ergodic systems, the individual particle TA MSD

themselves become random variables. This behavior is discussed later.

We take a similar power-law form as Eq. , defining the MSD in terms of linear

parameters a and b in log-log form

log((62)) = log(a) + blog(At) (2.9)

The parameter a is connected to the diffusion coefficient by 10 = 2dKb. The

parameter b indicates the type of motion that the particles undergo [ ]. b = 1 and b =

23



2 correspond to normal diffusion and ballistic trajectories respectively. Anomalous

diffusion is characterized by subdiffusion with b < 1 or superdiffusion 1 < b < 2. In

summary, for ballistic motion, (32) ~ t2 , for normal diffusion (i.e. random walk),

(62) ~ t, and for a sub diffusive process, the power dependence is lower than 1.

(] found that in the ABC field for a low energy particle, (2) contains several

regimes. For example, for v/ = 0.01, there are three regimes, corresponding to

one ballistic, one mixing, and one superdiffusive region. The first balistic regime is

very short and quickly moves into the intermediate mixing regime. The (32) then

settles into a long time scale superdiffusive regime. We focus on this final regime that

characterizes the long term diffusive properties of the ensemble. For particles in the

ABC field, the power law time dependence of the TA MSD goes like b = 1.575,1.72

for V1 E = 0.01, 0.1 respectively, and the corresponding values for the sine field are

b = 1.24,1.068. Increasing the particle energy in the ABC could produce additional

effects due to the presence of chaotic and non-chaotic regions of magnetic field lines.

These particles can drift out of the chaotic region and possibly become trapped in

the regular region. In the sine field however, the entire region is chaotic, so we

take a much larger energy range. Furthermore, we only consider the mean square

displacement along the x - y plane, since this cross field diffusion becomes important

when we add a constant background field on top of the sine field. In Eq. , this

means using r2 = 2 + y2 . Since the sine field is isotropic, taking the mean square

displacement along a plane corresponds to removing one dimension from the system.

The dimension only effects the numerical factor a and not the exponent b as in Eq.

( ), so we have not changed the quantities we are comparing. We compared the b

exponent for several runs taking x - y or full TA MSD and found that it remained

the same.

We initially take different orders of magnitude of energy, summarized in Table

Most notably. the low energy particle diffusion is much closer to normal diffusion

than in the ABC field. However, we see a clear transition into ballistic motion for

V/ = 10.0. This transition can be understood as the gyroradius exceeding the

length scale of the magnetic field L ~ 2 r. In normalized units the gyroradius is

24



Sine Sine + Bo ABC

7 Onset a b Onset a b Onset a b
0.01 102 -1.02 1.24 10 3  -7.51 1.99 102 -3.613 1.575
0.1 10 3  0.4328 1.068 102 -5.69 1.95 101 -2.0 1.65
1.0 101 2.072 0.9852 102 -4.70 1.99
10.0 loll 4.073 1.891 100 0.067 1.55

simply R = v /B. Since v1 and B vary, we pick their maximum values to give a

characteristic lengthscale. For the sine field Bmax = 2.0 and the maximum v1 = V

occurs when = 0, when the particles initial velocity is completely perpendicular to

the local field line, so Rmax= v/E/Bmax. For V5 = 1.0, Rmax = 0.5 is still well below

L, while for V = 10.0, Rmax = 5, is on the order of L. In fact as Fig. shows

for E = 1.0 we can scale down the sine field by a factor of 10 so that its Rmax is the

same as E = 10.0 and see that the mean square displacement behavior for the larger

energy is recovered. This simple result shows that if we scale Bmax and T such that

Rmax is constant, the results do not change. The particle TA MSD behaves linearly

in Rmaz. In other words, there is a self-similarity in that no matter what scale we

look at, the phenomena remains the same.

In general though, not all the individual particles exhibit the same behavior in

the large time limit. This behavior is known as ergodicity breaking. The probabil-

ity distribution of the particle displacement for example, can have 'fat' tails, in that

the higher order moments diverge to infinity. Ergodicity breaking suggests the entire

phase space is not accessible to all particles. In an ensemble of particles, some parti-

cles will reach regions that others will never reach, even in infinite time. As a result,

the individual TA MSD can show vastly different behavior, and when averaged, will

not converge to a single MSD described in Eq. , as expected by Brownian motion

for example. [] noted that for a phase space without (a priori) inaccessible regions,

as this system is, it is useful to consider 'weak' ergodicity breaking. There are lo-

cal regions in phase space where particles may become trapped or experience some

other anomalous behavior, but no strict barriers are present; given enough time, the

particles can continue diffusing and exploring the phase space. We will quantify the
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Figure 2-9: The top plot is the TA MSD for the sine field at E= 0.01 :(2) in blue,
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ergodicity breaking later with the ergodicity breaking parameter EB.

Fig. , , , show the individual mean square displacements in red

and the ensemble average in blue. When there is a large spread in the ensemble of TA

MSD, we also plot the maximum TA MSD value (typically the value at the largest

time scale) against . This allows an easy identification of which particles belong to

which TA MSD trajectories. For VE = 0.01, roughly half of the particles (those with

< 0.4) have a MSD that saturates at time scales of 100 orbits, and the other half

(those with > 0.4) have MSD with b = 1.24, the value in the ensemble average.

For the other energies there is much less of a difference between the individual mean

square displacements. This difference can be quantified by the ergodicity breaking

parameter EB [ ] [, the variance of 2 defined

( ((2)2) _ Y2)2)EB -- - (2.10)
(62)2

If the system is ergodic, when the individual particle 62 all converge large time

limit At -* oc, then EB = 0, the classic example being Brownian motion. If we have

an ensemble of particles undergoing Brownian motion, and calculate their individual

62, initially there will be differences among them due to initial conditions, even if

the ensemble average shows Brownian motion. Eventually the individual TA MSD

will converge to the ensemble average, and the spread will go to 0. Another similar

example is the Continuous Time Random Walk (CTRW) model. Instead of solely

the direction of a random walker being random after a set spatial and temporal step,

the CTRW model has a particle executing a random walk with both the step size

and time step as random variables. Based on the parameter choices, there can be

different diffusion effects [ ] [ ]. If the step sizes are relatively small, then the system

is essential the same as the standard random walk, with normal diffusion and EB = 0.

However, other combinations can yield sub-diffusion or superdiffusion, and also leads

to EB $ 0. For some of these cases, EB - 0.1 -0.5 [, showing only weak ergodicity

breaking.

We also further explore the parameter space by plotting the maximum x - y
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Figure 2-14: Max x -y displacement for free particles dxy 1 - VVE FT at
T =10k plotted for Fvs.

displacement dxy inax(ArxyL1 : T]) where T is the maximum orbit considered, for

a range VKE [1.0, 40.0] vs. c . For comparison, Fig. shows the resulting x - y

displacement for a free particle, as in a particle that moves at a constant velocity

for all time. The x - y displacement is simply dxy = ,/1 - v/2ET: larger energy

particles go farther in the x - y plane, but particles with close to 1 have most of

that energy in the z direction. If the energy scaling is introduced into T, the energy

dependence drops out: the displacement is purely a function of the angle.

Fig. shows the dxy for particles in the sine field. Changing the max orbit

T evolves the plot in time and allows us to verify any features that persist over

time, and are not simply present at a particular time. Since running up to 300k

orbits is computationally expensive, we instead chose to take up to 10k orbits. We

can also eliminate the expected simple energy dependence on displacement by using

T = Tr = lOk/v/E, scaled inversely by the energy. So with this T normalization

we calculate the max displacement for /E = 1.0 up to 10k orbits, but up to 250

orbits for I/F= 40.

The previous discussion of the ensemble averages for the mean square displacement

reveals a clear dependence on the longer term particle behavior on / and to a lesser

extent . Fig. shows large scale structure in the parameter space. There is a

relatively uniform behavior in particle motion at /5 > 10.0 and > 0.2. Particles
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Figure 2-17: Diagram of a loss cone in velocity space, showing the critial angle 0,.

in this region have the greatest amoutn of displacement. If we instead use To,,m, we

find that the contours in this large, uniform region become vertical, roughly matching

the normalized free particle result. However, in this region the x - y displacement

increases with , which is the opposite to the free particle case. There is also a

distinct region of comparable energy, but lower 6. Particle displacment in this region

is similarly uniform, but is an order of magnitude lower. Additionally, a 'barrier'

region separates these two previous uniform regions. This region is approximately

independent of energy and is located at 6 = 0.2. It is a barrier in the sense that

particles in this strip have almost two orders of magnitude less displacement, and the

nearby higher displacement particles do not mix through it. Finally, there is a lower

energy region with vT5 < 5.0. In this region, the dx contours are mostly horizontal,

indicating a larger dependence on the energy, rather than 6.

We evolved the plot from a max orbit of 1k to 10k, and saw that features like the

barrier structure remain. While this is not a large range to evolve the plot through, it

does eliminate the possibility that the snapshot of displacement at T = 10k is simply

a random fluctuation, whereby at other T the plot would appear radically different.

The barrier structure gives some insight into the behavior of the particle motion.

Particles to the right in 6, with higher initial motion along the local field line, move

more freely than particles on the left, with higher initial perpendicular motion relative

to the local field. Additionally, the barrier is approximately independent of v/5E.
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These characteristics indicate possible loss-cone behavior, in a magnetic mirror-like

system. Particles moving in a region with a magnetic field gradient will gyrate and

stream along a magnetic field line starting at an initial magnetic field magnitude

B = Bmin until it hits a value B = Bmax , at which it will stop and reverse direction,

before finally passing through its starting location in the opposite direction. This

motion completely depends on the initial angle of the particle's velocity with respect

to the magnetic field line (as long as the Larmor radius is small compared to the

length scale of the gradient, of course). If the angle is too small, the particle will

not become trapped and will escape. This loss cone is typically defined in terms of

a critical angle shown in Fig. where sin(Oc) = NBmin/Bmax []. Particles with

angles 0 < 0, or equivalently > will escape the magnetic mirror. In our notation,

we have

sin(O) = vi_/vE = V/1 - (2.11)

independent of the energy. Looking at Fig. we see that this is the case for

high energy, with c 0.2 or 0, - 78.50. In the free particle plot, particles with the

largest energy and smallest have the greatest dxy. In contrast though, in the sine

field, those with the largest energy and have the greatest dxy, in agreement with the

loss cone behavior, even though we only considered the x - y displacement. However,

for lower energies v5if < 10 the cutoff disappears and the contours no longer depend

strongly on
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Chapter 3

Sine Field Superimposed on a

Background Magnetic Field

We now add a background field BO = 5.0 along the z direction onto the static sine

field, effectively treating the sine field as a perturbation. Without the perturbation,

the particles exhibit no diffusion across the field. There is gyromotion perpendicular

to the field and free streaming parallel to the field. The perturbation introduces the

effect of cross field diffusion.

For a simpler system studied in [:'] with a constant field in the z direction su-

perimposed with an axially varying field in the x direction it is possible to derive

analytic results for the cross field diffusion. They found that the magnetic field lines

diffuse in the perpendicular plane according to normal diffusion and that the particles

experience subdiffusion with the exponent b = 1/2. This is attributed to the idea that

the particles remain tied to the magnetic field lines, which diffuse perpendicularly;

in general, the particles do not diffuse separately from the field lines. In our system

though for the particles, we find superdiffusion across the field for the ensemble of

particles.
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3.1 Relative Scaling of the Sine Field with Respect

to The Constant Field

As done previously with the sine field, we explore the effects of scaling the sine field

on the particle mean square displacement. We first scale the entire magnetic field,

including the constant field, by a constant a:

B = a(Bine + Bo) (3.1)

If we divide the entire B by a factor of 10, a = 1/10, for particles with E = 1.0

we obtain a power law MSD with b = 1.1, which does not match the E = 10.0

result of b = 1.55 expected for completely linear scaling. Thus, we find that unlike

the pure sine field, the system does not scale linearly in Rma = \/Ei/Bmax.

Furthermore, we scale only the sine field, leaving the constant field at B = 5.0.

B = a(Bsme) + Bo (3.2)

This allows us to identify different behaviors that the sine field introduces in

conjunction with a background field. We focus on E= 1.0 and look at the ensemble

average results. A more detailed discussion of the actual ensemble is presented later

in the section, as the average is sometimes heavily skewed by outliers.

Fig. shows the mean square displacement for the full field (background + sine

field) and for the perturbations for a = 1/2, 1/4, 1/6, 1/8, and 1/10. The labeling

is such that a = 1/2 corresponds to d2, a = 1/4 corresponds to d4, and so on.

From a first look, we would expect a progression tending to the constant field results.

As expected, reducing the perturbation size causes the system to saturate. Even

with a factor of 10 reduction though, the particles still experience diffusion. Without

any perturbation, the mean square displacement lies - 10-", as the particles are

completely confined. Even scalings of a ~ 1/100 do not reach those magnitudes.

This result shows that the sine field, even if present at a small scale, will cause cross

field diffusion. What changes is the saturation timescale. Regardless of the size of the
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Figure 3-1: TA MSD for Sine + Bo, and for the Sine field scaled down by a constant
factor labeled with the letter 'd'.

perturbation, the TA MSD saturates once it reaches ~ 100. The perturbation size also

roughly determines the time scale at which particle spends in the saturated region.

For the full perturbation, saturation only occurs near T ~ 102 - 103 and shortly

afterwards the particle ensemble continues to diffuse (in this case with b = 1.99).

When the perturbations are scaled down, the TA MSD saturates for many order

of magnitudes in 7. Fig. shows that some of these long time scale saturations

eventually begin to diffuse, but only after an order of magnitude in r.

We also scale up the perturbations in Fig. , multiplying by an overall factors of

a = 2,4, 6, 8, and 10. The notation is such that a = 2 corresponds to m2 and so on.

The sine field 'perturbations' are no longer such, as the multiplicative scaling quickly

moves the sine field magnitude on the order of B, = 5.0. For example, with a = 2

the maximum sine field magnitude B"'g increases from 2.0 to 4.0, and then to 8.0 for

a = 4. In principle though, we should recover the pure sine field results discussed in

the previous section, as the sine field begins to completely dominate, and the constant

field turns into the perturbation. Comparing with the a = 2 MSD, it is clear that

the saturation region at (S) 100 completely disappears: the particle ensemble

moves straight into a diffusive regime. Using finer scalings, the saturation disappears

at a scaling of about 1.75, where B"", is about 70 percent of the background field,
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Figure 3-2: TA MSD for Sine + Bo, pure Sine, and for the Sine field scaled up by a
constant factor labeled with the letter 'm'

compared to the original 40 percent.

Interestingly, although the saturation region disappears, the slope b remains the

same between these two cases, a = 1 and a = 2. This indicates that the constant

field still affects the diffusive properties of the ensemble for small scalings of a > 1.

With any larger a than 3, the constant field effects are removed, as the slope b follows

the result for the pure sine field, which is normal diffusion. Of course, the factor a in

the TA MSD does not match between them, as the field magnitudes are no longer the

same. For a = 3, there is an intermediate regime with b ~ 2, but eventually turns

to normal diffusion. In fact, the maximum magnetic field magnitude at a = 2 and 3

become on the order of the constant field, B" = 4 and 6 respectively.

3.2 Diffusion

Table summarizes the ensemble averaged mean square displacement over the pre-

viously discussed four order of magnitude V/E range. Fig. , , and show

the individual mean square displacements in red and the ensemble average in blue.

We also explore larger energies, which have maximum Larmor radii Rax (in

this case dominated by the constant magnetic field contribution) approaching the
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perturbation scale length of 27r; for example, if we consider only the constant field

magnitude with Bmax ~~ 5.0, for -\/f = 40, we have Rmax= 8.0, or with the sine field

contribution Bmax ~ 7.0 we have R.ax = 5.7. In Fig. ( ) we plot the maximum

x - y displacement on the same V 5 and range as in Fig. , but at a maximum

orbit T = 300k, instead of T = 10k as before.

There are clear structures found in this parameter space that are quite different

than with the pure sine field: there are rough bands of alternating very high and low

displacement, of high E and , and regions of that are much more uniform, but still

have some banding structure. By evolving the plot from T = 10k to T = 300k, we

confirm that the structures persist over long times.

It is clear that the ensemble changes behavior significantly at around zzv/E ~ 25.0.

Because of the complexity of the field, we can examine three possibly relevant length

scale parameters, Rmax,, as used before, Rmin, and Ra)g. Rmi and Ra,g take the same

form as Rmax, except with Bma, replaced with the minimum and average total B

magnitude, respectively. In the case of Rmin, the sine field contributes negatively,

so Bmin = -2.0 + 5.0 = 3.0. Since the sine field fluctuates symmetrically between

negative and positive values, we have Bay9 = 5.0 . At B/E = 25.0, Rmax = 3.57,

Rmin = 8.33, and Ra, = 5.0. Interestingly, Rmin exceeds the magnetic field scale

length. If Rmi, is an important criterion in the parameter space then we expect

the energy at which R,nin ~ 2-F to exhibit transition-like properties. This energy

corresponds to / 19. A transition remains plausible looking at the displacment

in Fig.

This shift in behavior is also apparent in the top part of Fig. where we plot

the power law exponent b of the diffusive regime in (S2). For / < 25.0 there is a

large variability from ballistic motion b = 2.0 all the way down to normal diffusion

b = 1.0. For example, for \1 = 1.0 we see ballistic motion, but for -/IE = 3.0, b

drops to 1.2, and then at E= 5.0 there is normal diffusion. This variability might

indicate that at these energies the outlier's effects are particularly significant. After

/E = 25.0, the b profile becomes much flatter and uniform with a value of b ~ 1.8,

greatly contrasting the profile of the lower energies. The previous hypothesis of a
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Figure 3-7: Max x - y displacement for sine+Bo field T =l1k/ /F (normalized for
now) plotted for / vs..

transition at F/5 = 19.0 remains plausible in this case also. There is one more drop

to normal diffusion after this energy, but it does seem that at this energy the behavior

of the profile has changed.

We also can examine the behavior of the EB profile shown in the bottom part

of Fig. . The EB allows to quickly determine the characteristics of the TA MSD

ensemble at a given energy, in that we can differentiate between ensembles with small

EB < 1 (weak ergodicity breaking) or large EB > 1 (strong ergodicity breaking)

spread like Fig. or Fig. respectively. Unlike the b profile, the EB fluctuates

greatly across the entire energy range. Although the b profile at v/E > 25.0 flattens

out, the EB profile does not. There is a very rough corespondance with high b

and strong ergodicity breaking, seen for example at F/ = 9.0 or 20.0. This is not

conclusive however. We would need to explore the effects such as a greater number

of particles in the ensemble. Overall, the EB or spread in the TA MSD seems to be

influenced by different physics than the b parameter.
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v/E. The second plot shows the ergodicity breaking parameter (EB), a measure of

the variance of the ensemble average of individual TA MSD.
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Chapter 4

Time Dependent Sine Field

We now explore the effects of time-dependent perturbations superimposed on a back-

ground field. As introduced before, charged particles are accelerated in various as-

trophysical environments. Cosmic rays for exaniple have been observed at very high

energies. Previous work on particle energization in three dimensional, time depen-

dent force-free fields has been conducted by [' .], using a time varying ABC magnetic

field, with A = B = C = 1. We not only take different ABC coefficients, but also

we use the sine field, which does not contain any integrable regions, and also apply a

constant magnetic field.

We add an overall time sinusoidal time dependence to the sine field

B = ((Asinz)7 + (Bsinx)9 + (Csiny + Bo) )cos(wt) = Bstatccos(wt) (4.1)

The time dependence appears in two of Maxwell's equations, one simply in Fara-

day's law and the other as the so-called displacement current. We can ignore the

displacement current term 2/c 2 where c is the speed of light, as we will only con-

sider systems changing much slower than the scale set by the speed of light (or in

other words, c is effectively infinite).

To find the induced electric field E it is easiest to begin with the time dependent

ABC field result and use it to guess a solution to the time dependent sine field.
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Following [ .] we solve for EABC, by exploiting the property V x BABC = ABABc and

find the result

V x EABC = -- -Bsin(wt) = V x -jLBABcsin(wt) (4.2)

Now we drop the terms that originated from cosine B terms (i.e. the spatial

sine terms in EABC) and introduce undetermined multiplicative coefficients for each

component,

E = (cicos(y)- + c2 cos(z)(y) + c 3cos(x) )sin(wt) (4.3)

Now we enforce V x E = - and arrive at the solutionat

E = (Ccos(y)i + Acos(z)(y) + Bcos(x)2)sin(wt) (4.4)

Following the previous normalization of the Lorentz equation ( Eq. ), in par-

ticular t = Q-, we include the electric field term

dv A
=T--vxBd-F Q 

(4.5)

=+ Acos(z) + Bcos(x)i)sin( T) + v x B

We consider only the case of Alfen waves, where the electric field oscillation fre-

quency w is much less than the gyrofrequency Q. Here we take ' = 0.1.

As before, we evolve the particles to 300k orbits for v1 = 0.01, 0.1, 1.0, andl0.0

and calculate the ensemble averaged TA MSD (62). Similarly, we also calculate the

time averaged 'displacement' in energy (6E 2) in an analogous fashion.

Table shows the resulting exponent b for spatial and energy diffusion with the

pure sine field and with the constant field added. To first order, we expect there to

be little difference in the energy diffusion when the constant field is added because

the constant field does not contribute to the induced electric field. We find that the

diffusion regime between these two systems has similar characteristics, but are still

46



105

10 4

10 3

10

10

10 12 3 4 s
10 10 10 10 10 10

T
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are in red.

distinctly different.

For the time varying pure sine field, there is a single sub-diffusive energy regime

across the order of magnitude initial energies considered, with the exponent b around

0.7. With the background field added, for energies VE < 10.0 there is little energy

diffusion except at large time scales, as shown in Fig. . At time scales less than

104 , there is very little energization. Once it reaches the saturation point, it remains

oscillating there for a long time. Overall, as the time scale increases overall the spread

in energies decreases, and the average energy slowly increases. There is a large time

region that looks like it becomes normal (b ~ 1.0), for all the initial energies tested.

This regime occurs at time 7 > 104 , so larger time scales are needed to accurately

identify the characteristics. For high energies, there is no long time oscillation in the

saturation region. The energy TA MSD exhibits a short saturation period at 100

orbits, before entering the diffusive regime.

It is also worth noting that there is a change in the spatial diffusion characteristics

for the pure sine field. For the time independent system, there is essentially normal

diffusion; however, for the time independent system, there is instead superdiffusion

with b ~ 1.7.
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Bo : (6E2) for initial F 5 = 0.01 in blue. The individual 6E2 are

for (S2) and (6E 2)Table 4.1: Parameters of the form Eq.
Sine XY MSD Sine + Bo MSD Sine Energy MSD Sine + Bo Energy MSD

\7 Onset b Onset b Onset b Onset b

0.01 10 3  1.71 102 1.91 102 0.74 5 x 104 0.86

0.1 103  1.77 102 1.89 102 0.76 5 x 104 1.00
1.0 10 3  1.80 102 1.89 102 0.77 5 x 104 0.92

10.0 103 1.81 103 1.67 101 0.70 04 0.96
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Chapter 5

Conclusion

We have found the anomalous cross field transport of particles in the sine magnetic

field, with and without a constant background field. For the pure sine field, we find

evidence of chaotic behavior of the field lines and the particles, as noted by the largest

Lyapunov exponent (LE) greater zero. For low energies the LE generally did not

depend strongly on the initial conditions of spatial location and velocity orientation,

as expected in a chaotic system. However, for v/5 = 10.0 we do find a dependence

on the initial conditions.

Furthermore, on diffusive timescales we find that the Larmor radius sets the scale

in the sine field system. The low energy particle ensemble, with Rmax << 27r, has

the time exponent b ~ 1.0, which is closer to normal diffusion than in the ABC field.

The field lines themselves are slightly superdiffusive. Thus, the particle diffusion and

field line diffusion are quite similar in this case. In contrast, the high energy particle

ensemble, with Rmax > 21r, experiences a near ballistic trajectory.

With the addition of a constant magnetic field, the Larmor radius no longer com-

pletely sets the scale of the system. On diffusive scales the constant magnetic field

introduces a soft barrier in the TA MSD. When the particles reach the saturation

value in the TA MSD, they temporarily saturate, before continuing to diffuse out.

The timescale at which the saturation occurs differs according to parameters such as

the energy, but the magntiude of the TA MSD at which it saturates does not dif-

fer between different parameters. In the final diffusive region, we find the that the
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statistics can be dominated by outliers. In Fig. for example, most of the par-

ticles completely saturate, but a few only temporarily experience saturation, before

continuing to follow ballistic motion. In fact, from v/E = 1.0 to 20.0 there is a large

variation in the cross field diffusive properties, jumping between high superdiffusion

and normal diffusion. After /E = 20.0 there is much more uniformity across the

energies, with b ~ 1.8. This indicates a clear structure in te parameter space. In

Fig. we see that the highly variable b region corresponds to regions with uniform

particle displacement, and that the uniform b region corresponds to a region of non-

uniform particle displacement. In this region of non-uniform displacement there are

particles with extremely low displacement and high displacement. These structures

are not transient phenomena as they begin early in the particle motion and last into

the diffusive regimes.

Furthermore, we find that with a time dependent sine field, there is subdiffusion

in energy in the pure sine field, and possible normal diffusion when the constant field

is added, indicating that the background field increases energization, even though it

does not contribute to the induced electric field. It is necessary to examine larger

time scales when the background field is added to more accurately determine what

the energy diffusion characteristics of the particles.
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