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Abstract

We examine possible configurations of stellar triple systems that give rise to "horseshoe
orbits" in the smallest body. Several configurations are tested according to the initial
parameters of mass for each of three bodies and position and velocity for the smallest
body. The masses are arranged hierarchically, so as to mimic systems like Sun-
Jupiter-Trojan. For a mass ratio of 1:10-4:10-8 known to produce horseshoe orbits,
a grid search was performed on position and velocity of the small body to determine
admissible initial conditions. Then, a strongly suitable initial condition was chosen to
run another grid search on masses of the middle and small bodies. Choosing a criterion
for stability of horseshoe orbits-given that they all decay-produced a timescale for
stability, with (numerical) functional dependences on the middle and smaller masses.
Fitting a power law for each resulted in exponents of k, = -1.006 0.006 and
k2 = -1.047 0.005 respectively, which we compare to related results from Murray
& Dermott (1981a).

Thesis Supervisor: Saul Rappaport
Title: Professor of Physics, Emeritus
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Chapter 1

Introduction

The three-body problem-that is, the problem of determining the motions of three

masses according to their mutual gravitational attraction-has been an object of

physical and mathematical interest for centuries. While the corresponding two-body

problem (the "Kepler problem") is analytically and generally solved, and has in fact

become a standard part of physics curricula, the same cannot be said of the three-body

problem. Instead, progress has been made by imposing certain simplifying conditions

on the system.

For example, the case in which two of the bodies move in fixed, circular orbits

according to the two-body problem and the third body is of negligible mass (and thus

exerts a negligible gravitational force) is known as the circular, restricted three-body

problem. In this thesis, we first consider in particular conditions of a system that

would satisfy the "circular" and "restricted" (negligible third mass) criteria, in order

to derive analytic solutions for orbits. Later, we shed the "restriction" but perform

numerical calculations in a system that remains close to circular.

1.1 Motivation for Studying Horseshoe Orbits

There are several types of motion that have been observed to be possible for the third

body in real systems that are well approximated by the circular, restricted three-

body problem. The most prominent are those known as Trojan (or tadpole) orbits
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and horseshoe orbits, the former of which has hundreds, if not thousands, of examples

in the Solar System; and the latter of which has several (e.g. Christou & Asher 2011,

Dermott & Murray 1981b). The descriptive names reflect the shapes that the orbits

appear to trace out in the rotating frame of reference in which the two larger masses

are fixed.

Not all pairs of larger masses admit such orbits, however. In the case of Trojans,

an analytic solution of the motion of a small tertiary particle determines that only

certain ratios between the two larger masses admit stable orbits of the third. We will

reproduce this solution here for the sake of comparison.

However, similar constraints have not been found for horseshoe orbits with a mas-

sive third body. In this paper, we seek to supply such constraints by running numeri-

cal simulations on a range of three-body configurations, sufficiently finely sampled in

parameter space.
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Chapter 2

Mathematical Background

We first describe the method and results for solving the Trojan problem, as we will

refer to it for comparison with the horseshoe case. This requires a preliminary expla-

nation of the Lagrange points.

2.1 Triangular Lagrange Points

We first derive, as in Murray & Dermott (1999), the locations of the L4 and L5 points

of a system of two massive bodies in circular orbit. Our assumptions and variables

are as follows:

1. There are two massive bodies, m1 > M 2 , with Mi1 + M2  1.

2. We operate in two dimensions, with si pointing from m1 to m2 (and y 900

counterclockwise). This is therefore the rotating frame of the binary orbit.

3. The origin is placed at the center of mass; that is, MixI + rn2x 2  0, and we

set the distance between the two masses x2 - XI = 1, so that x1  -M 2 and

X2 = Mi.

4. While x and y are the coordinates of a test particle, r1 and r2 are the distances

from that particle to mi and M2 , respectively.

15



Because we are in the rotating frame of reference, the total "pseudo-potential"

U, known as the Roche potential, is the sum of the gravitational and centrifugal

potentials:

U M +M+(x2  y 2 ) (2.1)
r1  r2  2

We may instead have set U as -U, but the only calculation we are interested in sets

VU = 0, so the two cases are equivalent in this respect.

Given the definitions of ri and r2 , as well as the locations of mi and m 2 , we have

mir2 + m 2r2 = x2 + y2 + mim 2  (2.2)

from which we may rewrite

U = m --( + r- + M2 + r22m 1 1M 2  (2.3)
(r, 2) r2 2) 2

The Lagrange points are defined as those points in the rotating frame of the binary

at which a particle would remain stationary. Thus, we seek the local extrena of the

Roche potential, where VU = 0:

DU aU Dr1 DU Dr2Dx - u D-- + = 0 (2.4)ax ar1ax ar2 aX
DU DU Br1 DU Dr2-D = -Dr-- +W- = 0 (2.5)
ay ar, ay &r2 aY

By inspection, these equations have the simultaneous solution

DU DUDr - D -= 0 (2.6)

Evaluating these partial derivatives, we have

mI vi - 1 ) = M 2 (r 2 - = 0 (2.7)

which results in

r = r2 = 1 (2.8)
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We now understand the description "triangular" for the L4 and L5 points: they

are the two points in the plane that form equilateral triangles with the locations of

the two massive bodies.

The remaining Lagrange points (LI, L2, and L3) fall along the x-axis, as in Figure

2-1. with L3 near the antipodal point, to "12 along its orbit around i I. However, we

will focus here on motion around L4 and L5.

I

Figure 2-1: The Roche potential as a contour plot for the Sun-Earth system (not to

scale, and with the Moon also drawn) with the Lagrange points labeled. L4 and L5

are local maxima, while Li, L2, L3 are saddle points. Also noted are the signs of the

directional gradients near the Lagrange points, as well as an example of a horseshoe

orbit (light blue), with points A, B, C, D, E indicating a possible direction of motion.

(Image public domain, adapted from NASA.)
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2.2 Trojan Orbits

We now establish the mass-ratio stability criterion for the "Trojan" orbits around

the L4 and L5 points, following solutions to the problem on an MIT graduate exam

(Rappaport 2006). Remarkably, although the Roche potential is at a local maximum

at L4 and L5, there exist stable orbits around those points, as we will demonstrate.

We begin with a Taylor expansion of the dimensionless Roche potential # near

the L4 point, with ( and q displacements in the x and y directions, respectively, and

pi defined as
mi --

1 = (2.9)
m 1 + m 2

so that

+ 9 2 303P
~ +%2+ - 77 (2.10)

Adding the Coriolis force to the standard force, we find the total force per unit

mass

f=VU+2 x (2.11)

where Q is the angular velocity of the rotating frame, which we assume equal to 2

(i.e. an angular speed of 1), and r'= ((, ). This gives us the coupled equations of

motion

3 = (+ 3 + 2// (2.12)
4 4

.. 9 3 /35p
4g+ 4 -2 (2.13)

We then substitute ansatz solutions

= Re[Aei] (2.14)

= Re[Bewt ] (2.15)
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which yield

-A w2 = )

-B w2 + -
4)

=B 2iw+ 3')

= A (-2iw +

The allowed values of w for this orbit are given by

27w4 -w 2 +27(1 - 2) = 0W W 16 (2.18)

implying that

2 1 1

2 2
2 (2.19)

Since we require stable orbits, iwt must be purely imaginary, so w must be purely

real. This means that w 2 must be positive; in particular,

1 - -(1 - t2 ) > 0

1 > -7(1 - P2)

> J23
V 2>

(2.20)

(2.21)

(2.22)

Given the definition of p in Equation 2.9, this gives us a lower bound on the mass

ratios m2/mi that admit Trojan orbits:

M2 1- 23/27 ~
S< + -- 23/2 0.04

m1 1 V23/27
(2.23)

Furthermore, we can use Equation 2.19 to estimate the periods relevant to Trojan

19
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1

-1

-2'-
-2 -1 0 1 2

x
Figure 2-2: An example of a tadpole orbit in the rotating reference frame over 100
periods of the larger binary orbit (of m2 and m 1), in blue where m 2/m = 0.01. The

binary orbit in the non-rotating frame is also superimposed (orange), to guide the

eye. The L4 point, around which the tadpole orbit librates, is indicated in black.

20

I

4;-, it



orbits. Assuming M2 is small, we have p < 1, so we find two periods:

2 1 +1 27 tt)27 2S - +- (1-(1-2)) = 1---(1-p2) (2.24)
2 2 .8 16 (.4

27
~ 1 - -(1 - <2) ,1 (2.25)

32 r_

1 1 27 27
W21 (1_ 2 ) (2) (2.26)

2 2 8 16

32 ~ _ V 1 - p2 (2.27)
4

w, corresponds to a shorter "epicyclic" period of about 27r, similar to the binary

period, while W2 corresponds to a longer period of the motion of the guiding center

of the Trojan orbit around the Lagrange point.

Figure 2-2 shows an example of a Trojan orbit, for a system in which m2 /m 1

0.01.

With this result, we can now understand the motivation for examining the effect

of similar mass ratios on the stability of horseshoe orbits. As horseshoe orbits and

Trojan (tadpole) orbits qualitatively look related-in the sense that a horseshoe orbit

looks like a "stretched-out" tadpole orbit that extends past L3, and at certain times

(while near L4 and L5) even looks locally similar to a tadpole orbit-it is reasonable

to expect that the former might obey similar constraints to those of the latter.

As described in Ouk et al. (2012), there is a similar critical mass ratio of m2/m ~

1/1200 for horseshoe orbits to be stable. However, until this point we have been

discussing orbits of a tertiary object with negligible mass; we would like to investigate

what happens with a larger third object, although we will check our result against

this bound.
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Chapter 3

Numerical Simulation

The bulk of our numerical simulation was completed in two steps:

1. Given an extreme mass ratio strongly expected to produce a wide range of

horseshoe orbits, we performed a numerical integration on systems with several

different initial conditions for the third body nearby a parameter set known to

produce a horseshoe orbit. We then selected one of the initial parameter sets

resulting in the longest-lived horseshoe orbits to use in the second step.

2. Using a fixed initial position and velocity for the third mass, we similarly tested

the horseshoe orbit's lifetime for many different masses of the second and third

bodies (with respect to that of the first).

We next explain these two steps further, beginning with our basic integration

routine.

3.1 Integration Routine

All of the following was programmed in Wolfram Mathematica.

The total mass of the system was set to 1, with the masses in decreasing order

Mi 1 , M 2 , and m" (the latter being the small "test mass"). mi and m 2 were given the

23



initial conditions in two dimensions and at t = 0

X1 = (-n12 , 0)

V, = (0, -rn2 )

X2 = (Mi, 0)

V2 = (0, mi )

so that they would move in circular orbits around their common center of mass. The

four quantities M 2 , Mft/mn2, Ixti / lX 2 1, and lvtl / Iv 21 were passed as parameters to the

routine, and we explain in the next section how the initial conditions for xt and vt

were determined.

Given the masses and initial conditions, the coupled differential equations for the

motions of the three masses under their mutual gravitational influence were identified

in a dimensionless form:

d2xI M2 (x1 - x 2 ) _mt (x1 - Xt) (3.1)
dt2  lxi - x 213  Ixi - xt13

d2x 2  mi (x2 - xI) mt (x2 - Xt)

dt2 = ~X _ 13 -X _ t3 (3.2)
dt2  x2 -xil 3  1x2 -xt 3

d2xt _ 'i (Xt - x1) M 2 (Xt - x 2 ) (33)
d 2  xt - xil 3  Ixt - x 21

3

These were numerically solved until t = tmax (also a parameter we supplied) using

Mathematica's NDSolve method, which internally selects both integration methods

and step sizes to optimize solution accuracy. Calculations were performed to machine

precision.

By default, NDSolve chooses the integration method to use, although it does not

indicate this to the user-the procedure is "under the hood." For time integration,

as in our routine, the possible classes of integration methods are the following, taken

from the Mathematica 10.4 documentation (Wolfram 2016):

0 "Adams: predictor-corrector Adams method with orders 1 through 12"

24



* "BDF: implicit backward differentiation formulas with orders 1 through 5"

* "ExplicitRungeKutta: adaptive embedded pairs of 2(1) through 9(8) Runge-

Kutta methods"

* "ImplicitRungeKutta: families of arbitrary-order implicit Runge-Kutta meth-

ods"

* "SymplecticPartitionedRungeKutta: interleaved Runge-Kutta methods for sep-

arable Hamiltonian systems"

NDSolve does admit the option to restrict the possible methods used. However,

restricting to the "ExplicitRungeKutta" option, for example, produced no qualitative

difference in the solutions. Furthermore, the total energy and angular momentum of

the three-body system were no better conserved (at the same working precision) by

restricting the methods NDSolve could use, generally doing so to about a part in 1010

in both cases. Thus, for all of our integrations seeking physical results, we did not

restrict the integration methods internal to NDSolve that Mathematica used, only

asking for precision in the integrated motion to 12 digits, according to Mathematica's

error estimates attached to its integration methods.

The solutions for t E (0, tmax) are saved as InterpolatingFunctions, which may be

evaluated at any point within the interval (0, tmax). As such pointwise evaluation is

their only use, they may be treated as packaged series of points as determined by the

numerical integration done by NDSolve.

At each integration time, the angle that the binary of larger masses has rotated

through is determined by measuring the position of M 2 , and this angle is then used to

reposition all three masses into the rotating reference frame-that is, where Mi and

m 2 remain at their initial conditions. This is done to preserve generality, although

we know that for small secondary and tertiary bodies the binary orbit has an angular

frequency of ~1.

The horseshoe lifetime for a particular integration is defined as the first time

within the interval (0, tmax) at which the third body is 10% farther from the system's

25



ma

center of mass than when it started. This number is somewhat arbitrary, but it was

chosen after inspection of when several different trial integrations saw their horseshoe

orbits decay into non-horseshoe motions. Examples of a successful horseshoe and a

decayed horseshoe are presented in Figures 3-1 an(d 3-2.

2

1-

> 00

-2 1- -
-2 -1 0 1 2

x x

Figure 3-1: An example of a horseshoe Figure 3-2: An example of a horseshoe
orbit which evidently remains stable orbit that has decaved at some point,
over the duration of the integration. to fall out of the horseshoe pattern.
Again, the binary orbit and L4 point While we do not demonstrate this. if
are drawn for guidance. One may no- this integration is carried further, it is
tice that the third body spends much exident that it never again reaches a

of its time near L3 as opposed to iear horseshoe shape once it has decayed.

L4 or L5.

Importantly, in all cases of decay, the transformation of the horseshoe orbit into a

distinctly non-horseshoe shape was coupled with a general expansion (an "unraveling")

of the orbit in the rotating frame, which led to our choice of this discrete decay

condition. This behavior is also discussed in Dermott & Murray (1981a) arid was

used to calculate their lifetime estimate for horseshoe orbits (see Equation 4.1).

Furthermore, through many simulations, it was never the case that once a horse-

shoe orbit decayed, it ever returned to a horseshoe configuration at any later time.

We did not prove this fact; however, it both was supported by the evidence from the

simulations and was an intuitive assumption.

We also notice that, just as in the Trojan case, there appear to be two periods
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relevant to the horseshoe orbit: an "epicyclic" period of about 27r (again similar

to the binary period); and a period of motion around the horseshoe which depends

significantly on the mass ratio m 2 /mi and may be anything from tens of binary orbits

to hundreds or even more. In general it seems that this longer period may be larger

than in the Trojan case-as may be expected by the larger spatial expanse of the

horseshoe orbit.

3.2 Step 1: Determination of Ideal Initial Conditions

By analogy to the Trojan case, we expected systems with large mass ratios mi/rM 2 to

admit horseshoe orbits more readily. Thus, to determine the dependence of horseshoe

lifetime on initial parameters, we first fixed mi/M2 and M2/mt both to be very large,

specifically 10'.

It was not feasible to test a full range of third-body initial conditions with positions

and velocities distributed around the orbit of M2 around n (because of the large value

of m1 /M 2 , it is in fact meaningful to say that M2 orbits mi). However, according to

the Uniqueness and Existence Theorems for solutions of differential equations, and

given the fact that we expected to see horseshoe orbits, which all cross within or near

a certain region in parameter space at some point in time, it would suffice to choose

some point along a typical horseshoe orbit and test many initial conditions close by.

We chose to test near the antipodal point of rn2 's orbit around mi, as horseshoe

orbits in general should cross near this point (-mi, 0) with velocity near (0, -mi),

and furthermore, this is a property that qualitatively distinguishes them from tadpole

orbits. Figure 3-3 contains the results of this search, summarized in a contour plot of

horseshoe lifetime as a function of the initial conditions of the third body fxtJ / 1x 2 1

and IvtI / 1v21. In terms of these conditions

xt(0) = ( i,0) (3.4)

v0 vt (0) = IvtI (0, -min) (3.5)
|V21
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The plot may be partitioned into two regions of initial conditions that admit

relatively stable orbits: a straight line with slope close to -1 and a wedge with

'vol > IxoI. The initial conditions falling within the wedge do not produce horseshoe

orbits, while those falling within the central line do. This is checked by simply

integrating from sets of initial conditions sampled from among those regions; an

example of a stable orbit propagated from initial conditions in the wedge is in Figure

3-4.

We summarized the central line with a linear fit as follows:

1. All points above the line Ivol + Ixol = 2.05 were eliminated, with this cut some-

what arbitrarily chosen to preserve the central line while eliminating the wedge

above.

2. All points that resulted in lifetimes less than tmax = 1000 were eliminated.

3. All points at each value of xo were combined by averaging their vo values.

4. This final set of points was fit to a line, vo = a (xO) + b, resulting in a ~ -0.88,

b ~ 1.87. This fit is displayed in Figure 3-5.

We used this band of initial conditions that readily admitted horseshoe orbits to

fix specific initial conditions (choosing some xO along the line and determining the

corresponding vo) and thereby test next the dependence of orbits' stability on mass

ratios.

3.3 Step 2: Determination of Dependence of Stabil-

ity on Mass Ratios

The basic structure and goal for this section-and indeed the project as a whole-was

a grid search on masses of the secondary and tertiary bodies (with respect to that

of the first, largest one). For all following integrations, we chose Ixti / Ix21 = 1.01,

which determined xO directly and vo according to the line fit described in the previous

section. Given this specific set of initial conditions, we then integrated in general to
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1-0 1.1 1-2 1.41

xc

Figure 3-3: A grid search on initial positions and velocities of it, as described in

Eqns. 3.4 and 3.5, with rt/n 2 = m2 /ri = 10-". Contours again indicate lifetimes

T, stepped by AT =100, with blue indicating T < 100 and beige indicating T > 1000.

Apparent discontinuities in the contours are nothing more than a shortcoming of

Mathematica's rendering of the plot.
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-2 -1 0

x
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Figure 3-4: An example orbit (blue) of the third body, with initial conditions taken

from the wedge in Fig. 3-3. This is just an example of such an orbit, but in general,

no initial conditions taken from the wedge produce horseshoe orbits. (See Fig. 3-1
for an example of initial conditions from the central band in Fig. 3-3 which produce

a horseshoe orbit.)
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Figure .3-5: A rei)roduction of Fig. 3-3, but with the best-fit line (red) superimposed

over the central band of successful initial parameters.
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tmax = 10000 and tested the stability of the orbit for each pair (m2/mi, mt/m2)-

which we will abbreviate as (in2 , ii)-with various ranges and grid spacings. Since

we did not have unlimited processing power, broader searches had to be coarser to

compensate.

An initial "survey" search served to direct further searches by providing us a

qualitative view of different regimes in the M2-Pt plane. This search is displayed in

Figure 3-6.

We may summarize some of the features of this search as follows:

* For log (mt/m2) = log 1h < -2 and log M2 > -3, stability does not seem to

depend on pt. An explanation for this behavior may be simply that in this region

of pt, mt truly behaves as a test mass (of negligible mass), thereby making the

restriction of M2 < 1/1200 as in Nuk et al. (2012) applicable.

* Related to the above, where log pt < -2, there appears to exist a sharp increase

in stability as log M2 decreases below -3.

" Above the log pt = -2 threshold, until the two smaller bodies are of comparable

mass, stability of the horseshoe orbit has a dependence on not just one or the

other, but both of M2 and mt together.

" All of the above remain true if the integrations are taken to tmax > 1000, up

to tmax = 10000; this search does not appear qualitatively different for higher

timescales timescales. This means that our results with tmax = 10000 in the

next section-where we zoom in on an interesting region of parameter space-

should similarly describe the system for even larger timescales and are thus a

good proxy for generality. For an example, see Figure 3-7.
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Figure 3-6: A wide "survey" search on mass ratios. Contours demarcate lifetimes T

stepped by AT = 100, where blue inldlicates T < 100 and beige indicates T > 1000.

For this initial survey, we integrated only to tma. = 1000. Recall that the binary

period is by comparison 27r.
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Figure 3-7: An example stability plot similar to Fig. 3-6, but zoomed in and with
integration taken to ta, = 10000. Thus, contours are stepped by AT = 1000, the
blue region has T < 1000, and the beige has r > 10000. Importantly, this plot reveals
effectively the same behavior as does Fig. 3-6.
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Chapter 4

Analysis of Mass-Ratio Dependence;

Conclusions

4.1 Dependence of Lifetime on Mass Ratios

We now zoom in slightly further than in Figure 3-7 and plot contours of log T for

greater clarity, as well as for comparison with the time-scale dependence in Dermott

& Murray (1981a) of

r < T/M 5/3 (4.1)

where T is the period of the binary orbit (i.e. the orbit of the two larger masses). The

results are in Figure 4-1.

In order to summarize the information revealed by this plot, and also to mimic

Dermott & Murray (1981a), we take vertical and horizontal slices and attempt to fit

functions of the form

7 = Am2(t (4.2)

T = Byt22) (4.3)

recalling that pt = mt/M 2. That is, we seek to describe the dependence of lifetime r

on each mass individually as a power law, of exponent dependent on the value of the
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Figure 4-1: A contour plot of log T. Here, lightest beige indicates log T > 4, contours

are stepped by A log r = 0.5, and so blue indicates log T < 1.5. The plot looks

somewhat messy for high m2 and low li,, but for now we do not concern ourselves

with this region.
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other mass.

Figures 4-2 and 4-3 show examples of fitting a power law to slices of Figure 4-1.

In order to perform the fit, we first identified and eliminated the points in the region

that was simply limited by our integration time ttri, after which we fit a, straight

line to the remainder, to determine a, slope k, or k2, with error equal to the standard

error associated with the fit. These measured exponents are summarized in Figures

4-4 and 4-5. One notices in the former a potentially quadratic or a constant trend.,

but a more clearly constant trend in the latter. To distinguish between the two in

the former case would require further data and analysis: we do not thoroughly treat

the quadratic possibility here.

Iog(m2 ) = -3.5
4_0

3,5

3-0

2-5

2-0

1.5

1 01
-2 .0 -1.5 -1.0

Iog(mt/m 2 )
-0.5 0-0

Figure 4-2: A horizontal slice of Fig. 4-1, with best-fit,
validity of linear fit. See Fig. 4-4 for slope and error.

line superposed to demonstrate

9

Taking the mean values of ki and k) within this region, weighted according to

.37
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. . ..., ... ... .
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log(m 2 )
-3.5 -3.0

Figure 4-3: A vertical slice of Fig. 4-1, with best-fit line superposed to demonstrate
validity of linear fit. See Fig. 4-5 for slope and error.
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Figure 4-4: The exponent of the power law Eqn. 4.2. determined by fitting lines to

vertical slices of Fig. 4-1. Errors are taken from the standard errors of the fits. Plotted

in red are a quadratic and a constant function fitted to these points.
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Figure 4-5: The exponent of the power law Eqn. 4.3, determined by fitting lines to

horizontal slices of Fig. 4-1. Errors are taken from the standard errors of the fits.

Plotted in red is a constant function fitted to these points.
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their errors (i.e. taken from the constant fit in each plot), we find that

ki,avg = -1.006 0.006 (4.4)

k2,avg = -1.047 0.005 (4.5)

In this region, ki,avg does not agree with the prediction of Dermott & Murray

(1981a) of -5/3. This is not a contradiction; the former work was concerned with

"horseshoe solutions of the restricted three-body problem in which the particle mass,

m 2 [which we call here mt] is considered to be negligible." Our result is relevant to

the region in which 0.01 < mt/m2 < 1, and even though we take M2 <; 0.001 for the

calculation of ki,avg, this is evidently not enough to qualify mt as "negligible."

We now recall that we defined 1t = Mt/M2, so assuming, as suggested by Equa-

tions 4.4 and 4.5, true values of ki,avg = k2,avg = 1, we find that

S= C (m 2 1 (r ) (4.6)
M2)-

_C

T = - (4.7)

That is, the horseshoe lifetime-as defined by our stability criterion dependent on

width of the horseshoe-is dependent only on mt, to which it is inversely proportional.

Observe Figure 4-6, where we perform a grid search in the M2-Mt plane, rather than

in M2-Mt/M 2 , and which corroborates Equation 4.7.

4.2 Conclusions and Discussion

In this work we used the analytic treatment of the stability of Trojan orbits to mo-

tivate a numerical exploration of the stability of horseshoe orbits. We set up the

problem as a fully general system of differential equations describing the gravita-

tional attractions of a three-body system and used the solutions of this system of

equations to determine numerically the lifetimes of horseshoe orbits associated with

various masses and initial parameters of the system.
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Figure 4-6: A grid search on rn, and mt. The beige region indicates lifetimes of

log T > 4, and the contours follow A log T 0.5. The upper-left region agrees with

Eqn. 4.7 in that T does not depend on m12. The right side of this figure also agrees

with the previous grid searches in that T does not depend on mt for the less-stable

cases where m2 is large.
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After selecting a set of initial positions and velocities expected to admit horseshoe

orbits for a wide range of different mass configurations, we then tested horseshoe

lifetime based on integrations with mass ratios selected from a grid in the secondary

and tertiary masses m 2 and mt. The result (Figure 3-7) demonstrated a functional

dependence of horseshoe lifetime T on both masses, which could be summarized as

a power law (Equations 4.2 and 4.3) on each horizontal and vertical slice of the full

grid, rather than a strict mass-ratio cutoff. From these results, we conjectured that

the two power laws could be further summarized by a single one: r oc mt 1 (Equation

4.7).

Among our preliminary observations, we found that for very small mt, stability

seems to decrease sharply as log m2 increases above -3. This is consistent with the

critical mass ratio of mi/M 2 ~ 1200 discussed by Cuk et al. (2012). We confirmed

therefore that horseshoe orbits in general impose a stricter condition on the mass ratio

m 2 /mi than do Trojan orbits-true for mt negligible and even more so as mt -* M2-

If we apply these results to some simple celestial systems, we find the following:

" Many binary-star systems have mass ratios too close to 1 to admit either Trojan

or horseshoe orbits.

* Some binary systems, with mass ratios of m 2/mi < 0.04 (e.g. an A star of

mass 3MI with an M star of mass 0.1M0 ), could admit Trojan orbits, but not

horseshoe orbits.

" In systems like the Solar System, any binary of the 111,D star with a planet

could admit Trojan orbits (as we know well in the Sun-Jupiter system), while

any binary of the star with a body of mass less than Jupiter's could admit both

Trojan and horseshoe orbits.

" In this latter category, the third body must be sufficiently small compared to

the second body in order to follow a horseshoe orbit-with "sufficiently small"

being dependent on the mass of the second body itself, for example according

to Figure 4-6.

43



A shortcoming of our calculation of the average power-law exponents kiavg was

the fact that we should expect the functional dependence of T on M 2 and mt to

vary depending on the region of m 2 -mn 1 space we are concerned with; given that

our measurement of k1 ,,v differed so significantly from Dermott & Murray's (1981a)

calculation of -5/3, we should expect there to exist truly distinct regimes, e.g. with

different power-law exponents. Because, however, we did not know how to demarcate

such different regimes-in particular, it was only by inspection that we chose which

slices to include in the making of Figures 4-4 and 4-5-we should not necessarily

expect a consistent power law throughout the region we did calculate in.

The primary way we could resolve this issue is further-refined grid searches. For

example, integrating to longer times (given the computing capacity and time to do so)

would reveal portions of the grid for M2 and mr even smaller, which would naturally

allow us to probe longer-lasting horseshoe orbits and thus explore the entire region

more precisely.

We also assumed that no horseshoe orbit, once decayed, would return to a horse-

shoe shape; it would also be useful to demonstrate this claim more rigorously.

Furthermore, we made the assumption that a particular set of initial positions

and velocities would serve to adequately probe all mass combinations. It would be

worthwhile to test further the validity of this claim, especially with a more detailed

knowledge of horseshoe orbits with lifetimes T > 10000.
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Appendix A
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Additional Figures
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Figure A-1: Four (evenly sampled out of 39) vertical slices of Figure 4-1, for the
purpose of calculating k according to Eqn. 4.2. with best-fit lines superposed.
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Figure A-2: Four (evenly sampled out of 41) horizontal slices of Figure 4-1, for the

purpose of calculating k, according to Eqn. 4.3, with best-fit lines superposed.
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