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Abstract

Recent results concerning probabilistically checkable proofs (PCPs) enable the encoding of
mathematical proofs so as to allow very efficient probabilistic verification. Probabilistic
verification consists of a simple randomized test that looks at a few bits of the proof and
decides to accept or reject the proof’s validity by performing a simple computation or those
bits. Valid proofs are always accepted. Incorrect proofs are rejected with a non-negligible
probability.

The interest in PCPs stems from their complexity theoretic implications. Especially in-
teresting are the surprising way in which they characterize NP and the hardness of approx-
imation results derived through them. This thesis contributes to further our understanding
of complexity theoretic issues through the study of PCPs.

We address a basic problem that arises in the construction of PCPs and the derivation
of hardness of approximation results: linearity testing over the two element field. We
give a thorough analysis of this problem. Some of our results are obtained by showing
a new connection between testing over the field of size two and discrete Fourier analysis.
This relationship is further illustrated by studying a pair of tests that are related to the
Hadamard code test.

In addition, we establish a connection between testing and the theory of weight dis-
tributions of dual codes. This connection allows us to formulate a new way of testing for
linearity over finite fields. We then show how to analyze, through the MacWilliams Theo-
rems, the tests that fall into our framework. The results we obtain imply nontrivial facts
about the functions being tested even when these functions fail the test with relatively large
probability. We discuss why these types of results are desirable in the PCP context.

Finally, we propose two models of interactive proof systems. In the first of these proof
systems, a computationally limited verifier interacts with a ranked sequence of oracles. In
the second proof system, the verifier now interacts with a ranked sequence of provers. The
distinguishing characteristic of these proof systems is the ordered relationship amongst the
provers and amongst the oracles. We show that, with suitable restrictions on the randomness
and query complexity, both proof systems exactly characterize each level of the polynomial
hierarchy. The characterization via oracle proof systems extends that of NP via PCPs.

Thesis Supervisor: Michael Sipser
Title: Professor of Mathematics
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CHAPTER 1

Introduction

Computational complexity strives to understand what makes a problem hard to solve. We
are far from achieving a comprehensive understanding of this issue; but, over the last few
decades, a theory has emerged that considers particular computational tasks and asks: what
is the minimum amount of certain resources (like time, space, non-determinism, randomness,
parallelism, communication, etc.) needed to carry them out.

Recently, new complexity measures have been proposed and shown to play a crucial role
in our comprchension of the resources necessary to efficiently solve combinatorial problems.
These complexity measures have been identified and refined throughout a large body of work
leading to and concerned with probabilistically checkable proofs (PCPs). Informally, a PCP
is a proof that can be verified (probabilistically) to a significant degree of confidence with a
small number of queries (spot-checks). This dissertation contributes to the determination of
the quantitative and qualitative aspects concerning the randomness, queries, and achievable

confidence with which it is possible to perform certain computational tasks.

Proofs of language membership play a fundamental role in the understanding of com-
plexity theoretic issues. Central among these issues is the question of whether P # NP.
This is one of the reasons for the interest in PCPs, given the surprising way in which they
characterize NP as shown by Arora, Lund, Motwani, Sudan, and Szegedy [ALM*92]. But,

PCPs do more than just provide an alternative characterization of NP. To explain this,
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12 Introduction

recall that since the development of the theory of NP completeness by Cook, Levin, and
Karp [CooT71, Lev73, Kar72] it has been known that determining the optimum of many nat-
ural optimization problems is NP-hard. However, it was noted that good approximations
would suffice for many applications. In fact, for several optimization problems good ap-
proximations were found. For many NP-optimization problems, however, no progress was
made either on the approvimation or the intractability front. This changed when Feige,
(Goldwasser, Lovasz, Safra, and Szegedy [FGL*91] showed that, under certain complexity
theoretic assumptions, reasonable approximations of the clique number of a graph cannot
be obtained efficiently. Their argument, coupled with the PCP techniques, has been ex-
ploited to show the intractability of approximating a wide range of optimization problems.
In some cases tight results have been proved. This thesis contributes to the ongoing effort of

determining the true non-approximability factors of combinatorial optimization problems.

Recently, Bellare, Goldreich, and Sudan [BGS95] have shown that the connection be-
tween PCPs and the hardness of computing the clique number of a graph can be reversed.
They establish that if approximating the clique number of a graph up to a certain factor
is NP-hard, then certain types of PCPs exist.! This shows that the understanding and re-
finement of the complexity theoretic measures that arise in the PCP context are inherently
linked to the resolution of complexity theoretic problems. In addition, Arora [Aro95b] has
shown that improving, beyond a certain threshold, the hardness of approximation factors
via PCP techniques would raise questions regarding our understanding of classical notions
of reducibility. One of our goals is to further our understanding of complexity theoretic

issues through the study of PCPs.

A PCP has to be extremely redundant since every part of the proof has to witness
the correctness or incorrectness of the whole. Otherwise a probabilistic verification that
performs a small number of spot-checks would not detect incorrect proofs with a signifi-
cant confidence. The error-detection properties that PCPs exhibit are inherited from the
techniques used to construct them. To explain this, recall that since the work of Arora

and Safra [AS92b], PCPs have been built by recursion. Each level of the recursion uses a

! It is out of the scope of this introduction to explain what the characteristics of these PCPs are. The
interested reader is referred to [BGS95].
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distinct form of error-correcting code. Correct encodings are viewed as representations of
functions that satisfy a pre-specified property. Thus, a central problem in the construction
of PCPs is to probabilistically check (test) function properties with as few oracle queries as
possible. However, this problem was first formulated in a different context: that of program
checking by Blum et al. [Blu88, BK89], and self-testing/correcting programs by Blum, Luby,
and Rubinfeld [BLR90]. This dissertation contributes to our understanding of the coding

theoretic and self-testing issues that naturally arise in the PCP context.

1.1 Overview of main results

CHAPTER 2. We address one of the most basic questions that arises in the construction of
PCPs and the derivation of hardness of approximation results, namely, the linearity testing
problem over the two element field. We give a thorough and nearly complete analysis of this
problem. Some of our results are obtained by showing a new connection between testing
over the finite field of size two and discrete Fourier analysis. We further illustrate this

relationship by studying a pair of tests that are related to the Hadamard code test.

CHAPTER 3. We propose a framework in which to formulate and carry out the analyses of
tests. This framework establishes a connection between testing and the theory of weight
distributions of dual codes. We illustrate this connection by formulating a new way of testing
for linearity over finite fields, namely the eztended linearity test. We then derive, from the
MacWilliams Theorems, results through which the tests that fall into our framework can
be analyzed. The results we obtain imply nontrivial facts about the functions being tested
even when these functions fail the test with relatively large probability. We also discuss

why these sort of results are desirable in the PCP context.

CHAPTER 4. We propose a new model of interactive proof systems. In these proof systems
a computationally limited verifier interacts with a finite number of provers. Provers are
divided into two teams. One team is trying to convince the verifier to output accept and
the other one to output reject. There is a ranking associated to the provers. Each prover

knows the strategies that higher ranked provers use in answering the questions posed to
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them. Provers do not get to see other provers’ messages.

We also study the proof systems obtained from the ones described in the previous
paragraph by replacing the provers with oracles.

We show that, with suitable restrictions on the randomness and query complexity, both
proof systems yield .characterizations of each level of the polynomial hierarchy. The charac-
terizations via oracle proof systems extends that of NP via PCPs. We also discuss some of
the properties of the proof systems we propose and contrast them with the ones of previously

defined proof systems.

1.2 Useful references

We will not attempt to explain the history of the many works leading to [ALM*92] and
the derivation of its many consequences. The interested reader is referred to the surveys of
Babai [Bab92|, Goldreich [Gol94] and Johnson [Joh88, Joh92]. For a detailed proof of the
characterization of NP via PCPs the reader is referred to the dissertations of Arora [Aro94a)
and of Sudan [Sud92]. For a thorough discussion of the hardness of approximation results
derived from PCPs see the work of Bellare, Goldreich, and Sudan [BGS95]. A discussion
of issues concerning program checking can be found in the survey of Blum and Wasser-
man [BW94] and the thesis of Rubinfeld [Rub90]. For general background on complexity
theory the reader is referred to [BDG95, HU79, Pap94, Sip96, vL90].



CHAPTER 2

Linearity testing

Mathematicians ascertain the validity of their claims through proofs. They communicate
their proofs in a semi-formal language, but, with the implicit understanding that their
proofs can be made rigorous, i.e. they can be translated into a sequence of applications of
very simple derivation rules to a collection of axioms. The validity of such proofs can be
ascertained by checking that the initial assumptions correspond to the axioms, and that
each step in the proof is a consequence of a valid derivation rule.

Recent results concerning probabilistically checkable proofs (PCPs) permit the encoding
of mathematical proofs so as to allow very efficient probabilistic verification. Probabilistic
verification means that there is a simple randomized test that looks at a few bits of the
proof, and decides to accept or reject its validity by performing a simple computation on
these bits. Valid proofs will always be accepted. Incorrect proofs will be rejected with a
non-negligible probability.

PCPs are built by recursion. Each level of the recursion makes use of a different en-
coding. Each correct encoding describes a function that satisfies some characteristic prop-
erty. Thus, a crucial problem in the construction of PCPs is how to verify (test) function
properties with a small number of queries. Yet the problem itself is older, with the basic
formulation first made in the context of program checking.

It is a feature of the area that while tests are easy to specify, they are generally hard to

15




16 Linearity testing

analyze, especially to analyze well. Yet, good analyses are, for several reasons, worth striving
for. There is, first, the inherent mathematical interest of getting the best possible analysis
and understanding of a well-defined combinatorial problem. But, there is a more pragmatic
reason: better analyses typically translate into improved hardness of approximation results.

The particular testing problem that we study concerns the BLR (Blum-Luby-Rubinfeld)
test. This test addresses one of the most basic questions, namely testing linearity. Our
focus is the case of most importance in applications. Several analyses of this problem
have appeared, yet none is tight. With each analysis comes an improvement in the non-
approximability factor for MaxSNP problems that can be proved. But, the extent to which
these factors can grow remains open. The results of this chapter contribute to the resolution

of this question. Let us begin by describing the problem more precisely.

2.1 Linearity testing in characteristic two

2.1.1 The problem

In order to discuss past work it will be useful to begin explaining the prcblem of linearity
testing over arbitrary finite groups. Thus, let G and H be finite groups, and recall that a
function f: G — H is linear if f(u) + f(v) = f(u + v) for all u,v € G. (That is, f is a

group homomorphism.) Here are some basic definitions:
Dist(f, g) def Prucpc [ f(u) # g(u)] — (relative) distance between f,g: G — H

Dist(f) def min{ Dist(f,!)|l: G — H is linear } — distance of f to its closest linear

function.

We are given oracle access to a function f mapping G to H. (That is, we can specify v € G
and in one step are returned f(u) € H.) We want to test that f is close (in relative distance)

to a linear function. We are charged for each oracle call.

THE BLR TEST. The BLR test is the following [BLR90]— pick u,v € G at random, query
the oracle to obtain f(u), f(v), f(u + v), and reject if f(u) + f(v) # f(u+v). Let

Rei(f) ¥ Pruvesc[f(@)+ f(v) # flu+v)].
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Thus, Rej(f) denotes the probability that the BLR test rejects f. The issue in linearity
testing is to study how Rej(f) behaves as a function of § = Dist(f). In particular, we would
like to know what is the smallest probability of the BLR test rejecting a function that is
at distance 6 from the space of linear functions, i.e. to derive good lower bounds on Rej(f)
as a function of 6. In other words, we want to determine the form of the linearity testing

curve. Equivalently, for every § € [0,1] we want to find the value
Ton®6) % min{Rej(f)|f: G — H st. Dist(f) =6} .

2.1.2 Previous work

Blum, Luby, and Rubinfeld [BLR90] first investigated the shape of the linearity testing
curve. They addressed the problem in the general context where G and H are arbitrary
finite groups. Their analysis showed that ' g y(6) > 26/9. Interest in the tightness of the
analysis begins with Bellare, Goldwasser, Lund, and Russell [BGLR93] in the context of
improving non-approximability factors for MaxSNP problems. They showed that I' 5 (6) >
36 (1 — 26). Meanwhile, it was observed in [BS94} that the arguments in [BLR90] implied
that if ' g, #(6) < 2/9, then I' ¢ #(8) > 26/3. The last two bounds supersede the first. So,

the following theorem captures the state of knowledge.

Theorem 2.1.1 [BGLR93, BS94] Let G and H be arbitrary finite groups. Then:
1. Tgu(6) 2361 —20).

2. If 6 > 1/3, then T' ¢ 5 (6) > 2/9.

Figure 2-1 summarizes the state of knowledge concerning the BLR test previous to this

work. Note that the best bound implied by previous work decreases when § > 1/4.

THE KNEE OF THE LINEARITY TESTING CURVE. In [ALM*92, BGLR93, BS94] one pa-
rameter was identified as important in connection with MaxSNP hardness results. This

parameter is a single number. It is defined by

Kneeg H def min{ g H(6)|6 > 1/4} — knee of the linearity testing curve.
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Figure 2-1: The best lower bound for the BLR test that can be gleaned from the existing
literature previous to this work.

Improvements (increases) in the lower bound that can be shown on Knee G,H translate di-
rectly, via [BGS95], into improved (increased) non-approximability results for some NP-
optimization problems. They also translate into improved (decreased) probe complexity in
the characterizations of NP via PCPs. Exactly how or why this is the case is outside the
scope of this discussion.

As indicated, improved lower bounds for the knee lead to better non-approximability
results. But, in this general setting, we can do no better than the Kneegy > 2/9 bound
suggested by Theorem 2.1.1. An example due to Coppersmith shows that the previous
bound is in fact tight in the case of general groups. Indeed, let m be a positive integer
divisible by 3 and let f be the function from Z7, to Z,, such that at u = (u;,...,u, ) takes
the value f(u) = 3k, if u; € {3k — 1,3k,3k + 1}. Observe that f(u) + f(v) # f(u + v)
only if u; = v; =1 (mod 3), or u; = v; = —1 (mod 3), i.e. Rej(f) = 2/9. Furthermore,
Dist(f) = 2/3. This coupled with Theorem 2.1.1 shows that Kneeg y = 2/9. Coppersmith’s
example leads into our research. We note that the problem to which linearity testing is

applied in the proof system constructions of [ALM*92, BGLR93, BS94] is that of testing
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Hadamard codes, and the long code in the proof systems derived in [BGS95]. But, this
corresponds to the linearity testing problem in the special case where G = GF(2)" and
H = GF(2). Here, G is regarded as an additive group in the obvious way. Namely, the
elements are viewed as n-bit strings or vectors over GF(2) and operations are component-
wise over GF(2). For this case, the example of Coppersmith does not apply, and we can

hope for better results.

2.1.3 Main results

We look at the performance of the BLR test when the underlying groups are G = GF(2)"
and H = GF(2), where n is a positive integer. For notational simplicity we now drop the
groups G, H from the subscripts, writing I'(§) and Knee — it is to be understood that we
mean G = F" and H = F, where from now on, unless explicitly said otherwise, F' denotes
GF(2).

We provide two new analyses of the linearity testing problem over the field of size two.
The first of them establishes a connection between linearity testing and discrete Fourier
analysis. (This connection has been further exploited by Hastad [H4s95] in the analysis of
a new test for the long code [BGS95).) The casting of the linearity testing problem in the

language of Fourier series enables us to study the BLR test. The outcome is the following:
Theorem 2.1.2 T'(6) > 6.

Apart from lending a new perspective to the linearity testing problem, the result exhibits a
feature which distinguishes it from almost all previous results. Namely, it shows that I'(6)
increases with § and in fact is 1/2 at § = 1/2.! (According to the previous analysis, namely
Theorem 2.1.1, T'(6) may have been bounded above by 2/9 for all § > &y, where & is the
larger root of the equation 34 (1 — 26) = 2/9.)

The proof of Theorem 2.1.2 captures the intuition that the probability with which a
function fails the BLR test depends on how far away that function is from each linear

function. This intuition is not elicited by the other arguments that have been used to study

! Note that Dist(f) < 1/2 for all f: F* — F because we are working over GF(2), so only the portion
6 € [0,1/2] of the curve is interesting.
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not only the BLR test, but also other tests. We think that the strength of the above referred
lower bound stems from the fact that our proof argument substantiates this intuition.
Theorem 2.1.2 combined with the first part of Theorem 2.1.1 shows that Knee > 1/3.
However, this is not tight. Our second analysis of the BLR test focuses on finding the
value of the knee. This leads us to an isoperimetric problem about a 3-regular hypergraph
on the vertices of the n-dimensional hypercube. We state and prove a lemma, henceforth
referred to as the Summation Lemma, which provides a tight isoperimetric inequality for
this problem. We then use this result to determine the exact value of the knee of the

linearity testing curve.
Theorem 2.1.3 Knee = 45/128.

We also analyze the tightness of the lower bounds we obtain. The following result,
summarizes the state of knowledge regarding the linearity testing curve when the underlying

field is the two element field.

Corollary 2.1.4 For every § € [0,5/16], I'(8) = 36 (1 — 26). Moreover, if 6 € [5/16,1/2],
then I'(6) > max{45/128,6 }.

SUMMARY. Figure 2-2 summarizes the results of this chapter concerning the BLR test.
The points { (Dist(f),Rej(f))| f: F* — F} lie in the white region of the graph. The darkly
shaded region represents the forbidden area before our work. The lightly shaded region
represents what we add to the forbidden area. Note we both extend the lower bound and
provide upper bounds. The dots are actual computer constructed examples; they indicate
that perhaps the lower bound may be improved, but not by much.? In particular, the knee

value is tight. Also, the upper bound is tight.
2.1.4 Relationship to other work

APPLICATION TO MaxSNP HARDNESS. Usage of the linearity test in the construction of

efficient PCPs, and in the derivation of hardness of approximability results for MaxSNP

2 More precisely, we have a randomized procedure that with high probability can construct, for each
plotted point, a function f such that (Dist(f), Rej(f)) is arbitrarily close to the point in question (details
are given in Appendix A).
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Figure 2-2: Main results of this chapter. (See text for discussion.)

problems, begins in [ALM*92] and continues in [BGLR93, BS94, BGS95]. In the first three
cases, it is used to test the Hadamard code; in the last case, to test the long code. In all
cases the underlying problem is the one we have considered above, i.e. linearity testing over
the two element field.

The MaxSNP hardness result of [BGLR93] used only two things: the lower bound
I'(6) > 36(1 — 26) of Theorem 2.1.1, and the best available lower bound k on the knee.
They expressed the non-approximability factor for Max-3SAT as an increasing function
91(k) depending solely on k. The lower bound on the knee that they used was Knee > 1/6.3
Their final result was that approximating Max-3SAT within 113/112 ~ 1.009 is NP-hard.

Improved proof systems were built in [BS94]. Again, their non-approximability factor
had the form g,(k) for some function g, depending only on the best available lower bound
k on the knee. They also used Knee > 2/9 to show that approximating Max-3SAT within
74/73 =~ 1.014 is NP-hard.

Theorem 2.1.3 would yield direct improvements to the results of [BGLR93, BS94] with

3 This lower bound is obtained from the first part of Theorem 2.1.1 and the bound I'(6) > 6/2 (implicit
in {BLR90}).
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no change in the underlying proof systems or construction. However, better proof systems
are now known, namely the ones of [BGS95). The analysis in the latter uses both our results
(Theorem 2.1.2 and Theorem 2.1.3). They showed that approximating Max-3SAT within
1.038 is NP-hard. They also exploit our analyses to derive improved non-approximability

results for other MaxSNP problems (like Max-2SAT and Max-Cut) and for Vertex Cover.

LOW-DEGREE TESTING. There are a variety of problems which are studied under the label
of low-degree testing. Linearity testing being one of them. Below we briefly explain what
the other problems are and how the results concerning them differ from ours.

The problem in low-degree testing is the following: we are given an oracle for a function
f: K™ — K, where K is a finite field, and we are given a positive integer d. In the low
individual degree testing problem we are asked to determine whether f is close to some
polynomial of degree d in each of its n variables. When specialized to the case of d = 1,
this task is referred to as multi-linearity testing. In the low total degree testing problem
we are asked to determine whether f is close to some polynomial of total degree d in its n
variables. Multi-linearity tests were studied by [BFL90, FGL*91]. Low individual degree
tests were studied by [BFLS91, AS92b, FHS94, PS94]. Total degree tests were studied
by [GLR*91, ALM*92, RS93, FS95).

What we are looking at, namely linearity testing over GF(2), is a variant of the total
degree testing problem in which the degree is d = 1, K is set to GF(2), and the constant
term of the polynomials are forced to 0.

The above mentioned works have put a significant amount of effort into the analyses of
the low degree tests. However, these analyses do not appear to be tight for any case. In
particular, one cannot use them to derive the results we obtain here. In fact, the tightness
of the results obtained here raises the issue as to whether similar techniques can be used to

improve the analyses of the above referred tests.

THE ROLE OF TESTING IN PROOF SYSTEMS. To explain this, recall that proof systems are

built by recursion [AS92b]. Each level of recursion will typically use some form of low-degree

* To illustrate the difference between individual and total degree, note that f(z1,...,zn) = T1Z2 is
multi-linear but of total degree 2.
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testing, the kind differing from level to level.

Babai, Fortnow, and Lund [BFL90] initiated the use of multi-linearity testing. For
efficiency reasons, researchers beginning with Babai, Fortnow, Levin, and Szegedy [BFLS91]
then turned to low individual degree testing. TLis testing is used in the ‘higher’ levels of the
recursion. Linearity testing showed up for the first time in the lowest level of the recursion,
in the checking of the Hadamard code [ALM*92]. The proof systems we discuss use all
these different testers, but, as we explained, the final non-approximability factors obtained

can be expressed only in terms of the linearity testing curve.

PROGRAM CHECKING. The BLR test first appeared in a different context, namely, that of
self-testing, self-correcting and self-checking programs. These programs have been proposed
as an alternative approach for assuring software reliability.

Informally, self-checking means that a program purported to compute a function can be
used to verify (with high probability) that its output is correct. Self-testing means that a
program purported to compute a function can be used to check that it is indeed correct, but
in a way that does not involve recomputing the function nor checking the program'’s code.
Self-correction assumes that we have a program that works correctly in a large fraction of
its (finite) input space. This same program is then used to find the correct value everywhere
(with high probability).

For more comprehensive sources of information on this topic the reader is referred

to [Rub90, Sud92, BW94].

2.1.5 Chapter organization

In Section 2.2 we review the basic elements of discrete Fourier analysis. In Section 2.3, we
prove the first of the main results of this chapter: Theorem 2.1.2. In Section 2.4 we prove
a refinement of the result of [BGLR93| concerning the BLR test.

In Section 2.5 we prove an isoperimetric inequality: the Summation Lemma. We also
show that this lemma reveals other facts about the relationship between Rej(f) and Dist(f).
In particular, it establishes a tight upper bound on Rej(f) as a function of § = Dist(f). We

then undertake, in Section 2.6, a combinatorial analysis of the BLR test based on the



24 Linearity testing

Summation Lemma and prove Theorem 2.1.3.

In Section 2.7 we analyze the tightness of the lower bounds we obtain for I'(§). We show
that the lower bounds are tight on a large part of the range of § and close to optimal on
the rest.

While the main focus of this chapter is the BLR test, we also study, in Section 2.8,
two tests that are related to the Hadamard code test. The purpose is to further illustrate
the strength and elegance of the Fourier analysis technique, as well as its more general

applicability to the problem of analyzing program testers.

2.2 Discrete Fourier transform.

The purpose of this section is to review as well as provide a handy reference for the basic

notions concerning discrete Fourier analysis.

We consider the family of all real-valued functions on F™. This collection of functions

is a |F|*-dimensional real vector space with the following inner product:

def 1
(0,0) = T > B(u)b(u).
I I UGF"
When one studies a linear space of functions defined on an abelian group, choosing a
special basis for the linear space might be very useful. This special basis is the characters®
of the group at hand. In our case the group is F*. Thus, we chose as basis of our linear

space the basis {9, | € F™}, where

Yalu) & (-1)%,

n
and a-u % ZQiui. (Throughout this chapter, when elements of the field F appear as

i=1
exponents they are to be interpreted as real values. Thus, (—1)** is well defined.)

It can be easily verified that the family {1 |a € F"} forms an orthonormal basis.

8 A character of an abelian group G is any homomorphism from G to the multiplicative group of the
complex numbers of absolute value 1.
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It follows that any real-valued function ¢ over F™ can be uniquely expressed as a linear
combination of the 1,'s, namely, ¢ = 3 cpn $a1ba. The coefficient $a is referred to as
the a-th Fourier coefficient of ¢. By the orthonormality property of our chosen basis,

$a = (@, Vs ). The orthonormality of the basis also implies Parseval’s equality:

(6,0) = E (50)2 .

a€Fn

The convolution of two functions ¢ and 6 is denoted by ¢ * 6 and defined as follows:

u,v:utv=zc

(#+0)(z) ¥ u,fln( > ¢(u)e(v)).

Note that the vector space of real-valued functions on F™ with the standard addition op-
erator and multiplication operator * is a commutative ring. In particular, the convolution
operator is associative, commutative, and distributive with respect to addition.

The following convolution identity shows the relationship between the Fourier coefficients

of two functions ¢, 6, and the Fourier coefficients of their convolution:

~

(6%0), = ¢aba.

2.3 A lower bound for the linearity test

To lower bound Rej(f) we use discrete Fourier analysis techniques. In particular, we provide
an interpretation of Dist(f) and Rej(f) in terms of the Fourier coeflicients of an appropriate
transformation of f. More precisely, we show that if the distance from f to the nearest

linear function is large, then the Fourier coefficients of (—1)/ are small.®

Lemma 2.3.1 Let § € [0,1] and f: F* — F. Set h = (—1)/. Then, Dist(f) = Dist(f,0) =
Sifandonlyif hg=1—26 and hg > hy for all a € F™.

% Throughout this chapter, h = (—1)?, means that h denotes the real valued function defined on the
domain of g that sends u to (—1)9
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Proof: Let l,: F* — F denote the linear function that sends u to a - u. Note that

(—1)f/(Ha(®) equals 1 if f(u) = lo(u), and —1 if f(u) # l4(u). Thus

1
|F|"

ha = S (—1fHel) =y 9 Dist(f,1,).

uefFn

Hence, Dist(f) = Dist(f,0) if and only if h, < ho for all @ € F". Moreover, Dist(f,0) = 6
if and only if hg =1 — 26. =

Corollary 2.3.2 For every f: F* —» F,if h = (~1)/, and a € F", then h, < 1 — 2Dist(f).

Proof of Theorem 2.1.2: The key observation is that
. 1
Rej(f) = (1~ (h+h*h)(0).

Thus, from the definition of Fourier coefficients and the convolution identity, it follows that:

Rej(f) = %(I— Z (h+h+ h)a) = -;—(1— Z (50)3) .

acFn acFn

The upper bound for hq given in Corollary 2.3.2 and Parseval’s equality imply that

> (ha)’ < (1-20ist1) 3 (Ra)” = 1-20ist(s),

acFn aeFm
thus, Rej(f) > Dist(f). [ ]

The reader can verify that we have just shown (implicitly), that the following identity holds:

Rej(f) = %(1- > (1-—2Dist(f,l))3).

{ linear

This equation captures the intuition that the probability with which a function fails the
BLR test depends on how far away that function is from each linear function. This intuition
is not elicited by the standard arguments that have been used to analyze not only the BLR
test, but the low-degree tests as well. We believe that the strength of the lower bounds

obtained here are due to the fact that our approach substantiates this intuition.
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2.4 A refinement of the BGLR bound

In this section we present a slightly more refined version of the bound I'(§) > 36 (1 — 26)
derived in [BGLR93]. We use this refinement in the following sections.

To state our refinement we need the following definition:

sI(f,9) & Pryveprn [ f(u) # g(u), f(v) # 9(v), f(u + v) # g(u+v)] — the slack be-

tween functions f,g: F" — F.

Lemma 2.4.1 For every f,I: F* — F where ! is linear,
Rej(f) = 3Dist(f,l) — 6Dist(f,1)* + 4sl(f,1).

Proof: First, observe that f(u) + f(v) # f(u+v) if and only if f differs from { in either

exactly one of the points {u,v,u + v} or in all of the points {u,v,u + v}. Thus

Rej(f) = 3Pryueyrn [f(u) # U(u), f(v) = 1(v), f(u+v) = l(u+v)]
+ Pryyeprn [ f(u) # U(u), f(v) # 1(v), f(u+v) #l(u+v)].

The second term on the RHS above is sI(f,!), and the first one equals
3Prypeprn [ f(u) # 1(u), f(v) = U(v)] = 3Prypeprn [ f(u) # (u), f(v) # U(v)] +3sl(f,1).

Observing that the events { (u,v)( f(u) = {(u) }, and { (u,v)| f(v) = {(v) } are independent,
and performing a simple algebraic manipulation, suffices to conclude the proof of the lemma.

Corollary 2.4.2 (Bellare-Goldwasser-Lund-Russell [BGLR93]) I'(6) > 36(1 —26).

The analysis of the linearity test thus far presented is already an improvement upon
the best analysis that can be gleaned from [BLR90] and (BGLR93] (for the case in which

F = GF(2)). But, we can still do better, as the following two sections will show.
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2.5 The Summation Lemma

This section is devoted to proving a combinatorial result of independent interest, but nec-
essary in the tighter analysis of the linearity test that we give in Section 2.6. We also apply
this result to obtain a tight upper bound on the probability that the BLR test fails.

First, recall that the lexicographic order in F™ is the total order relation < such that
u < vifand only if ¥}, 4,27 < &%, 9,2~ (arithmetic over the reals).

We will show that given three subsets A, B,C of F™, the number of triplets (u,v,w) in
A x B x C such that u + v + w = 0 is maximized when A4, B, C are the lexicographically
smallest |A|, | B, |C| elements of F™ respectively.

Before we state the main result of this section, we introduce some notation: for every

nonnegative integer n, and A, B,C C F™ let
®,(4,B,C) ¥ {(u,v,w) € AxBxClu+v+w=0},

and let

1

def
¢a(A,B,C) T

| ®a(4,B,C)| .

Also, for S C F™ we let S* denote the smallest, in lexicographic order, |S| elements of F™.
The following lemma, independently proved by D. J. Kleitman [Kle94], gives a precise

statement of the above discussed fact.

Lemma 2.5.1 (Summation Lemma) For every A, B,C C F™

on(A,B,C) < ¢n(A*, B, C*).

Proof: We proceed by induction. The case n = 1 can be easily verified. For the
inductive step, consider ¢ € {1,...,n} and b € F. Let f;; be the function such that at
u = (uj:j #i)in F*! equals u;j if j # i, and b otherwise, i.e. f;; is the function
that embeds F*~1 onto {u € F™|u; = b} in the natural way. For S C F™, let Sﬁi)

be the natural projection into F™~! of the elements of S whose i-th coordinate is b, i.e.
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S = {(uj:j#i)€F* | fip(u) € S}. Let
$D = fio (S )U fir ((81y) -

Observe that |S] = [S$?] + |S{), |(S§7)*| = 18|, and |(S)*| = |S!)|. Since fio and f;,
are injective and their ranges are disjoint it follows that |S®)| = |S|.7

Now, given A,B,C C F"

6n(A,B,C) = ¢nr(AD, B, CHY 4 ¢_,(AP, BO, cl)
+ ¢u-r(A9, B, C) + gur (49, BY, ).

Applying the inductive hypothesis to each term on the RHS above shows that

$a(A4,B,C) < $u1((AD), (B, (C)*) + $nrl(A), (B, (C5)*)
+ ¢n_1((A)*, (BEN*, (€)*) + ¢n_1((AD)*, (BD)*, ()%

In the previous inequality, the RHS is equal to ¢,(A®, B®),C()). Hence, ¢,(4,B,C) <
én(AD, B (), We can assume that for all i € {1,...,n}, A®) = A, B®) = B and
C® = C, since otherwise we can repeat the above argument by considering A%, B®), C(9)
instead of A, B, C. This iterative process is guaranteed to eventually stop. To explain this,

we abuse notation and let u € F™ represent the integer with binary expansion ». Note now

that if A® # A, or B® # B,or C® # C, then Y u> Y uforsome S€ {4,B,C}.
ues ueS®)
One would like to conclude the proof of the lemma by claiming that, if A®) = A,

B® = B, ¢ = C for all ¢, then A, B, C are equal to A*, B*, C* respectively. The latter
claim is ‘almost’ true, in the sense that, if S is a set such that S) = § for all ¢, then either
S=8orS={u€F*|yy=00ru=10.--0}\ {01---1}. The lemma follows by case
analysis. There are three cases to consider depending on how many of the sets A, B, C are

lexicographically ordered.

7 The following example m ght help in clarif; {lng the notation so far introduced: if n
{010,011, 100, 101, 111}, then S5 = {10, 11}, S*) = {00, 01,11}, (S)* = {00, 01}, (S?)*
and S® = {000, 001,010, 011, 110}

3dS
1,10

(00,01, 10},
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Case 1; A=A", B=B*,C#C*: Then, C = (V\ {e}) U {e'}, where V = {u €
F'|uy=0},e=10---0€ F*,and ¢’ =01---1 € F*. Thus,

¢n(4,B,C) = ¢n(A,B,V)+¢n(4, B, {e}) ~ ¢a(4,B,{'}).

To conclude, note that ¢,(4, B, {€'}) = 2min{0,|ANV|+|BNV|~|V|}, and ¢,(A, B, {e}) =
min{|4 \ V|,|BN V|} + min{|A N V|,|B \ V|}. Hence, ¢.(A,B,{e}) < ¢n(4,B,{e'}).
Moreover, ¢,(A, B,V) = ¢,(A*, B*,C*), thus ¢,(4, B,C) < ¢,(A*, B*,C*).

The other two cases are left to the reader. |

By definition, for every pair of points u,v in a subspace, the point u + v is also in the
subspace. This motivates using ¢(S) % | ®4(S,S,S)|/|S|?, as a measure of how close a
set S C F" is to being a subspace. The set S is a subspace, if and only if, ¢(S) = 1, and an
affine space which is not a subspace, if and only if, ¢(S) = 0. The larger the quantity ¢(S)
is, the closer the set S is from being a subspace. From this point of view, the Summation
Lemma implies that the collection of the lexicographically smallest m elements of F™ is the

subset of F" (of cardinality m) that most closely resembles a subspace.

Lemma 2.5.2 Suppose f: F* — F is such that § = Dist(f). Let k be the unique integer
such that 2% < § < 275+ and let vy = 2. Then

Rej(f) < 36(1—-26)+442+12(6—-19)%.

Proof: Let S = {u € F*|f(u) # l(u)}, where [ is the closest linear function to f.
Note that |S*| = |S| = 6§ |F|". It follows from the definition of sl(f,l) given in Section 2.4,
that sl(f,1) = ¢n(S, S, S). Thus, by the Summation Lemma, sI(f,!) < ¢,,(S*,S*, S*). This,
coupled with Lemma 2.4.1 shows that

Rej(f) = 36(1—26) +4si(f,l) < 36(1 — 28) + 4 4a(S", S*,5%).

Now, let V' be the lexicographically smallest v |F|* elements of F". Note that V is a
subspace. Since ¢,(S*\V,V,V), ¢n(V,S*\V, V), ¢n(V,V,5*\V), and ¢,(S*\V, S*\V, S*\V)
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are all equal to 0 we get that

$n(S%,5°,8%) = ¢a(S*\V,S"\V,V) +6a(S*\V,V, 5"\ V)
+6a(V, 8"\ V, 5"\ V) + ¢a(V, V, V).

Note that ¢,(V,V,V) = 2. Moreover, ¢(S* \ V,5* \ V,V), ¢n(S* \ V,V, 8"\ V), and
én(V,S*\V, 8*\ V) are all equal to (6 —)2. Thus, ¢,(S*, S*,5*) =+2+3 (6 — 7). n

Lemma 2.5.2 is the best possible. To prove this consider the function f: F" — F. Let
Sy be the set of points in F' where f differs from its closest linear function. The proof
of Lemma 2.5.2 shows that, among all functions that are at distance § from being linear,
Rej(f) achieves its maximum if ¢,(Sy, Sy, Sf) = ¢n(S}, S%,5}7). We shall now construct, for
each § € [0,1/2], a function f such that Dist(f) = 6 and ¢n(Sy, Sy, Sy) = ¢a(S}, S}, S}).
Indeed, let S C F™ be the set of the lexicographically smallest § |F|* elements of F™. Let
f be the function that evaluates to 1 at every u € S, and to 0 elsewhere. Since S = $* and
|S| = 6|F|", once we show that Sy = S it will follow that Rej(f) meets the upper bound
of Lemma 2.5.2 and Dist(f) = 6. To show that S; = S it suffices to prove that the zero

function is the closest linear function to f. We consider the following two cases:

Case 1; § €{0,1/4]: Here, the zero function is at distance é from f. If some other linear

function was at distance less than é from f, then such linear function would be at distance
at most 26 from the zero function. A contradiction, since two distinct linear functions are

at distance 1/2.

Case 2; 6 € (1/4,1/2]: Let V be the largest subspace of F™ contained in S, and let

V' be the smallest subspace of F™ that contains S. Note that since S is the set of the
lexicographic smallest §|F|" elements of F", then |V| = }|F|" and |V'| = {|F|". For the
sake of contradiction, assume I: F* — F' is a nonzero linear function whose distance to f
is less than 6. We shall heavily rely on the fact that a linear function which is nonzero
over a subspace of F™ must evaluate to 1 in exactly half the elements of that subspace. If |
always evaluates to 0 over V, then ! disagrees with f in every element of V and in at least

2IF|™ = |S\ V| of the elements not in V. Hence, the distance between f and [ is at least
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1/4+1/2 - (6 — 1/4) > 6, a contradiction. On the other hand, if [ does not evaluate to 0
over V, then [ disagrees with f in half the elements of V and in half the elements of V'.
Hence, ! disagrees with f in half the elements of V/, in at least |S\ V| — FIV'\ V| of the
elements of V/\ V, and in half the elements not in V’. Thus, the distance between fandl

is at least 1/8 + (6 — 1/4) — 1/8 +1/4 > 4, again a contradiction.

2.6 Combinatorial analysis of the linearity test

In this section we prove a lower bound on the value of the Knee of the linearity testing
curve, namely that Knee > 45/128. The tightness discussion of Section 2.7 will show that
this bound is best possible.

We now informally describe the argument used to prove the lower bound. Given a func-
tion f: " — F define a function g;: F™ — F, whose value at u is PLURALITY{ f(u + v) —
f(v)|v € F™}.8 Then, if Rej(f) is ‘sufficiently small’ three things occur: an overwhelming
majority of the values { f(u + v) — f(v)|v € F™} agree with g(u), gy is linear, and 95
is ‘close’ to f. It remains to specify what ‘sufficiently small’ and ‘close’ stand for. This
argument was first employed in [BLR90] to study the linearity test over finite groups. We
will show how this argument can be tightened in the case of linearity testing over the two
element field.

The proof of this section’s main result is a consequence of the following three lemmas

which we now state and whose proofs are postponed.

Lemma 2.6.1 For all f: F™ — F, Rej(f) > Dist(f,g5)/2.
Lemma 2.6.2 Forall f: F" — F, if g is linear, then Rej(f) > 2 Dist(f, g5) (1 — Dist(f, g1)) .
Lemma 2.6.3 For all f: F* — F, if Rej(f) < 45/128, then gy is linear.

Hence, if Knee < 45/128, there would be a function f whose probability of failing the
BLR test would be smaller than 45/128. The latter of the lemmas above implies that g I

8 A multiset’s plurality is the most commonly occurring its elements (ties are broken arbitrarily).
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would be linear. Hence, we can apply the first two lemmas stated above to lower bound the

probability that f fails the BLR test. This leads to a contradiction. Formally, we have

Proof of Theorem 2.1.3: Assume Knee < 45/128, then, there is a function f: F" — F,
such that Rej(f) < 45/128 and 6§ = Dist(f) > 1/4. By Corollary 2.4.2, Rej(f) > 36 (1 — 24),
thus, we need only consider the case in which § is at least 5/16. By Lemma 2.6.3, g; is a
linear function. Thus, 1 > Dist(f,gs) > 6§ > 5/16, which together with Lemma 2.6.1 and
Lemma 2.6.2 imply that Rej(f) > ming¢(s/16,) max{z/2,2(1 - z)z } = 3/8, a contradic-
tion. Hence, Knee > 45/128. In Section 2.7 we show that there exists a function f: F" — F
such that Dist(f) = 5/16 and Rej(f) = 45/128. Hence, Knee = 45/128 . B

The rest of this section is dedicated to proving Lemmas 2.6.1 through 2.6.3. The proofs of
Lemma 2.6.1 and Lemma 2.6.2 are based on the following fact (which is implicit in [BLR90]):
for all u € F", since gs(u) is equal to the most common among the two values that f(u +
v) — f(v) takes when v varies over F™, we get that Prye  pn [ f(u +v) — f(v) = gs(u)] is at
least 1/2. Hence, if f(u) # gf(u), then f(u) is different from f(u + v) — f(v) at least half

of the time, which implies

Pryvepre [f(u) + f(v) # f(u+0)| f(u) #95(m)] 2 1/2. (2.1)

Proof of Lemma 2.6.1: Simple conditioning says that Rej(f) is at least

Pruveprn [ f(u) + f(v) # fu+v)| f(u) # gs(u)] - Dist(f,gy) .
But, by (2.1) we know this is at least Dist(f, gs)/2. [

Proof of Lemma 2.6.2: Assume gy is linear. As observed in the proof of Lemma 2.4.1

Rej(f) = 3Pruveqrn [f(u) # gs(u), f(v) = g5(v), f(u+v) = g(u+v)]
+ Prupeprn [ f(1) # gp(u), f(v) # 95 (v), f(u +v) # gf(u+ )]
= 3Pruvegrn [f(u) + f(v) # fu+v)| f(u) # gs(u)] - Dist(f,gy)
— 2Prypeppn [ F(1) # g5 (u), f(v) # g5(v), f (v + ) # gf(u +v)].
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By (2.1), the first term of the latter expression is lower bounded by 3Dist(f,gs)/2. The
second term is equal to 2sl(f,g7). Thus, Rej(f) > 3Dist(f,gr)/2 — 2sl(f,gs). Applying
Lemma 2.4.1, we get that Rej(f) > 3Dist(f,gs5) — 3Dist(f,g7)? — Rej(f)/2. The lemma

foilows. |

Proof of Lemma 2.6.3: By contradiction. Assume g; is not linear. Then there are
x # y such that g¢(x) + g5 (y) # gs(z +y). Thus, at least one of gs(x), gs(y), and gs(z +y)
has to be nonzero. Without loss of generality assume that g f(z +y) = 1. Note that, since

by construction g;(0) = 0, then z and y are nonzero. Thus, x,y,z + y are distinct.

Let S = {0,z,y,z +y}. For every s € F™, define f, to be the function from S to F, such
that f,(u) = f(s + u). Hence, if p, def Pryvens [ fs(u) + fe(v) # fote(u +v)], then

Rej(f) = Ea,tenF" [pa,t] = Ea,teRF" [Pru,venS [ fa(u) + fr(v) # Fsvt(u+v) ]] . (2.2)

But, p, depends only on the values that f,, f;, and f,, take. That is, on the trace of f
at s, t and s +t, where the trace of f at w is defined as [ f,,(0), fu (%), fuw(¥), fu(z +7v)],
and denoted by try(w). To lower bound p, ;, the following partition of the elements s € F™,

according to the trace of f at s, plays a crucial role:

Hy = {s€F"| try(s)equals [0,0,0,0] or [1,1,1,1] }

Hy = {s€F"| trg(s)equals [0,0,1,1] or [1,1,0,0] }

Hy = {s€F"| try(s)equals [0,1,0,1] or [1,0,1,0] }
Hyyy = {s€ F"| trg(s) equals [0,1,1,0] or [1,0,0,1] }
Hoga = {8 € F"| try(s)hasanodd numberof1's }.

We also partition F™ x F™ into six sets as follows:

A — Set of pairs (s,t) such that all of {s,¢,5 +t} are in the same set,
either Hy or H, or Hy or H;y,
B — Set of pairs (s,t) such that two of {s,t,5 +t} are in the same set

Hy or H; or Hy or H;,,, and the other one is in H,q4
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C — Set of pairs (s,t) such that at least two of { s,¢,s+t} are in Hoqq

D — Set of pairs ( s,t) such that {s,t,s+t} C HoUH, UH,UH,, with
exactly two elements from the same set Hy, H;, Hy or H;,,

£ — Set of pairs (s,¢) such that one of {s,¢,58 +t} is in Ho4q, the other
two are from different sets in Hy, H;, Hy and H.4,

F -— Set of pairs (s,t) such that {s,t,s + t} are from different sets Hp,
H. Hy, Hzy,y.

We now proceed to show a lower bound for Rej(f) which depends on the relative size of the
sets A, B,C,D,&, and F. Indeed, observe that if (s,t) is in B, then p,; is at least 1/4. If
(s,t) is in C, then p,, is at least 3/8. And if (s,t) is in D, £ or F, then p, is equal to 1/2.
Hence, if for a set S C F™x F™ we let u(S) = |S|/|F|*", then (2.2) yields

Rej(f) > nu(B)/4+3u(C)/8 + (1(D) + pu(£) + p(F))/2.

Recalling that u(C) =1 — p(A) — p(B) — p(D) — u(€) — u(F), we can conclude that

Rej(f) > 3/8 - (3u(A) + u(B))/8 + (1(D) + p(€) + u(F))/8. (2.3)

From now on, for simplicity’s sake, we denote |Ho|/|F|", |Hz|/|F|", |Hy|/|F|"\ |Hz4+y|/|F|"
and |Hodd|/|F|", by ho, hz, hy, hziy and hogq respectively.
We now derive from (2.3) another lower bound for Rej(f) which will depend solely on

hoyhz by, hziy,hoad and p(F). But first, we need the following identities relating the
measure of the sets A, B, C, D, £ and F, to hy, hz, hy, hziy, and hogq:

3 u(A) + u(B) + u(D) 3 (W} +h2+h2+ h2yy) (2.4)
2u(D) + w(€) +3u(F) = 3 ((1—hoaa)?~ (B+R2+R2+h2,,)) . (25)

Adding —1/8 of (2.4) and 1/8 of (2.5) to (2.3), gives

. 3 3 2 30 12, .2, 2 1
Rej(f) > 3+5(1=hoa) -3 (h3+ A2 +R2+A2,,) - HF). (2.6)
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We now proceed to upper bound p(F). We divide the analysis into two cases. But first we
assume, without loss of generality, that h, < hy < hz4y. Observe also, that for a randomly
chosen s, f,(z + y) — f,(0) differs from g;(z + y) at most half of the ‘ime. Moreover, since
we have assumed that gs(z + y) = 1, we get that hzyy <1/2 since

1/2 > Pr:enF"[gf(x'*'y)#fs(z'!'y)-fa(o)] = h0+hz+y+hodd/2- (2.7)

Case 1; h; + hy, —hg — h;4y > 1/4: By assumptions h; > h, + hy — ho = hety > 1/4.
So hz,hy,hzyy € (1/4,1/2]. Now, as in Section 2.5, let

1

#n(4,B,C) = F=

[{(u,v,w) € AXBxC|lu+v+w=0}].

Observe that for each element (u,v) of F, {u,v,u+v} either contains an element from H,

or contains one element from each of the sets H,, Hy, Hy,.

The contribution to F of the elements (u,v), where { u,v, u+v } contains elements from each
of the sets H;, Hy, H.,,, is upper bounded by 6 ¢n(H;, Hy, H;y). Since hzyhy heyy €
(1/4,1/2], the Summation Lemma implies that

6¢n(Hza Hy, Ha:+y) S 6¢n(H1‘:,H;’H;+y)
- 4 2

3
= 5 =3 (ho+ hoaa) (hz + hy + hoyy) = 3 (RE + A2 + b2, ).

2 hohy + hohoyy + h,,h“,,)

Furthermore, the contribution to F of the elements (u,v), where {u,v,u + v} contains an

element of Hy is upper bounded by
3¢n(H0, sz Hy U Hz+y) +3 ¢n(H0) Hy, Hz U H:c+y) + 3¢n(H0a Ha:-l—y, H:c U Hy) )
which is at most 3 ho (hz+hy+hz1y). Putting it all together, we have

W(F) < 3/2 = 3hogd (he + hy + hzyy) — 3 (hf_. +h - hiﬂ,) :
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This latter inequality, together with (2.6), implies that

) 3
Rei(f) 2 3+3 (l—hodd)2—-(ho+h2+h2+h3+y)
—g-+ —hogd (hz + hy +hz+v)+— h2+h +hz+y)
3
= 5 gk Fhohous— 31
3 3 )
2 5~ g lhoda+4ho)".

We conclude the analysis of this case by noting that by case assumption 1/4 > 1 —
hodad + 4 ho.

Case 2; hy; + hy — hg — hy4y <1/4: To each element (u,v) in F, associate the unique

tuple (¢',v') in {u,v,u +v}x{u,v,u + v}, such that (v',v') € Hyx Hy4y U Hy x Hy,. This
scheme associates to each element of Ho x Hy4, U H; x Hy at most 6 elements of 7. Thus,

p(F) < 6 (hohzty + hzhy). Which jointly with (2.6) implies

. 3 3
RE(S) 2 3+ 3(1— hoas)? = 5 (hohasy + hohy) = 3 (W + A2 + 2+ B2,
3 3
= g glhathy—ho- heyy)’ .

The analysis of this case concludes by observing that by case assumption 1/4 > hy + hy —
ho — hz4y, and that (2.7) implies that hz + hy — ho — heyy =1 — hoga — 2(ho + hzty) > 0.
[ |

2.7 Tightness discussion

Here, we discuss how tight the results achieved in the preceding sections are. For the rest

of this section let § € [0,1] be such that 6 |F|" is an integer.

Case 1; 6 > 1/2: There is no function f: F* — F such that Dist(f) = § (since the

expected distance from a randomly chosen linear function to f is at most § (1 + 1/|F|")).
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Case 2; 6 =1/2: Choose f: F* — F such that f(u) = X,, where X, is a random

variable distributed according to a Bernoulli distribution with parameter p € [1/2,1].%
A Chernoff bound (see [AS92a, Appendix A]) shows that with overwhelming probability,
0 < 6-Dist(f) = o(1) . Moreover, Chebyschev’s inequality (see [AS92a, Ch. 4]) implies that
with high probability | Rej(f) — (3p(1 — p)? + p?) | = 0(1). Thus, if p = 1/2, Theorem 2.1.2
is almost tight in the sense that Rej(f) is almost 1/2.

Case 3; 5/16 <6 < 1/2: The lower bounds of Section 2.3 and Section 2.6 show that
in this case, if Dist(f) = 6, then Rej(f) > max{45/128,6}. In Appendix 4.6.3 we give

evidence that this lower bound is close to optimal when § is in the range in point. To
achieve this we give a randomized procedure that with high probability outputs a function
f: F* — F such that Dist(f) is approximately § and Rej(f) is small.

Rather than searching for a function f, such that Dist(f) = §, which minimizes Rej(-),
we reduce the problem to the one of solving a non-linear, high-dimensional, constrained,
minimization problem. It is worth noting that this latter optimization is performed over a
continuous space. We hope that this relaxation technique proves useful in the determination
of the shaipness of the analyses of other tests, and as a tool for assessing the best bounds

one could hope for in these other tests.

Case 4; 0 <6 <5/16: Corollary 2.4.2 is tight. Indeed, for u € F" let (] def (TRERE TS
IfS = {ue€ F*||u), € {1000,0100,0010,0001,1111}}, then any boolean function f

which equals 1 on 6 |F|* elements of S, and 0 elsewhere, satisfies sl(f,0) = 0. Hence, by

Lemma 2.4.1, Rej(f) =36 (1 — 26).

Finally, it is interesting to point out that even for small values of n, our bounds are
already fairly tight. Figure 2-3 shows all the points of the form (Dist(f), Rej(f)) when f

ranges over all boolean functions on 5 variables (compare with Figure 2-2, page 21).

A Bernoulli distribution with parameter p corresponds to the distribution of a {0, 1 }-random variable
with expectation p.
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Figure 2-3: The set of points { (Dist(f),Rej(f))|f: F° — F}.
2.8 Extensions

The purpose of this section is to convey that the analysis of the BLR test by means of the
discrete Fourier transform has a wider applicability. We illustrate this fact by showing two

elegant extensions of the arguments of Section 2.3.

We start by describing the relation between linearity testing and testing Hadamard
codes. This relation was first exploited in the PCP context in [ALM*92].

A Hadamard code is a collection of N & |F|* tuples of length N — 1 of the form
(l(u): we F*\ {0}), where I: F* — F is linear.1°

We will abuse conventions and say that a Hadamard code, denoted H,, is the collection
of tuples (!(u) : u € F™), where l: F* — F is linear (e.g., Hy = { 0000,0101,0011,0110 }).

We refer to the elements of a code as codewords. The codes we consider in this section
have codewords whose components are indexed by a subset of the elements of F™. We call

this set of indices the support of the code (e.g., the support of H,, is F™).

10 For more information on Hadamard codes see [MS77, Ch. 2.§3].
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The problem of testing Hadamard codes is a rephrasing of the linearity testing prob-
lem. More precisely, assume we are given oracle access to an element of FV, say f =
(f(u): we€ F™). It is claimed that f belongs to H,. "Ne do not trust this claim and we
want to verify it. We are charged for each component of f that we access. Note that f € H,
if and only if f(u) + f(v) = f(u + v) for all u,v € F™. Thus, the problem of checking the
claim regarding the oracle can be addressed in the same manner as the linearity testing
problem. Recall that this is what we have been doing so far. We now consider related

problems.

2.8.1 Punctured Hadamard code test

A customary way of constructing new codes from old ones is to puncture them. Puncturing
a code is the process of deleting one or more coordinates from each codeword. Each time a,
coordinate is deleted the length of the code drops by one.

For § C F™, we consider the punctured Hadamard code, denoted H3, whose codewords

are of the form (I(u) : u € S), where I: F* — F is linear. Clearly, the support of 13 is S.

THE PUNCTURED HADAMARD CODE TEST. We are given oracle access to an element of
FIS| say f = (f(u): v € §). We want to check that f is close (in Hamming distance)
to a codeword in H3. We perform the following test — randomly pick u,v € S such that
u+v € S, query the oracle to obtain f(u), f(v), f(u + v). Then, reject if f(u) + f(v) #
f(u+v), and accept otherwise.

The probability that this test rejects when given oracle access to j is denoted Rejys (f).
The relative distance between f and its closest codeword in #Z is denoted Distys(f). Note
that for every f a randomly chosen linear function agrees with f in at least a (1 —1/|5])/2
fraction of the elements in S. Thus, Distys(f) < (1+1/|5])/2.1!

The issue in testing punctured Hadamard codes is to derive good lower bounds on
Rejys(f) as a function of Distys(f). We will now study this test through discrete Fourier

analysis techniques.

! If the additive zero of F™ is not in S, then the same argument shows that Dist,s(f) € 1/2.
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Proposition 2.8.1 Let S C F" and ¢(S) = Iglpl{(u,v,w) €SxSxS|lu+v+uw=0}].
If p(S)#0and f: F* — F, then
1 1 1 1 1 1
Rej > == ——1|=-Di = ——.Di —=—=-1}.
gl 2 5 - 5y (5~ Oe()) = gy Ooe() - 5 (757 1)
Proof: | Sketch | Let g be the indicator of the set S, ie. g(u) = 1if v € S, and 0
otherwise. Furthermore, let h be the function that sends u € F™ to h(u) = g(u) - (-1)/®).
An argumentation akin to the one given in the proof of Theorem 2.1.2 yiclds that
. 1 (h*h*h)(())) 1( 1 - 3>
Re =—(1-—-——-—-—-— = ={1-— h .
ing(f) = 3 (9+9%9)(0) 2 #(S) (Go)* aez,;n ( °)
Moreover, an argument similar to the one of the proof of Corollary 2.3.2 shows that for
all @ € F™ it holds that &, < o (1 — 2 Distyys ( f)). The claim follows by combining the

'~

previously stated facts and recalling that by Parseval’s ) (ha)2 =3o. [
a€F™

In the case that S is a subspace of F™, ¢(S) = 1, and Proposition 2.8.1 reduces to
Theorem 2.1.2. Moreover, recall that in Section 2.5 we had already encountered the ex-
pression ¢(S). In fact, we argued that the larger ¢(S) is, the closer the set S is of
being a subspace. Thus, the closer S is to a subspace, the better the lower bound of
Proposition 2.8.1. This validates the intuition that the more the number of constraints of

the form (u,v,u+v) € SxSxS, the better the punctured Hadamard test should perform.

2.8.2 Augmented Hadamard code test (or total degree one test)

A customary way of augmenting the Hadamard code H,, is to consider the code H;, consist-
ing of H,, together with the complement of all its codewords.'? Equivalently, 7., is the collec-
tion of codewords of the form (p(u) : u € F™), where p: F™ — F is a total degree one poly-
nomial. Note that a total degree one polynomial p is either a linear function or a linear func-
tion plus a constant. Thus, since F' is of characteristic two, p(u)+p(v)+p(w) = p(u+v+w)
for all u,v,w € F™. The latter is satisfied only if p is of total degree one. In analogy to

the case of testing Hadamard codes and punctured Hadamard codes, we are interested in

-

13 The complement of (uy,...,un) € F¥ is (1 —uy,...,1 —un).
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obtaining good lower bounds on

Reize, (f) & Pruywenrn [f(u)+ F(v) + f(w) # fu+ v +w)]

as a function of the relative distance between f and its closest codeword in M, (henceforth

denoted Disty (f)).

Proposition 2.8.2 For every f: F* - F, if Distyy (f) = 6, then
Rejze (f) > max{86(1-6)(1/2-6),26(1-6)}.

Proof: [ Sketch | Let h = (—1)f, and observe that

[a—y

Rejz (f) = -;-(1—(h*h*h*h)(0)) = -( -3 (Ba)‘).

acFn

(V)

Moreover, following the proof of Lemma 2.3.1 we get that h, = 1 — 2 Disty (f,1a), where
as usual [, denotes the linear function that sends u € F® to a.- « € F. Since both lo and
la + 1 are polynomials of total degree one, it follows that 1 — § > 1 — Disty (f,la +1) =
Distsy (f,la) > 6. Hence,

Rejrr (f) > %(1—(1—26)2 ) (ﬁa)z) = 26(1-6).

1 A

To conclude, note that f(u)+ f(v) + f(w) and f(u + v + w) are distiuct if and only if
[ differs from every total degree one polynomial p in exactly one or three of the points
{#,v,w,u + v+ w}. This observation leads to a generalization of Lemma 2.4.1, which

implies that Rej;y (f) > 86(1—-6)(1/2 - 6). u



CHAPTER 3

Testing and the theory of weight
distributions of codes

Recall that probabilistically checkable proofs (PCPs) are built by recursion. Each level of
the recursion uses a distinct encoding. Correct encodings are viewed as representations of
functions that satisfy a pre-specified property. Thus, a problem in the construction of PCPs
is to probabilistically check (test) function properties with as few queries as possible.

In this chapter we address a particular problem that arises in testing. To describe it,
assume we are given oracle access to a function which is claimed to satisfy a particular
property. We do not trust this claim and we want to verify it. But, we want to avoid
querying too many values of the oracle function. So we implement a probabilistic procedure
that makes a small number of queries. Based on the answers, we either accept or reject
the claim about the oracle. Those oracles that do not satisfy the claim should be rejected
with a nonzero probability. We focus on tests where the following holds: if the oracle is
rejected with a small probability, then by modifying it a little we obtain an oracle that
satisfies the claim. But, we would like to have, for each rejection probability a nontrivial
conclusion regarding the degree in which the oracle satisfies the claim. The particular
question that we address here is the following: what can be said about the oracle function
when the probabilistic procedure rejects with a very large probability?

Let us begin by describing this problem more precisely.

43
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3.1 Testing: the high rejection probability problem

3.1.1 The problem

A test is a triple of the form ( F,7,D) where F is the collection of functions mapping G to
H, T is a collection of functionals mapping F to { accept,reject }, and D is a probability
distribution over 7. We write D instead of (F,T,D) whenever F and 7 are clear from
context. We let P denote the collection of functions f € F for which T(f) equals accept
for every T which is assigned a positive probability by the distribution D. We assume from
now on that P is nonempty.

One of the issues we are concerned in testing is in understanding the relation between

the following two quantities when f € F:
Rej(f) def Prr.p [T(f) = reject] — the probability that D rejects f,

Dist(f) def min{ Prye ¢ [ f(u) # g(u)] | g € P} — minimum (relative) distance of f

to its closest function in P.

There is an undercurrent in the above formulated testing problem. That is, we are given
oracle access to a function f € F which is claimed to belong to P. We do not trust
this claim. We verify it, probabilistically, by performing the test D as follows: we choose
according to D a functional T' in T; we accept the claim if T'(f) = accept, and reject it
otherwise.

As a first approximation the following notion captures how good a test is: a test is
§-strong if for every f € F it holds that Rej(f) > & - Dist(f) — o (1) (where asymptotics are
relative to the size of G, H, and the support of D). Clearly, larger values of £ are preferable.
An upper bound on ¢ is the ratio between the expected value of Rej(f) and the expected
value of Dist(f) when f is chosen at random in F. We would like £ to be this value. Such
tests will be henceforth referred to as optimally strong tests.! Optimally strong tests have

an appealing property: if a function f has a rejection probability significantly smaller than

! E.g, the BLR test over arbitrary finite groups is %-strong ([BLR90]), but it is not an optimally strong
test. Over the field of two elements it is a 1-strong test, and also an optimally strong test (Theorem 2.1.2).
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that of a randomly chosen function in F, then, f has to agree with a function in P in a
significantly larger fraction of values than a randomly chosen function in F.

Most of the tests that fall under the label of low-degree tests have not been proven to
be optimally strong. The next section discusses why it is desirable to formulate and explore

techniques that can achieve this.

3.1.2 Relationship to other work

The issues we want to address are motivated by the problem of verifying the validity of an
assertion with the help of two untrustworthy provers. To explain this point, we view a proof
as defining a function 7: K™ — {0,1}, where n is some positive integer and K is a finite
field. Let F be a finite field extension of K. Note that 7 is a polynomial of total degree
d%f n|K| — 1. Thus, there is a unique polynomial p: F* — F of total degree d that agrees
with 7 in all of n’s domain [ALM*92]. We think of p as being a redundant extension of
the proof represented by m. The segmentation technique of [ALM*92] ‘splits’ the extension
proof p among two provers. Indeed, the second prover’s question is a line L of F™.2 The
first prover’s question is a point x belonging to L. The first prover is asked for the value
of p at . He responds according to a function f: F® — F purported to be p. The second
prover is asked for the univariate polynomial which represents the restriction of p to the line
L. He responds with the total degree d polynomial ps: L C F"* — F which most agrees
with the restriction of f to L.

To probabilistically verify that the provers responses are indeed explained by an exten-

sion proof p we perform the following (F,7,D) test:

LOW TOTAL DEGREE TEST [ALM*92]. Here, F is the set of functions from F™
to F. D is the uniform distribution over 7. 7T is the collection of functionals
Ty, where L is a line of F™ and x is a point in L. Moreover, T 1(f) = accept,

if and only if, f and py,;, agree at z.

The only functions that this test always accepts are the polynomials of total degree d.

2 A line in F™ is a collection of points of the form {u+tv € F" |t € F } where u,v € F" and v # 0.
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The best known analysis of this test is due to Fried] and Sudan [FS95] who show that it
is %-strong. Better analyses of the low total degree test are desirable since they translate,
via [FS95], into improved constructions of codes. Ones that admit very simple randomized
error detection. More precisely, into improved constructions of locally testable codes [FS95].
But, the motivation for much of this chapter’s discussion comes from the following open
problem [Aro94a): does the low total degree test work even for high error rates? A more
specific question is: is there a £ > 1/2 for which the low total degree test is & -strong?

Showing that a generalized version® of the low total degree test is an optimally strong test
would have complexity theoretic consequences. Indeed, as pointed out by Arora [Aro94b)
and Lund [Lun94}, it would yield better multi-prover interactive proof systems for NP
languages. More precisely, multi-prover proof systems that require O (log(n)) randomness,

O (1) provers, O (log(n)) answer size, and that achieve error probability O (1 /polylog(n)).

3.1.3 Previous work
The paradigms used to study the low-degree tests can be classified as follows:

ALGEBRAIC ARGUMENTS. E.g., Arora and Safra [AS92b], Arora [Aro95a), and Polishchuk

and Spielman [PS94} (all of which analyze the low individual degree test).

PLURALITY FUNCTION ARGUMENT [BLR90, Cop|. We illustrate this argument by showing
how it is used in the analysis of the BLR test. Let f be a function from one finite group G
into another finite group. Define a function g whose value at u is the most common value
of f(u + v) — f(v) when v varies in G, i.e. PLURALITY{ f(u + v) — f(v)|v € G}. Then,
show that if Rej(f) is sufficiently small, three things happen: an overwhelming majority of
the values { f(u+v) — f(v)|v € G} agree with g(u), g is linear, and g is close to f. Thus,
Rej(f) cannot be very small if f is far away from linearity. The small rejection probability

assumption seems to be an essential component of this argument. Thus, it has failed to

3 LOW TOTAL DEGREE TEST (GENERALIZED VERSION): Let K be the collection of curves that pass through
k + 2 points of F", k of which are fixed. In this case, F is the set of functions from F" to F, D is the
uniform distribution over T, and 7T is the collection of functionals T c, where C is an element of K and z
is a point in C. Moreover, T:,c(f) = accept, if and only if, f agrees at = with the degree (k + 1)d univariate
polynomial psc: C C F™ — F that most agrees with the restriction of f to C.
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prove that any of the low-degree tests is an optimally strong test.

The plurality function argument was used in Section 2.6. Moreover, it has been used
in many works, e.g., Gemmell, Lipton, Rubinfeld, Sudan, and Wigderson [GLR*91] (for
testing polynomials over finite fields), Rubinfeld and Sudan [RS92] (for testing polynomials
over rational domains), Arora, Lund, Motwani, Sudan, and Szegedy [ALM*92] (for the low
total degree test), and Friedl and Sudan [FS95] (for the low total degree test).

It is interesting to note that, since the mid 50s, coding theorist have used a technique
called majority logic decoding. This technique is used to correct and detect errors in the
transmission, over a noisy channel, of majority-logic decodable codes (see [vL92, Ch. 3.§4]
and [PW72, Ch. 10]). The plurality function argument takes a function and uses it to
‘correct’ its errors. This yields a function with some specific property of interest (e.g.,

linearity). In essence, majority logic decoding is used for the same purposes.

AD HOC ARGUMENTS. E.g., Babai, Fortnow, and Lund [BFL90] (for the multilinearity
test), Feige, Goldwasser, Lovasz, Safra, and Szegedy [FGL*91] (for the multilinearity test),
Shen [She91] (for the multilinearity test), and Sudan [Sud92] (for the basic univariate test).

DISCRETE FOURIER ANALYSIS ARGUMENT. This argument was illustrated in Chapter 2.
Clearly, it is not an instance of the plurality function argument (although it may be consid-
ered an application of algebraic techniques). Its use does not require any assumption on the
magnitude of the rejection probability of the test. But, more importantly it exhibits an ap-
pealing feature that distinguishes it from almost all previous results concerning low-degree
tests: it shows that a particular test (the BLR test restricted to the field of two elements)
is an optimally strong test in the sense described in Section 3.1.1. In this chapter we show
that the discrete Fourier analysis argument is an instance of a more general argument that

can be used to study tests. This latter argument is based in coding theoretic techniques.

3.1.4 Main results

The crux of this chapter is the framework which we propose in order to formulate and carry
out the analyses of tests. This framework establishes a connection between testing and the

theory of dual codes. We illustrate this connection by formulating a new way of testing
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for linearity over finite fields, namely the eztended linearity test. We borrow classical tools
from the theory of weight distributions of dual codes and prove that the extended linearity
test is an optimally strong test. We then discuss why the arguments presented here seem
to be especially well suited for proving some of the low-degree tests are indeed optimally

strong. Achieving this remains an open problem.

3.1.5 Chapter organization

In Section 3.2 we review some basic notions from coding theory. In Section 3.3 we define
the extended linearity test. In Section 3.4 we illustrate the connection between testing and
dual codes. In Section 3.5 and Section 3.6 we present the theory of weight distributions
of dual codes and the MacWilliams theorem. In Section 3.7, among other things, we fully
analyze the extended linearity test, and discuss some of the strengths and weaknesses of

the method proposed in this chapter for studying tests.

3.2 Coding theory: the basics

For the sake of brevity the following exposition will be terse. For an in-depth discussion of
issues in coding theory, the reader is referred to [MS77, PW72, vL92].

A code of block length N over the alphabet F is a subset C of FV. We will only consider
codes whose alphabet F is a finite field. The elements £ = (x,...,zx5) € C are called
codewords, and their length is said to be N.

If x and y are codewords in C, then the Hamming distance, d(z,y), between z and y
is equal to the number of components where  and y are distinct. Formally, d(z,y) def
[{i|z:i # yi }|. The Hamming weight of codeword z is the number of nonzero components

of r and is denoted wt(z).

Definition 3.2.1 The minimum distance of a code C is min{d(z,y)|z € C,y € C,xz # y }.

The minimum weight of a code C is min{ wt(z) |z € C,z #0}.4

* We adopt the unusual convention that the empty code has minimum distance and minimum weight 0.
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Definition 3.2.2 (Weight distribution) For a code C of block length N we let A;(C) be
the number of codewords in C of weight i, and say that ( Ag(C),...,An(C)) is its weight

distribution.

Definition 3.2.3 (Linear codes) A code C of block length N is linear if it is a subspace of
FN. If C has dimension k then C is called an [N, k] code.

For a linear code, the minimum distance is equal to the minimum weight.

Definition 3.2.4 (Dual code) If C is a code of block length N then its dual code C* is the

N
collection of y's of length N such that (z,y) def Zx,- -yi=0forallzeC.

i=1

Clearly, if C is an [ N, k| code, then C* is an [N, N — k] code.

Example: Consider the family of Hadamard codes defined in Section 2.8. In particular,
M, = {0000,0101,0011,0110}. Thus H2 has minimum distance 2 and is a [4,2] code.
Finally, observe that 3 = {0000,1000,0111,1111} . m

3.3 Linearity testing revisited

Consider the function f: F* — F, where F is a finite field, n is a positive integer, and N
is the size of the domain of f. The following are three alternative interpretations of what

it means for f to be linear:
n
— There exists a ¢ in F™ such that for all u in 7", f(u) = Z Ci; .
i=1

— The value of f at the sum of two points equals the sum of f evaluated at those two

points, i.e. for all © and v in F", f(u) + f(v) = f(u +v).

— If a linear combination of points of F™ is 0,3 then the same linear combination of the
values of f at those points is also 0, i.e. for any choice of scalars A, in F where u

varies over F™,if Y Ayu=0,then Y Auf(u)=0.
ueFn uEFn

% For ease of reading the zero element of F™ will appear in boldface type in order to distinguish it from
the zero element of F.
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The first alternative above tells which functions are linear. The second alternative defines
linear functions by one of their properties. This view of linear functions leads to the BLR
test: randomly choose two points u,v € F™ and check that f(u) + f(v) = f(u +v).

The third of the alternatives above also leads to a test for linearity: randomly choose

scalars A, in F such that Y  A,u =0, and check that 3" Auf(u) =0. This test has a

uefFn ucfFn
fatal drawback. With high probability A has large support, i.e. many nonzero components.

Thus, checking that Z Auf(u) = 0 requires querying too many values of f, something
ucF»
we want to avoid. We can overcome this drawback by picking A’s with small support. In

particular, with three nonzero components. This yields the following new test for linearity:

EXTENDED LINEARITY TEST: Randomly choose distinct u,v,w € F™, and
nonzero scalars Ay, Ay, Ay € F such that \,u + A\yv + Ayw = 0. Then, reject if
Auf(u) + Ao f(v) + Ay f(w) # 0, and accept otherwise.

We call this test the extended linearity (EL) test in order to distinguish it from the BLR
test. Clearly, it always accepts linear functions. Its main motivation goes back to the
multilinearity test of [BFL90).

We will show that the EL test is provably more efficient than the BLR test at the cost
of using a negligible amount of additional randomness.® Intuitively, the gain in efficiency
comes from the fact that the EL test looks at the same constraints that the BLR test does,
and more (by a factor of © (|F|2)). Note that if F = GF(2), then the BLR and the EL test
are the same. In the following sections we extend the discrete Fourier analysis technique
used to analyze the linearity test over GF(2) (Chapter 2). This extension establishes a

connection between testing and the theory of dual codes.

% Nevertheless, it should be noted tkat the BLR test only requires that the function to be tested take
values from one finite group into another finite group. In contrast, the EL test requires that the function
to be tested take values from F™ into F, where F is a finite field. The finite group assumption is used
in the context of program checking, e.g., in [ERS95]. However, the finite field assumption is the standard
assumption in the PCP context.
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3.4 Tests and dual codes

Consider the set C of all tuples of the form (I(u) : u € F*), where I: F* — F is linear.
Note that C is a linear code. Let f: F* — F be given. We denote by C; the set of the
tables of the functions that are linear combinations of f and a linear function, i.e. the set
of all tuples of the form ( (¢ f +01)(u) : v € F*), where l: F* — F is linear and ¢,0 € F.

The key observation is that the EL test can be rephrased as follows:

EXTENDED LINEARITY TEST: Randomly choose a dual codeword A € C1 of

weight three. Then, accept if A € Cf, and reject otherwise.

If we denote by Rej(f) the probability that the EL test rejects, and by Dist(f) the distance

from f to its closest linear function, then

() 1 - Reij(f) equals the ratio between the number of codewords of weight three in Cfl to

the number of codewords of weight three in C1,
(¢¢) Dist(f) equals the minimum weight of the code Cy \ C normalized by its block length.

Coding theorist have known, for a long time, relationships between the weight distribution
of a linear code and its dual.” These distributions cannot be arbitrary, thus, the relation
between Dist(f) and Rej(f) cannot be arbitrary either. We exploit this fact to derive good
lower bounds for Rej(f) in terms of Dist(f) for the EL test as well as a closely related test.

In fact, we do more, we take care in setting up a framework that might help in resolving

the questions raised in Section 3.1.2.

The scenario we consider is the following: we are given oracle access to a function
f: D C F* — F. We abuse notation and view f both as a function and as a table for
a function, i.e. as a tuple of length N = |D| with components in F or equivalently as an
element of FV. We want to determine if the table f has a specific property, say it represents
a linear function or a low-degree polynomial. Equivalently, we want to verify that f belongs

to a specific subset C of FN. For simplicity’s sake, we focus on function properties that are

7 The relations we are referring to are known as the MacWilliams Theorems. The first of these relations
were obtained in [Mac62).
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preserved under addition of functions. In other words, we only consider subsets ¢ C FV
which are subspaces, i.e. linear codes of block length N over the alphabet F. We stress that
this restriction is not essential, since the results of coding theory that we will use have been
generalized to the case of nonlinear codes.

We associate to f the smallest linear code of block length N containing both f and

every codeword in C, i.e.
¢; % (¢f+0glgeCandp6€F}.

Note that C C Cy, hence Cf C C*. Equality holds, if and only if, f belongs to C. Thus,
ct = C,l if f exhibits the function property of interest. To test the claim f belongs to C,

we perform the following:

DUALITY TEST: Randomly choose a codeword g € C+ with small support. Then,

accept if g € C]L, and reject otherwise.

Particular choices of the code C and the distribution by which dual codewords are sampled
will give specific tests. For example, instances of the duality test are the BLR test over the
two element field, the punctured Hadamard code test (Section 2.8.1), and the augmented
Hadamard code test (Section 2.8.2).

Remark 3.4.1 There is an issue regarding the duality test that we need to address, its effi-
ciency. In the PCP context we are in general interested in instances of the duality test in which
we sample dual codewords whose support is of O (1) size. Typically, we require the sampling
procedure to be efficient, i.e. we should be able to sample in time which is polynomial in the
size of the input of the function f. In the context of self-testing programs we are not so much
concerned with restricting the support of the dual codewords. But, we require that the running

time of the overall procedure be faster than that of any correct program for computing f.

We will see that t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>