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Abstract

Photonic crystal slabs are a versatile and important platform for molding the flow of
light. In this thesis, we consider ways to control the emission of light from photonic
crystal slab structures, specifically focusing on directional, asymmetric emission, and
on emitting light with interesting topological features.

First, we develop a general coupled-mode theory formalism to derive bounds on the
asymmetric decay rates to top and bottom of a photonic crystal slab, for a resonance
with arbitrary in-plane wavevector. We then employ this formalism to inversion-
symmetric structures, and show through numerical simulations that asymmetries of
top-down decay rates exceeding 10 can be achieved by tuning the resonance frequency
to coincide with the perfectly transmitting Fabry-Perot frequency. The emission
direction can also be rapidly switched from top to bottom by tuning the wavevector
or frequency.

We then consider the generation of Mobius strips of light polarization, i.e. vec-
tor beams with half-integer polarization winding, from photonic crystal slabs. We
show that a quadratic degeneracy formed by symmetry considerations can be split
into a pair of Dirac points, which can be further split into four exceptional points.
Through calculations of an analytical two-band model and numerical simulations of
two-dimensional photonic crystals and photonic crystal slabs, we demonstrate the
existence of isofrequency contours encircling two exceptional points, and show the
half-integer polarization winding along these isofrequency contours. We further pro-
pose a realistic photonic crystal slab structure and experimental setup to verify the
existence of such Mobius strips of light polarization.

Thesis Supervisor: Marin Soljaéié
Title: Professor of Physics and MacArthur Fellow
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Chapter 1

Introduction

In the past few decades, there has been substantial progress in our ability to control
and manipulate the flow of light. Technological progress in fabrication methods has
allowed nanoscale structures to be produced with all kinds of interesting properties
induced by wavelength-scale patterning of the structure, while computational meth-
ods and theoretical tools have facilitated rapid design of such structures for different
physics and applications.

In this context, photonic crystals [1] have emerged as an important concept for the
control of light. These are periodic dielectric structures in which the periodicity gives
rise to a band structure resembling that of a conventional crystal. The dispersion
relations coming from such a band structure can have interesting properties, such as
photonic band gaps where light propagation is prohibited [2], or zero group velocity
where slow light effects and strong interactions can be observed [3].

In many practical systems, one must also consider how the photonic structures
couple to the external environment, as this may have a critical effect on the achievable
quality factors and out-coupling efficiencies. The external environment generally con-
sists of air or some substrate, in which the far-field electromagnetic eigenmodes can
be taken to be propagating plane waves. In general, a resonance of the structure with
the same frequency and wave vector can couple to the continuum of these external
states, thus becoming leaky.

As the far field leakage radiation often corresponds to our probes of the system, it is

13



desirable to design and engineer the emission in the far field to have certain properties.
In particular, if we wish to efficiently couple light out of the system, highly directional
emission into the far field is desired, and emission towards the substrate should be
minimized. On the other hand, tailoring the emitted light to have nontrivial topology

of polarization directions is also of great importance for various applications [4].

In this thesis, we consider ways to control the directionality and topology of light

emitted from a photonic crystal slab.

In chapter 2, we focus on directionality and asymmetry to top and bottom di-
rections. By introducing a novel temporal coupled-mode theory formalism at finite
wavevector, we derive fundamental bounds to the amount of asymmetric emission
to top and bottom that can be achieved for‘ arbitrary suspended photonic crystal
slabs that satisfy some basic assumptions. The resulting reflection and transmis-
sion spectrum is also derived under this formalism. Focusing on the specific case of
an inversion-symmetric structure, we show through numerical simulations that the
bounds we derived are indeed satisfied, and we show examples of highly asymmetric
emission when the resonance frequency is tuned to coincide with the perfectly trans-
mitting frequency of the Fabry-Perot background. The feasibility of our proposal and

some practical limitations are then discussed.

In chapter 3, we shift our attention to engineering interesting topological features
in the emitted light. In particular, we demonstrate the feasibility of generating Mobius
strips of polarization from a standard. photonic crystal, without the need of any
carefully-engineered spatial defects as in conventional g-plates. We start from an
analytical two-band model, showing how symmetry breaking and addition of loss can
split a symmetry-protected quadratic degeneracy into a pair of Dirac points, and
further into four exceptional points. Typical frequency contours and decay rates are
shown, corresponding to realistic band structures in 2D photonic crystals, and more
results are shown in the appendix. We then perform numerical simulations of a 2D
photonic crystal that is infinite in the third dimension to determine the band structure
and polarization winding, clearly demonstrating the existence of closed isofrequency

contours with half-integer polarization winding arising from the Berry phase around
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Dirac points. Simulations of photonic crystal slabs with realistic parameters are
performed, consistent with the analytical model and 2D simulations, and the existence
of exceptional points within the isofrequency contours is shown. Finally, we propose
an experimental scheme to measure the Mobius strip polarization and verify the
topological winding of polarization. Our results connect the fields of topological
photonics and singular optics, and illustrate that concepts such as Berry phases can
have an important effect on polarization configurations.

Finally, in chapter 4, we summarize our results and offer an outlook towards other

interesting possibilities that our work here opens up.
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Chapter 2

Highly Asymmetric Radiation from
Photonic Crystal Slabs

Due to their ease of fabrication and integration as well as their large area and high
quality factor of resonances [5, 6], photonic crystal slabs [7] have been widely used
in many applications. For more efficient extraction of light, it is often desirable to
achieve highly asymmetric out-of-plane coupling of light to photonic crystal slabs, in
which light predominantly radiates to only one side of the slab. This would eliminate
the need of a back-reflection mirror in high-power photonic crystal surface emitting
lasers [8], and could lead to increased efficiency in grating couplers and light detection
and ranging (LIDAR) devices. Previous designs of grating couplers have achieved a
top-down emission ratio of up to 50:1 [9, 10, 11], but these designs typically either
make use of a reflector in the substrate or involve multiple layers and grooves [12],
which not only complicate fabrication but could also be difficult to scale to larger ar-
eas if desired; asymmetric out-of-plane emission from photonic crystal defect cavities
of 80% has also been demonstrated [13], but all these works were guided primarily
by numerical optimization. It is thus desirable to gain an understanding of the fun-
damental bounds on asymmetric emission through more theoretical considerations.
Previous work [11] has examined bounds of asymmetric emission for a restricted class
of photonic crystal slabs with C% symmetry (180° rotation around the out-of-plane

axis), yielding very limited asymmetric ratios for realistic material choices, but a
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general bound for arbitrary structures has not been derived.

In this chapter, we develop a general temporal coupled-mode theory (TCMT)
formalism [15, 16] to derive bounds on the asymmetric decay rates of a resonance to
top and bottom for arbitrary in-plane momentum (E—vector). Our formalism is novel
in that the time-reversal operation flips the EII of the resonance, thereby changing the
form of the equations. We then employ this formalism to inversion-symmetric (P-
symmetric) structures, and show through numerical simulations that asymmetries of
top-down decay rates exceeding 10* can be achieved by tuning the resonance frequency
to coincide with the perfectly transmitting Fabry-Perot frequency. The emission
direction can also be rapidly switched from top to bottom by tuning the k-vector or
frequency. These results may provide important design principles for photonic crystal
surface emitting lasers (PCSELS), grating couplers, and many other applications that
could benefit from directional emission and rapid tuning. In addition, we also derive
analytical expressions for the transmission spectrum and discuss features such as full

transmission or reflection.

2.1 Temporal Coupled-Mode Theory Formalism with

Finite Wavevector

In this section, we consider arbitrary photonic crystal slab structures embedded
in a uniform medium (identical substrate and superstrate). We assume they are
weakly coupled to the external environment and satisfy linearity, energy conservation
and time-reversal symmetry. We employ a general temporal coupled-mode theory
(TCMT) formalism to derive bounds relating the decay rates in different directions.
As opposed to previous work that implicitly assumed normal incidence of light or
180 degree rotational symmetry around the out-of-plane axis (C symmetry) of the
photonic crystal structure [14], we consider arbitrary incident angles and arbitrary

shapes of the periodic structure.

For a plane wave with in-plane k-vector EII = (kz, ky) incident from the top (port
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1, see Fig. 2-1), by conservation of in-plane momentum due to the periodicity of
the structure (neglecting higher-order diffraction), this plane wave will only couple
to resonances and outgoing waves with the same gﬂ. We shall consider the typical
case where there is a single resonance of interest, with the transmission spectrum
consisting of a Fabry-Perot background and sharp resonant features, as in Fig. 2-2
(This frequency spectrum was calculated using the rigorous coupled-wave analysis
(RCWA) method [17] with a freely available software package [18]). Assuming that
there is only one resonant mode in the frequency range of interest, and writing down
a similar expression for the time-reversal conjugate incoming and outgoing waves and

resonances, we have the TCMT equations

(81+\

daq . 1 Sa+
7 (le - ﬁ) a; + (m 0 Ks 0) ) (2.1)

da . 1 So4+
_d_t;, = (]wz — E) az + (O ke O I€4) ) (2.2)

81— S1+ 0 dl

So_ s do 0] [a

2 —C 2+ + 2 1 7 (2.3)
S3_ S34 0 ds| \a

S4— S4+ de 0

where a; are the resonance amplitudes, w; and T; are the resonance frequencies and
1/e-decay times, s;4 and s;_ are the incoming and outgoing waves (in the following,
we use |s;) to denote the vector formed by these components), x; are the coupling
rates from the incoming waves to the resonance, d; are the coupling rates from the
resonance to the outgoing waves, and C is the direct process Fabry-Perot scattering

matrix. An important difference between this formalism and previous TCMT for-
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malisms [15] is that we have included only terms that have the same k|, as required
by momentum conservation, and the time-reversal operation maps one resonance into

the other resonance, instead of itself.

S S,. S S,.
TR
N A

Figure 2-1: Schematic of our temporal coupled-mode theory (TCMT) setup with four
ports and two resonances related by time reversal operations. This general setup is
true for structures with arbitrary shapes and incident angles.

We have assumed that the system satisfies energy conservation and time reversal
symmetry. In particular, this implies that the direct scattering pathway matrix C
must be unitary (energy conservation) and symmetric (reciprocity) [16]. Assuming
identical substrate and superstrate, and that the Fabry-Perot contribution is not
affected by the details of the patterning that give rise to sharp resonances, C' takes

the form

0 r» 0 gt

: 0 5t 0
c=e%|" d ; (2.4)

0 5t 0 r

gt 0 r 0

where t and r are real numbers satisfying 72 + t?> = 1 that characterize the Fabry-
Perot background amplitude transmission and reflection coefficients, ¢ depends on
the choice of reference plane position for the phases of the waves, and the imaginary

unit’ j comes from our phase convention.

'In this chapter, we use the notation of electrical engineers and denote v/—1 as j, while in the

20



Consider the process where there is no incoming wave |s4) = 0 and there is only

one resonance that is excited a;(0) = aq9, a2(0) = 0. By energy conservation, we have

d(aja 2, .
@i01) _ _ 2 o = (s fs_) = —atar(|daf? + |def?), (2.5)
dt T

which reduces to (making use of a similar equation for the second resonance)

2 2

do* + |daf* = =, |da|* + |da|? = = 2.6
|da|® + |da] T17|1|+|3| T (2.6)
Now consider the time-reversed process where we send in an exponentially growing
wave with initial amplitude |s_)* and frequency w; — ;_;% Since the time-reverse of
resonance 1 is resonance 2, we expect an exponentially growing amplitude in resonance

2 with no amplitude in resonance 1 or the output ports.

The amplitude equation of resonance 2 reads

. J : 1 _
[](wl - 1—,) — Jwa + T]az = H28I2+ + KI4SQ+ = 628;_ + I$4SZ_ = fizd;a’{ + Kqdyai.
1 2

2.7)

Due to time-reversal symmetry, w; = wp and T; = T3 = 7, so using Eq. (2.6) and

Eq. (2.7), we have
KQd; -+ Ii4dz = dzdz + d4dz (28)

Following an independent port diagonalization argument presented in Ref. [15], in
which the resonances and ports are rewrite in normal modes to give independent
equations, Eq. (2.8) implies that x; = dy and k4 = d4. Similarly, we shall find that

R = d] and K3 = d3.

The condition that no amplitude is observed in resonance 1 in the time-reversed

next chapter, we use the notation of physicists and denote v/—1 as ¢. This is to be consistent with
the primary literature related to these works, and which is better is up for the reader to judge.
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process implies that

0 r 0 jt 0 0 4
lr 0 jt O 507 d 0 0
L J el D =0, (2.9)
0 jt 0 r 0 0 ds a3
jt 0 r O dza} dy 0

which expands to two independent equations (the other two equations are linear

superpositions of these and their complex conjugates)

e (rd; + jtdy) + dy = 0, (2.10)
e (jtdy + rd}) + dz = 0. (2.11)

Egs. (2.6, 2.10, 2.11) impose constraints on the values and phases of the couplings,
and hence constrain the transmission spectrum and bounds on the asymmetric cou-

pling ratios.

2.2 Reflection and Transmission Spectra

From the preceding equations, we can derive an expression for the transmission spec-
trum [14, 16] that only depends on the frequencies and decay rates of the resonances

and the transmission and reflection coefficients of the direct Fabry-Perot pathway.

As derived above from the time-reversal symmetry condition, we have the con-
straints Egs. (2.10, 2.11). The angle ¢ there corresponds to a choice of the reference
plane location. We may fix this phase to 0 by appropriately choosing our reference

plane location.

Generally, the full scattering matrix including the direct pathway and resonance

pathway is given by [15]

|d) [

S=C+ 0L
j(w—wo)-i—%

(2.12)
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Transmission

02 ¢

0 0.1 0.2 0.3 04 0.5
Frequency wa/2nc

Figure 2-2: Typical transmission spectrum from an inversion-symmetric structure,
exhibiting resonance peaks on top of a Fabry-Perot background.

here the 7 is labeling the total decay rate to all channels of either of the resonances.
We have used the fact that w; = ws and 77 = T3 by time-reversal symmetry of the

system.

The power reflection coefficient corresponds to the amplitude squared of the (1,2)

element of the scattering matrix. Using the fact that k; = d;, we have

dyds %

R=|Suf = |e#r + — 8% ___
1B " i —wo) + 1

(2.13)

This expression can be simplified to a form that explicitly exhibits features such as full
transmission and/or full reflection, and eliminates explicit dependence on the phases
of the coupling rates. This is accomplished by taking the norm of the time-reversal

relations.

First, let us write the decay rates to different ports as d; = \/Tiiejaf. We wish to
find 6, + 65, which will allow us to evaluate the preceding expression. Eq. (2.10,2.11)
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can be written as

/ . fo / )
Ty T4 71
) 2 )
Jt4/ ze""2 +ryf—e %4 ‘/—2—6’]93 =0. (2.15)
T2 Ty 73

These equations can be used to prove that 7; + 73 = 75 + 74, where 7; corresponds
to decays into channel . This, combined with Eq. (2.6), implies self-consistently that

the two resonances have the same decay rate.

Defining a = 6, + 62, 8 = 6, + 04, the preceding equation reads

2 2 . 2 .
/_:_‘/_ -Ja_'1/_ —3iB 2.1
- T 7_ze jt 7’46 , (2.16)
L ‘ 9
v/ %eﬂ’s-ﬂl = - jt,/%e‘ﬂa — 74/ -7_—46_‘7‘3. (2.17)

Taking the norm squared of both sides, we obtain

227 + 282 4rt

1 T2 T4 \VT2Ty
2 22 92 4rt
= — 4 —

+
73 T4 T2 VT2Ta

sin(a — ) (2.18)

sin(a — f) (2.19)
Adding these two equations, we find

—_— === (2.20)

as desired.

Now we solve for the transmission spectrum by solving @. Moving the term

containing « over to the left hand side in Eq. (2.16) and taking the norm squared

gives

2_t2 _ 2_7“2 2 drcosa

T4 T2 1 VTiT2

(2.21)
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To simplify the preceding expression, we write

1 1 1 1 1 1 1 1
—CE 4 =4, —==— (2.22)
T 1 T3 T2 T4 o T1 T4
and thus
2 1
cosa = YT (_Z_ _ _) (2.23)
2r T O
2
. (T 1 VTt | 4 r2 2 1
=44 /1=-22 4 2) =+ s 2.24
sin a \/ 172 (7_ a) 5 e 12 10 o%r? ( )

The reflectance given by Eq. (2.13) can be written as

_ rj(w —wo) + £ + \/T—Zsz(cosa+jsina)|2
(w —w0)2 + T_12

20, _ 2, r? 4 4rcosa 4r(w—wp) sin
rw-—w) '+ 2+t et T s

(w —(U())2 + ;lf

2
2
ro—w) £y /o -5 -2 - ] + @)

_ - , 2.25
(W= wo)? + 5 (2.25)

where the last line can be directly verified by expanding all terms using Egs. (2.22-
2.24) given above. This expression is similar to Eq. (12) of Ref. [14], except that
here because 7, and 7» are not necessarily identical, the form of the expression within

the square root is different.

The expression in the square root in Eq. (2.25) is given by

4 2_7‘2 1 4 2&_1 1+1 r? 1
nr 10 12 o%? mmn T T4 Ty T4 I

2 2 2/(1 1 2
=——+—2+—(———>—f— (2.26)

T2 o2r2’

which agrees with Ref. [11] when the system possesses C3 symmetry such that 7y = 72,
T3 = T4.
Let us now consider the consequences of this expression on frequencies of full

reflection and full transmission.

25



For full transmission, we require T = 1 and thus R = 0. Comparing to Eq. (2.25)
shows that

1 1
l=———=0$7'1=7—4, (227)
o 1 T4
- 1/ 4 1)’
w—wp =4/ — — (i+-—) r2, (2.28)
r T4T2 T2 T4

so full transmission occurs when the decay rates are effectively P-symmetric. For a
structure that possesses P-symmetry, this condition is automatically guaranteed, and
indeed we observe that transmission reaches unity near the Fano resonance, see Fig.

2-2.

For full reflection, we require R = 1. Eq. (2.25) imposes the condition

ar

[,.(w_wo)i i_ﬁ_l__l_r+ (i)2=(w—wo)2+%. (2.29)

4 2 2 1 11 1 1)\’
4l ——==-—-— |41 -P|s-—])=—4|=--= 2.30
(7'172 2 710 027'2) (1= (72 02r2) (7‘1 7'2> » (230)
so full reflection is possible when the discriminant is non-negative, i.e. when the decay

rates are effectively z-symmetric: 73 = 7. For a structure that possesses z-symmetry,

this condition is guaranteed, as discussed in Ref. [14].

2.3 General Bounds on Asymmetric Coupling Rates

2.3.1 Analytical Results

We now derive bounds on the achievable asymmetry of coupling to the top and bottom

based on Egs. (2.10,2.11) derived from time-reversal symmetry.

Denoting the emission ratio as |ds/ds| = a,, |d3/d1| = ai, by taking the ratio of
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the time-reversal symmetry equations we find

2|0t ra,e®|° 2 4 r%? + 2tra, sin 6 (2.31)
V7 e+ jtace®| T 12+ t2a2 — 2tra,sinf’ ’
thus giving a bound
t— t
ra, <a< + ra, (2.32)
r + ta, r — ta,

Therefore, the amount of achievable asymmetry to top and bottom on the left is

bound by that on the right, and vice versa.

If we make the assumption of C§ symmetry, the two channels on the top and
bottom would be constrained to have the same coupling rates, and hence d; = ds,

d3 = d4. Plugging this into Eq. (2.10), we have
& (rd} + jtds) + dy = 0, (2.33)
which reduces to the same bound as in Ref. [14]:

1—7 1+7r
1+Tsal=arS

[ (2:34)

thus demonstrating consistency of our approach. This result can also be obtained

from Eq. (2.32) by setting a; = a,.

Note that in typical photonic crystal systems, at optical frequencies, the index
contrast is usually limited to around 3, which limits the interface reflection coefficient
to be less than 0.5 for most incident angles, see Fig. 2-3 for a calculation of the
interface reflection coefficient based on Fresnel equations. The resulting Fabry-Perot

transmittance is given by [19]

1

2 __

= 1+ 4Rgsin?(5/2) (2‘35)
(1-Ro)?

where R, is the interface reflectance and ¢ is the phase accumulated when reflecting

27



—n=1.2, s pol.
0.9 - - -n=1.2, p pol.
—n=2, s pol.
08/ .- -n=2, p pol.
o.7H —n=3, s pol.
® - - -n=3, p pol.
e 0.6
©
G o5
@
© 0.4
o
0.3~
02 T
0.1F

- .‘-"
o " o il S

01020_30405060708096
Incidence Angle (degrees)

Figure 2-3: Reflectance calculated according to Fresnel equations for light incident
from air (ny = 1) to dielectric.

between the interfaces. This results in the Fabry-Perot direct pathway reflection
coefficient r = /1 — t2 being considerably smaller than 1, and implies that strong
asymmetry in the decay rates to top and bottom is typically difficult to achieve for

C3-symmetric structures.

The general bound Eq. (2.32) suggests, however, that much stronger asymmetry
can be achieved if we break the C3 symmetry of the system. A simplifying case is
when the structure possesses inversion symmetry P, as shown in Fig. 2-4. In this

case, the decay rates must satisfy d; = d4, d» = ds, @4 = 1/a,, which would give

73 _ ldl ‘2 _ I __.rejt,b—jez 2 1-— tz (2 36)
T N ds - elfh 4 jtejﬁf’_ﬁ"* - (1 + tcos ¢)f)2’ .
where ¢’ is a phase that in general can be tuned through an entire 27 range, and we

have defined 7; = |d;|? to characterize the loss rate. The asymmetry is thus bounded

by

1-—1¢ 1 141
< = — < _ 2.37
1+t_ai ar — V1=t ( )



where again t is the amplitude transmission coeflicient of the direct process governed

by the Fabry-Perot cavity response.

For any index contrast, the Fabry-Perot background will always have frequencies
with full transmission, thus by appropriate tuning of the resonance frequency, the
lower and upper bounds of Eq. (2.37) approach 0, +00. Moreover, since the bound
above originates from taking the norm of a complex quantity, this bound should be
saturated for appropriate choices of structural parameters and wavevector, resulting in

highly asymmetric decay rates of the photonic structure to top and bottom directions.

For some practical devices, we cannot neglect the Efl = _EII vector that has an
opposite momentum, and should consider the total asymmetry ratio after taking both
sides into account. Using the expression |d;|? + |d3|* = |da|? + |d4|? resulting from the
time-reversal-pair relation between the resonances, the total asymmetric ratio can be

written as

2 _ ldsl + |dal® _ af + af + 2afa?
|d1[? + |da|? af +a?+2 '

(2.38)

where g; and a, satisfy the bound specified in Eq. (2.32). Taking the partial derivative

of the above equation with respect to a7 yields

0 a%+a}+2aka?

( 2(aZ +1)?
0(a?)" aZ+al+2

(a? + a2 + 2)?

) = > 0, (2.39)

s0 to maximize the asymmetric ratio requires minimizing a; within the bounds. We

thus plug in the lower bound of Eq. (2.32) into Eq. (2.38), which gives

a3+ t+raz)2+2

2 r—tar

a = Ta.
a? + (£52)? + 262 (H5)?
(a2 +2)(r — ta,)? + (t + ra,)?
a?(r —ta,)? + (2a2 + 1)(t + ra,)?
Taking the derivative of the above expression with respect to a,, we find
d(a®) _ —8a, + 8t%a, + 4tr(a? — 1) (2.41)

d(a?)  (2tra, + 2a2 — t2(a2 — 1))?’
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which reaches extrema at a2 = (r£1)/t. Retaining the physical solution (+ sign), the
maximal amount of asymmetry is attained when a? = a2 = (r + 1)/t. This suggests
that the maximal amount of top-down asymmetry still observes the bound presented
in Eq. (2.34).

Note that it is not straightforward to lump all channels with radiation in the top
direction into a single port and all channels in the bottom direction into another
single port to obtain this result: the coupling coefficients to the left and right can in
general be different. Our results confirm, however, that even if one allows the general
situation of breaking C5 symmetry of the system, if the left and right channels are
excited equally then the same bound as a C-symmetric structure will apply to the
total asymmetry.

Our derivation relies on the assumption of time-reversal symmetry and energy
conservation, so one possibility to go beyond this bound of total coupling is to relax
these assumptions and generalize TCMT to cases with magneto-optical effects and/or
gain and loss, as well as cases where the substrate and superstrate are different. A
more practical way to get around this might be to employ side-coupling or laser

pumping, in which the incident light imposes a certain EII to the system.

2.3.2 Comparison to Simulations

To verify these analytical results, we performed numerical simulations using the finite
difference time domain i(FDTD) method [20] with the freely available software package
MEEP [21]. Harmonic inversion [22] and far field amplitude analysis are used to
determine the coupling rates to top and bottom for each resonance. We place reference
planes in the far field, between the structure and the perfectly matched layers (absorbs
outgoing waves), and integrate the Bloch wave functions over a unit cell on this plane,
as described in Ref. [23]. This gives a complex vector (¢z,¢y) containing amplitude
and phase information of the coupling rates. We examine the amplitude to determine
the asymmetry of the coupling rates, but the phase variation across different k-vector
points also contains interesting information in connection to bound states in the

continuum.
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Figure 2-4: Specific P-symmetric structure that we use in our numerical examples
and relevant parameters. a: periodicity of photonic crystal, h: height of central slab,
w: width of central slab, ng: refractive index of central slab, d: height of additional
pieces on the sides (the width of the additional pieces is (a — w)/2), ng: refractive
index of additional pieces on the sides.

To compare to the bound given by Eq. (2.37), we use plane wave excitation
to determine the transmission and reflection spectrum for different frequencies and
wavevectors, and fit the Fabry-Perot background away from the resonance to deter-
mine the background transmittivity. Due to the differences between discretization
schemes in various software packages, we used MEEP for both resonance calculations
and transmission spectrum calculations. Convergence for transmission spectra near
resonances is relatively poor in MEEP, so we use narrow-band excitations of width
Aw = 0.01 x 27e/a to excite plane waves and discard data close to the resonance. We
vary the refractive index, height and width of the dielectric and optimize the maximal
asymmetric coupling with respect to wavevector for each structure; see Fig. 2-4 for a

schematic of our simulation parameters.

The results are given in Fig. 2-5, where each data point in the figure represents the
maximal asymmetric coupling point, optimized over choices of in-plane momentum E||,
for various structure parameters. We can clearly see that all data points observe the
bound Eq. (2.37) derived above, for asymmetric ratios ranging from 1 (no asymmetry)
to 10* and beyond (strong asymmetry). Moreover, for each value of the background
transmission coeflicient, by appropriate optimization of the structural parameters and

in-plane momentum, this bound can be saturated. The crosses that do not saturate
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the bound are structures with very little perturbation from z-mirror symmetric due

to our parameter choices.

104 y
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+ FDTD simulation
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Figure 2-5: Numerical verification of bounds of asymmetry for P-symmetric struc-
tures, derived using TCMT. Lines indicate bounds derived from TCMT. Each cross
indicates simulation results of the maximum asymmetry for a given structure, opti-
mized over in-plane momentum. The transmittivity ¢ is fitted from the Fabry-Perot
background, and the asymmetric coupling ratio is calculated from the Poynting flux
in the top and bottom directions.

2.4 Examples of Highly Asymmetric Coupling

In this section, we provide detailed examples of the strong asymmetry that can be
achieved, guided by the bounds derived above. As the form (1 + t)/(1 — t) (P-
symmetric structure) of the bound suggests, strong asymmetry can be achieved when
the resonance frequency is tuned to coincide with locations of large transmittivity
on the Fabry-Perot background. Note that this can be achieved for general refrac-
tion indices, since the Fabry-Perot background always has many frequencies of full
transmission (separated by the so-called free spectral range).

We optimize over the structural parameters shown in Fig. 2-4 to find examples of
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Figure 2-6: Strong asymmetric coupling over a range of momenta, including the
point of highest quality factor. Left: plot of asymmetric ratio and quality factor as a
function of k;, along the k, = 0 axis in momentum space; Right: log scale plot of field
intensity at highest asymmetry point, clearly demonstrating the strong asymmetry
of the coupling to top and bottom.

high asymmetry in coupling to the top and bottom radiation continua. This example
consists of the second TM polarization band of a 1D photonic crystal with structural
parameters a = 1 (by scale invariance of the Maxwell’s equations, we can set this
to 1 in our simulations), h = 1.5, nyp = ng = 1.45, d = 0.3 as defined in Fig. 2-4,
and the resulting asymmetric ratio and quality factor as a function of in-plane &,
along with the radiation field distribution at maximal asymmetry, are shown in Fig.
2-6. The resonance frequency lies very close to a point of full transmission on the
Fabry-Perot background, and exhibits an asymmetry exceeding 10* at the EH point of
largest asymmetry as well as an asymmetry over 300 at the point of highest quality
factor. It may therefore be possible to produce a laser that preferentially emits to the

top or bottom using the basic principles discussed above.

Another interesting application of our results is for rapid steering of the direction
of light emission by slight tuning of the frequency. This could be useful, for example,

for applications such as Light Detection and Ranging (LIDAR) [24] or antennas.
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We design such a structure by perturbing a bound state in the continuum (BIC)
[23, 25, 26]. BICs are localized solutions embedded in the radiation continuum, where
due to destructive interference of the amplitude for decay between outgoing wave
channels, the quality factor (Q) of a resonance above the light line approaches infinity.
In previous work [23, 25, 26], the photonic structures are chosen to be symmetric in z,
and symmetry and topology arguments guarantee the existence of BICs [23]. In the
case of broken z-mirror symmetry, the quality factor will be finite but still very high.
We expect that this symmetry breaking will also split the momenta where interference
cancellation occurs towards the top and bottom of the slab, thereby creating strong
asymmetry in the two directions, with the extrema separated only by a small E||. The
perturbation here is P-symmetric, thereby satisfying the conditions given above in

section 2.3.1, but it breaks mirror symmetry in the z-direction.

Based on the example in Fig. 3 of Ref. [23], we choose h = 1.5, ng = 1.45,d = 0.1,
ng = 1.1, again examining the second TM band. The resulting asymmetric ratio
and frequency as a function of in-plane k, are shown in Fig. 2-7. The asymmetric
ratio can be flipped from predominantly radiating to the top to mostly radiating
to the bottom (by a factor of 10*) by changing k, by as small as 0.05 x 2wc/a or
equivalently, by changing the frequency by 3 x 10~* x 2nc/ a. The radiative quality
factor of these resonances are on the order of 108, so these two bands will be well-
separated in emission. One can thereby envision rapid tuning of the emission direction
by changing the frequency of radiation slightly, which could be useful for antenna or

LIDAR applications.

Finally, we give an example where there are multiple peaks of highly asymmetric
coupling across the Brillouin zone. Choosing a = 1, h = 1.5, w = 0.45, d = 0.5,
ng = 1.45, ng = 1.15, the asymmetric ratio of the second TM band across the Brillouin
zone is shown in Fig. 2-8. There are multiple peaks of strong asymmetry that appear
across the Brillouin zone, in both directions. This example shows that many different
distributions of high asymmetry peaks can be generated by appropriate choices of

parameters.
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Figure 2-7: Rapid switching of asymmetric direction by tuning frequency or in-plane
momentum. Left and right: log scale plot of field intensity showing coupling to top
or bottom only at certain E—points. Middle: plot of the asymmetric ratio and quality
factor as a function of k,, along the k, = 0 axis in momentum space.

2.5 Experimental Considerations and Perspectives

In the preceding sections, we have derived a TCMT formalism to understand the cou-
pling of photonic crystal slabs to arbitrary in-plane E—vectors, and used this formalism
to derive a bound on the achievable asymmetric coupling from photonic crystal slabs.
Examples of strong asymmetry have also been given guided by these design principles.

Fabrication of photonic crystal slabs often uses electron beam lithography with re-
active ion etching, interference lithography [5], or nanoimprint technology [27]. These
methods generally approach the sample from above, resulting in straight vertical walls
in the fabricated devices. For our proposed devices that break z-mirror symmetry
while preserving inversion symmetry, other fabrication methods will be required. One
possibility would be to use focused ion beam milling to produced slanted walls [28].
Recently developed technologies such as angled-etching [29] are also a feasible alter-
native, but more detailed calculations of the tilted holes produced via this method
will be required to design an asymmetrically emitting device.

For laser applications [8], it is important to address the symmetry between E”

and -—’-ﬂ‘”. In a system with inversion symmetry, the emission to the top at }_c'” and
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Figure 2-8: Multiple points of high asymmetry appearing across the Brillouin zone.
Plot of the asymmetric ratio and quality factor as a function of k,, along the k, = 0
axis in momentum space.

to the bottom at _EII will be of equal magnitude, which implies that although for a
fixed K-vector we have achieved strong asymmetry, for an actual laser we still need
some mechanism to separate the pairs of k-vectors related by inversion/time-reversal
symmetry. One possibility is to operate in an amplifier mode, in which an incoming
seed laser stimulates laser emission; due to the properties of stimulated emission, the
photons produced must be identical to the incoming ones and thus have the same E||,
thereby separating the pairs of modes. Another possibility is to use a tilted pump
profile (either on-resonance optical pumping or electrical gating) that breaks inversion

symmetry, thus enabling preferential lasing of one mode.

Another important question that will need to be addressed is control of the E—point
of lasing and achieving strong asymmetry at this particular point. Generally, lasing
will occur in the direction of highest total quality factor. We have demonstrated that
asymmetric coupling ratios as large as 300 can be achieved at the point of highest
quality factor, but the quality factor profile is relatively flat around the neighborhood.

An alternative way to achieve lasing at the desired E—point is to use other dissipation
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channels to control the total quality factor. The transverse quality factor resulting
from the finite boundary area of the photonic structure may often provide a larger
contribution to the total decay, and by engineering the group velocity by band folding
techniques [30], it may be possible to move the lasing mode to a point of stronger
asymmetry.

For grating couplers, other factors such as mode matching with the optical fiber
that light will be coupled to, as well as reflection back into the waveguide, both need
to be taken care of. Mode matching can be achieved by chirping the lattice parameters
such that the quality factor further along the waveguide is smaller, thereby emitting
the same total amount of light; reflections are already partially mitigated by tilted
walls, and further impedance matching could help to reduce such loss. However,
more extensive numerical optimization and FDTD simulations will be required, and
for CMOS-compatible platforms the effect of substrates also needs to be incorporated
into our formalism.

While the bounds corresponding to (1 + ¢)/(1 — t) have been derived under the
assumption of an inversion-symmetric structure, it might also be possible to engineer
such strong asymmetries in a structure that does not retain this symmetry. It will be
interesting to explore more deeply the possibilities for achievable asymmetry in such
a more general setting and demonstrate strong asymmetry for more general device

configurations.
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Chapter 3

Topological Half Charges in the
Radiation Polarization of Photonic

Crystal Slabs

3.1 Background and Motivation

Generating and controlling light with interesting structures and topology is appeal-
ing for both gaining better fundamental understandings of light and employing light
in real-world applications. From a fundamental physics point of view, the ability to
engineer interesting phase fronts and polarization topologies reveals the rich possibili-
ties in electromagnetics, while for practical applications, nontrivial light polarizations
can be used to encode information or optically fabricate microstructures with novel
topologies.

Early interest in structured light began from the discovery of orbital angular mo-
mentum (OAM) of light [31, 32]. These are Laguerre-Gaussian solutions to Maxwell’s
equations that have a winding phase front, and can be used to produce torques in
nanoscale machines [33], control and manipulate nanoparticles in optical tweezers
[34], and generate qudits for quantum communication [35]. Another interesting di-

rection in understanding structured light are vector beams [4] with spatially varying
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polarization configurations. These vector beams can exhibit sharper focusing [36],

and may also be useful for laser machining applications [37].

Cylindrical vector beams, in which the polarization is cylindrically symmetric,
have been extensively studied [4). However, the cylindrical symmetry requires that
the winding of polarization around the singularity must be an integer. More recently,
half-integer topological charges, corresponding to Mobius strips of light polarization,
have been suggested [38] and experimentally demonstrated [39]. The polarization
Mobius strip originates from the interference between two Laguerre-Gaussian beams,

and is mapped out using nanoparticle scattering under a microscope.

Previously, vector beams have been generated using axial birefringence [40] and
dichroic materials, liquid crystal phase plates (g-plates) [41], multimode step-index
fibers [42] and glass cones [43]. However, many of these generation schemes generally

require special materials, and are sometimes challenging for integration and control.

Recent advances in the field of topological photonics [44] and non-Hermitian pho-
toﬁics [45, 46], on the other hand, have introduced intriguing mathematical ideas to
understand and engineer optical phenomena. Periodic structures such as photonic
crystals allow the engineering of band structures, which can exhibit topological fea-
tures, and the coupling to the radiation continuum of slabs allows a natural realization
of non-Hermitian physics. One advantage of these designs is that they are material
independent, employ the simplest dielectric formalisms, yet still reveal interesting
topological behavior. Such structures can be easily fabricated over large scales us-
ing techniques such as interference lithography. It would therefore be interesting to
demonstrate the generation of vector beams from photonic crystal structures.

Bound states in the continuum (BICs), briefly discussed in the preceding chapter,
in fact correspond to integer-charge vector beams [23]. These BICs are formed by
the intersection of lines where the x and y polarizations equal zero respectively. The
polarization winds around the BIC (see for instance Fig. 1(c) of Ref. [23]), and the
charge of the vector beam is equal to the topological charge of the BIC. Such integer
vector beams can easily be generated with photonic crystal slabs made out of regular

dielectric materials, eliminating the need for g-plates or spatial light modulators.
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However, previous work has only examined integer topological charges.

In this chapter, we demonstrate that light emission from photonic crystal slabs
can also be tailored to form a polarization Mobius strip. This half-integer topolog-
ical charge arises from the m Berry phase associated with one Dirac point, or two
exceptional points. To verify the existence of polarization Mobius strips, we pro-
pose to image the polarization along isofrequency contours using scattered light from

photonic crystal slabs.

3.2 Analytical Two Band Model for Exceptional Points

In this section, we consider a simple analytical model for the band structure near the
I" point, at a frequency close to a symmetry-protected quadratic degeneracy point.
We shall start from symmetry considerations to write down a Hamiltonian for the two
degenerate modes in the absence of symmetry breaking [47], then add in symmetry
breaking terms and differential loss and analyze the eigenvalue spectrum. We shall
see the emergence of exceptional points [48, 49] when system symmetries are broken,

and connect them to topological characteristics of the system.

3.2.1 Basic Symmetry Arguments

Symmetry is a powerful tool to help understand features such as degeneracies and
interactions between bands in photonic crystals. More formally, the language of group
representation theory [50] is employed to classify the symmetry of modes.

The most common types of photonic crystal lattices are square lattices and hexag-
onal lattices, the former having a Cy, symmetry group and the latter having a Cg,
symmetry group, see Fig. 3-1. Both of these groups have two-dimensional irreducible
representations (irreps), and the modes corresponding to these irreps will be doubly
degenerate at E—points that preserve the symmetries. This implies that if the struc-
ture has Cy, or Cs, symmetry, then there may exist doubly degenerate modes at the
I', M or K (retains C3, symmetry, which also has a 2D irrep) point. Some examples

include the third/fourth TE band at the I" point for the square lattice or hexagonal
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lattice [51].
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Figure 3-1: Schematic for (a) square lattice (Cy,) and (b) hexagonal lattice (Cg,)
symmetry groups and symmetry breaking operations we consider, as well as (c) a
Mobius strip (adapted from Wikipedia) and (d) a polarization Mobius strip, where
we return to the opposite orientation after looping around the center.

We shall consider modes in the vicinity of the I' point, since it will be easier to
observe the band structure near this point with far-field measurements, although the
discussion is similar for the M point [47] and K point [52].

Following the discussion of Chong et al. [47], we expand the Bloch wave function
in terms of the two degenerate bands u!(#) and u?(7) near the I' point. For small &,

the wave function can be expanded as
(%) = en(k)u' (7) + c(R) (7), wf(7) = en (e (7) + en(B)u?(®),  (3.1)

where H(k)ui(F) = Ai(R)ui(7), with i = 1, 2.
Under an operation g that belongs to the symmetry group, the Hamiltonian must

transform as

D(g)H(R)D~"(g) = H(gF), (3:2)



where D(g) falls under a 2D irrep corresponding to the degeneracy. By enumerating
the lowest order terms that can contribute and imposing symmetry constraints, we
can write down the Hamiltonian HO(E) when the lattice symmetry is not broken.
We can then consider particular types of lattice symmétry breaking, and write down
expressions for H (l?) that obey the remaining symmetries. In the following, we discuss
two separate cases: small perturbations to a square lattice, and to a hexagonal lattice,
both near the I' point.

Observing the resulting emission is easiest when the photonic crystal slab is fab-
ricated in large area. Such large area fabrication is often achieved via interference
lithography, where the intensity modulation due to interference between two laser
beams defines the pattern. Stretching the lattice can be achieved by tilting the out-
of-plane angle of laser beams to change the in-plane periodicity, and shearing the
lattice can be achieved by changing the in-plane relative angle of the laser beams,
but other types of symmetry breaking are more challenging. We will therefore focus

on symmetry breaking terms consistent with experimental fabrication constraints, as

shown in Fig. 3-1.

3.2.2 Perturbing a Square Lattice

This case follows the discussion in Ref. [47]. The square lattice has a Cj, symmetry,
and the unique 2D irrep corresponds to rotation matrices. By writing down the
rotation matrices in terms of Pauli matrices o; and considering how they act on k,,

ky, one obtains the following Hamiltonian:

Hyy (ke ky) = wo —iTo + X[ D (o +iT3)o; + B(kZ — k2)o, + 2kokyog + y(k2 + K2)),
ie{z,y,2} ’

(3.3)

where wy is a reference frequency, I'y is the average decay rate of the two bands, )\ is
a scale factor, 8 and < control the curvatures of the band, and «; and I'; correspond
to different ways of partially breaking the symmetry of the lattice, with «; describing

the difference in frequency and I'; describing the difference in decay rate. «; (I'1)
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Table 3.1: Matrices for the two 2D irreducible representations of the symmetry group
Céy- '

corresponds to shearing the lattice, preserving reflection symmetry with respect to
kg = *kK, but breaking the other symmetries; as (I'2) corresponds to preserving
the rotational symmetry but breaking reflection symmetries; as (I's) corresponds to
changing the relative length of the two lattice vectors. There are no first order terms
in k; and k, due to the remaining symmetries in each of the cases. This Hamiltonian is
identical to Eq. (4) of Ref. [47], except that due to a different choice of representation
matrices (to be consistent with our discussion of the hexagonal lattice), the Pauli

matrices are permuted.

Since wp and I'y correspond to a uniform frequency or decay rate shift, we shall
neglect them in the following discussion. The eigenvalues of the remaining part of the

Hamiltonian are (using properties of the Pauli matrices simplifies the calculation):

E=~K+K)+ \/(al + 2kgky +4T1)? + (02 + i02)? + [os + iT's + B(k2 — k2)]2.
(3.4)

3.2.3 Perturbing a Hexagonal Lattice

The hexagonal lattice also hosts quadratic degeneracies at high symmetry points
protected by the 2D irreducible representations. The Cg, symmetry group of the
hexagonal lattice has two 2D irreps: E; corresponds to the rotational group, while Es
corresponds to transformations on the basis pair 22 —y? and 2zy. Since Pauli matrices
form a complete basis for the vector space of 2D Hermitian matrices, we rewrite the

representation matrices in terms of Pauli matrices, explicitly given in table 3.1.
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We first consider the 2D irrep F; corresponding to rotation matrices. Following
Eq. (3.2), we consider the symmetry constraints on the form of the Hamiltonian.

Generically, the Hamiltonian can be written to second order as
Ho(kg, ky) = Ao + Arkz + Asky + B1k2 + Barksky + BskZ, (3.5)

where A; and B; are two-by-two matrices.

In both 2D irreps, the 180° rotation operation C, is represented by a matrix
proportional to the identity matrix, D,(Cy) = —I, D2(C3) = I. Operating on the

Hamiltonian as in Eq. (3.2), we thus have
Hy(kz, ky) = Ho(—kyz, —ky), (3.6)
which implies that A; = A; = 0. Indeed, all terms proportional to odd powers of k,
and k, should vanish.
Reflection o, with respect to the k,-axis is represented by o, in both representa-

tions. This implies that

0+(B1k2 + Baksky + Bsk2)o., = D;(01)Ho(ks, ky)Dy(01)
= Ho(kz, —ky) = B1k2 — Bokyky + Bsk?. (3.7

Any 2 x 2 matrix can be written as a sum of Pauli matrices and the identity
matrix. Using the fact that Pauli matrices commute with themselves and the identity
matrix, and anticommute with other Pauli matrices, the preceding equation implies

that

Bl = bm[ + b130'z, Bz = b210’;,; + b220'y, B3 = bgol -+ b330'z. (38)

Now consider the symmetry requirements imposed by a rotation Cg of 60°. We

first consider the representation E; corresponding to rotation matrices. In this case,
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we have D;(Cs) = (I + V/3ig,)/2, so that Eq. (3.2) implies
I 3 I V3
(5 + £ioy)(B1k§ + Bykgk, + ngi’)(— - %iay)

2
V3 V3

= Bih — Lk + Bak - Lok Lok 1) + B

- ks — - Xk + k) (3.9)

Expanding this equation and matching coefficients of k2, we find that

1 V3

bijo — =b130,

1 1 3 3
2 - —2-b130'z = me] =+ —b130z + %(bzlaz + bzzO'y) + Z(b30[ + b330'z).

4
(3.10)

Matching coefficients of the Pauli matrices, we arrive at the following relations:
1
bio = b3o, b1z = —bs3, b1z = —'2'521, baz = 0. (3.11)

The remaining constraints for coefficients of k&, and k; are consistent with this and
do not impose additional constraints. Therefore, taking out a constant scale factor
in front and the shift Ay, the Hamiltonian for a quadratic degeneracy corresponding

to the F; representation of the Cg, group can be written as

Hogu1(ka, ky) = wo — iTo + Ao[— (k2 — k2)o, + 2kskyo, + v(k2 + K2)]  (3.12)

Due to fabrication constraints, we consider only symmetry breaking terms that
correspond to the group Cy,, i.e. terms that preserve 180° rotational symmetry and
contain two reflection planes. This implies that Eqs. (3.6,3.7) still hold, sb that
the symmetry breaking term can only contain I and ¢,. The former corresponds
to a uniform shift which is irrelevant, while the latter can be incorporated into the

Hamiltonian to arrive at the general form for the E; representation

Hev1(Kz, ky) = wo — ilo + Xo[(as + iTa)o, — (k3 — ky)o. + 2kokyos + (k2 + kJ)]
(3.13)
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In the preceding parts we have imposed constraints corresponding to Cs and o;.
These are generators of the Cg, group, so a Hamiltonian that transforms correctly
under these group operations is guaranteed to transform correctly under an arbitrary
operation in Cg,.

A similar discussion for the E, representation of the C, group replaces-D;(Cs) =

(I +v/3ia,/2) by Dy(Cs) = (—I + v/3ia,)/2, and arrives at the constraints
1
bio = b3o, b1z = —ba3, b1z = 5021, b22 =0, (3.14)
resulting in the Hamiltonian for the E5 representation

Heuz(kz, ky) = wo — iTo + Ao[(as + iTs)0, + (k2 — K2)o, + 2kokyo, + (K2 + K2)).
(3.15)

Comparing to the Hamiltonian for the square lattice, we see that the main dif-
ference for the hexagonal lattice is to impose a fixed value of the parameter 3 to be
+1 in the model. This corresponds to the fact that the hexagonal lattice is more

isotropic in different directions.

3.2.4 Exceptional Points and Half Charges

Due to fabrication considerations (interference lithography, as discussed below in
section 3.6), we shall only consider symmetry breaking with nonzero a; or az. One
important feature that appears in the presence of these symmetry breaking terms
and loss is the exceptional point (EP) [48, 53, 54], in which both the eigenvalues
and eigenvectors coincide at a particular E—point. At this point, the Hamiltonian
matrix becomes defective, and the remaining eigenfunction becomes orthogonal to
itself under the unconjugated inner product [53, 55]. Close to a second-order EP
(two eigenvectors coalesce), in one direction the frequency is roughly constant and
the decay rates of the two bands split with a square-root scaling, while in the opposite

direction the decay rates are roughly constant and the frequencies split with a square-
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root scaling. Such a structure exemplifies the non-Hermitian nature of the system.
Mathematically, the EP will occur when the square root term in Eq. (3.4) vanishes,

so that
[as +iTs + B(K2 — k2)1* + (2ksky + 01 +il1)* = 0. (3.16)
Equating the real and imaginary parts of this equation to zero yields
oy + 2k.k, =T3, a3+ B(k2 - kf/) =TI, (3.17)
or
oy + 2kky, = T3, a3+ B(k2 - k:) =Ty, (3.18)

which can be solved to give

o —(a3+T1)++/(as+T1)2 4+ B%(T5 — y)? _Is—o
K2 = = ;= (3.19)
or
k2 = I'y—o3+ \/(_03 +T1)* + B2(T3 + o)® ko — —I3—ao (3.20)

23 YT %k,

where we have only chosen the solutions that make &, and k, real. In the limit where
a; = xI'3, the above expressions should be understood in terms of a limit using
L’Hopital’s rule. |

Generally, there will be four such EPs. They can be understood as a consequence
of the quadratic degeneracy point splitting into a pair of Dirac points (band-touching
points around which the dispersion is linear) under symmetry breaking [47], and each
Dirac point splitting into a pair of EPs under the addition of differential loss in the
system, see Fig. 3-2 for a schematic.

The existence of EPs can be directly verified by examining the evolution of eigen-

values in momentum space when one adiabatically traverses a loop. If the loop en-

438



4 x
Exceptional Points

Break Sym. Add Loss
—_—i — ;

k

A w & « >

o SR S B -.]—.
kx kX kx

k ® k| o-e k II

1 x Quad. Degen. 2 x Dirac Points

L
-~
~

k k k

X x X

Figure 3-2: Schematic of a quadratic degeneracy point splitting into a pair of Dirac
points, and further into four exceptional points.

closes a single EP, then the eigenvalues on the two bands will switch, one of them
acquiring an additional 7 phase shift in the wave function; if two EPs are enclosed,
the eigenvalues will return to themselves, but with an additional = phase shift.

In our case, this phase shift can be understood as coming from the = Berry phase
associated with a Dirac cone. Close to a Dirac cone, the bands can be described by

the Hamiltonian [47]

0 ke
H = kyo, + kyo, = ' g (3.21)
ke 0
We can take the eigenvectors to be
1 [ei® 1 [ei®

|v1) = /2 y y |v2) = 7 B E (3.22)

so the Berry phase on the upper band (the lower band will be analogous), along a
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circle enclosing the Dirac point, is given by

. je— 10
y = f (0| Velon)dk = /0 2”% (e 1) 'ZT kdh=m  (323)
Under the addition of loss, the bands will only be slightly deformed, and the Berry
phase surrounding the pair of EPs will also be 7. Therefore, as we adiabatically loop
around a pair of EPs, we will pick up a 7 phase shift when we return to our starting
point.

The 7 phase shift can be viewed as defining a half-integer topological charge: when
tracing the polarization vector around a pair of EPs in the far field and returning to
the starting point, we have encircled the EPs with a trajectory in momentum space.
~ Along the path, both the polarization direction and phase will wind. Assuming that
along the trajectory there are no points of circular polarization (C-points) [56], where
the major axis of the polarization ellipse is undefined, the 7 phase shift corresponds
to the direction of the polarization vector flipping when we retufn to the starting
point. This corresponds to a half-integer topological charge, i.e. a Mobius strip [56].

An alternative way to view the half-integer topological charge is from the perspec-
tive of nodal lines, i.e. lines where the polarization components c, or ¢, vanish. Along
a high symmetry line and upon crossing the Dirac point, we switch from a ¢, nodal
line to a ¢, nodal line. Any other nodal lines will be doubly degenerate by symmetry
of the system, hence we have an odd number of ¢, and ¢, nodal lines entering the
isofrequency contours. An inspection of Fig. 3-1(d), where the nodal lines are in the
vertical direction, shows that this corresponds to a half-integer polarization winding.

For experimental observation of the topological half-charge, isofrequency contours
will be a natural way to map out the polarizations around a pair of EPs. An isofre-
quency contour is simply a special loop around the EPs, provided that the isofre-
quency contour is closed, so the preceding discussion about Berry phase and topo-
logical charge still holds. Therefore, we can verify the nature of the half-integer
topological charge by measurements of the polarization vector along an isofrequency

contour.
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In view of such measurements, in the following section we shall examine the general
shape of isofrequency contours in various parameter regimes using the analytical
model. We shall then move on to numerical simulations, first of a 2D photonic
crystal infinite in the third direction, to illustrate the properties of the Dirac point,
and then present a 3D simulation of a photonic crystal slab with realistic experimental
parameters.

We would like to note here that previous work has demonstrated that a Dirac cone
at the center of the Brillouin zone with a flat band in the middle can be split under
the addition of loss into a ring of exceptional points [57]. In that case, the bands
are isotropic in different directions, resulting in a ring instead of a pair of points in
particular directions. Moreover, the flat band in the middle results in a trivial Berry
phase due to the pseudospin-1 description of the full system [58, 59]. Our system
differs here in that the Dirac cone is isolated from any other bands, and thus has a

genuine Berry phase winding of =.

3.3 Results from Analytical Model

Using the analytical model above, we can determine the isofrequency contours and
exceptional points and model its shape as a function of system parameters. In this
section, we discuss various parameter regimes and the corresponding contour shapes.
Without loss of generality, we choose 5,7 > 0 (a global sign shift with the cor-
responding «; takes care of the negative case). Considering realistic experimental
implementations, we shall only look at symmetry breaking terms «a;(I';) and a3(T's).
For simplicity, in this section we shall only consider breaking one symmetry at a time;
for a discussion with both terms present simultaneously, see Appendix A.
Depending on the parameter choices, many different types of isofrequency contours
can be found. Some characteristic contours that are the most relevant to accessible
parameter regimes for experiments are shown here, and more detailed discussions can
be found Appendix A. The particular case here with 8 = v = 0.2 prior to symme-

try breaking most closely corresponds to the lowest symmetry-protected degenerate
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Figure 3-3: Frequency spectrum, isofrequency contours and decay rates for parameter
choice 8 =v=0.2, a; = 0.5,y =0.01, a3 = I's = 0 in the analytical model.

modes at the I" point for a square lattice. In this case, the band curvature differences
in the k; = +k, directions are significantly greater than k, = 0 or k, = 0. Note that
the isofrequency contours here are not equally spaced in frequency, and are used only
for illustration purposes.

In Fig. 3-3, we show an example with parameters 8 = v = 0.2, oy = 0.5,
I't = 0.01, a3 = I's = 0. The exceptional points are calculated using Egs. (3.19,
3.20) in the preceding section. On the upper band, we obtain closed, relatively round
isofrequency contours containing a pair of EPs. This persists up to the frequency
where the isofrequency contours around two different pairs coalesce. On the lower
band, due to parameter choices, the isofrequency contours resemble hyperbolas, and

extend very far away. The two EPs connect a line of sharp separation between different
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Figure 3-4: Frequency spectrum, isofrequency contours and decay rates for parameter
choice =7 =0.2, a3 = 0.2, '3 =0.1, a; =I'; = 0 in the analytical model.

imaginary part values of the band.

In Fig. 3-4, we show an example with parameters = v = 0.2, a3 = 0.2, I's = 0.1,
a;y =I'; = 0. In contrary to the preceding example where the lattice is sheared, in this
case the lattice is stretched in one direction: Due to the dispersion of the bands, the
isofrequency contours are either open or enclose 4 EPs at the same time, making the
observation of half-charge polarization winding difficult. As the example given here
is fairly similar to the actual band dispersion found in numerical calculations of the
band structure near the I'-point of a square lattice, this highlights the importance
of using the correct symmetry breaking operation, matched to the band curvature
characteristics, to obtain EPs. In the following, we shall thus mainly focus on lattice

shearing symmetry breaking operations. Note that in the hexagonal lattice case,
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we wrote down a symmetry breaking term corresponding to a;; however, due to
differences between reciprocal lattice vector definitions (rotated by 45 degrees), the
symmetry breaking is in fact more similar to shearing, effectively resulting in behavior

as in Fig. 3-3.

3.4 Numerical Simulations of 2D Photonic Crystals

While the analytical model in preceding sections indicates the existence of exceptional
points in the perturbative regime, in this section we present numerical simulations of
2D photonic crystals (infinite in the third direction) and demonstrate the existence

of polarization contours with half-integer polarization winding.
2
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Figure 3-5: Simulation parameters for 2D photonic crystals and line cuts of frequency
bands in certain directions. Left: square lattice; Right: sheared lattice with rhom-
bus angle & = 65°. Circles track the splitting of the quadratic degeneracy, and the
rectangle denotes the Dirac point we focus on.

For demonstration purposes, we consider a shearing of the square lattice, as shown
in Fig. 3-5. Numerical calculations were performed using the freely available software
package MPB [60]. MPB uses preconditioned conjugate-gradient minimization of the
block Rayleigh quotient in a planewave basis to determine the eigenmodes of the
Maxwell’s equations with periodic boundary conditions. By specifying the lattice,

structure, and Bloch periodic boundary conditions, we solve the eigenfrequency and
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Figure 3-6: (a) Frequency contours for r/a = 25/84, § = 65°, TE polarization. (b)
Plot of polarization ellipses at each point along a heart-shaped isofrequency contour,
clearly exhibiting a half-integer winding of polarization. Frequencies are in units of
2mc/a.

eigenmodes at each k-point. From the resulting eigenmodes, we then integrate the
Bloch wave function across the Brillouin zone to obtain the polarization vector ¢ =
CzT + ¢y, similar to the calculation in the preceding chapter. Note that here we are
considering a system with time-reversal symmetry (no loss) as well as C§ rotational
symmetry and z-mirror symmetry. This guarantees that the Bloch eigenfunctions

and ¢ can be taken to be real [23].

In these simulations, we use a unit cell with the shape of a rhombus, consisting
of a uniform slab material with an elliptical hole etched inside, see top panel of Fig.
3-5 for a schematic. The edge length of the rhombus is defined as a, the radius of
the hole when there is no shearing is defined as r, and the angle between two lattice
vectors is defined as 6, with € = 90° corresponding to the square lattice limit. In the
presence of shearing, the holes are deformed from circles into ellipses, and the major

axes are chosen to be

0
Ta = 27 cos® 3 =2 sin? g— (3.24)

This is consistent with holes resulting from interference lithography, in which two
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laser beams are interfered and points where the laser intensity is above a certain
threshold are exposed and etched out. By changing the geometric angle between
the interfering laser beams, such lattice and hole geometries can be fabricated. For
simulations, we normalize all length scales such that a = 1. The = and y directions
are defined as the symmetry axes of the rhombus. The slab material is assumed to
be SigN,4 with a refraction index of n, = 2.02, while the hole material is assumed
to be index matching liquid with a refraction index of np = 1.462 (same as SiO,).
The parameters were chosen by optimization over hole radius and angle, to find an
example with a relatively wide frequency range where closed isofrequency contours
containing a Dirac point can be observed. Such optimization is much faster for 2D

simulations than for full 3D slab simulations.

The resulting band structures for TE polarization (electric field is in the z — y
plane), r/a = 25/84, 8 = 90° or 6 = 65° are shown in Fig. 3-5. When @ is decreased
from 90° to 65°, the quadratic degeneracy point splits up and a Dirac point emerges
along the I'-M direction. Note that additional bands are pulled down from the top,
and as the angle is tuned a band switching occurred, so that the Dirac point has

effectively moved to be between the second and third bands in the figure.

The isofrequency contours around the Dirac point are shown in Fig. 3-6. The
width of the contours is chosen to be dw = 0.001 x 27c/a, consistent with a quality
factor of around 600 in the simulations of photonic crystal slabs below. Below the
Dirac point, closed isofrequency contours well-separated from other contours are seen,
and they increase in size as one moves away from the Dirac point, until the ‘contour
intersects the origin and closes with the symmetric pair of isofrequency contours on
the other side. As we increase the frequency above the Dirac point, the contour ap-
proaches other frequency bands relatively quickly. Therefore, the range of frequencies
over which there is a closed isofrequency contour around the Dirac point is roughly
w = (0.577 ~ 0.59) x 2mwc/a. Notice how the contour is similar to the analytical
model discussed above, see Fig. 3-3, up to a 45° rotation due to differences in axis
definition. This indicates that even out of the perturbative regime, the analytical

model can capture many important features of the band structure.
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To verify that the isofrequency contour indeed carries half-integer topological
charge, we plot polarization ellipses at each point along the isofrequency contour,

with the same scale factor at all points, see Fig. 3-6(b). The ellipse is defined by
T = zo + R(cze®),y = yo + R(c,e), ¢ € [0,27), (3.25)

where z( and g, are the center points around which the ellipse is plotted. As discussed
above, spatial and time-reversal symmetries of the 2D photonic crystal considefed in
this section guarantee that the polarization around the isofrequency contour will be
linear, as shown in the right panel of Fig. 3-6. As we trace around the contour, the
polarization comes back to itself, but with an additional 180° flip, similar to the half
charge in Fig. 3-1(d). This can also be seen by noting that the two intersections on

the axis have orthogonal orientations. We define the topological charge as [23]
1 -— -,
g= ?{ dF - v z(F), (3.26)
2m C

where ¢(/;) = arg[U(E)], U(E) being the major axis of the polarization ellipse [39, 61],
which in this case is the direction of linear polarization. By inspection, we see that

our contour has a topological charge of ¢ = —1/2, corresponding to a Mobius strip.

In general, two bands that belong to the same TE/TM polarization but have a
symmetry mismatch along high symmetry lines can often give rise to half-integer
polarization winding. If these two bands meet along the high symmetry line, the
symmetry mismatch prohibits them from interacting along this line, so the two bands
will cross each other. On the other hand, away from the high symmetry line, the
coupling between the bands will open up a gap, similar to the well-known avoided
crossing. We are therefore generically left with a Dirac point on the high symmetry
line, and on the two sides of the Dirac point along the high symmetry line, the
modes will have different polarization configurations, hence giving rise to a half-

integer topological charge.
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3.5 Numerical Simulations of Photonic Crystal Slabs
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Figure 3-7: TE band structure and quality factor for a = 530 nm, r = 157 nm, t = 180
nm, # = 65°. The range of frequencies and bands that we focus on are marked in red,
and the bands used for excitation are marked in green. Note that the green bands
have a quality factor of around 1000 around the wavelength of interest.

In this section, we present simulation results of photonic crystal slabs to verify
the existence of exceptional points and half-integer charge polarization winding along
isofrequency contours.

Due to the degeneracy between eigenvalues near the exceptional point, the ap-
proach in the preceding chapter of first performing an FDTD simulation and then
using Fourier transforms to determine the appropriate eigenmodes does not work well
in this system. Therefore, we determine the eigenmodes using frequency domain fi-
nite element method simulations with the commercial software package COMSOL
Multiphysics [62]. We use similar parameters as in the preceding section, except that
there is now an additional variable describing the thickness of the slab ¢, and perfectly
matched layers (PML) are placed on the top and bottom to absorb outgoing waves.

Polarization vectors are extracted by integrating the Bloch wave functions on a plane
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Figure 3-8: Isofrequency contours and polarization ellipses for the photonic crystal
slab. Top left: isofrequency contours of width 1 nm, clearly forming closed loops;
Bottom left: polarization ellipses along the specific contour with wavelength 797 nm;
Right: zoom in on different parts of the polarization ellipses. The polarization is
mostly linear, except close to the upper left and upper right corners of the heart
shape.

that is between the slab and PML.

The simulation parameters are rhombus side length @ = 530 nm, hole radius
without shearing » = 157 nm, slab thickness ¢+ = 180 nm, rhombus angle # = 65°,
slab refraction index n, = 2.02, substrate, superstrate and hole refraction index
np = 1.462. As in the previous section, we consider the TE-like polarization [1]. The
band structure and quality factors along certain line cuts are shown in Fig. 3-7. The
pair of bands we use to form the closed isofrequency contours are labeled in red, while
the band to be used for excitation and pumping, as discussed in more detail in the
next section, is labeled in green.

The radiation loss in a slab of finite thickness breaks the time-reversal symmetry of
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the system. Therefore, contrary to the preceding section, ¢, and ¢, will now in general
be complex vectors, and the polarization at each point will be an ellipse when c;, ¢,
are out of phase. The topological charge along the polarization contour, however, can
still be defined through Eqgs. (3.25,3.26) by examining the major axis of the ellipse.

The isofrequency contours around the exceptional points are shown in Fig. 3-
8. We see the formation of closed isofrequency contours containing a single pair of
exceptional points for a range of wavelengths from 788 nm up to 800 nm. Along an
isofrequency contour, the field is mostly linearly polarized, and exhibits a Mobius
polarization winding with topological charge ¢ = —1/2.

To verify the existence of exceptional points in the band structure, we traverse
loops in momentum space and trace the eigenvalues along these loops. As discussed
in section 3.2.4, if a single EP is enclosed, the eigenvalues will switch places with
each other, while if there are no EPs, the eigenvalues will return to themselves. In
Fig. 3-9, we plot examples of two such contours, one enclosing an EP and the other
not. The observed eigenvalue switching behavior verifies the existence of EPs. By
systematically changing the loop, we find that an EP is located around (kgo, kyo) =
(0.036,0.001) x 27/a. The other 3 EPs will be located at (+kg0, 2ky0) by symmetry.

The main features of the photonic crystal slab results are again consistent with
the analytical model and 2D photonic crystal simulations, confirming our theory and

numerical calculations.

3.6 Experimental Feasibility

The designs above should be readily fabricated in large area photonic crystal slabs.
The parameters we have used are achievable with current interference lithography
setups. The in-plane periodicity required for the laser is 480 nm, which is achievable
by tilting the 355 nm laser beam used for interference. The refraction index of a SigNy4
slab and SiO, substrate are already matched with our simulations, and the refraction
indices in the holes and superstrate can be tuned to the design value of 1.462 by

using index matching liquid [57]. Moreover, fine tuning to compensate for fabrication
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Figure 3-9: Loops in momentum space verifying the existence of exceptional points.
Left: the eigenvalues return to themselves when the loop doesn’t enclose an EP;
Right: when the loop contains an exceptional point, the eigenvalues switch.

disorder can be achieved with index tuning. Using interference lithography and tuning
the tilting angle of the interfering laser beams as well as the in-plane angle between
the laser beams, it should be possible to produce differences in the lattice vector
lengths and shear the lattice, thereby generating nonzero a; and asz. On the other
hand, other types of symmetry breaking corresponding to as might be more difficult
to implement. An alternative, somewhat more complicated method to fabricate a
roughly hexagonal lattice structure to explore other band structures would be to use

three beams to interfere and produce more complicated shapes of holes or rods.

Direct imaging of the polarization features on the isofrequency contours can be
achieved using resonant-enhanced scattering from natural fabrication disorder [63].
This experimental scheme excites a resonance at the same frequency as the target
isofrequency contour but with a different momentum. Disorder and roughness intro-
duced during the fabrication process scatter light in this resonance to the resonance

of interest, so that light is emitted from the slab in directions corresponding to isofre-
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quency contours of the desired bands. By placing a polarizer and /or waveplate in the
far field, we can directly image the polarization at each point on this isofrequency
contour. By mapping out the polarization states on the entire isofrequency contour,
we can verify that the scattered light indeed forms a half-integer topological charge.
The scattered light intensity can be computed from temporal coupled-mode theory

to be [63]

Picat _ 2% Yscat ’ (3.27)
P; (w = wo)? + (7 + Vscat +Y0)?
where P is the scattered power, P, is the incoming power, -, the radiative decay
rate of the excitation resonance, 7y,c: the scattering decay rate between resonances,
~o absorption decay rate (often negligible), w is the excitation frequency and wy is the
resonance frequency. This quantity is maximized on-resonance with frequency bands
and when the impedance matching condition 7y, = 7.4 is satisfied.
To perform measurements of the polarization Mobius strip, we require the follow-

ing experimental conditions:

1. There are closed isofrequency contours encircling two exceptional points.

2. The excitation light source frequency can be tuned across the range of closed
isofrequency contours that contain the exceptional points, with a linewidth that

is preferably less than the width corresponding to the quality factor of the bands.

3. The width of the bands combined with the far-field angular resolution is such
that individual frequency contours can be separated and resolved, and the po-
larization can be mapped out along the frequency contour. Other bands in the

same region are either non-intersecting or very weak.

4. There exist other bands with the same frequency but at other wavevectors, such
that the radiative quality factor of this band is matched to the scattering quality
factor (see above). This allows light to be efficiently coupled into resonances in

the photonic crystal slab and scattered into the desired contour.
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In addition, the following characteristics are also desirable but not strictly re-

quired:

5. Isofrequency contour has a more circular shape. This might be useful if the
light emitted from the photonic crystal is used for other applications, such
as manipulation of particles or fabricating exotic shapes. Alternatively, beam

shaping afterwards could produce more favorable contours.

6. Along the isofrequency contour, the polarization is as close to linearly polarized
as possible. This will help to eliminate the ambiguity of ellipse axes associated

with circular polarization.

In our simulations above, we have demonstrated the existence of isofrequency
contours enclosing exceptional points. The wavelength around which the effect is
observable has been engineered to be around 795 nm, lying well in the frequency
range over which Ti:Sapphire lasers can be tuned (650 nm-1100 nm), and where the
laser has linewidths less than 1 nm.

The quality factor of the bands of interest is around 600, see Fig. 3-7, correspond-
ing to a wavelength width of roughly 1 nm. From Fig. 3-8 with band widths of 1
nm, we see that the isofrequency contours are well separated and the polarization can
be easily differentiated along the contour. The angle of emission is a few degrees, so
the contour should be easily observable. There exist additional TM-polarized bands
in the same region, but due to the mirror symmetry in the z-direction, exciting res-
onances in TE bands will not scatter very strongly into TM bands (this has been
experimentally verified in Ref. [63]).

We use the bands located around k, = 0.1 x 27/a at A = 790 nm to couple light
into the resonance. These have a total quality factor of 1000, or a single-sided coupling
quality factor of 2000, well matched to the scattering quality factor in typical samples
fabricated by interference lithography. It should therefore be possible to efficiently
couple light into the resonances.

Due to the parameter choice the isofrequency contour is not very round (but still

very pretty!); further optimization could be performed to produce a more favorable
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shape. Along most points on the isofrequency contour in our example, the polarization
is roughly linear, so that the topological charge is well-defined.

Therefore, all requirements for observing half-integer topological charges are sat-
isfiled with the photonic crystal slab we have designed, and experiments should be
able to verify the generation of isofrequency contours with Mobius strip polarization

from these structures.
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Chapter 4

Conclusion and Future Outlook

In this thesis we have discussed some interesting possibilities of tailoring light emission
from photonic crystal slabs. In particular, we have focused on two important prop-
erties to pursue with these structures, one of directionality and controlled emission,
and the other of exploiting topological features of the band structure.

In chapter 2, we derived a temporal coupled-mode theory formalism to analytically
calculate the scattering matrix from a photonic crystal slab of arbitrary geometry and
at arbitrary incident angle. The reflection and transmission spectrum is calculated
under this framework and bounds on the achievable coupling asymmetry are derived.
The bounds are verified with numerical simulations of photonic crystal structures, and
we showed how these bounds can be saturated by parameter optimization. We then
focus on the particular example of an inversion-symmetric structure and give examples
of both highly asymmetric coupling and rapid switching of coupling direction.

It will be interesting to extend our temporal coupled-mode theory formalism fur-
ther to include non-linear effects (perturbation theory), gain and loss (additional
ports corresponding to gain or loss channels), different substrates and superstrates
(modified direct pathway matrix), and time-reversal symmetry breaking structures
(magneto-optical effects could potentially be incorporated by choosing an appropri-
ate basis [64]). Including such effects into the formalism may allow us to examine
fundamental bounds on asymmetric emission in more complicated systems, and ex-

plore novel effects on the Fano resonance and transmission spectrum.
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In chapter 3, we show the possibility of generating Mobius strips of polarization
from photonic crystal slabs. From a simple two-band model constrained by symmetry
considerations, we examine the band structure in different parameter regimes for a
square lattice and hexagonal lattice, and find that exceptional points with nontrivial
topological characteristics arise in these systems. We then demonstrate using numer-
ical calculations of the band structure and polarization on isofrequency contours that
half-integer vector beams can be generated from photonic crystal slabs. Systematic
optimization of the parameters to maximize the range of frequencies over which this
effect is observable will make experimental demonstrations easier.

In the future, it would be interesting to enginéer the band structures such that the
isofrequency contours are more isotropic in shape. Another possibility is to generate
higher order vector beams with half-integer polarization winding. From a physics
viewpoint, exploring other types of band structures and the effect of adding radiation
loss will allow new topological features to be extracted and understood. Potential
candidates may include higher order exceptional points, double Dirac cones [65, 66],
flat bands in Lieb lattices or Kagome lattices [67, 68], and other nontrivial band
topologies. An alternative direction would be to combine the possibility of engineering
asymmetric emission and generating nontrivial polarization topologies, such that the
photonic crystal slab radiates with one topological configuration on one side and a
different one on the other side. We hope that our work is only the tip of an iceberg
to the wealth of phenomena in photonic structures that will reveal interesting new

physics and important applications.
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Appendix A

Extended Results from Analytical
Model

In this appendix, we give some additional examples of the possible isofrequency con-
tours and exceptional point layouts based on the analytical model. Without loss of
generality, we may choose 3,7 > 0, since negative values can be obtained by appropri-
ate choices of the symmetry breaking terms and switching the bands. In the following
figures, we shall show 3D plots of the frequencies, as well as 2D plots of the decay
rates and isofrequency contours, all as a function of the in-plane momentum. From
Eq. (3.4), the imaginary part of the eigenvalue (corresponding to the decay rate) will
always appear in conjugate pairs with the same magnitude, so we only plot one of
them. In the case where the two isofrequency contours are qualitatively similar, we
only show one of them. Due to the quadratic dispersion of the bands, the spacing of
isofrequencies is much closer at higher momenta, so we choose nonuniform frequency

spacings instead to illustrate the main features of the contours.

Tn the case where there is no symmetry breaking term, the eigenvalues are given

by

B(ka, ky) = y(62 + k2) £\ (K2 + B2)2 + (82 - 1)(K2 - k2)7, (A1)

so that along the k,, k, axis the dispersion is E ~ (y=+|8|)k? and along the k, = £k,
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axis the dispersion is E ~ (y41)k®%. Therefore, the parameters v and § act to control

the curvature of the band in different directions.

Al Casel: g=1

We start with § = 1, corresponding to the fixed value for the hexagonal lattice
and also achievable for the square lattice. Plugging this into the expression for the
eigenvalues Eq. (3.4), the terms can be rearranged as only a function of k2, so this is a
case where the bands are isotropic in different directions prior to symmetry breaking.
The isofrequency contours before symmetry breaking will simply be circles.

For simplicity, first consider v = 0, where according to Eq. (3.4), the top and
bottom bands will have the same shape but curve in opposite directions.

When a3 # 0 (stretching), a; = 0, the o, and oy reflection symmetries of the
square lattice are preserved, so the EPs are seen to appear in the horizontal or vertical
directions depending on the sign of a3. This is illustrated in Fig. A-1. Increasing
a3 increases the distance from the origin to the EPs, while increasing I's increases
the distance between the EPs where they split along a hyperbola. The effect of a4 is
similar due to the isotropic nature of the original bands, except the direction of the
EPs is rotated by 45 degrees. When both «;, a3 are nonzero, the directions of the

EPs will be distorted, but the general shape of the contours are fairly similar to Fig.

A-1(b).

Figure A-1: Frequency spectrum, isofrequency contours and decay rates for parameter
choice =1, vy=a;=T; =0, a3 =0.5, I's = 0.2 in the analytical model.
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Now we move on to examples where = 1, but v 3 0. First consider v < 3, with
v = 0.8 as an example. In this case, one of the bands will be flatter than the other,
giving rise to differences in the isofrequency contours. In the example in Fig. A-2, the
upper band no longer has a wide range of isofrequency contours that enclose only 2
EPs, and instead the contours encircle all 4 EPs, while the lower band still has many

isofrequency contours containing 2 EPs.

For v > (3, the two bands bend up in the same direction, as in Fig. A-3. On
both bands, most isofrequency contours will now contain all 4 EPs simultaneously,
so the emitted light will not have a polarization Mobius strip configuration. Note
here however that for larger values of loss differences between bands, on the lower
bands and close to the EP, there are a narrow range of isofrequency contours that
only contain one EP. Further work is required to see if this can appear in realistic

band structures, and if they are of any significance.

Figure A-2: Frequency spectrum, isofrequency contours and decay rates for parameter
choice g =1,v=0.8, a; =0.5,'1 =0.2, ag = I's = 0 in the analytical model.
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Figure A-3: Frequency spectrum, isofrequency contours and decay rates for parameter
choice B =1,v=2, 0 =0.5, '} =3, a3 = '3 = 0 in the analytical model.

A.2 Casell: =02

Here we consider the case where the control parameter 3 is small, and choose the
specific value of # = 0.2 for our calculations. This case corresponds to when the
difference between band curvature along the k,, k, axis is smaller. In the main text,
due to the relevance of such a structure to calculated 2D photonic band structures,

we have already presented some results for 5 = v = 0.2, see Fig. 3-3 and Fig. 3-4.

For v = 0, symmetry breaking forms closed contours as in the previous section.
The main difference here is that due to the anisotropy of bands in different directions,
a1 and ag symmetry breaking terms now have different effects, as seen in Fig. A-4.
The resulting isofrequency contours are more circular in the case of stretching, while
they are closer to hyperbolas in the case of shearing. However, both contain closed

isofrequency contours.

For small but finite v, with v = 0.2 as an example, the bands will be flat along
the k; = 0 and k, = 0 axes before symmetry breaking. This results in one of the

directions having open contours after symmetry breaking, as seen in Fig. 3-3 and
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Fig. 3-4. When the imaginary part of the symmetry breaking term is greater, shown
in Fig. A-5, we again see pockets of isofrequency contours that only contain a single

EP, and closed isofrequency contours that are near the EPs but do not contain them.

When 7 is large, we return to a similar case as when + is greater than 1 in the
previous section, in which both bands bend in the same direction, and the isofrequency

contours contain all 4 EPs at the same time.

Figure A-4: Frequency spectrum, isofrequency contours and decay rates for parameter
choice top: 8 =0.2,y=0,a; =T =a3 =3 =0, middle: 8 =0.2,y=0, a; = 0.4,
I =02,a3 =T5 =0, bottom: 8=02,y=0,a3 =05 T3=02a;=T3=0in
the analytical model.
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Figure A-5: Frequency spectrum, isofrequency contours for parameter choice 8 =102,
7=0.2,01 =05, =0.2, a3 =T3 = 0 in the analytical model.

A.3 Caselll: =5

Here we consider the case where 3 is relatively large. We choose 3 = 5; the difference
in band curvatures will thus be smaller along the ky, = +k, axis. Most of the quali-
tative features can already be understood by a 45 degree rotation of the axes, which
brings us back to case II.

The example we provide here in Fig. A-6 is when both 4 and v are large. One
direction on the lower band will be flat prior to symmetry breaking, giving rise to
open frequency contours in diagonal directions. The other contains closed contours

of all 4 EPs, and there are isofrequency contours closer to the I’ point than the EPs.
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Figure A-6: Frequency spectrum, isofrequency contours and decay rates for parameter
choice =5, =25, a; =0.5, ' =0.2, a3 = I'3 = 0 in the analytical model.
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