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Abstract

This thesis studies the consequences of 'super-quantum non-local correlations', which
are hypothetical violations of Bell/CHSH inequalities that are stronger - more non-
local - than quantum mechanics allows, yet weak enough to respect special relativity
in prohibiting faster-than-light communication. Understanding the power of such
correlations will yield insight into the non-locality of quantum mechanics. Whereas
previous studies of super-quantum correlations have demonstrated enhancements in
cryptography and computation of distributed functions, this work opens up a new
direction of research by showing that they can also enhance the capacity of classical
communication over a noisy channel. Our results exhibit a trifecta of proof-of-concept
channels: first, we show an interference channel between two sender-receiver pairs
where the senders are not allowed to communicate, for which a shared super-quantum
bit allows perfect classical communication. This feat is not achievable with the best
classical (senders share no resources) or quantum-assisted (senders share entangle-
ment) strategies. We next show two examples that are conjectured to demonstrate
the following capacity separations: an interference channel that strictly separates
super-quantum from quantum-assisted strategies, and quantum-assisted from clas-
sical strategies; and, lastly, a multiple-access channel that strictly separates super-
quantum-assisted strategies from classical ones. At the heart of some of these exam-
ples is a novel connection between multi-sender channels and multi-player XOR and
pseudo-telepathy games.

Thesis Supervisor: Peter W. Shor
Title: Henry Adams Morss Jr. Professor of Applied Mathematics
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Chapter 1

Introduction

Is Nature local? Must particles be in contact with each other to directly interact?

If we take quantum mechanics to be the fundamental theory of nature, the answer

seems to be no. In 1964, John Bell showed that quantum theory is not a local

hidden-variable theory [5]; a local theory would not be able to reproduce the observed

statistical outcomes of quantum measurements. Already, the puzzling non-locality of

quantum mechanics is manifest in the Aharanov-Bohm effect, where a charged particle

is affected (for instance, by acquiring a phase shift) by an electromagnetic field despite

being confined to a region where the field is zero.

But any theory of Nature must also play by the rules of special relativity, which

imposes a speed limit on communication. Quantum theory is the only theory we know

that allows two spacelike-separated observers to influence each other (non-locality),

and yet, prohibits instantaneous communication between them - the above-mentioned

'influence' must not allow for information transfer (relativistic causality). But is it the

unique theory that checks both these boxes? Popescu and Rohrlich's [61 search for

theories that can be deduced from these two criteria alone, led to the discovery that

nature could be even more nonlocal than quantum mechanics predicts, yet be fully

consistent with relativity [7]. A super-quantum theory could produce even stronger

nonlocal correlations than quantum theory.

Quantum information is the study of how to cleverly utilize quantum resources,

such as entanglement, to aid communication tasks - quantum key distribution, quan-
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tum bit commitment and so on. This begs the question: could we use the maximally

non-local correlations of super-quantum theories as a resource, and could they make

our lives easier/more efficient?

This thesis is the first survey of how super-quantum resources could be used to aid

channel communication. In Chapter 1, we explain how to quantify non-locality via

the CHSH inequality, and introduce the abstraction of PR-boxes (first introduced in

[61) to represent super-quantum non-local theories. In Chapter 2, we introduce some

preliminaries on classical and quantum channels, including common notation. In

Chapter 3, we present our original result of a two-sender, two-receiver communication

channel for which the classical joint capacity is strictly higher with the aid of a PR-

box, than with entanglement and/or a classical strategy. In Chapter 4, we present

two more original channels which show two conjectured separations: an interference

channel that strictly separates these three classes of resources (classical, quantum-

assisted and PR-box assisted); and a multiple-access channel that has its capacity

enhanced by a PR-box. In doing so we draw a new connection between the fields of

XOR games and network quantum information theory. We finally conclude with a

summary of results and future outlook for related research in Chapter 5.

1.1 Non-signaling theories

Quantum Mechanics is non-local, and therefore permits 'interaction at a distance'

by space-like separated parties. How to reconcile this with special relativity, which

forbids communication between those same parties (the non-signaling property)? In

fact, the two requirements are not mutually exclusive; there exist interactions that do

not constitute a communication, or transfer of information. Following the convention

(which exists for good reason - see footnote'), all super-quantum theories we consider

'There are merits to this viewpoint: Aharonov [7 pointed out that taking non-locality and non-
signaling as fundamental axioms of QM implies non-determinism, another property of quantum
mechanics. The reader is referred to [8, 6] to find out more, but Popescu provides a good, intuitive
paraphrase of the argument: "If by moving something here, something else instantaneously wiggles
there, the only way in which this doesn't lead to instantaneous communication is if that 'wiggling
thing' is uncertain and the wiggling can be only spotted a posteriori." This is exactly a description
of non-determinism.

14



shall obey these two properties.

Mathematically, this non-signaling property amounts to the situation where Alice

cannot gain any information about Bob's input by altering her input. That is, the

sum over Bob's outputs (b) of the joint probability distribution is independent of

Bob's inputs (y), and equal to Alice's marginal distribution - and vice versa.

Definition 1.

S P(a, blx, y) = EP(a, bx, y') = P(ax)VaXYY'
b b

P(a, blx, y) = P(a, bx', y) = PB(bly)Vb, y,xx. (1.1)
a b

We may interpret the above equation as meaning that no subset of the two parties

interacting with the theory should be able to find out anything about the inputs of

any of the others by looking at their own inputs and outputs. It is not hard to

generalize our definition above to a definition of a non-signaling theory involving

multiple parties, and the reader is referred to [9] for the details. For our purposes, it

suffice to consider the simplest class of non-signaling theories, the ones that involve

two parties. Within this set of non-signaling theories, then, we single out the non-

local ones, the ones where Alice's inputs and outputs affect Bob's inputs and outputs

even if Alice and Bob are space-like separated.

1.2 Nonlocality of quantum theory

Bell's paper in 1964 [5] brought to light the existence of correlations that can be ob-

tained from measurements of a bipartite quantum state that could not be reproduced

by systems that do not communicate (ie. are restricted, by classical mechanics or

otherwise, to be local). Quantum mechanics has therefore been termed a non-local

theory.

What, exactly, is locality (or the lack thereof)? The term pertains to theories

that underlie states of physical objects, or more pragmatically, regimes in which ex-

15



perimental effects on those physical objects can be observed. All such experiments

to elucidate the underlying theory involve some sort of measurement, such as spin

measurements on a spin-half particle. A local theory would prohibit physical measure-

ments in one place from affecting the measurement outcomes of another experimenter

who is spacelike-separated from the first one, if there is no field between them - or,

to borrow an analogy from Popescu [71, a nonlocal theory is one in which 'moving

something here, something else instantaneously wiggles there'.

Given access to the observations of two spacelike-separated experimenters, one

might guess that locality of the underlying theory can be inferred from looking at the

distribution of their measurement outcomes. This intuition is formalized by the notion

of the CHSH value, named after its founders, Clause, Horne, Shimony and Holt [101.

In 1969, they put forth an inequality that bounds the statistics of spatially-separated

measurements in local hidden-variable models:

I(AoBo) + (AoB1 ) + (A1 Bo) - (AB)I < 2 Local HV theory (1.2)

where AO and A 1 are local measurement operators corresponding to spin up and

spin down on experimenter A's spin-half particle, and BO and B1 the analogous mea-

surement operators for Bob, and (.) denotes expectation value, and the quantity on

the left hand side of expression 1-3 is sometimes referred to as the 'CHSH value' of a

theory and has become a measure of the non-locality of that theory.

Quantum theory is non-local because it can violate this inequality by measure-

ments on an entangled state, such as the state IOA1)BlA^OB. It is easy to verify

that this state satisfies the following:

j(AoBO) + (AoB1 ) + (A 1Bo) - (A 1 B1 )l = 2vr Quantum theory (1.3)

which clearly violates the CHSH inequality (1-3).

Tsirelson[11] proved that with quantum mechanics, 2V2- is the maximal achievable

16



Inputs: x -y--y

box
Outputs: a -- +b

Alice's half Bob's half

Figure 1-1: A PR, or non-local box, whose inputs and outputs are governed by the
distribution in Equation 1.4.L

violation of the inequality in equation 1-3. This falls short of its algebraic maximum,

4. In 1994, Popescu and Rohrlich[6], pursuing the line of inquiry 'Why isn't quantum

theory more non-local?', found that there do exist theories that are more non-local

than quantum mechanics, and achieve a CHSH value of 4! To unify these theories,

they proposed an abstraction to represent the probability distribution that they in-

duce on measurement outcomes: a non-local box, visualized in figure 1-1. This is a

bipartite correlated box with two ends, one of which is held by Alice and the other by

Bob. Alice inputs x (respectively Bob inputs y) and the box outputs a (respectively

b) according to the probability distribution P(a, bjx, y) (where x, y, a, b E to, I}):

PP

10 otherwise

To put ourselves on the same footing with our earlier discussion, we now interpret

A0, A, (respectively B0, B1) as the expected value of the box's output when Alice

(respectively Bob) puts in 0, 1 into their ends of the PR-box respectively. This

information-theoretic formulation of Alice and Bob's interaction with the theory is

completely analogous with our previous language of measurements when construed

within the measurement-operator formalism: in making measurements of a two-level

system, Alice and Bob apply a set of measurement operators {Io, Il} corresponding

to the two possible outcomes, which correspond exactly to the set of inputs {0, 1} of

17



Figure 1-2: Types of theories grouped by their locality
permit space-like separated observers to communicate
banner of non-signaling)

properties (they must all not
and hence all fall under the

both experimenters to the PR-box.

Thus, with such a PR box, we achieve the following super-quantum correlations:

I(AoBo) + (AoB1 ) + (A1 Bo) - (A1Bl) = 4 Super-quantum nonlocality (1.5)

Our discussion of theories in the past two sections, in terms of their locality

properties (as measured by their CHSH value) and the non-signaling requirement, is

summarized in Figure 1-2, which the reader is encouraged to familiarize herself with

before proceeding.

Much of this paper aims to identify communication tasks that show a separation

in efficiency given three classes of quantum resources: classical, quantum and super-

quantum (in the form of PR-boxes).

18
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1.3 XOR games

Many of the most striking applications of quantum information come from the fields of

communication and cryptography - one famous example is quantum key distribution,

an unconditionally secure method to transmit cryptographic keys. In QKD and many

such tasks, it is quantum non-locality (entanglement) that provides the speedup over

the best known classical strategy.

However, entanglement alone cannot be used for communication - if Alice and

Bob share an entangled state IT) and Alice alone performs some measurement on

her part of the state, the results are completely determined by her reduced density

matrix, Tr( I') (I)B and are independent of any operation that Bob might perform.

It is only when Alice and Bob perform measurements together that interesting (ie.

not replicable classically) correlations between their measurement outcomes might

appear. We give this a name, non-locality.

The fact that there exist ways to use non-local correlations to defeat best-known

classical protocols is but one reason to study entanglement. An even more compelling

one is that we may view entanglement as a resource, which we can exploit to design

new protocols to achieve tasks previously thought impossible. Entanglement is com-

monly studied through multiplayer games for which a quantum strategy wins with

higher probability than the best classical one. Such a game is called an XOR game

if the players always answer with a single {0/1} bit each, and the validity of a given

pair of answers only depends on their parity. For an excellent survey of XOR games

and their generalizations, the reader is referred to [121.

Perhaps the most illuminating (also, canonical) example of these is the CHSH

game, which we turn to in the next section. Far from being a mere intellectual

curiosity, this game has turned into a primitive for many quantum communication

protocols - including ours - that exploit some facet of its non-local winning strategy.
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1.3.1 CHSH game

The CHSH game is named after Clauser, Horne, Shimony and Holt, who also lay

claim to the eponymous inequality from an earlier section. Much of this section is an

abridged version of the wonderfully concise summary of nonlocal games in [1J. It is

one of a class of games with the following structure, illustrated in figure 1-3: there are

two (or more) players, Alice and Bob, who cooperate but do not communicate with

each other. Instead, each of the players is allowed to interact only with a referee.

The referee randomly selects a question for each player (represented by a number

- suppose r for Alice and s for Bob), and each player must respond to the referee

with an answer (another number - suppose a from Alice and b from Bob). The

players are considered to have won the game if some predicate f(r, s, a, b) computed

(by the referee) on their questions and answers evaluates to a desired value, and lose

otherwise.

Alice Bob

a b

Referee

Figure 1-3: The structure of a two-player game. Figure and captions taken from [1].
Here, the referee chooses a pair of questions (r, s) (according to some prespecified
distribution), sends r to Alice and s to Bob, and Alice and Bob answer with a and b,
respectively. The referee evaluates some predicate on (r, s, a, b) to determine if they
win or lose.

In the CHSH game, the referee chooses questions rs E {00, 01,10, 11} for Alice

and Bob uniformly, and each of them must answer a single bit, a and b respectively.

They win if

a D b = r A s (1.6)
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ie. the winning conditions are as given in Table 1.1. It is not a coincidence that

this is identical to the condition on inputs and outputs of the PR-box which must

be satisfied for said input-output combination to be produced by the box with non-

zero probability. The PR-box's inputs and outputs are always maximally non-locally

correlated - in exactly the same manner that Alice and Bob's questions and answers

should have to be correlated if they are to win the game. However, as we shall see

soon, Alice and Bob's best quantum strategy produces outputs correlated like so with

probability of at most 0.85 (so they win with at most that probability), whereas if

they had a PR-box, they could win with probability 1. This is precisely a restatement

of the fact that quantum mechanics is not maximally non-local (a notion defined in

terms of its CHSH value, which, of course, arises from the CHSH game), while a

PR-box is.

(r, s) (Questions) (a, b) (Answers)
(0,0) (1,1), (0,0)
(0,1) (1,1), (0,0)
(1,0) (1,1), (0,0)
(1,1) (0,1), (1,0)

Table 1.1: Winning conditions for CHSH game, as well as input-output condition on

PR-box: a D b = r A s

Classically, the maximum winning probability is j, and it can be shown as follows:

we consider only deterministic strategies, that is, the answer (a, b) given by each

player is a fixed function of the question E {00, 01, 10, 11} they get, and is denoted

by ao, a,, bo, bl. Then we may re-write the winning condition 1.6:

a0 ® bo = 0

ao D b1 = 0

a1 D bo = 0

a, (Db1 = 1

Adding all of these modulo 2 on the left-hand side and right-hand-side give 0 = 1,

21



a contradiction. Since at least one out of the four predicates above cannot be satisfied

by any assignment of {ao, bo, a,, b,}, the maximal winning probability is 1, and this

is true even if we permit a probabilistic classical strategy (which is but an ensemble

of deterministic classical strategies).

Does our winning probability improve if we allow the players to exploit entan-

glement? Remarkably, the answer is yes. Let Alice and Bob share an entangled

state

100) +|11)

. The idea is for each of the players to make a measurement, in a basis that depends

on the question they are given. They report the answer '0' if their measurement

outcome is '1' and '1' if their measurement outcome is '-1'. The strategy is as follows:

If Alice receives the question '0', she measures her qubit with respect to a basis

of z-eigenstates,

{|0) ,I1)}.

If she receives the question 1, she measures with respect to the x-axis,

{I0) +I1) l0) - 11)

Bob uses the same strategy, but with his choices of measurement axes rotated by

with respect to Alice's. That is, question 0 corresponds to the basis

{cos 10) +sin ( 1) , -,sin ( 10) +cos ( 1)

while question 1 corresponds to the basis

cos 10) - sin 11), sin ( 0) + cos 1)

With this strategy, the players always win. To see this in one specific instance (it is
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easy to enumerate the other three), suppose Alice receives question 1 and Bob receives

question 0. Referring back to Table 1.1 for the winning conditions and plugging in

the above prescription, we may calculate their winning probability as:

Pr(win) Pr(Both get measurement outcome 1) + Pr(Both get measurement outcome -1)

(01 41 Cos -(01 - sin (2

19 )A ( 8 8 1B (10 + )ABI

+ (01 -41 (Cosr . ) (00)+I11) ] 2

\V 8AG 1 i B V AB

1+ - =cos2 (1.7)

One can verify that this strategy produces the same winning probability (~ 85%)

for the other three question combinations as well. This is noticeably better than the

best classical strategy, which yields a winning probability of (~ 75%). Tsirelson's

bound [11] shows that no quantum strategy does better than cos 2 (g) even if the two

senders are allowed to share a state on many qubits. A proof of this, provided in

the Appendix, abstracts away from any explicit representation of an entangled state,

and follows from operator theory. But let us return to the key physical takeaway

from this thought experiment, which is: we have defined a sense in which quantum

correlations are more non-local than classical correlations, and furthermore, found a

simple experimental demonstration of the fact (the CHSH game). The rest of this

thesis explores what we can do with quantum, and super-quantum, correlations.

1.4 Chapter summary

In this chapter, we introduced the ongoing debate about non-locality and non-signaling

theories as well as two important tools for the analysis in the rest of this paper: PR-

boxes and the CHSH game. Violations of the CHSH inequality give us a sense in

which we may classify theories according to their non-locality properties: classical,

quantum and super-quantum. Having gotten a grasp on measures of non-locality, we
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now explore how we can exploit it for channel communication.
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Chapter 2

Classical and Quantum Channels

Just as Clauser et al [10] brought to light the importance of entanglement as a re-

source by translating the abstruse mathematical formalism of Bell's inequalities into

a physically realizable experiment demonstrating the power of quantum mechanics,

we, too, would like to find an application for PR-boxes that beats the best classical

or quantum strategy. To prime the reader for our main result - the demonstration

of channels that prove such a separation in super-quantum, quantum and classical

capacities - we spend some time in this chapter developing foundations of classical

channel coding. We conclude with brief remarks about its quantum analogue.

Channel coding is arguably the founding work in the field of information theory. In

1949, Claude Shannon published his model of a communication system [2], along with

two theorems that quickly gained prominence for placing limits on achievable rates of

communication in real systems. As if its seminal impact on modern communications

systems were not reason enough to study this model, Shannon's second theorem will

pave the way for our understanding of channel capacity, a concept referenced heavily

in the next chapter.

It behooves us right now to define the concepts of entropy, conditional entropy and

mutual information, for, not only were they invented by Shannon in the same paper

as measures to quantify the information content of probability distributions, but will

also crop up repeatedly in what follows. Let X be a discrete random variable with

alphabet X and probability mass function p(x) = Pr{X = x}, x c X (correspond-
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ingly: Y, y, p(y)). Let their joint probability mass functions be p(x, y), and whenever

two variables are considered, let p(x),p(y) denote their marginal distributions.

Definition 2 (Entropy of a single random variable). The entropy Hn(X) of a discrete

random variable X is defined by

H(X) -yp(x) logn p(x) (2.1)

(For simplicity's sake, in future we will always be using n = 2, and we will drop

the subscript on H(X).) Entropy is sometimes termed 'surprisal', for it is always

maximized on the uniform distribution of X: since all values are equally likely, one

has no clue which will be drawn next. With two random variables, we may define

three other measures:

Definition 3 (Two-variable information measures). 1. The joint entropy H(X, Y)

is the entropy of the joint probability distribution of a pair of discrete random

variables (X, Y).

H(X, Y) - E E(x, y) log p(x, y) (2.2)

2. The conditional entropy of X given Y is the entropy of X given full knowledge

of Y.

H(XIY) - Ep(x) log p(x)

=- EZp(x) EE(y Ix) log p(yIx) (2.3)

3. The mutual information I(X; Y) is the reduction in the uncertainty of X due
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to knowledge of Y.

I(X; Y) E E (X, Y) log px)

- p(x, y) log p(x) + E p(X, y) log p(xIy) by Bayes' Rule
x,y x,y

= H(X) - H(XIY) (2.4)

and we easily verify that I (X; Y) = I(Y; X).

Much of the classical part of the following review is taken from Shannon's original

paper [21 and Elements of Information Theory [3], while the quantum part is compiled

from [13] and [14].

2.1 Classical channel coding

The problem of sending a message through a noisy channel may be summarized as

in figure 2-1. Whereas the description below is for a single sender-receiver pair, it is

not difficult to see how the problem generalizes for multiple such pairs.

The following three broad steps define an (M, n) code for the channel:

1. (Encoding) The sender would like to communicate the message W to the

receiver, drawn from the index set {1, 2, ...M}. This message is encoded by the

sender (deterministically) as the length-n codeword X"(W) = x1x 2 .. . The

set of all codewords for all possible W is called the codebook.

2. (Transmission) The sender inputs each letter of the codeword into a single

use of the channel, leading to outputs (Ye, Y 2") p(14,yIx?, x1 ) where p is the

probability distribution of the channel, to the receiver.

3. (Decoding) The receiver then guesses the index W by an appropriate decoding

rule (1.) - g(Yn"). He makes an error if W is not the same as the index W

that was transmitted.
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Encoder Channel Decoder I
jessage MAylX) Estimate

of
Message

Figure 2-1: The Shannon-Weaver inodell2 of a communication system (Figure taken
from [1J).

All channels that we consider will be discrete and memoryless. Shannon's con-

tribution was to represent such a channel, as well as the communication system out-

lined above, mathematically: the channel (X,p(ylx),Y) consists of input and

output alphabets X and Y as well as a probability transition matrix p(ylx) such that

Zyp(yjx) = 1. That is, the entry in the yt 1 colun and x'h row of this matrix is the

probability that the receiver gets the output symbol y given that the sender sent the

symbol i.

Definition 4. The information capacity of a channel is

C = max I(X; Y) (2.5)
pMt)

where the maxinum is taken over all input distributions p(x), and I(X; Y) denotes

the mutual information (Equation ) between X and Y.

How good a code is depends on the probability that If is close to W1, which we

formalize' with the following quantities. These will eventually help us define the

notion of the 'rate' of a code:

1. (Conditional probability of error) Ai= P(W # <i W i). Here, i represents the

sender's intended nessage.

2. (Maximal probability of error) A(") - max Ai- that is, the worst-possible
ir .... }

performnance of the sender-receiver pair.

Alternatively, codijy



For a particular coding strategy, the rate, R, measures how much information can

be communicated via that strategy such that the error vanishes as the input length

goes to infinity. The maximum rate for a given channel is the capacity of that channel.

Definition 5. The rate of a code is given by

R log2 A (2.6)
n

and is the ratio of the number of message bits that can be sent to the number of

codeword bits required to encode the full set of messages, and is achievable only if, for

all n, there exists a code with M = 2nRs t.A(n) -* 0 asn -+ 00.

Definition 6. The channel capacity is the supremum, over all coding strategies, of

all achievable rates.

2.1.1 Shannon's Noisy-Channel Coding theorem and some ex-

amples

Shannon's Noisy-Channel Coding theorem may be stated in a beautifully simple man-

ner:

For a channel, the channel capacity is equal to the information capacity.

We may state this more precisely as follows:

Theorem 1 (Shannon's Noisy-Channel Coding theorem). For a discrete memory-

less channel, all rates below information capacity C are achievable. Conversely, any

sequence of (2 nR, n) codes with A(n) -+ 0 must have R < C.

This should astonish us. For any given degree of noise contamination of a commu-

nication channel, it is possible to communicate nearly error-free across the channel

at any rate below its information capacity, which has the simple expression given in

Equation 2.5! Beautiful as the proof of this theorem is, it would take us too far afield.

Instead, we turn to calculating the information capacities of some canonical examples

of noisy channels.
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1-p

Figure 2-2: Binary Symmetric Channel - the input is inverted with probability p.

Example 1 (Binary Symmetric Channel). On a Binary Symmetric Channel as shown

in Figure 2-2, the input is inverted with probability p. So, some of the time, a 0 is

transmitted as a 1 (and vice versa), and the receiver has no way of telling which of

her bits were corrupted. Yet, Shannon's theorem guarantees error-free communication

over this channel - up to the rate C! From Eqn 2.5, to find C we upper bound the

mutual information:

I(X; Y) := H(Y) - H(YIX)

= H(Y) - Ep(x) H(YjX = x) H(p) is a constant

H(p)

= H(Y) - Yp(x) H(p)

1

<1 - H(p) (2.7)

The capacity of a binary symmetric channel is 1 - H(p) bits, and it is achieved on

the uniform distribution on both input symbols.

Example 2. On a Binary Erasure Channel, shown in figure 2-3, bits are lost with

some probability, rather than corrupted. We calculate the capacity of the binary era-

sure channel as follows:
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1 -00 0

e

1 1-

Figure 2-3: Binary Erasure Channel - the bits are erased with probability a.

C max I(X;Y) = max H(Y) - H(YIX)
p(x) p(x)

= max H(Y) - H(a)
p(x)

H(Y), the entropy of the output symbol, depends both on the erasure probability,

a, and the probability of each input symbol (let Pr(X = 1) = 7r). Letting E be

the event that Y gets erased, {Y = e}. Using the expansion H(Y) = H(Y, E)

H(E) + H(YIE), we have

H(Y) = H((1 - 7r)(1 - a)), a, 7r(1 - a)) = H(a) + (1 - a)H(7r) (2.8)

Hence

C = max H(Y) - H(a)
p(X)

= max (1 - a)H(7r) from 2.8

= 1 -a (2.9)

The capacity of a binary erasure channel depends only on the probability of erasure

and is 1 - a bits.
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2.2 Quantum Channel Coding

We conclude this chapter with some remarks on Quantum Channel Coding, which

generalizes classical Shannon theory by allowing inputs to be quantum states.

The basic model of a quantum channel does not differ too much from Shannon's

classical one; there are the same steps of encoding, transmission (down a channel

subject to quantum sources of noise) and decoding. A real-life example of a quantum

channel is an optical fiber - a photon in some quantum state goes in, suffers noise

and distortion in passing through the fiber, and if it is not absorbed and does not

tunnel out, emerges in a transformed quantum state.

However, the fact that optical fibers are still not commonly used for quantum key

distribution or communication of quantum information testifies to both practical and

theoretical gaps in our understanding of quantum channels and how to use them. On

the experimental side, it is a challenge to find a robust source of entangled photon

pairs with high spectral brightness, broad wavelength coverage and a single-mode

spatial output that is compatible with fiber networks or free-space operation [151. On

the theoretical side, the capacity region of a quantum channel is poorly characterized.

Whereas a classical channel is completely characterized by a single capacity, quantum

channels have four different capacities [161:

1. A classical capacity, C, for transmitting classical information

2. A quantum capacity, Q, for transmitting intact quantum states

3. A classically-assisted quantum capacity, Q2, for transmitting intact quantum

states with the help of a two-way classical side-channel, and

4. An entanglement-assisted classical capacity, CE, a quantum channel's classical

capacity with the benefit of unlimited prior pure entanglement shared between

the sender and receiver.

In most cases, only upper and lower bounds on these capacities are known, not

the capacities themselves [1.6, 117-. Even the first of the four quantities above - C,
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the capacity for classical information of a noisy quantum channel - has not been

completely solved. What we do know is how to calculate the classical capacity for

a channel e assuming Alice encodes her messages using product states of the form

P1 0 P2 0 ... where each of the pi, P2 are potential inputs for one use of the channel

E. We call this the product state capacity and denote it by C (e), and it is given by

the following theorem:

Theorem 2 (Holevo-Schumacher-Westmoreland (HSW) theorem). Let e be a trace-

preserving quantum. operation. Define

x(e) =max [S (e (Ejpjpj)) - EjpjS(E(pj))] (2.10)

where the maximum is over all ensembles {pj, pgj} of possible input states pj to the

channel. Then x(e) is the product state capacity for the channel e.

(Here, S(p) denotes the von Neumann, or 'quantum entropy', defined on density

operators. It turns out that all the classical information theoretic measures in Equa-

tions 2.1 to 2.4 have classical analogs.) x gives the product state capacity, but it was

recently proven that, contrary to popular belief, using entangled states it is sometimes

possible to exceed x [181, and this is due to the non-additivity of x, meaning that

in general (1/n) X(e®n) ;> X(e), where On is the n-fold tensor product representing

parallel uses of the channel. Hence, even the most basic of questions about quantum

channels - 'Does allowing entangled signals improve the capacity?' - remains an open

question to date.

Fortunately, we do not have to wade into this quicksand. We will see that we can

get quite far just by proposing channels that only accept classical states. Therefore,

whenever we use a metric for channel capacity in future we will use just the first of the

above items - C, the classical capacity - and consider how it changes under different

classes of resources. Since a closed-form expression for even the classical capacity of

interference channels is still a work in progress (see [41 for discussions), and we are

even further from this goal in the quantum setting (see [19], [201 for bounds), we

leave it to future generations of readers to characterize a fully general version of our
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channel.

2.3 Chapter Summary

This chapter covers rudiments of information theory for the purpose of understand-

ing channel coding. Key concepts introduced include the Shannon-Weaver model

of comnunication and Shannon's noisy-channel coding theorem, which provides a

closed-form expression for the channel capacity. The power of this theorem to sim-

plify the calculation of channel capacities was evidenced in the ensuing examples,

which discussed the capacities of the binary symmetric channel and binary erasure

channel. In the final section, we made the transition to quantum channel coding -

the full characterization of which is still very much a work in progress - and glimpsed

one of the founding theorems of the field, the HSW theorem. This is the extent to

which we will treat this topic because all future channels will involve only classical

inputs and outputs.

There is no super-quantum channel coding section, because the field does not exist.

I hope that the results from the rest of this thesis will be the first of many works that

could motivate a future student to write one.
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Chapter 3

Channel I: Super-Quantum

Superiority on Interference Channels

This thesis characterizes the power of PR boxes with respect to channel coding, but

it is just one chapter of an ongoing story. We believe that understanding the power

of PR boxes will yield insight into the non-locality of quantum mechanics. In 2005,

Cerf, Gisin, Massar and Popescu demonstrated a sense in which super-quantum non-

locality subsumes quantum non-locality - they showed that a PR box could simulate

the correlations obtained from any bipartite measurement of a maximally entangled

pair of qubits without communication[21J. Clearly, the reverse direction of simulation

is impossible - correlations due to PR-boxes are provably more non-local than those

from entanglement. A natural question, then, is whether this non-locality separation

has any import on the efficiency of physical tasks.

Previous studies have answered in the affirmative, by identifying two domains in

which PR boxes give an edge over quantum strategies: cryptographic functionalities

such as unconditionally secure bit commitment and oblivious transfer[22, 231) and

two-party computation of functions (see [241). In particular, van Darn proved an

astonishing result that super-quantum correlations reduce all distributed computa-

tions between two parties, no matter how complex, to procedures that require only

one bit of communication! There has also been some work by Broadbent, M6thot

and Brassard ([25, 261) on how non-local boxes can yield an advantage in pseudo-
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telepathy games - games that can only be won with (sometimes large amounts of)

entanglement.

The interference channel whose analysis forms the crux of this chapter therefore

brings to light a new field where super-quantum non-locality yields an advantage over

classical and quantum (entanglement-aided) strategies: channel coding. In future, all

references to 'classical' strategies shall imply strategies where the senders are allowed

to share no communication but may discuss a strategy before-hand.

3.1 Interference channel preliminaries

We intend to exhibit a two-sender, two-receiver interference channel for which a super-

quantum strategy is provably better than a classical strategy and entanglement-aided

strategies. The theory of two sender-receiver pair interference channels is a simple

extension of the one sender-receiver pair case which was discussed in detail in the

previous chapter. Here we will provide only essential details:

Encoder 1 1 Decoder 1

M 2  Encoder 2 2 Decoder 2 2

Figure 3-1: General model of a two sender-receiver pair communication system.
Figure taken from [4].

The basic model of a two sender-receiver pair interference channel is depicted in

figure 3-1, and the following is a condensed version of the discussion in [41 relating

to such channels. Such a channel is denoted (X1 x X2 , p(yi, y2IXi, x2), Y 1 x 22). A

(2 nR, 2 nR2 , n) code for this channel consists of:

. Two message sets [1 : 2 nRi] and [1 : 2 nR2]
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* Two encoders, where encoder 1 assigns a codeword xn(mi) to each message

mi E [1 : 2 n 1 I (respectively encoder 2 assigns Xn(m 2) for m 2 E [1 : 2 nR 2 ]).

" Two decoders, where decoder 1 uses a decoding rule to assign an estimate ni2 or

an error message e to each received sequence y'", and decoder 2 does the same

(ie. assigns 7n 2 or e).

A rate pair (R1 , R2 ) is said to be achievable for this channel if there exist a sequence

of (2 nRi, 2nR2 n) codes such that lim [P P{( 1 , M 2 ) # (M1, M2)}1 = 0. The
n--oo

capacity region, V, is the closure of the set of achievable rate pairs (R1 , R2 ).

For this channel, the relevant figures of merit are the capacity region, defined

above, and the sum-capacity, sum = max{R1+R2 : (R1 , R2 ) simultaneously achievable}.

Note that sum z maxR1 + maxR 2 in general, because Csum is the sum of rates at-
p(x1) P(x2)

tainable simultaneously. Whenever we speak of the 'capacity' of a channel, we shall

refer to its sum-capacity.

3.2 Channel I

Consider the following channel, for which, on each use of the channel, the senders

send two bits and the channel outputs one bit to each receiver.

X 1 \X2 |00 J01 10 11
00 00 11 01 10
01 11 00 10 01
10 10 01 00 11
11 01 10 11 00

Table 3.1: Channel I: The senders each send two-bit codewords, and the two-bit
entries in the table correspond to what is received - the first bit goes to Y and the
second, Y2 -

The maximum possible sum-capacity (no matter what resources are used) is 2.

The receivers each receive one bit, so the senders cannot possibly communicate more

than one bit each, and in fact, Csum = 2 only if there exists a strategy where the

receiver always gets exactly the bit that the sender intends to send.

37



We will show in Lemmal that the following is the classical capacity region of this

interference channel:

R, 1

R2  1

R 1 + R2 < 1. (3.1)

If we allow the senders to share a PR box, the sum-capacity equation, 3.1, becomes

R 1 + R2  2 (3.2)

and we provide a coding strategy that exactly achieves this capacity.

Lastly, Lemma 3 shows that even if the senders are allowed to share 2 x n entan-

glement, the sum-capacity is strictly outer-bounded by- 2, that is R1 + R2 < 2. We

do not know the exact capacity under this strategy (ie. 2 may not be the best outer-

bound), but these three facts taken together suffice to show the following separation

on this channel:

Ceassicaj, Cquantum < Csuper-quantum.

3.2.1 Capacity of Channel I with no assistance

Channel I is quite puzzling at first blush - it takes two-bit inputs, so if the senders

can ultimately communicate only one bit, the second bit seems redundant. Might the

redundancy improve communication? It seems reasonable to search for a good code

that exploits this redundancy in such a way that both receivers may communicate

simultaneously at a high rate. Two facts about classical coding are immediately

evident:

* A uniform probability distribution over the entire input alphabet, for both

senders, is a recipe for disaster: taking the marginal probability distribution

for the first pair (by summing up over all input-outputs for the second pair that
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correspond to the same input-output for the first) results in what is effectively

a binary symmetric channel for both pairs with bit-flip probability p = 0.5.

Plugging this into the expression 2.7 for the capacity of the binary symmetric

channel and noting that H2 (0.5) = 1, the joint rate is 0.

* More optimistically, there is at least one obvious strategy that gives a joint rate

of 1 (and therefore 1 is an inner bound on the sum capacity). If the pairs are

allowed to elaborate a strategy beforehand, then A 2 may just send 00 while A1

encodes message bit 0 as 00 and message bit 1 as 01; then B1 receives exactly

the bit that A 1 intended to send. Thus the joint capacity is lower bounded by

1.

Is it possible to do better than R1 + R2 =1? Surprisingly, Lemma 1 combined with

some numerical simulations shows the answer is no.

Lemma 1 (Capacity of Channel I with no resources). If the senders are limited to

a classical strategy with no aid from communication, entanglement or PR boxes, on

the given channel the sum-capacity is strictly outer-bounded:

R 1 + R 2 < 2.

Proof. We show that R1 := I(X1 : Y1) = 1 implies R2 := I(X2 : Y2 ) < 1.

Suppose I(X 1 : Y1 ) = 1. Using the chain rule for mutual information shows that

I(X2 : Y1JX1) = 0.

I(X1 : Y1) = 1 = I(X1, X2 : Yi) -I(X 2 : Y1 X1) (3.3)
takes on maximal value, 1 =0

This condition I(X2 : Yi lX) = 0 is a rather powerful one. Interpreted in the

information-theoretic sense, it states that the first receiver's output, Y, cannot possi-

bly distinguish between the possibilities for the second sender's message, X2 - which

implies that the alphabet that sender 2 was using must have been a special subset

of all the symbols available. This gives a restriction on the second sender's alphabet
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set. For instance, examining the first row of the table, if Sender 1 sends 00 (i.e. if 00

is part of Sender l's alphabet), then one of the following must be true:

1. Sender 2 sends either 00 or 10 with equal probability (both resulting in the

output Y = 0) but never sends 01 or 11.

2. Sender 2 sends either 01 or 11 with equal probability (both resulting in the

output Y = 1) but never sends 00 or 10.

Repeating the analysis for the other 3 possible choices of Sender l's message, we get

the following sets of alphabets for the two senders:

1. Sender l's alphabet is {00, 01} and Sender 2's alphabet is either {00, 10} or

{01, 11}. -

2. Sender l's alphabet is {10, 11} and Sender 2's alphabet is either {00, 11} or

{10,01}.

We analyze these four cases individually. Since X1 and X2 are not allowed to commu-

nicate during the sending of the messages, they must choose an alphabet at the start

and stick to it. Consequently, only one of these four cases can hold. Here we show

that if X1 uses the alphabet {00, 01} and X2 uses {00, 10} (Table 3.2 depicts this

schematically), then the second sender-receiver pair cannot communicate perfectly,

and therefore R 2 < 1 as we asserted. The same turns out to be true for the other 3

cases.

To get I(X1 : Y) = H(X1 ) - H(X1IY1 ) = 1 when there are only two options for

X1, the first term must take its maximal value of 1, which can only happen if X1 is

uniformly distributed over {00, 01}. Let X2 send 00 with probability c and 01 with

probability 1 - c. This is shown on the left in Table 3.2. Since we will be interested

in calculating I(X2 : Y2 ), we also calculate the input-output probability distribution

experienced by sender-receiver pair 2, shown on the right in Table 3.2.
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X 1\X2 1|00 101 X2\Y2 1| 0 1
00 00 01 00 .2 C

01 11 10 10 1- C

Table 3.2: Left: reduced alphabets of senders and resulting output to the receivers

(in the format YY2 ). Right: Joint probability distribution experienced by the second

sender-receiver pair on this coding scheme.

Referring to the right side of Table 3.2, we obtain

I(X2 : Y2) = H(X 2) + H(Y2) - H(X2,Y2)

= [-clogc - (1 - c) log(1 - c)] + 1

[2 (c lgc) + 1-c log c
- 2 2 2

0 (3.4)

(Note that to calculate H(X2 ) and H(Y2), we had to use the marginal probability

distributions over Y2 and X2 respectively, a step that we omitted.)

We have therefore shown that I(X1 : Y) = 1 implies that I(X2 : Y2) 0, so that

I(X 1 : Y1 ) + I(X2 : Y3) = 2 will never be achieved. Put another way, perfect

coding between one pair implies that the other pair can do no better than

random guessing.

Of course, this proof does not rule out the possibility that if one of the sender-

receiver pairs is willing to accept a sub-optimal (less than 1) rate, the other pair will

be able to attain a high rate such that R1 + R2 > 1. However, we ran an algorithm

based on modified gradient descent that shows that in fact, the maximum joint rate

is exactly 1. This algorithm is given in pseudocode here (Algorithm 1). The inputs to

the algorithm are two vectors i := (a, b,7c, di), 2 := (a2 , b2 ,c 2 ,d2 ), such that the

square of the entries in the first vector {al, b, c2, d?} represents the probabilities of

sender 1 sending {00, 01, 10, 11} respectively, and correspondingly {a, b2, c2, d} for

sender 2. The modification to the usual gradient descent algorithm was to respect

41



the constraints

a, + R + c, + di=1 ; a' + bj + 2i+dj=

To do this., we treated the problem of simultaneous gradient descent where the com-

ponent vectors had to lie on two 4-D unit spheres. A pseudocode for our algorithm

is given below.

Algorithm 1 Finds the maximum value of the function I(X1 : Y1) + I(X2 : Y2) over
all input distributions
Modified-Gradient-Descent(Y)

f(i, 2) -I(X1; Y) - I(X2 ; Y2 ) > Define objective function

gi := V 1f ; 9-2 := VX 2 f > Define gradient of function
Initialize x1 , x 2 , tol, maxiter
while iter < maxiter and dx > tol do

Evaluate -(fi, 2) ; ( 1, x)

#<- arg minf(cos(a1$)-i + sin(aq$)?i, cos(a 2#)i2 + sin(a 24)?i2)

x1 <- cos(&1 4') + sin(a 1#')ri; x2 <- cos(a 2 4')2+ sin(a2q')ri
dx +- hx 2 _,)

end while

3.2.2 Capacity of Channel I with super-quantum assistance

In the above section, we imposed the requirement I(X 1 :Y1) = 1, found two conditions

specifying four allowed combinations of senders' alphabets and concluded that one of

four cases must hold. We established that at most one of those two conditions may

be satisfied if we limit ourselves to a classical strategy.

Now if we allow ourselves to wonder: 'What must hold true for the sum-capacity

to be saturated, that is, I(X1 : Y) = 1 AND I(X2 : Y2) = 1?', we may recycle our

above analysis. This gives us two additional conditions to our existing two, and we

list all of them below:
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1. If X, E {00, 01}, either X2 E {00, 10} or X2 E {01, 11}.

2. If X E {10, 11}, either X2 E {01, 10} or X2 E {00, 11}.

3. If X2 E {00, 01}, either X, E {00, 10} or X, C {01, I1l.

4. If X 2 E {10, 11}, either X, C {01, 10} or X, E {00, 11}.

Suppose now that we unshackle ourselves from classical intuition and permit the

two senders to coordinate their input alphabets in real-time, perhaps by using a non-

classical resource. In that case, there are only two strategies that could fulfil all ]4ar

conditions at once, shown in Table l.

(a) Later we will see that there exists a (b) An alternative strategy that always

super-quantum strategy that produces only enables the senders to get their messages

this distribution of inputs. across.

Xl \X2 00 01 10 11

00 01)11 01 10

01 11 00 10 01

10 [o W 00 f1

11 01 10 11 00

Xi\X2  00 01 10 11

01 00 11 01 [0

00 11 00 10 01

11 10 01 00 11

10 01 10 11 00

Table 3.3: Each shaded box corresponds to a message pair that sent simultaneously

by the senders. These are the only two coding strategies that will allow both I(Xi

Y1 ) = 1 and I(X2 : Y2) = 1.

The following lenna shows that a PR-box is exactly such a nion-classical resource

that would enable both sender-receiver pairs to communicate perfectly:

Lenima 2 (Capacity of Channel I with super-quantuni resources). If the sen(ers a're

allowed to share a PR-box, the capacity of the given chanel Is exactly 2. This is the

algeb raically naximal sun-capacity of the channel.

We have all but spelt out our super-quantum strategy. It remains to put all of the

above together as follows: Our encoding strategy is that on each use of the channel,

the senders each encode each message bit into a two-bit co(leword by concatenating
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that bit with the output of the PR box (i.e. Sender 1 sends X1 = (a, x) and Sender

2 sends X2 = (b, y)).

However, the PR box only produces certain outputs on a given input (we reiterate

that it takes into account both parties' inputs), and these input-output combinations

fulfilling a e b = xy are as summarized in Table 1.1, which we reproduce below.

Scrutinizing that table carefully and comparing it to Table 3.3a reveals that the

resulting encoded message pairs (created using the above procedure) are special for

our channel: they are exactly the combinations whereby receiver 1 and receiver 2

respectively receive the original 1-bit messages that sender 1 and sender 2 intended

to send. Hence, this super-quantum strategy enables perfect message transmission.

(r, s) (Questions) (a, b) (Answers)
(0,0) (1,1), (0,0)
(0,1) (1,1), (0,0)
(1,0) (1,1), (0,0)
(1,1) (0,1), (1,0)

Table 3.4: Winning conditions for CHSH game, as well as input-output condition on
PR-box: a D b= r A s

Corollary 1 (Capacity of Channel I if senders may share 1 bit of communication).

If senders are allowed to share one bit of communication, they will achieve a joint

rate of 2.

Proof. The technique described in the proof of the previous lemma all but spells out

a classical strategy that achieves a joint rate of 2 if the senders are allowed to share 1

bit of communication. The strategy is as follows: Sender 1 and Sender 2 again have

their message bits, mi and M 2 . However, this time, Sender 1 encodes her message

bit by duplicating it. She then uses her one bit of communication by sending this

message bit to Sender 2. Sender 2, having obtained this information, attempts to

replicate the action of the PR box. He encodes his message bit by padding it with

the unique bit that ensures that his input to the channel is exactly the input that he

would have provided, had the two senders used the PR-box strategy, AND sender 1

received from the PR-box exactly what she had put in.
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Since this strategy achieves (deterministically) exactly the saine input sets as the

PR-box assisted strategy described above, it too achieves a joint rate of 2. D

3.2.3 Capacity of Channel I with quantum assistance

Since the key to our strategy from the previous sub-section was to allow Alice and

Bob to share a non-classical resource that would enable them to coordinate their

inputs, one might reasonably wonder if perhaps resorting to super-quantuni resources

is an overkill. Could one achieve the very same effect by restricting Alice and Bob's

shared resource to be a purely quantum one? In this section we show that even if we

allow the two senders to share an entangled pair -- or indeed, any entangled state of

dimension 2 x n, they could not achieve a perfect rate.

Lemma 3 (Classical sum-capacity with quantum resources). A classical sum-capacity

of 2 on the given channel is not achievable even if the senders are allowed to share

an entanied quantum state of dimension 2 x n.

To prove this, one may mnodel a general quantum strategy as follows:

I bit X, y,
T1i Entanglement - 2 bits -- >

exploiting Channel Decoder
1112 encoder 2 bits ~ 62

Figure 3-2: Model of a quantum communication system over this channel.

Namely, the two senders share an entangled state I T'), independently choose a

POVM depending on their message bit min, apply that POVM to the share of the

entangled state, and apply a rule that maps the measurement outcome of the POVM

to a, 2-bit input to the channel. These bits go through the channel and the output of

the channel is decoded by each of the two receivers.

This is indeed the most general form of a quantuin communications strategy;

Nainark's theorem guarantees that the POVM formalisn is the most general form

of measurenient, and the most general decoder that the receivers can employ is one
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that looks at both the outputs from the channel. This includes as a special case a

restricted decoding strategy where receivers do not communicate. In fact, this model

(and the proof it inspires) is in very much the same spirit as the model in [251, which

was used to prove that there cannot exist a two-player pseudo-telepathy game (that

is, a game on which a quantum strategy wins with 100% probability) of dimension

2 x 2. It turns out that the two proofs are similar because it is possible to map

the actions of a quantum winning strategy for the senders in this case to a quantum

winning strategy for a pseudo-telepathy game.

Proof. For this proof, we borrow notation from [251. Let 7 denote the set of all

POVMs acting on a single qubit. For each E E P, let {E} denote the corresponding

set of positive matrices that form that POVM, with EjEj = I. Let OE denote the

set of all outcomes for the POVM, which shall be assumed to be a set of integers

from which the index i in E is drawn. Any quantum strategy for communication can

be defined in terms of the following mappings (the left column corresponds to the

actions of the first sender-receiver pair, and the right column the second):

X : m, -+ P Y : m2 -+ P Choose POVM & measure

A : m, x 0 -+ X, B : m2 x 0 -+ X 2 Encoding rule

V, : Y - rhi, 2 : Y2 -+ Tn 2  Decoding rule (3.5)

Our goal is to show that that if there exists a quantum strategy that achieves

rate' 2 (ie. perfect coding), there is a classical strategy that achieves the same rate.

However, since the last section established that there is not a classical strategy that

achieves perfect coding, there cannot be a quantum one.

The key to the proof is the reasonable assumption that any quantum decoding

strategy depends only on the bits that the receivers receive, that is, whenever bits YY2

are produced by the channel, each of the 4 possible inputs (X1, X2) that correspond

to that output have to be produced by the encoder on the same pair of message

bits M 1 , M 2 . Furthermore, a rate of 2 rules out any probabilistic decoding strategy,
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such as the one employed in Shannon's proof of the noisy coding theorem. These

considerations define the map given in Table 3.5 between the original message bits

and their allowed encoding.

( (m, m 2) (X1,X 2 )
(Mi, m 2 )a (00, 00) (01, 01), (10, 10), (11, 11)

(ml, m2)b (00, 01), (01, 00), (10,11), (11, 10)

(M1, M2)c (00,7 10),7 (01, 11),7 (10, 01),7 (Il, 00)

(Mi, m2)d (00, 11), (01, 10), (10, 00), (11, 01)

Table 3.5: Map between message bits and their encoding.

(Mi, M2)a, (Mi1 , M2)b, (Mi, m2)c, (Mi, M2)d must correspond to some permutation of
the message set {00, 01, 10, 11}.

Therefore, all we are asking of our classical strategy is that, for any combination

of message bits, it should encode them as some subset of the allowed encodings in

the right column of the corresponding row - since any of those encodings, if they

were produced by the quantum strategy, would suffice for perfect decoding. That is,

our classical strategy should never produce an illegal output even though some legal

outputs may never occur. We may then use the method described in [25J to devise

such a classical strategy. L

Lastly, we will quickly sketch the method given in 125] of designing a classical

strategy that never produces an output that would have had zero probability of being

produced by the quantum strategy. The method will follow after the subsequent

lemmas:

Lemma 4. For any two-sender-receiver pair communication strategy that relies on

the senders sharing some state I|D) of dimension 2 x 2, there exists a communication

strategy that achieves the same rate where the senders are restricted to sharing a state

of the form II) = a100) + 0111), where a and 3 are well-chosen positive real numbers.

Proof. The key idea is to re-write V<D) in terms of its Schmidt decomposition, and

then apply a unitary transformation to get I'). Then, the senders may apply the

quantum strategy whose existence we have assumed. More precisely, there exist
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orthogonal bases {IAo), jA 1 )} for Sender 1 and {IBo), jB1 )} for Sender 2 such that

<b) can be rewritten as

141) = a JAo) 1Bo) +3 #|A1) JB1).

From there it is easy to see that Sender 1 may apply the unitary transformation

IAo) (01 + IA1) (11, and sender 2 may apply the unitary transformation JBo) (01 +

1B1) (11, to their qubits, to transform IT) into jID). Any such unitary U is completely

accounted for in our model of communication in 3.5 by applying it to the POVMs Mi

that the senders choose for their states (which preserves its POVM properties), that

is, using the property U 14) = jF) -+ (DI Mi I45) = (4I UMiUt 145). 0

Since the following two lemmas are almost identical to the ones in [25], we merely

cite them and leave the reader to refer to [25 for their proofs.

Lemma 5. For any two-party quantum communication protocol that uses an entan-

gled state of dimension dA x dB, there exists a two-party quantum communication

protocol that uses a state of dimension d x d where d := min(dA, dB).

This justifies the audaciously general claim made in Lemma 3 that no quantum

state of dimension 2 x d could possibly enable a perfect joint rate for communication.

The proof is similar to the proof of Lemma 4 and relies on the following fact from

the Schmidt decomposition: if H1 and H2 are Hilbert spaces of dimensions n, m

respectively, and we assume without loss of generality that n > m, for any vector

w E H10H2, there exist orthonormal bases {ui, 1 < i < n} for H1 and {v., 1 < j m}

for H2 respectively such that

w = Elaiui 0 Vi. (3.6)

Lemma 6. Any POVM can be written in a way such that all its elements are pro-

portional to one-dimensional projectors. Each such projector can be re-written in the
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form

cos2(0) e-i+ sin(O) cos()

foraproriae nges & _ - 2n 0 4 2wr. Since this representation is

unique, we may associate each such projector with a three-dimensional unit vector

V (sin(20) cos(), sin(20) sin(o), cos(20)).

Finally, the classical strategy promised three lemmas ago is described. Thanks to

Lemma 4, we may assume that the two senders are using an entangled state of the

form I'T) = a 100) + 3 111), where a and /3 are strictly positive real numbers.

Suppose a quantum strategy exists and the POVMs applied by the two senders,

M := X(x) = {7yfP} and NY := Y(y) ={-jQ } have been fixed beforehand for

each x, y E {0, 1}. We will show that any measurement outcome (i, j) on Iif) as

described in the first row of Equations 3.5 can be replicated perfectly classically. The

probability of getting the tuple (i, j) is:

Pr[i,j] = (Pj (7yxPx) 0 (7 Qy) I)

= -yyj [a2 cos2 (0f) cos2 (Ojy) + 2a3 [cos(ox + #.) sin Of cos Of sin 0j cos Oq]

+32 sin2 (0f) sin'(0j)]

= -yjx (a2 + b2 + 2abc) (3.8)

where a := a cos(7) cos(Oj), b := #sin(07) sin(Ojy) and c := cos(#- + #j). Using the

AM-GM inequality we may show that Pr[i, j] can only vanish if one of the following

two things are true of the POVMs used by the two senders ({7iPx}, {yj'Q }):

& a=b=0

Attained if Of = 0, jY = 7r/2 or vice versa - that is, either Px or Qj belongs to

neither hemisphere.

* a=bandc=-1.

Attained if Of +# = r(both projectors in eastern hemisphere) or Of + 0 = 37r
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(both projectors in western hemisphere).

But all our classical strategy needs to do is to choose a classical tuple, (i, j), such

that the corresponding quantum POVM elements, P- and Q', would not fulfill either

of these conditions. To do this, it suffices for Sender 1, knowing M : {:fyPx}, to

choose an i such that P- belongs to the eastern hemisphere and for Sender 2, knowing

N :={Q}, to choose a j such.that Q' belongs to the western hemisphere (without

actually measuring anything). This is always possible since POVM elements have to

sum to the identity. They may then carry out the (classical) mappings A and B on

their message bits and POVM 'outcomes' as per normal.

This completes the proof of Lemma 1.

3.3 Discussion

In this chapter, we have demonstrated that super-quantum resources are capable of

enhancing the capacity of an interference channel.

It is interesting to consider whether the super-quantum strategy outlined above

can be efficiently approached even if the senders must share a noisy, instead of perfect,

PR-box. A noisy box is one of the form

PE = EPR + (1 - E)P (3.9)

where PG denotes the fully-correlated box Pc(ablxy) = } if a e b = 0, ie. the box

always produces either 00 or 11 on all inputs. Thanks to the protocol of non-locality

distillation due to [271, which increases the CHSH value of a box via n successive

operations in such a way that NL[Pn] > NL[P], one can almost certainly approach

a perfectly non-local (ie. PR) box in the asymptotic limit; the only question is whether

this can be done efficiently; that is, with a number of operations that scales efficiently

with the desired precision.

Of note is also the observation made in Corollary 1 that the use of a non-local box

can be replaced with 1 bit of communication. This, combined with the observation in
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[261 that classical strategies with n bits of communication can always be transformed

into protocols with n uses of a non-local box, suggests that there might exist a 1 to

1 tradeoff between non-locally correlated bits and bits of communication used as a

resource. A partial answer to whether the two resources are interchangeable can be

found in [281, where the authors proved that there exist non-signaling correlations

that can be generated from a single bit of communication which cannot be simulated

with an NLB.

Lastly, although we have not proven explicitly that there exists a quantum strategy

on this channel that beats the best classical strategy, we believe that this channel

indeed exhibits such behavior and the proof should be within reach quite easily.

3.4 Chapter summary

This channel introduced in this chapter demonstrates the following separations in

classical capacities (where Cresurce is the classical capacity of the channel when the

senders are permitted that resource):

Cclassical, Cquantum < Csuper-quantum.

In the following chapter, we will introduce a closely-related channel that demonstrates

a strict separation between all three classes.
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Chapter 4

Channels II and III: New Conjectured

Separations on Interference and

Multiple-Access Channels

The previous chapter demonstrated a channel for which there exists a simple strategy

using PR-boxes that achieves perfect communication, a feat not possible using just a

classical strategy or 2 x n quantum entanglement between the senders. In this chapter,

we present two related two sender-receiver pair channels that are closely related to

Channel I, but that demonstrate the following new conjectured separations:

Channel II: Cciassicai < Cquantumi < Csuper-quantum

Channel III: Cciassical < Csuper-quantum2

This chapter differs from the previous one in that although the proofs are not as

rigorous, the examples provided are inventive and yield significant insight. In fact,

the reader may find this channel more interesting for that reason. It is believed that

this rigor-to-intuition tradeoff is worthwhile; many of the proof techniques from the

previous chapter should carry over, and in exchange for that, we have made inroads

into obtaining super-quantum enhancements for a new type of channel, the multiple-

access channel. Together with the interference channel, this is one of the building

blocks of Network Information Theory.
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4.1 Channel II

Channel II is a simple modification to our existing one; it is a channel for which some

outputs are erased with probability 1/2, and some with probability 1.

X1\X 2  00 01 j 10 | 11
00 00/ee ee 01/ee ee
01 ee 00/ee ee 01/ee
10 10/ee ee ee 11/ee
11 ee 10/ee 11/ee ee

Table 4.1: Channel II: a variation on Channel I in which the channel outputs not
corresponding to the PR-box-encoded inputs are erased with probability 1, and the
channel outputs corresponding to the PR-box-encoded inputs are erased with proba-
bility p = 0.5. Erased bits are denoted by 'e'.

Conjecture 1. CI.,.c" < Cquantum < Csuper..quantum

4.1.1 A super-quantum assisted strategy on Channel II

Lemma 7. There exists a super-quantum-assisted strategy on Channel II that achieves

R, + = 1.

Proof. The super-quantum coding strategy is exactly the same as in the previous

section. This is best visualized by comparing our channel in Table 4.3 to the set

of encoded messages produced by the PR-box strategy from the previous chapter,

summarized in Table 3.3a - the encoding only produces the channel inputs whose

outputs are erased with probability 1. Since our strategy guarantees that outputs

that are not erased are perfectly decoded by each receiver, this amounts to a binary

erasure channel for each sender-receiver pair with erasure parameter 0.5. Using the

expression 2.9 for the binary erasure channel's capacity, this amounts to a joint rate

of 2 x (1 - 0.5) = 1. L

4.1.2 An entanglement-assisted strategy on Channel II

There exists a simple strategy that makes use of an entangled pair in such a way that

the senders play a CHSH game to communicate. This enables both sender-receiver
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pairs to communicate with rate cos2 (7) ~ 0.854. This is still less than the joint rate

achievable with a PR-box.

Lemma 8. There exists a super-quantum-assisted strategy on Channel II that achieves

R, + R2 = cos2 (1) ~ 0.854.

Proof. In place of the PR-box from the previous super-quantum strategy, let the two

senders share the CHSH entangled pair. We may then map the encoding step to

a CHSH game (section 1.3.1), where the senders are the players in the game. The

message bits of the senders play an analogous role to the referee's questions in the

game, and the outputs that the players would produce using the CHSH strategy

correspond to the bits that the senders concatenate with their message bits to form

the channel inputs. Just as previously, the decoding step is the identity; the receivers

directly use the channel outputs (if they are not erased) as their estimates for the

senders' message bits.

More concretely, let the two senders share an entangled pair, 14I) -0)+111), which

is the same state that they can use to win the CHSH game. Recall that the winning

condition of the CHSH game is that

a e b = r A s (4.1)

and that there exists a good quantum strategy that makes use of this entangled pair.

That is, let r = player l's question, s = player 2's question, a = player l's response, b =

player 2's response; this strategy fulfills Equation 4.1 with probability cos 2 (Z). But

observe that eqn: wincond also governs the input-output distribution (inputs: r, s,

outputs: a, b) of a PR-box, the corner-piece of our perfect coding strategy from the

last chapter. This is a huge hint; with just the entangled pair and no PR-box, we

can try to mimic our super-quantum strategy in a way spelt out in the previous

paragraph, and this allows for pretty-good communication.

How well does this strategy do? We may observe that we obtain a 'good' encoding

(ie. an output for the two senders that wins the CHSH game -+ an output produced

by the PR-box) with probability ~ 0.854; such an output is erased with probability
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p = 1. Otherwise, our strategy yields a 'bad' encoding (one that gets erased with

probability 1 when sent over the channel) with probability . 0.147. Table 4.2 below

summarizes the channel outputs for each possible input encoding:

X 1\X2 11Ox 1x

Oy in: (00, 00), (01, 01) -+ out: 00/ee in:(00, 10), (01, 11) -+ out: 01/ee
in: (00, 01), (01, 00) -+ out: ee in: (00, 11), (01, 10) -+ out: ee

ly in: (10, 00), (11, 01) -+ out: 10/ee in: (10, 10), (11, 11) -+ out: 11/ee
in: (10, 01), (11, 00) -+ out: ee in: (10, 11), (11, 10) -+ out: ee

Table 4.2: Channel outputs using the quantum coding strategy. Within each box, the
outputs in bold (which also allow for perfect decoding) are produced with probability

cos2 (7) r 0.854, and the non-bolded outputs, Pr ; 0.147.

To summarize, each sender gets his input bit erased with probability a = sin2 (E) +

1 cos 2 (i), and transmitted perfectly with probability I cos 2 (i). This amounts to each

sender-receiver pair experiencing a binary erasure channel (Section 2.1.1 and Figure

2-3) with erasure probability a. Since the capacity of a binary erasure channel is

1 - a, the joint rate achieved by such a strategy is 2(1 - a) = cos 2 (E) e 0.854. El

4.1.3 Discussion

The intuition that quantum and super-quantum strategies perform better than clas-

sical ones on this channel is as follows: It is clear from looking at Table 4.3 that any

classical choice of input alphabets for the two senders results in at least one combi-

nation of inputs that is erased with probability 1. Using a PR-box helps us avoid

any input combinations that result in deterministic erasure, and using entanglement

helps us avoid them with probability 0.854.

Although we have here spelt out two strategies for which the one that utilizes

super-quantum resources does better than the one that utilizes shared entanglement,

this is insufficient to prove Conjecture 1. However, we think it should not be hard to

do so, especially in the limit where the erasure parameter p is close to 1.

As a validation of the proof (from the previous chapter) that quantum strategies

fail to achieve a rate of 2 and an exercise, we could consider using the same CHSH

game-assisted strategy on Channel I. It turns out that this induces a binary symmetric
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channel (Section 2.1.1 and Figure 2-2) with bit-flip probability a for both pairs (the

strategy ensures that the channel flips either no bits, or both message bits at once!).

We may then calculate the joint rate of the channel on this strategy using the equation

for the capacity of the BSC, 2.7: it is just

R1 + R 2 = 2 x 1 - H(cos 2 )] 0.798,

a far cry from the super-quantum rate of 2.

4.2 Multiple access channel preliminaries

We have been spending some time now on interference channels and their super-

quantum/quantum enhancements. We now change tacks to explore another of the

fundamental building blocks of Network Information Theory, multiple-access chan-

nels. Since our aim will eventually be to demonstrate that there exists a MAC whose

capacity region is conjectured to be enhanced by super-quantum resources, we will

take the same tack previously, and briefly introduce the theory of MACs before specif-

ically describing our channel.

Xin
M1 -- + Encoder 1 --- +

Yn
p(yX1, X2) - Decoder -- +( 1, 2 )

M2 -- + Encoder 2 - -

Figure 4-1: General model of a multiple-access communication system with indepen-
dent messages. Figure taken from 14].

The distinguishing feature of the discrete memoryless multiple access channel

(henceforth abbreviated to MAC, since we will only be concerned with discrete, mem-

oryless channels) is that the senders wish to communicate an independent message

reliably to a common receiver. That is, a MAC is denoted by (X1 x X2 ,P(yIXi, x 2), Y).
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A (2"Ri, 2nR2, n) code for the MAC is characterized by the same message sets and en-

coders as the interference channel but with a single channel output that goes to

a decoder, visible in Figure 4-1. Therefore the decoding step is altered (from the

interference channel) such that the receiver must guess both senders' messages:

* A decoder assigns an estimate (^ 1, in 2 ) E [ [1 2 x [ - 2 nR2 or an error

message to each received sequence yf.

An achievable rate pair (R1 , R2) is defined analogously, that is, there exists a se-

quence of ( 2 nR, 2 nR2 , n) codes such that lim [P(n) P{(M1, M 2 ) (M1 , M2)}1 =

0. Again, we will be concerned with the sum-capacity, C,,m = max{R1 + R2

(R1 , R2 ) simultaneously achievable}. Unlike the interference channel, a single-letter

characterization exists of the MAC capacity region. Let R(X1 , X2 ) be set of rate

pairs (R1 , R2 ) such that

R1 < I(X1 : Y|X2 )

R2 < I(X2 : YX 1)

R1 + R2 < I(X1, X 2 : Y) (4.2)

In general, this is a pentagonal region with a 450 side, pictured in Figure 4-2 below:

Then the capacity region W of the MAC p(ylxi, x2 ) is the convex hull of the union of

R2

I(X 2; YJX 1)

I(X 2 ; Y) -- - - - - - - - -

I(X1 ; Y) I(Xj; YX 2) R,

Figure 4-2: The region R(X 1, X2) for a typical MAC. Figure taken from [4].

the regions M(X1 , X2 ) over all p(xl)p(x2).
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4.3 Channel III: Super-quantum superiority on multiple-

access channels

We now exhibit a channel on which super-quantum strategies give a conjectured

advantage over quantum strategies. This is a modification to our existing channels,

but now, let both output bits go to the same receiver, ie. we have a channel that

accepts two 2-bit inputs and produces one 2-bit output.

X1\X2 00 01 10 11'
00 00 10/01/11 01 00/10/11
01 01/10/11 00 00/10/11 01
10 10 00/01/11 00/01/10 11
11 00/01/11 10 11 00/01/10

Table 4.3: Channel III: a variation on Channel I and II in which the channel outputs
not corresponding to the PR-box encodings are produced probabilistically (suppose,
uniformly over the three options), instead of deterministically. Note that, in this case,
both output bits go to the same receiver.

Lemma 9 (Capacity of Channel III with super-quantum assistance). If the senders

are allowed to share a PR-box, the sum-capacity of the given channel is exactly 2.

Proof. The PR-box aided strategy that achieves a joint rate of 2 is exactly the same as

the strategy for Channel I, and we only need to be careful in specifying the decoding

process. This is as follows: each of the senders encodes 1-bit messages into 2 bits

using the PR-box, and the receiver applies the following decoding rule to the channel

outputs: Y1 -+ 'h1, Y2 -+ m 2. 0

Conjecture 2. The classical sum-capacity (with no resources) of this channel is

strictly less than 2, and therefore, the channel demonstrates the following separation:

Cclassica < Cstsper-quantum

4.3.1 Discussion

It might be worthwhile to examine exactly why, if we merely declare Channel I a

multiple-access channel by interpreting both output bits as going to one receiver, it
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fails to demonstrate the required separation. With a multiple-access channel, the

receiver has the power of global knowledge of both channel outputs. Therefore, any

multiple-access channel created in this way from an interference channel (IC) has at

least the capacity of the corresponding interference channel; the receiver in this case

merely needs to apply both of the decoding strategies that receivers 1 and 2 would have

used separately for the corresponding IC. Therefore, whereas MACs are commonly

considered more fundamental than ICs, it is paradoxically harder to come up with an

example where super-quantum or quantum techniques yield higher communication

rates.

Having understood this, it is easier to gain an intuition for why Channel III sep-

arates classical and super-quantum rates: we require a channel which disadvantages

the receiver in a way that even global knowledge cannot repair. This handicap, in

this case, is probabilistic output bits. Furthermore, since the benefit of using PR-box

strategies of the form we have considered is that the senders are allowed to send

coordinated input sets, we designed our channel such that output bits are probabilis-

tically corrupted unless they correspond to coordinated input sets. Furthermore, the

options for corrupted bits were chosen such as to maximally obfuscate any classical

strategy the senders might agree on that uses a subset of 2 out of the 4 symbols in the

alphabet. Again, we believe that the proof of this conjecture should be reasonably

within reach.

4.4 Chapter summary

If our conjectures are proven true, we have exhibited a simple example of an inter-

ference channel on which the quantum-assisted capacity is strictly greater than the

classical capacity, but is in turn superseded by the super-quantum-assisted capacity,

as well as a MAC that has its capacity enhanced by PR boxes. Classically, network

information theory is a still-growing field, and in the quantum domain, even less

is known. There have been some nice recent results in characterizing the capacity

regions of quantum extensions of multiple-access channels [291 and interference chan-
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nels [30, 19, 201, but the latter derive single-letter capacity bounds only under certain

assumptions such as very strong interference between the two sender-receiver pairs

or requiring the receivers to decode both messages (simultaneous decoding strategy).

What is truly remarkable is that we have arrived at these examples without resorting

to any information-theoretic power-tools more complex than the concept of mutual

information.

The contribution of this result is then two-fold. Firstly, Channel II and III are

novel: II, if proven rigorously, is the only known example in literature of an inter-

ference channel that demonstrates the desired two-way separation; and III, if proven

rigorously, will be the only known example of a MAC whose capacity is enhanced by

a PR box. Secondly, games are not commonly discussed in relation to channels (a

rare example is the paper [31], which uses graph coloring games to generate single-

sender-receiver pair channels enhanced by entanglement assistance). The connection

to multiplayer XOR games and non-locality has hitherto not been made for network

channels. In this chapter we have considered only the very simplest of such games,

the CHSH game, but we believe that further exploration of XOR games as well as

quantum pseudo-telepathy games (see 126]) should yield a treasure trove of results.

Ultimately, there could even exist a method to map all multiplayer games of a certain

class to channel coding strategies that exhibit quantum or super-quantum superiority.
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Chapter 5

Conclusion

It is now time to conclude our exploratory tour of Network Information Theory with

our newly-acquired super-quantum and quantum information tools. We will use this

last chapter to summarize our results and highlight the specific contribution of this

thesis. We end off with some suggestions for future research.

5.1 Summary of original contributions

The present work demonstrates clearly that interference channels can have their clas-

sical capacity regions enhanced with super-quantum and (it is conjectured) quantum

assistance, while multiple-access channels are conjectured to also allow for super-

quantum enhancement. In illustrating this, we have laid the foundation stones of

a bridge between super-quantum non-locality and multiple-sender communication

channels. The interference channel in particular is notoriously hard to analyze even

classically; the best known inner bound (the Han-Kobayashi bound [41) on the gen-

eral sum-capacity involves simultaneous satisfaction of five functions of various mutual

informations! One benefit of these simple-to-analyze examples is therefore pedagogi-

cal; they build intuition for the types of capacity region enhancements possible with

quantum- and super-quantum resources, as well as serve as a check for even better

capacity characterizations in the future.

Specifically, we have exhibited a channel that show the following new separations
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in classical capacity on the given classes of resources:

" Channel I: Cciassjcai, Cquantum < Csuper-quantum

" Channel II: Cciasicai, Cquantum < Csuper-quantum (conjectured)

" Channel III: Cclica < Csuper-quantum (conjectured)

where the label'quantum' comes with the caveat that only 2 x n entanglement between

senders is considered. Our choice to limit our channel to handling only classical in-

formation (as opposed to density matrices representing quantum information) proved

fruitful, as it paved the way for proofs that rely on classical information theory, as well

as some results from pseudo-telepathy games where the referee, too, accepts only a

discrete (albeit distributed) set of outcomes. This novel connection, originally drawn

to prove the quantum-to-super-quantum separation in both Channels I and II, per-

haps foreshadows greater intermixing between strategies for multiple-sender channels

and multiplayer XOR or pseudo-telepathy games.

5.2 Future directions

An immediate goal is to prove our conjectures of the capacity separations in Channel

IV, as well as to generalize Channels I, II and III to network channels with more

than 2 sender-receiver pairs. In our consideration of quantum-assisted strategies, one

could also formally extend the analysis to situations where the senders and receivers

are allowed to share entanglement. We would also like to see a rigorous proof that

these separations can be maintained even if the senders are provided a noisy PR-box

and allowed multiple uses of it for non-locality distillation.

Slightly farther afield is the open question of whether the capacity region of broad-

cast channels (arguably a third pillar of Network Information Theory) can be en-

hanced with super-quantum and quantum resources. All of this, of course, paves the

way for the million-dollar question of how to replicate the above separations on an

arbitrary channel, or at the very least, characterize channels and coding strategies in

a way that optimizes them for each of the three classes of resources.
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Perhaps the most surprising aspect of this work is the connection between multi-

sender channels and multi-player games. In hindsight, it seems natural to draw

this connection given that pseudo-telepathy games exhibit the twin boons of be-

ing known to demonstrate super-quantum-to-quantum separations, and having had

winning strategies (in a few cases) characterized and generalized to an arbitrarily

large number of parties [26, 321! It would be very satisfying if a general strategy

could be found to map all pseudo-telepathy games to channels which demonstrate

capacity separations. These facts practically necessitate a sequel to this work in the

multi-sender (n > 3) case. This is almost certainly just the tip of the iceberg.
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