
Increasing Quality of Service Using Transport Layer Coding

Over Parallel Heterogeneous Networks

by

Jason M. Cloud

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

Author.

Certified

Accepte

@ Massachusetts Institute of Technology 2016. All rights reserved.

Signature redacted
.

Department o<rica1 Engineering and Computer Science
April 13, 2016

Signature redacted
b y - - - - - - --.

Muriel M6dard
Cecil H. Green Professor in Electrical Engineering and Computer Science

Thesis Supervisor

Iby............Signature redacted
6) Yslie A. Kolodziejski

Chair, Department Committee on Graduate Students

MASSACHUSETS INSTITUTE
OF TECHNOLOGY

JUL 12 2016

LIBRARIES

ARCIVES

2

Increasing Quality of Service Using Transport Layer Coding

Over Parallel Heterogeneous Networks

by

Jason M. Cloud

Submitted to the Department of Electrical Engineering and Computer Science
on April 13, 2016, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

A shift in the way the Internet is accessed and the type of traffic generated has been
underway for the last decade and will continue into the foreseeable future. Further-
more, these shifts are expected to place considerable strain on the ability of existing
transport layer protocols to meet users' quality of service demands. Internet traffic is
being generated by an increasing number of inexpensive, low-power, mobile devices
resulting in an increased incidence of packet losses, unreliable network connections,
and path instability. In addition, the majority of traffic, such as streaming video,
is fast becoming more delay sensitive driving changes throughout the network. This
thesis explores methods to improve end-to-end performance through the use of net-
work and erasure coding techniques applied at the transport layer. These techniques
will help provide path diversity and connection resiliency in the form of multi-path
transport, in addition to increasing throughput and decreasing in-order delivery delay
in the presence of network disruptions and packet erasures.

The potential gains of a network coded transport layer are first introduced using
two protocols: Coded TCP (CTCP) and Multi-Path TCP with Network Coding
(MPTCP/NC). These two approaches help illustrate different methods to implement
network coding to help overcome packet losses and diversify network connections over
multiple paths. Analytic and experimental results are provided that show a network
coded transport layer can significantly improve throughput in challenged networks;
but more importantly, these results hint at the possible gains for application layer
quality of service. Observing the performance of HTTP requests and streaming video,
the potential to decrease the in-order delivery delay is highlighted.

Based off of the observations outlined above, the second half of the thesis explores
different code constructions that reduce in-order delivery delay in multiple path net-
works. A generation-based systematic code construction, similar to the one used in
CTCP, is modeled and analyzed. Of particular note is the inherent trade-off between
increasing the generation size to reduce the probability of decode errors resulting in
retransmissions and keeping the generation size small enough so that coding delay is
minimized. Furthermore, the trade-off between delay and efficiency is explored to help

3

quantify the cost of reducing delay so that a user's quality of service constraint is met.
Finally, a multiple path streaming code construction that removes the artificial con-
straints imposed by partitioning packets into generations is explored. Comparisons
between the two constructions help highlight the importance of feedback in reducing
delay, as well as the advantages and disadvantages of one type of code construction
over the other.

Thesis Supervisor: Muriel M6dard
Title: Cecil H. Green Professor in Electrical Engineering and Computer Science

4

To my wife Jenny

and my children Jackson and Elliana

5

6

Acknowledgements

The pursuit of my Ph.D at MIT has been one of the most challenging, but rewarding

experiences of my life. Both the faculty and my fellow students have helped me push

the boundaries of my knowledge past what I thought was possible. I will always be

grateful for their patience, dedication, and support over the past several years.

I first would like to express my sincerest gratitude to my advisor Prof. Muriel

Medard. Her guidance, support, and expertise has been invaluable to both my pro-

fessional and personal development. The advice and encouragement she has provided

me during my studies, in addition to the freedom to explore new ideas and topics of

interest, has helped me grow as a researcher. It has truly been an honor and privilege

working with you.

I would like to thank Prof. Vincent Chan, Prof. Douglas Leith, and Dr. Arad-

hana Narula-Tam for your guidance and advice. I am grateful for their time reading

my various papers, helping push the boundaries of my research, and serving on my

dissertation committee. Their advice, insight, and suggestions have helped improve

both the content of this thesis and the quality of my research.

Next, I would like to thank my friends and officemates at MIT. In particular, I

would like to thank Weifei Zeng, Arman Rezaee, and Flavio du Pin Calmon. Their

help and support throughout my graduate studies has been instrumental to my suc-

cess. I would also like to thank Ali ParandehGheibi, Kerim Fouli, Jinfeng Du, Minji

Kim, Ulric Ferner, and Dan Whisman for all of the discussions regarding research;

and Michael Lewy for helping me navigate Muriel's confusing schedule. In addition,

I would like to thank Georgios Angelopoulos, Soheil Feizi, Vitaly Abdrashitov, Ali

Makhdoumi, Salmon Salamatian, Ahmad Beirami, Daniel Lucani, Shirley Shi, Dave

Adams, Tong Wang, and everyone else that I have had the pleasure of working with

over the last several years.

Finally, I would like to thank my family for their love, support, patience, and

sacrifice. Most of all, I am deeply indebted to my wife Jenny. Her willingness to

commute across the country, support me in the pursuit of my dreams, and her uncon-

7

ditional love have been my beacon of light. I am also indebted to my son Jack and

daughter Ellie for reminding me everyday that life is supposed to be fun and warming

my heart every time I look at you. I couldn't have done it without the three of you.

The work in this thesis was partially supported by the Assistant Secretary of Defense (ASD R&E)
under contract no. FA8721-05-C-0002, the Air Force Office of Scientific Research (AFOSR) under
contract no. FA9550-09-1-0364 and FA9550-14-1-0052, the Army Research Office under contract
no. W911NF-10-1-0430, the Office of Navy Research (ONR) under contract no. N00014-13-1-0774,
and the National Science Foundation (NSF) under grant DGE-0801525. Opinions, interpretations,
recommendations and conclusions are those of the authors and are not necessarily endorsed by the
United States Government.

8

Contents

1 Introduction

1.1 Related W ork .

1.2 Thesis Contributions and Outline .

2 Transport Layer Coding

2.1 Introduction .

2.2 Goals of a Coded Transport Layer

2.3 An Overview of Coded TCP (CTCP)

2.3.1 Code Implementation

2.3.2 Congestion Control Modifications

2.4 Performance of CTCP Over Emulated Networks

2.4.1 Experiment and Testbed Setup

2.4.2 Throughput and Efficiency

2.4.3 Fairness and Friendliness

2.4.4 Application Layer Performance

2.5 Performance of CTCP Over 802.11 Networks . .

2.5.1 Networks with Random Noise

2.5.2 Networks with Hidden Terminals

2.5.3 Networks "In the Wild"

2.6 Conclusions .

3 Transport Layer Coding Over Multiple Paths

3.1 Introduction .

9

19

22

27

31

... 3 1

. 32

. 3 4

. 3 6

. 37

. 3 9

. 3 9

. 4 0

. 45

. 48

. 50

. 5 0

. 5 3

. 5 3

. 56

59

. 59

3.2 Characterization of the Multi-Path Environment .

3.2.1 Testbed Configuration

3.2.2 Collected Data

3.2.3 Discussions and Comments

3.3 A Coded Multi-Path Transport Layer Protocol . .

3.3.1 Description of the MPTCP/NC Protocol .

3.3.1.1 The Fast-TCP/NC Layer

3.3.1.2 The MPTCP/NC Layer

3.3.2 Analytical Performance of MPTCP/NC

3.3.2.1 MPTCP Analytical Throughput

3.3.2.2 Preliminaries

3.3.2.3 Sub-Flow Analysis

3.4

3.5

3.3.2.4 Window Evolution and End-to-End Throughput . . .

3.3.2.5 Markov Chain Model

3.3.3 MPTCP and MPTCP/NC Performance using Empirical Data

Extending Coded TCP to Multi-Path Environments

C onclusions .

4 In-Order Delivery Delay for Multi-Path Generation-Based Codes

4.1 Introduction .

4.2 Multi-Path Generation-Based Coding Algorithm . .

4.3 System M odel .

4.4 Model and Analytical Assumptions

4.5 Required Probability Models and Distributions . . .

4.5.1 Primary Models and Distributions

4.5.2 Secondary Models and Distributions

4.6 The In-Order Delivery Delay's First Two Moments

4.6.1 Case 1: Y = Zq=1

4.6.2 Case 2: Yq > Zq =1

4.6.3 Case 3: Zq> Y ;> 1

. 85

. 89

. 91

. 92

. 95

. 95

. 99

. 105

. 106

. 109

. 112

10

. 61

. 61

. 63

. 66

. 67

. 68

. 70

. 70

. 71

. 72

. 73

. 73

76

77

79

81

82

85

4.6.4 Case 4: Y ;>Zq >1

4.6.5 Mean and Variance of the In-Order Delivery Delay .

4.7 Determining the Cost of Reducing the Delay

4.8 Numerical Results .

4.9 A Special Case: In-Order Delivery Delay Over a Single Path

4.9.1 Coding Window Size and Redundancy Selection . . .

4.9.2 Rate-Delay Trade-Off

4.9.3 Real-World Comparison

4.10 Conclusions .

. . . . 115

. . . . 118

. . . . 119

. . . . 121

. . . . 123

. . . . 125

128

129

130

5 In-Order Delivery Delay for Multi-Path Streaming Codes

5.1 Introduction .

5.2 In-Order Delivery Delay Over a Single Path

5.3 Multi-Path Streaming Code Algorithm

5.3.1 Code Rate Selection .

5.3.2 Code Window Management

5.4 System M odel .

5.4.1 Analysis of the In-Order Delivery Delay

5.5 Numerical and Simulation Results .

5.6 A Comparison Between Generation Based Codes and Streaming Codes

5.6.1 Closed-Loop Performance .

5.6.2 Open-Loop Performance .

5.6.3 An Unfair Comparison: Closed-Loop Generation Based Codes

versus Open-Loop Streaming Codes

5.7 C onclusions .

6 Conclusions

6.1 Sum m ary .

6.2 Implementation Considerations .

6.3 Possible Directions for Future Research

11

133

133

135

136

139

140

142

142

149

151

153

154

157

160

161

161

163

166

12

List of Figures

1-1 Wireless and time-sensitive global IP traffic trends projected by Cisco

[1] . 2 0

1-2 Internet video viewer abandonment as a function of startup delay [2] 21

1-3 Coding matrices for various schemes assuming an identical loss pattern

and a feedback delay of 4 time-slots 26

2-1 CTCP Functional Diagram . 35

2-2 Example of the coding matrix used in CTCP when k = 3 and c =

3/4. The columns represent the information packets that need to be

sent, and the rows represent the composition of the packet actually

transm itted. 37

2-3 Emulated Network Testbed Setup . 40

2-4 Measurements of goodput efficiency against packet loss rate, link rate

and RTT taken from [3]. The Theory curve in Figure 2-4a is generated

using Equation 2.4. 42

2-5 Goodput comparison of CTCP and other TCP variants with varying

packet erasure probability E and RTT > 500 over a link with a rate of

10 Mbps. The error bars show plus and minus one standard deviation. 43

2-6 Congestion window size (cwnd) and goodput trace over a 10 Mbps

link with a RTT of 500 ms. The dotted line shows a 3 second moving

average of the goodput and the solid line shows cwnd. The mean

goodput in (a) and (b) are 9.19 Mbps and 8.92 Mbps respectively. 44

2-7 Goodput for two CTCP flows sharing a loss-free link 45

13

2-8 Goodput for a standard TCP and a CTCP flow sharing a loss-free link 46

2-9 Fairness and friendliness of CTCP over error-prone networks 47

2-10 Measured HTTP request mean completion time against file size over

25 Mbps link with an RTT of 10 ms. Data is shown for standard

TCP (red) and CTCP (black) for a range of loss rates. Error bars are

comparable in size to the symbols used in the plot and are omitted. . 49

2-11 Measurements of video streaming performance against loss rate with

a 25 Mbps link and a RTT of 10 ms. Data is shown for standard

TCP and CTCP. Figure 2-11a shows the running time taken to play

a video of nominal duration (60 s); Figure 2-11b shows the number of

under-runs of the playout buffer at the client. 50

2-12 Spectrum analyzer screen shot showing interference caused by a mi-

crowave oven and transmitted packets sent over Wi-Fi channel 8. . . 51

2-13 Mean throughput versus wireless PHY rate on an 802.11 link with

microwave oven interference. 52

2-14 Throughput versus intensity of hidden terminal interference when using

standard TCP (Cubic TCP) and CTCP over an 802.11 b/g wireless link. 53

2-15 Public WiFi hotspot packet traces . 55

3-1 Simultaneous use of multiple heterogeneous networks can: (a) help to

provide an increased quality of service to disadvantaged users, or (b)

help to reliably offload traffic from one network to another. 60

3-2 Multi-Path Experiment Configuration 62

3-3 WiMAX/WiFi Base Station Placement and Vehicle Route 63

3-4 Sample traces showing the UDP throughput for two U/L and two D/L

experiments with varying packet sizes. The labels A, B, C, and D

provide the approximate location of the vehicle when compared with

Figure 3-3. 64

3-5 CDFs of the RTT and packet loss probabilities during the D/L exper-

iment using 1,350 byte packets. 65

14

mop"IMR11WIRRM mmm'ORMF

3-6 MPTCP/NC Protocol 68

3-7 Assumed network stack configuration for both MPTCP and MPTCP/NC. 71

3-8 MPTCP/NC round duration used for two sub-flows. The blue blocks

indicate packets and the green blocks indicate acknowledgements. . . 74

3-9 Markov Chain Model for MPTCP/NC 78

3-10 Comparison of the theoretical MPTCP and MPTCP/NC throughput

using the data presented in Section 3.2. 80

3-11 Possible Extension of CTCP to Multi-Path Environments 82

4-1 An example of the systematic code with feedback considered within

this chapter. 87

4-2 The trade-off between decreasing the probability of retransmissions and

minimizing the generation size k. 88

4-3 Example of the process used to partition packets into generations. Both

network paths transmit packets at the same rate; however, the gener-

ation size and code rate for each path differ. 90

4-4 Example of the number of previously transmitted generation that can

create head-of-line blocking assuming two paths. The figure shows the

reception times of each generation over two rounds. 94

4-5 Markov chain model that describes the process of delivering a single

generation . 96

4-6 Example of the in-order delivery of packets within a single generation

where coded packets help recover from packet erasures. 100

4-7 Case 1: Y = Zq = 1. Packets sent on the slowest path can be imme-

diately delivered, while packets sent on faster paths are delayed. . . 107

15

4-8 Case 2: Y > Zq = 1. Packets received from the slowest path prior

to the first packet erasure are immediately delivered, while packets

received prior to the first packet loss on faster paths are buffered until

all proceeding information packets are delivered. The remaining kq -

s packets are delivered after retransmissions provide enough dofs to

decode the generation. 110

4-9 Case 3: Zq > Yq> 1. Packets in GFP,2 and GsP,2 cannot be delivered

until both GSp, 1 and GFP,1 are decoded and delivered where nq =

kqtq/cq. 113

4-10 Case 4: Y ;> Zq > 1. The first s packets in generation GFP,2 are

delivered when GsP,2 is decoded in round ZFP = 2. The remaining

kFP - s packets are delivered when GFP,2 is decoded in round YFP = 3

. Note nq = kqtq/cq. 115

4-11 The in-order delivery delay over two paths for various combinations

of erasure rates (ci = {O.01, 0.1}, i = {1, 2}) and propagation delays

(d, = {80,400} and d2 = {100, 500}) as a function of the generation

size ki on path i = {1, 2}. The analytical and simulated results are

represented using solid and dotted lines respectively. Note the log

scale of both the x-axis and y-axis, in addition to the variable rates on

the secondary path due to assumption (4.6). 122

4-12 The in-order delivery delay over a single path with erasure rates c =

0.01 and e = 0.1 as a function of the generation size k. The error

bars show 2o- above and below the mean and R,, (1+x)/(1-c). The

analytical and simulated results are represented using solid and dotted

lines respectively. Note the log scale of both the x-axis and y-axis. . . 126

4-13 k* as a function of the BDP. 127

4-14 Rate-delay trade-off for a 10 Mbps link with a RTT of 100 ms. The

error bars represent 2 oT above and below the mean, and the delay for

ARQ is shown for rq = 1. Note the log scale of the y-axis which skews

the appearance of the results for large E. 129

16

4-15 Experimental (solid lines) and analytical (dotted lines) results for var-

ious k over a 25 Mbps link with RTT = 60 ms and c = 0.1. Note,

c = 1/R . 130

5-1 An example of the streaming code considered within this chapter. . . 134

5-2 Example generator matrix used to produce the streaming code. The

elements of the matrix contain the coefficients used to produce each

transm itted packet. 137

5-3 An example of the processes X,, and W and the reward function R (t)

for a single path. 147

5-4 Simulated and analytical in-order delivery delay for a streaming code

over a single path. 150

5-5 Simulated and analytical in-order delivery delay for a streaming code

over two disjoint paths. The rate of the coding path is r, and the rate

of the non-coding path is r.. 151

5-6 Gilbert channel used to produce correlated losses. 152

5-7 Closed-loop in-order delivery delay as a function of the code rate on a

25 Mbps link with a RTT of 60 ms. 155

5-8 Open-loop in-order delivery delay as a function of the code rate. The

packet erasure rate (PER) at the application layer after coding has

attempted to correct all erasures is listed for each curve. 158

5-9 A comparison of an open-loop generation based code and a closed-loop

streaming code on a 10 Mbps link with RTT = 200 ms and mean

packet erasure rate 7rB = 0.05. 159

6-1 A simple example showing that coding within the network is more

efficient than end-to-end coding. i is the efficiency on link i E 1, 2,3

when coding is performed end-to-end (j = E) or at each intermediate

network node (j = E). 164

17

18

Chapter 1

Introduction

The methods in which end users access the Internet, in addition to the type of con-

tent they are primarily consuming, drive exploration of new approaches to improve

quality of service (QoS). The need for these new approaches is further amplified by

the growth in mobile device use, extending network coverage to rural areas and devel-

oping countries, and the explosion of connected devices. While new physical and data

link layer technologies are necessary, new techniques to improve end-to-end perfor-

mance are also required. This thesis focuses on improving end-to-end performance by

considering erasure and network coding at the transport layer, which helps increase

throughput and decrease in-order delay.

The shift towards wireless Internet access that has been on-going for the last

decade and is forecasted to continue into the future is one of the primary motivations

for the research contained in this thesis. In 2014, 46% of all IP traffic originated

from wireless or mobile devices and this is expected to grow to 67% of all IP traffic

by 2019 [1]. This trend, shown in Figure 1-1a, presents a major challenge to the

existing transport layer. As more and more traffic is generated by inexpensive, low-

power, mobile devices, an increased incidence of packet losses, unreliable network

connections, and path instability are expected to place considerable strain on the

ability of existing transport layer protocols (i.e., TCP, SCTP, etc.) to meet users'

QoS demands.

Furthermore, the traffic that is being produced by an increasing percentage of

19

180 M 0.1 (57 COGR 510 IGm -o 4 01% 0 18% 10 4% CAG' %Qwc,400 .1-1-1 -l-11- -- 14% 0< F..40ti(1% 5%

Exabytes per 100
Exabytes porM fir

17% Monlth a',13% 404

iI0 il36%l
2014 2016 2016 2017 2018 2019 2014 2015 2016 2017 2018 2019

(a) Distribution of IP Traffic by Access Type (b) Global IP Traffic by Application Category

Figure 1-1: Wireless and time-sensitive global IP traffic trends projected by Cisco [1J

wireless devices is becoming more delay sensitive. This is illustrated in Figure 1-1b.

The figure shows that the amount of delay sensitive traffic, such as Internet video,
VoD, VoIP, video-streamed gaming, etc., represents the majority of Internet traffic

today and it is expected to range from 80% to 90% of all Internet traffic by 2019

[1]. With an increase in delay sensitive traffic, an increase in user expectations is also

occurring. This is shown by [2] where the rate of Internet video viewer abandonment

is compared with the startup delay, which is a common technique to overcome the

limitations of TCP and provide a high QoS during playback. Unfortunately, an

increase in startup delay to help avoid interruptions also increases the rate of viewer

dissatisfaction. This is shown Figure 1-2 where the rate of viewer abandonment for

Internet video increases significantly after just a three second startup delay.

Existing transport layer protocols, primarily TCP, are unable to cope with the

increase in packet loss rates and more stringent QoS demands illustrated by the above

trends. Transport layer development traditionally assumed that the lower layers (i.e.,
the link and physical layers) provided an error-free medium in which to communicate.

As a result, packet losses are treated as congestion events and the transport layer uses

these events as a signal to decrease the transmission rate. This assumption no longer

holds in wireless and mobile environments. Whether communication is over a non-

stationary satellite link with a bit error rate (BER) in excess of 10-6 (equivalent

to a packet loss rate of greater than 1.2% at the transport layer) [4] or a WiFi

client experiencing a 5% packet loss rate while connected to a public hotspot [3],
congestion events can no longer be considered the primary cause of dropped packets;

20

100

80i-

60

0

20
. +cable

I' ---. +dsl
ILI,_______________________ +mnobile

0 1 20 20 40 50
Sta'tap J01 ss

Figure 1-2: Internet video viewer abandonment as a function of startup delay [2]

and continuing to treat packet losses as a signal for congestion, resulting in inadvertent

rate throttling, is no longer the appropriate strategy.

Another issue, noted above, that drives the search for alternatives to TCP is the

impact of packet losses on delay. TCP provides reliable transport ensuring that the

application layer receives an error-free data stream. To provide this reliability, an

automatic repeat request (ARQ) mechanism is usually employed where a packet is

retransmitted upon notification of its loss. In networks with low packet erasure rates

or small round-trip times (RTTs), ARQ is usually sufficient to provide the required

QoS guarantees requested by end users. However, frequent retransmissions or large

RTTs can create significant interruptions due to head-of-line blocking. This not only

increases the possibility of large startup delays that also increases user abandonment

as show above, but it also increases the probability of stalling, or buffer under-runs,

during playback that also negatively impacts QoS. As a result, new solutions are

required to help mitigate the effects of transport layer packet losses on upper layer

performance.

Unreliable network connections and path instability are also issues that plague

the transport layer in the mobile environment. Whether a network connection is

transient or the path between two communicating nodes changes mid-session, current

transport layer protocols generally have a difficult time adapting. In addition, most

mobile devices have multiple wireless radios (consider a standard smart phone that

typically has a 3G/4G radio and a WiFi radio). Current transport protocols are

21

unable to handle simultaneous communications over multiple heterogeneous networks,

and significant gains in both performance and cost reduction are possible though

proper diversification. The advent of Multi-Path TCP [5] into consumer products [6]

is a first step to providing this flexibility, but improvements in packet management

and throughput/delay performance are possible [7].

This thesis will help address these issues through the use of network and erasure

coding techniques incorporated into the transport layer. Random linear network

coding (RLNC) [8] will be used as the primary workhorse. While RLNC has its

limitations, it provides the flexibility to generate codes that help recover from packet

losses, provide stability in the presence of different network conditions, and can help

to diversify communications across many heterogeneous networks. In addition, RLNC

enables implementation of future network coding strategies with minimal impact to

network coded transport layers. The remainder of the thesis will explore the benefits

of both single-path and multi-path network coded transport layers. This includes the

study of methods to improve throughput, as well as methods to decrease in-order

delivery delay.

1.1 Related Work

Providing reliable data transport for challenging environments has been a topic of

study since the late 1990's [9, 10, 11]. End-to-end solutions typically involve tuning

TCP so that high packet loss rates and/or long RTTs do not negatively impact per-

formance. Two prominent versions that perform well in disadvantaged, heterogeneous

networks are TCP Cubic [12] and TCP Hybla [13]. Cubic, designed for high speed

networks, and Hybla, designed for heterogeneous networks, use a congestion window

algorithm that increases the congestion window size (cwnd) independently from the

RTT. This makes either version useful in environments with high delay. Unlike TCP

Cubic, Hybla was developed to also reduce the impact of multiple losses, inappropri-

ate timeouts, and correlated losses. When compared with each other, studies have

shown that Hybla performs better than Cubic under high packet loss rates while the

22

III , ' ' 1 1 | l 1 11 I'IJI |I [1 p ||||- 1 || 1 l l l ll 1 1 , 1 11 1 , I II , 11 1 1I I I I I I 1 1 1 1 14 1 1

reverse is true under low packet loss rates [14]. Regardless, both experience severe

performance degradation under packet loss rates greater than 2%.

In lieu of changes to TCP, performance enhancing proxies (PEPs) are another com-

mon approach to increase performance over problem links or networks (e.g., satellite

links). Consider a PEP that is located at the gateway to some proprietary network

or problem link and a TCP flow that is traversing this network. A TCP session is

typically terminated at the PEP, a protocol specifically designed for the network is

used for data transport, and a new TCP session is setup on the other side of the

network to complete the connection. This implementation poses two issues. First,

the cost of implementing a PEP at the network gateway may be high. Second, the

termination of TCP sessions at the PEP violates the end-to-end semantics of TCP.

One such example is the inability to use IPSEC since the encryption of TCP headers

is usually incompatible with PEP deployment [10].

Recently, there has been a resurgence of interest in the use of coding at the

transport layer to help overcome issues related to unreliable networks. A more recent

protocol, Loss-Tolerant TCP (LT-TCP) [15, 16, 17], combines Reed-Solomon (RS)

coding with TCP to overcome packet losses. However, it requires the use of explicit

congestion control (ECN) to aid in determining if packet erasures are a result of

congestion or poor link characteristics. There are two issues with this proposal.

First, the use of ECN to identify congestion is problematic. While ECN is widely

implemented, it is rarely turned on or used. In fact, a recent study identified that over

80% of the internet servers tested were not ECN capable [18]. The use of an RS code

can also be problematic. LT-TCP separates the packets to be sent into fixed-length

blocks and an RS code is used to generate coded packets that are used to help recover

from losses. If enough packets (either the original or coded packets) are lost, the

sender must regenerate a new set of coded packets and retransmit the entire block.

This can result in the degradation of throughput, which can be otherwise avoided.

TCP with Network Coding (TCP/NC) [19] uses network coding to overcome this

issue, but implementation of the protocol can result in unfairness with other versions

of TCP and the code window management can be challenging. TCP/NC implements

23

network coding below the transport layer to help provide the redundancy needed

to avoid duplicate acknowledgements and time-outs that cause TCP to close it's

congestion window. Since the redundancy is added on-top of the congestion window,

TCP/NC may inadvertently overwhelm the network with too many packets causing

congestion and unfairness.

With respect to the topic of multi-path communication using transport layer so-

lutions, a significant amount of research has taken place in recent years. For example,

Multi-Path TCP (MPTCP) is a new protocol that has just seen it's first adoption by

a commercial product (e.g., Apple's iPhone [6]). MPTCP allows for a single session

to be distributed over multiple paths. This adds both redundancy and allows for

improved throughput by combining all available network resources. It provides this

multi-path support by scheduling packet transmissions and retransmissions through

the use of a somewhat complex management scheme. It also provides connection man-

agement support that helps to add and delete paths as they become available and

unavailable respectively. As paths become available, MPTCP adds TCP sub-flows

to the connection, where each sub-flow behaves in the same manner as a standard

TCP flow. While the use of TCP ensures fairness with other TCP flows (whether

they are or are not part of another MPTCP connection), the performance of TCP

over lossy networks (e.g., wireless networks) is known to be poor [20]. As mentioned

above, network coding is one possible solution that both reduces the need for a com-

plex management scheme and can help increase the performance of transport layer

protocols over both heterogeneous and lossy networks.

Several suggestions on how to incorporate network coding with MPTCP have been

proposed. Gheorgiu et al. [21] propose a protocol called CoMP that uses network cod-

ing for multi-path transmission that incorporates only some aspects of TCP. Proposals

by [22] and [23] suggests methods that incorporate TCP/NC and adds a multi-path

scheduler below the TCP, network coding, and IP layers. Unfortunately, this negates

the congestion control benefits of TCP over single paths. Finally, ParandehGheibi

et al. [24], and implemented by [25] in OPNET, provide a sub-flow selection con-

trol policy for network coded packets over heterogeneous networks that optimizes the

24

trade-offs between the network usage costs and the Quality of user Experience (QoE)

for media-streaming applications.

Each of the protocols and proposals above have generally focused on increasing

throughput over unreliable networks, but another important benefit provided by cod-

ing at the transport layer is the potential to decrease delivery delay and jitter. This

is especially important since there has been an increase in the use of TCP for applica-

tions such as video streaming and voice over IP. Without coding, TCP versions such

as Cubic, Hybla, Reno, etc. use automatic repeat requests (ARQ) to recover from

packet losses. This ARQ mechanism can create head-of-line blocking issues, which

can cause unacceptable video playback and interruptions given enough lost packets

[26, 271.

A number of groups have approached this problem, in addition to related problems,

using various code constructions and techniques. In general, the majority of these

works can be summarized by Figure 1-3. The rows and columns of each matrix in the

figure indicate the time and the specific information/uncoded packets, pi, that need

to be transmitted respectively. The composition of the transmitted packet is shown

by the dots in each row, different color dots indicate different generations, horizontal

lines show the time when feedback about a specific generation is obtained, and the

red crosses show lost packets. Furthermore, the time packets are delivered, in-order,

to the client application is shown by the double arrows on the right-hand side of each

matrix.

The coding delay of chunked and overlapping chunked codes [28], network coding

in time-division duplexing (TDD) channels [29, 30, 31], and network coding in line

networks where coding also occurs at intermediate nodes [32] is well understood.

In addition, a non-asymptotic analysis of the delay distributions of RLNC [33] and

various multicast scenarios [34, 35, 361 have also been investigated. Research looking

at the in-order delivery delay in uncoded systems is provided in [37] and [38]; while

[39], [40], [41], and [42] consider the in-order delivery delay of non-systematic code

schemes. Unfortunately, packet delivery to the upper layers in non-systematic code

constructions is dependent on the successful reception of enough coded packets within

25

Information Packets (pi)
1 2 3 4 5 6 7 8 9 10 11 12 14 11 16

...

....
ese.

sees

555
ISS..1

0=0656
ease

sees
0000~
0.0.

1
2
:t

4

7

10
I I
12
13

16
17
is
19

21)
21
22
23
24
25
26

*1

&-,-

P

(a) Chunk Code

Information Packets (p,)

05000

000000

000000
000000
000000

(b) Rateless CodIe

Information Packets (pi)
1 2 3 4 5 6 7 8 9 10 It 1213 It 15 11

*0 Lost Packet

*0000

S Packet Delivery

000
S......

0OS0S P:, ,=0
000.

(c) Timne-Invariant Streanii Cotde

Figure 1-3: Coding matrices for various schemes assuming an identical loss pattern
and a feedback delay of 4 time-slots

each block. Once enough packets have been received, the block can be decoded and

all packets contained within the block can be delivered in-order. This results in

distinct decode/delivery events that increase jitter and maybe unsuitable for some

time sensitive applications such as voice or real-time video. Furthermore, these non-

systematic schemes may not be the optimum strategy in networks with a long RTT.

Figure 1-3(a) provides an example of a chunked code similar to those used in [28],

while the majority of the other cited work uses variations of the scheme shown in

Figure 1-3(b).

The research closest to the work presented in this thesis is [43], [44], [45], [46],

[47], and [481. Bounds on the expected in-order delay and a study of the rate/delay

trade-offs using a time-invariant coding scheme is provided in [43] and [45] where

feedback is assumed to be instantaneous, provided in a block-wise manner, or not

available at all. A generalized example of their coding scheme is shown in Figure

1-3(c). While their analysis provides insight into the benefits of coding for streaming

applications, their model is similar to a half-duplex communication channel where the

sender transmits a finite block of information and then waits for the receiver to send

feedback. Unfortunately, it is unclear if their analysis can be extended to full-duplex

26

0.55
0000

ese.
.000

S...
050*

P

channels or models where feedback does not provide complete information about the

receiver's state-space.

ParandehGheibi et al. [46, 47] approached this problem using a block, or gener-

ation, based network code for streaming applications in peer-to-peer (P2P) systems.

Their work focused on determining the minimum number of coded packets that must

be buffered by the receiver before playback can begin while ensuring no interruptions

occur before the end of the file is reached. While their approach is significant for

ensuring a high quality of user experience for streaming applications that can buffer

packets before playback begins, it provides little insight into the behavior of individual

packet deliveries to higher layers in applications where delay and jitter is a concern.

Finally, the work in [48] considers the in-order delivery delay of online network cod-

ing where feedback determines the source packets used to generate coded packets.

However, they only provide experimental results and do not attempt an analysis.

A systematic network code (i.e., uncoded packets are first sent to a receiver fol-

lowed immediately by linear combinations of those same packets) has the potential to

mitigate the problems mentioned above, but little research has been done in terms of

characterizing the delay of such schemes. [49] proposes such a scheme, but only stud-

ies the receiver's ability to decode the required packets. [50] and [51] both propose

systematic network coding schemes that XOR packets together and investigate the

delay-throughput trade-offs; but the use of a small field size when generating coded

packets ignores the possibility of receiving multiple network coded packets consisting

of linear combinations of the same uncoded packets. It is expected that increasing

the field size used to generate coded packets will eliminate this problem, while also

helping to reduce the in-order delivery delay of transmitted packets.

1.2 Thesis Contributions and Outline

Design of the transport layer is a complex problem. From the study of how congestion

control affects overall network stability to the impacts transport layer implementa-

tions have on application layer performance, the breadth of topics that should be

27

considered is large and cannot all be covered in a single thesis. Therefore, this the-

sis will focus on applications of network coding for reliable transport. This includes

both a study of the throughput gains afforded by network coding, methods to ex-

tend single-path transport layers to multi-path scenarios, and an evaluation of code

constructions that reduce overall in-order delivery delay.

The motivations for the work presented throughout the thesis is provided in Chap-

ter 2 where an overview of a prototype coded transport layer called Coded TCP

(CTCP) [3, 52] is provided. CTCP combines error-correction coding, in terms of

a systematic network code, and congestion control to protect against both packet

losses and congestion collapse. Both the code construction and congestion control

are described in detail, and extensive experimental results are discussed. These re-

sults show significant gains over a wide range of network conditions, while remaining

friendly with other versions of TCP. However, the most significant contribution of this

chapter is the identification of the gains network coding has on the in-order delivery

delay for packets in transport. This is shown using experimental measurements of

application layer performance. In particular, the completion time of HTTP requests

and the number of buffer under-runs experienced during the playback of a streamed

video. The gains shown cannot be fully explained solely by the throughput increases

provided by both the modifications to congestion control and employment of network

coding. Rather, these gains can only be described by the ability of network coding to

quickly recover from packet losses without incurring the added delay resulting from

the retransmission of lost packets.

Before exploring the delay gains in greater detail, Chapter 3 discusses the appli-

cation of a coded transport layer for multi-path scenarios. First, experimental results

measuring a potential multi-path scenario is provided to help guide future multi-path

transport layer designs. In particular, these measurements collected simultaneous

packet traces over three parallel heterogeneous networks; and they help illustrate the

inherent challenges and potential benefits of communicating over each concurrently.

A multi-path protocol called Multi-Path TCP with Network Coding (MPTCP/NC)

[7] is then proposed that is intended to effectively utilize all available paths. Unlike

28

CTCP, MPTCP/NC does not replace the transport layer. Instead, it incapsulates

the existing one by inserting two coding layers, or shims. A coding layer placed above

TCP adds connection resiliency and path diversity, while a coding layer placed be-

low TCP is used to insert redundancy to help overcome packet losses. While not a

practical approach for a variety of reasons outlined later, this setup is used to help

provide an analysis of the attainable throughput. Numerical results using the experi-

mental measurements are presented showing the benefits of using network coding for

multi-path transport. A discussion is also provided concerning extensions of CTCP

for multi-path transport outlining the benefits of replacing the transport layer rather

than supplementing it.

The focus of Chapter 4 is on quantifying the non-throughput gains shown in

Chapter 2. Specifically, the in-order delivery delay of packets transported over a

multi-path network using a systematic generation-based coding scheme similar to

the one employed by CTCP is modeled and analyzed [53]. Packets are partitioned

into generations of size k packets and systematically transmitted over an available

network with redundancy added on a generation-by-generation basis. Feedback is

then provided to the source indicating whether or not the sink was able to decode

the generation. If it was not, the source retransmits additional degrees of freedom

(dofs) to ensure the sink's ability to decode each and every generation. The analysis

and numerical results help illustrate several important trade-offs. First, the proper

selection of k is necessary to minimize the in-order delivery delay for a given code

rate. Increasing k results in a decreased decode error probability which reduces the

number of retransmissions that are necessary. Unfortunately, a large k also results

in large coding delays that increase the overall in-order delivery delay. On the other

hand, a small k decreases the coding delay; but it also increases the probability that

a generation cannot be decoded resulting in an increased number of retransmissions.

This increases the overall delay due to head-of-line blocking created by previously

transmitted generations. Therefore, the analysis helps find the proper generation

size that minimizes the in-order delivery delay for a given set of networks. Second,

decreasing the in-order delivery delay has a cost. This cost is quantified in terms of

29

the efficiency, or the ratio between the number of packets to be transferred and the

number of packets received by the sink. As one might expect, decreasing the delay

also decreases the efficiency. The analysis and numerical results help show how much

the efficiency must be reduced to meet a given users' QoS constraints.

One of the benefits of the generation-based scheme discussed in Chapter 4 is

the ease with which recoding can occur lower within the network stack or the net-

work itself. By coding on a generation-by-generation basis, simple approaches such

as prepending a coding coefficient vector to each transmitted coded packet allows

network nodes to easily recode whenever it is deemed useful. However, partitioning

packets into generations limits the usefulness of a coded packet (e.g., a coded packet

can only help recover from a packet loss within a single generation). Chapter 5 shows

the benefits of removing this constraint. A streaming code construction is presented

for multi-path transmission and an analysis of the in-order delivery delay is provided.

Numerical and simulated results are provided that show this streaming code con-

struction can achieve lower in-order delay than the generation-based coding scheme

discussed earlier. Furthermore, these results help show the importance of feedback

by providing an unfair comparison of an open-loop streaming code with a closed-loop

generation-based code.

Finally, Chapter 6 summarizes the contributions of this thesis. In particular, a

number of issues that must be considered when implementing any of the protocols or

coding schemes described earlier are discussed and a number of directions for future

exploration are provided. The discussion provided within this chapter is not meant

to be a comprehensive list of all of the benefits and drawbacks of the items outlined

in this thesis. Rather, it is meant to provide both intuition and "rules of thumb" that

should be taken into account.

30

III,

Chapter 2

Transport Layer Coding

2.1 Introduction

Existing transport layer protocols, such as TCP, generally provide good performance

over well behaved networks where packet erasures are a result of queue overflow,

round-trip times (RTT) are small, etc. However, these solutions rarely have the

ability to operate over the wide range of conditions that currently exist today without

extensive tuning. Whether a client is operating over a network with or without packet

erasures while experiencing low or high round-trip times (RTT), the transport layer

should adapt to maximize the client's performance.

The widespread adoption of wireless technologies to provide connectivity at the

network edge is one motivator for addressing this problem. Both interference and poor

channels in unlicensed and white-space bands are major contributors to the increase in

packet erasures at the transport layer. While new physical and link layer technologies

are helping to alleviate this problem, finding a solution at the transport layer helps to

ensure backward compatibility with legacy equipment. This is especially important

in networks that employ 802.11 wireless links since an estimated 1.2 billion 802.11

devices have been shipped to date [54]. Replacing these devices so that new physical

and link layer technologies can be incorporated is largely impractical due to the costs

involved.

Satellite networks provide a second motivator for this problem. The combination

31

of high packet loss rates (PER) and long RTT's seriously degrades the performance

of existing transport layer solutions (namely TCP). A variety of solutions have been

proposed over the years to help overcome these challenges. These range from modifica-

tions to TCP's congestion control algorithm to implementing performance enhancing

proxies (PEPs). Each solution usually has its own drawbacks. In the case of modified

TCP protocols, adoption is prevented due to the specialized nature of the protocol

and issues related to fairness with other TCP variants. In the case of PEPs, increased

hardware costs and issues regarding end-to-end semantics is an issue.

Transport layer coding is one method to help resolve these issues. The use of ran-

dom linear coding at the transport layer aids in overcoming packet erasures without

the need for retransmissions. As a result, transport layer coding can help increase

throughput, decrease delay and jitter, etc. This chapter will give an overview of a

transport layer coding approach called Coded TCP (CTCP) [3], and help motivate

the remainder of the thesis.

A Note About the Contributors for the Content Contained in

this Chapter

A number of people were instrumental in the development of CTCP, and the content

contained in this chapter would not be possible without their contributions. Early

contributions to the protocol's development were made by Minji Kim, Ali Parande-

hGheibi, and Leonardo Urbina, while Douglas Leith and myself focused on the later

stages of development. The results presented within this chapter should be considered

joint work by the people mentioned above.

2.2 Goals of a Coded Transport Layer

The transport layer, and in particular TCP, plays a critical role in contemporary

networks. It provides a number of critical services, but chief among them are the

services that provide reliability, flow control, and congestion avoidance. However, the

32

MM

implementation of these three services often assume a well behaved network where

packet erasures are due to queue overflows (i.e., packet erasures are a direct result

of congestion) and round-trip times are relatively small. Networks where neither of

these conditions are met typically experience degraded performance as a direct result

of the transport layer's inability to adapt to the different environments.

When changing the transport layer in an existing network, the ultimate goal is

to "do no harm." In other words, any changes should not have a noticeable impact

on other services within the network or require network-wide changes. Therefore any

coding solution must be transparent to the network as a whole. With this in mind,

any protocol that incorporates coding should meet, at a minimum, the following goals

with regard to backward compatibility:

" Require no changes or updates to either lower or upper layers upon implemen-

tation; and

" Have no impact on the performance of parallel network flows, whether coded or

non-coded.

Meeting the first goal requires that no changes are made to the underlying transport

layer packet structure. As an example, the TCP header and payload size should

be consistent whether or not coding is used. Meeting the second goal forces coded

flows to be fair with other coded flows and friendly with non-coded flows. This goal

also ensures that additional overhead created as a result of a change only effects

the modified flow. Therefore, any flow that incorporates coding must ensure high

efficiency is maintained.

Any changes that are made should also be value-added in the sense that the

transport layer should provided better quality of service to higher layers resulting in

the following additional goals:

o Provide high throughput under both independent and identically distributed

(i.i.d.) and correlated packet losses. These losses may caused by:

- Channels with high interference or fading;

33

- Hidden terminals in wireless networks; and

- Any additional known or unknown cause of packet loss not related to

congestion.

" Operate under a wide range of network conditions including a wide range of

round-trip times and packet erasure rates.

" Provide a better quality of service for higher layer applications than current

transport layer protocols.

Coding is ideally suited for meeting the goals in the list above. If enough redundancy

is inserted into a transport layer packet stream, any number of packet erasures can

be corrected. The challenge presents itself when trying to determine how much re-

dundancy should be inserted and what effects this redundancy will have higher in

the network stack. While a stream with a large amount of redundancy is going to

be able to correct a large number of erasures, it will also have high overhead that

limits goodput. The other negative effect coding can have on the end user's QoS is

the introduction of coding delays. Any coding approach must ensure that the end

user experiences delays no worse than they would experience when using an unmod-

ified transport layer. Furthermore, any developed solution must be adaptable to the

environment in which it is located, meaning that the coding approach needs to be

flexible enough to be modified on-the-fly. This also extends to any other changes to

the transport layer that need to be made. The remainder of this chapter, and this

thesis as a whole, will help quantify these trade-offs and considerations.

2.3 An Overview of Coded TCP (CTCP)

Coded TCP (CTCP) [3] combines error-correction coding, in terms of a systematic

network code, and congestion control to protect against both packet losses and con-

gestion collapse. Unlike previous approaches such as TCP with Network Coding

(TCP/NC) proposed by Sundararajan et al. [191, CTCP is intended to completely

replace TCP rather than insert a "shim" to spoof TCP into behaving a certain way.

34

Application Layer Application Layer

SOCKS Client Proxy SOCKS Server Proxy

U Coding Algorithm Coding Algorithm

Congestion Control Congestion Control

UDP UDP

Network

Figure 2-1: CTCP Functional Diagram

This provides CTCP with flexibility in its design and eliminates the need to be sub-

servient to poorly behaving protocols.

A key feature of CTCP is that coding and congestion control are logically de-

coupled. This removes all dependencies with respect to the specific coding scheme

employed. As a result, the congestion control is only concerned with scheduling the

transmission of packets, while the coding scheme determines the contents of the pack-

ets transmitted (e.g., coded or uncoded).

CTCP is implemented in user space, rather than within the kernel, to help simplify

development. A diagram of the major components of the protocol is provided in Fig-

ure 2-1. A SOCKS proxy is used to interface with applications. The bit stream from

the application layer is first packetized and partitioned into generations. Redundancy

is added to each generation using an estimate of the network's packet erasure rate.

Each generation is then scheduled for transmission by the congestion control algo-

rithm, and transmitted over the network. An existing transport layer protocol, UDP,

is used to do this in order to avoid complications with lower layers and middle-boxes.

The following sections provide an in-depth explanation of the two major components

of CTCP: the coding algorithm and congestion control.

35

2.3.1 Code Implementation

Random linear network coding (RLNC) [8] is used to provide packet erasure protec-

tion. The gains provided by network coding are twofold: coded packets are used to

provide forward error correction; and coded packets are used to simplify feedback and

retransmissions, should they be needed.

Consider the transfer of information packets pi, i = {1, . .. , N}, between a server

and client. These information packets are first partitioned into coding generations

Gj = {P(j-1)k+1, - - - , Pmin(jk,N)}, j E [1, [N/ku, of size k packets as they are made

available to the CTCP server. Once enough information packets are available for

the encoder to fill a generation, random linear combinations of these packets produce

coded packets Cj,m, m E [1, k/c - k] where c E (0,1] is the code rate, i.e.,

min(jk,N)

cjm = E a,m,xPx. (2.1)
x=(j-1)k+1

Every coding coefficient aj,m,x E F2 is chosen at random and the information packets

are treated as vectors in F2 8. These coded packets are then appended to the end of

the generation and transmitted over the network. Once this process completes for

Gj, the coding window slides to the next generation Gj+1 and the process repeats

without waiting for feedback.

An example of the coding matrix for two generations of size k = 3 and code rate

c = 3/4 is shown in Figure 2-2. The first three transmitted packets are pi, P2, and p3 ,

and the fourth transmitted packet is c1,1 = ai,1,1Pi + a,1,2P2 + al,1,3P 3 . Once this

first generation has been sent, the second generation consisting of packets p4, p5, and

P6 are transmitted along with the coded packet c2,1 = a2,1,4Pi + a2,1,5P5 + a2,1,6P6.

After the client has received at least k packets (or degrees of freedom (dofs)) from

a generation, it is able to decode it (i.e., the client's coding matrix must be full rank

for it to be able to decode a generation). If it receives less than k dofs, feedback is

sent to the server requesting additional dofs from the generation to be transmitted.

This process continues until every generation has been successfully decoded.

36

Information Packets (pi)

P1 P 2 P3 P4 P5 P6
1

1
-z 1

a21,1 ,1 a1 ,1 ,2 a1 ,1 ,3

1
1

Figure 2-2: Example of the coding matrix used in CTCP when k = 3 and c = 3/4.

The columns represent the information packets that need to be sent, and the rows
represent the composition of the packet actually transmitted.

The number of coded packets appended to each generation is dynamically chosen

based on an estimate of the packet erasure rate e obtained by the server through the

use of feedback. The generation size is statically chosen to be k = 32 packets in the

results presented throughout this chapter. In truth, the generation size should also

be dynamic based on the user's quality of service requirements. However, the choice

of k and c is not straight-forward. Incorrectly choosing these two parameters can

lead to extremely poor performance, while selecting the correct k and c can greatly

improve performance. This will be extensively studied in Chapter 4.

2.3.2 Congestion Control Modifications

A major contributor to CTCP's observed gains, shown later in the chapter, is the

congestion window management. Traditional TCP's additive increase, multiplicative

decrease (AIMD) congestion control increases the TCP sender's congestion window

size cwnd by a packets per round-trip time, and it multiplicatively decreases cwnd

by a back-off factor 0 on detecting a packet loss. The usual values are a = 1 when

appropriate byte counting is used, and /3 = 0.5. On lossy links, repeated back-offs

in response to losses due to noise rather than queue overflow can prevent cwnd from

37

increasing to fill the available link capacity. This behavior is well known and is one

of the reasons for TCP's notoriously poor performance over wireless and other error

prone links. For example, cwnd scales as v'3e in [55], where E is the packet erasure

rate.

Unfortunately, packet loss is not a reliable indicator of network congestion. An

option might be to use delay, rather than loss, as the indicator of congestion. TCP

Vegas [56] is an example of a protocol that does this. However, this raises many new

issues and purely delay-based congestion control approaches have not been widely

adopted in the internet despite being the subject of extensive study. Another option

is to use some form of lower layer signaling, such as explicit congestion notification

(ECN). Unfortunately, this generally requires network-wide changes. These two con-

siderations motivate the use of hybrid approaches, similar to Compound TCP [57],

that make use of both loss and delay information.

The congestion control algorithm in CTCP uses a modified AIMD approach. The

congestion window is increased in a similar fashion as H-TCP [58], and it is decreased

using a modified multiplicative back-off factor

RTTmin (2.2)
RTT

In the above equation, RTTmin is the path round-trip propagation delay and RTT

is the round-trip time of the last successfully received packet. RTTmin is typically

estimated as the lowest per packet RTT observed during the lifetime of a connection.

This is similar to the approach considered in [58], which uses # = RTTmin/RTTmax

with the aim of making TCP throughput performance less sensitive to the level of

queue provisioning. On links with only queue overflow losses, equation (2.2) reduces

to the approach in [58] since RTT = RTTaX (i.e., the link queue is full) when a

packet erasure occurs. Assuming that there is a single flow on a link with capacity

B at the time of queue overflow, the RTT of the last successfully received packet

should be RTT = 2RTTmin if a standard bandwidth-delay product worth of queue

provisioning is provided (i.e., RTT - cwnd = 2B). After applying the back-off factor

38

according to (2.2), the throughput becomes / . cWnd/RTTmin = B allowing the link

queue to empty while maintaining full throughput.

Now assume that the link queue is empty, but a packet erasure is observed. The

round-trip time, RTT, of the last successfully received packet in (2.2) should be

equal to RTTmin (i.e., RTT = RTTmin) resulting in / = 1. Therefore, cwnd is not

decreased, and cwnd is able to grow despite the presence of packet loss. Once the

link starts to experience queueing delay (i.e., RTT > RTTmin) which makes 3 < 1,

cwnd will be decreased upon packet loss in an effort to avoid congestion.

2.4 Performance of CTCP Over Emulated Networks

In order to accurately measure CTCP's gains, a simple network was setup and a

number of experiments were conducted. This section will provide the results of these

experiments and verify that the goals outlined in Section 2.2 were met. Measurements

were taken of CTCP's efficiency, fairness, and friendliness, over a large range of emu-

lated network conditions. Furthermore, application layer performance was measured

to help illustrate the benefits both the congestion control algorithm and coding have

on a user's quality of service.

2.4.1 Experiment and Testbed Setup

An emulated network was setup on a testbed that consists of three commodity servers

(Dell Poweredge 850, 3GHz Xeon, Intel 82571EB Gigabit NIC) connected via a router

and gigabit switches. Figure 2-3 shows the testbed's configuration. Both the server

and client machines were running a Linux 2.6.32.27 kernel, while the router was

running FreeBSD 4.11 and ipf w-dummynet.

The router was configured with various propagation delays d, packet erasure rates

C, queue sizes q and link rates b to emulate a range of network conditions. As indi-

cated in Figure 2-3, packet losses in dummynet occur before the rate constraint. This

was done so that the bottleneck link capacity b was not artificially reduced. Unless

otherwise stated, appropriate byte counting was enabled for standard TCP and every

39

Server Delay Packet Buffer Size Rate Client
(seconds) Erasures (packets) (Mbps)

Dummynet Router

Figure 2-3: Emulated Network Testbed Setup

experiment was run for at least 300 seconds. Data traffic was generated using rsync

(version 3.0.4), HTTP traffic was generated using apache2 (version 2.2.8) and wget

(version 1.10.2), and video traffic was generated using vic at both the server and

client (version 0.8.6e as server, version 2.0.4 as client).

As was mentioned earlier, CTCP was implemented in user space as a forward

proxy located on the client and a reverse proxy located on the server. The client's

request is first directed to the local forward proxy and transmitted to the reverse

proxy via CTCP. The reverse proxy then sends the request to the appropriate port

on the server. The server's response follows the reverse process. The proxies support

the SOCKS protocol and standard tools allow traffic to be transparently redirected

via the proxies. In the tests shown below, proxychains (version 3.1) was used for

this purpose.

2.4.2 Throughput and Efficiency

Experimental measurements showing the efficiency 7 for CTCP and various other

TCP versions are shown in Figure 2-4 where q is defined as:

Goodput
Link Capacity(

Figure 2-4a shows the measured efficiency versus the packet erasure probability E for

a 25 Mbps link with a 25 ms RTT, and one bandwidth-delay product of buffering.

Baseline data is shown for standard TCP (i.e. TCP SACK/Reno), Cubic TCP (cur-

rent default on most Linux distributions), H-TCP, TCP Westwood, TCP Veno, and

40

the estimate v'W packets per RTT predicted by the popular Padhye model [55].

Note that the Padhye model provides a good estimate for the performance of stan-

dard TCP, in addition to Cubic TCP, H-TCP, TCP Westwood, and TCP Veno. This

is as expected since the link bandwidth-delay product of 52 packets lies in the regime

where these TCP variants seek to ensure backward compatibility with standard TCP.

The figure also shows that standard TCP's achieved goodput decreases rapidly with

increasing loss rate. With a packet erasure rate of just 1%, the goodput is only 20%

of the link capacity. This feature of standard TCP is well known. However, the

efficiency measurements for CTCP, shown in Figure 2-4a and Figure 2-4b, provide

evidence that the goodput is > 96% of link capacity for a loss rate of 1%. This is

roughly a five-fold increase in goodput compared to standard TCP.

Figure 2-4b shows that CTCP maintains a high efficiency over a large range of

link rates, RTT's, and erasure rates. In addition, a theoretical upper bound on the

efficiency is shown where it is calculated using the following formula:

= (n-i) (n) (1 -)k(2.4)

In the above equation, the generation size is k = 32, E is the packet erasure proba-

bility, and the number of forward-transmitted coded packets transmitted with each

generation is n = Lk/(1-E)J -k (i.e., the code rate c = k/(n+k)). The value determined by

(2.4) is the mean number of forward-transmitted coded packets that are unnecessary

when there are fewer than n erasures.

Both Figures 2-4a and 2-4b provide evidence that CTCP's efficiency is largely

insensitive to both the link rate and the RTT. This is confirmed when considering

networks similar to those that traverse satellites where the RTT is in excess of 250 ms.

Figure 2-5 shows the goodput over a range of packet erasure rates E and RTT > 500

ms on a link with a capacity of 10 Mbps. CTCP is able to maintain a large throughput

for erasure rates as high as 20%. In fact, measurements indicate that CTCP provides

a gain of approximately 21 times that of TCP Hybla [131, a TCP version specifically

designed for wireless links, for erasure rates of 20%.

41

100 -

O Coded TCP
+ Coded TCP, 0.25BDP buffer
! Std TCP

-Std TCP Theory
H-TCP
Cubic

* Westwood
? Veno

10-2
Loss probability

(a) Link 25 Mbps, RTT 20 ms

10-1

- Theory
.9 0 5M/1Oms - -

X lOM/lOms
A 25M/10ms

.96 - 5M/25ms
1OM/25ms A

.94 25M/25ms -
0 5M/50ms
X 1OM/50ms

.92 A 25M/50ms
0 5M/1 OOms

0.9 -x 10M/1OOms
A 25M/100ms

010
10-2

Loss probability

(b) CTCP

10-1

Figure 2-4:
RTT taken
2.4.

Measurements of goodput efficiency against packet loss rate, link rate and
from 13]. The Theory curve in Figure 2-4a is generated using Equation

42

10

10-2

0

0

0

0

0
1 0 3

10-3

-a-CTCP
+ HTCP
-e Cubic

Hybla
Reno
Veno
Westwood -

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Packet Erasure Probability

(a) RTT= 500 ins

-.- CTCP
+ HTCP
-v Cubic

Hybla
Reno
Veno -
Westwood

T 1 "

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 16 0.18 0.2
Packet Erasure Probability ,

(c) RTT = 700 ins

U106

.02

nlu'0

0

105

-.- CTCP
- HTCP
-, Cubic

Hybla
-' - Reno

Veno
Westwood

0 0 02 0.04 0.06 0.08 0.1 O 12 0,14 0.16 0.18 0.2
Packet Erasure Probability ,

(b) RTT 600 ms

-.- CTCP
-- HTCP
-v Cubic

Hybla
+ Reno

-Veno
zK ~Westwood

0 0,02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 018 0.2
Packet Erasure Probability (

(d) RTT = 800 ms

Figure 2-5: Goodput comparison of CTCP and other TCP variants with varying

packet erasure probability 6 and RTT > 500 over a link with a rate of 10 Mbps. The

error bars show plus and minus one standard deviation.

43

106

106

.0

700 14 800 16

6600 - -12 _700 - 14

60000 -1212

500 - 10
C3 - 6 50 ,' ~ 1~~50400 -8 300 - ! . - 6

00 - 044 00 - 4

100 -6 o 10-

V~~I 0 '' o

0 000 2n 0 2
t200 w

0100 a2 .M0e 2

0 0 10 2'0 40 60 80 108 0 2'0 40 60 80 100
Time (seconds) Time (seconds)

(a) c =0.05 (b) e 0. 2

Figure 2-6: Congestion window size (cwnd) and goodput trace over a 10 Mbps link
with a RTT of 500 ills. The dotted line shows a 3 second moving average of the
goodput and the solid line shows cwnd. The mean goodput in (a) and (b) are 9.19
Mbps and 8.92 Mbps respectively.

While the above results provide evidence of high efficiency and large throughput

gains parsing the benefits due to the congestion control modifications from the ben-

efits due to coding is difficult. Figure 2-6 provides a trace of CTCP's congestion

window size and goodput over a 10 Mbps link with a RTT of 500 ins. Figure 2-

6(a) shows CTCP's performance when cE 0.05, and Figure 2-6(b) shows CTCP's

performance when cE 0.2. These figures show that curnd remains fairly constant

in steady-state enabling CTCP to maintain high throughput regardless of the fact

that coding is being used to correct for erasures. This suggests that the majority

of the gains in goodput are a direct result of the congestion window modifications.

However, the gains due to coding are more subtle and present themselves differently.

The "smoothness" of the goodput curves, or lack of periods with low goodpuit, suggest

that coding is helping to reduce end-to-end delay. While these traces do not provide

definitive proof that this is the case, Section 2.4.4 will provide additional experimental

evidence and Chapter 4 will explore this idea in much greater detail.

44

20
MFlow 1 (1 0Mbps link)
MFlow2 (10Mbps link)
=-IFlow 1 (25Mbps link)

15- ~Flow 2 (25Mbps link) -

t 10-

0
0

0 0.001 L . 0.015 . 0.2
Loss Probability c

Figure 2-7: Goodput for two CTCP flows sharing a loss-free link

2.4.3 Fairness and Friendliness

A key measure of transport layer performance is the behavior of a flow managed by a

given transport layer protocol when it has to compete for resources with other flows.

Ideally, each flow obtains its fair share of network capacity. When two or more flows

managed by a specific transport layer protocol are competing against each other, it

is referred to as fairness. If flows managed by different transport layer protocols are

competing against each other, it is referred to as friendliness. Experiments measuring

both are provided within this section showing that CTCP behaves well with other

CTCP flows, as well as with standard TCP flows.

Fairness is measured by comparing the goodput of two CTCP flows competing

for resources on a single link. This is shown in Figure 2-7 for two links as the packet

erasure probability is increased. In each experiment, both CTCP flows achieve similar

goodput indicating that CTCP exhibits fairness.

Figure 2-8 shows the fraction of link capacity obtained by a single CTCP flow and

a single standard TCP flow competing over bandwidth on various error-free links. In

this scenario, the only packet losses that occur are due to queue overflows as a result

of congestion. The figure demonstrates that CTCP is also friendly with standard

TCP over a wide range of RTTs and link rates.

Finally, Figure 2-9 presents goodput data intended to show friendliness between

45

20

15

10

0

10 25 50 100
RTT (ins)

Figure 2-8: Goodput for a standard TCP and a CTCP flow sharing a loss-free link

one CTCP flow and one standard TCP flow sharing a link with packet erasures.

Each figure represents two separate experiments. The first experiment is indicated

by the single dashed curve, which shows the goodput of a standard TCP flow sharing

the same link as another standard TCP flow. Note that the goodput of only one

standard TCP flow is shown since both flows achieved nearly identical goodput. The

second experiment is indicated by the solid lines which show the goodputs achieved

by a single CTCP flow sharing the same link with a single standard TCP flow. The

measure of friendliness is how closely the goodput of the standard TCP flows match

between the two experiments. In each of the cases shown in Figure 2-9, the dotted line

closely matches the red solid line (i.e., the standard TCP goodputs match between

the two experiments). This indicates that CTCP is sharing the link capacity fairly

when packet erasures are introduced.

Note the goodput shown for the second experiment where a single CTCP flow

is sharing a link with a single standard TCP flow. At low loss rates, both CTCP

and standard TCP obtain similar goodputs. However as the loss rate increases, the

goodput of standard TCP rapidly decreases (as already observed in Figures 2-4a

and 2-5). Because standard TCP is misinterpreting packet losses as congestion, it

relinquishes link capacity unnecessarily. This leads to CTCP's goodput increasing

with the packet loss rate.

46

Std TOP (10Mbps link)
iCoded TCP (10Mbps link)
LStd TCP (25Mbps link)
- ICoded TCP (25Mbps link) -

102
Loss Probability

10 1

101

_0
0 00

~~-1 I
U110 03

(a) 10 Mbps, RTT 25 ms

- '

CTCP- Cubic TCP
-o- Cubic TCP vs. Cubic TCP

10-2
Loss Probability

(c) 5 Mbps, RTT = 500 ns

10

lc~ 100

0

0 1
0310-

1021
1010 1

10 2 10~
Loss Probability

(b) 25 Mbps, RTT 25 ins

3 1
10-2

Loss Probability

(d) 5 Mbps, RTT= 800 ins

Figure 2-9: Fairness and friendliness of CTCP over error-prone networks

47

101

-~0

0

10
1

Cubic TCP
--- CTCP
-o- Cubic TCP vs Cubic TCP

Cubic TCP
-- Coded TCP
-o- Cubic TCP vs. Cubic TCP

10 1

-'CI 10 0

10

0 1

110-3

-.- CTCP
-Cubic TCP
-o- Cubic TCP vs. Cubic TOP

101
. . .2 1 . .

0_3

^3
2 11

2.4.4 Application Layer Performance

The performance of a particular transport layer protocol can have serious, non-linear,

impacts on upper layer applications. While throughput (or goodput) is usually the

primary measure used to measure transport layer performance, the effects of the

transport layer on upper layers is possibly a more important measure. This is because

the behavior of the transport layer can either improve or adversely affect the end

user's quality of service. Two upper layer applications (HTTP and streaming video)

are used in this section to measure CTCP's performance.

Figure 2-10 shows completion time measurements for HTTP requests of various file

sizes. The measurements were collected using wget on the client and apache2 on the

server. The figure shows that the completion times using CTCP are largely insensitive

to the packet loss rate. For larger file sizes, the completion times approach the best

possible performance indicated by the dashed line. For medium file sizes (e.g., 100

KB) , the completion time is dominated by the slow-start behavior of the congestion

control algorithm. However, small file sizes (e.g., 10 KB) do not experience any rate

throttling since the amount of data to be sent is smaller than the initial congestion

window size. In this regime, CTCP also outperforms standard TCP.

When the link is erasure-fee, both CTCP and TCP achieve similar performance.

However, standard TCP's completion time quickly increases with the erasure rate.

For a 1 MB connection, the completion time with standard TCP increases from 0.9

seconds to 18.5 seconds as the loss rate increases from 1% to 20% respectively. For

a 10 MB connection, the corresponding increase is from 7.1 seconds to 205 seconds.

This results in a reduction of more than 20 times (2000%) for a 1 MB connection and

by almost 30 times (3000%) for a 10 MB connection.

Figure 2-11 shows the performance of streaming video using both CTCP and

standard TCP for transport over a range of packet loss rates on a 25 Mbps link with

RTT equal to 10 ms. A 60 second video was streamed from a server over the emulated

network to a client. Both used vic. Figure 2-11a plots the measured time for the

entire video to complete, which is also commonly referred to as the play-out time.

48

103

102

0 0

-- 25Mbps

10' x 0.001
+ 0.01

1 -2- , -' o 0.05
102 -- -' .. v 0.05V 0.1

> 0.2
I ,, , , ,,i ,,, i l i , . .. i~i , e , .. ,

101 102 103 104 105 106
File Size (KB)

Figure 2-10: Measured HTTP request mean completion time against file size over 25
Mbps link with an RTT of 10 ins. Data is shown for standard TCP (red) and CTCP
(black) for a range of loss rates. Error bars are comparable in size to the symbols
used in the plot and are omitted.

The play-out time using CTCP is approximately 60 seconds over the entire range of

packet erasure rates considered. In contrast, the play-out time using standard TCP

increases from 60 seconds to 95 seconds as the erasure rate increases from 0% to

1% respectively. It increases further to 1886 seconds, or 31 minutes, as the loss rate

increases to 20%. This is more than 30 times slower than what is achieved by CTCP.

Figure 2-11b shows the number of buffer under-run events experienced by the

client. Each buffer under-run is an event that halts the video's playback; and playback

is resumed once enough information has been received to play the next block of frames.

The figure shows CTCP is able to prevent buffer under-runs for erasure rates as high

as 20%. Alternatively, the number of buffer under-runs using standard TCP increases

with the erasure rate. For packet erasure probabilities larger than E = 0.1, the number

of buffer under-runs plateau at around 100 events. This corresponds to a buffer under-

run after each block of frames is received. In terms of user experience, the repeated

stalling of the video during playback are indicative of a thoroughly unsatisfactory

quality of experience even at a loss rate of 1%.

49

104
120

- Std TCP -e-Std TCP-100-u-Coded TOP __________CP100-

-~ ~ 80-

.2 60-

102 40-

20 /

10100 0.05 0.1 0.15 0.2 0 0.05 0.1 0.15 0.2
Loss Probability e Loss Probability c

(a) Completion Time (b) Buffer Under-Runs

Figure 2-11: Measurements of video streaming performance against loss rate with a
25 Mbps link and a RTT of 10 ins. Data is shown for standard TCP and CTCP.
Figure 2-11a shows the running time taken to play a video of nominal duration (60
s); Figure 2-11b shows the number of under-runs of the playout buffer at the client.

2.5 Performance of CTCP Over 802.11 Networks

The measurements shown in previous sections provide insight into CTCP's perfor-

mance. However, these measurements were conducted within a controlled setting

using fixed round-trip times and i.i.d. packet losses. Deployed networks rarely, if

ever, experience these conditions. Link capacity can change multiple times over the

coarse of a single session, jitter is often an issue, and packet erasures are definitely not

i.i.d. Therefore, it is necessary to verify CTCP's perfornance in conditions that are

representative of real networks. This was accomplished using both a wireless 802.11

testbed and public 802.11 hotspots located throughout the greater Boston area.

2.5.1 Networks with Random Noise

The use of unlicensed spectrum in the 2.4 GHz and 5 GHz bands is a major reason

for the success of 802.11. Unfortunately, this spectrum is heavily used by everything

from cordless phones to microwave ovens. This results in a network with considerable

interference that was taken advantage of in the experiments presented below. Each

experiment involved an 802.11 b/g wireless client downloading a file from an access

point (AP) over a link subjected to interference from a domestic microwave oven

50

* RBW 3 MHz
*Att 0 dB VBW 10 MHz M 79.53 dBm

Ref -30.00 dBm SWT mOrs 4.920000000 ns

1AP - ! 1, !
Cir" nterference

SGL

C2.4GHz 5.0 ms

Figure 2-12: Spectrum analyzer screen shot showing interference caused by a mi-
crowave oven and transmitted packets sent over Wi-Fi channel 8.

(MWO).

The wireless client and AP were equipped with Atheros 802.11 b/ g 5212 chipsets

(radio 4.6, MAC 5.9, PHY 4.3 using Linux MadWifi driver version 0.9.4) operating

on channel 8. Unless otherwise stated, the default operating system settings were

used for all network parameters. A program called rsync was used by the client to

download a 50 MB file via the AP. The microwave oven used to create interference

was a 700 W Tesco MM08 17L, which operates in the 2.4 GHz ISM band with sig-

nificant overlap (> 50%) with the 802.11's 20 MHz channels 6-13. Its interference is

approximately periodic with a period of 20 ms (i.e. 50Hz) and mean pulse width of 9

ins. The pulse width was observed to fluctuate and is due to frequency instability of

the MWO cavity magnetron, which is a known effect in MWOs. Figure 2-12 provides

a spectrum analyzer screen shot that shows the microwave oven interference, as well

as transmissions made over the 802.11 channel 8.

There are two primary reasons for packet losses in this channel. First, the peri-

odic MWO interference caused by the cavity magnetron prevents successful packet

transmission, especially for low physical layer (PHY) rates where the duration of a

packet transmission is long. This effect was seen for a PHY rate of 1 Mbps were the

51

3.5
=Std TCP

3 _MCTCP _

2.5 -

2 -

0.5
0U

2 ;. 36 54
WiFi Tx Rate (Mbps)

Figure 2-13: Mean throughput versus wireless PHY rate on an 802.11 link with
microwave oven interference.

packet loss rate was close to 100%. Second, the 802.11 modulation and coding scheme

(MCS) becomes less robust as the PHY rate increases. Since the MWO increases the

noise floor, even during periods where there is no cavity magnetron interference, the

less robust MCS is unable to cope with the noisy channel making packet losses more

likely.

Figure 2-13 presents measurements of the mean throughout achieved over the

file download as a function of the PHY rate on the downlink. Data is shown using

standard TCP (in this case Cubic TCP, the Linux default variant) and CTCP. The

throughput achieved by standard TCP rises slightly as the PHY rate is increased

from 2 Mbps to 5.5 Mbps, but then decreases to zero for PHY rates above 36 Mbps.

In comparison, CTCP's throughput is approximately double (200%) that of standard

TCP at a PHY rate of 5.5 Mbps, more than tripled (300%) at PHY rates of 8, 11

and 18 Mbps, and more than an order of magnitude (1000%) at PHY rates above

18 Mbps. Furthermore, the fluctuations of both TCP and CTCP performance under

different link layer coding rates and modulation schemes (indicated by the changes in

the 802.11 transmission rate) suggests that CTCP is much more robust to network

and link layer changes than TCP.

52

4.5
+TCP

4 - I-*-CTCP-_

-3.5-

3 -

2.511

2 -

S1.5

0.5-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Hidden Terminal Tx Rate (Mbps)

Figure 2-14: Throughput versus intensity of hidden terminal interference when using
standard TCP (Cubic TCP) and CTCP over an 802.11 b/g wireless link.

2.5.2 Networks with Hidden Terminals

Using a similar network configuration as the last section, experiments were conducted

that measured CTCP's performance when 802.11 is subject to hidden terminal inter-

ference. The hidden terminal was created by adding a third station to the network

described in Section 2.5.1. Carrier sense on the new terminal's wireless interface card

was disabled and 1445 byte UDP packets were transmitted with exponentially dis-

tributed inter-arrival times. The transmit rates for both the hidden terminal and AP

were set to 11 Mbps. Unless otherwise stated, the default operating system settings

are used for all of the remaining network parameters. Figure 2-14 plots the measured

throughput of standard TCP and CTCP versus the mean transmit rate of the hidden

terminal. CTCP consistently obtains approximately twice (200%) the throughput of

standard TCP (Cubic TCP).

2.5.3 Networks "In the Wild"

Finally, the performance of CTCP in a completely uncontrolled environment was mea-

sured to determine its effectiveness. Measurements were collected at various public

WiFi hotspots in the greater Boston area by downloading a 50 MB file from a server

(running Ubuntu 10.04.3 LTS) located on the MIT campus to a laptop (running

53

A B C D E
CTCP Download Time 313 s 388 s 676 s 292 s 1093 s
TCP Download Time 807 s 1151 s 753 s 391 s 3042 s

Mean PLR 4.28% 5.25% 4.65% 4.56% 2.16%
Mean RTT 54.21 ms 73.51 ms 106.31 ms 50.39 ms 208.94 ms

Table 2.1: Download completion times, the mean packet loss rate (PLR) and the
mean RTT for each experiment shown in Figure 2-15.

Ubuntu 12.04.1 LTS) located under the public WiFi hotspot. The default operating

system settings were used for all network parameters on both the client and server.

Figure 2-15 shows five representative traces of these experiments, along with each

traces' mean goodput. Furthermore, Table 2.1 provides the measured download times,

mean packet loss rates, and mean round-trip times for each experiment. Each trace

represents a different WiFi hotspot, or network, that was chosen because of its lo-

cation, accessibility, and perceived congestion. For example, each experiment was

conducted over a WiFi hotspot located in a shopping center food court, a coffee shop,

or a hotel lobby. In Figures 2-15a - 2-15d, the WiFi network spanned a large user area

increasing the possibility of hidden terminals. A scan of most networks at the time of

the experiment showed greater than 40 active WiFi radios. The only experiment that

had a small number of terminals (i.e. five active radios) is shown in Figure 2-15e.

These traces show that CTCP consistently achieves a larger average goodput

than standard TCP. Taking the mean goodput over all of the conducted experiments,

CTCP achieves a goodput of approximately 750 kbps while standard TCP achieves

approximately 300 kbps. An overall gain of approximately 2.5 (250%). Furthermore,

it is important to note that standard TCP stalled and had to be restarted twice

in the experiment conducted under Hotspot C. CTCP, on the other hand, never

stalled nor required a restart. It is important to emphasize the observed loss rates

of approximately 4% in each of these experiments, which were unusually high and

unexpected. This is directly correlated with CTCP's significant performance gains

over standard TCP.

54

- OP

Ii
0 200 300 100)) 0 0WO 700 00 9(

Ti ic (see)

(a) Hotspot A

1.2 - -TTCPPI

(c) Hotspot C

0.6)o

1.5

0 200 100

(b)

Li~
6tp) 800

Time(s)

Hotspot B

1.6

.61II~

1000 1200

0 1) 1(X) 15 2W) 250 3O 350 II
Tim (c)

(d) Hotspot D

.5 nJ Kiiw
1500 200 2500 3000 3500

Ti(e) (see)

(e) Hotspot E

f Isputf

(f) Mean goodput for

I)

Hotspots A-E

Figure 2-15: Public WiFi hotspot packet traces

55

u

o

2

1.8 -

1.6

0.8
7

0.6

0.2

2.6 Conclusions

The measurements presented throughout this chapter show the benefits of using a

network coded transport layer to increase both throughput and application layer per-

formance. In fact, CTCP meets all of the goals outlined in Section 2.2. In controlled

settings with i.i.d. packet erasures, CTCP is able to outperform standard TCP by

a significant margin; and experiments over real networks confirm these gains. The

goodput measurements also verified that CTCP provides gains over a wide range of

packet loss rates, transmission rates, and round-trip times. In addition, the applica-

tion layer experiments proved that CTCP can increase upper layer quality of service;

and the experimental results helped show that CTCP is both friendly and fair.

While the gains of a coded transport layer shown throughout this chapter are

significant, it is difficult to determine their root cause. Both the modified congestion

control algorithm and network coding are contributors to the increased performance,

and differentiating between the two is a challenge. Regardless, there are indicators

pointing to the source for the gains shown. The gains shown for small HTTP request

sizes is a clear indicator that network coding is providing a gain. For these small

file sizes, the congestion control algorithm has little to no affect on the throughput

performance. Therefore, the improvements shown are due to the capability of CTCP

to recover from packet erasures quickly. In addition, the gains shown for streaming

video are another indicator that network coding is providing a benefit. The reduction

in the number of buffer under-runs experienced at high packet erasure rates is too

significant to be contributed solely to increased throughput performance due to a

modified congestion control algorithm. These gains suggest that network coding is

helping to decrease delay. This will be explored further in Chapters 4 and 5.

Finally, the results presented within this chapter focused on single path transport.

Therefore, the gains provided by network coding are limited to error correction. The

remainder of the thesis will expand on these gains to show how a coded transport

layer can be used in a multi-path environment. In particular, the following chapters

will help show how network coding can aid in providing connection resiliency, re-

56

duce management complexity, and decrease in-order delivery delay in networks where

multiple paths are available.

57

58

Chapter 3

Transport Layer Coding Over

Multiple Paths

3.1 Introduction

Simultaneous use of multiple network paths for a single session, or connection, has

the potential to increase quality of service, seamlessly offload traffic from expensive

networks to cheaper ones, increase session reliability, etc.; yet existing technology does

not fully utilize the available resources efficiently to meet these objectives. Instead,

only a single network path is preferred while the others are left unused. This poses

several issues for disadvantaged, or wireless, clients. Intermittent network connectiv-

ity may hinder the ability to communicate effectively, or the exclusive use of a single

path may not provide enough resources to meet a user's threshold requirements. Cod-

ing at the transport layer can help provide the required tools to diversify a session's

traffic over all of the available networks to help solve these problems.

Several real-world examples help to provide the necessary motivations for tack-

ling these problems. Noting that most wireless devices and platforms currently have

multiple network interfaces and radios, simultaneous use of these resources can pro-

vide many benefits. Consider an aircraft or ship that may have multiple wireless

radios, where each independently provides limited bandwidth (see Figure 3-la). An

application needing a high bandwidth connection may require the transport layer to

59

(a) (b)

Figure 3-1: Simultaneous use of multiple heterogeneous networks can: (a) help to
provide an increased quality of service to disadvantaged users, or (b) help to reliably
offload traffic from one network to another.

use several of these networks simultaneously to meet the application's requirements.

Also consider a mobile client traveling between the coverage area of one network

and another (e.g., between a cellular network and WiFi network). Mechanisms exist

for a soft handover between coverage areas within the same network (i.e., handover

from one cellular tower to another), but a hard handover is typically performed when

moving between heterogeneous networks. MPTCP [5] helps perform these handovers

without terminating a session, but improvements can be made to increase perfor-

mance and reliability. Finally, a wireless user may want to offload traffic from an

expensive network to another (see Figure 3-1b) in order to reduce usage costs. Ex-

isting methods to select the preferred network typically require direct input from the

user (e.g., manually turning off or on the WiFi radio). This is, at best, cumbersome

and results in inefficiencies.

Transport layer coding can provide methods to handle each of these scenarios;

but several challenges exist. Differences in network round-trip times, packet loss

rates, bandwidth, coverage areas, etc. present obstacles for ensuring a high quality of

service. The first section in this chapter will provide experimental measurements that

help to characterize the multi-path environment. Next, a multi-path transport layer

protocol called Multi-Path TCP with Network Coding (MPTCP/NC) is introduced

60

and an analysis of its throughput is provided. This protocol is a first step towards a

coded transport layer. While largely impractical to implement, its primary purpose

is to help analyze the throughput of a coded transport layer. Finally, the extension

of CTCP to the multi-path environment, which is a more practical approach, is

discussed.

3.2 Characterization of the Multi-Path Environment

Understanding the environment in which a mobile client is expected to operate is crit-

ical for developing multi-path techniques. Packet loss, delay, and connectivity can all

vary drastically depending on the network used. Simultaneously collecting statistics

over multiple heterogeneous networks helps in characterizing the multi-path environ-

ment. Using a WiMAX (IEEE 802.16) base station, a WiFi (IEEE 802.11) mesh

network, and an Iridium satellite data modem [59], simultaneous network traces were

collected between the Network Research Laboratory (NRL), Department of Computer

Science, UCLA and a vehicle driving a fixed route around the UCLA campus.

Each experiment sent packets, varying between 64 bytes, 512 bytes , and 1,350

bytes in size, at rates based on the direction of travel. For example, traffic generated

by the computer in the NRL and sent to the vehicle, referred to as downlink (D/L)

traffic, was sent at rates determined by the individual network (WiMAX: 20 Mbps,

WiFi: 20 Mbps, and Iridium: 1 kbps). Traffic generated by the computer in the

vehicle and sent to the computer in the NRL, referred to as uplink (U/L) traffic, was

also sent at rates determined by the individual network (WiMAX: 1 Mbps, WiFi: 20

Mbps, and Iridium: 1 kbps). In each experiment, only D/L traffic or U/L traffic was

generated.

3.2.1 Testbed Configuration

Measurements were taken between a mobile commodity laptop and a fixed server

located within the NRL. The server in the NRL was connected to the NRL local

area network (LAN), which has gateways to both a WiMAX base-station and the

61

Iridium
Satellite NRL Server
Network 56 kbps

Modem

WiMAX
Network LAN

Wi-Fi Mesh
Network

Mobile Client

(a)

Figure 3-2: Multi-Path Experiment Configuration

WiFi mesh network. A 56 kbps modem was used to connect the server to the public

switched telephone network (PSTN) in order to utilize the Iridium satellite network.

In the vehicle, a single computer with separate WiMAX and WiFi cards, as well as

a connection to an Iridium data modem, was used to transmit and receive data. A

diagram of the setup is shown in Figure 3-2. UDP network traffic was generated using

iperf and network traces were collected using tshark (a command line version of

Wireshark) on both the server and mobile laptop.

The vehicle containing the mobile computer travelled a fixed route through the

UCLA campus. This route was chosen so that the vehicle passed in and out of the

coverage areas of all three networks. For example, connections through all three

networks were established prior to each experiment. The vehicle would then drop

from and reconnect to each of the individual networks, depending on the location

of the vehicle and coverage of the specific network, throughout the duration of the

experiment. Figure 3-3 provides the vehicle route and placement of the WiMAX and

WiFi mesh base stations on the UCLA campus.

62

Figure 3-3: WiMAX/ WiFi Base Station Placement and Vehicle Route

3.2.2 Collected Data

Ten mobile experiments were conducted over a period of five days in August 2011.

For each of these experiments, traces were collected and compared over each of the

different networks. A sample of the collected traces are shown in Figure 3-4. These

traces show the UDP throughput for each network when all traffic is sent either to

(D / L) or from (U / L) the vehicle.

The round-trip time (RTT) and packet loss probability E for each network was also

collected. The CDFs for both the RTT and packet loss probability during the D / L

experiment where 1,350 byte packets were used is shown in Figure 3-5. The RTT was

measured using ping messages that were sent throughout the experiment on both the

WiFi and WiMAX networks , while ping messages were only sent for approximately

60 seconds at the beginning of the experiment on the Iridium network due to the

bandwidth constraints of the network. The packet loss probabilities were determined

by comparing the trace files on both the NRL server and the vehicle computer.

63

0-

n10
0-

0 510

0
405

1.05

CL)

0)
0
.0

H-

(A)

-Iridium
-WiFi

. . WiMax -

1.1 1.15 1.2 1.25
Epoch - 1312500000 Seconds X 104

(a) U L, Packet Size: 512B

10

71
10

106

10- 5

10 4-Iridium

-WiFi
- WiMax

1q26 8.28 8.3 8.32 8.34 8.36 8.38 8.4
Epoch - 1312500000 Seconds X 104

(c) D/L, Packet Size: 64B

Figure 3-4: Sample traces showing the
experiments with varying packet sizes.
proximate location of the vehicle when

108

10

106

10

1 .

10

1 7

10

10

0)

0
0

10H

1.5

-W-

______________ - WiMax
7 1.72 1.74 1.76 1.78 1.8 1.82

Epoch - 1312500000 Seconds 104

(b) UL, Packet Size: 1350B

- I---u_________ WiFi

WiMax

1.55 1.6 1.65
Epoch -1312500000 Seconds X 104

(d) D//L, Packet Size: 1350B

UDP throughput for two U/L and two D/L
The labels A, B, C, and D provide the ap-

compared with Figure 3-3.

64

8
10

1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.9

0.8

0.7

0.6

t0.5

0.4

0.3

0.2

0.1

l0 101 102 10. I
Rourid-Trip Time (RTT) (mss)

(a) RTT CDF

1.

-Iridium
-- Wi-Fi
-WIMAX

r-I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Loss Probability ()

(b) Packet Loss CDF

Figure 3-5: CDFs of the RTT and packet loss probabilities during the D L
using 1,350 byte packets.

I

experiment

65

-Iridium
-Wi-Fi

-WiMAX

) I

I I I I I I I I

3.2.3 Discussions and Comments

Data collected during each of the experiments provides information about the ex-

pected environment that mobile users are likely to experience. However, there are

caveats concerning the methods in which the data was collected that must be noted.

First, the only user on each network was the vehicle; although the WiFi mesh network

performance was affected by significant interference from adjacent WiFi networks and

the Iridium network was setup over an operational system. As a result, the WiMAX

throughput presented in Figure 3-4 is much larger than what would be expected when

fully loaded, while the WiFi and Iridium throughput is close to what we would expect

in the real-world. The RTT shown in Figure 3-5(a) is also affected by this situation.

Since only one user has access to the WiMAX network, the RTT is fairly consistent

throughout each experiment. The WiFi RTT is largely affected by contention with

adjacent WiFi networks resulting in a wide range of possible RTTs, and the Iridium

RTT is consistent except for periods where it is believe horizontal handoffs between

satellites occurred.

Second, the data collection methods were designed so that data could be used to

replay each experiment off-line enabling easy evaluation of future protocol designs.

This prevented the collection of reliable statistics on the packet loss probabilities.

However, Figure 3-5(b) shows the overall reliability of each network. It shows indi-

cations that the satellite network provides the most reliability and the WiFi network

provides the least. Finally, the use of a modem and the PSTN for the Iridium net-

work (and consequently the low throughput) is due to the Iridium system design.

Iridium was developed for world-wide voice communications. Modern satellite sys-

tems do provide higher bandwidth, and therefore better performance for packet based

communication. Unfortunately, the use of these systems was prohibitively expensive.

Regardless, the traces shown in Figure 3-4 indicate that using a multi-path so-

lution can potentially provide significant performance gains over using only one of

the networks exclusively. Throughout each experiment, the vehicle was connected to

at least one network the majority of the time; and in many cases, it was connected

to two or more networks. Leveraging this connectivity can help ensure that reliable,

continuous data transport is an option in mobile environments. The benefits of lever-

aging simultaneous networks for data transport will be quantified in the following

sections using the collected data. Specifically, packet loss and RTT statistics will be

used to provide a comparison between the performance of MPTCP and Multi-Path

with Network Coding (MPTCP/NC) in multi-path, wireless scenarios.

3.3 A Coded Multi-Path Transport Layer Protocol

Multi-Path TCP with Network Coding (MPTCP/NC) is one approach to enable

communications over multiple heterogeneous networks similar to those shown in the

previous section. Based on MPTCP [60] that offers many features that enable si-

multaneous use of heterogeneous networks, MPTCP/NC also uses network coding

to help operate on unreliable networks. As noted earlier, it is a first step towards a

coded multi-path transport layer and its design is largely impractical. However, the

protocol described in this section is used to analyze the throughput that is achievable

over multiple paths.

MPTCP/NC adds two network coding layers to the traditional network proto-

col stack. The MPTCP/NC layer, placed between the application layer and the

transport layer, offers a single interface to the application layer while providing path

management and packet injection into n TCP sub-flows. Network coding at this

layer helps to provide path redundancy and simplifies packet scheduling across each

of the flows by eliminating the need to track each individual packet. The Fast-

TCP/NC layer is inserted directly below the TCP layer and provides many of the

benefits described in [19], but with several modifications to make it more efficient

when used with MPTCP/NC. Unlike the MPTCP/NC layer, network coding in the

Fast-TCP/NC layer is used to add redundancy to the flow to help recover from packet

losses encountered during transmission. Figure 3-6 provides a high level overview of

the protocol implementation. Subsequent sub-sections will describe both of the new

layers in more detail.

67

Transmit Receive

Application --- End-to-End- -- Application

I f
MPTCP/NC --- End-to-End---+ MPTCP/NC

TCP -SbF C TCP s-row TCP
- - -End-to-End- - - F

FastFast Fast Fs
TCP/NC TCP/NC 1CP/NC ICP/NC

Network 1
(Network through

Physical Layer)

Network n
(Network through

Physical Layer)

Figure 3-6: MPTCP/NC Protocol

3.3.1 Description of the MPTCP/NC Protocol

The MPTCP/NC protocol adds two layers to the conventional protocol stack. The

MPTCP/NC layer sits directly above TCP, or the transport layer, while the FAST-

TCP/NC layer is inserted immediately below the transport layer. Instead of see-

ing multiple TCP links, the application layer interfaces with only one instance of

MPTCP/NC. The term connection refers to the overlay link at the MPTCP//NC

layer between the server and client, and it may include multiple TCP sub-flows at

the transport layer. The initiation and management of multiple TCP sub-flows is as-

sumed to be identical to that of MPTCP, since it is assumed that MPTCP's connec-

tion management works the same when network coding is added. Details of MPTCP's

connection management can be found in [60]. For the remainder of the chapter, it

is assumed that two or more TCP sub-flows are properly established and managed

under the same connection.

Once each sub-flow is established, the application layer pushes data packets to the

MPTCP/NC layer. These packets are coded together using RLNC and then linearly

independent coded packets are injected into a TCP sub-flow when possible. Since

each injected packet is a linearly independent coded packet, the need to assign specific

68

packets to a sub-flow is no longer necessary. As the TCP sub-flows transmit packets

over the network, the number and indices of uncoded packets that the MPTCP/NC

layer codes together is adapted to ensure that new degrees of freedom are always sent.

The transport layer TCP protocol functions normally, as all the operations at

MPTCP/NC and Fast-TCP/NC are transparent to the TCP protocol. However, it

should be noted that all of the packets in the TCP window are coded packets. These

packets are then pushed to the Fast-TCP/NC layer, which also maintains a coding

window equal to the size of the TCP congestion window, similar to TCP/NC [19].

For each packet TCP sends to the Fast-TCP/NC layer, the latter produces R coded

packets that are random linear combinations of all packets in its coding window.

This R is referred to as the redundancy and is theoretically equal to one divided

by one minus the packet loss rate. These coded packets are finally pushed to the

network layer and transmitted over the network. In particular, the packets that are

sent to the network layer are random linear combinations of the encoded packets from

MPTCP/NC (i.e., the original packets have been encoded twice by the sender).

If the twice-encoded packets are received by the client, the Fast-TCP/NC layer

immediately sends an acknowledgement to the same layer at the server. It then passes

the received packets upward to TCP without attempting to decode. All packets de-

livered by any TCP sub-flow will eventually reach the client's MPTCP/NC layer.

The MPTCP/NC layer performs Gaussian Jordan elimination progressively as it re-

ceives new packets and delivers information packets to the client's application layer

whenever a decoding event occurs.

The original MPTCP protocol provides a connection-level acknowledgement (DATA

ACK). In MPTCP/NC, this DATA ACK is used to acknowledge when a new degree

of freedom (dof) was received. This new dof must be a packet that is linearly in-

dependent from all previously received packets. Once the MPTCP/NC layer collects

enough linearly independent packets, it is able to solve a linear system of received

packets. The decoded packets are then delivered to the application level.

69

3.3.1.1 The Fast-TCP/NC Layer

The Fast-TCP/NC layer is inserted directly below the transport layer and functions in

a similar manner as the TCP/NC layer proposed in 1191. On the server side, the cod-

ing window management and encoding operations are exactly identical to TCP/NC

(except the encoding is done on the previously coded packets from MPTCP/NC

layer). The difference between Fast-TCP/NC and the original TCP/NC lies in the

acknowledgment mechanism. In Fast-TCP/NC, there is no seen packet concept and

the client's Fast-TCP/NC layer does not perform Gaussian Jordan elimination. The

Fast-TCP/NC layer sends an acknowledgement whenever a packet is received regard-

less of whether or not it is linearly independent with previously received packets.

This differs from the original TCP/NC that sends an ACK if and only if the packet

provides a new dof.

These modifications were made because a TCP sub-flow does not have global

knowledge of the linear space spanned by packets received by all of the sub-flows.

Therefore, a linear dependency check is not possible at the Fast-TCP/NC layer.

Instead, Fast-TCP/NC delivers packets up to the MPTCP/NC layer where linear

dependency checks and decoding occur. Furthermore, the second encoding that took

place at the server's Fast-TCP/NC layer results in just another random linearly en-

coded packet given that the coefficients in the packet header are properly organized

and adjusted. These packets can be decoded at the MPTCP/NC layer without inter-

mediate decoding at the lower layer.

3.3.1.2 The MPTCP/NC Layer

The MPTCP/NC layer sits between the traditional application layer and the trans-

port layer. This layer maintains a coding window that decides the number of infor-

mation packets to be coded together. Once a coded packet is produced by the server's

MPTCP/NC layer, it is pushed a TCP sub-flow for transmission. Upon reception by

the client's MPTCP/NC layer, it is checked to see if it is linearly independent. If it is,

a DATA ACK is sent back to the server. If not, the client drops the packet without

70

Application Data

Application Data
MPTCP/NC

MPT CP

TCP TCP TCP/NC TCP/NC

Network Network Network Network
A B A B

(a) MPTCP (b) MPTCP/NC

Figure 3-7: Assumed network stack configuration for both MPTCP and MPTCP/NC.

acknowledging it. When the server's MPTCP/NC layer receives a DATA ACK, it

adjusts the coding window accordingly. It should be noted that the design of the

coding window is very flexible since it is not constrained by TCP congestion window,

which is the case for the original TCP/NC protocol.

3.3.2 Analytical Performance of MPTCP/NC

Approaches similar to that of [55] and [61] are used to provide a mean-field approxima-

tion of the throughput for both MPTCP and MPTCP/NC. The MPTCP analysis will

assume the standard implementation as shown in Figure 3-7a and defined by [601. The

MPTCP/NC analysis will assume two layers of network coding. The MPTCP/NC

layer shown in Figure 3-7b provides a first layer of network coding before packets

are injected into a TCP sub-flow, and the TCP/NC layer provides a second layer of

network coding, similar to [19], in order to overcome random packet losses due to

lossy networks.

The analysis for MPTCP, which is provided in Section 3.3.2.1, will use the model

presented by [55] and assume that perfect packet scheduling across each TCP sub-

flow takes place. Once the analytical throughput for each individual sub-flow is

determined, the results can be summed to determine MPTCP's overall throughput.

In reality, perfect scheduling is not possible due to packet losses, termination of a

71

specific sub-flow, etc. This results in the need to collect feedback regarding which

packets were lost, retransmit each lost packet on a second (or third) TCP sub-flow,

and verify receipt of that packet by the client. This process significantly decreases the

efficiency of MPTCP by both lowering the throughput and increasing the transport

time. With this in mind, the analytical results presented later will over estimate the

performance of MPTCP.

In the case of MPTCP/NC, network coding can be used to aid in the sub-flow

scheduling problem by eliminating the need to track specific packets sent over the

network. With respect to the analysis, it is assumed that network coding is performed

prior to a packet's injection into a sub-flow. If the coding operations are carried out

properly, the server will be successful in transferring data over multiple sub-flows

without the need to track individual packets through the multiple networks. Not

only does this significantly decrease the complexity of the protocol, but also provides

greater freedom for determining how to allocate packets among the collection of sub-

flows. It is also assumed that a second layer of network coding occurs below TCP and

redundant packets are transmitted to overcome random packet losses. In general, the

number of transmitted packets for every dof sent should be R > 1/1-E where R is the

redundancy and E is the packet loss probability of the network path.

Finally, it is assumed that both protocols use a TCP Reno style of congestion

control on each sub-flow. This assumption keeps the results presented here in line

with those presented by [55] and also simplifies the analysis for MPTCP/NC. Because

network coding is performed below TCP on each sub-flow, network coding eliminates

the need to consider the effects of triple-duplicates on TCP's window size. A more

detailed discussion will be provided in subsequent sections.

3.3.2.1 MPTCP Analytical Throughput

The analytical throughput for MPTCP follows directly from equation (32) in [55]

where the throughput B(c) of a single TCP connection is determined. The existing

analysis can be extended to the multi-path case by taking the calculated B,(Ej) for

each sub-flow, j = {1,... , n}, and summing them together to form the MPTCP

72

throughput:
n

B(pi, ... , pn) = B (pj). (3.1)
j=1

As noted earlier, this does not take into account the inefficiencies introduced by the

MPTCP layer and will over-estimate the achievable MPTCP throughput. It also

ignores any rate limiting that MPTCP may do in order to be fair with single TCP

flows.

3.3.2.2 Preliminaries

Two metrics are used to develop a mean-field approximation of MPTCP/NC's through-

put: the average throughput T, and the expected MPTCP/NC congestion window

evolution E[W]. MPTCP/NC's behavior is modeled in terms of rounds. The natural

choice for determining the duration of a round is to use the RTT from the server to

the client (i.e., trnd = RTT). While this works if there is a single TCP connection,

each sub-flow is expected to have different round trip times making it difficult to

determine which RTT to use. This is accounted for by setting the duration of each

round, trnd, equal to the greatest common divisor (GCD) of the sub-flows' RTTs as-

suming that each sub-flows' RTT is an integer. Figure 3-8 provides an illustration of

this concept. The top portion of the figure shows the first flow's congestion window

size over time while the bottom portion shows the second flow's congestion window

size over time. Since 2RTT = RTT2 , the round duration is trnd = RTT1 .

3.3.2.3 Sub-Flow Analysis

Consider the most basic implementation of TCP and initially assume that a round's

duration is equal to the RTT of sub-flow j = {1, . .. , n}. Assume that the congestion

window size W of sub-flow j during round i is determined by the number of

acknowledgements afj indicating successfully transmitted packets obtained during

round i - 1:

W(* WU) +). (3.2)
z- 1

73

tround tround
1-9 VON

W
3

W
2

W(1

RTT2

Figure 3-8: MPTCP 1NC round duration used for two sub-flows. The blue blocks
indicate packets and the green blocks indicate acknowledgements.

This concept is also shown in Figure 3-8 where the congestion window size of each sub-

flow grows as a function of the niumber of acknowledgements received. Now assume

that R3 linearly independent network coded packets are sent for each uncoded packet

contained the TCP congestion window. Also assume i.i.d. packet losses with a packet

loss rate of eg. Taking the expectation of the window size, E[W47N]~, the following is

obtained:

E [w/j = EW min (1, (1 - c2) R1) (3.3)

= E W - (i - 1) mi (1, (1 -) -) , (3.4)

where the minimization is required because the window size can only increase by a

maximum of one packet per round.

Since the throughput 'T7E per round is related to the number of packets sent in

that round,

E W
'T ___T___ min (1, (1 - ey) R3) . (3.5)

RT

74

The minimization in this equation is necessary to account for packets that are re-

ceived that do not deliver new degrees of freedom. Since the TCP/NC layer codes all

packets within the TCP congestion window, delivered packets 1 through WP) contain

new degrees of freedom. If more than WW' packets are received in the round, the

MPTCP/NC layer disregards them since they contain no new information.

The above analysis assumed that the round-trip times for each sub-flow were the

same. Because this is not necessarily the case, an adjustment to (3.4) is needed

to account for the shorter round durations. This is accomplished by defining aj =

RTTj/trnd and substituting [i/ac4 for i,

E WU2i = E w + (i/ej - 1) min (1, (1 - ej) Rj)

= y.(3.6)

The throughput for each TCP sub-flow j then becomes

Nj = N/(tnd) min (1, (1 - ej) Rj) . (3.7)

If a large enough redundancy factor Rj is assumed, 7j can be reduced further.

Assume Rj > 1/(1-pj), the instantaneous throughput becomes

)= (E W + [/ay1 - i) . (3.8)
i Cj - trnd(E[1j]+ ia

Finally, TCP typically has a fixed maximum congestion window size. Taking this

into account, the number of packets sent in each RTT is upper-bounded by TCP's

maximum congestion window size, W.2 X. Equation (3.8) then becomes

= 1 (min (W.2., E [Wlj)] + [i/ajI - I) . (3.9)

The model used in the above analysis makes several assumptions that, in practice,

should be considered. First, it is assumed that packet losses are i.i.d. with loss

75

probability ej. Therefore, the analysis does not account for correlated packet losses

due to congestion and other factors. Second, the redundancy R, is assumed to be

sufficiently large enough to ignore the possibility of time-outs. While the probability

of a time-out decreases with increasing Rj, time-outs still occur in practice and the

impact of each time-out on the throughput is significant (i.e., the congestion window

size is reset to E[Wj)]). Specifically, a time-out occurs when the sum of received

acknowledgements over two rounds, i and i + 1, is less than the window size during

round i with probability Pr (a, + ajgi < Wi). Section 3.3.2.5 will provide a method

to address this issue. Third, the RTT remains constant. In practice, this is not true,

and implementations of TCP generally use an averaged round-trip time often referred

to as the "smoothed" round-trip time SRTT.

3.3.2.4 Window Evolution and End-to-End Throughput

Using the above results, the average end-to-end MPTCP/NC throughput over k

rounds is determined using a round duration of trnd and defining aj = RTTj/tld,

k k n

T=(k) = k 7(. (3.10)
i=1 i=1 j=1

Assuming that k/ 3 E Z, Yj < W x, and relaxing [i/a] so that it is i/aj for all j,

n k

T(k) = E- 1) (3.11)
k j1 (j *trnd =1/

S-E W([)]+ k+1 1 (3.12)

If k/aj 0 Z, Vj, the above equation will contain additional terms that contain packets

sent in the rounds from Lk/ajJ to k/aj. Furthermore, the relaxation of [i/aa1 to i/aj

decreases the throughput since (3.12) is no longer accounting for [i/aj] - i/aj packets

sent per round. As k grows, these approximations have less of an effect on the

throughput.

Finally, the maximum window size of each sub-flow Wm2.x is taken into account.

76

Define

r = a (W2 - E [W i) . (3.13)

Using equation (3.12) and assuming that RI > 1/(1-P2), the average end-to-end through-

put T2e, in packets per second is:

n

Te 2e(k) T (k), (3.14)
j=1

where

1 (E WQ([)] + k+1 - 1) for k < r' 31
Te(3e(k) = i'trn 2a, (3.15)

PW.t. for k > r d ,

and

p () = r [wli)] + r(IW (r(j) + 1 - 2aj)+ W 3,) (k - r d) . (3.16)
L J 2aj

It should be noted that as k -- oc for RI > 1/(1-pj), the average end-to-end throughput

becomes
n

lim Te2e(k) = ZWr(2x/(a-ttd)
k-+o

j=1

3.3.2.5 Markov Chain Model

The above analysis provides a closed-form solution for MPTCP/NC's end-to-end

throughput, but it did not address TCP time-outs. To provide this level of fidelity, a

Markov chain model is required to determine MPTCP/NC's throughput. Figure 3-9

shows an example of the Markov chain for a single Fast-TCP/NC sub-flow with R = 1

(i.e., no redundant packets are sent over the network). The value represented in the

top half of each state represents the congestion control window size (i.e., see equation

(3.2)), and the value in the lower half of each state represents the number of packets

lost up to and including the transition into the state. Because it is assumed that no

redundant packets are sent to make-up for lost packets, transitions between states

tend to propagate down within the chain. Once the number of lost packets equals the

77

(1 -2W

(11
TOma

0 0 0 0 0
2c(1-(e) -

3c 1-E)2 3f 21 _ 6 - I

S 2- 1-E 32 j
2 (1 1 2ma

f 2c (1 - c) _

9
9

1 - U

Figure 3-9: Markov Chain Model for MPTCP/NC

congestion window size (i.e., [W(j)J), TCP will time-out and the congestion window

closes.

To determine the throughput, let S be the set of all states in the Markov chain,

Pik be the probability of transitioning from state i E S to k E S, [P] be the transition

matrix of the Markov chain, and [P'] be the nth power of [P]. Because the Markov

chain is both ergodic and has a finite number of states, limn, [Pn] = ew where 7r

is the steady-state vector of the Markov chain and e = (1, . . , I)T. Defining NA to

be the number of packets successfully received by the client within the time interval

(0, t], the steady-state throughput is:

TU) =lim N (3.17)t-+oo t
E[N]

(3.18)
E[T]

ZiES ki EkES nikPik (3.19)
LiES 7i ZkES rikPik

where rik is the time it takes to successfully send nik packets from state i to state k.

For all (i,j) (TO, (1, 0)), the time spent sending packets from i to k is rik -

RTT, and rTo,(1,0) = E[To] where E[To] is the expected time-out duration. Following

78

the TCP Reno model presented in [551, the total duration of a time-out period is

dependent on the sequence of back-to-back time-outs. For every subsequent time-

out, the time-out duration doubles until a duration of 64T, is reached. Therefore, a

sequence of k back-to-back timeouts has duration:

to(k) = (2k - 1)T0 for k < 6, (3.20)
(63 + 64(k - 6))To for k > 6.

Taking the expectation of to(k),

00

E [To] = to(k)PK(k) (3.21)
k=1

I + 1: = 2k-lpkI Z) TO. (3.22)

Inserting equation (3.22) into equations (3.19) and (3.14), the average throughput of

MPTCP/NC can be determined.

3.3.3 MPTCP and MPTCP/NC Performance using Empirical

Data

This section compares the theoretical throughput of MPTCP given in equation (3.1),

with the theoretical throughput of MPTCP/NC given in equation (3.14). Figure 3-10

shows the performance of both protocols using the data presented in Section 3.2 as

a baseline. The maximum window size for each TCP sub-flow was set to W2ax = 12;

and a mean RTT, based off of empirical data, was used for each network where

RTTridium = 1.653s, RTTwi-Fi = 0.607s, and RTTWiMAX = 0.087s. Empirical packet

loss data, averaged over 5 seconds, on each separate path from two of the experiments

was used as a baseline for determining both throughputs. It was assumed that the

network capacity for each network was large enough to send W2(& packets in the case

of MPTCP and R3W3,x packets in the case of MPTCP/NC where Rj is assumed

to be large enough so that time-outs are very unlikely (i.e., Rj is much larger than

79

13

$10

o2 010 a) 1U) C/) 102

0l 0

1 -MPTCP 10 -Q0 10 J L
-~ -~10

108MTP102 IMPTCP
MPTCP/NC - MPTCP/NC

1.5 1.55 1.6 1.65 1.7 1.72 1.74 1.76 1.78 1.8
Epoch - 1312500000 x 104 Epoch - 1312500000 x 104

(a) D/L. Packet Size: 1350B (b) U/L, Packet Size: 1350B

Figure 3-10: Comparison of the theoretical MPTCP and MPTCP/NC throughput
using the data presented in Section 3.2.

the 5 second average of the packet loss probability). In addition, Figure 3-10 uses

the mean-field approximations developed in the last section and does not show a

simulated behavior of each protocol.

The figures show that MPTCP/NC provides a better throughput throughout the

"simulated" experiment than MPTCP. While MPTCP is severely hindered by high

packet losses as a result of poor channel conditions, MPTCP/NC is able to mask

the majority of packet losses and maintain a high throughput. Scheduling of packets

on each sub-flow is also easier with MPTCP/NC than with MPTCP due to the

network coding operations performed immediately below the application layer. The

throughput shown for MPTCP assumes that there is perfect scheduling among the

sub-flows with no need to retransmit a packet on more than one sub-flow. This

provides a best-case scenario for the achievable throughput. This assumption is not

made in MPTCP/NC because each packet transmitted on a sub-flow is viewed as a

degree of freedom. If a packet is lost, any packet sent on a different sub-flow can be

used in the lost packet's place.

80

3.4 Extending Coded TCP to Multi-Path Environ-

ments

As mentioned earlier within the chapter, MPTCP/NC may not be the best approach

for implementing a coded multi-path transport protocol. One of the main reasons

for this is the continued use of standard TCP. The Fast-TCP/NC layer is essentially

"spoofing" TCP into believing that the underlying network sub-flow is error-free.

Instead, an approach similar to CTCP should be used where the congestion control

is compatible with coded packet streams. Additionally, it may be preferable not

to restrict the information available to each sub-flow when generating redundancy.

Redundancy generated in a MPTCP/NC sub-flow only contains linear combinations

of packets injected into that sub-flow. This approach is nice if a distinct separation

between network layers (i.e., the session and transport layers) is required, but it

may also artificially restrict the usefulness of redundant packets when attempting to

recover from erasures. An alternative approach that will be assumed in the remainder

of the thesis is to allow each sub-flow complete access to all information packets when

generating redundancy. This removes any restrictions on the content of each coded

packet and allows for much simpler coding schemes and analysis.

With the above considerations in mind, CTCP can be extended to multi-path

environments with minimal changes to the protocol described in Chapter 2. Similar

to MPTCP/NC, a CTCP sub-flow is setup for each available network path. This

allows the congestion control to manage each path separately ensuring fairness with

other flows, and redundancy to be injected based on each paths' individual packet loss

rates. Unlike MPTCP/NC, each sub-flow has knowledge of every information packet

that needs to be delivered. Each sub-flow must then maintain a separate coding

window that is used to generate coded packets. This is illustrated in Figure 3-11 for

two CTCP sub-flows. CTCP sub-flow A generates redundancy using coding window

A while CTCP sub-flow B generates redundancy using coding window B. The major

challenge with this setup arises when determining how each sub-flows' coding window

should be managed. Chapters 4 and 5 will provide two different approaches that can

81

Application Data/Packet Stream

Pi P2 P3 P41 P5 P6 P7 P8 P9 P10P11P12jO@@

Coding Window A odng Window B

CTCP CTCP

Network A Network B

Figure 3-11: Possible Extension of CTCP to Multi-Path Environments

be used. The benefits the two approaches presented is that they both provide excellent

erasure correction while maintaining low in-order delivery delay. This is something

that MPTCP/NC cannot guarantee because of the multiple coding layers.

3.5 Conclusions

This chapter focused on using network coding for multi-path transport. The exper-

imental measurements provided an example real-world scenario of an environment

where exploiting multiple parallel heterogeneous networks is beneficial. The collected

data showed a highly dynamic environment with transient connectivity, unpredictable

round-trip times, and varying packet loss rates. In order to operate efficiently within

this environment, a protocol called MPTCP/NC was introduced that uses two layers

of network coding to provide both connection resiliency and error correction. Finally,

an analysis of the protocol's throughput was provided; and a fusion of the experimen-

tal measurements with the analysis showed the achievable gains of a network coded

multi-path transport layer.

While the proposed protocol improves throughput over parallel heterogeneous

networks, its actual implementation may not be as advantageous as other approaches.

An alternative method is discussed that is an extension of CTCP to the multi-path

environment. In this alternative approach, each sub-flow maintains a separate coding

82

window that operates over a shared collection of information, or application layer,

packets. This has many benefits including the added flexibility in code construction,

which is the topic for the remainder of the thesis.

83

84

Chapter 4

In-Order Delivery Delay for

Multi-Path Generation-Based Codes

4.1 Introduction

The results presented in Chapters 2 and 3 showed that transport layer coding can

improve throughput over both a single network or multiple parallel networks. How-

ever, not all of the gains observed can be fully explained by an increase in throughput

alone. A good example are the application layer gains shown in Section 2.4.4. The

decreased completion time for small HTTP requests (e.g., 1 kB) and the reduction

of streaming video buffer under-runs from approximately 100 to zero are two exper-

iments that specifically highlight gains that are not directly related to throughput.

Rather, these gains are most likely attributed to decreases in packet in-order delivery

delay. This chapter focuses on quantifying these gains for coding schemes that only

code over a single partition of information packets, or a generation, at a time. This

is very similar to the type of coding scheme that was used in CTCP, and is a natural

approach when considering block codes or rateless codes that require a fixed number

of input symbols.

In particular, this chapter explores the use of a systematic random linear network

code (RLNC), in conjunction with a coded generalization of SR-ARQ, to help reduce

the time needed to recover from losses. Redundancy is added to the original data

85

stream by injecting coded packets at key locations helping to reduce delay by over-

coming packet losses and limiting the number of required retransmissions. Feedback

and coded retransmissions are also used to ensure reliability in the event that the

client cannot decode a generation.

An example is provided in Figure 4-1. Each column represents an information

packet pi that must be sent, while each row represents the composition of a packet

transmitted in the specified time-slot. For instance, the packet transmitted in time-

slot 3 is a linear combination of information packets pi through P3. The double-arrows

to the right of the matrix show when each information packet is delivered, in-order,

to the application layer. The colors indicate specific generations, and the colored

horizontal lines show when feedback about the a given generation is received by the

server. As an example, the first generation represented by the blue dots and lines

is first transmitted in the first four time-slots. The first two information packets,

pi and P2, are received by the client and can be immediately delivered. However,

both packet P3 and the coded packet comprising of a linear combination of packets

pi through p3 are lost. Since the client cannot decode the generation and recover p3,

feedback is sent back to the server requesting additional degrees of freedom (dofs)

to be sent. This feedback is obtained by the server in time-slot 8 and an additional

coded packet from the first generation is retransmitted. Once enough dofs from the

first generation are received by the client, the generation can be decoded and all lost

information packets can be delivered in-order. This occurs for the first generation in

time-slot 16.

The example highlights the first major cause of delay: head-of-line blocking. A

reliable transport layer ensures that packets are delivered in-order. Therefore, packet

delivery is halted whenever a packet loss occurs; and it does not start again until the

loss is corrected. Protocols like TCP typically use selective repeat automatic-repeat-

request (SR-ARQ) to recover from any packet erasure that occur. If a packet loss

is observed, the client requests that the lost packet be resent. While SR-ARQ helps

to ensure high efficiency, one problem with it is that packet recovery due to a loss

can take on the order of a round-trip time (RTT) or more [37]. When the RTT (or

86

Information Packets (pi)
1 2 3 4 5 6 7 8 9 0 11 12 13 11 15 1i

1 0
2 *

4 p 2
5 o
6
7 e
8 0o
9 w

107
11
12

(12 13 000

0

0O

A 000
21 0
2, 0 P7 P

22 0 Th

0.
Pi"

Figure 4-1: An example of the systematic code with feedback considered within this

chapter.

more precisely the bandwidth-delay product (BDP)) is very small and feedback is

close to being instantaneous, SR-ARQ provides near optimal in-order delivery delay.

Unfortunately, feedback is often delayed due to queuing and large physical distances

between a client and server. This can have major implications for applications that

require reliable delivery with constraints on the time between the transmission and

in-order delivery of a packet. As a result, alternatives to SR-ARQ are necessary to

meet these constraints.

The second major cause of delay is related to coding. As the generation size

k increases, the delay due to coding also increases. This is similar to the head-of-

line blocking issue discussed above, but it is on a generation-by-generation basis.

As an example, assume that the first packet within a generation is lost and enough

redundancy was added to the generation so that it can be decoded without requiring

retransmissions (i.e., the lost packet is recovered once enough dofs have been received

which occurs near the end of the generation). If k is small, the lost packet will be

recovered fairly quickly. However, the time it takes to recover the packet increases as k

increases. Unfortunately, the probability of requiring retransmissions also decreases

87

Head-of-Line Coding Delay
Blocking

k* =arg min E[T]

Generation Size k

Figure 4-2: The trade-off between decreasing the probability of retransmissions and
minimizing the generation size k.

with k. This results in an inherent trade-off that is depicted in Figure 4-2. An

excessive amount of retransmissions increase the delay if the generation size is too

small, while a generation that is too large increases the delay due to coding.

This chapter will answer the following two questions: how large should each gener-

ation be so that the in-order delivery delay is minimized; and how much redundancy

should be added to meet a user's requested QoS. These answers will be provided

through an analysis of the in-order delivery delay as a function of the generation size

and redundancy, where the in-order delivery delay is formally defined as:

Definition 4.1. The in-order delivery delay T is the difference between the time an

information packet is first transmitted and the time that the same packet is delivered

in-order.

The expected delay E [T] and the jitter O-T (i.e., the standard deviation of T) will

be the primary metrics of performance. However, decreasing E [T] and O-T comes at

a price. This price is captured in terms of efficiency 17 defined by the following:

Definition 4.2. The efficiency ?7 is the ratio between the total number of information

packets, or degrees of freedom (dofs), transmitted during a network session and the

expected number of packets received by the sink.

88

Numerical results will also be used to help determine the cost (in terms of rate)

of reducing the delay and as a tool to help determine the appropriate coding window

size for a given network path/link.

4.2 Multi-Path Generation-Based Coding Algorithm

The problem of supporting a single network session operating over multiple paths can

be addressed without the use of coding; however, the intent of this chapter is to show

that coding can reduce in-order delivery delay more so than conventional uncoded

approaches. This section will introduce a simple network coding algorithm to show

these gains, without any guarantee regarding its optimality.

Information packets pi, i = 1, 2, .. ., are first partitioned into coding generations

Gq,j, which represents the jth generation transmitted on path q E 'P, as they are

made available to the source's transport layer. It is assumed that the generation size,

kq, can vary depending on the path, but the size of each generation transmitted on

a particular path is constant. Furthermore, packets are inserted into a generation

based on the first non-busy network path found. Once enough information packets

are available to the encoder to fill an entire generation, random linear combinations

of these packets are used to produce coded packets

Cq,j,m = E aq,j,m,iP, (4.1)
PiEGqj

where m E [1, kq/cq (1 - cq)], Cq <; 1 - Eq is the code rate used on path q, the coding

coefficients aq,j,mi E F are chosen at random, and each packet pi is treated as a vector

in Fp. Both the information and coded packets are then systematically transmitted.

Once a generation has completed transmission, a new generation is produced and the

process repeats without waiting for feedback.

Figure 4-3 provides an example of this process using two paths. Packets pi through

p3 are placed in G1,1 , while packets P4 and p5 are placed in G2 ,1 . A single coded packet

is then appended to the end of each generation to provide redundancy against packet

89

Path 1 P 1 P2 P3 ci,1,1 P8 I p Iio ci,2,1i
(ki = 3,ci = -4

s l

Path 2 2) 4 P5 2,1,1 P11 P12 C2,3,1
(k 2 = 2, - 3=

Figure 4-3: Example of the process used to partition packets into generations. Both
network paths transmit packets at the same rate; however, the generation size and
code rate for each path differ.

erasures. Both generations (including the coded packets) are transmitted in parallel.

Once G 2,1 completes, G2,2 (containing packets P6 and p7) is formed and transmitted

over the second path. While G 2 ,2 is in the process of being transmitted, the first path

becomes available allowing generation G1,2 (containing packets P8 through pio) to be

formed and transmitted. This process continues until the entire packet stream or file

is partitioned and transmitted.

The sink is able to recover an entire generation G,j if k. or more degrees of

freedom (dofs) from that generation are successfully received. If only kq -1, 1 E (0, kq],

packets from Gq,j are received, a decoding error occurs and feedback requesting these

1 additional dofs is sent on the shortest path 4. Upon reception of this feedback, the

source retransmits '/cq additional coded packets (or dofs) from Gq,j on path 4. This

retransmission process continues for every generation until at least kq dofs for each

Gq,j has been obtained by the sink. Once a generation has been successfully decoded,

all information packets are buffered at the sink until they can be delivered in-order.

This process naturally leads to the concept of rounds.

Definition 4.3. The ith round for a single generation begins with the transmission

of li-1/c, dofs where li_1 is the number of dofs required by the sink at the conclusion

of round i - 1. The ith round ends when feedback is obtained regarding the number

of dofs 1i still needed to successfully decode.

Algorithms 1 and 2 provide a concise description of this process. By providing

feedback and retransmitting dofs on the shortest path in the manner outlined in both

the algorithms, the time it takes to overcome packet losses that cause decode errors

90

is effectively minimized. As a result, the overall in-order delivery delay will also be

reduced.

Algorithm 1: Code Generation

Initialize i = 1 and j = [1, ... ,I]T where j E R1
while Information packets to send do

q <-First non-busy path available
for m <- i to kq + i - 1 do

Add Pm to Gq,jq
for m +- 1 to kq/cq(1 - cq) do

Add cqJq,m = E q,,,,nPn to Gqjq
Begin transmission of GqJq and continue

Jq +- Jq + 1
i +- i + kq

Algorithm 2: Retransmission

ACK from GqJq received
if No packets from GqJq in-flight on either path q or 4 and 1 > 0 then

for each m E [1 1/cj] do
Transmit cq,jq,m = EpiEGq,j qj,m,iPi on path c

4.3 System Model

The scenario where a single source and sink are connected via multiple disjoint net-

work paths is considered. A single network session between the two is produced and

communication occurs in parallel over each of these paths. While the source and sink

may coordinate transmission of information across paths, the underlying networks, or

paths q E P, are treated independently (i.e., the behavior of path q does not affect the

behavior of path q' -# q). Delayed feedback between the sink and source is assumed to

be available. This feedback is sent over each path and contains information regarding

the state of sink. Furthermore, it is assumed that this feedback allows the source to

make an accurate estimation of the packet erasure probability eq, which is assumed

to be independent and identically distributed (i.i.d.) on each path q.

91

Time is slotted where each time-slot's duration, tq seconds, is determined using

the transmission rate Rate, bits/second on path q (i.e., t. = 1/Rate,). Note that tq

may not be the same as t., for q = q'. Once a packet is transmitted, it takes d

seconds to propagate through the network. Throughout this chapter, the delay on

the shortest (or fastest) path 4 E P and the longest (or slowest) path I E P will be

significant. Both of these paths are formally defined as:

= arg min dq (4.2)
qEP

and

= arg max d. (4.3)
qEP

respectively. Therefore, the round-trip time for a packet transmitted in round 1 on

path q is tq + dq + d4 where it is assumed that the size of an acknowledgement is

sufficiently small enough to be ignored. Since all retransmissions occur on path 4, the

round-trip time for all packets in subsequent rounds is approximately 2d. Using this

model, the entire system can be fully described by the tuple (c., tq, dq) for each path

q E P.

4.4 Model and Analytical Assumptions

Before proceeding, several simplifying assumptions must be made in order to keep

the analysis tractable due to the inherent complexity of the underlying stochastic

process. First, the time it takes for the source to schedule retransmissions on path 4

is ignored. Generations requiring additional dofs to decode are given priority by the

source so that retransmissions occur immediately after feedback is obtained indicating

additional dofs are needed. The second assumption ignores the time time it takes

to retransmit these dofs. For example, the packet transmission time on path 4 is

td seconds. Assuming 1 dof retransmissions are needed, the additional /t4/c seconds

needed to transmit these packets are not taken into account. Third, the number of

previously transmitted generations b. that can cause head-of-line blocking is limited

92

to the number of generations that can be transmitted in 2d4 seconds. Assume that a

generation is received that was first transmitted on path q. The number of generations

that can cause head-of-line blocking is limited to bq = Eq'Ep bq,ql, where bq,q, is the

number of generations on path q' that can prevent a generation originally sent on

path q from being delivered. Formally, bq,q, is defined as:

F2dC 1 for q = q',
bq,qi - CCr (2dq-,+d-1) for q -, q', dq > dq,, (4.4)

r1ia - [F cq(2d]d I~d

[2tC + [cq(2dd+df-d-1) _ 2doc for q -# q', dq dqi.

It should be noted that bq is dependent on the path q. Figure 4-4 provides and

example consisting of two paths. The number of previously transmitted generations

that can cause head-of-line blocking for generation G1,7 on path 4 = 1 is limited

to b1,1 = 5, while the number of generations on path 4 = 2 is limited to b1 ,2 = 7.

Similarly, the number of previous generations that can block generation G2,7 from

being delivered is limited to b 2 , 1 = 3 and b2 ,2 = 5 on paths 4 = 1 and Q = 2

respectively.

The first two assumptions ensure feedback is acted upon immediately removing

any delay resulting from packet scheduling and retransmission. The third assumption

removes the possibility that generations transmitted in earlier rounds cause head-of-

line blocking, thereby decreasing the overall delay. These assumptions have a large

effect on the deference between the true and analytical delay when the probability of

decoding a generation in any given round is small. However, this is not the regime of

interest since the primary objective of transport layer coding is to reduce both decode

errors and retransmissions.

Several additional assumptions are needed that do not explicitly affect the delay,

but they help simplify the modeling and analysis. First, all packets within a genera-

tion are available to the transport layer without delay (i.e., an infinite packet source is

assumed). Second, feedback regarding the outcome of any transmitted generation is

93

G1,1 G1,2 G1,3 G1,4 G1,5 G1,6 G1, G1,8 1,9 q= 1 di = 8 3
C1

RoundI

G 2 3 GG 2,4 G2,s G 6 G2, G2,8 q =2 d2 =12 =3
IL, I C2

-b,1 5
bi,2 =7

Round, G2 2 G1,3 G1,4 G1.5 G1,61G1, G1 8GG1)
Round 2 - ________________

G 2,1 G2,4 G2,5 G26 G2 ,7 G2,8
No 2,1 = 3

4 b2,2 =5

Figure 4-4: Example of the number of previously transmitted generation that can
create head-of-line blocking assuming two paths. The figure shows the reception
times of each generation over two rounds.

only provided after the entire generation has been sent. In other words, the feedback

delay must be larger than the time it takes to transmit an entire generation on the

slowest path, i.e.,

2d > max kjti/cj, (4.5)

where q is defined in (4.2), tj is the time-slot size on path j, kj is the generation size,

and cj is the code rate. Without this assumption, feedback regarding the outcome of

packets within a generation will be received by the source prior to the reception of

coded packets by the sink. Therefore, selective repeat ARQ (SR-ARQ) can be used

without a large impact to the performance. Third, the following assumption is made

regarding the time it takes to transmit an entire generation on each path:

kiti/ci = kjtj/lc, for all i, j E '. (4.6)

This assumption states that the time it takes to transmit a single generation is the

same regardless of path and it eliminates the added complication of generation se-

quencing among all of the paths. Fourth, the source services longer paths prior to

94

shorter paths. For example if di > dj and both are not busy, packets Pm, - - Pm+ki

are partitioned into a generation that will be transmitted on path i and packets

Pm+ki+1 - - , Pm+ki+kj are partitioned into a generation that will be transmitted on

path j. Finally, a unique longest path q E P is assumed since the longest path dic-

tates the delivery of packets. A unique longest path helps simplify the analysis by

avoiding sequencing issues.

4.5 Required Probability Models and Distributions

A number of random variables are required to accurately describe the delivery process.

These random variables can be broken up into two categories. The first category

involves variables that describe the rounds that a generation is delivered. In general,

these variables give a coarse idea of the delay experienced by an information packet.

The second category of variable helps provide a more accurate idea of the delay given

a generation can be delivered in a specific round.

4.5.1 Primary Models and Distributions

Before these random variables are formally defined, it is important to note that all

kq/cq packets contained in a generation Gq,j are first transmitted on path q, while any

retransmissions are made on path q. Specifically, erasures occur with probability eq in

round 1 and probability Eq for all subsequent rounds. This process can be described

using the Markov chain shown in Figure 4-5 where the initial state at time 0 is S and

a generation is successfully decoded once the trapping state 0 is entered for the first

time.

Formally, define X,_1 to be the state of the chain in round r > 0 and [M] E

R(kq+1)x(kq+1) to be the chain's transition probability matrix. Let the state Xo after

95

S

pxO, (kq) PXo,q (1)

Pxo, (kq - 1) PXO,q 0)

k Mg]*', -k, - 1[Mq k,-1,ka-2 [M|2,1 [Mg],,

[Mg]k~k [Mglkq-l,kq--1 [Mg]q- _0 [Mg]l~ [Mqlo,o

[Mg]ql

[Mg]kq

Figure 4-5:
generation.

Markov chain model that describes the process of delivering a single

round r = 1 be determined according to the distribution:

IB (kq/cq, kq - xo, Eq)

SB (kq/c, m, Eq)

0

for xO E (0, kq],

for xO = 0,

otherwise,

where B (n, k, p) = (n) (1 - p)k p,-k. Also define the elements of [M] as follows:

B (i/q, i - j, Eq)

[M] i B (i/c, m, eg)

1

0

for i E [1, kq] ,j E (0, i],

for i E [1, k] ,j 0,

for i = 0,j = 0,

otherwise.

It follows that for j E [0, kq] and integer r > 0, the probability of being in state Xr

96

PXo,q (xO) = (4.7)

(4.8)

in round r is:

PXO,q (Zr) for r = 1,

(r) =x for r > 1, (4.9)

0 otherwise,

for XO, Zr E [0, kq] and [M.] = 0 for all i, j. Note that state 0 is a trapping state;

and the probability of being in state 0 on or before round r is PX,,q (0).

Within the model, a generation is successfully decoded when state Xr = 0 is first

entered. Define Y to be the round when this occurs (i.e., Xy = 0). This variable

has the following distribution:

PXO,q (0) for y 1,

PYq (Y) PX,,q (0) - pxyl,q (0) for y > 2, (4.10)

0 otherwise.

Next define Zq,q,, q, q' E 1, to be the number of transmission rounds required to

successfully transfer all bq,q, generations first transmitted on path q'. The distribution

of Zq,qi is provided by the following lemma.

Lemma 4.4. Let bqq, independent processes, each defined by (4.7) and (4.8), start

at the same time on path q'. The probability that all processes complete in less than

or equal to z rounds with at least one process completing in round z is

pXO'q (0) for z = 1,

PZ,,, (z) =px 'q, (0) - P '1 ,q, (0) for z > 2, (4.11)

0 otherwise.

Proof. Let f (z) = 1 - Zq PY,, (j). The probability of bq,q, independent processes

completing in less than or equal to z rounds with at least one process completing in

97

Pr { Zq,ql = Z}

bqqi

= ~B(bq,qi ,i, f (z)) f (Z)

= q q (bqq)
= (b) py,,

(4.12)

(4.13)

For z = 1, (4.13) becomes Pr {Z,qi = 1} = (pxo,q' (0))bqq/. For z > 2, (4.13) becomes:

i=1

bq,qi"
(4.14)

=(kq

EZ PXOq
\x0=

bq,ql

(xO) [Mz- ii)
kqi

_ PXO,q'
x0=0

bq,qt

(xO) [Mqz,-2] XO0)

(4.15)

The distribution on Zq,qi can now be used to determine the total number of rounds

it takes to transfer all bq generations that can cause head-of-line blocking. Define this

random variable as

Zq = maxZq,q'.
q'EP

(4.16)

The distribution on Zq is then defined by the following lemma:

Lemma 4.5. Let Zq = maxq'ep Zq,qi. The distribution on Zq is:

P qiEp q, (0)

PZq (Z) = l'E p ', (0) _ f ' P x ' zlq,(0)

0

for z = 1,

for z > 2,

otherwise.

(4.17)

Proof. For Zq,q' = 1, the CDF is Pr {Zq,qi = 1} = P ,q, (0). For Z,qi > 2, the CDF

98

round z is:

Pr {Zq,qi = Z } =

. Z-1 bq,qf -i

Wz) E(PY,(U)
(j=1

kqI bq,qt -i

(py,, ((PXO,ql (x0) [Mz,-2 X00(py"(Z))i xO=0

becomes:

Pr{ Zq,q Z}
z

= PZ,q, (i) (4.18)
i=1

=p j', (0) + (ph,1 (0) - Pxti_'q (0)) (4.19)

=P q' , (0) . (4.20)

Let Zq = maxq/ep Zq,ql. Its CDF is:

Pr {Zq 5 z} = Pr {Zq, 5 z, ... , Zq,,pi z} (4.21)

= Pr {Zq,i 5 z} ... Pr {Zq,,pi z} (4.22)

When Zq = 1, Pr {Zq = 1} = q,'Ep Py, (0). For Zq 2, Pr { Zq z} = lqEiP q, (0).

This results in the PDF pzq (z) = Pr {Zq z} - Pr {Zq z - 1}. E

4.5.2 Secondary Models and Distributions

Both Y and Zq will be used to determine whether or not head-of-line blocking is

preventing packet delivery of a given generation. Both of these variables provide a

coarse idea of the delay. To provide a more accurate estimate of the delay, additional

random variables are needed. These variables will help describe the location of the

packet or generation that is preventing delivery within a given round.

Define the first of these variables, Sq, to be the location of the first packet era-

sure within a single generation. This variable is important for the following reason.

Assume that Y Zq. The first Sq packets within a generation can be delivered in

round Zq experiencing a delay on the order of Zq rounds. However, the remaining

kq - Sq packets within the generation cannot be delivered until the entire generation

is decoded in round Y. As a result, these packets will experience a delay on the order

of Y round. An example is shown in Figure 4-6. The generation consists of packets

99

+ - Sq = 4

P1 P2 P3 P4 P6 C2 C3

Time: 1 2 3 4 5 6 7 8 9

Packets Delivered: Pi P2 P3 P4 P5'
I ~ P6I

cq = 2
Cq

Figure 4-6: Example of the in-order delivery of packets within a single generation
where coded packets help recover from packet erasures.

p, through p6 . The first packet erasure occurs when p5 is lost. As a result, the first

four packets (i.e., Sq = 4) can be delivered immediately upon reception. In order to

recover from the erasure, a single dof is required and provided by packet c2 . Once

this is obtained, the entire generation is decoded allowing p5 to be recovered and

delivered.

The distribution on Sq given Y is:

Eq (1 - eq)s

(1 - q)SPsqlyo (sIy) =)<

0

for s E [O,kq-1],y= 1,

for s= kqy= 1,

for s E [O,kq - 1],y # 1,

otherwise.

For Y= 1, a packet loss may or may not occur. However for Y > 1, a packet loss is

known to have occurred. This results in the normalized geometric distribution shown

above. It is important to note that Sq is determined during the first transmission

round. Therefore, it is dependent on the path q E P on which the generation was

originally sent. Within the subsequent analysis, the first three moments of Sq will be

of particular interest. These are given by the following lemma.

Lemma 4.6. Define s',q E [SqYq= 1] and s",= E [Sq|Yq # 1]. Then given

100

(4.23)

= y, the first three moments of Sq are

s, 1 - I -(1 -eq) (4.24)

- 2(1- Eq) - (kq+ 1) (1 - Eg)kq- si (4.25)51,q -~ 6 q,'2 1,q'(.5
q

6 (1 - Eq)3
si,q = 3 (1 - (kqEq + 1) (1 - 4)Eq + (4- 3Eq) si, + 3(1 - Eq) s1,q

Eq

3k- (kq + 1) (1 - Eq)k+l , (4.26)
Eq

and

Ssiqk q (4.27)
1 -(1q)k

for i = 1, 2, 3.

Proof. Define the moment generating function of Sq when Y 1 to be

MsqIyq(t) = E[etsq|Y = 1] (4.28)

Eq (i -kq (I - fq)k) I+ ekqt (1 - q)kq . (4.29)
1 - et + Eqet

The first, second, and third moments of Sq when Y = 1 are then 6/tMsqly,(0),

62 /t2MSqjy(O), and 63/6t3MS()yq(0) respectively. For Y # 1, scale the above expec-

tations by subtracting the term ki (1 - Eq)kq from each of the moments above and

dividing by 1 - (1 - eq)kq.

The second random variable that helps describe the location of the head-of-line

blocking packet or generation isV,,. This variable describes the position of the last

received generation originally sent on path q' E P preventing delivery in round Zq,qi.

The following lemma helps define the distribution on V,q' given Zq,q, > 1.

101

Lemma 4.7. Let bq,q, independent processes, each defined by (4.7) and (4.8), start at

the same time and all complete in or before round Z,,q, = z with at least one process

completing in round Zq,q, = z. The probability that the jth process, j = bq,qi - Vq,q, is

the last to complete is

bqf ,-v-1

PVq,q'IZ,,q (vIz) P qz, , (z) (4.30)

for V,q, .-... , bq,q, - 1. Furthermore, define v" , (z) = E [ViI IZq,q, = z]. Then

v1, (z) PX_,q' (0) bqq',q' (0) (4.31)
pyq, (z) PZq,q, (z)

and

PX~iq p" 2p2 (bq, ~ bqqt+l

pxz-1,q, (0) x_lq, (0) b2,qPX b ,q (0) 2bqPx1qI (43
v 2 4 + .-Z (4.32)

PY, (z) psy, (z) Pz q, (z) Pzq,,q (z) Pyq, (Z)

Proof. Define /3 = Pr {Yq, = z|Yq, ; z} = Plq (Z)/px,,,(o). The distribution on Vq,q E

[0, bq,q, - 1] for Zq,q > 2 is

pV ,,z ,, (vq,q'\zq,q,) = b,,1 - 4.,33

-O 3((1- (4.33)
_3 (1 - #3)qq'

(1 -/ 3)b~qI(4.34)
bq q-vq q-1 q,l

-py'''q,' (0) pv;z_ , (0) Py (Z (4.35
PZq,,, (z)

Define the moment generating function of Vq,q, given Zq,q' to be

Mvqq,Zqq, (t) = le [etVq,q IZqq, = z] (4.36)

1 (1 -)~ ('' 1 ebqqt (1 -)bqq

The first two moments of V,q' given Zq,q' = z are determined by 6/itMVqq IZq,q (0) and

102

32/6t2AMvq,, ,Zq,q (0).

Finally, each path may potentially have different delays. To overcome this hurdle,

define an auxiliary variable W,q' for each q' E P. This variable helps determine

the delay a generation causing head-of-line blocking on path q' has on generations

originally transmitted on path q. Formally,

dq - dq, + L (V,q, + 1) for dq < dq,
Wq,q, (4.38)

dq -dq, + L'Vq,q, for dq, > dq,

where the assumption that kqtq/cq = kqtq/cq, is used to simplify the equation. This

variable is the difference in time between the delivery of the last generation containing

a packet p,, j < i, in round Zq and the time the generation containing packet pi can

be delivered assuming that its generation is also decoded in round Zq. It is important

to note that the values of W,qi for paths where Zq,qi < Zq do not need to be considered

since these paths are not preventing delivery. Therefore, the path/generation that

is causing head-of-line blocking is the one with minimum W,q, on a path where

Zq,q, = Zq . The expectation E [minq/E{ p:z ,,=zq} W,q,|Z,,i = Zq] is provided by the

following lemma.

Lemma 4.8. Let Wmin,,q min,/{p:z,=z,} Wq,q,. Then the following holds:

E [Wmin,qIZq] ; max E dq - dqi + kq vt , z +1 . (4.39)
q'EP I CqI q,()

Proof. Label each path P = {1, 2,..., IPI}. The joint probability distribution for the

number of rounds each path takes to complete given Zq = Zq is

PZq,1,...,zPIZq (zq,1, ... , zq,ipJIzq) = 1 P q PZq,q, (zqq,) , (4.40)
PZq (zq),(Z)q'EP

for q, q' E P7, Zq,q, E [1, zq], and at least one Zq,q, = zq. Also define

Number of paths with dq < dq

Total number of paths '

103

0

where 0 < a < 1. The expectation of Wmin,q given Zq = Zq is given by

Zq

E [Wmin,qIZq] = L -.-
zq

L Pzq,,...,z,iplZq (zq,i, .. , zq,ipi lzq)

E min
[q'E{P:zqq,=zq}

Wq,qIZq,ql =

Using Jensen's inequality, the expectation in the right-hand side of the above equation

becomes

E min
q'E{T:Zq,q=Zq}

Wq,q IZq,qi = Z] < min E
q'E {p:zq,q,=Zq }

< max E
qE{Tp:zqq=zq}

< maxE [Wq,qi|Zq,qi = Zq]
q' EP

Inserting (4.45) into (4.42), we obtain the following

E[Wmin,qIZq]

Zq

L - PZq,i,..,Zq,,PIZq (z,1, ... , zq,ipi lzq)
Zq,1l= zq,pj1

- maxE[WqIZq,q, = Zq]
q'E P

= max E [Wq,q IZq,qi = Zq]q'EP

Finally, we substitute (4.38) for W,q':

E [Wmin,,|q I Zq max E [W,q I Zq,qi Zq]

= max (aE [Wq,qIZq,q = Zq, dqi < dq]
q1EP (

-max (dq

<max (dqq'E El

+ (1 -a) E[Wq,q I Zq,q, = Zq, dqi

- dqi + qti(~q())

dq k'q' (Vq,q (Z) +)

> dq])

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)

(4.51)

104

Zq (4.42)

[Wq,qI|Zq,q = Zq]

[Wq,qi|Zq,q = Zq]

(4.43)

(4.44)

(4.45)

0

Now that Y, Zq, Sq, V1 ,q', and Wmin,q are defined, they can be used to determine

the first two moments of the in-order delivery delay. Additional random variables will

be required to do this, but they are relatively unimportant and will be defined when

they are needed.

4.6 The In-Order Delivery Delay's First Two Mo-

ments

This section's focus is on deriving the expected in-order delivery delay E [T] and

its variance o?. This will be accomplished by determining the delay moments of

information packets first transmitted on each path separately. Once these moments

are established, they will be averaged over all of the paths to find E [T]. The primary

tool that will be used to find each of these moments is the law of total expectation:

E [T'] = Ey, [Ez, [ET, [T |Y, Zq]]] , (4.52)

where i > 1.

Because of the differences in generation size, code rate, propagation delay, etc.

between each path in P, the value of E [T'] will differ. The slowest path 4 will create

head-of-line blocking and bulk delivery of generations sent on faster paths. Therefore,

the delay of packets sent on the slowest path 4 and on faster paths must be derived

separately to account for these differences.

The remainder of this section will step through the four distinct cases that are

possible. Each case is defined by the number of rounds, Y, it takes for a generation

on path q to be decoded and the number of rounds, Zq, it takes for all bq generations

that can cause head-of-line blocking to complete. To help simplify notation going

forward, define

Y,,Zq = E [TIY, Zq] (4.53)

105

for i = {1, 2}.

4.6.1 Case 1: Yq= Zq = 1

Consider a generation containing packets pi,... Piskq first transmitted on path q.

Assume that this generation completes within the first round of transmission and

all generations containing packets pj, j < i, also complete in the first round. First,

consider packets sent on the slowest path q. There are no information packets causing

head-of-line blocking (i.e., all information packets pi, j < i, have been delivered).

Therefore, all packets received prior to the first loss (i.e., packets pi, ... , pi+,,) are

immediately delivered. Once a packet loss is observed, packets received after the

loss (i.e., packets Pi+,,+2 ,... Pi+k,) are buffered until the entire generation can be

decoded. Since Yq = 1, this also occurs in the first round.

While packets sent on the slowest path can be immediately delivered upon recep-

tion, packets sent on a faster path q (i.e., dq > dq) are delayed until the slower path

completes. This creates bulk packet deliveries. If dq - dq < kqtq, the first Sq packets

are delivered once the slowest path's generation is decoded, and the remaining packets

are delivered once the generation sent on path q is decoded. Otherwise, all packet in

the generation sent on q are delivered together once the slowest path's generation is

completed.

An example is given in Figure 4-7. Subfigure (a) shows the transfer of generations

over multiple paths from a single source to a single sink. The left side represents

a fast path (FP), and the right side represents the slowest path (SP). The single

vertical lines represent the single source, while the double vertical line represents the

single sink. Subfigure (b) shows the delivery process for packets transmitted on the

slowest path. The double arrows to the right of each subfigure represent the time

when a specific packet or generation is delivered to the application layer at the sink.

Furthermore, the variables listed in the figure are defined as nq = kqtq/cq and the delay

of each packet r.

Packets are placed into generations in the following order: Gsp,1, GFP,1, GSP,2 ,

GFP,2, etc. Packets in Gsp,1 , GSP,2, etc. can be immediately delivered when they are

106

III'

Source
(F+ P+hs)

Source
1 K (Slowest Path

G FP GSP 1/
GFp,1

GFP,2 GSP G

GFP,3 6
GSP, 3

6
G

nFP = nsp=6 G
dFP = dsp= 12

bFP,FP = 2 bFP,SP = 4
bSP,FP = 1 bsp,sp = 2

(a) In-Order Delivery with
Multiple Paths

SP,1

'FP, 1

SP,2

FP,2

SP,3

FP,3

Source Si

P1

s 2

C 1,2

u = 2

nk

Ti = t + d4

==0 P2

2= tq +4 d

73 4tq + dq
-4 = 3g + d4

(b) In-Order Delivery for
the Slowest Path

Figure 4-7: Case 1: Y = Zq = 1. Packets sent on the slowest path can be immediately
delivered, while packets sent on faster paths are delayed.

received since there are no generations creating head-of-line blocking. The delay of

these packets is shown in Figure 4-7(b) where kq/c = 6, kq = 4, the number of packets

received prior to the first loss is sq = 2, and the number of coded packets needed to

recover from the two packet losses is u = 2. However, packets sent on faster paths in

generations GFP,1, GFP,2, etc. are delayed due to the slower paths.

The mean delay for packets first transmitted on the slowest path is given by the

following:

kd-1 kq-s-1

Y4=Z4=1 : +k-1(- s - i+E[U|Sq) t+dj) PsY4 (sj1)
'9=0 4 q i=0

+ (tq + dq) psq| y4 (k1) (4.54)

= +- , + k (k4 + 1)dq k (2k4 -1) si,+q (4

k4-1

+2 Z (kq - s) E [U|S4]psqjy4 (s|1)),
8=0

(4.55)

107

s
)

where the expectation over all Sq and all packets within the generation has been

taken, and the definitions of sl,4 and si,4 are given by Lemma 4.6. The expectation

E [U|Sq] in the above equation is the expected number of coded packets needed to

recover from all packet erasures occurring in the first kq packets. Assuming that

E [U|Sq] = 1, the above equation can be bounded:

y4=z4=1 > dq + s ,q - (2kq - 1)s +kl(k, +1)
(sl) (456kq-1

+ 2 E (kq - s)ps4|y4 (s|1) (4.56)
s=O

tq
82, 81 +dq.(4.57)

skq(,4 - s4 (2ko + 1) + kq (kq + 3) + g (.7

The components of the delay are also shown in (4.54). The first term provides the

delay when a packet loss is observed within the first k4 packets. Within this term,

the first s packets can be immediately delivered (i.e., they each experience a delay of

tq + d+). The packets following the first loss are buffered until the entire generation

is decoded incurring a delay of (kq - s - i + E [UISq]) tq + d4 . When sq < k4, the

number of coded packets required is at least one (i.e., E [UISq] 1) leading to the

bound in (4.56). The second term provides the delay of each packet when there are

no packet losses within the first kq packets.

Squaring each of these terms results in the following second moment:

-2 = = 2 d+ (k +3)tzdiq + (2k2+9kq+13 t
TY~Z~i6 q k4 13t

kg tqdq+ k4+3+k)t2) s1

- 4 + + q+ 3) t)) . (4.58)

The bound in the above equation is a result of assuming that the number of coded

packets U required to decode the generation is limited to one when sq < kq.

Since the slowest path creates head-of-line blocking, bulk arrivals occur on all of

the faster paths. In addition to the transmission and propagation delay experienced

108

by these packets, the added delay due to waiting for the last generation sent on the

slowest path also needs to be taken into account. Therefore, the mean delay for these

packets is given by:

1 (=Z= k + i q + dq + (d4 - dq)
kq j=1 \cq/

- k- - E [U] tj (4.59)
cq

Stq (L + - -tq -I - kq + dq. (4.60)
cq 2 2 (cq

The first two terms in (4.59) accounts for the position of each information packet

within the generation and the propagation delay, while the last two terms account for

the delay due to the slowest path. The bound going from (4.59) to (4.60), as well as

in the second moment given below is a result of assuming that U = 0.

;Yq=zq=1 (' (L + 1 - 3kq + 1 + 2k2 + 1) t2

+ (dq - (I- k4) tq)(k - kg + 1 tqCq cq

+ (d - -kg t4 2 (4.61)
c4

4.6.2 Case 2: Y > Zq = I

Unlike the first case, the generation containing packets pi, ... , Pi+kq first transmitted

on path q requires retransmissions in order to decode. On the slowest path, informa-

tion packets p,... ,p,, received prior to the first loss can be delivered immediately

upon reception. Similarly, packets pj, ... , psq sent on faster paths can be delivered

as soon as all packets pj, j < i, have been delivered. However, packets received

after the first loss can only be delivered once the entire generation is decoded (i.e.,

until at least kq dofs have been received). Since Y > 1, this does not occur in the

first round. After retransmissions provide the necessary dofs, the remaining packets

Pi+S+1, . .. , Pi+kq can be delivered in-order.

109

Source
(Fast Paths) Si:

Source
(Slowest Path)

nFP = 6
sp 6

dFP 8 dsp = 12
bFP,FP =2 bFPSP = 4
bsP,FP = 1 bsp,sp = 2

(a) In-Order Delivery
Multiple Paths

Pksp+i.
Pks+s+l

Pksp+s+2
Pksp+kFP

with

Source

Pi

c 2

P3

C .,

ACK(l =1)

C 1,3

Sink

-1r = tq + dq

=1P1

T2 =5tq + d4
73 = 4tQ + 3d4

P21 P3

(b) In-Order Delivery for
the Slowest Path

Figure 4-8: Case 2: Y > Zq = 1. Packets received from the slowest path prior to the
first packet erasure are immediately delivered, while packets received prior to the first
packet loss on faster paths are buffered until all proceeding information packets are
delivered. The remaining kq - s packets are delivered after retransmissions provide
enough dofs to decode the generation.

An example is provided in Figure 4-8. Figure 4-8(a) shows the case when q $
where nq = kqtq/cq. Packets Pks+1- - ->Pks+s+1 E GFP,1 are buffered until all of

the packets in Gsp,1 are delivered. The remaining kq - s packets are delivered after

retransmissions provide the necessary dofs to decode GFP,1. Figure 4-8(b) shows the

case when q = 4. All packets received prior to the first loss are delivered immediately,

while packets received after the loss are buffered until the entire generation is decoded

in round Y = 2. The delay Tr experienced by each packet is listed next to the time

that it is delivered to the application layer in the subfigure.

Taking the expectation over all Sq and all packets within the generation, the

expected delay for packets first transmitted on the slowest path 4 is provided by

110

11 11 II ' 1 I' 1 ' ''ll 1 !ll ' 1 1 1' 1 1 In ! P 1 | 1

ik

FP,

k4-1 kd-s-1

=(t + d,)- Z
8=0 (k4 k i=o

+ d4 + 2(y -1) dq Ps4Y, (sly)

2

+ 2d4 (y - 1) I -
k ,

where s, and s2,4 are given by Lemma 4.6. Similar to the first case, the components

of the delay are provided in (4.62).

second moment:

(2k
Squaring each of these leads to the following

- U 1L - kj + I))

(kq - k+1)

+1)

+ 2d4 (y - 1) +d4)

- I)

t 2(4+ k+ 4d4 (y - 1)(d4(y - 1) +d4) +

(d4 + 2d4 (y -
1)+ + t4 (4.64)-s t?

The mean delay of packets first transmitted on faster paths is given by

111

Try> Zd ==

(4.62)

4

(4.63)

- 2ddt4

+ kt

((k4- S + (kqlc', - kq)) t4

--;2,4 + L -
C!

tY4>Z= t

(t4+ (2d4 (y - 1) +d4)

(Y -1

2
S2

tj - - -)
(2k4 + (2k4

k q - 9 -> Z L q= i q q + A$ - q) - -4 4

kq-s-1

+ E (kqs - i + (kqcq- k)) t
i=0

+ de+ 2 (y - 1) d4)PSqiYq (sly) (4.65)

=tq (! - Lq+ 1+ 81qd4 - t4 (L- k4)

+ (2dq (y -1) + dq) I - .2, (4.66)

The second moment for the delay of these packets is determined by squaring the

components shown in (4.65):

, r-2 2kq \ 2 k _ 1 q+1 t

-2 -= d udqtq(q + / + (4q - (kq-1)+k
-q >= 2 3 2 q

+ (y 1) (kq -) (2d4(y-1) + 2 dq+tq +1)

- -d4 +dq+t kjj - k4)) dt+dq-t4 k

+ q +qtq-) + 2dqt (y - 1) r2,- k2. (4.67)

It is important to note that the additional time to retransmit dofs is not taken into

account (see the assumptions made in Section 4.4).

4.6.3 Case 3: Zq > Y ;> 1

In this case, there is no need to differentiate between packets first transmitted on

the slowest path or faster paths. The generation containing packets pi, ... Pi+kq first

transmitted on path q completes in a round prior to a generation containing any

packet pj, j < i (i.e., a previous generation is causing head-of-line blocking). As

112

11 PIMORMP""MIN " .1- FWWW1

Source
(Fast Paths) S

GFP2

;, =6GFP,2
-

P 10 A- GFP1

GSP'i

dFP 8
,nFP 6

bSP,FP 1, bFP,FP 2

I
Source

k (Slowest Path)

G,11

YGSP,2 WFP,SP

:SP,1,

IGSP,2 , GFP,2

dsp 12, rSp 6

spsp =2, bFP,SP 4

Figure 4-9: Case 3: Zq > Yq > 1. Packets in GFP,2 and GSP,2 cannot be delivered
until both Gsp1 and GFP, are decoded and delivered where nq = kqtq/cq.

a result, packets pi, ... Pi+kq are buffered until all packets p,... , pj_ have been

delivered. Once there are no earlier generations preventing in-order delivery, packets

Pi, .. . ,Pi+kq can be immediately delivered.

An example is provided in Figure 4-9. While packets in GSP,2 and GFP,2 are

received in round Zq= 1, they cannot be delivered until both Gsp,1 and GFP,1 are

delivered. In this example, generation Gsp,1 is the last to be decoded (i.e., we select

the path with the minimum W,q' to determine the delay). Taking the expectation

over all packets within the generation and using the above lemma, the expected delay

is provided by

113

WFP,

WSP,F

-2

6

GFP,1,

1 kg

YTZZq>Yq>1,Zq>1 =k q - k + i) tq+ q
k i=1 \

>tq -

+ 2d4 (z - 1) - E [Wmin,q|Zq = Z])

+ + dq+ 2d4 (z - 1)
2 2 -

-max (dq - dqi +kqqi(,q()
q'EP (~Cq/ ~,T

(4.68)

(4.69)

where V~i,, (z) is given by (4.31) and the bound is a result of Lemma 4.8. The second

moment for this case is given by

TZq>Yq>1,Zq>1 + 2 dq + tq kq
(Cq

- kq + 1) E [Wmin,q|Zq = Z]

+ E [Win,q|Zq = z]

(z - 1) + 2dq + tq (kq
(cq

(4.70)

kq + 1 E [Wmin,qIZq = z]

(4.71)

(4d4 (z - 1) + 2dq + tq - kq +

-max dq -dq + k Vq , (z)+ 1)
q'EP (CqI

= 2d4 (z - 1)

+2 q

+ dq dq

(tq (kqg

(q kqcq k

tq +(Cq - kq .I)).

The first inequality in (4.71) is possible because E [Win,qIZq = z] 0, and the second

114

7 - 4d4

where

(4.72)

+ 1) +2dq+2d4 (z

+ - kg+)

- 1))

(4.73)

7 - 4 (z - 1)

Source Source
(Fast Paths) Sink (Slowest Path)

--- -- - Ps ,..,p E GSP,1,
- GFP,1,PksP+kFP+1.

--- GFP,1Pksp+kFP+s+1 E Gsp,2
FPG,

-- - SP2isPP++

- Ps1 Pksp Gsp

WFP,SP =- P2ksP+ksp+ 1'
GFP,2 P2ksP+kFP+s+1 GFP,2

P2ksp+kFp+s+2..

P2ksp+2kFP C GFP,2

dFP =, nFP dsp = 2 , nsp 6
bsP,FP = 1, bFP,FP 2 bsp,sp = 2, bFP,SP ~ 4

Figure 4-10: Case 4: Y4 Zq > 1. The first s packets in generation GFP,2 are
delivered when GSP,2 is decoded in round ZFP = 2. The remaining kFP - S packets
are delivered when GFP,2 is decoded in round YFP = 3 . Note nq = kqtq/cq.

inequality in (4.72) is possible because z > 1 and 0 < Cq < 1. Unfortunately, finding a

lower bound for E [W2iIq Zq = z] is not straight forward. However if there is only a

single path, the second moment can be found easily without having to use this bound.

4.6.4 Case 4: Y >Zq >

This case is a mixture of the last two. The generation containing packets pi, ... , Pi+kq

requires the same or more rounds to decode than all of the previously transmitted

generations containing packets pj, j < i. Packets received prior to the first loss

in the generation (i.e., pi,... , pi) are buffered until all previous generations are

delivered. Once there are no generations causing head-of-line blocking, these packets

are delivered in-order. Packets received after the first loss (i.e., Pi+s+2, ... Pi+kq)

are buffered until the generation is decoded in round Y. Figure 4-10 provides and

example where packets P2ksp+kFP+1 I * ' * P2kSP+kFP+8+1 E GFP,2 are delivered in round

ZFP = 2, while packets P2kSp+kFPOs 21 ... I P2kSP+2kFP E GFP,2 are delivered once

GFP,2 is decoded in round YFP = 3.

115

In general, the delay for the case when Y > Zq may not be the same as the case

when Y = Zq. This is due to head-of-line blocking created by slower paths preventing

packet delivery on the faster paths. The mean delay for Yq > Zq is given by

ry,>Zq>1 = (i+1 tq + d + 2d4 (z - 1) - E [Wmin,qZq])
kq C ,q s=0 s 1

kq _ q 1j+
+i+1 tq +d + 2d4 (y - 1))psq|Y (s (-4)

> tq -L + +dq+ 2q' (z - y) +2d4 (y - 1)tq cq 2 2j kq

82,q max (dq - dq' + kq' v1i +
(z)+ , (4.75)

kq q'P(cq1 ' q

while the mean for the case when Yq = Zq is

g1 q /k
Y=Zq>1 q 1 + 1 tq + dq + 2d4 (z - 1) - E [Wmin,qIZq])

- i + 1) tq + dq + 2d4 (y - 1)
i=s+1

- min (E [Win,q|Zq] 0)))PSiYq (sly) (4.76)

> -kql ((i+1 tq + dq + 2d4 (z - 1) - E [Wmin,q|Zq]kq iq(Cq
SS=O i =1

+ -1(+i1 tq + d + 2d4 (y - 1))) psy (sly) (4.77)

k k 1 2d-s1
>t q(- L+ +dq+ k'q(z-y)+2d(y-1)q cq 2 2! kq

- max d - dqf + k Vqqi (z) +1i. (4.78)
kq q'P(Cql '

By removing the additional delay due to head-of-line blocking in (4.76), the delay can

be bounded. This results in the same delay as the case when Y > Zq. Similarly, the

116

second moments can be determined as

-2

=
-

Tq>Zq>1 ' s (4d4 (z-1) + 2dq + tq

+ t E [Wmin,qIZq] + q K [W nq I Zq]

(4d4 (z - 1) + 2dq + tq

+ s2 E[Wmin,qlZql

;2, q -s dq (z - 1) + 2 dq + tq

(2kq

(4.80)

max dq dq +
kqi tqi

Cql
(V,q, (z) + i))

for Y > Zq and

rq=Zq>1

2

- i + 1)tq + du+ 2d4 (z - 1) - E [Wmin,q |Z,])

+ CI
%S+1\ cq

- i+1) tq+dq+2d4 (y - 1)

- min (E [WminqlZq] , 0) Psqj, (sly)

((q
cq

- i1) tq dq + 2d4 (z - 1) - E [Wmin,q|Zql)

i+1) t+ dq+ 2d4 (y - 1))) PSqYq (Sy)

q q (4d4 (z -

+ ;2,tq) m~ax (d. - dqI

1) +2dq +tq (2kq
(cq

117

- 1))

(4.79)

(2kq
Cq

- 1))

(4.81)

k,-1 8

-kq

kq

(4.82)

(4.83)

- 1))

+ kqtq (Veqi (z +i) (4.84)

> (;2-,sq - 1)

8=0 i=1

+ 2

for Y= Zq where

y=d 2+dqtq - kq +I + t (- kq + 1) + (2k - 3kq + 1)

+4d (y -1)2 - (y -z) (y + z 2)) +4d(d Y 1 (z - y)

2kq I (2k
2dltq - kg + 1 (y - 1) - - s (, -+ +1) - s22,q) (y - z)) . (4.85)

((cq kg cq

Within each of the the above equations, the expectations over all Sq and all packets

within a generation are taken, in addition to employing Lemma 4.8 to help bound

each moment. The second moment is further bounded by removing E [Wmin,qIZq].

Since Wmin,q is not a major contributor to the delay, especially when Zq and Y are

large, removing it will not greatly effect the overall result.

4.6.5 Mean and Variance of the In-Order Delivery Delay

Given the expected delay for each of the above cases, the expected in-order delay for

packets first transmitted on path q can now be determined.

Theorem 4.9. The first two moments of the in-order delivery delay for packets first

transmitted on path q is lower bounded by

E [T'] T PYq (yq) PZ, (zq), (4.86)
Zq>l yq>1

where i = {1, 2} and each ;y,,zq are given by (4.57), (4.60), (4.63), (4.66), (4.69),

and (4.75). The distributions for py (yq) and pz, (zq) are given by (4.10) and (4.17)

respectively.

The first two moments of the in-order delivery delay can then be determined by

averaging over all of the paths:

E [T] 1 [T'], (4.87)
ZqEP (cqI/tq,) qE tq)

118

11 111 . .11,111,11,

where cq/tq Zq'EP cq/tq, is the fraction of information packets transmitted on path q. The

variance of the in-order delivery delay, or the jitter, is simply o2 = E [T2] - E [T] 2 .

4.7 Determining the Cost of Reducing the Delay

The above results show that adding redundancy into a packet stream can decrease the

in-order delivery delay. However, this improvement comes with a cost. To characterize

this cost, this section will determine the efficiency 77 of the coding algorithm. Before

determining q, several several random variables need to be defined. Let Rq, q P7,

be the number of dofs received at the sink as a result of transmitting a generation of

size kq. Given that Y 4 = 1, the number of dofs received at the sink has the following

distribution:

B k,, rq,f
PRqjYq(rqI)) (4.88)

/ B (i, i, 6q)

1 kq
B L, rq, Eq , (4.89)

PXo,q (0) cq

for rq E [kq, kq/c]. This leads to the following expectation:

kq/cq

E [Rq|Yj = 1] = rpR yq (r|i). (4.90)
r=kq

Assuming that Y > 1, the Markov chain defined in Section 4.5 can be used to

help determine Rq. Define Ni to be the total number of dofs received by the sink for

any set of transitions starting in state i and ending in state 0. Furthermore, define

the random variable Nij as the number of dofs received by the sink as a result of a

single transition from state i to state j (i.e., i -+ j) in the same Markov chain. Nij

is deterministic (e.g., nij = i - j) when i, j > 1 and i > j. For any transition i -+ 0,

119

i > 1, nio E [i, i/cd] has probability:

Pnio (nio) = B E
)i B , , g

(4.91)

Therefore, the expected number of dofs received by the sink in a single transition is:

for ij 1,i > j,

for i > 1,j = 0.

(4.92)

Given E [Nij] Vi, j, the total number of dofs received by the sink when trying to

transfer i dofs is:

E [Ni] = 1
1 -a.,

where E [No] = 0 and

B (i/c, i - j, qg)
aij = C

Exfi B(/e ,e)

for j E (0, i],

for j = 0.

This framework can now be used to determine the expectation of Rq when Yq > 1:

kq

E [Rq|Yq > 1] 1 (kq - r + E [Nr]) PXOq (r)
1 - PXo,q (0)

(4.95)

Combining (4.90) and (4.95), the following theorem is obtained.

Theorem 4.10. The efficiency r7, defined as the ratio between the total number of

information packets transmitted and the number of dofs received by the sink, is

I = 1 kqcq (4.96)
Z CqIt, q / -p tqE [Rq]'

120

(4.94)

(4.93)

E [Nij] =

En4tn - PNo (n)

(E [Nij] + E [Nj]) ai) ,I

where

E [Rq] = PXo,q (0) E [RqjYq = 1] + (1 - PXo,q (0)) E [RqjYq > 1], (4.97)

E [RqI|Y = 1] is given in (4.90), and E [RqjIYq > 1] is given in (4.95).

4.8 Numerical Results

Unfortunately, a closed form expression for the in-order delivery delay cannot be

found due to the complexity of the process. However, numerical results help show

that (4.87) is fairly tight for a large number of regimes. As a result, the above analysis

can be treated as a fairly accurate estimate for the true mean in-order delivery delay.

Before proceeding, several items need to be noted. First, the terms in (4.86)

where py, (y) pz' (z) < 10-6 when calculating the moments are not considered since

they have little effect on the overall calculation. Second, the analytical curves are

sampled at local maxima. As the generation sizes increase, the number of in-flight

generations, bq, on each path decreases incrementally. Upon each decrease in bq,

a discontinuity occurs that causes an artificial decrease in E[T] that becomes less

noticeable as kq increases towards the next decrease in bq. This transient behavior in

the analysis is more prominent when cq ~ 1 - eq and less so when cq < 1 - Eq. This

behavior is removed from the results presented within this section and the next if it

is large enough to notice. Third, it should be noted that kq/cq may not be an integer.

To overcome this issue, [kq/cql - kq and [kq/cqJ - kq coded packets are generated and

transmitted with probability kq/cq - [kq/cqj and [kq/c,] - kq/cq respectively. This time-

sharing approach allows the analysis and simulations presented here to acheive an

average transmitted generation size of kq/cq.

The analytical in-order delivery delay given by (4.87) is compared with simulated

results in Figure 4-11. The delay is shown for the case where two disjoint network

paths are available. Per Algorithms 1 and 2, information packets are partitioned into

generations of size k, and k 2 depending on the path which they are initially trans-

121

- =0.01, R, = 1.1 2= 0.1, R2 = 1.21
---i=0.01, R, = 1.51, E)2 0.-1, R2 =1.61

-I = 0.1, R, = 1.21, e) = 0.01, R2 = 1.11

103 _ Ei 0.1, R, = 1.61, 62 = 0.01, R2) = 1.51

di =400, d2 =500

di 80, d2 100 Increasing r

10211
101 102

Generation Size on Path 1 (ki)

(a) ki Variable, r 1 Variable, k 2 30, r2 10 Mbps

= 0.01, R1 = 1.11, e2 = 0.1, R, = 1.21
-f 1 =0.01, R1 = 1.51, E2 =0.1, R2 = 1.61
-E, = 0.1, R, = 1.21, E2 = 0.01, R2 = 1.11

103 -l = 0.1, R1 = 1.61,62 = 0.01, R2 = 1.51

- ---- ----------

di =400, d2 = 500

di = 80, d2 = 100

Increasing r2

102 , I I

101 102

Generation Size on Path 2 (k 2)

(b) ki = 30, r1 = 10 Mbps, k2 = Variable, r 2 = Variable

Figure 4-11: The in-order delivery delay over two paths for various combinations of
erasure rates (6 = {0.01, 0.1}, i = {1, 2}) and propagation delays (di = {80, 400}
and d2 = {100, 500}) as a function of the generation size ki on path i = {1, 2}.
The analytical and simulated results are represented using solid and dotted lines
respectively. Note the log scale of both the x-axis and y-axis, in addition to the
variable rates on the secondary path due to assumption (4.6).

122

mitted. Redundancy is added on a path-by-path basis, and each of these generations

are then transmitted to the client. If feedback, received on the fastest path, indicates

additional dofs are needed to decode a generation, retransmissions are made using

the fastest path. Figure 4-11a shows the mean in-order delivery delay when ki is

varied over the size of the bandwidth-delay product of the fastest network, while k2

is fixed at 30 packets. Figure 4-11b is similar except k2 is varied while k, is fixed.

The simulated results are represented by the dashed lines and the analytical results

are represented by the solid lines. It should be noted that the rate of the network

where k is variable is also variable. This is owing to the assumption made by (4.6)

that states 1/ti = kici/kjtjci.

Both subfigures indicate that the analysis is a fairly good estimate of the in-

order delivery delay that might be expected on parallel networks using the coding

scheme presented within this chapter. While this is the case, interpreting these figures

is a challenge since multiple variables are changing at the same time. However,

Figure 4-1la does show the trade-off between head-of-line blocking created by previous

generations and the coding delay. The next section will expand on this in greater

detail using only a single network path to help properly interpret the results.

4.9 A Special Case: In-Order Delivery Delay Over a

Single Path

Assume that only a single path connects the source and sink. In this situation, the

analysis provided in the previous sections can be greatly simplified and is largely the

same as the delay of the slowest path q in the previous analysis. To help simplify this

section, the subscript q will be removed from each variable.

The first two moments of the delay when Z = 1 remain the same as those deter-

mined in (4.57) and (4.60). However, the cases where Z > 1 can be simplified since

it is no longer necessary to find the path that is preventing packets from being deliv-

ered. The number of previously transmitted generations that can cause head-of-line

123

blocking is reduced to b= [1 - 1, and the auxiliary variable W,q, becomes

kt
W =- (V +1).

c

This makes the first two moments of W equal to

+ 1)

and

k 2t2

E[W2 Z =z] = C2 (v2 (z) + 2v 1 (z) + 1) ,

respectively where v1 (z) and v 2 (z) are given in Lemma 4.7. Inserting the first moment

into (4.68) and (4.74), the resulting delay is

TZ>y>1,Z>1 = d(2z
k 1)

(4.101)

and

y>Z>= d
k(2 (z 1) ~t((V1 (Z) + k21) (4.102)

Similarly, the two moments above can be used to simplify both (4.70) and (4.79).

This results in the following:

Z>Yq>1,Zq>1 2 (2
1

+ d2 (2z - 1)2 - td (2z -

+I(2k-1)
6 /

1) V1 (z) + k
C

124

(4.98)

(4.99)

(4.100)

(4.103)

E [WIZ = z] = - (VI (z)C

t k (-+
C)-t -

k
+1)72-

C

- 1) ,

and

TrYq z> = s 2 (2dt (y - z)- t2 (v1 +I) + si t2 (2 -1)+V1+

- 4d2 (y - z) (y + z - 1) - 2dt k(vi (2z - 1) + 2y - 1) + y - z

+ (2y - 1) dt 2 - k +1) + d2 (2y - 1))

+ t2 (--(k+1) +- (2k2 - 3k + 1). (4.104)
(C (C 6

Using the above moments, the moments of the in-order delivery delay for a single

path becomes

E [T'] = E ;-i'zpy (y) pz (Z)
Y>1 z>1

for i = {1, 2}. This results in a mean delay of E [T] and variance U2 = E [T2] - E [T] 2.

4.9.1 Coding Window Size and Redundancy Selection

The results above help inform decisions on the selection of the coding window size

and required redundancy injected into the transmitted packet stream. Figure 4-12

shows the in-order delivery delay and its standard deviation for four different net-

works/links. The simulated results were developed in Matlab using a model similar

to that presented in Section 4.3, although several of the assumptions are relaxed.

The time it takes to retransmit coded packets after round one is taken into account.

Furthermore, the number of generations preventing delivery is not limited to a sin-

gle bandwidth-delay product (BDP) of packets. This increases the probability of

head-of-line blocking; and in general, these relaxations effectively increase the delay

experienced by a packet. Finally, the figure shows the delay of an idealized version of

SR-ARQ where it is assumed both the source and sink have infinite buffer sizes.

Figure 4-12 reiterates that adding redundancy and/or choosing the correct coding

window/generation size can have major implications on the in-order delay. Not only

125

RTT 500 ms II IT 711

-R0. 5 -
R 0.2

-SR-ARQ -

102

I
~1..

RTT = 100 ms

T I

100 101
Coding Window/Generation Size (k)

(a) c = 0.01

RTT=500 ms --

RTT = 100 ms

100 101

T -

R 0.2
-SR-ARQ-

102
Coding Window/Generation Size (k)

(b) c = 0.1

Figure 4-12: The in-order delivery delay over a single path with erasure rates e = 0.01
and e = 0.1 as a function of the generation size k. The error bars show 2 aT above
and below the mean and Rz = (1+x)/(1-E). The analytical and simulated results are
represented using solid and dotted lines respectively. Note the log scale of both the
x-axis and y-axis.

I
126

V

102

T

103

V

02

10 3

1

120
.. _ R , 0. = 0.01 o

100 - R ,0.1 = 0.01a
R 015, = 0.01 , -'

0 R 5, = 0.1 e

R 0 ,1 =0.1

60- , -- -

20-

50 100 150 200 250
Bandwidth-Delay Product (BDP)

Figure 4-13: k* as a function of the BDP.

does choosing correctly reduce the delay, but doing so can also reduce the jitter.

However, it is apparent that the proper selection of k for a given code rate c = 1/R

is critical for minimizing both E [T] and E [T2]. In fact, Figure 4-12 indicates that

adding redundancy and choosing a moderately sized generation is needed in most

cases to ensure both are minimized.

The shape of the curves in the figure also indicate that there are two major

contributors to the in-order delay that need to be balanced. Let k* be the generation

size where E [T] is minimized for a given c and c =1/R, i.e.,

k arg min E [T] . (4.105)
k

To the left of k*, the delay is dominated by head-of-line blocking and re-sequencing

delay created by previous generations. To the right of k*, the delay is dominated

by the time it takes to receive enough dofs to decode the generation. While there

are gains in efficiency for k > k*, the benefits are negligible for most time-sensitive

applications.

Figure 4-13 shows k* for a given 6 and c =/R as a function of the BDP. The

figure indicates that the coding window size k* increases with 6, which is opposite

of what we would expect from a typical erasure code [62]. In the case of small E, it

is better to try and quickly correct only some of the packet losses occurring within

127

a generation using the initially transmitted coded packets while relying heavily on

feedback to overcome any decoding errors. In the case of large E, a large generation

size is better where the majority of packet losses occurring within a generation are

corrected using the initially transmitted coded packets and feedback is relied upon to

help overcome the rare decoding error. Furthermore, decreasing c also decreases k*.

This due to the receiver's increased ability to decode a generation without having to

wait for retransmissions. Finally, k* is not very sensitive to the BDP (in most cases)

enabling increased flexibility during system design and implementation.

Before proceeding, it is important to note that a certain level of redundancy is

needed to see benefits. Each curve in Figures 4-12 and 4-13 show results for c < 1 - C.

For c > 1 - e, it is possible to see in-order delays and jitter worse than the idealized

ARQ scheme. Consider an example where a packet loss is observed near the beginning

of a generation that cannot be decoded after the first transmission attempt. Since

feedback is not sent/acted upon until the end of the generation, the extra time waiting

for feedback can induce larger delays than what would have occurred under a simple

ARQ scheme. This time can be reduced by reacting to feedback before the end

of a generation; but it is still extremely important to ensure that the choice of k

and c will decrease the probability of a decoding failure and provide improved delay

performance.

4.9.2 Rate-Delay Trade-Off

While transport layer coding can help meet strict delay constraints, the decreased

delay comes at the cost of throughput, or efficiency. Let E [T*], -*, and q* be the ex-

pected in-order delay, the standard deviation, and the expected efficiency respectively

that corresponds to k* defined in eq. (4.105). The rate-delay trade-off is shown by

plotting E [T*] as a function of n* in Figure 4-14. The expected SR-ARQ delay (i.e.,

the data point for 7 = 1) is also plotted for each packet erasure rate as a reference.

The figure shows that an initial decrease in c (or q) has the biggest effect on E [T].

In fact, the majority of the decrease is observed at the cost of just a few percent

(2-5%) of the available network capacity when 6 is small. As c is decreased further,

128

102

101

0.7 0.75 0.8 0.85 0.9 0.95 1
Efficiency r

Figure 4-14: Rate-delay trade-off for a 10 Mbps link with a RTT of 100 ins. The
error bars represent 2 9T above and below the mean, and the delay for ARQ is shown
for 1 = 1. Note the log scale of the y-axis which skews the appearance of the results
for large c.

the primary benefit presents itself as a reduction in the jitter (or 9T). Furthermore,

the figure shows that even for high packet erasure rates (e.g., 20%), strict delay

constraints can be met as long as the user is willing to sacrifice throughput.

4.9.3 Real-World Comparison

Finally, the analysis is compared with experimentally obtained results in Figure 4-15.

The figure shows that the analysis above provides a reasonable approximation to real-

world protocols. The experiments were conducted using Coded TCP (CTCP) over

an emulated network similar to the one used in [3]. The only difference between the

setup used to generate the figure here and the setup in [3] is the congestion control

used in both. In Figure 4-15, CTCP's congestion control window size (cwnd) is fixed

so that it is equal to the BDP of the network. This was done in order to eliminate

the affects of fluctuating cwnd sizes on the in-order delivery delay.

There are several contributing factors for the differences between the experimental

and analytical results shown in the figure. First, the analytical model approximates

the algorithm used in CTCP. Where the analysis assumes feedback is only acted upon

at the end of a generation, CTCP proactively acts upon feedback and does not wait

129

-- = 0.001
-ee= 0.01

e= 0.1
e= 0.2

10

1201 -e-k= 16
k = 32

100 - k = 64
k =128

40 {-

60

40-

20-

1.14 1.16 1.18 1.2 1.22 1.24 1.26
Redundancy (R)

Figure 4-15: Experimental (solid lines) and analytical (dotted lines) results for various
k over a 25 Mbps link with RTT = 60 ms and c = 0.1. Note, c = 1/R.

until the end of a generation to determine if retransmissions are required. Second,

the experiments include additional processing time needed to accomplish tasks such

as coding and decoding, while the analysis does not. Finally, the assumptions made

in Sections 4.4 effectively lower bounds E [T] and E [T2]. The bounds are fairly tight

for large k and small c = 1/R, but they can be very loose for either small k or large c.

An example of this is evident in Figure 4-15 for k = 16 and R = 1.165 where there is

a significant difference between the experimental and analytical results. However, the

simulation results suggest neither small k nor small R result in k*. Therefore, making

these bounds tight in these regimes becomes less important. For all other choices of

k and c, the analysis can provide a fairly good estimate of the in-order delay and can

be used to help inform system decisions.

4.10 Conclusions

This chapter illustrated how network coding can help reduce the in-order delivery

delay of a packet stream transmitted over multiple parallel networks. This is par-

ticularly useful for applications like Internet video, Voice on Demand, etc. where

any delays in packet delivery can cause significant application layer disruptions that

reduces the quality of service. The coding algorithm used throughout the chapter

130

is similar to the one used in CTCP, which was described in Chapter 2. Packets are

partitioned into generations and redundancy is added on a generation-by-generation

basis to help recover from packet erasures quickly. The primary problem addressed

in this chapter was how to properly select the generation size for a given amount of

added redundancy. The analysis helped show that there is a trade-off between head-

of-line blocking caused by previous generations and the coding delay. Furthermore,

decreasing the delay incurs a cost where this cost is quantified in terms of efficiency.

It was then shown that the delay can be reduced significantly with just a minor loss

of efficiency.

While the coding scheme used throughout this chapter is easy to implement, the

partitioning of packets into generations places artificial constraints on the usefulness

of transmitted coded packets. For example, a coded packet transmitted in generation

Gi cannot help correct a packet loss that occurred in generation G,, i # j. Removing

this constraint can potentially help reduce the in-order delivery delay further. This

will be the topic of the next chapter where a streaming code construction is presented

that employs a sliding window approach to determine the information packets used

in the generation of each coded packet.

131

132

Chapter 5

In-Order Delivery Delay for

Multi-Path Streaming Codes

5.1 Introduction

The analysis of the generation-based, or block, coding scheme illustrate that coding

can be used to decrease the in-order delivery delay. Unfortunately, it also showed that

minimizing the delay is largely dependent on selecting the proper generation size k for

a given set of links. Furthermore, this minimization is not straightforward. Selecting

a generation size that is too small increases both the head-of-line blocking probability

and delay due to packet re-sequencing. Selecting a generation size that is too large

increases the coding delay. This problem is a direct result of partitioning packets

into generations and coding on a generation-by-generation basis. The streaming code

discussed within this chapter removes this artificial constraint and shows that the in-

order delivery delay can be decreased further by increasing the linear space spanned

by each redundant coded packet.

A simple random linear network code (RLNC) [8] is used to insert redundant

coded packets into a packet stream traversing multiple parallel networks or links.

Unlike previous chapters, the span of information packets, or the coding window,

used to generate these coded packets is not dependent on a predetermined partition

of information packets. Rather, the coding window is adjusted based on the state-

133

Information Packets (pi)
1 2 3 4 5 6 7 8 9 10I1 1 2 13 11 116

I Pi
2 * P2
3 p1
4 S
5 e
6 0
7 0
8
9

S 10 S

12 S
131

15 P1 P12

17 6P11

190

21 P 7i

22

Figure 5-1: An example of the streaming code considered within this chapter.

space of the client with the intention of ensuring frequent and timely opportunities

to recover from packet erasures.

An example of the streaming code used within this chapter is provided in Figure

5-1. The columns of the matrix in the figure represent the information packet pi that

must be reliably delivered to a client. The rows represent the composition of the

actual transmitted packet in a given time-slot. For example, packets p through p4

are transmitted in time-slots 1 through 4. A coded packet ci consisting of a linear

combination of packets pi through P4, depicted by multiple dots in the a single row,

is transmitted in time-slot 5. The double arrow to the right of the matrix indicates

the time where an information packet is delivered in-order to a client's application

layer. In addition, it is assumed that delayed feedback is used to communicate the

last successfully delivered information packet. In the case of the example, feedback

is delayed by 6 time-slots.

In the figure, the first three information packets can be delivered immediately

upon reception. However, the information packet p 4 transmitted in time-slot 4 is

erased and prevents delivery of any subsequent packets until the erasure is corrected.

This doesn't happen until the coded packet c3 is received in time-slot 15. Unlike the

generation based code described in Chapter 4, the span of information packets used to

134

generate coded packets is not confined to a small subset of packets. Rather, the coding

window can grow, shrink, and slide based on the pattern of packet erasures, network

characteristics, etc. The example, and this chapter, assumes that an information

packet is added to the coding window immediately after it is first transmitted; and

it is removed from the coding window once feedback has been obtained by the server

indicating that it has been delivered to the client's application layer. Therefore, the

coding window for the first transmitted coded packet in the figure contains informa-

tion packets pi through P4. By the time that the second coded packet is transmitted,

four additional packets have been added to the window and the first three have been

removed. This is because feedback was received from the client informing the server

that the first three packets were delivered.

The remainder of this chapter will describe an algorithm to deploy this code

over multiple paths, develop an analysis of the expected in-order delivery delay, and

provide comparisons with the generation based coding approach outlined earlier in

the thesis. Simulation results will also be provided showing how the streaming code

performs when the packet erasures are correlated. These results will ultimately help

show the value of feedback when trying to minimize delay.

5.2 In-Order Delivery Delay Over a Single Path

The results presented in this chapter build upon the single path, low delay coding

scheme originally proposed by [63, 64]. In their proposal, a single coded packet is

inserted into the packet stream every 1 packets resulting in the code rate c = 1-1).

Each of these coded packets is assumed to be a linear combination of all transmitted

information packets. For example if packets p, through p,, have been transmitted,

then the next coded packet is c, = p a . Let the packet erasures be i.i.d. with

probability E, then the in-order delivery delay for le < 1 is given by the following

equation:

135

E [TI = E (1 - 1)2 ((1 _ ,7-l + El (1- le) 2) . (5.1)

This equation is obtained using a mixture of techniques from both coding theory and

queuing theory. In particular, the delivery of packets is modeled as a renewal process

and distributions describing the busy time of a G/D/1 queue are necessary to produce

(5.1). Furthermore, the analysis also assumes that feedback is not available.

Karzand et al. [63, 64] also explore the decode failure probability. They show

through numerical and simulated results that the decode failure probability is ap-

proximately zero when the coding coefficients ax,i are chosen at random from a large

enough field size (e.g., can,i E F2q where q > 4). This is a powerful result that essen-

tially says that feedback is not necessary to provide reliability and it will be assumed

that the multi-path streaming code developed here has the same decode failure proba-

bility because of the similarities in construction. However, simulated results presented

later in this chapter will show that feedback is still necessary in some situations.

5.3 Multi-Path Streaming Code Algorithm

This section describes a coding scheme that allows a server to communicate over

parallel paths or networks while helping to reduce the overall in-order delivery delay.

Like the last chapter, a systematic code based on RLNC [8] will be used. However,

the artificial constraints placed on the code by partitioning packets into generations

is removed.

Information packets pi are injected into each network uncoded. Note that the

server has limited knowledge of the packets that will be sent in the future (i.e., it

does not have access to the entire file). If an opportunity arises that allows the server

to transmit a new packet, it does so without attempting to ensure specific packets

arrive at the client in a predetermined order. After a specific number of information

packets have been transmitted on any given path, the server will generate and transmit

136

Information Packets
Pi P2 P3 P4 P5 P6

in,1,1 an,1,2 an,1,3 an,14 0 0

0

0 0 an,2,3 an,2,4 an,2,5 an,2

P7 P8

00

0

,6 an,2,7 an,2,8

Figure 5-2:
elements of
packet.

Example generator matrix used to produce the streaming code. The
the matrix contain the coefficients used to produce each transmitted

a coded packet ci on a path of its choosing to help overcome any packet losses that

may have occurred.

Define 1i to be the duration between transmitted coded packets on path i E P

(i.e., 1i - 1 information packets are transmitted followed by a single coded packet),

resulting in a code rate of ci = h-1/i. If a path is idle, the server will transmit either an

information packet or coded packet depending on the previously transmitted packets

on that specific path. When a coded packet is generated, the information packets used

to produce the linear combination are drawn from a dynamically changing coding

window defined by the 2-tuple w = (WL, wu). This results in the following packet:

WU

Cnk = E n,k,iPi. (5.2)
i=WL

The coefficients an,k,i E Fq are chosen at random and each information packet pi

is treated as a vector in Fq. All of this is summarized in Algorithm 3 where 1Li

is a vector of size i consisting of all ones. In addition, an example of the generator

matrix used to generate the streaming code is provided in Figure 5-2. In the example,

information packets pi through p4 and P5 through P8 are transmitted systematically

137

Q

.S

1
2
3
4
5
6
7
8
9

10

in time-slots 1 through 4 and 6 through 9 respectively. In time-slots 5 and 10, coded

packets ca,1 = E8Ya,1,zpi and c,, 2 an,2,ipg are transmitted respectively. It

is assumed in this example that the server has obtained feedback from the client by

time 10 indicating that it successfully received and decoded packets pi and P2. This

allows the server to adjust the lower edge of the coding window to exclude the packets

during the generation of coded packet cn,2.

Algorithm 3: Streaming Multi-Path Code Generation

Initialize k = 1 and u = 1p
while k < M do

n +- First idle path found

if un < in then
Transmit packet Pk

k <- k + 1
else

Transmit coded packet Cn,k = Ei=WL n,k,iPi

un -- 1

Before proceeding, it must be noted that Algorithm 3 does not explicitly take

advantage of feedback in determining when to inject coded packets into the packet

stream. Rather, feedback is only used to estimate the packet erasure probability

ci on each path i E P. This is done in order to simplify the analysis that will

be presented later in the chapter. However, using feedback can only improve the

algorithm's performance; and implemented versions should use feedback intelligently

when determining when to inject redundancy to help reduce the delay further.

While Algorithm 3 is fairly simple, two topics jump out that require special con-

sideration. First, the selection of code rates ci on every path i E P must be done

properly to ensure that the client can decode within a reasonable time period regard-

less of the observed packet losses. Second, management of the coding window w must

be performed carefully to ensure coded packets add to the knowledge space of the

client. These two topics will be addressed by defining the following:

Definition 5.1. A coding policy 7r determines the code structure and rates used on

each path between a server and client.

138

t R"11110.1 mm"Mm"W" ""M 1" IN q Ir IM

In other words, the coding policy defines the code rates used to generate coded

packets on each path, as well as the algorithm for managing w. There are, in fact, an

infinite number of coding policies. However, policies that allow the client to decode

with high probability within a reasonable time frame are the only ones of interest.

This leads to the next definition:

Definition 5.2. A coding policy that ensures the client will decode with probability

equal to 1 is said to be admissible.

Let H1 = {7r1 , r 2 , r3, .. .} be the set of all admissible coding policies. The code rates

and code window management rules for policy 7ri will be referred to as the 'PI-tuple

c (7ri) = (ci (7ri) , . . . , cipi (7ri)) and V (7ri) respectively. The following sub-sections

will help define both c (iri) and W (7ri) for each policy 7r E II.

5.3.1 Code Rate Selection

An admissible coding policy must ensure the client's capability to decode. One of

the most important parts is choosing the appropriate code rate c (wr2). The following

theorem helps determine this rate.

Theorem 5.3. An admissible coding policy 7r must satisfy the following constraints:

E (I - ci) (1-ej) - ci (7r)) ri > 0, (5.3)
iEP

and

ci (7r) E [0, 1] .(5.4)

Proof. A path with code rate ci (7r) and transmission rate ri packets/seconds results in

a coded packet being generated every (1 - ci (7r)) ri seconds. Therefore, the expected

rate that coded packets arrive at the client on path i is (1 - e) (1 - ci (7r)) ri resulting

in ji, (1 - ei) (1 - ci (7r)) ri total coded packets/second. Now consider the case

when each path is treated as a separate session. The code rate on path i must satisfy

ci < 1 - ej in order to ensure the client's ability to decode (i.e., the probability of a

139

decoding error Pr{e} -+ 0 as the file size increases for all ci < 1 - Ei). Allowing the

code rate to be ci = 1 - ci, the expected rate at which coded packets arrive at the

client on path i is then equal to (1 - E r) iri resulting in the sum rate EiEP (1 - cj) Eiri.

This produces the following bound:

E (1 - Ej) (1-ci (7r)) ri > c 1 i) eiri. (5.5)
iEP iEP

Rearranging, we arrive at (5.3). With regard to (5.4), it is obvious that ci (7r) must

satisfy ci (7r) E [0, 1]. LI

Transmitting coded packets over multiple networks maybe the appropriate strat-

egy in some cases; but in others, it maybe better to only send coded packets over a

single network. This leads to the following corollary.

Corollary 5.4. For the case when coded packets are only transmitted over a single

path and there exists a 7r such that ci (7r) E [0,1] and cj (7r) = 1 for i, j E [1, P|],

i # j , the admissible coding policy ir must satisfy the following:

ci (7r) < kEP(1 - Ek)Ekrk (5.6)
(1 - Ej) ri

5.3.2 Code Window Management

For admissible coding policies, the code window used to generate coded packets must

provide the potential for the client's knowledge space to increase in the presence of

packet losses. There are many ways of accomplishing this goal ranging from schemes

that code on a generation-by-generation bases to schemes that code over the entire

packet stream. While there is no guarantee that the scheme proposed here is optimal,

it does lead to an admissible coding policy.

As a reminder, it is assumed that coded packets are used solely for redundancy. If

the path or network is error-free, coded packets will not contribute to the knowledge

space of the client. In addition, it is assumed that coding occurs over a packet stream

140

where the server has limited to no knowledge of packets that will be sent in the future.

Therefore, any decisions regarding the code window management must be made using

information packets that have already been sent and information from feedback that

is at least RTT seconds old. Before an algorithm is proposed, the concept of a seen

packet from [191 must be established.

Definition 5.5. The client is said to have seen a packet pi if it has enough information

to compute a linear combination of the form (pi + q) where q = Ekgj akPk with

ak E Fq for all k > i. Therefore, q is a linear combination involving information

packets with indices larger than i.

Define seen to be the index of the last seen information packet at the client that

is composed of the set of all consecutive seen information packets. It is assumed that

the client informs the server of the value of seen through feedback. Once the feedback

has been received by the server, seen will be used to set the lower edge of the code

window. The upper edge of the code window will be managed based on the index of

the last transmitted uncoded information packet. This is summarized in Algorithm 4,

which is executed by the server and is agnostic to the path on which any one packet

is transmitted.

Algorithm 4: Code Window Management

Initialize (WL, WU) = (0, 0) and j = 0
if pi transmitted uncoded and i > wU then

WU +- i

if Feedback received and seen > WL then
WL +- seen

Since seen is required to be the last seen packet out of the set of consecutive

packets, the client will eventually be able to decode given the transfer of enough

degrees of freedom. Furthermore, using seen packets to manage the code window helps

to decrease the size of the coding/decoding buffers on the server/client respectively.

141

5.4 System Model

A time-slotted model is assumed where a single server-client pair are communicating

with each other over multiple parallel networks. Denote this set of disjoint networks

as P. Data is first placed into information packets Pi, P2.. These information

packets are then used to generate coded packets c1 C2i, c3 . Depending on the

coding policy, the server chooses to transmit either an information packet or coded

packet over one of the network paths. The time it takes to transmit either type

of packet is ti = 1/, seconds where ri is the transmission rate in packets/second of

network i E P. Furthermore, it takes each packet di seconds to propagate through

network i (e.g., RTT = ti + 2di on network i assuming that the size of the feedback

packet is sufficiently small).

Delayed feedback is available to the server allowing it to estimate each paths' i.i.d.

packet erasure rate ci and round-trip time RTT (in seconds). However, the server is

unable to determine the cause of the packet erasures (e.g., poor network conditions or

congestion). Furthermore, the server has knowledge of each network's transmission

rate ri, which can either be determined from feedback obtained from the client or from

the size of the server's congestion window on any specific path (e.g., ri - Cwfdi/RTTi

). This feedback can also be used to communicate to the server the number of dofs

received by the client. While the analysis later in the chapter assumes feedback does

not contain this information, numerical and simulated results will use feedback to

dynamically adjust the code rate depending on the client's dof deficit.

5.4.1 Analysis of the In-Order Delivery Delay

Before proceeding, several assumptions are required to simplify the analysis. First, it

is assumed that coded packets are only sent over a single network and the code rates

conform to Corollary 5.4. The rate and packet erasure probability of the network

used to send coded packets will be referred to as r, and c, respectively. Second,

packets transmitted over faster networks are delayed so that they arrive in-order

with packets transmitted over slower networks. For example, assume that packets

142

are transmitted over two disjoint networks with propagation delays d, and d2 where

d, < d2. Packets transmitted over network 1 will be delayed an additional d2 - d,

seconds. This assumption affects the analysis by over-estimating the delay since there

is a possibility that packets transmitted over the faster networks can be delivered in-

order without waiting for a packet from the slower network. However, the number of

packets transmitted over the faster networks that can be delivered without packets

from the slower networks is relatively small. Third, the coding window used for each

coded packet contains all transmitted information packets. This assumption is not

necessary if the code window management follows Algorithm 4. However, it does

remove any ambiguity regarding the usefulness of a received coded packet.

The in-order delivery delay for the code provided in Algorithm 3 can be determined

using a renewal-reward process based off of the number of transmitted coded packets

on path pc E P. More accurately, a renewal occurs whenever a received coded packet

results in a decoding event. This occurs whenever the number of received coded

packets is greater than or equal to the number of lost information packets. Per

Algorithm 3, a coded packet is transmitted every

1
ic = 1 (5.7)

1 - Cc (7r)

packets on path pc. This results in the transmission of

= (l - 1) - (5.8)
rc

information packets on each network i E P for every transmitted coded packet.

Consider a time-slotted model where each time slot has duration 1e/rc. Now define

the sequence X 1, X2,..., where X,, = 0, 1,2,... slots, to be the independent and

identically distributed (i.i.d.) inter-arrival times between decode events with first

and second moments E [X] and E [X2] respectively. The arrival process is then a

sequence of increasing random variables, or arrival epochs, 0 < Si S2 < ... where

the nth epoch Sn = Z> Xn.

In order to determine the distribution and moments of X1, X2 , . . ., several addi-

143

tional random variables need to be defined. Let the random variable Y,j, i = 1, 2,...,

be the number of lost packets (both information and coded) between S,_ 1 + (i - 1)

and S_ + i in the nth arrival epoch. The exact distribution is the convolution of IP I
binomial distributions with parameters a and Eq for each i E P. In order to simplify

the analysis, this distribution is approximated by the following Poisson distribution:

Pyn, (yn,i) = , e~, yn,i = 0,1, ... , (5.9)
Yn,i-

where

A = Ec + aje. (5.10)
iEP

If Y, 1 = 0, the number of received packets between Sn_ 1 and Sn_ 1 +1 is 1+Ei, ae

while only EZEp a packets were necessary to decode (i.e., the coded packet is of no

benefit and is dropped). Therefore, X = 0. However if Y, 1 > 0, at least one packet

was lost which may prevent delivery. Therefore, the extra dof obtained from coded

packets will help correct these erasures and eventually lead to a decode event. As an

example, consider the case when Y, 1 = 1. A single packet was lost, but enough dofs

were received to decode all of the packets transmitted between Sn_ 1 and Sn_ 1 + 1.

Therefore, the inter-arrival time is Xn = 1. Now consider the case when Y, 1 = 2

and Y, 2 = 0. It is impossible for a renewal to occur between at Sn_ 1 or Sn. 1 + 1;

however a renewal does occur at Sn- 1 +2. This results in an inter-arrival time X" = 2.

Continuing on in this way, it becomes clear that a renewal occurs the first time Z

that J$_1 Y,,i < Z.

In fact, Z is a random variable and can be modeled as a M/D/1 queue with

a constant service time of 1 packet per slot and an arrival rate of A packets per

slot. Define Y = E Y.,j, then Z conditioned on Y has the following Borel-Tanner

distribution [65]:

Yzz-Y-1 z-Ye-z
PzIY (zy) or y = 1,2,.... and z = y, y + 1 (5.11)

Equations (5.9) and (5.11) can now be used to determine the distribution of Xn and

144

.1 , 0 IR , -1 . - I- .. - R"M RetRWR-1 MM

its first two moments.

Theorem 5.6. Let the number of packets lost in a single time-slot be independent

and identically distributed according to equation (5.9). The distribution of the time

between decode events for all e, and ri, i E 'P, that satisfy Corollary 5.4 is

C-A for xn = 0

Ae~A for xn = 1

Pxn- (xx-2 AXne-xnA for x, > 2

0 otherwise,

with first and second moments

E [X] = e- (5.13)
1 - A

and

E [X 2] = E [X] + 3 e A. (5.14)
(1 - A)

Proof. The inter-arrival time Xn takes the values of xn = 0 and Xn = 1 if and only if

yn,1 = 0 with probability e-A and yn,1 = 1 with probability Ae- respectively. For all

X, > 2, we must have yn,1 > 2. This results in a decoding error in the first time-slot.

Conditioning on Yn, 1 , we can use equation (5.11) to find the probability for Xn > 2

by setting Z = Xn - 1 and Y = Y,,, - 1:

pxn (Xn) = py., 1 (yn,1) pZIY (Xn - yn,1 - 1)
yn,1=

2

E n A~" le-" (yn,l - 1) (xn - 1)xn-Yn-l Axny-n,1e-(xn-1)A

Yn,1
2 y! (xn - Yn,1)!

I: (yn, - 1) (xn - 1)xnYnl

Yn,1
2 xi! (z - x1).

(x" - 1)Xn2 AXexnA.
-X (Xn - 2)!

(5.15)

(5.16)

(5.17)

(5.18)

145

To determine the moments of Xn, first note that

()x,-

(x - 2) AxneXnA = E [X] - Ae- (5.19)
Xn=2 X

and

Xn (Xn - x)-2 A Xne-xnA = E [X 2] - Ae-. (5.20)
Xn=2 (xn - 2)!

We can then take the first and second derivatives of

Z Pxn (Xn) = 1, (5.21)

i.e.,
aiA 0 (X - 1)x"-2 nXnC- + Ae- + (x- - A) = 0 (5.22)aAi x,=2 xn (xn - 2)!

for i = {1, 2}, to find E [X] and E [X2] respectively. For both E [X] < 00 and E [X2] <

00, the rate of packet loss across all paths must be A < 1. This corresponds with

Corollary 5.4 after substituting in equations (5.7) and (5.8) when le-g ~ 1 Vi E '. 0

The first two moments of X. can now be used to determine the the renewal-reward

process that describes the in-order delivery delay. Before this is done, the following

lemma from [661 is needed.

Lemma 5.7. Let {R (t) ; t > 0} be a non-negative renewal-reward function for a re-

newal process with expected inter-renewal time E [X] < oo. If each Rn is a random

variable with E [Rn] < 00, then with probability 1,

1 ft E I[R]
lim - R (r) dr =B [] (5.23)

t-+oO t t=0 E [X]

Rather than defining the renewal reward function R (t) and the renewal-reward

process using the inter-arrival times Xn, an estimate is considered where the inter-

arrival times of this new process are Wn = max (Xn, 1) (i.e., Wn = 1, 2, .. .). The

distribution on W,, and its first moment are defined in the following.

146

" NMIIIIIIPPIFI , ,, ft

W1 W2 W3 W4 W5

Coded Packet

the process n Infor ation Packet

ost Information Packet

Packet delay in Lost Coded Packet
the process X,

Time

Figure 5-3: An example of the processes X, and W, and the reward function R (t)
for a single path.

Corollary 5.8. Let the number of packets lost in a single time-slot be independent

and identically distributed according to equation (5.9) and define Wn = max (Xn, 1).

The the distribution of inter-arrival times that satisfy Corollary 5.4 is

(A + 1) e-A for W =J~ (O (njW-2 _IA(.4pwn, (wn) = (Wn")n AWne-nA for wn > 2 (5.24)

0 otherwise,

where

1
E [W] = A e-. (5.25)

Figure 5-3 provides a sample function of both renewal processes X, and Wn.

The reward function that describes the in-order delay precisely is the area under

the curve shown for process Xn (i.e., the blocks with solid borders). However, the

reward function R (t) that describes the delay for process W" is the one that is used.

The packet delay in this process is shown by the blocks with dashed borders in the

figure. The in-order delivery delay can now be determined by combining Lemma 5.7,

Theorem 5.6, and Corollary 5.8.

147

Theorem 5.9. Consider the coding scheme described by Algorithm 3 where redundant

packets are only transmitted on path i. E P. With probability one, the in-order

delivery delay E [T] is given by

(rc (le -1) + 1C jET-ie r E [X2] E [X] r
E [T] = r]r E [W] r(

2r2 E [W] Eisp ri 2rcE [W] Eipri'

Proof. The renewal-reward function to determine the delay experienced by an infor-

mation packet transmitted on path P E P is similar to the residual life of the process

with some modifications. Define R, given W to be the sum delay of all information

packets on path P:

Ewc k - Ie EW- k for P =ic
= {Zlcr

, k for P ic
(5.27)

Taking the expectation of Rn, we obtain the following

E [Rn] =(E [Rn|IP = i, Wn = wn] PP (i) PWn (Wn)
iEP wn=1

zjE-P

= 1
JEP

E S E [RnIP = i,Wn = wn] pwn (wn)
r iEP wn=1

r3 1 (:rE [RnIP = ic, Wn = wn]

+ 5 riE [RnIP =i,Wn = wn] Pwn (wn)
i-(P\ic

ooWnic Wn

r- (reE E k - 1,e1 k
SWn=1 k=1 k=1.

+ e ri E
iEP\ic

wn____

[k Pwn (wn).
rik=0

(5.28)

(5.29)

(5.30)

(5.31)

148

(5.26)

Substituting x,, for we, from Corollary 5.8,

E [Rn] =

ZjEP'

= 1
ZjEP

oo (max(xn,1)Ic max(xn,1)

r >E j k - 1,
x"=O k=1 k=1

max(xn,1)Lcri 1

+ Z rE r k pxn (
iEP\ic k=O

c 1) x

Sxn=O

+z (l criz - rCXf) PXn (Xn)
iEP\ic C

lCrc(l1--)E[X2]
rj 2

+ Z ((lcrjE X2] - rE [X])).
ieP\ic

(5.34)

Since both E [X] < oo and E [X 2] < oc, the expectation E [Rn] < oo and Lemma 5.7

can be applied. Keeping in mind that every time-slot in the process defined by W" is

divided into l smaller time-slots, the expected in-order delivery delay is

E [T] lim - R (r) dTr
t-+00 ict 0
E [Rn]

lcE [W]

(lc - 1) E [X2] + (lcriE [X21 - rcE [X])
LdjEP rj k 2

/2r2i ~ -

(5.35)

(5.36)

(5.37)

0

5.5 Numerical and Simulation Results

The in-order delivery delay E [T] derived in the last section provides a useful approx-

imation that can be used to determine the performance of streaming codes operating

over multiple parallel network paths. Unlike the analysis in [64], the multi-path anal-

149

j

xn) (5.32)

(5.33)

103.
+ (= 10- Analysis I

-+ = 10-, Simulation
102 --- c = 10 - Analysis

- = 10 Simulation
-- = 10- Analysis

101 -0- c = 10 3 Simulation
-*-c =10-' Analysis
-* --E = 10- 2Simulation

10
0

-y-c = 10- Analysis
-v c = 10- Simulation 4e'

10- - -

10 -2 - C

10-3

10-1 -----

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Code Rate (c)

Figure 5-4: Simulated and analytical in-order delivery delay for a streaming code over
a single path.

ysis is not technically an upper bound since approximations were made with regards

to A and the ai's (see (5.10) and (5.8) respectively). Regardless, the results presented

within this section show that the approximation is fairly good over a range of network

conditions.

Over a single path, the delay given by (5.26) is reduced to

E[T (l - 1) E [X 2
E2[TfW] (5.38)2E [W]

which is similar to the in-order delivery delay calculated in [64]. A comparison of this

delay with simulated results is provided in Figure 5-4. The figure demonstrates that

the approximation above is a fairly good measure of the true in-order delivery delay

over a range of code rates and packet erasure probabilities.

Figure 5-5 also provides a comparison between the analytical and simulated delay

for two paths. A single path with transmission rate r, and packet erasure rate 6, is

used to transmit all of the coded packets in addition to information packets. The

second path, which is only used to transmit information packets, has transmission

rate r, and packet erasure rate c,. The analytical delay given by (5.26) in this case

150

r. 3 icr, 4
r" 4 ri r, 3

-G-ce = 10 , e - Analysis 10-, c, = 10 Analysis +c, = 10- . = 10- Analysis

102 -- n = 10-1 c, = 10- Simulation 2 = 10 -' en = 10 Simulation 10-2 = 10 ec = 10 ', Simulation
- c-c = 10-3 c, = 10 Analysis 10- , = 10 =e 10- Analysis = 10-,e, = 10-' Analysis

-oc = 10 e, = 10 Simulation - =10-, n = 10- Simulation - c, = 10-e= 10 Simulation

10-2 10-2 1 -

0.4 0.6 0 8 1 0.4 0.6 0.8 1 0.4 0.6 0.8 1
Code Rate (c) Code Rate (c) Code Rate (c)

Figure 5-5: Simulated and analytical in-order delivery delay for a streaming code over
two disjoint paths. The rate of the coding path is r, and the rate of the non-coding
path is r,.

is reduced to

(3 (r(- 1) + 1cr3) E [X2] - E [X] r2rc E [T] = _ (5.39)2r2E [W] (r, + rn) '

and is plotted for various combinations of packet erasure rates and transmission rates.

The first subfigure, labeled rc/r, = 3/4, shows the delay of the multi-path streaming

code scheme over two paths where the coding path has a slower transmission rate than

the non-coding path; the second subfigure, labeled rc/r, = 1, shows the case where the

two paths with the same transmission rate; and the third subfigure, labeled rc/r, = 4/3,

shows the case where the coding path has a faster transmission rate. When r, < rn,

the analysis tends to overestimate the delay while the analysis tends to underestimate

the delay when r, > rn. Regardless, the simple analysis provided above gives a

fairly good approximation of the in-order delivery delay that can be expected when

communicating over multiple paths.

5.6 A Comparison Between Generation Based Codes

and Streaming Codes

Both the generation based code discussed in Chapter 4 and the streaming code dis-

cussed within this chapter have their benefits and drawbacks. It is easy from a cod-

151

1 -1#

B G1---y

ly

Figure 5-6: Gilbert channel used to produce correlated losses.

ing perspective to implement the generation based coding scheme, and these schemes

achieve capacity when the generation size k -+ oc. However, partitioning packets into

generations adds artificial restrictions on the code's capability to recover from losses;

and doing so may not be as efficient as streaming code schemes. Furthermore, gener-

ation based schemes can increase the complexity of the feedback process, especially

for reliable data transfers. Streaming code schemes, on the other hand, can outper-

form generation based schemes in terms of efficiency and delay. Unfortunately, code

window management can be difficult and these schemes typically cannot guarantee

that a decoding event occurs before the termination of a session. In addition, the size

of the code window maybe much larger than the generation based schemes leading to

increased decoding complexity and communication overhead.

This section will provide a comparison between generation based codes and stream-

ing codes. While only single path transmission is covered; comparisons of these codes

in both reliable and unreliable settings are provided. The only difference in code

construction between the reliable, or closed-loop, approaches presented earlier in the

thesis and the unreliable, or open-loop, approaches included here is how the server

responds to feedback. In the closed-loop case, the server uses feedback to insert addi-

tional dofs into the network as necessary. In the open-loop case, the server only uses

the feedback to estimate the packet loss probability of the network. The net effect

of this difference is that the application layer observes a non-zero packet erasure rate

or, in some cases, increased delay.

In addition, a correlated packet loss model is also considered. This model uses the

simple Gilbert channel shown in Figure 5-6. The probability of transitioning from

the "good" state G, which has a packet erasure rate equal to zero, to the "bad" state

152

B, which has a packet erasure rate equal to one, is 7. Similarly, the probability of

transitioning from B to G is 3. This results in the following the transition probability

matrix:

M =[Y .Y (5.40)

The steady-state distribution of B,

B = ,(5.41)

and the expected number of packet erasures in a row, or burst duration

E [L= -, (5.42)

will be used as the primary parameters for determining the transition probabilities of

the channel model. Either the erasure rate c or the 2-tuple (7FB, E(L) = 1) (note that

7rB equals the erasure rate) will be used to denote the i.i.d. packet loss model. The

2-tuple (7rB, E(L) > 1) will be used when the correlated packet loss model is used. It

should also be noted that the correlated packet loss model does not necessarily capture

the affects of fading, which can have a duration equal to hundreds of milliseconds to

hours. Instead, the use of the Gilbert channel is intended to help model the cases

where the signal-to-noise ratio (SNR) is such that the performance of the underlying

physical layer code is degraded; but the situation does not warrant the need to change

to a more robust physical layer modulation/coding scheme.

5.6.1 Closed-Loop Performance

In the closed-loop setting, feedback is used, regardless of the coding scheme, to im-

prove both delay and throughput performance. Algorithm 2 determines how the

server responds to feedback when using the generation based code. For the streaming

code, the server adjusts the code rate based on the expected number of dofs in-flight

153

and the number of dofs required to decode that is reported by the client.

Figure 5-7 compares the in-order delivery delay of both codes as a function of the

observed code rate. The figure also shows results for two average packet loss rates,

7rB, and two expected packet loss burst durations, E [L] . The observed code rate is

defined as the number of information packets divided by the number of transmitted

packets and is dependent on the number of observed packet losses. For the generation

based code, an initial code rate is chosen that is used to generate coded packets for

forward error correction (FEC). If a generation cannot be decoded and retransmissions

are required, the additional transmitted coded packets further reduce the code rate.

The streaming code's observed code rate is similar. An initial code rate is used to

determine when to insert coded packets, but feedback is used to adjust the code rate

if the client is unable to decode in a timely manner.

It is clear from the figure that the streaming code provides a lower in-order delivery

delay than the generation based code regardless of 7rB or E [L]. While the difference

in delay for i.i.d. packet losses (i.e., E [L] = 1) is not that large, the difference when

E [L] = 4 is significant. Both subfigures show that the generation based code is unable

to obtain a high code rate when the losses are correlated. This is illustrated by the

non-uniqueness in the abscissa. As previously noted, an initial code rate is used to

determine how many coded packets are used for forward error correction. When this

code rate is high, the probability of a decode error is fairly large resulting in the

server retransmitting additional dofs. This effectively decreases the code rate while

exhibiting a very large in-order delivery delay. Because coded packets are able to

correct for packet erasures over a larger span of packets, a higher code rate can be

used to achieve the same in-order delivery delay.

5.6.2 Open-Loop Performance

Data streams such as real-time voice and video do not necessarily require 100% reli-

ability. However, decreasing the underlying packet erasure rates may still drastically

improve upper layer quality of service. Recent work in this area has shown that net-

work coding is one tool that can help improve performance [671, [68]. This section will

154

.......... RPM"

75

70

65

60

$55

50

40.

35

0.65 0.950.7 0.75 0.8 0.85 0.9
Number of Information Packets/Packets Transmitted

(a) 7rB 0.05

90

80

70-

60-

50-

40-

30.
0.'6 0.90.65 0.7 0.75 0.8 0.85

Number of Information Packets/Packets Transmitted

(b) rB = 0.1

Figure 5-7: Closed-loop in-order delivery delay as a function of the code rate on a 25

Mbps link with a RTT of 60 ms.

155

-.- Generation (E[L] = 1)
-* Generation (E[L] = 4)
--o- Sliding Window (E[L] 1)
-w Sliding Window (E[L] 4)

- -

- -

Increasing FEC

- I

I I =)
-*-Generation (FE[L] 1)
-m-Generation (E[L] = 4)
-o- Sliding Window (E[L] = 1)
-s- Sliding Window (E[L] = 4)

Increasing FEC ,p

MM"MW M M =69

-

compare both the generation based and streaming code schemes with respect to the

upper-layer packet erasure probabilities and the expected in-order delivery delays.

The generation based coding scheme shown in Algorithm 1, without using Al-

gorithm 2, is ideally suited to the case where there is a delay constraint and packet

delivery is not guaranteed. Packets within each generation are delivered in-order until

the first packet loss is encountered. Once the entire generation has been received, the

client attempts to decode it. If the generation cannot be decoded, only the success-

fully received information packets are delivered. If the generation can be decoded,

every information packet contained in the generation is delivered in-order.

Modifying the streaming code scheme shown in Algorithm 3 for unreliable data

streams is somewhat difficult. The code is constructed in such a way that the prob-

ability of a decode error is nearly zero [64]. In addition, the code window cannot

be arbitrary changed to accommodate delay constraints if they exist. For example,

assume that a lost information packet pi is no longer necessary due to its delivery

time exceeding some specified value. One approach would be to move the left side of

the code window to the right so that pi is no longer used in the generation of future

coded packets (i.e., cj = E __m aj,kpk). In order for these new coded packets to be

useful, the decoder must discard any coded packet containing pi that it has already

received. Not only does this decrease the efficiency of the coding scheme, but it also

potentially increases the delay for subsequent packets pj, i < j. As a result, it is

assumed that Algorithm 3 is left unchanged in this scenario.

Figure 5-8 shows the in-order delivery delay E [T] for both the generation based

code and streaming code on a link with i.i.d. packet erasures (Figure 5-8a) and

correlated losses (Figure 5-8b). Each curve represents E [T] for a given application

layer packet erasure rate (PER). Furthermore, the curves shown for the generation

based code are created by adjusting the generation size k so that a given PER is

obtained. The larger the generation size in the generation based scheme, the better the

error performance; but the cost is increased latency. In the figure, a small generation

size k results in large PER but small E [T], while small values of PER require large

generation sizes leading to higher E [T]. The curves shown for the streaming code

156

R. I Wpl

show a PER that is approximately zero.

The figure shows that the streaming code typically achieves a smaller in-order

delivery delay than the generation based code. In fact, the streaming code achieves

an in-order delivery delay that is several orders of magnitude smaller than a generation

based code that has similar PER (i.e., the generation based code's PER < 10-8 while

the streaming code's PER ~~ 0). The only situation that the delay of the streaming

code is not smaller than the generation based code is when the latter's PER is very

large (i.e., PER > 10- 3 for code rates c < 0.8). To obtain this small delay, the

generation size of the generation based code is only 1 to 3 packets making it similar

to a repetition code. As the generation size is increased, quantization due to these

small block sizes results in the large fluctuations shown in the delay-rate curves for

small PER.

Finally, correlated losses can have a significant impact on the performance of

the generation based code. This is a result of partitioning information packets into

generations, which places artificial constraints the ability of the code to recover from

packet losses. The streaming code, on the other hand, is much less sensitive to

correlated losses due to the ability of a coded packet to recover from erasures over a

larger span of information packets.

5.6.3 An Unfair Comparison: Closed-Loop Generation Based

Codes versus Open-Loop Streaming Codes

The previous subsections showed that the streaming code can achieve a smaller E [T]

than the generation based code regardless of the use of feedback. In the closed-loop

comparisons, both the generation based and streaming codes were able to achieve

100% reliability. However, only the streaming code was able to come close to achieving

this goal in the open-loop case with a PER ~ 0. This subsection compares the

performance of the closed-loop generation based code with the open-loop streaming

code to help illustrate the trade-off between using feedback and delay.

This comparison is shown in Figure 5-9. Both Figure 5-9a and Figure 5-9b show

157

10 - I
-.- Generation (PER = 0.0014)
-.- Generation (PER = 10-)

Generation (PER = 10-')

103 -s-Generation (PER = 10 -')
-+-Generation (PER = 10-6)
-+,-Generation (PER = 10-') Decreasing PER
--- Generation (PER = 10-')

102 - - Sliding Window (PER 0)

10, --

100-

10--

0.7 0.75 0.8 0.85 0.9
Code Rate (c)

(a) I.I.D. Packet Losses with 7rB= 0.05 and E [L]

106
-s-Generation (PER = 0.004, E(L) = 1)
-*-Generation (PER = 10, E(L) = 1)

105 -- Generation (PER = 10 4, E(L) = 1)
+Generation (PER = 102, E(L) = 4)

-e-Generation (PER = 10-3, E(L) = 4)
-+-Generation (PER = 10-1, E(L) = 4)

10
4

-.- Generation (PER = 10 -2 E(L) = 8) Decreasing PER and/or
-- Generation (PER = 10- E(L) =8) Increasing E[L]
-4Generation (PER = 10-', E(L) = 8)

2 103 -M Sliding Window (PER = 0, E(L) = 1)
-- Sliding Window (PER ~ 0, E(L) = 4)

Sliding Window (PER ~ 0, E(L) 4)

10 S

1001-

--- --- -- ----- - -- --

10--

0.6 0.65 0.7 0.75 0.8 0.85
Code Rate (c)

(b) Correlated Packet Losses with rFB 0.1.

Figure 5-8: Open-loop in-order delivery delay as a function of the code rate. The
packet erasure rate (PER) at the application layer after coding has attempted to
correct all erasures is listed for each curve.

158

E[L] = 1

-.- ARQ (Closed-Loop)
-Generation (Closed-Loop)
- Sliding Window (Open-Loop)

- L Lt_
0.80 0.83 0.87 0.91 0.95

Code Rate (c)

E[L] = 1

0.80 0.83 0.87 0.91 0.95
Code Rate (c)

E[L] = 4

103

102
0.77 0.80 0.83 0.87 0.91 0.95

Code Rate (c)

(a) In-order delivery delay.

E[L] 4

0.95
1 -

11.9

0.85

0.8

0.77 0.80 0.83 0.87 0.91 0.95
Code Rate (c)

103

2

1

0.95

11.9

0.85

0.8

EL]= 8

T 'Tif

1.0.77 0.80 0.83 0.87 0.91 0.95
Code Rate (c)

0.77 0.80 0.83 0.87 0.91 0.95
Code Rate (c)

(b) Efficiency r7 (Number of Information Packets/Total Number of Packets Received).

Figure 5-9: A comparison of an open-loop generation based code and a closed-loop
streaming code on a 10 Mbps link with RTT = 200 ms and mean packet erasure rate

'TB = 0.05.

E [T] and the efficiency r respectively as a function of the code rate c. In the case

of the generation based code, the code rate refers to the FEC code rate and not

the observed code rate that was used in Section 5.6.1. The error bars represent two

standard deviations above and below the mean, and an idealized version of ARQ is

shown for reference.

When packet erasures are i.i.d., the open-loop version of the streaming code has

lower in-order delivery delay than the closed-loop generation based code while also

achieving a higher efficiency. This illustrates that code construction has a major im-

pact on efficiency. Since coding occurs over more information packets in the streaming

code scheme, coded packets can help recover from packet erasures that occur over a

larger span of time (i.e., multiple generations if we compare it with the generation

based scheme). However, the figures showing the performance when losses are corre-

159

102 1
0.

1

0.95

s~0.9

S0.85

0.8

0.

77

77

-- ARQ (Closed-Loop)
-- Generation (Closed-Loop)
-Sliding Window (Open-Loop)

E[L] =8

'IV'

.... -..

I

lated (i.e., E [L] = {4, 8}) indicate that feedback is critical for ensuring that the delay

does not grow unbounded. The decrease in the generation based scheme's efficiency

as E [L] increases, as well as its non-increasing behavior for a given E [L] > 1, is

an indication that retransmissions are necessary to provide reliability. In fact, the

generation based scheme almost always requires retransmissions to be made when

E [L] = 8. Regardless, the streaming code is still able to achieve a the same or lower

delay and higher efficiency for a small enough code rate.

5.7 Conclusions

A multi-path streaming code is presented within this chapter that removes the arti-

ficial constraints of partitioning packets into generations. Rather, coded packets are

generated using a code window that is managed based on the state-space of the client.

An analysis of the in-order delivery delay experienced by information packets trans-

mitted under this coding scheme is developed using a renewal-reward process; and a

simple expression is found that closely approximates the true delay. Finally, a com-

parison of this streaming code with the generation based code provided in Chapter 4

is presented. This comparison shows that the streaming code construction achieves

a lower in-order delivery delay than the generation based code while also obtaining a

higher efficiency.

160

Chapter 6

Conclusions

6.1 Summary

The shift in the way end users' access the Internet and the type of traffic they gen-

erate require new approaches and techniques to meet increasingly strict quality of

service requirements in networks that are becoming more unreliable. Furthermore,

the adoption of new technologies, especially in the mobile environment, is providing

new opportunities that can be leveraged to improve quality of service further. This

thesis focused on applications of network coding for reliable transport as a method to

overcome the challenges mentioned above and utilize all available network resources

to fullest extent possible. This included a study of various methods to implement net-

work coding in a multi-path transport layer and different approaches for generating

network codes. It was shown throughout the thesis that transport layer coding can

increase throughput, as well as decrease in-order delivery delay. This combination of

gains results in significant improvements to application layer performance.

The primary motivation for the thesis was provided in Chapter 2 where an overview

of a single-path network coded transport protocol called Coded TCP (CTCP) was

presented. CTCP used a combination of network coding and congestion control mod-

ifications to increase transport layer performance. Experimental results showed that

CTCP achieves considerable throughput gains over standard TCP in networks with

high packet erasure rates. In addition, application layer measurements also hinted at

161

gains in delay. Indications of these gains were highlighted through the measurements

of HTTP request completion times and the number of buffer under-runs experienced

during the playback of a streamed video. While the throughput gains mentioned

earlier were a major contributor to these application layer gains, they did not fully

explain them.

Before exploring the reason for the gains shown in application layer performance,

Chapter 3 first addressed extensions of network coded single-path transport layers

to the multi-path environment. Empirical measurements helped map the multi-path,

mobile environment by simultaneously collecting path statistics over three parallel

heterogeneous networks. These statistics helped show the network availability one

might expect and the conditions that may be present during communication. A multi-

path transport protocol called Multi-Path TCP with Network Coding (MPTCP/NC)

was then presented. This protocol used two layers of coding to both increase connec-

tion resiliency and provide erasure protection. A mean-field analysis of the protocol's

throughput was developed; and a fusion of this analysis with the empirical measure-

ments described above helped show the possible throughput gains over non-coded

multi-path transport protocols such as Multi-Path TCP (MPTCP).

Chapter 4 helped to address the reason behind the non-throughput related appli-

cation layer gains shown in Chapter 2. An analysis of the systematic generation based

network code used in CTCP, although extended to the multi-path environment, was

developed. This analysis helped show that there is an inherent trade-off between the

delay caused by head-of-line blocking and coding. Unfortunately, a small generation

size increases the probability of decode error. This results in an increase in the proba-

bility of head-of-line blocking. As the code's generation size increases, the probability

of a decode error is reduced resulting in fewer retransmissions and less head-of-line

blocking. This should reduce the overall in-order delivery delay; however, the coding

delay increases as the generation size grows resulting in increased in-order delivery

delay. Therefore, the analysis helped determine the generation size that balanced

the delay caused by head-of-line blocking and coding. The analysis also showed that

this minimum can be made as close to the network propagation delay as needed.

162

The only drawback is that reducing the delay requires a reduction in efficiency, or

goodput. This rate-delay trade-off was shown using numerical results.

Finally, Chapter 5 looked at an alternate code construction that removed the ar-

tificial constraints placed on the generation based code as a result of partitioning

packets into fixed length generations. This multi-path streaming code uses a slid-

ing window approach to coding where the composition of coded packets is based on

the state-space of the client's decoder. A renewal-reward process was used to deter-

mine the expected in-order delivery delay; and both numerical and simulated results

showed that this streaming code can achieve lower in-order delivery delay with higher

efficiency than the generation based code discussed in Chapter 4. Finally a compari-

son of the closed-loop version of the generation based code and an open-loop version

of the streaming code was made. This helped show the importance of using feedback,

especially in networks where packet losses are correlated.

6.2 Implementation Considerations

This thesis has presented multiple methods to implement network coding within the

transport layer. Chapters 2 and 3 provided two different transport layer designs, while

Chapters 4 and 5 explored two different coding approaches. Each of these approaches

have their benefits and drawbacks. While not everything can be addressed, a dis-

cussion of some of the most important implementation considerations are provided

here.

The first major consideration is where to perform the coding and decoding opera-

tions. Ideally, redundancy should be added at any point in the network where packet

losses occur. This includes locations such as queues or links where the physical

layer cannot provide 100% reliability. Furthermore, the amount of added redundancy

should only be enough to help recover from losses that occur between network nodes

that can code. This can be motivated by the simple example shown in Figure 6-1

where a source S wants to transmit N packets to the destination D. However, these

packets must travel over a tandem network where each link i E {1, 2, 3} has an i.i.d.

163

ei=C 2 =0.2 C3 =0.1
S R, R2D

77E=0.72 =7 0.9 77 = 1
EE E 11 =1 2 =73=1

Figure 6-1: A simple example showing that coding within the network is more efficient
than end-to-end coding. r// is the efficiency on link i E 1, 2,3 when coding is performed
end-to-end (j = P) or at each intermediate network node (j = E).

packet erasure probability Ei. If end-to-end coding is used, N (]J7i (1 -'E)- - 1)

coded packets must be generated at S and transmitted through the network. This

results in an inefficient use of links closer to the source than would be necessary if

redundancy is included into the packet stream at each node Ri, i E 1, 2.

This simple fact can have major implications in networks with limited or expensive

bandwidth. While coding should be performed as often as possible, network codes do

not need to be decoded at each hop. In other words, coded packets can be generated

at multiple points within the network while only needing to decode once at the client.

In the example provided in Figure 6-1, coding can take place at S, R1, and R 2 ;

however, only D needs to decode.

The second consideration that needs to be taken into account is how to commu-

nicate the coding coefficients ac used to the decoder. For generation-based coding

schemes where k is typically small, one can simply insert each coding coefficient into

the packet header of a coded packet, which would require approximately qk bits as-

suming each ai E F2q. Coding within the network only needs to modify the existing

coefficients and does not increase the size of the coding coefficient vector. Of course,

other approaches that require less than qk bits such as [69] or [70] can be used to

decrease overhead.

Communicating the coefficients efficiently for streaming code schemes like the

one presented in Chapter 5 is more challenging since the coding windows can be

quite large. Existing methods typically use a pseudo-random number generator and

communicate only the seed. This seed is then used by the decoder to generate the

164

coefficients used to create each coded packet. Unfortunately, this does not scale well

when coding occurs at intermediate network nodes. As an example, assume that

an intermediate node's coding window contains multiple coded packets that were

generated by previous nodes. When the node generates a new coded packet, it must

communicate the seed used to generate the packet; in addition to all of the seeds for

each of the coded packets contained within its coding window. If the coding window

and the number of coded packets contained within the window are large, the amount

of overhead required to reproduce the coefficients can far exceed the payload size.

Finally, congestion control and file size can potentially dictate the coding approach

used. Regardless of the type of data stream, some form of congestion control is

typically needed. Common congestion control algorithms can cause bursts of packets,

or packet trains, while they are ramping up to fully utilize the network. This behavior

is even more pronounced when considering TCP flows over large latency networks.

In these situations, it maybe preferable to use a coding scheme that provides a high

probability of delivering every packet within a burst without needing retransmissions

or waiting for the next packet burst to arrive. For example, a generation-based coding

scheme can be used for small congestion window sizes and a streaming code can be

used for large ones. The benefit of using RLNC is that switching between the two is

relatively easy.

In a similar fashion, the coding strategy can also, significantly impact the over-

all throughput for some file sizes. For example, consider a small file that can be

transmitted using less than a single bandwidth-delay product worth of packets. A

generation-based coding scheme, or a mixture of the generation-based and streaming

code schemes, should be used so that the the probability of decoding the file after the

first transmission attempt is made very large. While this may impact the efficiency

of the network, it can have major benefits for the user's quality of service.

165

6.3 Possible Directions for Future Research

A number of different avenues for future research and extensions to this thesis are

possible. These range from continued development of multi-path transport layer

protocols to exploiting the synergetic affects of network coding. While not everything

can be discussed here, a number of possible directions are outlined.

First, continued development of a coded multi-path transport layer is needed. A

number of protocol designs and coding approaches were discussed throughout this

thesis; however, the implementation of these approaches is necessary to verify the

gains shown through analysis. Furthermore, extensive system testing is needed to

confirm the ultimate goals and objectives of the transport layer are satisfied.

Second, methods to enable efficient coding within the network using streaming, or

sliding window codes, is required. Chapter 5 showed that the multi-path streaming

code that uses a sliding window to manage the generation of redundancy outperforms

generation based approaches. Unfortunately, the number of information packets used

to generate each coded packet can be fairly large making the use of coding vectors

undesirable. As mentioned in the last section, a random number generator or a deter-

ministic scheme can be used to define the coding coefficients and reduce overhead; but

these approaches do not provide the necessary flexibility to code within the network

itself unless access to lower network layers is available.

Finally, the approaches presented within this thesis used network codihg as the

primary workhorse to improve transport layer performance. While significant per-

formance gains were observed, network coding was restricted to just the transport

layer. Combining the techniques used throughout the thesis with those developed for

different network layers can potentially have synergistic effects. For example, network

coding has been shown to improve storage system performance [71], data link layer

performance [72], physical layer performance [681, etc. However, each of these propos-

als, including the those discussed within this thesis, has had limited scope. Research

into the benefits of using network coding at each of the layers concurrently and how

these network coded layers supplement each other is another promising avenue of

166

research.

167

168

I I FIRM I 1 411, Illm WIM-111-

Bibliography

[1] "The Zettabyte Era: Trends and Analysis," White Paper, Cisco, May 2015.

[2] "Maximizing Audience Engagement: How Online Video Performance Impacts

Viewer Behavior," White Paper, Akamai, January 2015.

[3] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli, D. J. Leith, and

M. M6dard, "Congestion Control for Coded Transport Layers," in IEEE Inter-

national Conference on Communications (ICC), June 2014, pp. 1228-1234.

[4] G. Maral and M. Bousquet, Satellite Communications Systems: Systems, Tech-

niques and Technology. John Wiley & Sons, August 2011.

[5] 0. Bonaventure, M. Handley, and C. Raiciu, "An overview of Multipath TCP,"

USENIX ;login:, vol. 37, no. 5, October 2012.

[6] J. Cox, "Apple iOS 7 Suprises as First with New Mul-

tipath TCP Connections," September 2013. [Online]. Available:

http://www.networkworld.com/news/2013/091913-ios7-multipath-273995.html

[7] J. Cloud, F. du Pin Calmon, W. Zeng, G. Pau, L. M. Zeger, and M. M6dard,

"Multi-Path TCP with Network Coding for Mobile Devices in Heterogeneous

Networks," in IEEE 78th Vehicular Technology Conference (VTC Fall), Septem-

ber 2013, pp. 1-5.

[8] T. Ho, M. Medard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong, "A

Random Linear Network Coding Approach to Multicast," IEEE Transactions on

Information Theory, vol. 52, no. 10, pp. 4413-4430, October 2006.

169

[9] C. Caini, R. Firrincieli, M. Marchese, T. d. Cola, M. Luglio, C. Roseti,

N. Celandroni, and F. Potorti, "Transport Layer Protocols and Architectures

for Satellite Networks," International Journal of Satellite Communications and

Networking, vol. 25, no. 1, pp. 1-26, 2007.

[10] A. Pirovano and F. Garcia, "A New Survey on Improving TCP Performances

Over Geostationary Satellite Link," Network and Communication Technologies,

vol. 2, no. 1, June 2013.

[11] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, "A Comparison of

Mechanisms for Improving TCP Performance Over Wireless Links," IEEE/ACM

Transactions on Networking, vol. 5, no. 6, pp. 756-769, December 1997.

[12] S. Ha, I. Rhee, and L. Xu, "CUBIC: A New TCP-Friendly High-Speed TCP

Variant," ACM SIGOPS Operating Systems Review, vol. 42, no. 5, pp. 64-74,

July 2008.

[13] C. Caini and R. Firrincieli, "TCP Hybla: A TCP Enhancement for Heteroge-

neous Networks," International Journal of Satellite Communications and Net-

working, vol. 22, no. 5, pp. 547-566, 2004.

[141 S. Trivedi, S. Jaiswal, R. Kumar, and S. Rao, "Comparative Performance Eval-

uation of TCP Hybla and TCP Cubic for Satellite Communication Under Low

Error Conditions," in IEEE 4th International Conference on Internet Multimedia

Services Architecture and Application (IMSAA), December 2010, pp. 1-5.

[15] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, "Loss-Tolerant TCP (LT-

TCP): Implementation and Experimental Evaluation," in Military Communica-

tions Conference (MILCOM), October 2012, pp. 1-6.

[16] V. Sharma, S. Kalyanaraman, K. Kar, K. K. Ramakrishnan, and V. Subra-

manian, "MPLOT: A Transport Protocol Exploiting Multipath Diversity Using

Erasure Codes," in 27th IEEE Conference on Computer Communications (IN-

FOCOM), April 2008, pp. 121-125.

170

[17] 0. Tickoo, V. Subraman, S. Kalyanaraman, and K. K. Ramakrishnan, Quality

of Service - IWQoS 2005: 13th International Workshop, IWQoS 2005, Passau,

Germany, June 21-23, 2005. Proceedings. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, ch. LT-TCP: End-to-End Framework to Improve TCP Perfor-

mance Over Networks with Lossy Channels, pp. 81-93.

[18] S. Bauer, R. Beverly, and A. Berger, "Measuring the State of ECN Readiness

in Servers, Clients,and Routers," in Proceedings of the 2011 ACM SIGCOMM

Conference on Internet Measurement Conference, 2011, pp. 171-180.

[19] J. K. Sundararajan, D. Shah, M. M6dard, S. Jakubczak, M. Mitzenmacher, and

J. Barros, "Network Coding Meets TCP: Theory and Implementation," Proceed-

ings of the IEEE, vol. 99, no. 3, pp. 490-512, March 2011.

[20] G. Xylomenos, G. C. Polyzos, P. Mahonen, and M. Saaranen, "TCP Performance

Issues Over Wireless Links," IEEE Communications Magazine, vol. 39, no. 4, pp.

52-58, 2001.

[21] S. Gheorghiu, A. L. Toledo, and P. Rodriguez, "Multipath TCP with Network

Coding for Wireless Mesh Networks," in IEEE International Conference on Com-

munications (ICC), May 2010, pp. 1-5.

[22] X. Zhuoqun, C. Zhigang, Y. Hui, and Z. Ming, "An Improved MPTCP in Coded

Wireless Mesh Networks," in IEEE International Conference on Broadband Net-

work & Multimedia Technology (IC-BNMT), October 2009, pp. 795-799.

[23] Z. Xia, Z. Chen, Z. Ming, and J. Liu, "A Multipath TCP Based on Network

Coding in Wireless Mesh Networks," in IEEE International Conference on In-

formation Science and Engineering (ICISE), December 2009, pp. 3946-3950.

[24] A. ParandehGheibi, M. Medard, A. Ozdaglar, and S. Shakkottai, "Access-

Network Association Policies for Media Streaming in Heterogeneous Environ-

ments," in 49th IEEE Conference on Decision and Control (CDC), December

2010, pp. 960-965.

171

[25] A. Kulkarni, M. Heindlmaier, D. Traskov, M.-J. Montpetit, and M. Medard,

NETWORKING 2011 Workshops: International IFIP TC 6 Workshops, PE-

CRN, NC-Pro, WCNS, and SUNSET 2011, Revised Selected Papers. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, ch. An Implementation of Network

Coding with Association Policies in Heterogeneous Networks, pp. 110-118.

[26] E. Brosh, S. A. Baset, D. Rubenstein, and H. Schulzrinne, "The delay-friendliness

of TCP," in Proceedings of the 2008 ACM SIGMETRICS International Confer-

ence on Measurement and Modeling of Computer Systems, 2008, pp. 49-60.

[27] N. Cardwell, S. Savage, and T. Anderson, "Modeling TCP Latency," in 19th

Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM), vol. 3, March, pp. 1742-1751.

[28] A. Heidarzadeh, "Design and Analysis of Random Linear Network Coding

Schemes: Dense Codes, Chunked Codes and Overlapped Chunked Codes," Ph.D.

Thesis, Carleton University, Ottawa, Canada, December 2012.

[29] D. Lucani, M. Medard, and M. Stojanovic, "Broadcasting in Time-Division Du-

plexing: A Random Linear Network Coding Approach," in Workshop on Network

Coding, Theory, and Applications (NetCod), June 2009, pp. 62-67.

[30] , "Online Network Coding for Time-Division Duplexing," in IEEE Global

Telecommunications Conference (GLOBECOM), December 2010, pp. 1-6.

[31] D. Lucani, M. Stojanovic, and M. M6dard, "Random Linear Network Coding

For Time Division Duplexing: When To Stop Talking And Start Listening,"

in IEEE International Conference on Computer Communications (INFOCOM),

April 2009, pp. 1800-1808.

[32] T. Dikaliotis, A. Dimakis, T. Ho, and M. Effros, "On the Delay of Network

Coding Over Line Networks," in IEEE International Symposium on Information

Theory (ISIT), June 2009, pp. 1408-1412.

172

[33] M. Nistor, R. Costa, T. Vinhoza, and J. Barros, "Non-Asymptotic Analysis of

Network Coding Delay," in IEEE International Symposium on Network Coding

(NetCod), June 2010, pp. 1-6.

[34] E. Drinea, C. Fragouli, and L. Keller, "Delay with Network Coding and Feed-

back," in IEEE International Symposium on Information Theory (ISIT), June

2009, pp. 844-848.

[35] A. Eryilmaz, A. Ozdaglar, and M. M6dard, "On Delay Performance Gains From

Network Coding," in 40th Annual Conference on Information Sciences and Sys-

tems, March 2006, pp. 864-870.

[36] B. Swapna, A. Eryilmaz, and N. Shroff, "Throughput-Delay Analysis of Ran-

dom Linear Network Coding for Wireless Broadcasting," IEEE Transactions on

Information Theory, vol. 59, no. 10, pp. 6328-6341, October 2013.

[37] Y. Xia and D. Tse, "Analysis on Packet Resequencing for Reliable Network Pro-

tocols," in 22nd Annual Joint Conference of the IEEE Computer and Commu-

nications (INFOCOM), vol. 2, March 2003, pp. 990-1000.

[38] H. Yao, Y. Kochman, and G. W. Wornell, "A Multi-Burst Transmission Strat-

egy for Streaming Over Blockage Channels with Long Feedback Delay," IEEE

Journal on Selected Areas in Communications, vol. 29, no. 10, pp. 2033-2043,

December 2011.

[391 M. Nistor, J. Barros, F. Vieira, T. Vinhoza, and J. Widmer, "Network Cod-

ing Delay: A Brute-Force Analysis," in Information Theory and Applications

Workshop (ITA), January 2010, pp. 1-5.

[40] J. Sundararajan, P. Sadeghi, and M. M6dard, "A Feedback-Based Adaptive

Broadcast Coding Scheme for Reducing In-Order Delivery Delay," in Workshop

on Network Coding, Theory, and Applications (NetCod), June 2009, pp. 1-6.

173

[41] A. Fu, P. Sadeghi, and M. M6dard, "Delivery delay analysis of network coded

wireless broadcast schemes," in IEEE ireless Communications and Networking

Conference (WCNC), April 2012, pp. 2236-2241.

[42] W. Zeng, C. Ng, and M. Medard, "Joint Coding and Scheduling Optimization in

Wireless Systems with Varying Delay Sensitivities," in 9th Annual IEEE Com-

munications Society Conference on Sensor, Mesh and Ad Hoc Communications

and Networks (SECON), June 2012, pp. 416-424.

[431 G. Joshi, Y. Kochman, and G. W. Wornell, "On Playback Delay in Stream-

ing Communication," in IEEE International Symposium on Information Theory

Proceedings (ISIT), July 2012, pp. 2856-2860.

[44] G. Joshi, "On Playback Delay in Streaming Communication," Master of Science

in Electrical Engineering, Massachusetts Institute of Technology, Cambridge,

MA, May 2012.

[45] G. Joshi, Y. Kochman, and G. Wornell, "The Effect of Block-Wise Feedback on

the Throughput-Delay Trade-Off in Streaming," in IEEE Conference on Com-

puter Communications Workshops (INFOCOM WKSHPS), April 2014, pp. 227-

232.

[46] A. ParandehGheibi, M. M6dard, A. Ozdaglar, and S. Shakkottai, "Avoiding Inter-

ruptions; A QoE Reliability Function for Streaming Media Applications," IEEE

Journal on Selected Areas in Communications, vol. 29, no. 5, pp. 1064-1074,

May 2011.

[47] A. ParandehGheibi, "Metrics, fundamental trade-offs and control policies for

delay-sensitive applications in volatile environments," Ph.D. dissertation, Mas-

sachusetts Institute of Technology, Cambridge, MA, 2012.

[48] M. T6mdsk6zi, F. H. Fitzek, F. H. Fitzek, D. E. Lucani, M. V. Pedersen, and

P. Seeling, "On the Delay Characteristics for Point-to-Point Links using Random

174

Linear Network Coding with On-the-Fly Coding Capabilities," in 20th European

Wireless Conference; Proceedings of European Wireless, May 2014, pp. 1-6.

[491 R. Prior and A. Rodrigues, "Systematic Network Coding for Packet Loss Con-

cealment in Broadcast Distribution," in International Conference on Information

Networking (ICOIN), January 2011, pp. 245-250.

[50] D. Lucani, M. Madard, and M. Stojanovic, "Systematic Network Coding for

Time-Division Duplexing," in IEEE International Symposium on Information

Theory Proceedings (ISIT), June 2010, pp. 2403-2407.

[511 P. Sadeghi and M. Yu, "Instantly Decodable versus Random Linear Network

Coding: A Comparative Framework for Throughput and Decoding Delay Per-

formance," CoRR, vol. abs/1208.2387, 2012.

[52] J. Cloud, D. Leith, and M. M6dard, "Network Coded TCP (CTCP) Performance

Over Satellite Networks," in International Conference on Advances in Satellite

and Space Communications (SPACOMM), February 2014, pp. 53-56.

[53] , "A Coded Generalization of Selective Repeat ARQ," in IEEE Conference

on Computer Communications (INFOCOM), April 2015, pp. 2155-2163.

[54] "Wireless Technologies for Network Service Providers 2012-2013," White Paper,

Technicolor, 2013.

[55] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, "Modeling TCP Reno

performance: a simple model and its empirical validation," IEEE/ACM Trans-

actions on Networking, vol. 8, no. 2, pp. 133-145, April 2000.

[56] L. S. Brakmo and L. L. Peterson, "TCP Vegas: End-to-End Congestion Avoid-

ance on a Global Internet," IEEE Journal on Selected Areas in Communications,

vol. 13, no. 8, pp. 1465-1480, October 1995.

[57] K. Tan, J. Song, Q. Zhang, and M. Sridharan, "A Compound TCP Approach

for High-Speed and Long Distance Networks," in 25th IEEE International Con-

ference on Computer Communications (INFOCOM), April 2006, pp. 1-12.

175

[58] R. N. Shorten and D. J. Leith, "On Queue Provisioning, Network Efficiency and

the Transmission Control Protocol," IEEE/ACM Transactions on Networking,

vol. 15, no. 4, pp. 866-877, August 2007.

[59] Iridium Everywhere. (2016) Iridium 9522A satel-

lite transceiver. Online. [Online]. Available:

https://www.iridium.com/products/details/iridium9522satellitetransceiver

[60] "MPTCP IETF Working Group," https://datatracker.ietf.org/wg/mptcp/.

[61] M. Kim, M. Medard, and J. a. Barros, "Modeling Network Coded TCP Through-

put: A Simple Model and its Validation," in Proceedings of the 5th International

ICST Conference on Performance Evaluation Methodologies and Tools (VALUE-

TOOLS), 2011, pp. 131-140.

[62] R. Koetter and F. Kschischang, "Coding for Errors and Erasures in Random

Network Coding," IEEE Transactions on Information Theory, vol. 54, no. 8, pp.

3579-3591, August 2008.

[63] M. Karzand and D. J. Leith, "Low Delay Random Linear Coding Over a Stream,"

in 52nd Annual Allerton Conference on Communication, Control, and Comput-

ing (Allerton), September 2014, pp. 521-528.

[64] M. Karzand, D. Leith, J. Cloud, and M. Medard, "Low Delay Random Linear

Coding Over a Stream," CoRR, vol. abs/1509.00167, 2015.

[65] J. C. Tanner, "A derivation of the borel distribution," Biometrika, vol. 48, no.

1/2, pp. pp. 222-224, 1961.

[66] R. G. Gallager, Stochastic Processes: Theory for Applications. New York, NY:

Cambridge University Press, 2013.

[67] S. Teerapittayanon, K. Fouli, M. Medard, M.-J. Montpetit, X. Shi, I. Seskar,

and A. Gosain, Multiple Access Communications: 5th International Workshop,

MACOM 2012, Maynooth, Ireland, November 19-20, 2012. Proceedings. Berlin,

176

Heidelberg: Springer Berlin Heidelberg, 2012, ch. Network Coding as a WiMAX

Link Reliability Mechanism: An Experimental Demonstration, pp. 75-78.

[68] D. Adams, J. Du, M. M6dard, and C. Yu, "Delay Constrained Throughput-

Reliability Tradeoff in Network-Coded Wireless Systems," in IEEE Global Com-

munications Conference (GL OBECOM), December 2014, pp. 1590-1595.

[69] D. E. Lucani, M. V. Pedersen, J. Heide, and F. H. P. Fitzek, "Fulcrum Network

Codes: A Code for Fluid Allocation of Complexity," CoRR, vol. abs/1404.6620,

2014.

[70] N. Thomos and P. Frossard, "Toward One Symbol Network Coding Vectors,"

IEEE Communications Letters, vol. 16, no. 11, pp. 1860-1863, November 2012.

[71] U. J. Ferner, "Toward Sustainable Networking: Coded Storage and High-Traffic

Networks," Doctor of Philosophy in Electrical Engineering and Computer Sci-

ence, Massachusetts Institute of Technology, Cambridge, MA, June 2014.

[72] S. Katti, H. Rahul, W. Hu, D. Katabi, M. M6dard, and J. Crowcroft, "XORs

in the Air: Practical Wireless Network Coding," IEEE/ACM Transactions on

Networking, vol. 16, no. 3, pp. 497-510, June 2008.

177

