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ABSTRACT

We propose investigating the design and analysis of game theoretic mechanisms when the
players have very unstructured initial knowledge about themselves, but can refine their
own knowledge at a cost.

We consider several set-theoretic models of “costly knowledge”. Specifically, we consider
auctions of a single good in which a player ¢’s only knowledge about his own valuation, 6;,
is that it lies in a given interval [a, b]. However, the player can pay a cost, depending on a
and b (in several ways), and learn a possibly arbitrary but shorter (in several metrics)
sub-interval, which is guaranteed to contain 6;.

In light of the set-theoretic uncertainty they face, it is natural for the players to act so as
to minimize their regret. As a first step, we analyze the performance of the second-price
mechanism in regret-minimizing strategies, and show that, in all our models, it always
returns an outcome of very high social welfare.

Thesis Supervisor: Silvio Micali
Title: Associate Department Head of EECS



1 Introduction

It is a traditional tenet of mechanism design that each player i knows himself perfectly.
This assumption strikes us as an oversimplification of our daily experience. Except for
whatever innate knowledge we may have, most of us incur a considerable personal cost for
the knowledge we acquire. Moreover, we seldom reach “perfect knowledge”. Whether on an
individual basis or a collective basis (e.g., in Science) we simply refine our knowledge.
Accordingly, we believe it is important to investigate mechanism design when the players
are very self uncertain, but have the ability of reducing their own uncertainty at a cost. In
this paper, we put forward a first class of “costly knowledge models” and use it to analyze
the efficiency guarantees of second-price mechanism.

Our Goals

Distributional approaches naturally come to mind to model costly knowledge. Indeed, the
traditional way to model uncertainty is via probability distributions. Although we
encourage others to work on distributional models of costly knowledge, and we may choose
to do so ourselves in the future, in this paper, to explore a less-travelled road, and start
investigating set-theoretic models of costly knowledge.

Our first such model is purposely very basic; essentially, it is a costly version of binary
search. More complex models are discussed in section 5.

Our first result analyzes the efficiency guarantees of the second price mechanism in all of
our models. We believe and hope that the viability of these models can be also established
for more complex mechanisms, new or old.

Our First Model

A player ¢ has no information about the true valuations of his opponents. Moreover, at
each point in time, the only information he has about his own true valuation, 6;, consists of
a “knowledge” interval [a, b] guaranteed to contain 6.

If [a,b] # [0,0], 2 may “refine” such knowledge interval by paying a cost inversely
proportional to § = b_T“ and learn whether 6; lies in the first or the second half of [a, b].

We respectively refer to b — a and ¢ as the (absolute) uncertainty and the (relative)
inaccuracy of i’s knowledge.

Remarks

e Incomplete Preferences. Having set-theoretic uncertainty about his true valuation 6;,
a player ¢ may not be able to ‘compare’ all possible outcomes. If his current
knowledge about 6; consists of an interval [a, ], then he is only sure that he prefers
an outcome w to another outcome w’ if his utility for w is greater than or equal to his
utility for w’, no matter which element of [a, b] may be his true valuation.

Of course, one might always and more simply assume that our players have complete
preferences (e.g., that they maxmin preferences [22]), or that they behave as if
—say— 0; = 2t2). However,



our players have incomplete preferences.

e FEnlarged Mechanisms. Explicitly or not, our model de facto turns every given
normal-form mechanism into one of extensive form. To be sure, all players continue
to submit their reports “simultaneously”. However, prior to submitting his report,
based on his current knowledge, each player can choose whether or not to refine it.
Formally, therefore, he chooses his own report by executing a single-player
extensive-form (sub)mechanism.

e Defining Accuracy. Another natural choice for defining the inaccuracy of a knowledge
interval [a, b] of a player i is §' = Z‘T‘; In this case, ¢ represents the percentage with
which 7 knows his own true valuation. Indeed, letting = = “T“’, 0; € [a, b] is equivalent
to say that

“0 =z + 60"

These two (and other) ways of defining inaccuracy are essentially semantically
equivalent. However, choosing § = ”‘T“ enables us to express the efficiency guarantees
of the second-price mechanism more easily in all our models of costly knowledge.

e Inaccuracy-Based Cost. Of course, a player i’s cost for refining a knowledge interval
[a, b] could be defined as a function of the interval’s uncertainty, rather than its
inaccuracy, but we find the latter choice more meaningful. For instance, consider two
possible knowledge intervals for i: [100,200] and [108, 10® + 100]. In both cases, the
uncertainty is 100. Intuitively, however, the effort required from i to determine
whether 6; is in the first half of the interval (or not) is much smaller in the first case
than in the second.

e Simplicity vs. Robustness. In general, given a short interval [a, b], a player i may
rarely be sure that his true valuation 6; belongs to [a, b]. The situation, however, is
very different if [a,b] is an interval that ¢ obtains after investing a lot of effort in
learning 6;.! In any case, in the classical model, 7 is assumed to know 6; exactly.
Accordingly, even perfect self knowledge could be achievable (although without cost,
or via a process preceding the execution of a given mechanism).

Still, when 6; lies very very close to the middle, m, of i’s current knowledge interval,
it may be unlikely that, by means of a single (and possibly low-cost) step, 7 can
disambiguate whether §; < m or not. Indeed, our main reason to analyze first the
basic knowledge model is conceptual and calculation simplicity, not robustness.

As we shall see in section 5, however, the social-welfare guarantee of the second-price
mechanism remains the same when the refinement of a given knowledge interval
yields an arbitrary interval, of half the size, that continues to include 6;. That is, our
analysis continues to hold in a model that is more robust (in that no point of a
knowledge interval constitutes a “point of discontinuity”), but more complex (indeed,
non-deterministic).

Indeed, for most goods, i can be confident, without investing any effort, that his valuation lies between
0 and one quadrillion dollars. And his subsequent confidence in smaller and smaller uncertainty about 6;
proceeds from the investments he makes to clarify the actual value of 6;.
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o Indiwidualized Costs. As we shall see, two players whose knowledge interval is the
same, may have different costs for refining it.

Rationality It is continuously debated whether players should be modeled as utility
maximizers or as regret minimizers. When all players have available dominant strategies,
the debate is mute, because a dominant strategy is both the only undominated strategy and
the only regret-minimizing one. But when this is not the case, or when dominant-strategy
mechanisms are essentially useless, it becomes important to take into consideration
mechanisms implementing a given social-choice function, both in undominated strategies
and in regret-minimizing ones. After all, utility maximizers will only play weakly
undominated strategies, and regret-minimizers will only play regret-minimizing strategies,
and both sets of strategies are are guaranteed to be non-empty, at least in every mechanism
in which every player has finitely many pure strategies (hardly a restriction in practice).

In light of our model, of course, the classical notions of an undominated strategy and a
regret-minimizing strategy are naturally extended so as also to take into account the
set-theoretic knowledge the players have about themselves.

A First Result

Our main aim is to put forward a new model, more precisely, a new class of models. But
when proposing new models, it is also important to prove that they are amenable to
rational analysis.

Our only theorem, for now, proves that the second-price mechanism can be analyzed in all
our costly knowledge models, and, in fact, continues to guarantee high social welfare in
regret minimizing strategies.

In light of the set-theoretic self uncertainty a player faces in our model, it is natural for
him to act so as to minimize his regret. Nonetheless, we find it important to point out that
no mechanism can hope to deliver significant social welfare in dominant strategies or in
undominated strategies. For notational simplicity, let us point out both facts, assuming
that there are just two players.

Denote by I; the initial knowledge of a player ¢. Then,

For all two-player dominant-strategy mechanism M (in which each player has a
strategy guaranteeing him utility at least 0, all refinement costs are incurred by the
players, and all payments are made by the players) and for all possible I} and I, there
exist true valuations 0, € I and 0y € I, for which M misses the mazrimum social
welfare at least by the length of I, N I.

The above statement implies that the performance of any dominant-strategy mechanism is
quite poor in what we consider the typical case: namely, when the players have essentially
the same initial knowledge [a, b], so that the length of the intersection of their initial
knowledge is approximately b — a. In fact, when this is the case, the above statement
implies that no dominant-strategy mechanism can do better than assign the good to a
random player. The above statement is not hard to prove: indeed, its proof is sketched in
this footnote.?

2First, it is easy to show that the revelation principle holds in our model. Accordingly, we might focus



Unfortunately, the impossibility of guaranteeing significant social welfare also applies in
practice to undominated-strategies mechanisms. In fact, as long as they are finite (i.e.,
assigning finitely many pure strategies to each player?), such mechanisms cannot guarantee
a social welfare higher than that obtainable by assigning the good to a random player.
More precisely,

For all finite mechanism M (probabilistic or not), all £ > 0, all € € (0,£), and all
initial knowledge such that I; and I_; whose self uncertainty is £ and whose
intersection has length €, there exist a profile of true valuation 6 and a profile s of
undominated strategies for which M misses the mazimum social welfare by £ — £/2.

The proof of this second statement easily follows from the Undominated Intersection
Lemma (i.e., lemma E.1) of [12].4

Since dominant- and undominated-strategy mechanisms are not very useful, we now
consider regret and show that it is possible to guarantee excellent social welfare in
regret-minimizing strategies. In fact, without having to look very far, we prove that it
suffices to consider the second-price mechanism!

Theorem 1 (Informal): For all initial knowledge intervals [a;, b;], if the players are regret
minimizers, then the second-price mechanism misses the actual mazimum social welfare
by at most O(\/bmax), that is, the square root of the mazimum possible initial valuation.

A precise statement of Theorem 1 and a sketch of its proof, relative to our first costly
knowledge model, can be found in section 4. Extensions of Theorem 1 to our other costly
knowledge models are discussed in section 5.

Remark

We note that, due to a lemma of [10], our main result also continues to hold when the
players are utility maximizers who resort to regret minimization solely to refine further
their set of undominated strategies (if it indeed contains multiple strategies).

2 Related Work

Our model of self-uncertainty can be considered a special case of the one put forward a
century ago by Knight [27], and later on refined by Bewley [3]. In their model, the only
knowledge of a player i consists of a set of distributions, from one of which 6; has been
drawn. (Indeed, since our utility functions are convex, a risk-neutral player i« may de facto

our attention to direct dominant-strategy truthful mechanisms (i.e., mechanisms in which each player i is
allowed to report an interval, and reporting truthfully I; is i’s best strategy). Second, it is trivial to show
that a dominant-strategy truthful mechanism that does not inject money into the system and providing each
player with a strategy guaranteeing him a non-negative utility will never (i.e., no matter what the players’
reports may be) refine the knowledge of any player. Third, and finally, it is trivial to check that our result
statement holds when the mechanism does not refine the player’s knowledge.

3This technical restriction is very mild in practice, since de facto players have finitely many strategies.
Certainly this is the case for all mechanisms played via computers.

4In our setting, this powerful lemma can be informally simplified as follows. If I; and I/ are two intervals,
representing the knowledge of a player i about herself, containing at least two valuations in common, then
i’s corresponding set of undominated strategies contain at least one strategy in common.
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shrink each such distribution to its expected value, so that his knowledge about himself
consists of a set, that is, the mentioned generalization of our self-uncertainty model.)
Knightian uncertainty, however, does not envisage the possibility of decreasing uncertainty
at a cost.

Knightian uncertainty has been extensively studied in decision theory, see for example

[¥, 18, 35, 34, 16, 39, 22, 31, 5, 4]. There is also a quite rich literature on equilibrium with
incomplete preferences (e.g., [32, 21, 41, 20, 37]) and on ambiguous mechanisms (e.g.,

[17, 6]). All this literature, however, is not directly relevant to our work.

A mechanism for rent extraction with Knightian uncertainty has been studied by Lopomo,
Rigotti and Shannon [29], but in a model quite different from ours, and without
considering any notion of knowledge refinement. (See also [30].)

Kiekintveld et al. [26] study a two-player Stakelberg game in which a defender needs to
allocate his resources when he has uncertainty, also modeled as an interval, about the
attacker’s payoffs. However, the authors do not envision any self uncertainty for the
defender or the attacker, nor any way to reduce this uncertainty, with or without cost.

Our model of self-uncertainty (generalized from intervals to sets) actually coincides with
that used by Chiesa, Micali, and Zhou to analyze single-good auctions [9] and multi-unit
auctions [12] in undominated strategies, as well as unrestricted combinatorial auctions,
both in undominated strategies and in regret-minimizing ones [11]. They too, however, do
not consider any type of knowledge refinement.

In a distributional model, uncertainty reduction, with or without cost, has been studied by
Thompson and Leyton-Brown for a variety of auctions [43]. The same authors prove, in a
separate paper [44], that, when the players can refine their own valuations, dominant
strategy single-good auctions coincide with sequential posted-price auctions. Celis et al.[8]
study revenue auctions in which the players can (non-adaptively) pay an upfront cost and
reduce their own uncertainty to a predetermined desired level. Celis et al. [7] investigate
revenue maximization in auctions in which a buyer (1) knows a distribution from which his
own true valuation has been drawn, and (2) can, at a cost, privately refine his distribution.
However, these works’ uncertainty is not Knightian like ours. Indeed, they assume that
every player knows the distribution from which his true valuation has been drawn, and can
elicit a signal allows him to further constrain this distribution.

The the notion of regret minimization was introduced by Savage [38] (reinterpreting Wald
[45]) and refined by Milnor [33] and recently Stoye [42]. Many empirical works provide
evidence of regret minimization, for instance [2, 14, 13, 25]. Coricelli et al. [15] actually
argue that neurological evidence exists for human propensity for regret minimization.
Regret minimization has been used to analyze mechanisms, for instance in

[28, 19, 40, 24, 36]. Halpern and Pass [23] put forward the solution concept of iterated
regret minimization, and argue that it is indeed a compelling one. Our solution concept lies
between traditional and iterated regret minimization. In the latter concept, the players
assume that their opponents are regret minimizers. In ours, the players assume nothing
about their opponents’s rationality.



3 Preliminaries

Below we define our refinable knowledge model as a costly version of the basic binary
search process. (More general models are considered in Section 5.)

3.1 The Basic Costly Knowledge Model

For each player 7 € N,
e The true valuation of i, 6;, is a non-negative real.
A knowledge interval for 7 is an interval of non-negative reals containing 6;.

If [a, b] is such an interval, then its uncertainty is b — a, and its inaccuracy is Qgﬂ.

R; is the refining function that, given a knowledge interval I, of ¢, I = [a, b], returns
[a, 28] if 6; < =£2 and [%£%,b] otherwise.®

We refer to each evaluation of R; as a refinement, to the interval R;(I) as a refinement
of I, and to evaluating R; on I as refining I. When the player i is clear, we may write

R instead of R;.

Player i starts with an initial knowledge interval, denoted by I? = [a?, b9] or more
simply by I; = [a;, b;].

The knowledge of i after t refinements, It = [a}, bf], is the interval obtained from I; by
iterating ¢ times the function R. (Le., I} = R(I;), I} = R(R(L})), ...)

i’s cost for refining an interval I of inaccuracy 6, Cy(I), is ¢, where ¢; is a positive
constant known to 7.

e Self Uncertainty. In our model, a player i has no information about the true
valuations of his opponents. Moreover, at each point in time, the only information he
has about his own true valuation of the good, 6;, consists of an interval [a, b]
guaranteed to contain ;. We refer to such an interval [a, b] as i’s (current)
“knowledge interval”, or more simply as 7’s (self) “knowledge”, to b — a as i’s current
(self) uncertainty, and to the ratio § = 232, if [a, b] # [0,0], as the inaccuracy of i’s
knowledge, or the interval [a, b].

e Refinements. A player i has always the option of refining his current knowledge,
[a, b], at a cost C;(a,b). By exercising this option, i’s new knowledge becomes [a, “T“’]

if §; < 2¥°, and [%E, b] otherwise.

(Of course, [“T“’, b] implies that 6; € (2£2, ], but for uniformity sake all knowledge
intervals are closed.)

e (Costs. A player’s refinement cost is proportional to the inaccuracy of his knowledge.
If the inaccuracy of [a,b] is 6, then Cj(a,b) = %, where c; is a player-dependent
positive constant.

5More precisely, but “less uniformly”, if R([a,b]) = [%£2,b], then 0; € (a£b, b].



3.2 Single-Good Auctions in Our Model

As usual, an auction consists of (1) a context, specifying the set of possible outcomes, the
players (including their initial knowledge), and their preferences over outcomes, and (2) a
mechanism, specifying the players’ strategies and how strategies lead to outcomes.

Our Contexts

e An outcome consists of
— an allocation, a profile of bits a, >, a; < 1, where for each player 4, a; = ¢ if and
only if the good is allocated to %;

— a profile of prices, p € R™; and

— a profile of total refinements, r, where r; is the number of times player i has
refined his knowledge.

e The utility of a player 4, with valuation v; and initial knowledge I?, for an outcome
w= (a,p,T), is

Our Mechanisms

We consider mechanisms in which (like in the second-price mechanism), each player 4
reports a bid 8; > 0 simultaneously with his opponents. However, i’s set of pure strategies,
S;, does not coincide with the set of possible bids, Rxq, but with the set of strategies in the
single-player extensive-form (sub)mechanism pictorially described below

Figure 1: The Bidding Submechanism of Player 7

That is, in the bidding submechanism of player 4, the decision nodes, Dy, D;, ..., are
pictorially represented by “empty circles” and correspond to the number of times 7 has
refined his knowledge interval. The terminal nodes are represented by “full circles”, and
correspond to #’s actual bids.

A bit more precisely,



e Player 7 starts executing his bidding submechanism at the decision node Dy, the
“root”, where the information available to him consists of his initial knowledge, I?.

e At every decision node D;, the information available to ¢ consists of the knowledge
interval I}, and ¢’s action set is {R;} U Rxo.

e At a decision node Dy, if he chooses an action 3; € R>¢, then ¢ terminates executing
his bidding submechanism and reports only the bid §; to the mechanism. Else (if 4
chooses the refining action R;), the decision node Dy, is reached and the bidding
submechanism continues.

In every auction mechanism we consider, the underlying bidding mechanism for each player
i is as above. Accordingly, the set of all pure strategies of 7, S;, always coincides with the
set of all functions from {Dg, D1, ...} to {R;} URxo.

The outcome of a mechanism M under a strategy profile s (i.e., the outcome produced by
M relative to the bid profile 8 corresponding to s) is M(s).

3.3 Regret

In a mechanism M, relative to ¢’s initial knowledge I,
e i’s regret for a strategy s; € S; is

P
regi;(I;,s;) = max max  max
v eI S_;€ES_; SQGS,'

w; (vi, M (85, 8-5)) — wi(vs, M (si, 5-4)).
e i’s set of regret-minimizing strategies is

REG;(L,) £ {si‘: s; = argminreg;([;, s;)}.

s;ESi

The set of all profiles of regret-minimizing strategies of M, relative to an initial knowledge
profile 1, is

REG(I) £ REG,(I,) x -+ - x REGy(I,).

3.4 Social Welfare

As usual, social welfare and maximum social welfare are defined relative to the true
valuation profile 6 (independent of the fact that in our model each player ¢ may have
inaccurate knowledge about his own 6;.) Indeed, The social welfare of an outcome
w=(a,p,T) is

SW(w) £ 6; if a; =1

The maximum social welfare is

MSW 2 max SW(w) = max6;.
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4 A First Theorem

The (Non-Deterministic) Second Price Mechanism®

The second price mechanism is the normal form mechanism non-deterministically
allocating the good to a player reporting the highest valuation, and choosing the price of a
player ¢ to be the second highest reported valuation, if the good has been allocated to ¢,
and 0 otherwise. '

Notation

We denote the second-price mechanism by SP, the set of players by /V, the number of
players by n, and let —i = N \ {3} for every player i.
Relative to an initial knowledge profile 7= (a,b,.... @b, lexicographically breaking ties if
needed, let

¢ £ argmax c;b;.

ieN

(As we shall see, ¢ is the player with the highest final uncertainty. That is, the player
which, at the decision node in which he finally decides to bid rather than refining his own
knowledge, has the longest knowledge interval. The length of that interval will actually be

2\ / C¢b¢.)
Theorem 1 In the basic costly knowledge model, for all initial knowledge profiles

I = ([a1,b1],-..,[an,bs]), all true valuation profiles 6 € [ay,b1] X - -+ X [an, by], and all
strategy profiles s € REG(I),

SW(S]P(S)) Z MSW — 2\/ C¢b¢.

Proof Sketch

We begin by proving that the set of regret-minimizing strategies of each player i,
REG;(I;), consists of a single strategy, s;, and actually explicitly computing such s.

To this end, assume for a moment that knowledge refinement is no longer an option, and
- consider a regret minimizing player ¢, whose (current) knowledge interval is I} = [a], b{].
Then, ¢ must, for each possible bid ], reg;(I], 5;), and report a bid

B: € argmin reg;(I}, 3;)-

3

ali+b,
Lemma 1 8 = .

Proof of Lemma 1.
We prove Lemma 1 by considering the function reg;(I},-) and showing the following two
properties:

6Should the second-price mechanism break ties deterministically, or at random, regret may not be well
defined. (In particular, there may not be a strategy subprofile for a player i’s opponents which maximizes
i’s regret. Even relying on suprema, rather than maxima, is problematic.)

11



(a) reg;(I],-) is strictly decreasing in the domain [O, gI";r—bl"']; and

(b) regi(Il,-) is strictly increasing in the domain [%;—b/i, oo).

Proof Sketch of Property (a).
Consider a generic bid a;, 0 < o; < 3';—1’1

Let @;, @_;, and 6; respectively be a bid of i, a bid subprofile of the opponents of i, and a

valuation of 7 in [a}, b]] “achieving the regret of ;. That is,

(@, @, 0;) € argmax u;((o, 0’ ;), 05) — wi((as,0’,), 6)).

(og,0;,67)

It can also be seen (by a tedious case analysis) that for any such @;, @_;, and 8;,
max Gj=q;, G=a;+1, and 6; =1
1€—1

Thus, the second price mechanism

e under the strategy profile (o;, @_;), may assign the good to an opponent of i, so that

i’s (worst case) utility is 0, and

e under the strategy profile (@;, @_;), assigns the good to i, so that ¢’s utility is b} — «;.

Accordingly,
reg; (I}, o;) =
wi((@, @), 0:) — uil(ew, @), 0:) =
b, — .

The above equality indeed shows that reg;(I], o;) decreases with «;.

O

(1)

Since the bid o; could coincide with §f = %;—b/i, our last equality also shows that the regret
of BF is
b —a'
regi(I}, B7) = 2=,

Proof Sketch of Property (b).
The proof of property (b) is essentially symmetric to that of property (a).”

Since properties (a) and (b) hold, so does Lemma 1.

Consider now the following two options for a regret-minimizing player whose current
knowledge interval is [a], b]].

"In particular, max o =0, 0 =a; — 1, and 6; = aj.
J€e—1

12



e Option 1: i bids immediately without any refinement.

Accordingly, lemma 1 tells us that 4’s bid is 3. Thus, equation (1) implies that 4’s
regret in this option is %%, that is, half of his current uncertainty.

o Option 2: 1 refines his knowledge once, and then bids.
By so doing, his total regret would be the sum of (1) the cost of the refinement and
(2) the regret of bidding after he learns his new knowledge interval [a!, b]]. By
definition, the above cost is b,c—”_bGT And again by Lemma 1 and equation 1 the above

regret is ?—‘;—0’1 (because the refinement halves i’s original uncertainty).

Accordingly, ¢ will choose option 2 if and only if

c;b; +b§—a; - b, — a
b, — a] 4 2

That is, after some manipulations, if and only if

Applying this principle from the very beginning of 7 sub-mechanism, when i’s knowledge is
(in our notation) [a;, b;], we see that ¢ has a single regret-minimizing strategy, s!, so
defined: For all decision node D,

R; if bt — al > 24/¢;bt

at+b? .
ot otherwise.

5;(Dy) = {

Having understood the unique regret minimizing strategy s! of each player i, we are ready
to finish sketching the proof of our theorem. The best way to do so is pictorially.

It is easy to see that the worst scenario for the realized social welfare of the second-price
mechanism is that illustrated in the figure below.

B ./—N_\
= r : == - S
[ o = A o | = | -
M-—'—'\/—'—-—/: Po
Nonw
Figure 2:

In the above picture, red is the color associated to the player with the maximum true
valuation, player m. The red interval represents m’s “final knowledge”, [a},, bl ], that is the
knowledge interval of m when, executing the strategy s, he decides to place the bid 37,.
(Indeed notice that /3, lies in the middle of m’s final knowledge.) The red dot indicates the
actual value of his true valuation within this interval. The corresponding “situation” for
the player with the highest final uncertainty, player ¢, is instead depicted in blue. Our

13



analysis of the regret-minimizing strategies s}’s guarantees to upper-bound the length of
the red interval in terms of m’s initial knowledge interval: that is,

by, — ap < 24/ Cmbm.

Analogously, the length of the blue interval is upper-bounded in terms of ¢’s initial
knowledge interval as follows:

b;;, - 0,:; S 2 C¢,b¢.
The fact that the blue dotted line is slightly on the right of the red dotted line wants to
indicate that 83 > f;,. Accordingly, the good is allocated to ¢, so that the social welfare
actually realized by second-price mechanism in this case is /cgby + v/Cm by, smaller than the

maximum one. Since, by definition, c4by > cmbr,, We conclude that, as we wanted to show,
SW(SIP(S*)) Z MSW — 2\/ C¢b¢.
|

5 Generalizations

Alternative Choices of Inaccuracy

As already mentioned, another natural choice for the inaccuracy of a knowledge interval
[a,b] is &' = =4
A slightly more general choice is
_ b—a

9i([a, )
For such ¢”,8 the social-welfare guarantee of the second-price mechanism of course continues
to be expressed in terms of the players’ longest “final knowledge interval”: namely,

SW(SP(s")) > MSW — max 2+/c; - gi([af, b]]).°

177

6//

A General Notion of Inaccuracy

At the highest level, we believe that a function f provides a suitable definition of
inaccuracy if it satisfies the following three conditions: for all knowledge intervals [a, b],
[d’,b], and [a, a’] such that 0 < a < a’ <,

L f([a’ b]) € (O> 1];
2. f([a,8]) > f([a’,b]); and
3. f(la,a']) < f([a, b]).

8And continuining to assume that the cost of refinement is proportional to the inaccuracy, that is,
Ci([a, b)) = -

9That is, in the above inequality, as in our proof sketch of Theorem 1, [aF,b}] continues to denote the
knowledge interval of player i when, executing his regret-minimizing strategy s}, he decides to bid rather

than refining his knowledge. In other words, [a;, b;] is the longest knowledge interval [a, b] of 7 such that

e [a,b] is contained in #’s initial knowledge interval, and

e 2./¢c;- gi([a,b]) > (b—a).
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Inaccuracy-Lowering Refinements

In one-dimensional problems, the solution space consists of an interval, and binary search
proceeds by shortening the solution space (by a fixed amount).

The problem is also one-dimensional in our setting: indeed, every player seeks to figure out
his own true valuation in his current knowledge interval. To mimic binary search as close
as possible, we have considered refinements that yield knowledge intervals of shorter
lengths. Of course decreasing the length of a knowledge interval by a precise amount also
implies decreasing its inaccuracy, but not by a predictably precise amount. Thus, still in
the spirit of binary search, one may consider refinements explicitly aimed at decreasing the
inaccuracy of a knowledge interval by a given amount. After all, inaccuracy may be a more
meaningful dimension to consider in general, not just for meaningfully defining refinement
cost.

Accordingly, still within a set-theoretic framework, letting [a, b] be a knowledge interval for
a player ¢ and § be its inaccuracy, let us discuss the following two costly knowledge models
that focus on decreasing inaccuracy.

1. The Accuracy-Bisecting Model. In this model, at a cost of C (a,b) = %, Ri([a,b])
returns an arbitrary knowledge interval of ¢ of inaccuracy 2

Fortunately, essentially the same proof of Theorem 1 shows that, once again, the
social welfare guarantee of the second-price mechanism is

SW(SP(s*)) > MSW — 24/c4be.

2. The Chosen-Accuracy Model. In this model, for every chosen &’ < 4, ¢ can, in a single
step, refine [a, b] to obtain an arbitrary knowledge interval whose inaccuracy is &'

A reasonably natural choice for the cost of such a refinement is to be proportional to
the difference of the new and the old inaccuracy: that is, to be equal to

1 1
C; - 5 - 5 .
In this model and cost function, essentially the same proof of Theorem 1 (with only a

different algebraic manipulation) shows that the social welfare guarantee of the
second-price mechanism again is

SW(SP(s*)) > MSW — \/2cgbs.

General Cost Functions

Abstractly, we believe that every cost function in the chosen-accuracy model should
satisfy the following conditions: let 1 > § > ¢ > ¢” > 0, then

1. Cost is always positive.
C(6,8") >0

15



2. Cost function must satisfy triangle inequality.
C(6,8)+C(&,8") > C(4,8").
3. Cost increases with initial inaccuracy.
C(6,8") > C(d',8").10
4. Cost decreases with desired inaccuracy
C(6,8") > C(5,8).11
and, preferably only,

5. Totally erasing uncertainty has infinite cost.

C(4,0) = oo.

General Inaccuracy and General Cost

Finally, let us consider the chosen-accuracy model, with general inaccuracy and general
cost function, and denote by by R the non-deterministic function that, given a knowledge
interval of ¢ of inaccuracy 6 > ¢’, returns an arbitrary knowledge (sub)interval of i of
inaccuracy &’.

In this general model, a player i may have multiple regret-minimizing strategies. Let s¥ be
one such strategy, [a}, b] the knowledge interval of ¢ at a decision node D?, § the inaccuracy
of [af,b?]. Then an argument similar to that used in our proof sketch of Theorem 1 shows
that

o s}(D") =R
if there exists ¢’ € (0, ) such that

bl — af > max (2C;(6,8') + (b— a))
(a,b]eT

where 7 is the set of all subintervals of [af, b%] which contain 6; and whose inaccuracy
is 0"
10Equivalently, for differentiable cost functions,

8C(s, ')
36

>0

N Equivalently, for differentiable cost functions,

8C(5,6")

s <O-
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e si(DY) = Efg_bf; otherwise.
It is then clear that the social-welfare guarantee of the second-price mechanism continues
to have the following form

SW(SP(s*)) > MSW — max(b; — a}).
: 7

Above, once again, [a}, b}] is player ¢’s final knowledge interval, relative to the strategies s,
in the current model.

Refining Our Knowledge About Our Opponents

In general, a player ¢ may also have some knowledge about the valuations of his opponents.
Initially, such knowledge of ¢ may be very coarse, but again ¢« may be able to refine it,
although at a cost potentially much higher than that he needs to refine his knowledge
about his own valuation.

(For instance, 7 may hire some employees of his opponents, and analyze the data they
report. Alternatively, he may collect financial data about his opponents from the public
domain, an operation that may be very expensive, since ¢ does not know exactly where to
look for the relevant data). '
In principle, for the second-price mechanism, by refining a little his knowledge about the
valuations of his opponents, ¢ may save the money necessary to refine a lot his knowledge
about himself. For instance, by incurring a modest cost, ¢ may learn than the minimum
valuation of one of his opponent is larger than any valuation he may have, in which case, ¢
should not invest a penny in improving his knowledge about his own valuation. Yet, even if
¢ has the ability to refine his knowledge about his opponents at a cost, it can be seen that
1’s regret-minimizing strategy never takes advantage of this ability.

We believe, however, that a sufficiently general costly knowledge model should include a
player’s ability to refine his knowledge about his opponents, and that such an ability will in
fact be crucial when properly analyzing some complex mechanisms.

6 Conclusions

In general, knowledge has a cost. Accordingly, we cannot always count on the players
having already paid the cost necessary to exactly learn their valuations prior to playing the
mechanisms we design.

Including the players’ cost of knowledge acquisition in the analysis of a mechanism may
thus make our predictions about the outcomes the mechanism produces more realistic and
accurate.

Distilling costly knowledge models that are more realistic than the ones considered in this
paper may be challenging. And so may be the analysis of new and old mechanisms in such
models. We welcome both challenges.

17



References

[1] AUMANN, R. J. Utility theory without the completeness axiom. Econometrica 30, 3
(July 1962), 445-462.

[2] BECK, M. J., CHORuUS, C. G., ROSE, J. M., AND HENSHER, D. A. Vehicle
purchasing behaviour of individuals and groups: regret or reward? Journal of
Transport Economics and Policy (JTEP) 47, 3 (2013), 475-492.

[3] BEWLEY, T. F. Knightian decision theory. Part I. Decisions in Economics and
Finance 25, 2 (2002), 79-110. Earlier version appeared as a discussion paper no. 807
of the Cowles Foundation at Yale University, November 1986.

[4] BOoDOH-CREED, A. L. Ambiguous beliefs and mechanism design. Games and
Economic Behavior 75, 2 (2012), 518-537.

[5] BOsE, S., OzDENOREN, E., AND PAPE, A. Optimal auctions with ambiguity.
Theoretical Economics 1, 4 (December 2006), 411-438.

[6] Bosg, S., AND RENOU, L. Mechanism design with ambiguous communication
devices. Econometrica 82, 5 (2014), 1853-1872.

[7] CELs, L. E., GKLEZAKOS, D. C., AND KARLIN, A. R. On revenue maximization
for agents with costly information acquisition. In Automata, Languages, and
Programming. Springer, 2013, pp. 484-495.

[8] Ceus, L. E., KARLIN, A. R., LEyTON-BROWN, K., NGQUYEN, C. T., AND
THOMPSON, D. R. M. Approximately revenue-maximizing auctions for deliberative
agents. In AAAI (2012).

[9] CHiEsA, A., MICALI, S., AND ZHU, Z. A. Mechanism design with approximate
valuations. In Proceedings of the 3rd Innovations in Theoretical Computer Science
conference (2012), ACM, pp. 34-38.

[10] CHIESA, A., MICALIL, S., AND ZHU, Z. A. Bridging Utility Maximization and Regret
Minimization. ArXiv e-prints (Mar. 2014).

[11] CHiEsA, A., MIcALL S., AND ZHU, Z. A. Knightian self uncertainty in the vcg
mechanism for unrestricted combinatorial auctions. In Proceedings of the fifteenth
ACM conference on Economics and Computation (2014), ACM, pp. 619-620. For a
full version of the paper, see
http://people.csail.mit.edu/zeyuan/paper/2014~EC.pdf.

[12] CHiEsA, A., MICALL, S., AND ZHU, Z. A. Knightian analysis of the vickrey
mechanism. Will appear in Econometrica (2015).

[13] CHORUS, C. Random regret minimization: an overview of model properties and
empirical evidence. Transport Reviews 82, 1 (2012), 75-92.

18



[14]

[15]

[16]

[17]

18]

[19]

[20]

21

[22]

[23]

[24]

[25]

[26]

CHoRrus, C. G., AReENTZE, T. A., AND TIMMERMANS, H. J. Spatial choice: a
matter of utility or regret. Environment and Planning Part B 36, 3 (2009), 538-551.

CoricELLI, G., CRITCHLEY, H. D., JorriLy, M., O’DOHERTY, J. P., SIRIGU,
A., AND DoLAN, R. J. Regret and its avoidance: a neuroimaging study of choice
behavior. Nature neuroscience 8, 9 (2005), 1255-1262.

DANAN, E. Randomization vs. selection: How to choose in the absence of preference?
Management Science 56 (March 2010), 503-518.

D1 TiLio, A., Kos, N., AND MESSNER, M. The design of ambiguous mechanisms.
Tech. rep., 2012.

DuBRrA, J., MAcCCHERONI, F., AND OK, E. A. Expected utility theory without the
completeness axiom. Journal of Economic Theory 115, 1 (March 2004), 118-133.

ENGELBRECHT-WIGGANS, R. The effect of regret on optimal bidding in auctions.
Management Science 35, 6 (1989), 685-692.

FonN, V., AND Ot1ANI, Y. Classical welfare theorems with non-transitive and
non-complete preferences. Journal of Economic Theory 20, 3 (June 1979), 409-418.

GALE, D., AND MAS-COLELL, A. An equilibrium existence theorem for a general
model without ordered preferences. Journal of Mathematical Economics 2, 1 (March
1975), 9-15.

GILBOA, 1., AND SCHMEIDLER, D. Maxmin expected utility with non-unique prior.
Journal of Mathematical Economics 18, 2 (April 1989), 141-153.

HALPERN, J. Y., AND PAss, R. Iterated regret minimization: A new solution
concept. Games and Economic Behavior 74, 1 (2012), 184-207.

HyAFIL, N., AND BOUTILIER, C. Regret Minimizing Equilibria and Mechanisms for
Games with Strict Type Uncertainty. In Proceedings of the 20th conference on
Uncertainty in artificial intelligence (July 2004), pp. 268-277.

JosepHS, R. A., LARRICK, R. P., STEELE, C. M., AND NISBETT, R. E.
Protecting the self from the negative consequences of risky decisions. Journal of
personality and social psychology 62, 1 (1992), 26.

KIEKINTVELD, C., IsLaM, T., AND KREINOVICH, V. Security games with interval
uncertainty. In Proceedings of the 2018 international conference on Autonomous
agents and multi-agent systems (2013), International Foundation for Autonomous
Agents and Multiagent Systems, pp. 231-238.

KNIGHT, F. H. Rusk, Uncertainty and Profit. Houghton Mifflin, 1921.
LINHART, P. B., AND RADNER, R. Minimax-regret strategies for bargaining over

several variables. Journal of Economic Theory 48, 1 (1989), 152-178.

19



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Lopomo, G., RIGOTTI, L., AND SHANNON, C. Uncertainty in mechanism design,
2009. http://www.pitt.edu/~luca/Papers/mechanismdesign.pdf.

LopoMo, G., RIGOTTI, L., AND SHANNON, C. Knightian uncertainty and moral
hazard. Journal of Economic Theory 146, 3 (2011), 1148 — 1172. Incompleteness and
Uncertainty in Economics.

MACCHERONI, F., MARINACCI, M., AND RUSTICHINI, A. Ambiguity aversion,
robustness, and the variational representation of preferences. Econometrica 74, 6
(2006), 1447-1498.

MAS-COLELL, A. An equilibrium existence theorem without complete or transitive
preferences. Journal of Mathematical Economics 1, 3 (December 1974), 237-246.

MILNOR, J. W. Games against nature. In Decision processes, R. M. Thrall, C. H.
Coombs, and R. L. Davis, Eds. John Wiley & Sons, Inc., 1954.

NAsciMENTO, L. Remarks on the consumer problem under incomplete preferences.
Theory and Decision 70, 1 (January 2011), 95-110.

Ok, E. A. Utility representation of an incomplete preference relation. Journal of
Economic Theory 104 (2002), 429-449.

RENOU, L., AND ScHLAG, K. H. Minimax regret and strategic uncertainty. Journal
of Economic Theory 145, 1 (Jan. 2010), 264—286.

RicoTTIi, L., AND SHANNON, C. Uncertainty and risk in financial markets.
Econometrica 73, 1 (01 2005), 203-243.

SAVAGE, L. J. The theory of statistical decision. Journal of the American Statistical
association 46, 253 (1951), 55-67.

SCHMEIDLER, D. Subjective probability and expected utility without additivity.
Econometrica 57, 3 (May 1989), 571-87.

SELTEN, R. Blame avoidance as motivating force in the first price sealed bid private
value auction. In Economics Essays in Honor of Werner Hildenbrand. Springer, 1989,
pp. 333—-344.

SHAFER, W., AND SONNENSCHEIN, H. Equilibrium in abstract economies without
ordered preferences. Journal of Mathematical Economics 2, 3 (December 1975),
345-348.

STOYE, J. Axioms for minimax regret choice correspondences. Journal of Economic
Theory 146, 6 (2011), 2226-2251.

THOMPSON, D. R. M., AND LEYTON-BROWN, K. Valuation uncertainty and
imperfect introspection in second-price auctions. In PROCEEDINGS OF THE
NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (2007), vol. 22,
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, p. 148.

20



[44] THOMPSON, D. R. M., AND LEYTON-BROWN, K. Dominant-strategy auction design
for agents with uncertain, private values. In AAAI (2011).

[45] WALD, A. Statistical decision functions. The Annals of Mathematical Statistics 20, 2
(1949), pp. 165-205.

21



