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ABSTRACT

Brachiation is a means of locomotion for lightweight apes like gibbons. It involves the animal
swinging its arms to gain moment and swing forward. A large amount of research has been done
studying a simplified two-link two DOF robot, named “acrobot” by Mark Spong. While the
problems of this robot have been studied extensively, it’s functionality is quite limited. This
paper studies a three-link three DOF brachiating robot, dubbed “Y-bot”. The goal of adding the
extra link is to add functionality.

Simulations of a model were run in Matlab taking advantage of Russ Tedrake’s toolbox Drake,
which was designed to solve optimization problems of underactuated systems. The main method
used in the trajectory optimization was direct collocation. The task of the robot in the simulations
was to swing from a one “branch” point to another. The trajectories of two Y-bot models
swinging from rest were optimized. Furthermore, the gait of one of the models was examined,
and a beneficial state for the second swing of a gait was suggested. A method to optimizing the
gait of a model was proposed. A linear relationship between the total trajectory time and the
scale of the model was defined.

The paper suggests a physical model of the Y-bot could be constructed using Saito’s two DOF
brachiating robot as a benchmark. The problems of gait optimization and payload transportation
were mentioned as future work to be done.

Thesis Supervisor: Sangbae Kim
Title: Associate Professor of Mechanical Engineering
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1. Introduction

1.1 Brachiation Description

Brachiation is a means of locomotion for animals which involves an arm under arm
swinging motion. Arguably the best animals at brachiating are gibbons, smaller long-limbed apes
from Southeast Asia. Compared to other apes, these gibbons have relatively light bodies, which
makes brachiation a suitable means of locomotion for them. Through brachiating, they are able
to use the momentum of their falling arm to swing them forward from branch to branch. All apes
are able to brachiate to some level, but because branches often will not support the heavy bodies
of the larger apes, the larger animals are rarely seen moving in this way. Even humans, although
we have developed smaller muscles in our upper bodies, are able to brachiate (like a child
playing on monkey bars) [1]. This slower swinging can be seen in Fig 1.1. In certain cases,
gibbons have been seen flinging themselves forward through the air to move through the forest
faster, while maintaining a similar rhythm and arm under arm motion as the slower movement

[2):
1.2 Previous work

Brachiating robots that have been developed by multiple researchers are typically
simplified two degree of freedom robots consisting of two links connected by a revolute joint. A
diagram of this model can be seen in Fig. 1.2. The main actuator in the robot is fixed to this
‘elbow’ joint, which actuates the second joint. Grippers are attached to the ends of each link to
grip on bars or simulated branches. In experiments, one of the arms grips onto a bar, freely
swinging on it, while the other arm is actuated at the elbow joint. For this brachiation movement,
the robot must take advantage of both the kinematic energy and the potential energy properly in
order to make the swing to the next desired position. It is important to note that since there is
only one actuator controlling the movement of the robot and the robot has two degrees of
freedom, the system is considered underactuated. Underactuated systems provide a host of
interesting challenges that do not come about in fully actuated systems. The first group of
researchers to delve into this brachiation problem were Saito et al. In 1994, the group built a
physical model of the two DOF system mentioned above [3]. A schematic of their robot is shown
in Fig 1.3. In one of their papers, they developed a feed forward controller for swinging from

Figure 1.1: A diagram of a gibbon brachiating, from [4]
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Figure 1.2: A diagram of the Nakanishi e al. 2 DOF brachiating robot, from [6]

one ‘branch’ to the next. While this method proved effective, it required an extensive trial and
error process, requiring over 200 experiments [5]. Researchers in the field like Nakanishi,
Fukuda, and Koditschek thus began to develop feedback controllers to solve various problems
for these brachiation robots [6]. Spong et al. also began working on a controller for the swing-up
problem for the simplified brachiation robot, which they named the “acrobot” [7]. The swing-up
problem requires the robot to swing up to a branch from a hanging position in which only one
gripper is holding a bar. Later, Nakanishi defended his PhD thesis on a developed controller [8].

In 2006, Menezes and Lages [9] began looking at a 3 DOF that would be able to inspect
power lines for failures. They developed a controller implementing nonlinear model-based
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Figure 1.3: The schematic of Saito’s 2 DOF Brachiating Robot, from [3]



predictive control (NMPC) with some success. They found, however, that it was not possible to
use the nonlinear model in real time because of the computational demands. Therefore, they
continued their work and switched to a linear MP, which worked effectively in real time [10].
Fukada et al. [11] examined a much more complex multi-locomotion 24 DOF monkey robot
which was able to walk bipedally, walk quadrapedally, and brachiate. Still, for brachiation
purposes, the system was able to be simplified to a 3 DOF model similar to Menezes and Lages’
model. For control purposes, they used Passive Dynamic Autonomous Control (PDAC). They
were able to have the robot continuously brachiate, but they also used a more complex two phase
locomotion consisting of a stationary swinging action followed by a swinging locomotion action.

In 2012, Askeland [12] did similar work, creating a controller for the simplified model of
the 24 link robot. He designed a MATLAB toolbox based on the theory of orbital stabilization.
The controller was proven to be effective for an inverted pendulum system, but Askeland
explained that further work needed to be done to apply it to the brachiating robot. Recently, a
group out of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL), led by
Russ Tedrake, has developed a different MATLAB toolbox, Drake, that is dedicated to solving
problems like those created by underactuated systems. This powerful toolbox was implemented
in MIT’s humanoid robot entered into the DARPA Robotics Challenge [13].

1.3. 3 DOF Brachiation Robot

In this paper, I present results from simulations of a 3 degree of freedom brachiating
robot similar to the acrobot mentioned above. This 3 DOF robot, or “Y-bot”, has the two “arms”
of the acrobot, with an added link from the elbow acting as the “body.” This Y-bot is similar to
the models used in some of the work mentioned above [6,10,11,12]. This extra link is also
unactuated, meaning there are now two unactuated links and only one actuated link. While 2
DOF brachiation robots provide a good testbed for controls, their functional abilities are limited.
The added link would provide an opportunity for added functionality of the robot. The body link
could be used to simply carry a payload that needed to be transported with the robot. A more
creative concept could involve the free swinging body link actually being another acrobot, with a
fixed shoulder at the Y-bot elbow replacing one of the grippers. Once the Y-bot grippers are
holding the robot in the desired position, the body link acrobot would be able to swing up to a
separate desired point. Menezes and Lages suggested that a similar 3 DOF robot could be used to
inspect power transmission lines [6,10]. Most importantly, this paper suggests a method of
simulation for continuous brachiation of the simplest Y-bot model, which has not been examined
in the works mentioned above. The simulations were completed using the Drake toolbox.



2. Set Up
2.1 Model

The model in Fig. 2.1. was used for the dynamics of this system and the equations of
motion were derived using the Lagrangian method. The parameters of the degrees of freedom are
as follows: 0; corresponds to the shoulder joint angle, 6- corresponds to the angle of the actuated
link 2 relative to link 1, and #; corresponds to the angle of the unactuated body link 3 relative to
link 1. These angles will be expressed as the matrix ¢ = /6; 82 83]7, and the state of the system
will be expressed as the matrix x = /¢ ¢J”. The kinetic energy, 7, and potential energy, V, were
found and plugged into the Lagrangian equations:

L=T-V
d 6L 6L
dtéq o6q

Where the generalized force vector is @ = [0 7 0]" due to the non-actuated links. The equations
of motion can be rearranged into the manipulator equations format:

H@g+Clqqq+g(q) =u

Where H is the 3x3 inertia matrix, C is the 3x3 Coriolis matrix, g is the 3x1 gravity matrix, and u
is the 3x1 control input vector [0 7 0]7. Here, for ease of transcription, trigonometric functions
will be written as sin(@;) = s; and cos(6;) =c;. The elements of H are calculated as follows:

Figure 2.1: The diagram of the Y-bot, modified from []



Hll = Il + 12 + 13 + m2112 + Zmzlllcz + m3112 + 2m3lllC3C3
Hi; = Hyy = L, + mylyl,0c, H3 = H3; = I3 + m3lyl 3¢5
Hy =1, Hy,3 =H3, =0 Hi; =13

The elements of C are calculated as follows:

Ciy = —2mylil 5,4, — 2mslile3s34,
C, = ——‘mzlllczszq2 C13 = “‘m3lllc3SSQ3
C21 = —-mzlllczsqu C31 = _m3lll6353q1

Cp =Cp;3=0C3,=0C33=0
The elements of g are calculated as follows:
911 = glmylersy + my(lysy + lepS12) + ma(lysy + le3sis)]
21 = MalepS12 931 = m3l3sy3

It is important to note that the moments of inertia here are taken about the joint. The moment of
inertia /. is the moment of inertia about the center of mass. The moment of inertia around the
joint of a link i can be calculated using the parallel axis theorem:

I = I + myle?
2.2. Nonlinear Optimal Trajectory Planning Problem

Nonlinear programming is a solving an optimization problem which has either nonlinear
constraints or a nonlinear objective function which is trying to be minimized. These constraints
are a set of equalities or inequalities dealing with the variables in the objective function. Usually
this objective function is some sort of cost function. A standard cost function is the additive cost
model:

T
J = f 9(x(®), (u(®)de
0

Where g(} is the cost at a given time. The goal is to find the control trajectory that minimizes the
cost over the time specified by the limits of integration. If the problem is concave or convex (i.e.
the local minima or maxima are global minima or maxima), then simpler convex optimization
techniques may be used. If, however, the problem is not convex, different strategies must be
employed [14].

2.2.1 Direct Linear Collocation

The method of linear collocation was first suggested by Hargaves in 1987 [15]. He stated
that “the primary advantage of this method is that it is much easier to extend to general problems
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involving [...] state and control inequalities.” The direct collocation method is a way of solving
the ordinary differential equations of the problem numerically, and is a type of Runge-Kutta
method. To start, the system must be described in the following form:

x'(t) = f(x,u,t).

A finite time interval is set and broken into smaller intervals at N break points ¢y, ¢, ..., cn. At
the beginning of each interval [tc; tci+1/, the intial condition is

x(te,) = x; .

It is also possible to impose equalities and inequalities onto the system. The goal of this method
is to find the trajectories x(¢) and u(¢) that minimize a given cost function while satisfying the
constraints and equations above.

This direct collocation method approximates the state at each interval as a cubic
polynomial and the control at each interval as a linear polynomial which satisfy the conditions at
the break points. Both polynomials are described by the values and derivatives at the collocation
points. The derivative of the polynomial at the midpoint of each segment is then taken and
compared to the system’s dynamics at that point. The goal is to minimize the difference between
the two values in order to obtain an accurate solution approximation. Once the state and control
trajectories are completely implicitly defined, they can be minimized according to the cost
function [14,15,16].

2.2.2. Implementation in Matlab through Drake

First, a subclass Y-bot is made under the Drake subclass, Manipulator. The model is
defined as a 3 DOF Manipulator object with the parameters, dynamics, and equations of motion
as calculated above. A separate function within the Y-bot class is made to determine the optimal
trajectory via direct collocation. The Y-bot object is defined as an object in the class
DircolTrajectoryOptimization, a subclass of DirectTrajectoryOptimization. Each subclass under
DirectTrajectoryOptimization must have both a running cost function and dynamic constraints.
The subclass also-has parameters N and durations which are the number of time samples and the
total trajectory time bounds, respectively.

Once the object has been created, state constraints for the initial and final time steps are
added using the function addStateConstraint. At t = 0, the equality state constraint is
implemented as x = [-*/4, /5, ™4, 0, 0, 0], specifying the type with the function
ConstantConstraint. This state corresponds to both grippers holding onto bars a distance \2
times longer than the links, while the body link hangs freely. All the links are at rest. This
position can be seen in Fig 2.2. At ¢ = ¢; the inequality state constraint is [/, ™/, -0, 0, 0, -] <
x <[4, 7/ 0, 0, 0, o], specifying the type with the function BoundingBoxConstraint. This
constraint is essentially only an inequality constraint for the body link, while the two arm links
are effectively subject to an equality constraint. The desired positions and velocities of the two

11



Figure 2.2: Y-bot at initial position x = [-"/4, -*/2, /4, 0, 0, 0]

arms is known: they should be mirrored from the start positions about the vertical axis. The
position and velocity of the body, however, is left unbounded because the link’s final state can be
arbitrary due to the formulation of the problem. Leaving the state unbounded allows us to see the
behavior of the link as the other two links attempt to reach the goal state. For the running cost of
the system, the following function was defined, with the goal to minimize control:

tr
J= f u"Rudt
t

i
where R is a gain matrix.

Now with the object adequately defined, the function So/veTraj in
DirectTrajectoryOptimization uses a solver to solve the nonlinear problem and output the
optimized state and control trajectories. The solver used in these simulations is SNOPT, a piece
of software developed at Stanford [17] . Once the problem has been solved, a subclass of the
Visualizer class is run to create a simple visual of the model moving through the specified
trajectory. The state variables and control values are also plotted against time.

12



3. Simulation and Results

The goal of these simulations was to examine the brachiating behavior of a 3 DOF Y-bot,
a robot very similar to the 2 DOF acrobot. To gain some intuition on the two robots, data from
passive simulations (i.e. with no control) can be examined. When the acrobot is released from a
starting position as seen in Fig 2.2., the two links begin to swing and almost instantly become in
phase with one another. The effect of the Y-bot’s extra link can be seen in its passive simulation.
When the Y-bot is released from a starting position mentioned above in Fig. 3.1.a., the arm that
released its grip begins to swing like the Acrobot but is jolted out of its smooth trajectory by the
inertia of the body link starting. That arm and the body link then begin to swing almost perfectly
out of phase, while the other arm begins to swing with a period 2.5 times the periods of the other
links’ swings (see Fig. 3.1.b.).

3.1. Characteristics of the Equilink Model

The first set of simulations used a Y-bot consisting of 3 links with the same parameters,
hereafter referred to as the equilink model (see Table 3.1. for the parameters of this simulations
model). The goal of the simulation was to find the optimal trajectory that minimized both time
and control. In previous research with acrobots, the desired path was a mirrored trajectory that
had the arms evenly swing after release to the next point [citation]. A similar trajectory which
consisted of a single fluid swing was hypothesized to also be the optimal trajectory for the Y-bot.
After some preliminary simulations, the time constraints on the trajectory solver were set to limit
the trajectory to one fluid swing. The result was a trajectory that reaches its goal state at #r= 1.65
s. The final state of the third link is g3 = [-0.5506 2.1031]. The trajectory of the three links and
the control torque plotted against time can be seen in Fig. 3.2.

3.1.1. Continuous Brachiation

One aspect of the Y-bot to examine is continuous brachiation. An acrobot can easily
swing with a continuous and even gait because each end position of the swing is identical to the
beginning of the swing. The Y-bot, however, has the uncontrolled body link. The final state of
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Figure 3.1: a) The passive trajectory of an acrobot. b) The passive trajectory of the Y-bot
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Mass, m 1kg
Length, / 2m
Moment of Intertia at COM, /c | 0.33 kg'm?
Distance to COM, /- 1m
Viscous friction, b A N-mfs

Table 3.1: The values of the parameters of the each link of the Y-bot used in the equilink simulation.

this extra link must be taken into consideration as it determines what the initial state of the next
swing will look like. The problem now is to find the optimal starting state of the link for the Y-
bot to begin the next swing. For example, if the simulation above began the second swing 0.3 s
after grasping, the robot would not physically be able to swing to the next point in one fluid
motion. Rather, it would swing forward a certain distance, swing back, and then swing fully up.
This trajectory, however, is not type of optimal trajectory as discussed above. A simple
inequality constraint cannot just be applied to the initial state. Rather, the optimal state must also
be chosen from a state that will occur in the model. Once the robot reaches the final state of a
swing, the body link can be simply modelled as a physical pendulum. The trajectory from which
the initial states may be chosen from can be found through a pendulum simulation. One period of
the trajectory of the body link after the first swing of the equilink simulation is shown in Fig. 3.4.
The initial state of the next swing of the simulation must thus be chosen from this trajectory. The
problem now becomes determining the optimal time after gripping to begin the next swing. To
determine this value, points along the trajectory were chosen and set as the initial state of new
swing simulations, and the total swing times and impulses were collected. The plots of these data
can be seen in Figs. 3.5 and 3.6., respectively. After the first swing, the optimal time to begin the
second swing is at immediately after the first swing is completed. This choice optimizes both
time and control. The trajectory and control torque for this optimal second swing can be seen in
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Figure 3.4: Position and velocity trajectory of the body link after the first swing of the equilink model
simulation, acting as a pendulum
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3.2. Body Link as Smaller Acrobot

As mentioned above, a potential use of the body link could be a smaller Acrobot that is able to
complete specialized tasks. This link can be modeled as the previous link with a point mass at the
center to represent the elbow actuator. For this model, the body mass is doubled, while the
moment of inertia remains the same as the equilink model. The same simulation was run with the
new model, and the results can be seen in Fig 3.7. The trajectory is very similar to the equilink
optimal trajectory, but here the body link swings less due to its higher moment of inertia.

3.3 Optimal Trajectory Time as a function of length

When the parameters of the links in the equilink model are evenly scaled, the shape of the
optimal swing trajectories are very similar. The time to complete the swing up also increases as
seemingly linearly. A comparison of the trajectories of scaled equilink models can be seen in
Fig. 3.8., and the final swing times plotted against the parameter scaling in Fig. 3.9.
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Figure 3.7: Optimal Trajectory of a Y-bot with an acrobot body link
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4. Conclusion

These experiments examined the behavior of the Y-bot during brachiation from one
“branch” to another. An optimal trajectory for the equilink model was found for a swing with the
robot starting at rest. The following swings of a gait were considered, and a beneficial starting
state was found for the second swing. An outline of the method of choosing a good starting state
was also discussed. An optimal trajectory for the embedded Acrobot model was found as well,
proving to be very similar to the equilink’s optimal trajectory. Finally, the swing up times of
differently scaled equilink models were described as a linear function of scale.

4.1. Open Problems

The biggest problem that remains is finding a method that enables the robot to choose at
which state to begin its swing mid-gait. This paper has provided a very rough method but was
solved manually, piece by piece, and only answers the question for the second swing. This
problem becomes much more important as the Y-bot is required to traverse longer distances. An
ideal solution would be able to gather the end state from the previous swing, calculate the body
link’s trajectory, and choose the optimal point in the trajectory to begin the next swing. This
solution would theoretically be able to be applied across all Y-bot models

Another open problem is finding an optimal trajectory for a payload-carrying Y-bot.
Some simulations were run modelling the body link as a point mass pendulum with the mass and
length of an arm link. Because the moment of inertia was too high, the robot was not physically
able to reach the goal state in one swing up. This could be solved by either making the pendulum
shorter or lightening the load. If the pendulum is shortened, the payload’s volume and shape
would be restricted by the geometry of the robot. If the load was lightened, it would point to a
decrease in functionality of the system. The question of the Y-bot’s efficacy of carrying loads
remains to be answered. '

4.2. Future steps

Nakanishi ez al. [6] used a successful physical model design for the Acrobot, shown in
Fig. 1.3. This model implements two servo motors coupled together at the elbow to provide
twice the toque and maximum speed of a single motor, and also to balance the weight of the
robot. This model could potentially be turned into a Y-Bot by adding another link. If the
coupling between the motors was lengthened to increase the distance between the motor, the
body link could be mounted on that coupling, essentially functioning as an axle. The body link
would be between the two arms, which accurately reflects the biological model of the gibbon.
The end of the body link mounted on the coupling would be a fixed shape shoulder with bearings
rather than a gripper. The other end could accommodate a gripper, a payload, or another
functional attachment. As the length of the coupling is increased, Abbe error effects on the
motors must be taken into effect and accounted for. The coupled shafts will act as a cantilevered
beam with the weight of the hanging arm acting as a downward force on the end. The deflection
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downward will need to be minimized to maintain parallelism between the links. Bearing will also
need be carefully selected and placed to protect the motors from transverse loads. Once the
physical model is built, a controller must also be designed. One solution could be to implement a
time-varying linear quadratic regulator (LQR). Great care must be taken in the representation of
the physical system in the model for the LQR to be useful because there are 3 DOF with only
one actuated DOF. Perhaps an even better controller than a general LQR would be one of the
controllers from the research mentioned above which are specifically tailored to brachiation
robots.
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