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Abstract: We study the time evolution of 2-point functions and entanglement entropy in

strongly anisotropic, inhomogeneous and time-dependent N = 4 super Yang-Mills theory

in the large N and large ’t Hooft coupling limit using AdS/CFT. On the gravity side this

amounts to calculating the length of geodesics and area of extremal surfaces in the dynam-

ical background of two colliding gravitational shockwaves, which we do numerically. We

discriminate between three classes of initial conditions corresponding to wide, intermediate

and narrow shocks, and show that they exhibit different phenomenology with respect to the

nonlocal observables that we determine. Our results permit to use (holographic) entangle-

ment entropy as an order parameter to distinguish between the two phases of the cross-over

from the transparency to the full-stopping scenario in dynamical Yang-Mills plasma forma-

tion, which is frequently used as a toy model for heavy ion collisions. The time evolution

of entanglement entropy allows to discern four regimes: highly efficient initial growth of

entanglement, linear growth, (post) collisional drama and late time (polynomial) fall off.

Surprisingly, we found that 2-point functions can be sensitive to the geometry inside the

black hole apparent horizon, while we did not find such cases for the entanglement entropy.
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1 Introduction

The gauge/gravity duality has established itself as a valuable tool in the quest for a better

understanding of strongly coupled systems. In particular it is used to gain insights into the

thermalization process of non-abelian plasmas (such as the quark gluon plasma generated

in heavy ion collisions at RHIC and LHC) by studying the gravitational dual of N = 4

super Yang-Mills (SYM) theory, a maximally supersymmetric conformal field theory (CFT)

in four spacetime dimensions. The equilibration of the field theory is then mapped to black

hole formation on the gravity side. In the last decade there has been considerable progress

in setting up collisions of SYM matter in various scenarios and studying its evolution.

One of the starting points was the study of perfect fluid dynamics in a boost invariant

setting [1, 2]. In [3] it was possible to study far-from-equilibrium dynamics by numerically

solving the full Einstein equations in an anisotropic but otherwise completely homogeneous

system. Trying to come closer to mimic a heavy ion collision led to the idea [1] of colliding

delta like gravitational shock waves [4, 5], which are dual to lumps of energy in the SYM

theory moving at the speed of light. The next step was to make the system anisotropic and

inhomogeneous by the collision of gravitational shock waves which are homogeneous in the

transverse direction and have finite width in the longitudinal direction [6]. It was found
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that a hydrodynamic description of the plasma is valid even when the anisotropy is still

large [7]. This onset of hydrodynamic behavior is now termed hydrodynamization. Further

advances include radial flow [8], the effect of different initial conditions [9], the collision of

two black holes [10], and more [11–13].

Now it is even possible to simulate the collision of two localized lumps of matter to

mimic off-central nucleus-nucleus [14, 15] and proton-nucleus collisions [16].

Despite all the advances one has to keep in mind that in heavy ion collisions there are

many energy scales involved and to get an accurate understanding of the thermalization

mechanisms involved strong and weak coupling phenomena must be combined. One step

towards this direction is the combination of different effective descriptions [17] or by con-

structing a semi-holographic framework where the weakly and strongly coupled sector can

interact with each other [18, 19].

So far, in most colliding shock wave studies the quantities of interest are local quan-

tities, i.e. the components of the energy momentum tensor, such as the energy density or

the pressures. This allows to determine if local equilibrium is reached, here understood

as the local applicability of hydrodynamics. In order to gain further insight into the ther-

malization process the time evolution of nonlocal quantities, such as various correlation

functions (e.g. Wightman function or Feynman propagator), in coordinate space need to

be considered. This is still a complicated task but two such nonlocal quantities can be ob-

tained relatively easily with the help of the gauge/gravity duality, namely the equal time

2-point function for scalar operators of large conformal weight and entanglement entropy

(EE). In the context of thermalization these quantities where first computed to study the

analog of quenches in conformal field theories [20] via the collapse of thin shells [21, 22] in

AdS space, where the EE shows universal behavior. After the initial short early time epoch

the EE grows linearly with time, which is independent of the entangling regions [23] or the

equation of state [24, 25]. In these works the EE is a monotonically increasing function

that approaches the final equilibrium value from below. However, this universal behavior

disappears in more complicated setups. For example, when a radially collapsing scalar field

forms a black hole the EE can be non-monotonic [26–31]. In anisotropic N = 4 SYM the

EE and equal time 2-point functions show oscillatory behavior with exponential damping

at late times which is given by the lowest quasinormal mode [30]. Analytic progress has

been made in [32] where the late-time behavior of two-point functions, Wilson loops and

entanglement entropy has been studied perturbatively in a boost-invariant system.

The equal time 2-point function can be obtained from the length of space like geodesics

which are anchored to the boundary of anti-de Sitter (AdS) space and extending into the

bulk. Although the geodesic approximation is only valid for operators of large conformal

weight, a comparison of the Feynman propagator for a scalar field with conformal dimension

∆ = 3/2 with the geodesic approximation revealed that qualitatively they show the same

behavior [33]. Similarly the holographic entanglement entropy (HEE) can be obtained from

the area of extremal surfaces [34, 35].

In this work we extend the existing studies by investigating the time evolution of equal

time 2-point functions and HEE in the colliding shock wave geometry for different initial

conditions, carefully differentiating between wide, intermediate and narrow shocks, which
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turn out to have quite different phenomenology. Our results allow to use HEE to distin-

guish between the phases corresponding to wide or narrow shocks, in a sense that we shall

make precise.

This paper is organized as follows. In section 2 we introduce the geometry and the

different initial conditions. The results for the equal time 2-point function and EE are

discussed in sections 3 and 4, respectively. In section 5 we conclude.

2 Gravitational shock waves in asymptotically AdS5

The holographic setup we consider describes the collision of two sheets of energy having

Gaussian shape in their direction of motion and which are homogeneous in the remaining

two spatial directions. These shocks serve as caricatures of two highly Lorentz contracted

nuclei which approach each other at the speed of light and induce non-abelian plasma

formation as they collide.

On the gravity side the corresponding 5-dimensional bulk metric is rotationally invari-

ant and homogeneous in the transverse plane (x1, x2) but inhomogeneous in the longitu-

dinal direction y, which is the direction of motion of the shocks. The metric ansatz in

Eddington-Finkelstein coordinates reads

ds2 = −A dv2 + S2
(
e−2B dy2 + eB d~x2

)
+ 2 dv(dr + F dy) , (2.1)

where the functions A, S, B and F depend on the holographic coordinate r, (advanced)

time v and longitudinal coordinate y, but are independent from the transversal coordinates

~x. The equations of motion can be found e.g. in [6] and are solved near the boundary by

A = r2 + 2ξr + ξ2 − 2∂vξ +
a4

r2
+
∂va4 − 4ξa4

2r3
+O(r−4) (2.2a)

B =
b4
r4

+
15∂vb4 + 2∂yf4 − 60ξb4

15r5
+O(r−6) (2.2b)

S = r + ξ − 4∂yf4 + 3∂va4

60r4
+O(r−5) (2.2c)

F = ∂yξ +
f4

r2
+

4∂vf4 + ∂ya4 − 10ξf4

5r3
+O(r−4), (2.2d)

where ξ(v, y) encodes the residual diffeomorphism freedom r → r + ξ(v, y). It is possible,

though not necessarily numerically convenient, to choose ξ = 0.

As usual the normalizable modes a4(v, y), b4(v, y) and f4(v, y) are undetermined by

the near-boundary expansion and require a solution of the full bulk dynamics. These

coefficients in the asymptotic expansion determine the expectation value of the conserved

and traceless stress energy tensor in the dual field theory [36]

〈Tµν〉 =
N2
c

2π2


E S 0 0

S P‖ 0 0

0 0 P⊥ 0

0 0 0 P⊥

 (2.3)
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where

E = −3

4
a4 P‖ = −1

4
a4 − 2b4 P⊥ = −1

4
a4 + b4 S = −f4 . (2.4)

2.1 Initial conditions

The pre-collision geometry describing two shocks moving in ±ỹ-direction can be written

down in Fefferman-Graham coordinates (r̃, t̃, ỹ, ~̃x) as follows [1]

ds2 = r̃2ηµν dx̃µ dx̃ν +
1

r̃2

(
dr̃2 + h(t̃+ ỹ)(dt̃+ dỹ)2 + h(t̃− ỹ)(dt̃− dỹ)2

)
, (2.5)

where ηµν denotes the usual 4-dimensional Minkowski boundary metric and h(t̃± ỹ) is an

arbitrary function for which we choose a Gaussian of width ω and amplitude µ3

h(t̃± ỹ) =
µ3

√
2πω2

e−
(t̃±ỹ)2

2ω2 . (2.6)

In this gauge the non-vanishing components of the energy momentum tensor read

T̃ t̃t̃ = T̃ ỹỹ = h(t̃− ỹ) + h(t̃+ ỹ) T̃ t̃ỹ = h(t̃− ỹ)− h(t̃+ ỹ) (2.7)

and describe two lumps of energy with maximum overlap at t̃ = 0. At early times t̃� −w,

when the shocks h(t̃± ỹ) have negligible overlap, the line-element (2.5) is close to an exact

solution to Einstein’s equations, but around t̃ = 0 their dynamics can only be computed

numerically.

We do this for three different initial conditions hn,i,w(ỹ) describing qualitatively dif-

ferent situations that we shall refer to as narrow, intermediate and wide shocks, where in

all cases the initial position of the shocks is at ỹ0 = ±7/4. For the width of the shocks we

take ωn,i,w = 0.1, 0.25, 0.5 and we will display all our results in units of µ.

For the numerical evolution scheme the initial data needs to be transformed to Edding-

ton-Finkelstein coordinates (r, v, y, x1, x2) by solving for radially infalling null geodesics in

the background (2.5), leading to ordinary differential equations, which are solved for appro-

priate boundary conditions at the boundaries of the radial domain. We omit a discussion

of the numerical details concerning this coordinate transformation and the subsequent

evolution and refer the reader to [37, 38], where the full procedure is explained.

2.2 Evolution of the energy momentum tensor

The time evolution of the energy momentum tensor for colliding shocks has been studied

extensively in [6, 9, 38, 39]. In figure 1 we show the evolution of the energy density E(t, y)

extracted from the numerical evolution for the different initial conditions stated above. As

discussed in [9] the energy density behaves qualitatively different in collisions of narrow

shocks and in those of wide shocks. This cross-over is not only of academic interest, but

also for applications, since it was argued that the narrow shocks describe more adequately

the situation at LHC, while the wide shocks are more suitable for RHIC [9] (see also [15]).

We list below some relevant properties that differ between wide and narrow shocks:
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Figure 1. Evolution of the energy density ε/µ4 as a function of time t and longitudinal coordinate

y for wide, intermediate and narrow shocks (from left to right).

• Narrow shocks exhibit transparency, in the sense that they pass through each other

and, even though their shape gets altered and they decay, they continue to move at

the speed of light after the collision. By contrast, wide shocks realize a full-stopping

scenario, in the sense that the energy density is localized mostly in the central region

after the collision, and the shocks themselves not only change their shape but also get

slowed down. Wide shocks then lead to initial conditions for hydrodynamics where all

velocities are close to zero, i.e. there is a hydrodynamical explosion in close similarity

to the Landau model of heavy ion collisions [40].

• Narrow shocks can yield regions of negative energy density after the collision right

behind the original shocks on the lightcone. Curiously, this region does not admit

a local restframe [41], but also does not violate general principles of quantum field

theory, such as the averaged null energy condition [42]. At y = 0 after the shocks pass

through each other, the energy density grows at early times as E = 2µ6t2 + O(t5),

which implies pressures equal to P‖/E = −3 and P⊥/E = 2. This feature was first

observed for δ-like shockwaves analytically [4] and then numerically for sufficiently

narrow Gaussian profiles [9]. By contrast, for the wide shocks the energy density and

pressures remain positive everywhere.

Given the substantial differences in local observables one may expect that the characteristic

features for narrow and wide shocks also show up in nonlocal observables, like 2-point

functions and HEE. In the remainder of this work we verify this expectation by explicit

computations, starting with the 2-point functions in the next section.

3 Two-point functions

Within AdS/CFT the equal time 2-point function of operators O with large conformal

weight ∆ can be computed from the length L of spacelike geodesics in the bulk geome-

try [43, 44] via

〈O(t, ~x)O(t, ~x′)〉 =

∫
DP ei∆L(P) ≈

∑
geodesics

e−∆Lg ≈ e−∆L . (3.1)
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In asymptotically AdS the length of a geodesic which is attached to the boundary is infinite

and a regularization scheme must be adopted. A natural way to regularize is to subtract

the length L0 of a geodesic in AdS corresponding to the vacuum value of the correlator

Lreg = L− L0 . (3.2)

For illustrative purposes we set ∆ = 1 when we display our results which is the same

as interpreting Lreg to be given in units of ∆. Thus, the two point functions we compute

are defined as follows

〈O(t, ~x)O(t, ~x′)〉reg = e−Lreg . (3.3)

In order to obtain the geodesic length we solve the geodesic equation numerically with

a relaxation algorithm which iteratively relaxes an initial guess to the true solution. For a

detailed description of the relaxation algorithm we refer the interested reader to [30].

3.1 Geodesics in the shock wave geometry

For simplicity we restrict our attention to geodesics that only extend along the y-direction

and not along the transverse directions (x1, x2), i.e. we consider geodesics in the three

dimensional bulk-subspace

ds2
y = −A dv2 − 2

z2
dz dv + 2F dy dv + S2e−2B dy2, (3.4)

where z = 1/r. To find these geodesics we solve the (non-affine) geodesic equation

Ẍµ + ΓµαβẊ
αẊβ = −JẊµ, (3.5)

subject to the following boundary conditions at z = 0

Xµ(±1) ≡ (V (±1), Z(±1), Y (±1)) = (t, 0,±l/2), (3.6)

where Xµ(σ) are the embedding functions of the geodesic and dots denote derivatives with

respect to the non-affine parameter σ ∈ [−1, 1]. The quantity J = d2τ
dσ2 /

dτ
dσ denotes the

Jacobian of the reparametrization from the affine parameter τ , defined by (dX
dτ )2 = 1, to

σ. The boundary time and separation for which the geodesics are computed are denoted

by t and l respectively. The fictitious viscous force provided by the Jacobian J helps with

the numerics, resulting in better convergence of the relaxation algorithm.

Working in asymptotically AdS makes it natural to choose as an initial guess a geodesic

in pure AdS

ds2
0 =

1

z2

(
− dv2 − 2 dz dv + dy2

)
, (3.7)

which can be written as

Z0(σ) =
l

2

(
1− σ2

)
Y0(σ) =

l

2

(
σ
√

2− σ2
)

V0(σ) = t− Z0(σ). (3.8)

In this parametrization the affine parameter is given by τ(σ)=∓arctanh
(
σ
√

2− σ2
)

from

which the Jacobian needed in (3.5) can be computed

J(σ) =
d2τ

dσ2

/
dτ

dσ
=

5σ − 3σ3

2− 3σ2 + σ4
. (3.9)
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We assume the boundary separation to be centered around y = 0. Describing off-central

geodesics requires some straightforward modifications of our formulas.

The bulk part of the geodesic length, which is the contribution from z > zcut, follows

from integrating the line elements (3.4) and (3.7)

Lbulk =

∫ σ+

σ−

dσ

√
−AV̇ 2 − 2

Z2
ŻV̇ + 2FV̇ Ẏ + S2e−2BẎ 2 (3.10a)

Lbulk
0 =

∫ σ+

σ−

dσ
1

Z0

√
−V̇0

2 − 2Ż0V̇0 + Ẏ 2
0 , (3.10b)

where the metric functions (A,B, S, F ) have to be evaluated along the geodesic Xµ(σ). In

order to realize an IR-cutoff at a given value zcut the range of the non-affine parameter

σ ∈ [σ−, σ+] has to be bounded by

σ± = ±
√

1− 2zcut

l
. (3.11)

The near boundary part of the geodesic length, which is the contribution from 0 ≤ z ≤ zcut,

can be extracted form the near boundary solution of the geodesic equation. Near z = 0

the embedding functions and the Jacobian can be expressed in terms of a power series in z

Z(z) = z V (z) =

nmax∑
n=1

vnz
n Y (z) =

nmax∑
n=1

ynz
n J(z) =

nmax∑
n=1

jnz
n−2 . (3.12)

In appendix A we give explicit expressions for the expansion of the metric that we have

used. The coefficients (tn, yn, jn) in eq. (3.12) can be computed by solving the geodesic

equation order by order in z, which leads to the following expressions

Z(z) = z (3.13a)

V (z) = v0 − z + v2z
2 +

(
v2y

2
2 − v3

2

)
z4 +O

(
z5
)

(3.13b)

Y (z) =
l

2
+ y2z

2 +
(
y3

2 − v2
2y2

)
z4 +O

(
z5
)

(3.13c)

J(z) =
1

z
+
(
4v2

2 − 4y2
2

)
z +O

(
z5
)
. (3.13d)

Here we fixed the leading coefficients by the boundary conditions (3.6), but the coefficients

v2 and y2 cannot be determined by a near boundary expansion. This is analogous to the

normalizable modes of the metric, which are also sensitive to the full bulk geometry. The

pure AdS solution is given by

Z0(z) = z (3.14a)

V0(z) = t0 − z (3.14b)

Y0(z) = ±
√

(l/2)2 − z2

= ±
(
l

2
− z

l
− z4

l3

)
+O(z6) (3.14c)

J0(z) =
1

z
− 4

l2
z − 16

l4
z3 +O(z5) , (3.14d)
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which hence has v2 = 0 and y2 = ∓1/l. We can now compute the near boundary expansion

of the geodesic length, which for one branch is given by

Lbdry − Lbdry

0 =

∫ zcut

0
dz

(
− 2

l2
− 2v2

2 + 2y2
2

)
z

+

(
−a4

2
− 6

l4
− 12v2

2y
2
2 + 6v4

2 + 6y4
2

)
z3 +O

(
z5
)
, (3.15)

where the leading AdS divergent 1
z -term nicely cancels out. The regularized geodesic length

Lreg, which we need to evaluate eq. (3.3), is the sum of the bulk contribution and the near

boundary contribution1

Lreg = (Lbulk − Lbulk
0 ) + (Lbdry − Lbdry

0 ) . (3.16)

When using eq. (3.16) to evaluate eq. (3.3) numerically one has to ensure that the results

are, to some required accuracy, independent of the discretization and the cutoff. We

require this accuracy to be of the same order as the maximal residual (= 10−5) we allow

in the geodesic equation and below which we stop to iterate the relaxation procedure. We

checked the convergence of the 2-point function with the gridsize in the range from 50 up

to 400 gridpoints and find that for more than 200 gridpoints the change is smaller than

O(10−5) which is the same order as the allowed residual (see appendix B). Sample checks

are presented in appendix B, where only a mild cutoff dependence of O(10−5) is obtained

for a range zcut = [0.01, 0.1], which is again of the same order as the allowed residual. Based

on this analysis we choose 200 gridpoints to discretize our geodesics and set zcut = 0.075

in all our calculations.

3.2 Evolution of two-point functions

In this section we present our numerical results for 2-point functions in holographic shock

wave collisions. Before we discuss the actual results let us start with some remarks regarding

the computational domain used in these simulations. As input for the relaxation algorithm

we provide numerical results of the shock wave metric in a finite domain in (t, y, z). This

computational domain, in which we can solve the geodesic problem, is bounded by µt ∈
[−1.5, 6], µy ∈ [−5, 5], where in the radial coordinate we have chosen the apparent horizon

as a natural bound z ∈ [0, 1.08zAH]. That means whenever we display geodesics which

reach beyond this radial domain, which can happen as we discuss below, an extrapolated

version of the metric is used.2 For a given choice of boundary conditions (µt, µl) the final

shape of the geodesic in the bulk is a priori unknown, i.e. initially we do not know if

the geodesic resides entirely within or extends beyond the computational domain in which

the metric is known. Therefore finding a feasible set of parameters (µt, µl) for a given

1In practise we do not compute the near boundary term, as the extraction of v2 and y2 would be

numerically as hard as taking a small enough zcut such that this term is small. We have included this

formula for completeness, and will later see that a similar procedure does work for entanglement entropy.
2For the narrow shocks the computational domain does not reach behind the horizon, so there

extrapolation is always used (note that the fact that the geodesic crosses the horizon or not is not affected

by this extrapolation).
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computational domain requires some trial and error. The geodesics bend back in advanced

time as they reach into the bulk, leaving the computational domain for too early boundary

times. Therefore we can display our results only in a finite time near the collision time t = 0

where all geodesics with different boundary separation lie in the computational domain.

All these points apply accordingly to the EE simulation.

For the time evolution it is of advantage, after using the pure AdS geodesic at the

initial time, to use the previous solution to initialize the next time step. This approach

turns out to be numerically extremely efficient and the relaxation algorithm reveals its full

power, since in most cases the result at a given time is an excellent estimate at the next

time step. A time step of ∆t = 0.1 allows to resolve nicely the shape of the 2-point function

and reduces the required number of iterations almost to a minimum. Usually two iterations

are sufficient to achieve relative residuals in the geodesic equation which are < 10−5 and

in many cases even one or two orders smaller.

We follow the same logic when we compute the evolution in the boundary separation,

where this approach is not only numerically efficient but also crucial to reach large sepa-

rations. Undeformed ansatz geodesics of large separation typically reach far beyond the

radial domain and finding the true solution using such geodesics to initialize the relaxation

inevitably fails. We circumvent this problem by initializing with an ansatz of small sepa-

ration (µl = 0.2), which comfortably resides within the computational domain. Then we

increase step by step the boundary separation and use the result for a given separation

as ansatz for the next separation step. By using a step size of ∆l = 0.1 we can nicely

resolve the shape of the 2-point function and the relaxation usually converges again after

two iterations. Since the relaxed geodesics are typically strongly deformed in direction

away from the apparent horizon, i.e. the upper bound of the radial domain, we can reach

separations which were inaccessible by simply relaxing the corresponding ansatz geodesic.

We like to discuss first the results from the time evolution before we go to the evolution

in the separation. In figure 2 (left) the whole setup for wide, intermediate and narrow

shocks is displayed. The dark surface represents the radial position of the apparent horizon

zAH(t, y). The evolution of the energy density of the boundary conformal field theory is

shown by a contour plot located at the boundary z = 0. The green lines are geodesics

at various time steps for a given separation. For narrower shocks the minimum of the

apparent horizon is closer to the boundary and the influence on the shape of the geodesics

is bigger. One can see that the tips of the geodesics tend to avoid the apparent horizon and

the evolution of the tips show a similar shape as the apparent horizon. Once the profile of

the geodesics is found the evolution of the 2-point functions can be extracted by computing

their length. On the right hand side of figure 2 the evolution of the 2-point functions for

various boundary separations for the different geometries are displayed.

Let us now summarize the most salient features in the time evolution of the 2-point

function during a holographic shock wave collision.

• Rapid onset of linear de-correlation: the system starts in some correlated state.

As the shocks are getting closer more and more short range correlations are destroyed

and the system rapidly starts to de-correlate in a linear fashion until a local minimum
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Figure 2. Left: summary of the geometrical setup. The black surfaces represent the radial position

zAH(t, y) of the apparent horizon; red curves are AdS geodesics used for the initialization, the green

lines are geodesics (µl = 1.5) for various time steps and at z = 0 we show a density plot of the

energy density for wide, intermediate and narrow shocks (top to bottom). Right: corresponding

evolution of the 2-point function for different boundary separation µl.
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Figure 3. Left: summary of the geometrical setup. The black surfaces represent the radial position

zAH(t, y) of the apparent horizon; red, green and blue curves are geodesics of various separations at

µt = 0, µt = 1 and µt = 2 respectively and at z = 0 we show a contour plot of the energy density

for wide, intermediate and narrow shocks (top to bottom). Right: corresponding evolution of the

2-point function with the boundary separation µl at different times.
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is reached. The rapid onset of the linear regime is clearly visible for the narrow shocks

in figure 2, where for intermediate and wide shocks the onset lies outside our computa-

tional domain for larger separations, but the linear regime is still visible. For interme-

diate and narrow shocks the minimum is located close to t = 0 where the energy den-

sity is maximal. For wide shocks this minimum is reached significantly before t = 0.

• Premature de-correlation: a careful tracking of the position of the minimum as

a function of the boundary separation reveals that it is shifted to earlier times as the

separation increases. This effect, which is very small and therefore hardly visible in

figure 2, is a robust feature of all three kinds of shocks that we have studied.

• Linear correlation restoration: during the collision, when the shocks interact,

new correlations are formed in the system. As the shocks move outwards (t > 0), the

correlations are linearly restored for all three kinds of shocks.

• Correlation overshooting of narrow shocks: after the linear restoration regime,

the correlations in wide and narrow shocks approach their final values in very differ-

ent ways. For intermediate and narrow shocks the correlations significantly overshoot

their final values before they finally approach them from above. In the case of wide

shocks this effect is strongly damped and the correlations approach their initial value

almost monotonically from below.

We switch now to the scaling of the 2-point function with the separation. The holo-

graphic setup and the results for the evolution of the 2-point function are displayed in

figure 3. At the collision time (µt = 0) the 2-point function falls off monotonically with the

separation in all three cases, although the corresponding geodesics are strongly deformed.

For the wide shocks this behavior persists also at later times, where due to the weaker

influence of the shocks the correlations fall off more slowly. For intermediate and narrow

shocks an additional maximum appears at µt > 0 which is more pronounced for narrow

shocks. The position of this additional maximum is centered around the position of the

outgoing shocks. It is suggestive that narrow shocks which pass through each other almost

transparently remain correlated for some time after the collision while wide shocks stop

each other before they explode hydrodynamically and the correlations are completely lost.

This motivated us to study the correlations between the shocks themselves, which we do

systematically in section 3.3. There we find that the correlations between intermediate and

narrow shocks significantly grow after the collision before they start to decay, where the

correlations between wide shocks decay immediately.

Interestingly, for larger separations the geodesics remain outside the horizon for early

times, but they cross the horizon after a time of around µt = 1.5. This can be seen

from the blue curves in figure 3 and is displayed more clearly in figure 4 where we plot

the tip of the geodesic located at y = 0, for different separations and the position of the

apparent horizon at y = 0. This happens for all the initial conditions (wide, intermediate,

narrow) we have studied and is in strong contrast to the EE case where we do not find

extremal surfaces which cross the horizon. The crossing after a time of µt = 1.5 is perhaps
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Figure 4. The z-position of the geodesics at y = 0 for several times and separations, starting

with l = 0 near the boundary, and increasing going towards the end of the curve. We show wide,

intermediate and narrow shocks (from left to right). The z-position of the apparent horizon at

y = 0 is shown in black. At late times and sufficiently large boundary separation in all three cases

(wide, intermediate and narrow shocks) geodesics can reach behind the apparent horizon, whereas

for early times they reside outside the horizon entirely.

counterintuitive since geodesics are expected to remain outside the horizon when the system

is close to equilibrium. Indeed, hydrodynamics applies after a time µt = 0.89 [9], which is

well before the crossing of the geodesics. At later times presumably the geodesics indeed

remain outside again, though our numerics did not allow to determine the precise time at

which this is the case.

3.3 Correlations of colliding shocks

Instead of studying the time evolution of the 2-point function between two fixed points

in space, in the context of heavy ion collisions it might be more interesting to actually

study the correlation between the two shocks itself. In order to do so, the endpoints of the

geodesics follow the maxima of the energy density.

When the separation of the endpoints becomes smaller than three times the cutoff we

fix the endpoints to this value until the distance between the two maxima after the collision

exceeds this value again. The results are displayed in figure 5, where the geometrical

situation is displayed on the left hand side and the time evolution of the 2-point-functions

on the right hand side.

As already discussed in section 3.2, for wide shocks the behavior is qualitatively dif-

ferent than for intermediate and narrow shocks.

As the two wide shocks approach each other their correlation increases almost linearly

until it reaches a plateau, which is the point when the separation of the endpoints is

smaller than three times the cutoff. Once the shocks separate again from each other their

correlation decreases.

As the shocks get narrower the initial growth slows down because the shocks start to

overlap later. After the fixed separation period a local minimum appears after which the

correlations continue to grow to reach another maximum which appears later for narrow

shocks. In addition, the maximum correlation is highest for narrow shocks.

This behavior is reminiscent of the full stopping and transparency scenario for wide and

narrow shocks considered in [9]. As the wide shocks start to interact the energy density
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Figure 5. Left: time evolution of geodesics in the shock wave geometry (green) for wide, interme-

diate and narrow shocks (top to bottom) pure AdS geodesics (red) with endpoints attached to the

position of the maxima in the energy density. Right: time evolution of the correlation between the

shocks; dashed lines indicate the region where only a central maximum in the energy density exist

and the separation is fixed to 3zcut.
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starts to pile up and all the energy density is contained in a small region after which

hydrodynamical explosion occurs. This behavior is also encoded in the 2-point function

which reaches a maximum and can only decrease when hydrodynamic explosion occurs.

For narrower shocks the situation is different. The shocks almost move through each

other. Their shape gets altered but no hydrodynamic explosion occurs. The shocks separate

from each other and plasma between them forms resulting in a growth of the correlation

also after the collision. At sufficiently late times, when the shocks are separated far enough

and a hydrodynamical description is applicable, the 2-point function decreases rapidly.

To summarize, there is a general pattern appearing. As the shocks become narrower

the initial growth slows down, the maximum correlation increases and occurs later.

4 Entanglement entropy

In this section we monitor the evolution of EE. In time dependent systems the covariant

HEE [35] for some boundary region A is obtained by extremizing the 3-surface functional

A =

∫
d3σ

√
det

(
∂Xµ

∂σa
∂Xν

∂σb
gµν

)
(4.1)

that ends on the boundary surface of A. In the dual field theory the EE is then conjectured

to be given by [34, 35, 45]

SEE =
A

4GN
. (4.2)

Under certain circumstances the problem of finding extremal surfaces can be reduced to

finding geodesics in an auxiliary space-time and the problem of solving nonlinear partial

differential equation can be circumvented [30]. In the case at hand this can be achieved by

considering a stripe entangling region with finite extent in the longitudinal direction y and

infinite extent in the homogeneous transverse directions (x1, x2) for which (4.1) simplifies to

A =

∫
dx1

∫
dx2

∫
dσ

√
Ω2hµν

∂Xµ

∂σ

∂Xν

∂σ
= V L̃ . (4.3)

The surface functional (4.3) suffers from two kinds of infinities, one from the integral

V =
∫

dx1

∫
dx2 over the homogeneous directions and another one from the infinite geodesic

length L̃ in the auxiliary spacetime Ω2hµν . Since the infinite volume factor V contains no

dynamical information these singularities are avoided by considering EE densities SEE
V .

Analogous to the 2-point function we regularize the geodesic length L̃ by subtracting the

corresponding auxiliary vacuum contribution L̃0. The observable we compute is the regu-

larized EE density per Killing volume in units of 4GN ,

Sreg = 4GN

(
SEE

V
− S0

EE

V0

)
= L̃− L̃0 . (4.4)
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4.1 Geodesics in the auxiliary spacetime

Our aim is to compute the EE for a stripe region with finite extent in y-direction and

infinite extent in (x1, x2) using formula (4.4). Therefore we have to find geodesic lengths

L̃ and L̃0 in the corresponding auxiliary spacetimes. The auxiliary spacetime, which is

related to the metric (2.1) by a conformal factor Ω2 = S4e2B, reads

ds̃2
y = S4e2B

(
−A dv2 − 2

z2
dz dv + 2F dy dv + S2e−2B dy2

)
. (4.5)

This time we initialize the relaxation algorithm with a geodesic in Poincaré patch AdS (3.7)

times a conformal factor Ω2
0 = 1

z4

ds̃2
0 =

1

z6

(
− dv2 − 2 dz dv + dy2

)
. (4.6)

Like for the Poincaré patch AdS geodesics we choose a non-affine parametrization

Z0(σ) = Zmax

(
1− σ2

)
(4.7)

Y0(σ) = sgn(σ)

(
− l

2
+
WZ0(σ)4

4
2F1

[
1

2
,

2

3
,

5

3
;W 2Z0(σ)6

])
(4.8)

V0(σ) = t− Z0(σ) (4.9)

where W = π
3
2 Γ[5/3]3

8l3Γ[7/6]3
ensures that the two branches, discriminated by sgn(σ), join smoothly

at Zmax = 2lΓ[7/6]√
πΓ[5/3]

. The affine parameter τ in terms of σ reads

τ(σ) =
sgn(σ)

2Z2
max(1− σ2)

2F1

[
1

2
,−1

3
,

2

3
;W 2Z12

max(1− σ2)6

]
(4.10)

and the Jacobian evaluates to

J(σ) =
d2τ

dσ2

/
dτ

dσ
=
−51σ + 145σ3 − 205σ5 + 159σ7 − 65σ9 + 11σ11

(2− σ2)(1− σ2)(3− 3σ2 + σ4)(1− σ2 + σ4)
. (4.11)

Using the ansatz (4.7)–(4.9) and the corresponding Jacobian (4.11) in the relaxation algo-

rithm allows us to compute geodesics in the auxiliary spacetime (4.5).

The bulk parts of the geodesic lengths in eq. (4.4), which are the contributions from

z > zcut, follow from integrating the line elements (4.5) and (4.6)

L̃bulk =

∫ σ+

σ−

dσS2eB
√
−AV̇ 2 − 2

Z2
ŻV̇ + 2FV̇ Ẏ + S2e−2BẎ 2 (4.12a)

L̃bulk
0 =

∫ σ+

σ−

dσ
1

Z3
0

√
−V̇0

2 − 2Ż0V̇0 + Ẏ 2
0 , (4.12b)

where in this case the bounds of the integral σ±, implementing the infrared-cutoff at z=zcut,

are given by

σ± = ±
√

1− zcut

Zmax

. (4.13)
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We build the near boundary part (0 ≤ z ≤ zcut), like for the 2-point function, from the

asymptotic solution of the geodesic equation in the conformal spacetime, which leads to

the following near-boundary expansion

Z(z) = z (4.14a)

V (z) = t0 − z + v4z
4 +

a4z
5

5
+O

(
z6
)

(4.14b)

Y (z) =
l

2
+ y4z

4 +
f4z

5

5
+O

(
z6
)

(4.14c)

J(z) =
3

z
+ (2a4 − 4b4) z3 +O

(
z6
)
, (4.14d)

where the normalizable modes a4(v, y), b4(v, y) and f4(v, y) are evaluated at v = t0 and

y = ± l
2 . We again have two undetermined constants v4 and y4, which now appear two

orders higher than for the case of the 2-point function. Again we also have the analytic

solution in the auxiliary pure AdS space time

Z0(z) = z (4.15)

V0(z) = t− Z0(z) (4.16)

Y0(z) = ±
(
− l

2
+
WZ0(z)4

4
2F1

[
1

2
,

2

3
,

5

3
;W 2Z0(z)6

])
= ±

(
− l

2
+
W

4
z4

)
+O(z10) (4.17)

J0(z) =
3− 6W 2z6

z −W 2z7
=

3

z
− 3W 2z5 +O(z11). (4.18)

The near boundary contribution to the geodesic length for both endpoints evaluates to

L̃bdry − L̃bdry

0 =

(
b4 −

a4

2

)
z +

(
∂tb4 −

7∂ta4

20

)
z2

+
1

120
(20∂y∂tf4 − 13∂2

t a4 + 70∂2
t b4 + 7∂2

ya4 + 2∂2
yb4 + 960y2

4 − 960t24)z3

+O(z4), (4.19)

where the divergent term cancels again. Now this formula is clearly more useful, as the two

leading contributions do not depend on the unknown coefficients v4 and y4, which hence

allows to reduce the cutoff dependence significantly. The regularized EE of eq. (4.4) is the

sum of the bulk contribution and the near boundary contribution

Sreg = (L̃bulk − L̃bulk
0 ) + (L̃bdry − L̃bdry

0 ) . (4.20)

As for the 2-point function we checked the convergence of Sreg with the gridsize in the range

from 50 up to 400 gridpoints and find again that for more than 200 gridpoints the change

in Sreg is smaller than O(10−5) which is the same order as the allowed residual we choose

in the relaxation algorithm.

To achieve cutoff independence of Sreg turns out to be more delicate than for the 2-point

function. Now for a range zcut = [0.05, 0.1] we obtain a slightly worse cutoff dependence of
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Figure 6. Evolution of the EE for different separations of width µl of the stripe region for wide

(left), intermediate (middle) and narrow (right) shocks.

O(10−3) which is however sufficient for our qualitative studies where Sreg = O(10−1) and

the influence of the cutoff can be estimated to be ≈ 1% (see appendix B). Again we choose

200 gridpoints to discretize our geodesics and set zcut = 0.075 in all the calculations we

present below.

4.2 Evolution of entanglement entropy

In this section we present our numerical results for the EE. The shape of EE as a function of

time originates from a complicated interplay between the different metric functions appear-

ing in the energy momentum tensor. However, most features can be understood in terms of

energy density and pressures. In figure 6 we display the time evolution of HEE for various

separations in the two different scenarios. It can be characterized by four distinct regions:

1. Rapid initial growth: once some energy density enters the entangling region the

rapid initial growth starts. The narrower the shocks the more rapidly the initial

growth happens, because the rate at which the energy density enters the entangling

region is bigger than for wider shocks.

2. Linear growth: the linear growth starts when the two shocks start to overlap

and the energy piles up, with a steeper slope for larger separations. This is the

same behavior as the post-local equilibration growth after a global quench [46]. The

maximum occurs with a short delay compared to the maximum energy deposited in

the entangling region, with a more pronounced delay for wider shocks.

3. Post collisional regime: the post collisional regime is quite different for the three

cases considered. For wide shocks the EE falls off without any additional features.

In the case of intermediate shocks a small shoulder appears. In the case of narrow

shocks this shoulder turns into a new feature, where an additional minimum appears

and the EE starts growing again until a second maximum is reached. The minimum

happens approximately at a time when the longitudinal pressure becomes negative.

The existence or absence of a minimum of EE in this regime thus serves as an order

parameter to discriminate between narrow and wide shocks.

4. Late time regime: at late times we find a polynomial fall off behavior

Sreg ≈ aw,i,n(µt)−bw,i,n , (4.21)
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µl aw ai an bw bi bn

0.5 0.202 0.171 0.158 -1.136 -0.978 -1.074

1.0 0.709 0.602 0.564 -1.092 -0.961 -1.035

1.5 1.276 1.099 1.031 -1.036 -0.952 -0.982

Table 1. Late time fit of the EE in the time range µt ∈ [2.0, 6.0].

µl aw ai an bw bi bn

0.5 1.042 0.696 0.665 -1.107 -0.749 -0.952

1.0 2.035 1.430 1.372 -1.088 -0.766 -0.971

1.5 2.924 2.244 2.241 -1.054 -0.795 -1.027

Table 2. Late time fit of the effective entropy density in the time range µt ∈ [2.0, 6.0].

where the coefficient aw,i,n depends on the initial conditions and the separation. In

table 1 we give the late time behavior extracted from the time interval µt = [2, 6]

for different separations. The late time behavior can be compared to the late time

behavior of an effective entropy density

seff(t) =

l/2∫
−l/2

dy S3(rh, t, y) , (4.22)

where the function S is evaluated at the position of the apparent horizon and inte-

grated over the same intervals as for the EE. The late time behavior is displayed in

table 2 and barely depends on the separation. It is expected on general grounds that

at very late times and large separations, far beyond our computational domain, the

effective entropy density and EE show the same fall off behavior.

Let us now discuss the results from the evolution in the separation. The geometrical

setup and the evolution in the separation at different times are shown in figure 7. Analo-

gous to figure 4 we show in figure 8 again the position of the tip of the extremal surface,

this time for the EE. Surprisingly, contrary to the case of the 2-point function we never

see the tip crossing the horizon, and in fact it always closely follows the horizon for larger

separations. This is again perhaps counter-intuitive, since one would usually think about

the EE as a more ‘nonlocal’ quantity than the 2-point functions, and hence probing deeper

into the bulk. Indeed, this is the case for pure AdS and also for thermal AdS, but in this

case for large enough separations the 2-point function at the same time and length probes

deeper in the bulk than the EE.

Of course our simulations only probed a limited set of times and lengths for our ex-

tremal surfaces and hence we cannot make a general statement if the EE never probes

beyond the apparent horizon in geometries produced by shock wave collisions. Neverthe-

less, we think we have strong evidence that this is so, mainly since increasing the lengths
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Figure 7. Left: summary of the geometrical setup. The black surfaces represent the radial position

zAH(t, y) of the apparent horizon; red, green and blue curves are geodesics of various separations at

µt = 0, µt = 1 and µt = 2 respectively and at z = 0 we show a contour plot of the energy density

for wide, intermediate and narrow shocks (top to bottom). Right: corresponding evolution of the

EE with the boundary separation µl at different times.
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Figure 8. The z-position of the geodesics at y = 0 for several times and separations, starting

with l = 0 near the boundary, and increasing going towards the end of the curve. We show wide,

intermediate and narrow shocks (from left to right). The z-position of the apparent horizon at

y = 0 is shown in black. In all the cases we studied the geodesics do not cross the horizon.

at our chosen times clearly moves the tip of the surface along the horizon. We further-

more checked that extremal surfaces centered around y 6= 0 behave similarly, so that the

property is not due to our symmetric set-up.

5 Conclusions

In the paper at hand we studied the time evolution of equal time 2-point functions and HEE

in strongly coupled anisotropic and inhomogeneous N = 4 super Yang Mills theory via its

dual description. In the dual description this amounts to finding geodesics and extremal

surfaces in the gravitational background of two colliding gravitational shock waves. We used

three different initial conditions, corresponding to wide, intermediate and narrow shocks.

When the separation is held fixed the 2-point functions decrease before and increase

after the collision. During the collision new correlations form such that the system becomes

more correlated than in the beginning. The narrower the shocks the higher the gain in

correlations before they reach their final value.

We also studied the correlation between the two shocks itself by following the maximum

of the energy density. In this case the correlation between the two shocks increases linearly

before the collision. After the collision correlations decrease for wide shocks, whereas for

the narrower shocks they continue to grow before they fall off again.

The time evolution of the EE can be divided into four regimes, namely highly efficient

rapid initial growth, linear growth, post collisional regime and late time fall off. The

smaller the shocks the more rapid the initial growth, reflecting the fact that the rate at

which the energy density enters the entangling region is larger for smaller shocks. The

post collisional regime is qualitatively different for the different initial conditions. As the

shocks get smaller an additional minimum appears which we attribute to the fact that the

longitudinal pressure becomes negative. The existence or absence of a minimum in EE in

the post collisional regime thus serves as an order parameter to discriminate between the

transparency (narrow shocks) and full-stopping (wide shocks) scenarios. At late times we

observe polynomial fall off behavior where the exponent depends on the initial conditions.
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Surprisingly, we found that 2-point functions can probe behind the horizon, but only

after the system has hydrodynamized. In contrast, the EE surface did not probe behind

the horizon in our simulations, which is perhaps counter-intuitive.

This finding has to be contrasted to the observations made in [21], where the authors

studied the holographic entanglement entropy in Vaidya AdS3 and found geodesics which

cross the apparent horizon. In AdS3/CFT2, however, the holographic entanglement en-

tropy and the two-point function are equivalent, whereas in our AdS5 they have manifestly

different behavior.

An interesting application of our results is to check numerically the quantum null

energy condition [47–49] in a regime where the classical null energy condition breaks down.

Namely, for the narrow shock waves shortly after the collision there are regions where the

classical null energy condition fails. We intend to perform this check in future work using

the results for HEE established in the present work.

An interesting generalization of our results could be the consideration of shock wave

collisions in non-conformal theories, holographically modeled by the addition of a scalar

field with judiciously chosen self-interactions [50, 51].
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A Near boundary expansion of the shock wave spacetime

Here we work in a gauge where we exploit the residual gauge freedom to set ξ(v, y) = 0.

In this gauge the near boundary expansion of the shockwave metric up to 6th order in z is

given by

A(z, t, y) =
1

z2
+ z2a4 +

1

2
z3∂ta4

+
1

20
z4
(

3∂2
t a4 − ∂2

ya4 + 4∂2
yb4

)
+O(z7) (A.1a)

B(z, t, y) = z4b4 + z5

(
∂tb4 +

2

15
∂yf4

)
+

1

180
z6
(

4∂2
ya4 + 5∂2

yb4 + 105∂2
t b4 + 30∂t∂yf4

)
+O(z7) (A.1b)
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Figure 9. Comparison of results from the relaxation algorithm using a first order finite difference

method (red dots) and a spectral method (black lines). On top we show the time evolution (left)

and the scaling with the separation (right) of the regularized EE for narrow shocks. On the bottom

we show a conformal geodesic in the y-z plane (left) and the t-z plane (right).

S(z, t, y) =
1

z
+ z4

(
− 1

20
∂ta4 −

1

15
∂yf4

)
+

1

180
z5
(
∂2
ya4 − 3∂2

t a4 + 8∂2
yb4

)
+O(z7) (A.1c)

F (z, t, y) = z2f4 +
1

5
z3
(
∂ya4 + 4∂tf4

)
+

1

6
z4
(
∂t∂ya4 − ∂t∂yb4 + 2∂2

t f4

)
+O(z7) . (A.1d)

B Numerical checks

In any numerical analysis it is important to check the underlying algorithm for program-

ming mistakes and to track numerical errors. In order to check the correctness of our numer-

ical results two completely independent relaxation codes were developed, one by the Vienna

group and another one by Wilke van der Schee. The first algorithm employs first order finite

differences, the second one a spectral method. We find excellent agreement (see figure 9).

In both computer codes the embedding functions of the geodesics are represented on

a finite number of grid points. The numerical result must converge to the true solution

when the number of gridpoints is increased. Table 3 demonstrates that both, the 2-point

function and the EE, change only insignificantly already for a moderate number of 200 grid

points. Based on this analysis we have chosen 200 gridpoints in all our simulations.
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gridsize e−Lreg |µt=0 e−Lreg |µt=2 Sreg|µt=0 Sreg|µt=2

50 0.907817 0.997721 0.468440 0.0369731

80 0.908684 0.998197 0.496564 0.0712919

100 0.908881 0.998306 0.498700 0.0735928

200 0.909140 0.998450 0.500354 0.0744153

300 0.909187 0.998476 0.500660 0.0744176

400 0.909204 0.998486 0.500772 0.0744166

Table 3. Scaling of the 2-point function e−Lreg and the EE Sreg with the number of gridpoints.

The results are for narrow shocks at the collision time (µt = 0) and at some later time (µt = 2).

For the 2-point function the separation is µl = 1.0 and for the EE µl = 0.5. In both cases the cutoff

is fixed at zcut = 0.075.

zcut e−Lreg |µt=0 e−Lreg |µt=2 Sreg|µt=0 Sreg|µt=2

0.1 0.909028 0.998464 0.504097 0.0747103

0.09 0.909079 0.998458 0.502534 0.0746000

0.08 0.909122 0.998453 0.501073 0.0744817

0.07 0.909156 0.998448 0.499622 0.0743396

0.06 0.909181 0.998444 0.498010 0.0741270

0.05 0.909195 0.998440 0.495843 0.0736603

0.04 0.909191 0.998436 0.491721

0.03 0.909157 0.998432

0.02 0.909035 0.998428

0.01 0.908378 0.998470

Table 4. Scaling of the 2-point function e−Lreg and the EE Sreg with the cutoff zcut. The results

are for narrow shocks at the collision time (µt = 0) and at some later time (µt = 2). For the

2-point function the separation is fixed to µl = 1.0 and for the EE to µl = 0.5. In both cases 200

gridpoints are used.

Our numerical scheme employs a cutoff zcut in the holographic coordinate. The final

result for our observables should not depend on this cutoff which purely serves numerical

purposes. In table 4 we show the scaling of the 2-point function of separation µl = 1 and

the EE of separation µl = 0.5 evaluated at two different times (µt = 0, 2) for the narrow

shocks. The results for the 2-point function are nicely independent of the cutoff in the

range zcut ∈ [0.01, 0.1]. In case of the EE the cutoff dependence turns to be ≈ 1% in the

range zcut ∈ [0.05, 0.1] which is sufficient for our qualitative studies. In all our simulations

presented in this work we have set the cutoff to zcut = 0.075.
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