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Abstract The Kronecker coefficients are the structural constants for the tensor cat-
egories of representations of the symmetric groups, namely, given three partitions
λ,μ, τ of n, the multiplicity of λ in μ ⊗ τ is called the Kronecker coefficient gλ

μ,τ .
When the first part of each of the partitions is taken to be very large (the remaining
parts being fixed), the values of the appropriate Kronecker coefficients stabilize; the
stable value is called the reduced (or stable) Kronecker coefficient. These coefficients
also generalize the Littlewood–Richardson coefficients and have been studied quite
extensively. In this paper, we show that reduced Kronecker coefficients appear natu-
rally as structure constants of Deligne categories Rep(St ). This allows us to interpret
various properties of the reduced Kronecker coefficients as categorical properties of
Deligne categories Rep(St ) and derive new combinatorial identities.

Keywords Representations of symmetric groups · Kronecker coefficients · Deligne
categories

1 Introduction

The Kronecker coefficients are the structural constants for the semisimple categories
Rep(Sn). Namely, considering two irreducible representations μ, τ of Sn , we can
decompose the tensor product μ ⊗ τ into a direct sum of irreducible representations
of Sn . The multiplicity of λ in μ ⊗ τ is called the Kronecker coefficient gλ

μ,τ (good
references for Kronecker coefficients are [11, Par. I.7], [16, Chapter 7]).

Consider three arbitrary Young diagrams λ,μ, τ . For n >> 0, denote by ˜λ(n)

the Young diagram of size n obtained by adding a top row of size n − |λ| to λ
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(similarly for μ, τ ). Such a diagram is defined whenever n ≥ λ1 + |λ|. It was noticed
by Murnaghan in [13] that the sequence {g˜λ(n)

μ̃(n),̃τ (n)}n>>0 stabilizes, and the stable

value of the sequence was called the reduced Kronecker coefficient ḡλ
μ,τ associated

with the triple (λ, μ, τ).
The reduced Kronecker coefficients have been studied extensively in [1,3,13,14],

and other papers.
In particular, these coefficients have been linked to Geometric Complexity Theory

(see [2,12]), stable representation theory and FI-modules (see [5,15]) and to the study
of the Fourier-Deligne transform (see [9]).

It turns out that reducedKronecker coefficients occur naturally inDeligne categories
Rep(St ), t ∈ C, which are interpolations of the categories of finite-dimensional rep-
resentations of the symmetric groups over the field C of complex numbers. These
Karoubian rigid symmetric monoidal categories were defined and studied by Deligne
[8], and subsequently by Comes and Ostrik [6,7].

A detailed description of the Deligne categories Rep(St ), as well as their abelian
envelopes, is given is Sect. 3. Below we give the main properties of these categories.

As it was said before, the categories Rep(St ) interpolate the categories of repre-
sentations of symmetric groups; namely, for n ∈ Z+, the category Rep(St=n) admits
a full, essentially surjective symmetric monoidal functor to the category of finite-
dimensional representations of the symmetric group Sn .

For t �∈ Z+, the category Rep(St ) is a semisimple abelian tensor category, the
simple objects being parameterized by arbitrary Young diagrams (of any size).

Note that for n ∈ Z+, the category Rep(St=n) is not abelian. It can be embedded
as a full monoidal subcategory into a tensor (i.e., rigid symmetric monoidal abelian)
category Repab(St=n); the latter is not semisimple, but its structure can be described
quite explicitly (see [10, Section 5]).

Our first main result is that for a generic value of t , the structural constants of
Rep(St ) as a tensor category turn out to be exactly the reduced Kronecker coefficients:

Theorem 1.1 Denote by Xλ the simple object of Rep(St ) (t �∈ Z+) which corresponds
to the Young diagram λ. Then

Xμ ⊗ Xτ =
⊕

λ is a partition of arbitrary size

C
ḡλ
μ,τ ⊗ Xλ

This approach provides a natural environment for the reduced Kronecker coeffi-
cients. It allows us to interpret various facts about reduced Kronecker coefficients
in terms of Deligne categories, and obtain some new, previously unknown formulas
involving reduced Kronecker coefficients, which we describe below.

In order to state these results, we will use the following definition:

Definition 1.1 Let λ be a Young diagram, and let n ∈ Z be such that ˜λ(n) is a
Young diagram (i.e. |λ| + λ1 ≤ n). We define the sequence of Young diagrams {λ(i)}i
corresponding to the pair (λ, n) by
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λ = λ(0) ⊂ λ(1) ⊂ λ(2) ⊂ . . .

and λ(i+1) \ λ(i) = strip in row i + 1 of length λi − λi+1 + 1 for i > 0,

and λ(1) \ λ(0) = strip in row 1 of length n − |λ| − λ1 + 1.

We now state the second main result (see Proposition 5.4).

Theorem 1.2 Let λ,μ, τ be three Young diagrams. Let n ∈ Z, |λ|+λ1 ≤ n (i.e.˜λ(n)

is defined).

– If n ∈ {|μ| + μl − l : l = 1, . . . , |μ|}, then
∑

i≥0

(−1)i ḡλ(i)

μ,τ = 0

– Assume μ, τ satisfy the same condition as λ: |μ| + μ1, |τ | + τ1 ≤ n.
Consider the sequences {μ(i)}i≥0 and {τ (i)}i≥0 respectively (these sequences are not
necessarily distinct), and let k, l ≥ 0.
Then

∑

i≥0

(−1)i ḡλ(i)

μ(k),τ (l) = (−1)k+l g
˜λ(n)
μ̃(n),̃τ (n)

A special case of the second result when k = l = 0 recovers a formula due to Briand,
Orellana and Rosas (see [3]) which describes how to recover the (standard) Kronecker
coefficients from the reduced Kronecker coefficients.

1.1 Structure of the paper

In Sect. 3, we recall the relevant facts about Deligne’s categories Rep(St ).
In Sect. 4, we define the Deligne–Kronecker coefficients in terms of Deligne cate-

gories. We will later show that these coincide with the reduced Kronecker coefficients.
In Sect. 5 we prove some known properties of Kronecker coefficients using the

machinery of Deligne categories; we also prove some previously unknown formulas
in Sect. 5.5.

2 Notation and definitions

The base field throughout the paper will be C.

2.1 Karoubian categories

Definition 2.1 (Karoubian category) We will call a categoryA Karoubian1 if it is an
additive category, and every idempotent morphism is a projection onto a direct factor.

1 Deligne calls such categories “pseudo-abelian” (see [8, 1.9]).
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Definition 2.2 (Block of a Karoubian category) A block in an Karoubian category is a
full subcategory generated by an equivalence class of indecomposable objects, defined
by the minimal equivalence relation such that any two indecomposable objects with a
non-zero morphism between them are equivalent.

2.2 Symmetric group and young diagrams

Notation 2.3 – Sn will denote the symmetric group (n ∈ Z+).
– The notation λ will stand for a partition (weakly decreasing sequence of
non-negative integers), a Young diagram λ, and the corresponding irreducible rep-
resentation of S|λ|. Here |λ| is the sum of entries of the partition, or, equivalently,
the number of cells in the Young diagram λ.
The set of all Young diagrams will be denoted by P .

– All the Young diagrams will be considered in the English notation, i.e. the lengths
of the rows decrease from top to bottom.

– The length of the partition λ, i.e. the number of rows of Young diagram λ, will be
denoted by �(λ).

– The i-th entry of a partition λ, as well as the length of the i-th row of the corre-
sponding Young diagram, will be denoted by λi (if i > �(λ), then λi := 0).

– h (in context of representations of Sn) will denote the permutation representation
of Sn , i.e. the n-dimensional representation C

n with Sn acting by g.e j = eg( j) on
the standard basis e1, .., en of Cn .

– For any Young diagram λ and an integer n such that n ≥ |λ| + λ1, we denote by
˜λ(n) the Young diagram obtained by adding a row of length n − |λ| on top of λ.

Example 2.1 Consider theYoung diagramλ corresponding to the partition (6, 5, 4, 1):

The length of λ is 4, and |λ| = 16. For n = 23, we have:

˜λ(n) =

3 Deligne categories

This section follows [6,8,10].
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3.1 General description

For any t ∈ C, the category Rep(St ) is generated, as a C-linear Karoubian tensor
category, by one object, denoted h. This object is the analogue of the permutation
representation of Sn , and any object in Rep(St ) is a direct summand in a direct sum
of tensor powers of h.

For t /∈ Z+, Rep(St ) is a semisimple abelian category.

Notation 3.1 We will denote Deligne’s category for integer value n ≥ 0 of t as
Rep(St=n), to distinguish it from the classical category Rep(Sn) of representations of
the symmetric group Sn . Similarly for other categories arising in this text.

If t is a non-negative integer, then the category Rep(St ) has a tensor ideal It , called
the ideal of negligible morphisms (this is the ideal of morphisms f : X −→ Y such
that tr( f u) = 0 for any morphism u : Y −→ X ). In that case, the classical category
Rep(Sn) of finite-dimensional representations of the symmetric group for n := t
is equivalent to Rep(St=n)/It (equivalent as Karoubian rigid symmetric monoidal
categories).

The full, essentially surjective functor Rep(St=n) → Rep(Sn) defining this equiv-
alence will be denoted by Sn .

Note that Sn sends h to the permutation representation of Sn .

Remark 3.1 Although Rep(St ) is not semisimple and not even abelian when t= n ∈
Z+, a weaker statement holds (see [8, Proposition 5.1], Remark 3.1): consider the
full subcategory Rep(St=n)

(n/2) of Rep(St ) whose objects are directs summands of
sums of h⊗m, 0 ≤ m ≤ n

2 . This subcategory is abelian semisimple, and the restriction
Sn|Rep(St=n)(n/2) is fully faithful.

The indecomposable objects of Rep(St ), regardless of the value of t , are parame-
trized (up to isomorphism) by all Young diagrams (of arbitrary size). We will denote
the indecomposable object in Rep(St ) corresponding to the Young diagram τ by Xτ .

For non-negative integer t =: n, we have: the partitions λ for which Xλ has a non-
zero image in the quotient Rep(St=n)/It=n ∼= Rep(Sn) are exactly the λ for which
λ1 + |λ| ≤ n.

If λ1 + |λ| ≤ n, then the image of λ in Rep(Sn) is the irreducible representation of
Sn corresponding to the Young diagram˜λ(n) (see Sect. 2).

This allows one to intuitively treat the indecomposable objects of Rep(St ) as if
they were parametrized by “Young diagrams with a very long top row”. The inde-
composable object Xλ would be treated as if it corresponded to ˜λ(t), i.e. a Young
diagram obtained by adding a very long top row (“of size t −|λ|”). This point of view
is useful to understand how to extend constructions for Sn involving Young diagrams
to Rep(St ).

123



350 J Algebr Comb (2016) 44:345–362

Example 3.1 The indecomposable object Xλ, where λ = can be thought of

as a Young diagram with a “very long top row of length (t − 16)”:

3.2 Lifting objects

We start with an equivalence relation on the set of all Young diagrams, defined in [6,
Definition 5.1]:

Definition 3.2 Let λ be any Young diagram, and set

μλ(t) = (t − |λ| , λ1 − 1, λ2 − 2, . . .)

Given two Young diagrams λ, λ′, denote μλ(t) =: (μ0, μ1, . . .), μλ′(t) =:
(μ′

0, μ
′
1, . . .).

We put λ
t∼ λ′ if there exists a bijection f : Z+ → Z+ such that μi = μ′

f (i) for
any i ≥ 0.

We will call a
t∼-class trivial if it contains exactly one Young diagram.

The following lemma is proved in [6, Corollary 5.6, Proposition 5.8]:

Lemma 3.1 1. If t /∈ Z+, then any Young diagram λ lies in a trivial
t∼-class.

2. The non-trivial
t∼-classes are parametrized by all Young diagrams λ such that˜λ(t)

is a Young diagram (in particular, t ∈ Z+), and are of the form {λ(i)}i , with

λ = λ(0) ⊂ λ(1) ⊂ λ(2) ⊂ . . .

and λ(i+1) \ λ(i) = strip in row i + 1 of length λi − λi+1 + 1 for i > 0,

and λ(1) \ λ(0) = strip in row 1 of length t − |λ| − λ1 + 1.

We now consider Deligne’s category Rep(ST ), where T is a formal variable (see
[6, Section 3.2]). This category is C((T − t))-linear, but otherwise it is very similar
to Deligne’s category Rep(St ) for generic t . For instance, as a C((T − t))-linear
Karoubian tensor category, Rep(ST ) is generated by one object, again denoted by h.

One can show that Rep(ST ) is split semisimple and thus abelian, and its simple
objects are parametrized by Young diagrams of arbitrary size.

In [6, Section 3.2], Comes and Ostrik defined a map

liftt :
{

objects in Rep(St )
up to isomorphism

}

→
{

objects in Rep(ST )

up to isomorphism

}
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We will not give the precise definition of this map, but will list some of its use-
ful properties. It is defined to be additive (i.e. liftt (A ⊕ B) ∼= liftt (A) ⊕ liftt (B) for
any A, B ∈ Rep(St )) and satisfies liftt (h) ∼= h. Moreover, we have (see [6, Proposi-
tion 3.12]):

Proposition 3.1 Let A, B be two objects in Rep(St ).

1. liftt (A ⊗ B) ∼= liftt (A) ⊗ liftt (B).
2. dimC HomRep(St )(A, B) = dimFrac(C[[T ]]) HomRep(ST )(liftt (A), liftt (B)).
3. The map liftt is injective.

Remark 3.2 It was proved both in [8, Section 7.2] and in [6, Proposition 3.28] that the
dimensions of the indecomposable objects Xλ in Rep(ST ) are polynomials in T whose
coefficients depend on λ (given λ, this polynomial can be written down explicitly).
Such polynomials are denoted by Pλ(T ).

Furthermore, it was proved in [6, Proposition 5.12] that given d ∈ Z+ and a Young

diagram λ, λ belongs to a trivial
d∼-class iff Pλ(d) = 0.

The following result is proved in [6, Lemma 5.20]:

Lemma 3.2 (Comes, Ostrik) Consider the
t∼-equivalence relation on Young dia-

grams.

– Whenever λ lies in a trivial
t∼-class, liftt (Xλ) = Xλ.

– For a non-trivial
t∼-class {λ(i)}i ,

liftt (Xλ(0) ) = Xλ(0) , liftt (Xλ(i) ) = Xλ(i) ⊕ Xλ(i−1) ∀i ≥ 1

Based on Lemmas 3.1, 3.2, Comes and Ostrik give a full description of blocks in
Rep(St ) (see [6], [7, Proposition 2.7]):

3.3 Abelian envelope

As it was mentioned before, the category Rep(St ) is defined as a Karoubian category.
For t /∈ Z+, it is semisimple and thus abelian, but for t ∈ Z+, it is not abelian.
Fortunately, it has been shown that Rep(St ) possesses an “abelian envelope”, that is,
that it can be embedded into an abelian tensor category, and this abelian tensor category
has a universal mapping property (see [8, Conjecture 8.21.2], and [7, Theorem 1.2]).

An explicit construction of the category Repab(St=n) is given in [7]. We will only
list the results which will be used in this paper.

Proposition 3.2 The category Repab(St ) is a highest weight category corresponding
to the (infinite) partially ordered set ({Young diagrams},≥), where

λ ≥ μ if λ
t∼ μ, λ ⊂ μ

(namely, λ(i) ≥ λ( j) if i ≤ j ).
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The category Rep(St ) is the subcategory of tilting objects in Repab(St ). More
specifically, we have:

Proposition 3.3 The blocks of the abelian category Repab(St ) correspond to the
t∼-

classes:

1. Let λ lie in a trivial
t∼-class. The corresponding block of Repab(St ) is semisimple

and is generated by the simple projective object Xλ.

2. Let {λ(i)}i≥0 be a non-trivial
t∼-class. The corresponding block of Repab(St ) is

non-semisimple, and contains Xλ(i) for i ≥ 0.
– Xλ(0) is a simple, non-projective object.
– For any i ≥ 1, Xλ(i) is a projective object.

4 Reduced Kronecker coefficients and Deligne’s categories

Notation 4.1 Let t ∈ C, and consider Deligne’s category Rep(St ). Let A be any
object in Rep(St ), and Xλ be an indecomposable object. Then A decomposes into a
direct sum of indecomposable objects, and we denote by [A : Xλ]t the multiplicity of
Xλ in this direct sum, i.e.

A ∼=
⊕

λ

[A : Xλ]t Xλ

Similarly, given anobject A in theFrac(C[[T ]])-linearDeligne’s category Rep(ST ),
and an indecomposable object Xλ in the same category, we denote by [A : Xλ]T the
multiplicity of Xλ in the decomposition of A into a direct sum of indecomposable
objects. Since Rep(ST ) is semisimple, we have:

[A : Xλ]T = dimFrac(C[[T ]]) HomRep(ST )(A, Xλ)

Definition 4.2 Consider the Frac(C[[T ]])-linear Deligne’s category Rep(ST ) (this

category is semisimple). Let λ,μ, τ∈ P . We denote by ḡλ
μ,τ the multiplicity of the

simple object Xλ in Xμ ⊗ Xτ :

ḡλ
μ,τ := [Xμ ⊗ Xτ : Xλ]T = dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ , Xλ)

The value ḡλ
μ,τ will be called the Deligne–Kronecker coefficient corresponding to the

triple of Young diagrams (λ, μ, τ).

Thus the Deligne–Kronecker coefficients are the structural constants of the
Grothendieck rings R(St ) of Deligne’s categories Rep(St ) at generic values of t
(t /∈ Z+). These rings are all isomorphic to one another and do not depend on t :

Proposition 4.1 Let t /∈ Z+, and let λ,μ, τ∈ P . Consider the semisimple category
Rep(St ). Then the multiplicity of the simple object Xλ in Xμ ⊗ Xτ is ḡλ

μ,τ .
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Proof By Lemma 3.2, liftt (Xλ) ∼= Xλ for any Young diagram λ, and so liftt (Xμ ⊗
Xτ ) ∼= Xμ ⊗ Xτ . Thus we obtain:

ḡλ
μ,τ := [Xμ ⊗ Xτ : Xλ]T = dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ , Xλ)

= dimC HomRep(St )(Xμ ⊗ Xτ , Xλ) = [Xμ ⊗ Xτ : Xλ]t .


�
In fact, for a fixed triple (λ, μ, τ), the same is true for almost all values of t :

Proposition 4.2 Fix λ,μ, τ , and let N := max{|λ| , |μ|+ |τ |}. Let t /∈ {0, . . . , 2N −
2}. Consider the category Rep(St ). Then the multiplicity of the simple object Xλ in

Xμ ⊗ Xτ is ḡλ
μ,τ .

Proof Almost the same arguments as in Proposition 4.1 apply here:
By Lemma 3.2, liftt (Xλ) ∼= Xλ and

liftt (Xμ ⊗ Xτ ) ∼= liftt (Xμ) ⊗ liftt (Xτ ) ∼= Xμ ⊗ Xτ

Again,

ḡλ
μ,τ = dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ , Xλ)

= dimC HomRep(St )(Xμ ⊗ Xτ , Xλ)

The objects Xμ ⊗ Xτ , Xλ are direct summands in h⊗|μ|+|τ |, h⊗|λ| respectively.
Therefore, they lie in Rep(St )(N ), which is semisimple (see Remark 3.1).

We conclude that

ḡλ
μ,τ = dimC HomRep(St )(Xμ ⊗ Xτ , Xλ) = [Xμ ⊗ Xτ : Xλ]t .


�
To conclude this section, we prove a lemma which will be useful later on:

Lemma 4.1 Letμ, τ, λ be three Young diagrams, and let n ∈ Z, n ≥ |λ|+λ1. Denote

by {λ(i)}i≥0 the
n∼-class of λ (λ = λ(0) since n ≥ |λ| + λ1). Then

[Xμ ⊗ Xτ : Xλ]t=n =
∑

j≥0

(−1) j dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ)

⊗liftt=n(Xτ ), Xλ( j) )

Proof By definition, we have:

Xμ ⊗ Xτ =
⊕

ρ∈P
[Xμ ⊗ Xτ : Xρ]t=n Xρ
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so

liftt=n(Xμ ⊗ Xτ ) =
⊕

ρ∈P
[Xμ ⊗ Xτ : Xρ]t=n liftt=n(Xρ)

On the other hand,

[liftt=n(Xμ ⊗ Xτ ): Xρ] =
⊕

ρ∈P
dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ)

⊗liftt=n(Xτ ), Xρ)

Now, by Lemma 3.2,

liftt=n(Xλ) = Xλ, liftt=n(Xλ(i) ) = Xλ(i) ⊕ Xλ(i−1) for i ≥ 1

so for any i ≥ 0,

dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ) ⊗ liftt=n(Xτ ), Xλ(i) )

= [Xμ ⊗ Xτ : Xλ(i)]t=n + [Xμ ⊗ Xτ : Xλ(i+1)]t=n

and thus

[Xμ ⊗ Xτ : Xλ(i)]t=n =
∑

j≥0

(−1) j dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ)

⊗liftt=n(Xτ ), Xλ(i+ j) ).

The statement of the lemma is just the special case when i = 0. 
�

5 Properties of Deligne–Kronecker coefficients

5.1 Symmetry

The Deligne–Kronecker coefficient ḡλ
μ,τ is symmetric in terms of the three partitions

λ,μ, τ .
In the context of the Deligne category Rep(ST ), this corresponds to the fact that

ḡλ
μ,τ = dimFrac(C[[T ]]) HomRep(ST )(Xλ, Xμ ⊗ Xτ )

and

HomRep(ST )(Xλ, Xμ ⊗ Xτ ) ∼= HomRep(ST )(1, Xλ ⊗ Xμ ⊗ Xτ )

(since any object in Rep(ST ) is self-dual). The last expression is clearly symmetric in
λ,μ, τ .
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5.2 Murnaghan–Littlewood inequalities

We now give a sufficient condition on the Young diagrams for the Deligne–Kronecker
coefficient to be zero. This is called the Murnaghan–Littlewood inequalities.

Lemma 5.1 Let λ,μ, τ be three partitions of arbitrary sizes, and let t ∈ C.
Then [Xμ ⊗ Xτ : Xλ]t = 0 whenever |λ| > |μ| + |τ |.

Proof Recall from the construction of Deligne’s category ([6, Section 2]) that the
indecomposable object Xρ appears as a direct summand of h⊗|ρ|, but does not appear
in smaller tensor powers of h. Thus Xμ ⊗ Xτ is a direct summand of h⊗(|μ|+|τ |), while
Xλ cannot appear as a direct summand in h⊗(|μ|+|τ |) if |λ| > |μ| + |τ |. 
�

Applying this lemma to the case t /∈ Z+, we immediately obtain the following
well-known Murnaghan–Littlewood inequalities (c.f. [13]):

Corollary 5.1 Let λ,μ, τ be three partitions of arbitrary sizes. Then ḡλ
μ,τ �= 0 implies

|λ| ≤ |μ| + |τ |.
Of course, since ḡλ

μ,τ is symmetric with respect to the three Young diagrams, we
conclude that |τ | ≤ |μ| + |λ| , |μ| ≤ |λ| + |τ | as well.

5.3 Reduced Kronecker coefficients and Littlewood–Richardson coefficients

The following proposition is proved in [8, Proposition 5.11]:

Proposition 5.1 When |λ| = |μ| + |τ |, the Deligne–Kronecker coefficient ḡλ
μ,τ is

equal to the Littlewood–Richardson coefficient

cλ
μ,τ := dimC HomS|μ|×S|τ |

(

Res
S|λ|
S|μ|×S|τ |λ,μ ⊗ τ

)

We give a sketch of the proof following [8, Sections 2, 5].

Sketch of proof The construction of any indecomposable object Xλ in Rep(St ) can be

done in two ways: one is to consider Xλ as a direct summand of h⊗|λ|, and the other
is to consider Xλ as a direct summand of Δ|λ| (here Δk is an object of Rep(St ) which

is an analogue of the Sn representation IndSn×Sk
Sn−k×Sk×Sk

C).
Let k = |λ|. Consider the action of Sk on Δ∗

k , which is the largest direct summand
of Δk having no common direct summands with Δk−1. The decomposition of Δ∗

k into
irreducible Sk-representations with respect to this action gives us

Δ∗
k =

⊕

|ρ|=k

Xρ ⊗ ρ

Now, Xμ ⊗ Xτ is a direct summand of Δ|μ| ⊗ Δ|τ |. The latter decomposes as a
direct sum of Δk for k ≤ |μ| + |τ | = |λ|, with Δ|λ| appearing with multiplicity 1.
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This allows us to conclude that

[Xμ ⊗ Xτ : Xλ] = dimC HomS|μ|×S|τ |
(

Res
S|λ|
S|μ|×S|τ |λ,μ ⊗ τ

)

=: cλ
μ,τ .


�
Corollary 5.2 For any t /∈ Z+, fix a filtration on the Grothendieck ring R(St ) of
Rep(St ) by setting Xλ ∈ Filtra|λ|(R(St )). Then the associated graded ring Gr(R(St ))
is isomorphic to the ring of symmetric functions, as defined in [11, Chapter I, Par. 5],
with Xλ corresponding to the Schur function sλ.

Remark 5.1 The ring Gr(R(St )) is also isomorphic to the Grothendieck ring of the
tensor category

⊕

n≥0 Rep(Sn), with the tensor product given by the Bernstein–
Zelevinsky product

μ ⊗ τ := Ind
S|μ|+|τ |
S|μ|×S|τ |μ ⊗ τ

One can show that the same is true for the all the abelian categories Repab(St ): taking

an appropriate filtration on the Grothendieck ring of Repab(St ), the associated graded
ring will be isomorphic to the ring of symmetric functions. The filtration should be
taken so that the simple object corresponding to the Young diagram λ lies in the filtra
|λ|.

5.4 Deligne–Kronecker coefficients and standard Kronecker coefficients

The following proposition shows that the Deligne–Kronecker coefficient ḡλ
μ,τ is a

stable value of a sequence of standard Kronecker coefficients, and thus coincides with
the reduced (or stable) Kronecker coefficient. We also obtain a formula for recovering
standard Kronecker coefficients from reduced Kronecker coefficients. This formula
appears in [3, Theorem 1.1] in a slightly different form; we show that it can be obtained
directly from object lifting for Deligne categories.

Proposition 5.2 Let λ,μ, τ be three partitions of arbitrary sizes, and let N :=
max{|λ| + λ1, |μ| + μ1, |τ | + τ1}.
1. Consider the sequence

{

g
˜λ(n)
μ̃(n),̃τ (n)

}

n≥N

of standard Kronecker coefficients. This sequence stabilizes, and the stable value
is the Deligne–Kronecker coefficient ḡλ

μ,τ . Thus ḡλ
μ,τ is the reduced Kronecker

coefficient corresponding to the triple (λ, μ, τ).

2. Let n ≥ N. Denote by {λ(i)}i≥0 the
n∼-class of λ (λ = λ(0) since n ≥ |λ| + λ1).

Then

g
˜λ(n)
μ̃(n),̃τ (n) = [Xμ ⊗ Xτ : Xλ=λ(0) ]t=n =

∑

i≥0

(−1)i ḡλ(i)

μ,τ
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3. The stable value ḡλ
μ,τ is the maximum of the sequence {g˜λ(n)

μ̃(n),̃τ (n)}n≥N . Namely,

ḡλ
μ,τ ≥ g

˜λ(n)
μ̃(n),̃τ (n)

Remark 5.2 Note that Corollary 5.1 implies that the sum
∑

i≥0(−1)i ḡλ(i)

μ,τ is finite (due

to the fact that {∣∣λ(i)
∣

∣}i is a strongly increasing sequence).

Proof Let n ≥ N . Recall the symmetric monoidal functor Sn : Rep(St=n) →
Rep(Sn) described in Sect. 3. Due to the requirement on N , we have:

Sn(Xλ) ∼=˜λ(n), Sn(Xμ) ∼= μ̃(n), Sn(Xτ ) ∼= τ̃ (n)

and since Sn preserves tensor products, we see that

[Xμ ⊗ Xτ : Xλ]t=n = g
˜λ(n)
μ̃(n),̃τ (n)

1. Let n ≥ 2(|μ| + |τ |). By Proposition 4.2,

ḡλ
μ,τ = [Xμ ⊗ Xτ : Xλ]t=n

and thus

ḡλ
μ,τ = g

˜λ(n)
μ̃(n),̃τ (n)

for any n ≥ 2(|μ| + |τ |) (in fact, one can use Lemma 3.2 to show that this stable
value is reached when n ≥ |μ| + |τ | + μ1 + τ1). This proves Part (1).

2. Let n ≥ N . The objects Xλ, Xμ, Xτ are all minimal in their respective
n∼-classes,

so by Lemma 3.2,

liftt=n(Xμ) ∼= Xμ, liftt=n(Xτ ) ∼= Xτ

By Lemma 4.1, we have:

[Xμ ⊗ Xτ : Xλ=λ(0) ]t=n =
∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ)

⊗liftt=n(Xτ ), Xλ(i) ) =
∑

i≥0

(−1)i [Xμ ⊗ Xτ : Xλ(i)]T =
∑

i≥0

(−1)i ḡλ(i)

μ,τ

and so

g
˜λ(n)
μ̃(n),̃τ (n) = [Xμ ⊗ Xτ : Xλ]t=n =

∑

i≥0

(−1)i ḡλ(i)

μ,τ

which completes the proof of Part (2).
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3. We proved in the proof of Lemma 4.1 that

[Xμ ⊗ Xτ : Xλ(1) ]t=n =
∑

i≥1

(−1)i−1[Xμ ⊗ Xτ : Xλ(i)]T =
∑

i≥1

(−1)i−1ḡλ(i)

μ,τ

This multiplicity is a non-negative number, and we just showed that

∑

i≥1

(−1)i−1ḡλ(i)

μ,τ = ḡλ(0)

μ,τ − g
˜λ(n)
μ̃(n),̃τ (n)

So

ḡλ(0)=λ
μ,τ ≥ g

˜λ(n)
μ̃(n),̃τ (n).


�
Remark 5.3 The fact that the sequence {g˜λ(n)

μ̃(n),̃τ (n)}n stabilizes was proved by Mur-
naghan, see [13,14]. The reduced Kronecker coefficients (sometimes also called
“stable Kronecker coefficients”) were originally defined as the stabilizing values of
such sequences (see [3], for example). From now on we will use the more common
term “reduced Kronecker coefficient” instead of “Deligne–Kronecker coefficient”.

In addition, it was proved in [4] that this is a weakly increasing sequence (in
particular, this implies that its stable value is its maximum).

Remark 5.4 Similarly to the proof of Proposition 5.2, Part (3), one can prove the
following statement: consider the partial sums

Pk :=
∑

0≤i≤k

(−1)i ḡλ(i)

μ,τ

Then for any k ≥ 0,

P2k ≤ g
˜λ(n)
μ̃(n),̃τ (n) ≤ P2k+1

(the above proposition tells us that g
˜λ(n)
μ̃(n),̃τ (n) is the stable value of the sequence

{Pk}k≥0).

Let u = (u1, u2, . . .) be a sequence of integers. Denote

u†i := (u1 + 1, . . . , ui−1 + 1, ui+1, . . .)

(this is the sequence obtained from u by removing the i-th term and adding 1 to all the
previous terms). Of course, if u was a weakly decreasing sequence (Young diagram),
so is u†i .

Also, given a Young diagram λ, denote by λ̄ the Young diagram obtained from λ

by removing the top row (thus given λ � n, Sn(X λ̄) = λ). With these definitions, the

123



J Algebr Comb (2016) 44:345–362 359

second statement of Proposition 5.2 can also be reformulated as follows (in this form
it appears in [3]):

Proposition 5.3 Let n ∈ Z+, and let λ,μ, τ be three partitions of n. Then

gλ
μ,τ =

∑

i≥1

(−1)i+1ḡλ†i

μ̄,τ̄

Proof First of all, note that λ̄ satisfies:

∣

∣λ̄
∣

∣ + λ̄1 = n − λ1 + λ2 ≤ n

Thus λ̄ is the minimal element in a non-trivial
n∼-class. All we need to do is check that

{λ†i }i≥1 is exactly the
n∼-class of λ̄.

Denote by {λ̄(i)}i≥0 the
n∼-class of λ̄. Of course,

λ̄(0) = λ̄ = λ†1

Now, by Lemma 3.1, we have:

λ̄(1) = (λ̄1 + n − ∣

∣λ̄
∣

∣ − λ̄1 + 1, λ̄2, λ̄3, . . .)

= (n − (n − λ1) + 1, λ̄2, λ̄3, . . .) = (λ1 + 1, λ3, λ4, . . .) = λ†2

and proceeding by induction on i , we have (for i > 1):

λ̄(i) = (λ̄
(i−1)
1 , λ̄

(i−1)
2 , . . . , λ̄

(i−1)
i−1 , λ̄

(i−1)
i − λ̄i + λ̄i−1 + 1, λ̄(i−1)

i+1 , . . .)

= (λ1+1, λ2+1, . . . , λi−2+1, λi−1+1, λi+1−λ̄i +λ̄i−1 + 1, λi+2, . . .)=λ†(i+1)

Thus we proved that the sequences {λ†i }i≥1, {λ̄(i)}i≥0 of Young diagrams coincide, as
wanted. 
�

5.5 New formulas involving reduced Kronecker coefficients

In this subsection we present close companions of the formula in Proposition 5.2,
which are based on the following standard property of rigid symmetric monoidal
abelian categories: given an object X and a projective object P , the tensor product
X ⊗ P is again projective. Note that the second part of Proposition 5.4 is just a
generalization of Proposition 5.2, Part (2).

Proposition 5.4 Let λ,μ, τ be three Young diagrams. Let n ∈ Z, |λ| + λ1 ≤ n.

Denote by {λ(i)}i≥0 the
n∼-class of λ (λ = λ(0) since n ≥ |λ| + λ1).
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– If Xμ lies in a trivial
n∼-class (equivalently, if n ∈ {|μ|+μl − l : l = 1, . . . , |μ|}),

then

∑

i≥0

(−1)i ḡλ(i)

μ,τ = [Xμ ⊗ Xτ : Xλ=λ(0) ]t=n = 0

– Assume both Xμ and Xτ lie in non-trivial
n∼-classes, denoted by {μ(i)}i≥0 and

{τ (i)}i≥0 respectively (these classes are not necessarily distinct). Let k, l be such
that μ = μ(k), τ = τ (l). Then

∑

i≥0

(−1)i ḡλ(i)

μ,τ = (−1)k+l g
˜λ(n)

μ̃(0)(n),̃τ (0)(n)

Remark 5.5 Again, by Corollary 5.1 the above sums are finite (due to the fact that
{∣∣λ(i)

∣

∣}i is a strongly increasing sequence).

Proof First of all, recall that the case when n ≥ |μ| + μ1, |τ | + τ1 has been studied
in Proposition 5.2. So without loss of generality, we can assume that n < |μ| + μ1.

Notice that the condition n < |μ| + μ1 implies that μ is either in a trivial
n∼-class,

or a non-minimal element in a non-trivial
n∼-class.

Now, consider the category Repab(St=n); this is a rigid symmetricmonoidal abelian

category. FromProposition 3.3,we know that Xμ is a projective object in Repab(St=n),
while Xλ is a simple, but not projective object.

Thus Xμ ⊗ Xτ is again a projective object. Decomposing it as a sum of indecom-
posable objects in Rep(St=n), we see that all the summands must be projective objects

in Repab(St=n), and so

[Xμ ⊗ Xτ : Xλ=λ(0) ]t=n = 0

By Lemma 4.1, we have:

0 = [Xμ ⊗ Xτ : Xλ]t=n =
∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(liftt=n(Xμ)

⊗liftt=n(Xτ ), Xλ(i) )

– Assume Xμ lies in a trivial
n∼-class. Then liftt=n(Xμ) = Xμ, and so

∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ liftt=n(Xτ ), Xλ(i) ) = 0 (1)

First, assume liftt=n(Xτ ) = Xτ . In this case, Eq (1) becomes

∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ , Xλ(i) ) =
∑

i≥0

(−1)i ḡλ(i)

μ,τ = 0
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and we are done.
It remains to check the case when liftt=n(Xτ ) �= Xτ . In this case, τ lies in a non-trivial
n∼-class. Denote this class by {τ (i)}i≥0. We will now prove that

∑

i≥0

(−1)i ḡλ(i)

μ,τ ( j) = 0

for any j ≥ 0 by induction on j .
Base: The case when j = 0 has already been proved.
Step: Applying Eq. (1) to all τ ( j), j ≥ 1, we obtain:

0 =
∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ ( j) , Xλ(i) )+

+
∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )(Xμ ⊗ Xτ ( j) , Xλ(i) )

=
∑

i≥0

(−1)i ḡλ(i)

μ,τ ( j) +
∑

i≥0

(−1)i ḡλ(i)

μ,τ ( j−1)

So assuming

∑

i≥0

(−1)i ḡλ(i)

μ,τ ( j−1) = 0

we obtain:

∑

i≥0

(−1)i ḡλ(i)

μ,τ ( j) = 0

and we are done.

– Assume both Xμ and Xτ lie in non-trivial
n∼-classes, denoted by {μ(i)}i≥0 and by

{τ (i)}i≥0 respectively. Let k, l be such that μ = μ(k), τ = τ (l).
Then

0 = [Xμ ⊗ Xτ : Xλ]t=n =
∑

i≥0

(−1)i dimFrac(C[[T ]]) HomRep(ST )((Xμ(k) ⊕ Xμ(k−1) )

⊗(Xτ (l) ⊕ Xτ (l−1) ), Xλ(i) )

and so

∑

i≥0

(−1)i ḡλ(i)

μ(k),τ (l) +
∑

i≥0

(−1)i ḡλ(i)

μ(k),τ (l−1) +
∑

i≥0

(−1)i ḡλ(i)

μ(k−1),τ (l)

+
∑

i≥0

(−1)i ḡλ(i)

μ(k−1),τ (l−1) = 0
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By induction on k + l, we can now prove that

∑

i≥0

(−1)i ḡλ(i)

μ,τ = (−1)k+l g
˜λ(n)

μ̃(0)(n),˜τ (0)(n)

(the base case k + l = 0 was proved in Proposition 5.2). 
�
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