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Augmented Dictionary Learning for Motion Prediction

Yu Fan Chen, Miao Liu, and Jonathan P. How

Abstract— Developing accurate models and efficient repre-
sentations of multivariate trajectories is important for under-
standing the behavior patterns of mobile agents. This work
presents a dictionary learning algorithm for developing a part-
based trajectory representation, which combines merits of the
existing Markovian-based and clustering-based approaches. In
particular, this work presents the augmented semi-nonnegative
sparse coding (ASNSC) algorithm for solving a constrained
dictionary learning problem, and shows that the proposed
method would converge to a local optimum given a convexity
condition. We consider a trajectory modeling application, in
which the learned dictionary atoms correspond to local motion
patterns. Classical semi-nonnegative sparse coding approaches
would add dictionary atoms with opposite signs to reduce
the representational error, which can lead to learning noisy
dictionary atoms that correspond poorly to local motion pat-
terns. ASNSC addresses this problem and learns a concise
set of intuitive motion patterns. ASNSC shows significant
improvement over existing trajectory modeling methods in both
prediction accuracy and computational time, as revealed by
extensive numerical analysis on real datasets.

I. INTRODUCTION

With wide application of onboard sensors and GPS de-
vices, large volumes of pedestrian and vehicular trajectory
data has been collected [1], [2]. These datasets are useful for
understanding the mobility patterns of human and vehicles,
which in turn, benefit applications such as autonomous
navigation [2] and mobility-on-demand systems [3]. To en-
sure safety in these applications, it is important that the
autonomous vehicles can accurately anticipate the future
paths of their surrounding moving objects. This requires
learning the models that can differentiate complex behavior
patterns.

Understanding the mobility patterns of dynamic agents
is crucial for applications such as autonomous driving [4],
traffic planning [5], video camera surveillance [6], and
aerial interception tasks [7]. Markovian-based [8]–[10]
and clustering-based [6], [7], [11], [12] methods are the
two main types of approaches for trajectory modeling. The
Markovian-based methods learn a state transition model from
the training trajectories, and make predictions based on the
current state and the hidden intent (e.g. goal) of an agent. The
clustering-based methods group the training trajectories into
a few clusters, and make predictions by fitting a predictive
motion model, such as a Gaussian Process [13], to each clus-
ter. Using only the current state, Markovian-based methods
can be more susceptible to measurement noise. Clustering-
based methods have been shown to generally produce better
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Fig. 1. Detecting and tracking pedestrians using sensors onboard of an
autonomous vehicle. Top shows an autonomous vehicle equipped with a 3D
Velodyne LIDAR, a Kinect camera, and a 2D SICK LIDAR. Bottom shows
the vehicle detecting and tracking pedestrians (yellow bounding boxes) using
a combination of camera and LIDAR data. In particular, pedestrians are
detected using the histogram of gradient algorithm on an camera image,
and pedestrians’ position is determined by matching the camera image with
the 3D point cloud data.

prediction accuracies, but they are slow to detect changes in
an agent’s behaviors [14]. More importantly, in real datasets
collected by cameras or LIDAR (fig. 1), there often exist a
large portion of short, incomplete trajectories due to occluded
views. This leads to some inherent ambiguity in trajectory
clustering (not clear how to assign partial trajectories) and
can lead to creating similar clusters that produce repetitive
predictions. Also, clustering-based methods can be compu-
tationally expensive, such as using Gibbs sampling in the
Dirichlet process mixture of Gaussian processes (DPGP)
framework [7], [15].

To address the shortcomings of clustering-based methods,
this work develops a part-based trajectory representation with
sparse dictionary learning. In particular, this work proposes
the augmented semi-nonnegative sparse coding (ASNSC)
formulation, which is a flexible framework that allows for
specifying different constraints on different parts of the
dictionary. By using a novel parametrization of multivariate
trajectories in the ASNSC framework, we develop a method
for learning dictionary atoms that correspond to visually
intuitive local motion patterns.

Learning local motion patterns is contrasted with assigning
global cluster labels to each trajectory as in clustering-
based methods [7], [14]. We provide a detailed compari-
son between these two views in section IV-B. Noticeably,



this work combines merits of Markovian-based methods
and clustering-based methods by finding the local clusters
characterized by partial trajectory segments, and making
predictions using both the local motion models and the
global Markovian transition dynamics. Multi-class inverse
reinforcement learning (IRL) algorithms [16], [17], which
are related to clustering-based methods (e.g. [7]), have also
been applied to modeling motion patterns. Previous work
based on clustering partial trajectory segments [18], [19] was
limited to modeling local motion patterns as short straight
line segments, whereas this work is more flexible since we do
not constrain the shape of local motion patterns. Recent work
[20] applied sparse coding to an image representation of hand
gesture trajectories, but this work models each dimension
independently, which would not be suitable for location-
based applications as considered in this paper.

The main contributions of this work are (i) development
of the ASNSC formulation, (ii) development of an algorithm
for solving ASNSC with convergence properties under some
mild conditions, (iii) formulation of the multivariate trajec-
tory modeling problem as a dictionary learning problem, and
(iv) empirical results and evaluations that show significant
improvement in prediction accuracy over existing methods
on real trajectory datasets.

II. PRELIMINARIES

We first review the dictionary learning problem and some
sparse coding algorithms for finding parts-based represen-
tations. Then, we develop the augmented semi-nonnegative
sparse coding (ASNSC) problem formulation and motivate
its usefulness with an application to trajectory modeling.

A. Sparse Coding

Sparse coding is a class of algorithms that find a succinct
representation of data by learning a set of overcomplete
basis vectors [21]–[23]. In this framework, each data sample
xi ∈ Rp is represented as a linear combination of a few
basis vectors dk ∈ Rp, such that xi ≈

∑
k skidk, where

ski is a set of sparse coefficients. In the past decade, a
number of sparse coding algorithms [22]–[24] have been
developed and successfully applied to image segmentation
and classification, audio signal processing, and image de-
noising [23]. Since many types of natural data (e.g. image
pixel intensity) are non-negative, and motivated by the need
to find interpretable part-based representations, subsequent
research has developed non-negative sparse coding (NSC)
[25] and non-negative matrix factorization (NMF) [26], [27]
algorithms by imposing non-negativity constraints on the
coefficient ski and dictionary atoms dk. However, few work
has been focused on semi-nonnegative sparse coding, which
allows dk to be unconstrained while maintaining ski non-
negative. We believe that this is not because of a lack
of algorithms [28] to solve the problem, but an inherent
issue with the problem formulation. In particular, the non-
negativity of ski is often imposed to simplify interpretation,
such that a non-zero coefficient can be interpreted as the
activation of a basis feature. Yet, this problem formulation

would allow dictionary atoms with opposite signs to cancel
each other, thus making ski difficult to interpret semantically.
In particular, it is ambiguous whether a trajectory exhibits
two local motion patterns that cancel each other (fig. 3). It is
plausible that an offset can be added to shift the entire dataset
into the positive range, which then allows the application of
NSC and NMF algorithms. However, this trick cannot be
applied for some types of data, such as modeling a motion
pattern as a velocity flow field. This is because the sign
and magnitude of a velocity variable has different semantic
meanings – heading directions and speeds – that can change
after a constant shift. A detailed example will be presented
in section II-C.

B. Augmented Semi-nonnegative Sparse Coding

For a set of I data samples, X = [x1, . . . ,xI ], where xi

is a column vector of length p, the goal is to learn a set of K
dictionary atoms, D = [d1, . . . ,dK ], and the corresponding
non-negative sparse coefficients S = [s1, . . . , sI ]. More
precisely, the objective is to solve

argmin
D,S

||X−DS||2F + λ
∑
i

||si||1 (1)

s.t. dk ∈ Q, ski ≥ 0 ∀k, i. (2)

where λ is a regularization parameter, and Q is the feasible
set in which dk resides.

This problem formulation generalizes prior work in sev-
eral important ways. In particular, the non-negative sparse
coding (NSC) problem [25] is obtained if Q = Rp

+, and
the non-negative matrix factorization (NMF) problem [26]
is obtained by further setting λ to zero, and the semi-
nonnegative matrix factorization (Semi-NMF) problems [28]
is obtained by allowing dk to be unconstrained. The key
difference of this problem formulation from prior work is
that eq. (2) provides the flexibility to characterize different
constraints for different parts of the dictionary. This can be
very useful, for example, in cases where each data sample
consists of two related measurement readings from different
sensors. Consider a scenario in which a data sample can
be constructed by stacking up two column vectors – each
corresponding to a measurement from a different sensor –
such that xi

T = [xai
T ,xbi

T ], where xai and xbi could be of
different lengths. The corresponding dictionary atom can be
partitioned similarly, such that dk

T = [dak
T ,dbk

T ], where
dak and dbk can be subjected to different constraints. More
precisely, we can define Q in eq. (2) such that

dak ∈ Da, dbk ∈ Db, g (dbk, dak) ≤ 0 ∀k, (3)

where Da and Db are the feasible sets in which dak and
dbk reside, and g(·, ·) is a joint constraint on dak and dbk.
In real applications, Da and Db can be chosen to reflect
the properties, such as range and discretization level, of the
corresponding sensor measurements.

C. Multivariate Trajectory Modeling

The trajectory of a mobile agent i is denoted by ti, which
is a sequence of two dimensional position measurements



Fig. 2. Vector representation of a trajectory. In a world discretized into
M×N blocks of width w, a trajectory ti is represented by a vector xi

T =
[vxi

T , vyi
T , ai

T ], where vxi, vyi, ai are the normalized x, y velocities,
and the activeness variables, respectively.

taken at a fixed time interval ∆s. For predictive modeling,
the agent’s velocities are calculated using the finite differ-
ence approximation, that is, (vxi, vyi) ≈ (∆xi

∆s ,
∆yi

∆s ). Since
mobile agents can move at different speeds depending on
environmental factors (e.g. traffic conditions and signals) and
inherent variability (e.g. agility) among them, we are more
interested in finding the heading direction that determine
the shape of a set of possible future paths. For online
prediction of a mobile agent’s motion, we would use this
model for predicting heading direction, and use the current
observation (speed, traffic conditions) for predicting speed.
Thereby, we focus on modeling the shape of the trajectories
by normalizing the magnitude of the input velocities to one,
that is, require v2

x + v2
y = 1.

For each trajectory ti, we find a vector representation xi as
a column in the data matrix X. In particular, we discretize
the world into M × N blocks of width w, and compute
the x-y velocities (vmn

xi , v
mn
yi ) of each trajectory ti going

through each block mn. If a trajectory does not go through
a grid position, the corresponding velocities are default to
zero. Further, we compute a set of binary activeness variables
amn
i , such that amn

i = 1 if trajectory ti goes through a grid
position mn, and amn

i = 0 otherwise. In terms of the ASNSC
formulation in eq. (3), we let

xai =
[
v11
xi , . . . , v

MN
xi , v11

yi , . . . , v
MN
yi

]T ∈ R2MN , (4)

xbi =
[
a11
i , . . . , a

MN
i

]T ∈ {0, 1}MN . (5)

An example of the discretized representation of a simple
trajectory is illustrated in fig. 2.

We choose to model velocities because we need to distin-
guish trajectories that are traveling in the opposite directions;
and we choose to enforce the non-negativity of sparse coef-
ficients (ski) for interpret-ability, which would be important
for the prediction step. A problem with using velocities in
the dictionary learning framework is that dictionary atoms
containing opposite velocities can cancel each other by
addition, as illustrated in fig. 3. This is undesirable because it
can lead to learning noisy dictionary atoms and thus making
the sparse coefficients less interpretable. In particular, the
black data sample has a coefficient 1 corresponding to
the green dictionary atom, but it clearly does not exhibit
the corresponding motion pattern. We address this issue

Fig. 3. Effect of augmenting the activeness variables. We represent
a data sample (black) on the left as a linear combination of the two
dictionary atoms (green and red) on the right. Top row shows summing
dictionary atoms with opposite velocities can numerically fit the data. This
is undesirable because it makes the sparse codes less interpretable. Bottom
row shows that augmenting the positive activeness variables addresses this
problem, because when velocities of opposite direction add to reduce error,
the activeness variables would add to increase error.

by augmenting the binary activeness variables, amn
i , which

specifies whether a trajectory goes through a particular grid.
When relaxed to be a non-negative continuous variable, it
can be interpreted as the degree of confidence that a motion
primitive (dictionary atom) goes through a particular grid.
Further, we require the magnitude of the velocity components
to be upper bounded by the activeness variable, that is,
|vmn

xi | ≤ amn
i , |vmn

yi | ≤ amn
i . This formulation addresses

the cancellation problem because when velocities of opposite
signs add to reduce error, the positive activeness variables
would add to increase error, thereby discouraging combi-
nations dictionary atoms with opposite signs. Rewrite these
conditions in terms of eq. (3) of the ASNSC formulation, we
specify

dak ∈ R2MN , dbk ∈ RMN
+ , (6)

|dak[j]| ≤ dbk[j], |dak[2j]| ≤ dbk[j], (7)

where [j] denotes the jth element of a vector, and eq. (7)
is the coupling constraint between the velocity variables and
the corresponding activeness variables.

III. SEMI-NONNEGATIVE SPARSE CODING AND
DICTIONARY LEARNING

In this section, we develop an algorithm for solving
the augmented semi-nonnegative sparse coding problem as
defined in eq. (1). Further, we establish that the proposed
algorithm would converge to a local optimum if the feasible
set Q in eq. (2) is convex. The proposed algorithm is outlined
in Alg. 1, which solves the constrained optimization problem
by iterating between three major steps – (i) learning the non-
negative sparse coefficients given the current dictionary in
line 8, (ii) updating the dictionary given the current sparse
codes in line 9, and (iii) modifying the current dictionary to
enforce the constraints in line 10. Further, adapting to the
complexity of the data matrix, we expand the size of the
dictionary (number of columns) incrementally. In particular,
if a data column is poorly represented as indicated by a large
residual, we add the data column into the current dictionary
(lines 4-7). The addition of new dictionary atoms happens
once in a few iterations to allow for the current set of



Algorithm 1: Augmented Non-negative Sparse Coding

1 D ← 0 , S ← 0
2 while not converged do
3 // add new dictionary atom if needed
4 rmax ← maxxi

||xi −Dsi||2/||xi||2
5 if rmax > thres then
6 dnew ← arg maxxi

||xi −Dsi||
7 D ← [D, dnew]

8 S ← constrQP(X, D)
9 D′ ← gradientDescent(X, S)

10 D ← projection(D′)

11 return D, S

dictionary atoms to converge, as indicated by changes in the
objective value. The following details each of the three major
steps.

A. Learning the Non-negative Sparse Coefficients

We solve for the sparse coefficients S assuming a fixed
dictionary D. Since each column si corresponding to data
sample xi is independent from each other, we can optimize
with respect to each si individually, that is,

argmin
si

||xi −Dsi||22 + λ ||si||1 (8)

s.t. ski ≥ 0 ∀k, i.

Note that the L1-norm can be replaced with a summation
term,

∑
ki ski, given the non-negativity constraints. This

reduces eq. (8) to a constrained quadratic program (QP),
which can be solved using many off-the-shelf optimization
packages. Lee et al. [23] developed the feature-sign algorithm
for finding sparse coefficients without the non-negativity con-
straints (ski > 0). In this work, we develop the non-negative
feature-sign (NFS) algorithm, an adaptation of the feature-
sign algorithm to accommodate for the non-negativity con-
straints. We derive a NFS update step and show that it strictly
decreases the objective value, which allows for finding the
optimum in a finite number of steps. NFS’s pseudocode and
detailed convergence proof are provided in the supplementary
materials (https://goo.gl/dSMCom). This adaptation
was compared with Matlab’s quadprog solver [29] using
various optimization setting, and the results showed similar
accuracy and better run time in solving eq. (8). The non-
negative feature-sign algorithm was used to finding the sparse
coefficient matrix S.

B. Updating the Dictionary

The dictionary D′ can be solved for assuming fixed sparse
coefficients S. Since the dictionary is shared across all data
samples, all dictionary atoms must be solved for all data
samples jointly by minimizing the following,

f(D′) = ||X−D′S||2F + η ||D′||2F , (9)

where η ||D′||F is a regularization term.

We derive a gradient descent update step for solving
eq. (9). In particular, let Dold be the previous iterate, we
update the dictionary such that,

D′ = Dold − α∇D′f, (10)

where ∇D′f = −2(X−D′S)ST + 2D′, and α is a positive
scalar step size. In essence, the algorithm takes a step in the
steepest descent direction.

C. Enforcing Constraints on the Dictionary Atoms

The previous step learns a dictionary D by solving eq. (1)
without considering the constraints in eq. (2). Here, we
enforce the constraints by projecting each column of D′ back
onto the feasible space. Let dk

′ be the kth column of D′,
we update each dictionary column such that,

dk = argmin
dk

||dk − d′k||2

s.t. dk ∈ Q.
(11)

For the trajectory modeling application, eq. (7) spec-
ifies that only the variables at same grid position,
(amn

k , vmn
xk , v

mn
yk ), are jointly constrained; whereas variables

at different grid positions are independent from each other
(e.g. no joint constraints on amn

k , ahlk for mn 6= hl). This
allows for a simple projection operation by solving for the
variables at each grid position independently.

D. Convergence Analysis

Let C(D,S) denote the objective function ||X−DS||2F +

λ
∑

i ||si||1 + η ||D||2F . Here, we prove that Alg. 1 will
converge to a local minimum of the objective function.
Fact 1. The objective function eq. (1) is biconvex in S and
D [23].
Fact 2. The non-negative feature-sign algorithm finds the
global optimum of eq. (8) in a finite number of steps,
and each feature-sign step strictly reduces the objective
value (see the supplementary materials https://goo.
gl/dSMCom).

Lemma 1: Given that Q is convex, for any (Dold ∈ Q,S),
the gradient-projection step (lines 9-10 in Alg. 1) reduces
the objective value, that is, C(D,S) ≤ C(Dold,S), where
D is obtained by solving eq. (9) and eq. (11). Further, if
C(D,S) = C(Dold,S), then D = Dold.

Proof: Let D′ be the solution to eq. (9) obtained via
solving eq. (10). Since ||D′ − D||2F =

∑
k ||d′k − dk||22,

solving for eq. (11) is equivalent to finding the l2 projection
of D onto the feasible space. Further, since Q is convex,
lines 9-10 of algorithm 1 is a gradient-projection step that
is guaranteed to reduce the objective value [30]. Further, the
gradient-projection update step returns the same D = Dold

if and only if Dold is a stationary point [30].

Theorem 1: Alg. 1 converges to a local minimum of the
optimization problem eq. (1) if Q is convex.

https://goo.gl/dSMCom
https://goo.gl/dSMCom
https://goo.gl/dSMCom


Proof: Given a data matrix with a finite number of
columns, the algorithm would stop introducing new dictio-
nary columns after a finite number of iterations (lines 4-
7), allowing us to only consider lines 8-10 for showing
convergence. We establish convergence using the monotonic
convergence theorem by showing that the feature-sign step
(line 8) and the gradient-projection step (lines 9-10) both
decrease the objective function C(D,S). Let (Dold,Sold)
be values from the previous iteration. The feature-sign al-
gorithm computes S given (Sold,Dold). Fact 2 establishes
C(Dold,S) ≤ C(Dold,Sold), and Lemma 1 establishes
C(D,S) ≤ C(Dold,S). If either equality holds, then the al-
gorithm has converged; otherwise, the objective value strictly
decreases, that is, C(Dold,Sold) < C(D,S). Further, when
the algorithm has converged at (D,S), fact 1 and lemma 1
imply that this solution is a stationary point.

We claim that the feasible space Q as defined in eq. (7)
is convex. In particular, it is straightforward to verify alge-
braically that for any d1,d2 ∈ Q, a convex combination of
d1,d2 also belongs to Q. The algebraic details of the proof
are omitted for brevity. Thus, we can establish the following
corollary by invoking Theorem 1.

Corollary 2: Alg. 1 converges to a local minimum of the
trajectory modeling problem characterized by eq. (7).

E. Computational Complexity

For each of the three major steps of ASNSC (line 8-10)
in algorithm 1, the per iteration time complexity is provided
below. Assume there are nt samples, each of which has
length p, and the number of dictionary elements to be kd.
For the problem considered in our paper, p > nt � kd. 1.

In the nonnegative feature-sign (line 8 in algorithm 1) up-
date, the major computation loads are matrix operations. For
a dictionary matrix D ∈ Rp×nt , it requires calculating DTD,
(DTD)−1 and DTX, which has complexity O(k2

dp), O(k3
d)

and O(pkdnt), respectively. Overall, the time complexity for
updating sparse codes is O(pkdnt).

The gradient descent update (line 9 in algorithm 1) re-
quires computing the gradient information, in which the
major computation loads are for calculating XST and DS,
which has complexity O(pkdnt) and O(pkdnt), respectively.
The projection step requires solving for a l2 minimization
problem for each dictionary column and depends on the
complexity of the convex set. For the trajectory modeling
problem, the complexity of the projection step is O(pkd).
Overall, the time complexity for updating the dictionary is
O(pkdnt).

Combining the three steps, ASNSC has computational
complexity O(pkdnt).

F. A Faster Dictionary Update Step

While the proposed dictionary learning step has good
theoretical guarantee, the gradient-projection update can be

1Recall p =M×N for a map discretized into M×N blocks. A prepro-
cessing step is run to omit the grid positions at which no trajectory passes
through (e.g. occupied by static obstacles). Given this simple preprocessing
step, we note p�M ×N .

a bit slow because it takes a sequence of small steps to find
the local optimum. Since the algorithm alternates between
solving for D and S, we find empirically that it is often
better to find a good dictionary quickly and move on to the
next iteration, compared with finding the locally optimal dic-
tionary for the current iterate of S. We describe a Lagrange-
dual-projection step that yields better computational speed at
the expense of theoretical rigor.

Recall the data matrix X consists of H rows and I
columns, which correspond to the dimension and number of
data samples, respectively. Due to domain discretization as
described in section II-C, our parametrization of a trajectory
typically has more features than samples (H = 3MN �
I). This observation motivates using of the Lagrange dual
approach [23] to solving eq. (9), because the number of dual
variables is much less than the number of primal variables.
After solving for the diagonal dual variable matrix Λ as
described in [23], we can reconstruct the dictionary by
finding

D′
T

=
(
SST + Λ + ηI

)−1 (
SXT

)
. (12)

Compared with [23], our formulation in eq. (9) contains
an extra regularization term, η ||D′||F , whose effect can be
understood by inspection of eq. (12). In particular, since
H � I , the matrix SST + Λ can sometimes be singular.
Compared with a gradient update, a Lagrange-dual update
takes a large step and finds the unconstrained global optimum
D∗ of the objective function (eq. (9)). Then, we perform
a line search from the previous dictionary Dold to the
global optimum D∗ to ensure that the update step would
decrease the objective value 2. In practice, we interweave
the two update steps to achieve faster convergence and still
attain theoretical convergence properties. Empirically, we
found this update rule can reduce time to convergence by
approximately three times.

IV. RESULTS

We evaluated the proposed algorithm on two trajectory
datasets of different length scales. The first dataset consists
of 147 taxi trajectories (adapted from [1]), each of which
was converted to a vector representation of length 2484.
Using dataset I, we discuss the importance of augmenting
the activeness variables for dictionary learning. The second
dataset consists of 72 pedestrian trajectories (collected using
a Velodyne LIDAR), each of which are converted to a vector
representation of length 375. Using dataset II, we describe
how to make predictions using the learned dictionary. We
evaluate the algorithm on a computer with an Intel i7-4510U
CPU and 16GB of memory.

A. Learning Traffic Patterns

We ran the proposed algorithm on the taxi dataset to
examine the importance of using the ASNSC framework by
augmenting the activeness variables for dictionary learning.

2by convexity of the objective function.



x(m)
1000 2000 3000

y 
(m

)

0

500

1000

1500

2000

2500

x (m)
-10 0 10

y 
(m

)

-10

-5

0

5

10

15

Fig. 4. Two real world trajectory datasets: 147 taxi trajectories (dataset
I, left) and 72 pedestrian trajectories (dataset II, right). In dataset I, we
processed (ex. parsing and filtering) a subset of the taxi GPS data published
by Yuan et al. [1]. In dataset II, we used a Velodyne Lidar to detect and
track pedestrians at an intersection.

The algorithm converged in 168 iterations within 33.1 sec-
onds, and learned a 26 column dictionary and the associated
sparse coefficients. Recall that the number of dictionary
atoms are learned automatically by the algorithm. For each
point pij in a trajectory ti, we find a projection variable
rij ∈ {1, . . . ,K}, which correspond to the dictionary atom
that mostly likely generated this point. More precisely,

rij = argmin
k

∣∣∣∣pij −Grid(dk, p
i
j) ski

∣∣∣∣
2

(13)

where ski is (k, i)th element in the sparse coefficient matrix
S, and Grid(dk, p

i
j) is the x-y velocities of the dictionary

atom dk in the grid position containing pij . The projection
variable rij can be interpreted as an assignment variable of
the point pij to a dictionary atom dk. Thus, the projection
vector ri specifies the segmentation pattern of a trajectory
ti.

For brevity, we only illustrate the first six dictionary atoms
learned from dataset I in fig. 5. Visualization of the dictionary
atoms and the projection onto these dictionary atoms are
shown in the left and middle subfigures, respectively. We
also show the projection vector, ri, of a single trajectory
in the right subfigure. The top and bottom rows correspond
to solving eq. (1) with ASNSC, and with classical semi-
nonnegative sparse coding without augmenting the active-
ness variables. By augmenting the activeness variables, we
address the problem of having dictionary atoms with opposite
signs cancel each other, and were able to learn a set of less
noisy and more localized dictionary atoms. Also, we were
able to better identify commonly shared segments and obtain
an intuitive segmentation pattern (right subfigure of fig. 5).

B. Making Predictions at an Intersection

For the pedestrian dataset, the ASNSC algorithm con-
verged in 59 iterations within 4.98 seconds, and learned a
9 column dictionary and the associated sparse code. The
learned dictionary correspond well to human intuition – each
dictionary atom specifies a motion pattern that either enters
or exits the intersection. Visualization of all nine dictionary
atoms and the corresponding projection are shown in fig. 6.

Besides being useful for segmentation, the local motion
patterns learned by ASNSC are also useful for making
accurate predictions. After learning a dictionary with K
columns, we built a transition matrix T ∈ ZK×K to capture
the temporal ordering of the dictionary atoms using the

projection vectors ri. In particular, the (k, l)th element of
T corresponds to the number of trajectories that exhibited
transition from kth dictionary atom to the lth dictionary
atom.

We evaluate the prediction quality on a separate test
set of 24 trajectories by comparing with a set of hand-
labeled predictions, as illustrated on the left of fig. 7. In
particular, given the observed path of pedestrian going into
an intersection (shown in black), the algorithm finds a set of
possible future paths. We categorize each predicted path as
either correct (red), incorrect (green), missing or repetitive
(orange).

Recall in clustering-based trajectory modeling approaches,
given an observed path, predictions are made by using
(forward propagation) the n clusters that agree the most with
the observation. The problem of this approach is that in real
datasets, there often exist many fragmented trajectories due
to occlusion in the data collection process. The fragmented
trajectories are often classified into their own clusters. Con-
sequently, making predictions using these cluster can lead to
poor results, as illustrated on the right of fig. 7. In contrast,
this work models each trajectory as a concatenation of a few
dictionary atoms. Given an observed path, we first find the
dictionary atom k that most likely generated this observation.
Then, we can make predictions by finding the set of possible
subsequent dictionary atoms {dj|Tkj > 0}.

TABLE I
PREDICTION PERFORMANCE OF ASNSC VS DPGP.

DPGP (ξ, n) ASNSC
−1.5, 3 −1.3, 3 −1.3, 3 −1.5, 5 -

missed (%) 27.3 36.4 31.8 18.2 4.5
correct (%) 72.7 63.6 68.2 81.8 95.5

repetitive (%) 38.6 31.8 38.6 31.8 0
incorrect (%) 9.1 4.5 13.6 50.0 4.5

We compare our algorithm against using Gibbs sam-
pling for the Dirichlet Process Gaussian Process (DPGP)
model [14], which clusters training trajectories with a DP
prior and models each cluster using a GP. In contrast, we
model each transition (concatenation of two dictionary atoms
{dk,dj|Tkj > 0}) as a GP. The prediction results on a
few representative trajectories from the test set are shown in
fig. 8. The proposed algorithm produced correct predictions
in nearly all test cases, whereas DPGP made some repetitive
and erroneous predictions. To find the set of possible paths
using DPGP, we identify the set of clusters that agree with
observation (above a likelihood value ξ) and pick the best
n clusters. We tuned the parameters ξ and n through a
grid search procedure. In comparison, the proposed method
does not require parameter tuning for prediction because the
transition matrix T specifies the number of possible future
behaviors. Table I compares the performance of DPGP at 4
different parameter settings with the proposed algorithm.

Recall from section III-E that the computational complex-
ity of ASNSC is O(pkdnt). The computation complexity of
Gibbs sampler for DP-GP model has been discussed in [15],
in which each iteration takes O((pnt)

3/M), with M being
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Fig. 5. Effect of augmenting the activeness variables (AVs) in the ASNSC framework (Top: with augmentation of the AVs; Bottom: without augmentation
of the AVs.). Visualization of the dictionary atoms (the first six in different color), and projection of the training trajectories onto the dictionary atoms,
are shown on the left and middle subfigures, respectively. The right subfigure shows the segmentation (projection) of one training trajectory, with each
color representing a different dictionary atom (color is uncorrelated to the left and middle subfigures). The gray color in the middle subfigures shows all
trajectories in the dataset.

Fig. 6. Dictionary atoms found by solving ASNSC on dataset II. Top:
visualization of dictionary atoms. Bottom: projection of training trajectories
onto the dictionary atoms. We found 9 dictionary atoms (top row), which are
shown in groups of three. The bottom row shows the projection of training
trajectories onto the corresponding dictionary atoms.

Fig. 7. Metric for evaluating prediction quality. Left: as a pedestrian enters
an intersection, an algorithm makes predictions about the set of possible
future paths the pedestrian may take. The predictions are evaluated by a
hand-labeled set as ground truth. Right: poor predictions due to trajectory
segments. Due to sensor occlusion, real datasets often contain fragmented
trajectories, as shown in black. Predictions based on motion patterns
(clusters) formed by fragmented trajectories can be repetitive (orange) or
incorrect (green).

the average number of mixture components (M < nt). Thus,
the comparison shows that the per iteration complexity of the
proposed method is an order of magnitude lower than using
Gibbs sampling for the DP-GP model, which corroborates
with the empirical result. In particular, on dataset II, learning
the DPGP model via Gibbs sampling (200 steps) took 377.3
seconds to complete, while the proposed algorithm took 4.98
seconds to learn a set of dictionary atoms.

Fig. 8. Examples of prediction results from ANSSC (left) and DPGP
(right). We’ve trained the algorithms on dataset II, and made predictions for
a separate test set of 24 trajectories. For brevity, three trajectories are shown
here. Given the observation history of a pedestrian (black line), we want to
find the set of possible future paths. Subfigures on the right show that DPGP
made some repetitive and incorrect predictions. In contrast, subfigures on
the bottom show that ASNSC correctly predicted the pedestrian’s future
paths in all three cases (consistent with the gray training set).

C. Sensitivity Analysis

ASNSC does not assume a fixed size dictionary. Instead,
the proposed algorithm incrementally expands the size of the
dictionary as dictated by the parameter thres ∈ (0, 1) in line
4 of algorithm 1. When the relative representational error of a
data sample exceeds a certain threshold, then the data sample
is added to the dictionary (with some random noise). Thus,
the thres parameter lends a very natural interpretation – the
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Fig. 9. Effect of varying the thres parameter in ANSC in dataset II. Left
shows the number of dictionary atoms learned from data as a function of
the thres parameter. Right shows the objective value per data sample as a
function of the thres parameter.

largest accepted representational error. Consequently, with a
larger value of the thres parameter, we expect learning a
dictionary with fewer columns and higher representational
error. This expectation is corroborated with empirical eval-
uation on both trajectory datasets; for brevity, only result
from dataset II is shown in fig. 9. Further, the segmentation
result does not change drastically in the neighborhood of the
selected thres value. For instance, fig. 9 shows that ASNSC
finds 9 dictionary atoms on dataset II for thres ∈ [0.65, 0.8].

V. CONCLUSION

In this paper, we presented a novel semi-nonnegative
sparse coding framework (ASNSC) that allows for specifying
coupling constraints on different parts of the dictionary. We
developed an algorithm for solving the ASNSC problem, and
showed that the algorithm would converge to a local optimum
under a convexity condition. Further, a trajectory modeling
problem is formulated as a dictionary learning problem in
the ASNSC framework. Solution to this problem using the
proposed algorithm showed significant improvement in both
prediction accuracy and computational time over a state-
of-art clustering-based method, DPGP, on real datasets. For
future work, we will integrate the proposed predictive model
with a risk-aware motion planner for improving the safety
of autonomous vehicles.
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