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Abstract
In principle, the web should provide the perfect stage for
user-generated content, allowing users to share their data
seamlessly with other users across services and applica-
tions. In practice, the web fragments a user’s data over
many sites, each exposing only limited APIs for sharing.

This paper describes Oort, a new cloud storage system
that organizes data primarily by user rather than by ap-
plication or web site. Oort allows users to choose which
web software to use with their data and which other users
to share it with, while giving applications powerful tools
to query that data. Users rent space from providers that
cooperate to provide a global, federated, general-purpose
storage system. To support large-scale, multi-user appli-
cations such as Twitter and e-mail, Oort provides global
queries that find and combine data from relevant users
across all providers.

Oort makes global query execution efficient by recog-
nizing and merging similar queries issued by many users’
application instances, largely eliminating the per-user fac-
tor in the global complexity of queries. Our evaluation
predicts that an Oort implementation could handle traffic
similar to that seen by Twitter using a hundred cooperat-
ing Oort servers, and that applications with other sharing
patterns, like e-mail, can also be executed efficiently.

1 Introduction
The rise of user-generated content is a striking trend on
the web. Users store and manipulate e-mail, calendars,
spreadsheets, and photos in the cloud. They publish videos,
blogs, product reviews, and social updates; they collaborate
on documents, and communicate via comments in forums.
In theory, the web provides users with the ability to share
this data freely with an open-ended set of applications and
users. In practice, however, web sites silo user data in
private storage behind proprietary interfaces. While some
sites do allow external applications to manipulate users’
data, these abilities tend to be limited and site-specific.

∗Work performed as a Visiting Professor at MIT from MSR.

We envision a web without artificial application bound-
aries — where users choose which applications they use to
view and manipulate their data, and which users to share
that data with. Once a user stores photographs in the cloud,
she ought to be able to use a photo editor from one ven-
dor, an organizer from another, and a presentation manager
from a third. She ought to be able to share those photos
selectively with any set of users, the general public, or no-
body at all, independently of what applications those other
users are using.

This paper describes Oort, a new cloud storage sys-
tem based on the principle that user data should be sep-
arated from applications. This separation is intended to
encourage an ecosystem of web applications that share
access to user data. Each Oort user rents storage from a
provider. Providers participate in Oort’s distributed pro-
tocols to present a global name-space for all users’ data
objects. Applications, running in browsers or on separate
servers, access users’ data by talking to these providers,
and Oort’s access controls help users share selectively.

A key benefit of Oort’s global name-space is the ability
to combine many users’ data in large-scale applications
such as e-mail, social networks, and news aggregators. To
help such applications find relevant data across users at
many providers, Oort provides a global query system that
locates data regardless of where it is stored, or which user
created it. Applications issue queries that, in principle,
span all data of all users of all providers, access controls
permitting. The query language is a simplified form of SQL
which treats each user object as a database row.

As an example, suppose Alice uses a Reddit-like discus-
sion forum. To contribute to the forum, she creates and edits
comments in her own Oort storage. All participating users
run applications that issue Oort queries to gather articles
and comments from users scattered over many providers. A
query that fetches comments from the politics forum might
look like this:

SELECT article_url, parent_id, content
WHERE type = ’article-comment’
AND forum = ’politics’
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Figure 1: Overview of actors in Oort. Users run applications locally that interact with providers to access data. Providers
cooperate to give each application’s queries global scope.

Oort’s providers cooperate to answer these queries across
all data in Oort, hence the lack of a FROM clause.

An important benefit of Oort is that applications using
common formats can share information. For example, Oort
analogues of existing web sites such as Reddit and Hacker
News can see each other’s data in Oort storage, and, given
knowledge of each other’s schemas, can easily present a
unified view of all comments for a particular article.

We expect Oort’s data-centric focus to enable classes
of web services that are currently difficult to build. For
example, a universal messaging application can consult a
user’s e-mail, chat conversations, and Twitter interactions
to assemble a full set of contacts, and display conversations
with each contact across all these messaging systems. A
calendar application can provide a unified view of events
pulled from co-workers’ calendars, even though each user
might use different calendar software. It can also easily
integrate with users’ e-mail to scan for event invitations.
Oort’s common storage infrastructure makes these inter-
application sharing scenarios possible without the need for
application-specific APIs.

Oort’s global queries pose performance challenges be-
cause of their power to retrieve data across many users and
providers. The key insight is that, for large-scale applica-
tions, many users’ applications issue queries with identical
patterns, and perhaps even retrieve the same sets of objects.
These overlaps enable providers to reduce the number of
objects and queries they need to exchange. For example,
all of the discussion forum’s users will run applications that
issue the above query. Oort merges these queries so that
each provider sees at most one such query from each other
provider, instead of one from every user. Measurements of
our prototype show that these techniques will allow Oort
to scale to the loads that large-scale web applications face.

The main contributions of this work are:

• A new cloud storage system that separates user data
from individual applications and eases sharing of data
by many applications.

• A global query primitive that helps applications find
and gather content across all users in a wide-area dis-
tributed storage system.

• Techniques that reduce the cost of executing global
queries by exploiting patterns in queries across users
and applications.

• Prototype implementations of multi-user services that
demonstrate the power of Oort’s queries, and mea-
surements that show Oort executes these applications
efficiently.

2 Model
This section outlines the Oort storage and query design.
The next two sections present application examples and
then the design of Oort’s global queries.

2.1 Providers and Principals
Each Oort provider offers storage, query execution, and
authentication to its users. Some providers might operate
on a commercial basis, charging their users, and others
might be operated by organizations for the use of their
employees. Providers are expected to implement Oort’s
protocols and interfaces, which include serving data and
executing queries for each others’ users, access controls
permitting. We expect the number of providers to be signif-
icantly smaller than the number of users (e.g., on the order
of hundreds).

A principal in Oort is either a user or a group; users and
groups are identical except for their initial authentication
procedures. Each principal is associated with a “home
provider” to which the principal sends most requests, and
has a name of the form aprincipal@homeprovider.

Users authenticate with their home provider using a pass-
word (or some other provider-specific technique), and in
turn receive session credentials from the provider. Appli-
cations prove that they speak for a principal by presenting
these session credentials along with cryptographic proof
of ownership. To obtain session credentials for a group, a
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Login(user, password, session public key)→ cert
GroupAuth(cred, group, session public key)→ cert
CreateGroup(cred, groupname, members. . . )
Get(cred, handle)→ object data
Create(cred, object data)→ handle
SetACL(cred, handle, users. . . )
GetACL(cred, handle)→ users
ChangeGroup(cred, groupname, members. . . )
RegisterStandingQuery(cred, sql)→ standing query
ScanQuery(cred, sql, standing query)→ set of objects

Table 1: Sketch of the Oort RPC interface a provider ex-
poses to clients. A “cert” is a session certificate that in-
dicates the user or group as whom the request should act;
a “cred” is a session certificate along with cryptographic
proof of ownership.

principal presents credentials to that group’s home provider,
which will issue session credentials for the group if that
principal is indeed a member. When an application wishes
to act as a group, it sends requests to the group’s home
provider, authenticated with the group’s credentials.

2.2 Objects

Stored data takes the form of immutable objects, each con-
sisting of a set of key/value fields. For example, an object
might correspond to an e-mail message, with key/value
fields indicating content and subject line. Principals can
only create objects at their home provider, and the creator
of an object is accessible through a special .owner field.

Each object is named by a handle that contains a crypto-
graphic hash of the object’s key/value fields, along with a
hint indicating which provider holds the object. Objects are
immutable to simplify caching, and to avoid the complexity
of concurrent object writes; updates create new objects.
Each object has a mutable access control list (ACL) indi-
cating which users and groups can read it. This list may be
modified only by the object’s owner.

The contents of values within the fields of an object
are chosen by the application that creates them. Oort will
work best when applications use widely understandable
data formats, such as plain text files, or formal and in-
formal standards (e.g., JPEG, H.264, iCalendar), as this
enables interoperability with other applications. Adherence
to such standards is already common, particularly among
new vendors wishing to join an existing ecosystem.

2.3 Applications

Applications execute outside Oort, as shown in Figure 1,
on any platform a user trusts to speak for him or her. Oort
is designed primarily for client-side data access, though
servers can also function as Oort clients, and can be given

access to data by naming the principal they execute as in
relevant ACLs. Applications might be an executable on a
user’s PC, JavaScript in a user’s browser, or code that runs
on behalf of a user on a third party’s server. We use “client”
to refer to an instance of an application running on such a
platform.

A client interacts with Oort providers via RPC to fetch
objects, create objects, and execute queries, using the API
shown in Table 1. The Oort API makes provider boundaries
mostly transparent to users and applications, as queries
conceptually operate over the entire global set of objects.

Operations that involve other providers, such as Get()
requests for remote objects, or GroupLogin() requests for
other providers’ groups, are sent directly to the relevant
provider. This delegation is hidden from applications by
the Oort client library, which determines what provider a
request should be sent to based on the object handle or
principal name passed to the library.

2.4 Queries

Most applications require the ability to locate objects us-
ing more flexible criteria than content-hash handles. For
example, an application may wish to find all comments
by a particular user, or all articles in a particular category.
Furthermore, most applications need to be able to find ob-
jects created by different users, and hence need to be able
to query data across multiple providers. Oort’s solution
to this is a global query system that conceptually covers
all objects created by all users at all Oort providers, with
standing queries to help the system execute these queries
efficiently.

An Oort application expresses queries in a limited form
of SQL. A query can filter, sort, group, and aggregate ob-
jects with simple expressions over the sets of keys and
values for each object. The application issues queries to
the user’s provider in a specific way: it first installs a stand-
ing query that is expected to be useful over a long period
of time using RegisterStandingQuery(). It then
periodically examines the standing query’s output with
ScanQuery(). This arrangement allows providers to
optimize over the set of long-lived standing queries, and
build caches of remote objects likely to be useful in serving
future client ScanQuery() requests.

As an example, consider the Reddit-like application men-
tioned in the introduction, which is replicated below. Users
create and edit comments stored in their Oort provider, but
applications need to collect the set of recent comments
globally, across all users. The following Oort standing
query suffices:

SELECT article_url, parent_id, content
WHERE type = ’article-comment’
AND forum = ’politics’
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This standing query causes the user’s provider to con-
tinuously accumulate Reddit comments created by users
at all providers. Each time the user runs the application, it
can send a ScanQuery() RPC to the user’s provider to re-
trieve recent additions to the standing query’s output. Oort
providers register subscriptions with each other to satisfy
users’ standing queries. These subscriptions use filters de-
rived from the standing queries, and are discussed in detail
in §4.1.

The Oort prototype supports the COUNT, SUM, MIN,
and MAX operators. Filters can be performed on object
attributes, using equality and comparison against constants.
Queries can use GROUP BY, ORDER BY, LIMIT, and a
new operator ONLY MAX that is discussed in §3.4.

2.5 Group semantics

Oort applications are required to explicitly act as a par-
ticular group in order to get access to objects that group
is allowed to see. This reduces the cost of Oort’s access
checks, which are performed often during query execution
and must thus be efficient. This also simplifies certain
queries, as the principal running a query is added as an
implicit filter that is matched against object ACLs. This is
used in §3.2 to efficiently implement e-mail lists.

2.6 Consistency and fault-tolerance

Oort provides eventual consistency across objects; since
objects are immutable, individual objects are always consis-
tent. Oort pushes new objects to interested remote providers
as they are created, but while waiting for such a push, the
remote provider may serve incomplete query results to its
users.

Oort does not provide fault-tolerance at a protocol
level. Instead, we expect storage providers to use industry-
standard practices to provide high availability for their Oort
services.

3 Developing Oort applications

In Oort, and on the web in general, users’ data may be
spread across many servers. While each application could
conceivably contain code to interface with each such server
and fetch relevant data, this places an undue burden on
application writers. Instead, applications should have a con-
venient and concise interface to express interest in classes
of objects, irrespective of location, and the system should
take care of finding and returning the appropriate results to
the application.

This section demonstrates that Oort’s global queries are
a good abstraction for this purpose. We implement a num-
ber of large-scale applications using global queries, and

demonstrate use-cases that would be difficult to solve with-
out them. We discuss the implementation of the query
system in §4.

The examples cover the main sharing patterns for which
Oort is well suited: sharing with a small, known list of
individual users (e-mail), sharing with a larger group (mail-
ing lists), and sharing public data with a large, dynamic
set of users (Twitter). An example also shows how appli-
cations can use queries to organize private data such as
e-mail folders, and to emulate mutable data. We evaluate
implementations of the e-mail and Twitter examples given
below in §6.

In all these applications, users create and edit their own
content in storage supplied by their Oort provider; the full
set of data needed by a multi-user application is thus gen-
erally spread across many providers. Applications collect
that data using Oort’s global queries, but do not need to be
aware of how the data is distributed.

3.1 E-mail

As a first example, consider e-mail. In this design, a sender
creates an object with type set to “e-mail”, and with con-
tent and meta-data in other fields. The sender specifies
recipients by adding them to the object’s ACL. These steps
constitute “sending” an e-mail, though the e-mail applica-
tion does not explicitly send the object to the recipient or
her provider.

To set up for receiving e-mail for Alice, her e-mail read-
ing application installs this standing query:

EQ1: SELECT .owner AS from, subject, body
WHERE type = ’e-mail’

Since Alice runs this query, only objects that Alice is
permitted to view will be returned by the query system due
to the implicit ACL matching condition. Whenever Alice’s
e-mail reader wants to check for new e-mail, it issues a
ScanQuery() RPC to her provider to ask for new rows from
the standing query’s output. The e-mail reader can include
a second SQL query in the call to ScanQuery() to filter the
returned set of objects further, e.g., by fetching only the
latest message in each e-mail thread or limiting the results
to recent messages.
EQ1 causes Alice’s provider to subscribe to e-mail ob-

jects Alice has access to on all other providers. When
Bob creates an e-mail and adds Alice to the ACL, the
subscription produced by Alice’s standing query makes
Bob’s provider push a copy of the e-mail object to Alice’s
provider, where her e-mail reader can later retrieve it.

The power of global queries becomes even more ap-
parent when multiple applications interact. Alice can use
different applications for search, spam detection, mailing
list maintenance, etc., all operating on her e-mail. These
applications can exist completely independently from her
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e-mail reader, and can all use Oort’s global queries without
incurring additional inter-provider traffic.

Applications can also combine e-mail with other user
data. For example, a calendar application might query for a
user’s e-mails to scan them for event invitations, and can do
so without any information about how a user’s individual
e-mail reader works. This is in contrast to current solutions,
where such features often require either deep integration
into users’ e-mail clients (e.g., Outlook), or for two appli-
cations to be developed together such as for the integration
between GMail and Google Calendar.

3.2 Mailing lists
Consider adding support for mailing lists to e-mail as de-
scribed above. Since the set of users on a mailing list
changes over time, it is inconvenient to list each member
separately on a new e-mail’s ACL. Instead, a mailing list
can be represented in Oort as a group whose members are
the users on the list.

A user sends e-mail to the list by including the corre-
sponding group in the message object’s ACL. A user reads
list messages by obtaining credentials for the group and
issuing EQ1 as a standing query to the group’s provider.
The rest of e-mail as described above remains the same,
including the ability for Alice to let other applications use
her e-mail in interesting ways.

For a user’s e-mail reader to know the set of groups it
should issue EQ1 as, it needs a mechanism to be informed
when the user has been added to a mailing list. When Bob
adds Alice to the mailing list theory@ibm.com (i.e.,
adds her to that group), his mailing list management appli-
cation creates an object with type set to “list-membership”
and group set to theory@ibm.com. It then adds Alice
to the object’s ACL. This query will tell Alice’s e-mail
reader which lists she is on:

G1: SELECT group WHERE type = ’list-membership’

Since the query runs as Alice, it only matches mem-
bership objects explicitly shared with her, just as for EQ1
above. Once she learns about this new membership, she
can authenticate as the new group, and then run EQ1 as
theory@ibm.com.

3.3 Twitter
Applications such as Twitter that share public data among
many users fit well within Oort. Twitter users subscribe
to each others’ tweets, with some users having millions of
followers. Unlike e-mail, Twitter users do not know who
will read their tweets in the future; the set of followers (and
ad-hoc readers) is dynamic.

In a Twitter-like application in Oort, a user “sends” a
tweet by creating an object with type set to “tweet” and
content set to the tweet text. The application then

adjusts the object’s ACL to make it public. To follow
Bob (bob@microsoft.com), Alice issues the standing
query

TQ1: SELECT content WHERE type = ’tweet’
AND .owner = ’bob@microsoft.com’

The filter on .owner allows Alice’s provider to send
a subscription only to Bob’s provider. Alice and Bob’s
providers can also merge Alice’s query with the queries of
other users interested in Bob’s tweets. When Bob creates
a tweet, his provider sends it to providers with interested
users, and ensures that it is sent only once to each such
provider. These optimizations are discussed further in §4.2.

As with e-mail, building Twitter in Oort enables appli-
cations to seamlessly use and combine Twitter data with
data from other applications. For example, a user could run
an application that retrieves all posts made by the celebrity
Carol (carol@celeb.com) across a range of services
by issuing queries and combining their output:

CQ1: SELECT content WHERE type = ’tweet’
AND .owner = ’carol@celeb.com’

CQ2: SELECT caption, img WHERE type = ’photo’
AND .owner = ’carol@celeb.com’

CQ3: SELECT title, content WHERE type = ’blog’
AND .owner = ’carol@celeb.com’

Oort’s global queries make this easy. Constructing such
an application today would require interfacing with three
web sites’ custom APIs, each of which requires application
registration, authentication, and result parsing.

3.4 Programming with mutable data

Oort provides immutable objects, but many applications
need to modify existing data. For example, Alice might
use the e-mail scheme described in §3.1, but also want to
organize her e-mail into folders. Since the e-mail objects
are immutable, the application cannot modify them to add
folder names; a different mechanism is needed.

Applications can implement mutable data in Oort with
objects representing successive versions. For example,
Alice’s e-mail reader assigns an e-mail to a folder by
creating an object with fields mentioning the e-mail ob-
ject, the folder name, and the time of folder assignment
(assigned time). It can later change the folder assign-
ment by creating a new assignment object with a later time.
The reader can use the following standing query to get the
latest folder assignment for each of Alice’s e-mail mes-
sages:

SELECT message_id, folder
WHERE .owner = ’alice@oort.amazon.com’
GROUP BY message_id
ONLY MAX assigned_time

The special ONLY MAX <field> construct fetches
just the object from each GROUP BY group with the largest
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Figure 2: Example global query and response u1 following u2. 1) RegisterStandingQuery(): u1’s Twitter application
establishes a standing query with its provider for new objects created by u2@p2; 2) Subscribe(): p1 registers a subscription
with p2, asking for new objects created by u2@p2; 3) Create(): u2’s mail application creates a new e-mail object at p2; 4)
Push(): p2 matches the new object with p1’s subscription, and pushes the object with its ACL to p1; 5) ScanQuery(): the
next time u1’s mail application asks for changes to the standing query output, p1 tells it about u2’s new object.

Subscribe(sql)→ (object1, acl1), . . .
Push((object1, acl1), . . . )
UpdateACL((handle1, acl1), . . . )

Table 2: Sketch of Oort’s inter-provider protocol.

value for <field>. Alice’s e-mail reader can find the mes-
sages in a particular folder, or the folder assignment of a par-
ticular message, by issuing ScanQuery() over the stand-
ing query above with filters on folder or message id
respectively.

4 Query system design

This section describes the design of Oort’s query system,
and details how it executes queries efficiently.

4.1 Inter-provider Protocol

Oort expects all providers to support the inter-provider
API shown in Table 2. Figure 2 shows an example of
the provider interactions that occur after a user registers a
standing query.

When a provider receives a new standing query from an
application, it uses the Subscribe() RPC to create an inter-
provider subscription with each other provider (subject
to merging as explained in §4.2). Each subscription con-
tains only the filters from the standing query (the WHERE
clause), without aggregation, grouping, or sorting opera-
tors.

When provider p1 sends a subscription s to p2, p2 first
records s persistently so it can match it against future object
creations. It then searches for existing objects that match
s, and sends these objects back to p1. As p2’s applications
create new objects, p2 checks each one against the set of
registered subscriptions; if one or more subscriptions from
provider p1 matches the object, and access controls allow
any of p1’s users to see it, p2 sends the new object to p1 in
a Push() RPC.

p1’s subscriptions yield a stream of new objects as they
are created at other providers. p1 stores these objects per-
sistently, since standing queries are intended for long-term
use. When an application uses ScanQuery() to look at a
standing query’s output, the provider executes the stand-
ing query against the locally stored objects to produce the
query results.
Access control. Access control restricts which objects
providers push to one another. p2 will send an object o to
p1 only if o’s ACL contains at least one user at p1, as this
means o’s owner must trust p1 to see o. In order that p1 be
able to decide locally which of its users can be allowed to
see its copy of o, p2 also sends a subset of o’s ACL to p1.
It includes in this subset only users of p1, to avoid sending
unnecessary and potentially sensitive information.
Fault tolerance. Object pushes must be reliable in the
face of temporarily slow or unreachable providers. Each
provider maintains a persistent queue of objects to be
pushed.

4.2 Query Optimizations
If Oort handled each user’s queries separately, the total
number of queries and subscriptions would be enormous.
Worse, each distinct subscription might lead to a separate
transfer of each matching object, causing objects to be trans-
ferred to a given provider multiple times. By exploiting
overlap between subscriptions, Oort reduces the number
of queries significantly, which limits both the space cost
associated with keeping track of all active subscriptions,
and the work a provider needs to do to match new objects
against peer subscriptions when they are created.

Oort implements the following query optimizations:

• same-filter: A provider notices when standing queries
from multiple of its clients would generate identical
subscriptions to other providers, and does not re-issue
the subscriptions. For example, the two queries:

SELECT article_url, content
WHERE type = ’article-comment’
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and

SELECT article_url, COUNT(handle)
WHERE type = ’article-comment’
GROUP BY article_url

both generate the same subscription, namely
one for all objects WHERE type =
‘article-comment’.

• specific-owner: If a query includes a filter .owner
= u@p2, the provider sends a subscription only to
provider p2. This keeps the number of subscriptions
to a minimum when, for example, a user wants to
know about updates to a few other users’ calendars.

• all-want: If a provider receives the same subscription
from multiple providers, it stores the subscription just
once, along with a list of those providers. This allows
the subscription’s filters to be tested only once against
a newly created object, instead of once per interested
provider.

• same-notify: A provider sends a new object o at most
once to each provider, even if o matches multiple
subscriptions from that provider.

• acl-providers: A provider sends a new object o to a
provider only if that provider is named on o’s ACL, or
the object is public.

The key insight for these optimizations is that each pop-
ular application causes many users to issue similar queries,
and the same objects to be shared. Providers can merge
these queries and object transmissions, and instead transpar-
ently share a smaller set of subscriptions and objects among
many users. For common application patterns, when there
are n users and p providers, this can reduce the total number
of subscriptions generated by an application from O(np2)
to O(np), or even O(p2). Furthermore, when a new object
is created, it is sent at most once to each provider, even if
many users at a particular provider have queries that match
the object. Objects are never sent to providers that do not
need them. We evaluate the effect of these optimizations
on our example applications in §6.

4.3 Efficient subscription matching
When a provider creates a new object, it must decide which
subscriptions’ filters match that object’s fields. Techniques
exist that index subscriptions for efficient matching [3].
Since subscription filters typically compare object fields
for equality with constants, the Oort prototype maintains
an index for each field commonly mentioned in subscrip-
tions, mapping each constant to the relevant set of subscrip-
tions. Oort uses the most restrictive field index to narrow
the subscriptions that must be matched. In practice, this

Component SLOC
Oort provider 8414
Go client library 483
JS client library 279

Go apps
Reddit 283 Articles with votes
Mailman 419 Manage mailing lists
Dropbox 434 File and directory syncing

JavaScript apps
Email 143
Wikipedia 217 Create, edit, and view articles
StackOverflow 237 Questions, answers, and votes
Twitter 239

Table 3: Lines of code for Oort core components and appli-
cations. We have implemented only the core functionality
of each application that shares data between users, not user
interfaces, single-user and auxiliary features, etc.

means looking up subscriptions matching the new object’s
.owner field first, and then its type field.

5 Implementation

The Oort provider prototype consists of about 8400 lines
of Go, excluding tests (see Table 3). Prototype applications
are written in Go for the command line or JavaScript for
the browser. The provider implementation runs as a sin-
gle multi-threaded process per provider. It stores objects
in a MongoDB database. Providers communicate using
Go’s native RPC library over TCP. Clients communicate
with providers using JSON RPC, with one connection per
request. Our prototype does not currently implement per-
sistent queues for cross-provider messages.

6 Evaluation

We use measurements of our prototype to evaluate the fea-
sibility of a large-scale Oort deployment. We do not have
access to enough servers and users to directly explore the
absolute performance of a full-size Oort network. Instead,
we demonstrate the viability of using Oort at scale by pre-
senting measurements at small scale and extrapolating from
those results.

First, we show that Oort’s optimizations limit provider
subscriptions to a reasonable number for common appli-
cation patterns. Second, we demonstrate that Oort sends
objects only where they are needed, and never more than
once. And finally, we show that the absolute performance
of our prototype implementation is high enough that it
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could, in theory, support performance comparable to that
of Twitter’s real-life workload.

We discuss two applications in this section: the e-mail
scheme from §3.1, and the Twitter-like scheme from §3.3.
Twitter differs from e-mail in that the sender does not know
who the recipients are, and in that the number of recipients
can be very large for popular users. Together, these are
representative of the communication patterns of a large
number of the applications we anticipate will use Oort.

6.1 Experimental setup

All experiments run on a single 48-core Linux machine.
The machine runs 20 Oort providers (one process for each),
as well as one client per user, communicating over the
loopback IP interface. Providers use a version of Oort that
stores objects only in memory for experiments that count
subscriptions and object pushes, since these do not depend
on throughput, and would be slowed down unnecessarily if
they had to wait for the disk. The throughput experiments
in §6.4 use a single MongoDB server backed by an SSD;
each provider uses a private database in MongoDB.

Each experiment involves n users, divided evenly among
the 20 providers. The client load is generated by a process
with a thread per user, where each thread keeps a single
request outstanding. All experiments are run ten times, and
the mean is plotted unless otherwise noted. Error bars are
not normally shown, as the variance across runs is near
zero.

6.2 Managing subscription load

This section explores the subscription burden that providers
place on each other in Oort.
E-mail. For our e-mail scheme, each user’s client first
issues the standing query below to look for incoming e-
mail. Clients do not fetch e-mail (i.e., they do not run
ScanQuery()), as the standing query is sufficient to ensure
that providers generate subscriptions and push new e-mails.

EQ1: SELECT .owner AS from, subject, body
WHERE type = ’email’

Figure 3 shows the number of subscriptions each
provider must maintain, as a function of the total num-
ber of users. Each provider sees that all its users’ mail
readers issue the same standing query, and uses the same-
filter optimization to maintain just one set of subscriptions.
Thus each provider receives just one subscription from each
other provider that has users querying for e-mail.

When there are fewer e-mail users than providers, this
leads to roughly one subscription per provider with an e-
mail user, so that the left-hand part of the graph increases.
Once every provider has at least one e-mail user, the same-
filter optimization prevents the total number of subscrip-
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Figure 3: Subscriptions per provider as a function of the
number of users for the e-mail application outlined in §3.1.
The number of subscriptions does not grow beyond the
number of providers because each provider merges its users’
subscriptions.
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Figure 4: Subscriptions per provider as a function of the
number of users for the Twitter application outlined in §3.3.

tions from growing further. The net effect is a relatively
low subscription burden on each provider.

Twitter. In Twitter, a small fraction of users are very pop-
ular, and a large number of users are relatively unpopular.
Since this influences the number of similar queries issued
by users, we use an approximation of Twitter’s social graph
structure where 5% of the users have 95% of the followers.
Each user follows between three and ten other users. One
user follows another with this standing query (TQ1 from
§3.3)

TQ1: SELECT content
WHERE .owner = ’user@provider’
AND type = ’tweet’

Figure 4 shows the number of peer subscriptions each
provider maintains as the number of users increases, with
error bars showing standard deviation. At a high level, the
graph grows linearly because each additional user follows
a fixed number of users, each of which induce additional
subscriptions. Particularly noteworthy is the fact that there
are far fewer subscriptions than there are tweeter/follower
pairs, which would be the case if no optimizations were
used.

Behind the scenes, several of Oort’s optimizations affect
the number of observed subscriptions. Each TQ1 generates
a subscription to just one target provider due to the specific-
owner optimization. If every follower generated a separate
subscription, then 5,000 users would produce 32,500 sub-
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Figure 5: Object pushes and Create RPCs as a function of
the number of users for e-mail.

scriptions, and we would expect 1,625 subscriptions per
provider for 5,000 users. The same-filter optimization
eliminates many of these subscriptions, since most sub-
scriptions are for the few popular users, and thus providers
can merge most of their users’ queries. The all-want op-
timization merges all the subscriptions for the same user
at that user’s provider, further reducing the number of sub-
scriptions for the popular users who are named in many
subscriptions. Because of popularity skew, there are also
many users with no followers at all from other providers;
this is why Figure 4 shows fewer subscriptions per provider
than there are users per provider.

To estimate the effect our optimizations would have on
Oort running at Twitter’s scale, we determine the num-
ber of peer subscriptions that would be required for an
approximation of the real Twitter graph1. We compute
that a naı̈ve implementation that distributes every query
to every provider would observe three orders of magni-
tude more subscriptions than Oort. Compared to a more
realistic scheme that only sends subscriptions to providers
that produce relevant content (i.e., specific-owner), Oort’s
remaining optimizations still reduce the number of sub-
scriptions by a factor of five. A more accurate model will
likely increase this factor, as our approximation uses uni-
form distributions in certain cases where we expect there
to be skew (e.g., number of users per provider), which is
Oort’s worst-case scenario. We measure the throughput of
our prototype for a high number of subscriptions in §6.4.

In summary, Oort reduces the number of subscriptions
from the number of tweeter/follower pairs to a fraction of
the number of users, making the number of subscriptions
reasonable even as the number of users grows large.

6.3 Object pushes

E-mail. After the e-mail subscriptions discussed above
have been set up, every client creates a sequence of 120
e-mail objects, each addressed to between one and three
users at random. Figure 5 shows the number of objects
created and pushed. The number of pushes is slightly less

1Follower counts here follow the heavy-tailed log-normal distribution,
in accordance with analysis in [19].
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Figure 6: Cross-provider object pushes and Create RPCs as
a function of the number of users for the Twitter application
outlined in §3.3.

than twice the number of created emails; this is because
each e-mail has an average of two recipients, but some
recipients are on the same provider as the sender, or share
providers. The acl-providers optimization ensures that a
provider pushes each newly created object only to recipi-
ents’ providers. Thus, Oort only pushes exactly as many
e-mails as needed to deliver every e-mail to its intended
recipients.

Twitter. After all users have registered standing queries for
the users they follow, each user creates 30 tweets. Figure 6
shows the resulting number of Create RPCs and cross-
provider pushes.

The number of pushes is a function of how many dis-
tinct providers each user’s followers are on. In the worst
case, every follower is at a different provider, making the
worst-case number of pushes 6.5 (the average number of
followers per user) times the number of creates. However,
there are three factors that bring the average down. First,
followers that are co-located with the tweeter do not incur
object pushes. Second, for users with many followers, the
likelihood that some of those followers share a provider
is high, which allows the same-notify optimization to be
used. Third, as a result of the popularity distribution, some
users have no followers, meaning their tweets need not be
pushed at all. Since providers only subscribe to tweets by
users their users have indicated interest in, and providers
never push objects unless they match a subscription, objects
are pushed at most once, and only where they are needed.
Thus, Oort pushes objects as rarely and as sparsely as the
follower graph allows.

6.4 Absolute performance analysis

The real Twitter has hundreds of millions of users, and aver-
ages 6000 tweets per second; record peak load is 25 times
that [1, 17]. If Twitter’s users and tweets were divided
evenly across a hundred Oort providers, each provider’s
users would generate a total of 60 tweets/sec on aver-
age. Providers would receive tweets at several times that
rate, as each tweet is sent to all providers with interested
users; in the worst case, every provider may need to re-
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ps component time pr component time
Idle time 97% MongoDB 69%

Marshalling 2% GC 13%
MongoDB 1 % Go runtim 13%

Table 4: Profiling results for the sending (ps) and writing
(pr) provider with persistence.

ceive every tweet, and would thus have to absorb the full
6000 tweets/sec.

To determine whether it is feasible for our prototype to
run applications at this scale, we measure the rate at which
single-server providers can send and receive tweets. A
sending and a receiving provider (ps and pr respectively)
each run pinned to a dedicated core. A receiving client
cr registers 100,000 standing queries with pr to follow
100,000 users at ps, using query TQ1 from §3.3. This gen-
erates 100,000 subscriptions at ps. 100,000 subscriptions is
fewer than the actual number a provider would see in Twit-
ter. However, its main effect is on the O(log(n)) lookup
time in an index of subscriptions on .owner, so more
subscriptions would not affect throughput very much, only
increase memory usage.

Once the subscriptions have been set up, a sending client
cs, acting as one of the users cr followed, creates 1000
tweets on ps, one at a time. For each tweet, ps matches the
new object against its set of subscriptions, and sends it to
pr. ps sends each tweet object to pr 100 times, in order
to simulate the work that would be required if cs had a
follower at each of 100 providers. pr stores all 100 copies
of each received tweet (though cr never asks for them in
this experiment), which approximates all 100 providers
pushing tweets to pr.

We measure the time from the first create request to when
the last tweet’s push has been processed by pr. While it
involves only two providers, the experiment includes all
of the processing a provider would do in a larger system,
except for the work involved in clients fetching tweets. We
therefore believe it should be indicative of the performance
providers would see in a larger deployment.
Results with persistence. The experiment above achieves
a throughput of 9.81 tweets/sec, suggesting that a hundred
providers would be able to sustain a total workload of
about ≈1000 tweets/sec. Table 4 gives a breakdown of
where each process spends its time, and shows that the
overall bottleneck is time spent waiting for MongoDB at
pr to store received tweet objects; measurements indicate
that MongoDB does not saturate the disk (it writes at less
than 1 MB/sec), and is CPU bound. We expect providers
would use a more efficient database, and that they would
divide the load over a cluster of many servers.
Results without persistence. To find the limiting factor
for object creation, we modified pr to return immediately in

ps component time
Idle time 38%
Marshalling 20%
MongoDB 14%
GC 14%
Go runtime 4%

Table 5: Profiling results for the sending (ps) provider when
pr returns immediately in Push RPC handler. Idle time on
ps is time spent waiting for pr to de-marshal incoming
requests.

its Push RPC handler to simulate providers with optimized
receive paths. This experiment achieves an average through-
put of 115 tweets/sec, suggesting that a hundred providers
should be able to generate 11,500 outbound tweets/sec in
aggregate. This is nearly twice the 6000 tweets/sec required
for Twitter’s average workload.

Table 5 gives the breakdown of time spent for ps and pr

for this experiment, and shows that the bottleneck in this
experiment is primarily marshalling of Oort objects.

Inter-provider network bandwidth. Another potential
limit to the feasibility of Twitter on Oort is the wide-area
network bandwidth required; in the worst case, a copy
of each tweet must be sent to each provider. If we as-
sume sending a tweet generates 200B of network traffic,
a provider would need to maintain outbound and inbound
data rates of 1.2 MB/sec on average. This is a reasonable
amount of network traffic for an application used by mil-
lions of users. In reality, many tweets need only be pushed
to a subset of the providers, further reducing the network
bandwidth requirements.

This analysis suggests that it is feasible for a fully de-
ployed Oort system to handle the load generated by Twitter-
scale applications.

6.5 Summary

In summary, Oort provides applications with convenient
queries, but keeps the number of subscriptions a provider
must maintain low, and the number of objects it must push
small, even with a large number of users. Measurements
show that Oort scales well, and that it is feasible for our
prototype to handle a workload similar in size to that of
Twitter.

7 Discussion

In this section, we discuss some open questions about
Oort’s design, as well as some of the non-technical de-
ployment questions about Oort.
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7.1 Trust model

Oort requires users to entrust their provider with their data.
We believe this is reasonable given that users may choose
what provider to sign up with. To share data with a user
residing at a different provider, the owner must also be will-
ing to trust that user’s provider with the data in question. In
Oort, providers are trusted proxies for their users, so trust-
ing a user also means trusting that they chose a trustworthy
provider. Since data is only sent to providers that have at
least one of their users listed on the ACL, data is never
shared to a remote provider without the owner’s consent.

The success of platforms such as Google Apps and Drop-
box suggests that these trust requirements are reasonable;
users are willing to upload their data to the cloud, and to
have companies manage that data. Since users either pay
or are otherwise associated with Oort providers, providers
are motivated to be careful about security. At the applica-
tion level, Oort gives users uniform and transparent access
controls. This is an improvement over many existing web
sites, where it can be difficult for users to discern to whom
their data may be visible.

7.2 Provider economics

Since we expect providers to have financial relationships
with their users, ether directly (e.g., renting space) or in-
directly (e.g., through employment), we believe it is rea-
sonable to expect providers to do work on behalf of its
users. Oort often makes it easy for providers to determine
exactly which users should be billed for what operations.
For example, if Alice issues a query, she could be billed for
each returned result.

However, there are operations where the economic model
is less clear: if one of Alice’s objects is pushed to satisfy
queries of other providers’ users, it is not clear that Alice
should have to pay. If the volume of peer subscriptions
and object pushes is similar in both directions between
providers, the providers may be willing to do this work
for free for each other. In the cases where there is a sub-
stantial imbalance in traffic volume, the solution is not so
obvious. In many ways, this problem is similar to that
of peering among network providers in the Internet, and
experience from that setting may guide the development of
inter-provider connections in Oort.

7.3 Excessive Load and Abuse

An application may innocently issue a query that generates
more work than intended. In many cases, the negative
feedback from the application’s users who experience low
performance may be enough to persuade the developers to
fix the query, but in the extreme, providers will likely need
to throttle expensive queries.

Some abuse is likely to be malicious. Application-level
attacks, such as generation of spammy forum comments
and e-mail, can be dealt with by application-specific tech-
niques such as those used in existing web sites. This model
works well within the Oort ecosystem; users could share
their objects with a spam-detection application, and could
read “decision objects” published by the application to
determine if any have been tagged as abusive.

Attacks launched by other malicious providers are a dif-
ferent story. Pushing a large number of objects requires
significant effort on the part of the attacker, since they must
send as much traffic as they wish to impose on the other
providers, and so is not a significant attack vector. On the
other hand, since providers are expected to fulfill subscrip-
tions for each other, a malicious provider could attempt to
overload another provider by creating an excessive number
of bogus subscriptions.

As a partial solution, we expect providers to limit how
much time they spend matching new objects to other
providers’ subscriptions. If a provider registers too many
subscriptions, they may be throttled or ignored. Providers
could use application-level signals, such as the spam filter
results, to determine that pushed objects are unwanted even
though they matched a subscription.

7.4 Least privilege

The ability to query across all user data is powerful, and
users may want to limit this ability on a per-application ba-
sis to prevent applications from accessing data they should
have no legitimate need to access. For example, Alice
might not want her Twitter client to be able to read her file
backups. A privilege reduction system such as this would
also allow users to place limited trust in third-party services
like spam filters, giving them only access to the data they
require to perform their services. We envision that this
feature could be provided through the use of sub-principals
that inherit only a subset of the parent principal’s privileges,
but further research is needed to establish how this is best
implemented in Oort.

7.5 Non-technical questions

Migration to Oort. It seems unlikely that many existing
large web sites would immediately switch to Oort; their
revenue often comes not from charging users for a service,
but from selling advertising based on exclusive access to
their users’ data. While such advertising is possible in
Oort, the intent is that users’ data not be tied to any one
application.

Oort depends on users being willing to pay to use soft-
ware and services that give them more flexible access to
their data, and on vendors of new software being willing to
cede that control if users are willing to pay. This trend can
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be seen in the recent appearance of many federated, user-
centric versions of popular web services that move away
from the current application-centric, walled-garden model
of the web. Diaspora*, an open-source, federated Facebook
replacement; Ello, a no-advertising, paid features, social
network; and pump.io/identi.ca, a framework for federated
user-to-user data sharing, are a few such examples.

Oort can coexist and develop alongside the existing web.
In the beginning, we imagine that primarily new applica-
tions, and applications with only small-scale sharing, will
use Oort. It is attractive even for the first application to use
it, for example as a convenient storage system for otherwise
serverless in-browser software. As the amount of user data
stored in Oort grows, more applications will be written to
exploit that data, and there is a potential for network effects
to drive adoption.

8 Related Work
Oort builds on ideas the authors have previously presented
in [9]. The workshop paper introduces the notion of
providers and global queries, but does not study the fea-
sibility of building and using such a system. It does not
provide detailed designs for how global queries work or
how providers interact, and does not discuss how the cost
of global queries can be reduced to a manageable level.

Oort resembles systems such as W5 [18] and BStore [10],
but provides cross-provider queries that allow applications
to compute across all users’ data on a global scale. Sim-
ilarly, Invisible Glue [6] enables joint access to hetero-
geneous data storage, but does not support multiple ap-
plications, nor data distributed across multiple disjoint
cloud providers. User data collation systems such as open-
PDS [13] are similar in spirit to Oort, but focus on the
problem of single-user data collection rather than multi-
user data sharing. Solid [20] has a similar data model as
Oort, where data is stored per user, not per application, but
targets only storing and traversing social graphs, and does
not provide general-purpose queries.

Oort’s standing queries are similar to continuous
queries [4] over the stream of all created objects. Sub-
scriptions function similarly to content-based subscription
systems such as Siena [8] and Thialfi [2], but benefit from
the richer set of features provided by Oort’s global queries.

Oort would benefit from existing work on query opti-
mization to help match newly created objects against sub-
scriptions. Prior work has produced efficient algorithms for
both indexing [3, 15] and merging [5, 12, 23] such queries
for content-based subscription systems. We can also draw
on much existing work about distributed databases, dis-
tributed query processing, and federation [11, 16, 21, 22].

Systems that ease the construction and maintenance of
distributed web applications have previously been proposed
in Sapphire [24] and Orleans [7]. These systems aid in the

development of traditional web applications, but do not
address the tight coupling of user data and applications.

Web application platforms such as Dart and Meteor aim
to unify developing the browser and server components of
web applications. Oort complements these approaches by
providing developers with global, application-independent
storage and global queries.

Many web applications share user data through general-
purpose storage backends like Dropbox with standard au-
thentication mechanisms such as OAuth [14]. This ap-
proach requires service-specific integrations similar to that
of custom application-specific APIs. That applications tol-
erate the significant complexity this introduces is a sign of
the desire for the functionality Oort provides.

Existing multi-user ecosystems, such as Google Apps
and Microsoft Windows Live, support mostly transparent
sharing among their own applications and users. They usu-
ally also allow external applications to acccess and query
users’ data through custom APIs or explicit data exports,
but these vary between different services, and between ven-
dors. In Oort, all applications access user data through a
single, unified interface, irrespective of where the data is
stored. Oort requires neither individual users nor collabora-
tors to use software from the same vendor.

9 Conclusions
Oort’s design reflects a belief that data should live free of
application constraints. This allows users to choose freely
which applications to apply to their own data, and which
other users to share that data with. Oort achieves this goal
with user-centric global storage that is separate from appli-
cations. To help applications fetch and combine content
from users scattered across the Internet, Oort provides flex-
ible queries with global scope. Oort executes these queries
efficiently by exploiting overlap in the queries generated by
application instances executed by many users; a collection
of optimizations allows extensive merging of queries and
elimination of repeated work. Measurements of a prototype
implementation demonstrate that Oort can scale to the load
large-scale web applications face today.
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