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Robust Incremental SLAM with Consistency-Checking

Matthew C. Graham1, Jonathan P. How2 and Donald E. Gustafson3

Abstract— Both landmark measurements and loop closures
are used to correct for odometry drift in SLAM solutions.
However, if any of the measurements are incorrect (e.g. due
to perceptual aliasing) standard SLAM algorithms fail catas-
trophically and can not return an accurate map. A number of
algorithms have been proposed that are robust to loop closure
errors, but it is shown in this paper that they can not provide
robust solutions when landmark measurement errors occur.
The root cause of the problem is that most robust SLAM
algorithms only focus on creating a locally consistent map (by
evaluating whether measurements appear correct individually)
rather than a globally consistent map. This paper proposes a
new formulation of the robust SLAM problem that explicitly
requires finding a globally consistent solution. Motivated by
the new cost function, a novel incremental SLAM algorithm
is developed that provides accurate solutions for datasets with
landmark or loop closure measurement errors. Simulated and
experimental results of the new algorithm, called incremental
SLAM with consistency-checking, show that the new algorithm
provides significantly more accurate results than state-of-the-
art robust SLAM methods for datasets with incorrect landmark
measurements and can match the performance of current
robust SLAM methods for datasets with incorrect loop closures.

I. INTRODUCTION

The simultaneous localization and mapping (SLAM) prob-
lem is central to many robotics applications. The objective
of the SLAM problem is to estimate the pose (position and
orientation) of a robot as it travels through an unknown
environment. Often odometry is used to measure the relative
change in pose of the robot over time, but odometry is
prone to drift. Two different types of measurements, loop
closures and landmark measurements, are used in SLAM
systems to correct for the build-up of odometry drift in the
solution. Loop closures are generated by the SLAM front-
end when the robot has returned to a previously visited
location. Loop closures provide a measurement of the relative
change in the robot pose between the time of the loop
closure detection and the previous time the robot visited
that location.1 In contrast, landmark measurements provide
a relative measurement from the robot to a landmark in
the environment. In most cases, landmark locations are not
known a priori and as a result the SLAM system must also
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1It should be noted that in landmark-based SLAM, the re-observation of
a landmark is also called a loop closure. For clarity in the paper, we will
only refer to relative pose measurements between non-adjacent poses as
loop closures.

estimate the location of the landmark along with the robot
poses.

Most state-of-the-art algorithms pose the SLAM problem
as inference on a factor graph where variables nodes cor-
respond to robot poses and landmarks in the environment,
and factor nodes represent constraints generated by the mea-
surements on the poses and landmarks [1]–[3]. It is typically
assumed that the measurements are noisy but outlier free, in
other words the loop closure and landmark measurements are
always correct. In practice however, the front-end systems
used to identify landmarks and loop closures can generate
incorrect measurements caused by self-similar structures in
the environment (e.g. visual aliasing [4]). In standard SLAM
algorithms, processing even a single incorrect measurement
can lead to an inconsistent map or divergence of the algo-
rithm [5,6].

While several robust SLAM algorithms have been pro-
posed in the literature [5]–[11], most have focused on ro-
bustness to incorrect loop closures rather than the problem of
incorrect landmark measurements. Previously [8], it has been
demonstrated that robust SLAM algorithms can fail when
applied to problems with incorrect landmarks (see Figure 1).
This failure occurs because most current robust algorithms
only focus on ensuring local map consistency by evaluating
whether each measurement, independent of the others, is
incorrect. Ideally, a robust SLAM algorithm should verify
that the map is both locally and globally consistent.

The contributions of this paper are (1) a new formu-
lation of the robust SLAM problem, (2) a novel incre-
mental SLAM algorithm called incremental SLAM with
consistency-checking (ISCC) that approximately solves the
robust SLAM problem and (3) a comprehensive compari-
son of robust SLAM techniques in the literature. The new
robust SLAM formulation focuses on selecting the largest
set of measurements that will produce a globally consistent
solution. ISCC is designed to ensure that only sets of
measurements that are both consistent with each other and
the global map are included in the final mapping solution.
We demonstrate in the paper that ISCC significantly out-
performs existing robust SLAM algorithms when landmark
measurement outliers occur and can match the performance
of state-of-the-art algorithms when loop closure errors occur.

The outline of the rest of the paper is as follows. Section
II provides background on the SLAM problem and a review
of existing algorithms for robust SLAM. Section III presents
the formulation of the robust SLAM problem. Section IV de-
velops ISCC. Section V presents simulated and experimental
results that compares the performance of ISCC to state-of-
the-art robust SLAM algorithms. Finally, Section VI provides
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Fig. 1: Typical optimization results for cityTrees10000 (top row) and Victoria Park (bottom row) with 1000 incorrect landmark measurements. Root mean-squared error values
for each solution are shown below each figure. Both max-mixtures and dynamic covariance scaling fail to correctly identify the incorrect measurements and the SLAM solution
suffers as a result. New ISCC method can correctly detect the incorrect measurements and provides substantially better results.

a brief summary as well as areas of future work.

II. BACKGROUND AND RELATED WORK

This section provides a brief review of SLAM factor
graphs and an overview of the robust SLAM literature.

A. Graph-based SLAM

The following notation will be used throughout the paper.
xi and lj represent the ith robot pose and jth landmark
location respectively. x and l without subscripts are the
full sets of poses and landmark locations respectively. An
odometry measurement from xi to xi+1 will be expressed
as yo

i . A Landmark measurement between xi and lj will be
written as yL

i,j . A loop closure measurement between poses
xi and xk will be written as yLC

i,k Finally, the set of landmark
and loop closure measurements will be denoted L and LC
respectively.

Factor graphs are a compact way of representing the
posterior pdf of a robot’s pose and landmark locations given
odometry, loop closure and landmark measurements. Each
variable node in the graph corresponds to a robot pose or
landmark location. The factor nodes in the graph represent
relative constraints on the poses and landmarks derived from
the measurements. A standard assumption in the SLAM
literature is that the measurement noise is independent and
Gaussian [14].

Given the Gaussian and independence assumptions, the
maximum likelihood estimates of the poses and landmark
locations can be expressed as

(x̂, l̂) = argmin
x,l

∑
i

χ2
o,i+

∑
yL
i,j∈L

χ2
L,ij+

∑
yLC
i,k ∈LC

χ2
LC,ik (1)

where

χ2
o,i = ((xi ⊕ yo

i )	 xi+1)T Λo((xi ⊕ yo
i )	 xi+1) (2)

χ2
L,ij = ((xi ⊕ yL

i,j)	 lj)
T ΛL((xi ⊕ yL

i,j)	 lj) (3)

χ2
LC,ik = ((xi ⊕ yLC

i,k )	 xk)T ΛLC((xi ⊕ yLC
i,k )	 xk)

(4)

Λo, ΛL and ΛLC are the information matrices of the odom-
etry, landmark and loop closure measurements respectively,
and ⊕ and 	 are standard pose composition operators [15].2

The cost function in Eq. 1 is a nonlinear least-squares
(NLS) problem and can be efficiently solved by specialized
software packages such as g2o [3] and iSAM [1]. However,
if incorrect landmark or loop closure measurements occur
in the data, standard NLS solvers will fail to converge to
the correct solution [5,6]. In those cases a robust SLAM
algorithm must be used instead.

B. Robust SLAM Algorithms

Robust SLAM algorithms can be divided into two main
categories. The first category approach the problem by
adding additional latent variables to the factor graph to
account for outliers in the measurements (augmented model
approaches). The second set focuses on choosing sets of
measurements that lead to a consistent SLAM solution.

1) Augmented Model Approaches: Sünderhauf et al. [5,
18] introduced additional variables into the SLAM problem
formulation, called switch variables, that can take any value
in the interval [0 1] and are used as weights for each of
the loop closure measurements. The switch variables provide
robustness by determining whether to accept or reject a

2In general, Eqs. 2 and 4 should also include a log-map that maps the
residuals in SE2 or SE3 to their respective tangent spaces. For more details
see [16,17].



potential loop closure measurement. When a switch variable
is equal to zero its corresponding loop closure measurement
will not have any impact on the SLAM solution. Agarwal
et al. presented a generalization of switch variables called
dynamic covariance scaling (DCS) that provides a closed
form update for the switch variables and results in faster
convergence [8].

Another approach developed by Olson and Agarwal [6],
max-mixtures, modifies the conditional probability distribu-
tion of the measurements so that the noise is represented by
a Gaussian mixture instead of a single Gaussian. The algo-
rithm then selects the most likely mixture component before
each update. Finally, several robust algorithms have been
proposed that add additional variables to the robust SLAM
problem and solve the augmented problem by applying the
Expectation-Maximization algorithm [9,10].

Augmented model approaches can be applied to datasets
with both landmark and loop closures. However, previous
results [8] (as well as results in this paper) show that they
are only robust to a small number of incorrect landmark
measurements.

One problem with augmented model approaches is that
they only focus on local consistency in the graph (by deter-
mining whether each measurement is correct independently
of the others) rather than global consistency. This strategy
works well for loop closures because typically only one loop
closure measurement exists between any two robot poses.
Thus, if the measurement is not locally consistent with its
associated pose estimates, the loop closure is likely incorrect
and can be ignored.

In contrast, landmark nodes are densely connected in
SLAM factor graphs. By myopically evaluating each land-
mark measurement, augmented model algorithms miss the
opportunity to exploit the additional information available
from the other measurements. For instance, an incorrect
landmark measurement could appear consistent given only
the landmark and pose estimates associated with it, but not
agree with the other landmark measurements.

Based on these observations, ISCC focuses on determining
which measurements are correct by searching for a consistent
subset of measurements. Additionally ISCC emphasizes both
local consistency of the measurements as well as global
consistency of the graph.

2) Consistency Based Approaches: An alternative set of
robust SLAM algorithms attempt to remove incorrect mea-
surements by performing consistency checks on subsets of
the measurements. The RRR algorithm clusters loop closure
measurements spatially and then uses a series of χ2 tests to
determine whether the clusters are consistent with each other
and with the overall solution [7,13]. Any measurements that
are inconsistent are ignored when calculating the final SLAM
solution.

ISCC is similar to RRR (i.e. both use χ2 tests as a
means of evaluating consistency) but there are several key
differences. One of the biggest differences between RRR
and ISCC is the cost function that each algorithm uses. The
only goal of the RRR algorithm is to produce a solution

that is consistent. There is no explicit requirement or goal to
maximize the number of measurements included in the final
solution. As a result, RRR often ignores a large number of
correct loop closures as the number of outliers increases [19],
which in turn leads to less accurate solutions. In contrast,
ISCC attempts to find the largest set of measurements that
leads to a consistent solution. By optimizing the number
of measurements as well as requiring consistency, ISCC
tends to retain more correct measurements and produces
more accurate solutions than RRR as the number of outliers
increases.

Recently, Carlone et al. [11] posed the robust SLAM
problem as an optimization with the goal of selecting the
largest subset of measurements in the graph that admit a
solution that is consistent. The authors of that paper focus
on 2D SLAM scenarios where an approximate solution to
the optimization can be calculated using linear programming.
While their algorithm is fast and effective, it relies heavily
on the assumption that all the measurements are linear and
as a result there is no clear way to extend the algorithm to
3D SLAM datasets.

While the approach of Carlone et al. is the most similar
in spirit to our method, there are several key differences.
First, motivated by the standard Gaussian noise assumption
for SLAM, we apply a different consistency test (weighted l2
norm vs. l1 norm) in our robust SLAM problem formulation.
The l1-norm constraint in Carlone et al.’s formulation was
chosen so that the robust SLAM problem could be solved
using linear programming, but it also restricts the scope of
their algorithm to 2D datasets. Using a weighted l2-norm
in the problem formulation allowed us to develop a robust
SLAM algorithm, ISCC, that can be applied to both 2D and
3D SLAM problems.

III. ROBUST SLAM PROBLEM FORMULATION

There are two primary criteria for robust SLAM:
1) Generate a solution that is consistent both locally and

globally,
2) Generate a solution that is as accurate as possible.

In this context, consistent means that the solution generated
by the SLAM algorithm agrees with the measurements used
in the solution. Consistency is defined more formally in the
next section.

The approach taken in this paper is to decide which
measurements should be included in the factor graph and
then solve the SLAM problem on that graph. Clearly, the
solution will be consistent and accurate if none of the
incorrect measurements are included.

However, it should be noted that the two goals do not
necessarily align. For instance, a consistent solution could be
generated by only processing the odometry measurements,
but it would not be metrically accurate due to the accu-
mulation of odometry drift. Therefore consistency is not
sufficient to guarantee an accurate solution. To generate the
most accurate solution, ideally the SLAM solution would
include as many of the measurements as possible so long as
the solution remained consistent.



The rest of this section defines a set of consistency tests
and then poses the robust SLAM problem based on the
criteria described above.

A. Consistency Tests

If the factor graph were composed entirely of odometry
measurements, a consistent solution could be calculated
by setting the pose estimates such that they satisfy the
odometry exactly. However, when landmark and loop closure
measurements are added to the graph, the SLAM solution
will not be able to satisfy all of the measurements exactly
because of measurement noise. If all of the measurements
are correct, the resulting measurement residuals should still
be small. But, if any of the measurements are incorrect, we
would expect the measurement residuals to be larger because
some pose estimates will be set to values that are inconsistent
with their respective constraints. Therefore, the sum of mea-
surement residuals provides a tool for determining whether
the graph is consistent.

A straight-forward means of testing whether the graph is
globally consistent is to apply a χ2 test to the weighted sum
of measurement residuals. Given pose and landmark esti-
mates, odometry, landmark and loop closure measurements,
the weighted sum of measurement residuals of the graph can
be expressed as

χ2
G =

∑
i

χ2
o,i +

∑
yL
i,j∈L

χ2
L,ij +

∑
yLC
i,k ∈LC

χ2
LC,ik (5)

where χ2
o,i, χ

2
L,ij and χ2

LC,ik are given by Eqs. 2- 4. If the
solution is consistent we would expect χ2

G to satisfy the
following inequality with probability p:

χ2
G ≤ χ2(p, ndof ) (6)

where χ2(p, ndof ) is the inverse χ-squared cdf with ndof
degrees of freedom evaluated at p. By setting p to a value
close to 1 (i.e. 0.95) we can verify that the graph is consistent
with high probability as long as it satisfies Eq. 6.

In addition to being globally consistent, ideally each
measurement included in the factor graph should be locally
consistent with its associated pose and landmark estimates.
Thus, we also define local consistency tests for each land-
mark and loop closure measurement

χ2
L,ij ≤ χ2(p, ndof,L) ∀j (7)

χ2
LC,ik ≤ χ2(p, ndof,LC) ∀k (8)

where ndof,L and ndof,LC are the number degrees of free-
dom of the landmark and loop closure measurements. If a
graph satisfies Eqs. 6–8 then we declare the graph to be
consistent.

B. Robust SLAM Cost Function

With the consistency tests defined, the final step is to
formulate a cost function for robust SLAM. We make the
standard assumptions that the measurement noise is Gaussian
and that the odometry measurements are not corrupted with
outliers. We also define a set of binary variables sLj and

sLC
k that indicate whether the jth landmark measurement and
kth loop closure measurement are included (sLj = 1,sLC

k =
1) in the graph. Given the intuition that a robust SLAM
solution should include as many measurements as possible
while remaining consistent, we define the robust SLAM cost
function as:

max
x,l,s

nL∑
j=1

sj (9)

s.t.
no∑
i=1

χ2
o,i +

nL∑
j=1

sLj χ
2
l,j +

nLC∑
k=1

sLC
k χ2

LC,ik ≤ χ2(p, ndof )

sLj χ
2
L,ij ≤ χ2(p, ndof,L) ∀j

sLC
k χ2

LC,ik ≤ χ2(p, ndof,LC) ∀k
sLj ∈ {0, 1} ∀j, sLC

k ∈ {0, 1} ∀k

where ndof is the number of degrees of freedom in the
factor graph. This cost function ensures that any solution will
meet the criteria for a robust SLAM solution. Maximizing
the sum of the indicator variables encourages a solution that
includes as many measurements as possible, which will lead
to an accurate solution, and the χ2 constraints ensure that
the solution will be consistent.

While the problem formulation in Eq. 9 meets the criteria
for a robust SLAM cost function, it is not practical to
optimize it directly. In particular, Eq. 9 is a mixed integer
nonlinear program and is NP-hard to solve [20]. The remain-
der of this paper proposes and evaluates an algorithm that
approximately solves Eq. 9.

IV. ROBUST INCREMENTAL SLAM WITH CONSISTENCY
CHECKING

This section proposes an incremental greedy solution to
the robust SLAM problem in 9 called ISCC. By processing
the data incrementally and verifying that the current graph
satisfies Eqs. 6–8 we ensure that a consistent graph is
maintained throughout the solution process. Additionally,
as new measurements are added to the graph they can be
identified as outliers by evaluating whether the updated graph
is inconsistent or not. If the graph is inconsistent after adding
a new measurement, a greedy search is performed to find
the minimum number of measurements that can be removed
from the graph in order to make the graph consistent again.

Pseudocode for ISCC is shown in Algorithm 1. Measure-
ments are processed as they are generated by the SLAM
front-end. Odometry measurements are assumed to be outlier
free and are automatically added to the factor graph. Land-
mark and loop closure measurement are added to graph and
then the graph is checked for consistency using Eqs. 6–8. If
the graph is found to be inconsistent, ISCC performs a greedy
search (lines 8–9 of Algorithm 1) that seeks to remove the
fewest number of measurements from the graph such that
it becomes consistent. This process removes outliers from
the graph and ensures that the graph is always consistent
after each measurement is processed. The rest of this section
describes in detail the greedy search procedure for removing
outliers from the graph.



Algorithm 1 ISCC

Require: Measurement queue Y
1: Initial graph G = ∅
2: for (each yi ∈ Y) do
3: Add yi to G and update
4: if (yi is not odometry) then
5: Check if G is consistent using Eqs. 6–8
6: if (G is not consistent then
7: Ytest ← findCandidateOutliers(yi,G)
8: G← findConsistentMeasurementSet(yi,Ytest,G)
9: end if

10: end if
11: end for
12: return Optimized graph G

Algorithm 2 findCandidateOutliers

Require: current measurement y, factor graph G
1: if (y ∈ L) then
2: j∗ ← Index of landmark associated with y
3: Ytest ←

{
yL
i,j ∈ L | j = j∗

}
4: else
5: Ytest ←

{
yLC
i,k ∈ LC | χ2

LC,ik > χ2(p, ndof,LC)
}

6: end if
7: return Set of potential outliers Ytest

A. Outlier Removal

If the graph becomes inconsistent after adding a new
measurement, yi, there are two possible explanations: 1)
yi is an outlier or 2) a previously processed measurement
is an outlier and was erroneously accepted. To make the
graph consistent, ISCC first determines which previously
accepted measurements are most likely to be outliers (using
Algorithm 2) and then removes as few measurements as
possible from the graph while ensuring that the resulting
graph is consistent (using Algorithm 3).

ISCC applies two different strategies for determining
which measurements are potential outliers depending on the
measurement type. If yi is a landmark measurement, then
logically the other measurements of that landmark are the
most likely candidates to be outliers. Therefore, if yi is a
landmark measurement Algorithm 2 simply returns the set
of measurements of that landmark (Step 3).

In the case of loop closures, note that if the graph has
become inconsistent after adding yi, any loop closure mea-
surements that are locally inconsistent (i.e. they fail the test
in Eq. 8) must contain information which is not consistent
with yi. This means that if yi is not an outlier, then at least
one of the measurements that failed the local consistency
tests is an outlier. Using this information, if yi is a loop
closure measurement, Algorithm 2 returns the set of loop
closures in the graph that are locally inconsistent (Step 5).

Given a set of candidate outliers Ytest, the next step
(Algorithm 3) is to determine which measurements should be
removed from the graph. Since ISCC is optimizing Eq. 9, it

Algorithm 3 findConsistentMeasurementSet

Require: Current Measurement y, test set Ytest, factor
graph G

1: outliers← y
2: for (each yi ∈ Ytest ) do
3: Remove yi from G, Update G
4: if (G is consistent) then
5: outliers← outliers ∪ yi

6: end if
7: Add yi into G
8: end for
9: Remove outliers from G, Update G

10: return Updated factor graph G

should remove as few measurements as possible to make the
graph consistent. Note that since the graph was consistent
before adding yi, an admissible solution to the outlier
removal problem is to remove yi. However that solution may
not be unique because yi could in fact be correct in which
case there should be at least one other measurement that
could be removed from the graph to generate a consistent
solution. Therefore, in order to remove any potential outliers
from the graph, ISCC tests each measurement in Ytest to
determine if any of them can be removed from the graph
to make it consistent (Steps 2–8 of Algorithm 3). If there
are any measurements in Ytest that can be removed from the
graph to make it consistent, ISCC removes them from the
graph along with yi since there is no clear way to decide
which measurements are outliers (Step 9 of Algorithm 3). If
no other measurements can be removed, yi is removed from
the graph.

V. EXPERIMENTAL EVALUATION

Simulated and real-world datasets were used to evalu-
ate ISCC and compare it to state-of-the-art robust SLAM
algorithms. The evaluations focused on the accuracy of
the solutions as well as how accurately the robust SLAM
methods identified outliers in the datasets.

A. Datasets and Evaluation Set-Up

Several standard benchmark SLAM datasets (Manhat-
tan3500, Intel, City10000, Sphere2500, CityTrees10000,
Victoria Park, and Torus2000Points) were used for the
algorithm evaluations. Manhattan3500, Intel, City10000,
and Sphere2500 contain loop closure measurements while
CityTrees10000, Victoria Park and Torus2000Points con-
tain landmark measurements. Sphere2500, City10000,
CityTrees10000, Victoria Park and Torus2000Points are
available as part of the iSAM package [2]. The Manhat-
tan3500 and Intel datasets are available as part of the g2o
distribution [21]. We also compared the algorithms on the
real-world Bicocca dataset using the processed data files
released with the RRR package [22].

Since the simulated datasets do not contain incorrect mea-
surements, additional outliers were added to the datasets arti-
ficially. For the datasets containing loop closures, additional



outliers were generated using the random, local, grouped
and local grouped approaches proposed in [19]. The random
outlier generation strategy chooses nodes uniformly at ran-
dom and generates a false loop closure measurement between
the poses. Local outliers produce loop closure measurements
between nodes that are in close proximity to each other in
the graph. The grouped outlier strategy creates clusters of
mutually consistent false loop closures. The local grouped
strategy combines the local and grouped outlier generation
approaches. Landmark measurement outliers were generated
by choosing landmarks and poses at random and generating
measurements between them as in the comparisons from [8].
The number of outliers added to each dataset was varied
between 200 and 1000 in 200 outlier increments. 30 Monte
Carlo trials were performed for each dataset, number of
outliers and outlier selection strategy for a total of 600 trials.

The Bicocca dataset was collected experimentally and
contains loop closures that were generated by a visual bag-
of-words based place recognition system. The false loop
closures in the dataset were caused by visual aliasing.

Five different robust SLAM algorithms were compared:
DCS [8], max-mixtures [6], RRR [7,13], Carlone et al.’s
linear programming approach (l1-SLAM) [11], and ISCC.
All of the algorithms (with the exception of l1-SLAM) were
implemented using the g2o package [3]. The robust kernel
implementation of DCS that is included with g2o was used
for all evaluations. The nominal value of Φ = 1 was used
for all of the DCS evaluations except for the Bicocca dataset
where Φ = 5 as specified by the authors in their original
evaluation [8]. An open source version of max-mixtures was
used for the experiments [23]. Two mixture components
were used for max-mixtures. The first mixture corresponds
to a nominal measurement and had a weight equal to 1.
The second mixture corresponds to an outlier and had a
weight equal to 0.01 with an information matrix equal to
the nominal information matrix scaled by 10−6. Finally, the
χ2 probability threshold for ISCC was p = 0.95.

The metrics of performance used for the evaluations
were root mean-squared position error (RMSE) of the poses
and precision and recall of the measurements. RMSE was
calculated by aligning the SLAM solution with truth and
calculating the position error for each node in the graph.
Precision in this context measures the fraction of measure-
ments included in the final graph that were correct, while
recall measures the fraction of the total correct measurements
that were included in the graph. Note that an ideal robust
SLAM algorithm would achieve precision and recall values
of 1. Precision and recall could not be used to evaluate DCS
because it does not make binary decisions about whether
each measurement in the graph is an outlier.

B. Landmark Dataset Results

Results for the landmark datasets are shown in Figures 2–
4. Results for l1-SLAM and RRR are not shown because
they are not designed for landmark-based SLAM datasets
and could not be applied. Overall, ISCC significantly outper-
forms the other robust SLAM algorithms. ISCC achieved the
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Fig. 2: Comparison of Monte Carlo Results for the CityTrees10000 dataset.
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Fig. 3: Comparison of Monte Carlo Results for the Victoria Park dataset.

lowest average RMSE performance across every dataset by
a significant margin. Moreover, in the case of the Torus2000
dataset, DCS and max-mixtures diverged for nearly every
Monte Carlo trial while ISCC consistently converged to
a good solution. These results indicate that searching for
solutions that are both globally and locally consistent leads
to significantly more robust solutions when landmark errors
occur.

Figure 5 shows the precision and recall values for max-
mixtures and ISCC applied to the Victoria Park dataset
with 1000 incorrect landmark measurements. The precision
values indicate that most of the measurements included in the
graph by both algorithms are correct, but the recall values
indicate that max-mixtures ignores a significant fraction
of the correct landmark measurements. Ignoring so many
correct measurements can cause the SLAM solution to be
more heavily impacted by incorrect measurements and allows
for the local build-up of substantial odometry drift errors.
Also, note that the optimal solution to Eq. 9 should have



100 200 300 400 500
8.14

8.145

8.15

8.155

8.16

8.165

8.17

Number of Outliers

M
ea

n 
R

M
S

E
 (

m
)

 

 
ISCC

(a) Average RMSE

8.14

8.16

8.18

8.2

8.22

100 200 300 400 500
Number of Outliers

R
M

S
E

 (
m

)

(b) ISCC
Fig. 4: RMSE Results for the Torus2000Points Dataset. Max-mixtures and DCS could
not converge to a valid solution on this dataset.
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Fig. 5: Precision and recall results for the Victoria Park dataset. Max-mixtures shows
a significant drop in recall with respect to the proposed algorithm. The drop in recall
indicates that max-mixtures is incorrectly rejecting a large fraction of the correct
landmark measurements.

precision and recall values of 1, so ISCC is near-optimal for
most of the Victoria Park Monte Carlo trials. Results for the
CityTrees10000 dataset were similar.

C. Loop Closure Dataset Results

Results for the loop closure datasets are shown in Tables I
and II. Results for l1-SLAM were omitted for Sphere2500
because l1-SLAM can only be applied to 2D datasets.
Additionally, while processing the city10000 dataset with l1-
SLAM, the computer ran out of memory and as a result a
solution could not be generated.

There are several notable findings in the results. First,
ISCC’s performance is comparable to the best results from
the other robust SLAM algorithms on each dataset. More-
over, ISCC significantly outperforms RRR on every dataset
except for Bicocca where the results are comparable. The low
recall scores for RRR indicate that the difference in RMSE
performance between ISCC and RRR can be attributed to
RRR rejecting a larger number of loop closures. In effect,
RRR is finding a consistent solution that is not metrically
accurate because it does not explicitly attempt to maximize
the number of measurements included in the factor graph.
Overall, these results demonstrate that ISCC’s outlier rejec-
tion strategy can provide comparable performance to existing
robust SLAM techniques when loop closure errors occur.

VI. CONCLUSIONS

This paper demonstrated that state-of-the-art robust SLAM
algorithms can not provide robust solutions for datasets with
incorrect landmark measurements. The root cause of these
issues is that current robust algorithms focus on ensuring that
the SLAM solution is locally consistent but do not require
the solution to be globally consistent.

To address this issue, we developed a new formulation of
the robust SLAM problem that requires a globally consistent
solution. Motivated by the new robust SLAM problem,
we presented a novel incremental SLAM algorithm, ISCC,
that can provide robust solutions when incorrect landmark
measurements occur. Simulated and experimental results
demonstrated that the new algorithm provides significantly
better solutions than current robust SLAM algorithms when
incorrect landmark measurements occur.
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