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Abstract,

This thesis develops coupled wavenumber integration approaches to solve the elastic wave
equation in a range-dependent ocean environment. Spectral-based methods directly provide
the spectral decomposition of the wave field in terms of modal components, which helps in

the physical interpretation of the numerical results.

In Part I of the thesis, we performed extensive numerical experiments using the adiabatic
transform technique developed by Lu and Felsen !. The experiments indicated that the
adiabatic integral performs better than the classical adiabatic mode approach but suffers from
serious limitations in handling the continuous spectrum. In addition, the spectral mapping
operation needed to map the source spectrum involved time-consuming searches for complex
roots. Furthermore, errors from the mapping process could erroneously contribute to mode
coupling. Our studies also suggested that the standard adiabatic mode approach is invalid

for virtual modes, a point not often appreciated.

In part II of the thesis, we proposed a new spectral super-element approach which uses
a hybridization of finite elements, boundary integrals, and wavenumber integration to solve

the wave equation in a range-dependent elastic ocean environment. The original acoustic for-

'1.T. Lu,L.B. Felsen,” Adiabatic transforms for spectral analysis and synthesis of weakly range-dependent

shallow ocean Green'’s functions”, J. Acoust. Soc. Am., 81, 897-911, 1987



mulation was developed by Seong 2. In our approach, the range-dependent ocean is divided
into range independent sectors or super-elements. Wavenumber integral representations can
be derived for an influence matrix representing the relation between displacement and stress
expansions on the vertical boundaries. The integration kernels are determined very efficiently
by the Direct Global Matrix method in combination with a numerical quadrature scheme.
The unknown expansion coefficients are then found by matching the boundary conditions
of continuous displacements and stresses between the sectors, with the wave field following
by evaluating the wavenumber integrals within each sector. The present implementation ap-
plies a single-scatter approximation at each vertical sector boundary, allowing for a marching
solution. The back-scattered field can also be obtained via a 2-way marching scheme. By
using SAFARI as the basic computational engine, many of the extensions found in SAFARI
can be incorporated in a straightforward manner for each range-independent sector. Ezten-
sive benchmarking has demonstrated the accuracy and versatility of the proposed modeling

approach.

Thesis supervisor : Prof. Henrik Schmidt

Professor of Ocean Engineering

2W. Seong, Hybrid Galerkin boundary element - wavenumber integration method for acoustic propagation

in laterally inhomogeneous media, PhD thesis, MIT, Jan. 1991
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Chapter 1

Introduction

In recent years, there has been a shift from deep ocean acoustics to the socalled littoral or
shallow water acoustics and with it, the recognition that range-dependence and the elasticity
of the seabed plays an important role in the overall propagation, particularly in the low
frequency regime. The shallow water environment is an extremely complicated waveguide
bounded above by a rough sea surface and below by an inhomogeneous, multi-layered elastic
sea bed. Further, the acoustic properties of the water column are dependent on temperature,
pressure and salinity, giving rise to a significant spatial and temporal variation. The elastic
sea bed added another degree of complication. The excitation and propagation béhaviours
of seismic interface modes, inhomogeneous waves, and both headwave and multiply reflected
wave interference are all important phenomena and the energy carried by seismic waves is not
negligible compared to the water-borne field. This insight has prompted substantial research
efforts during the last decade to develop numerical modeling tools where the effects of shear
waves are included.

In the next section, we review some of the current techniques employed to solve the range
dependent wave equation. The interested reader is referred to Jensen et. el. [1] for a more
theoretical development of the standard theory and to Etter [2] for a quick overview of the

many computer models in use in the underwater acoustics community.

18



CHAPTER 1. INTRODUCTION 19
1.1 Review of Current State-of-the-Art

The last couple of decades has seen a significant effort in improving the numerical modeling
capability for range-independent seismo-acoustic propagation and reverberation in the ocean

environment [1].

The most general approaches are direct solutions of the wave equations using discrete
methods such as the finite difference methods (FDM), and finite element methods (FEM)
These methods rely on spatial and temporal discretizations which are small compared to the
wavelengths in the problem, and since ocean acoustics problems are typically concerned with
ranges of several hundreds or thousands of wavelengths, these discrete methods are in general
prohibitive for computational reasons. As a result, the discrete methods are only important

for modeling propagation and scattering in the near field.

Galerkin finite-element or spectral methods are used extensively in fluid dynamics [3]
and to a limited degree in seismo-acoustic modeling [4]. These methods are in general well
suited to wave propagation problems. The basis functions inherently possess some of the
wave nature of the actual field, and the spectral methods therefore in general require less
degrees of freedom than the discrete finite-element and -difference approaches. However, the
computational savings are still insufficient for use of these methods for general long-range

ocean waveguide problems.

Because of the computational limitations on the direct numerical solution of the wave
equations, most modeling development and application in ocean seismo-acoustics has been
centered around the classical modeling approaches, ray tracing, parabolic equations, wavenum-
ber integration, and normal modes [1]. In addition to the computational issues, these methods
are also usually preferred because of the fact that they provide frequency domain solutions.
Due to the low cross-spectral coherence of long range ocean waveguide propagation frequency
domain solutions are usually more relevant than the time domain solutions provided by most

seismo-acoustic FEM and FDM algorithms.

Ray tracing remains a popular method due to its numerical efficiency, and the direct phys-
ical interpretation of the results. Further, it is well suited to handling range-dependence in

two as well as three dimensions. However, ray theory provides a high-frequency approxima-
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tion, and the associated limitations for seismo-acoustic modeling are well established. Also,
ray tracing is not easily applied to propagation in elastic media because of the ray splitting

associated with elastic conversion at interfaces.

The parabolic equation (PE) algorithm has undergone a dramatic development over the
last couple of decades, and today is without doubt the most popular approach to acoustic
modeling in range-dependent ocean waveguides [5]. Even though the numerical solution is
often performed using discrete methods such as FDM or FEM, the range discretization does
not have to be smaller than a fraction of the wavelength. Also, the transformation into a
parabolic equation allows for numerical solution using a marching scheme, and the PE is
therefore in general extremely efficient compared to direct numerical solution of the ellip-
tical Helmholtz equation. Due to the inherent one-way propagation assumption, the PE is
limited to weak range dependence, but using a single-scatter approximation it has recently
been extended to model backscattering [6]. However, in trying to extend the PE theory to
elastic media, two main problems arise. Firstly, the field is described by a vector (displace-
ment) rather than a scalar. Secondly, two diflerent wave speeds exist in a solid and in a
heterogeneous media or at boundaries, we have continuous conversion from one wave type
to another. Furthermore, elastic bottoms support a wide spectrum of propagation angles.
Therefore, even though several PE models have been proposed for wave propagation in elastic
media [7, 8, 9, 10, 11, 12, 13], only a few of these models were implemented. Notable imple-
mentations include those of Wetton and Brooke [11] and Collins [12, 13]. Thus, for the most
part, the parabolic theories for elastic waves have not been adequately tested numerically,
particularly in two-way formulations. Compared to the other classical approaches a major
drawback of the PE as well as the discrete methods is the fact that the solutions are not as
easily interpreted physically. Thus, the modal structure of the field can only be determined

through post-processing [14].

A common problem for all the classical, approximate aproaches, is the fact that the accu-
racy of the solution is not automatically guaranteed due to a dependency on computational
parameters. However, this problem has traditionally been overcome by using two different
modeling approaches. In that regard, extensive use of the elastic PE is hampered by a lack

of other applicable modeling approaches. There is therefore a continuing effort being de-
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voted to the development of the other classical modeling approaches to treat propagation

and reverberation problems in a range-dependent ocean environment.

The wavenumber integration and normal mode approaches are based on integral trans-
forms and therefore inherently limited to range-independent propagation problems. However,
approximate solutions to range-dependent environments can be devised for both of these so-

lution techniques.

Here, the adiabatic mode theory is well established and used extensively. However, due
to the fact that it assumes that the mode shapes only undergo simple geometric scaling,
the adiabatic approximation is restricted to weak range-dependence. Coupled-mode [15]
algorithms have been developed which can handle strongly range dependent problems. The
coupled mode approach is currently the primary provider of benchmark solutions, but existing

implementations are limited to handling fluid waveguides only.

The wavenumber integration approach is the established benchmark for range-independent
propagation in fluid-elastic waveguides [16], and a significant effort has been devoted to the
development of an approximate extension to range-dependent environments. Lu and Felsen
[17] derived an adiabatic transformation of the wavenumber integrals for weakly range-
dependent problems. However, due to approximations made using dominant asymptotics,
the method works well only for cases where the wave field is largely dominated by discrete
modes [18]. Gilbert and Evans developed a one-way wavenumber integration approach for
range-dependent fluid environments [19]. In contrast to the adiabatic approximation this
approach handles full mode coupling, but the one-way approximation makes it applicable

only to problems with weak contrasts in the range direction.

Wavenumber integration has been applied succesfully to range dependence which is limited
in its horizontal extent, such as a finite size inhomogeneity in the seabed. By combining
wavenumber integration with a boundary integral formulation for the scattered field, accurate

solutions are obtained very efficiently for fluid as well as elastic environments [20, 21, 22, 23].

Recently Schmidt [24] extended the SAFARI model to handle range-dependent environ-
ments. It employs the recursive use of wave-number integration in step-wise range-dependent
environment to march the wavefields out in range. A single-scatter approximation to the

backscattered field is obtained by a backward marching scheme. We will be using this par-
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ticular code (VIrtual Source Algorithm) a great deal to generate our reference solutions.

1.2 About This Thesis

Broadly, this thesis endeavours to develop general spectral-based formulations to solve the
elastic wave equation in range-dependent environments. In particular, we are interested
in approaches that could treat both short and long range propagation as well as model
reverberation from large scale ocecanic features. Spectral-based approaches are preferred
because of their physical appeal - they provide the spectral decomposition of the wave field
in terms of modal components, head waves as well as seismic interface waves which greatly
helps in the physical interpretation of the numerical results. We start our investigations by
numerically implementing the adiabatic transform approach of Lu and Felsen [17]. In this
work described in Chapter 2, we find that the approach works well only when the field is
largely dominated by discrete modes [18]. For the class of problems that were examined, even
though the adiabatic spectral integral seem to perform better than the classical adiabatic
mode approach, it suffers from several other limitations, the most severe of which is its
inability to handle the continuous spectrum properly as well as its non-trivial extension to

elastic media.

We next examined the boundary-integral formulation in Woojae’s thesis [25]. Despite
being a fluid-only formulation, the method could conceivably be extended to mixed fluid-
elastic stratifications. However, before we proceed to do that, several practical limitations
in the method needs to be worked around. One of these is that the original fully-coupled
global approach is not suitable for solving long-range problems due to its severe requirements
on computational resources. We introduced a single-scatter formulation which permits a
marching algorithm to be implemented, thus enabling the boundary-integral method to soive
a much broader class of problems. We have also implemented a 2-way marching scheme
providing a single-scatter approximation to the reverberation from large scale features, similar
to the approach used in the two-way PE [6]. This is significant since a reverberation capability
is very much desired in a general purpose propagation code. We also derived mapping matrices

that permit us to map expansion coefficients across sectors with different, layering structures.
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Chapter 3 discusses these extensions as well as provides numerous test cases that serve to

validate the approach and the code.

The next thrust is to extend the present fluid-only formulation to the mixed fluid-elastic
case. The extensions that were highlighted above decouple the global problem into a local one,
thereby reducing tremendously the computational resources required and permit a practical
elastic code to be developed. The generalisation is presented in Chapter 4 and is one of the
main contribution of this thesis. The extension of the original fluid formulation to include
elasticity is new and non-trivial especially in its numerical implementation. We have also
expanded our toolbox of available source types to include vertical and horizontal point forces.
The vertical and horizontal point forces are not as restrictive as one might surmise. Their
usefulness arise from the fact that the field due to a point force, F', of arbitrary direction
can be obtained by the superposition of the fields due to a vertical point force, F'sinf, and
a horizontal point force , F cos 6, where 8 is the vertical angle between F' and the horizontal
(26].

One of the biggest challenge facing modelers is the issue of benchmarking and testing
their formulations. In this regard, this thesis makes a significant contribution by putting
together probably the most extensive set of benchmarks for seismo-acoustic propagation
codes. Some of these benchmarks are new while others are taken or modified from those in
the literature. Chapter 5 describes the benchmarks and should serve as a useful reference for

model developers.

In addition to the present implementation using Legendre polynomials, I have also de-
rived another formulation which uses Chebyshev polynomials instead. Though this is never
implemented, the approach is unique and some of the techniques employed there are useful.

I have therefore included its derivations in Appendix K.



Chapter 2

Adiabatic Transform Method

In horizontally stratified oceanic waveguides, the acoustic field can be represented rigor-
ously in terms of multiply reflected plane waves. The natural approach involves Fourier
decomposition with respect to the direction parallel to the boundaries. The numerical so-
lution of the full wavefield problem can then be carried out very efficiently using, e.g., the
Direct Global Matrix (DGM) approach [16, 1]. However, when the layer boundaries are
not parallel, Fourier decomposition can no longer be used because the propagation angle
of the plane waves is changed between reflections. One of the main reasons for employing
the wavenumber integration approach is its physical appeal - the inherent representation
of the acoustic field in terms of plane waves greatly helps in the physical interpretation of
the numerical results. To treat range-dependent problems, researchers have therefore devel-
oped hybrid schemes involving a combination of wavenumber integration and the boundary
integral methods [20, 27, 21, 22, 25]. Recent developments in the analysis of weakly range-
dependent guiding channels, using the spectral approac‘h, have led to the development of
a global spectral Green’s function for range-dependent waveguides. Kamel and Felsen [28]
generalized the method of characteristic Green’s functions for a two-dimensional ocean wave-
guide to accomodate weak range dependence. Lu and Felsen [17] developed approximate
adiabatic transforms that accomplish for weakly range-dependent oceanic waveguides what
the rigorous transforms (Fourier or Hankel) do exactly for the range-independent case. Both

approaches involve spectral scaling in accordance with an adiabatic spectral invariant that

24
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continuously adapts the spectrum to the gradually changing conditions without coupling to
other spectral components. In addition to ignoring coupling between modes, the spectral
scaling guarantees generation of the guided local adiabatic modes when these are extracted
from the resonances in the integrand. The resulting spectral integral is not of the Fourier
type but contains, instead of the simple exponential, the phase factor ezpli [ B(7)d7], with
the horizontal wavenumber 3(7) determined by the spectral invariant. Recently, a similar

approach based on the method of multiple scales has been suggested [29].

An important part of these theories is the assumption that the spectral invariant maps not
only modal wavenumbers but any spectrai value in the entire spectrum. We will here assess
the validity of such spectral integral representations by applying them to the ASA benchmark
problems in Ref. [30]. Section 2.1 contains a brief review of the spectral integral representation
for range-dependent waveguides; only the pertinent equations are given and their detailed
derivations may be found elsewhere [17]. In Sec. 2.2 we discuss the main properties of the
spectral invariant. In Sec. 2.3, we provide a short description of the benchmark problems and
the approximate spectral representation of the field. Our numerical results are presented in

Sec. 2.4, followed by some concluding remarks.

2.1 The Range-Dependent Spectral Integral

The presentation of the adiabatic spectral theory given here follows closely that of Lu and
Felsen [17]. We consider a general 2-dimensional range-dependent waveguide bounded by two
boundaries S; and S,. Here, we will assume S; to be a pressure release ocean surface, and
S5 to be the ocean bottom. Then, suppressing a harmonic time dependence exp(—iwt), the

range-dependent wave equation is

1 w? 1 A , ,
[p(r)V(m v) + W] 8(r,r') = —5(r — '), (2.1)
subject to the boundary conditions
G and ;-(-1;5?9—? continuous across S 2. (2.2)

Furthermore, a radiation condition is imposed at infinity. Here ¢(r) is the variable sound

velocity, p(r) is the fluid density and v is the outer normal on S;2, while r and r’ are the
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receiver and source coordinates, respectively. In addition to the global coordinate system
(z. z), it is sometimes convenient to adopt a local curvilinear orthogonal (u,v) system which
is constructed so that the waveguide boundaries S; 2 correspond to v; 2 being constants.
Here, we choose to normalize the depth coordinate 2z with the local depth. Therefore v = 0

corresponds to the upper boundary S; and v = 1 coincides with the bottom Ss.

In Ref. [17], it was shown that under conditions of slow variability (compared to the
local wavelength) in boundary shapes, sound-speed and density profiles with range u, the

range-dependent wave equation Eq. (2.1) reduces to

l:.l_a_2+i6_2+.i é(u v-u, v')N_ 1
h2 0u? ' hZov? ' c2(u,v) T by

where h, and h, are the metric coefficients associated with « and v respectively.

o(u —u')o(v — '), (2.3)

The main result of applying the adiabatic transform to Eq. (2.3) is to reduce the partial
differential operator in the (u,v) space to that of a single ordinary differential operator
in the v space with u acting only as a parameter. This reduction is only approximate,
subject to previously assumed conditions of weak range dependence. The spectral integral

representation for the range-dependent Green’s function then becomes [17]

~ 'U’ l; ~ i_ o g<(v<aﬂ<)g>(v>aﬂ>)
Glwvsu,v) ~ 5 /-oo “W{ge [v, B(w)] 9> [v, Bw)]}

X (hyh!)2exp (z /u ) ﬁ(ﬁ)hﬁdﬁ> x [dB(u)dB)) 2. (2.4)

Here, v_ and v, denote the lesser or greater of the coordinates v and v’, respectively, while
B = B(u), B, = Bu),u, =u,and u, =u' ifv, =v,v, =, and vice-versa. The functions
g. and g, are solutions, at ranges u. and u., respectively, of the one dimensional reduced

wave equation in the v coordinate,

2
(%2‘ + (th)Q) G, [v,v'; B(u)] = —hy6(v —0'), (2.5)
where
2 i
x= (s -Fw)",  mk020 26)

and where the solutions satisfy impedance boundary conditions

1 8G,

— = = . 2.
hop 00 0, V=012 (2.7)

aG, + 7
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The Wronskian W of the two homogeneous solutions g_ and g, is a constant, independent
of v but parameterized by the longitudinal coordinate u. The spectral values B(u, 8,) corre-
sponding to the resonance condition W = 0 define the longitudinal propagation coefficients of
the adiabatic modes. Thus, the Wronskian may be chosen as the adiabatic invariant, which
provides the scaling that adapts the spectrum adiabatically to the specified longitudinal vari-
ations in the waveguide properties. It is implied that 8(@) in the spectral integral is expressed

in terms of the integration variable [ S(u’) or B(u) ] through the spectral invariant.

2.2 The Spectral Invariant

Perhaps the most important element of the range-dependent spectral integral is the spectral
invariant which tracks the horizontal wavenumbers as the waveguide’s geometry changes. In

the formulation of the spectral integral for the wedge problem, the invariant obtained is
I,(B,u) =T, eZitha (2.8)

where k; is the vertical wavenumber in the water column and T',, is the Rayleigh-Fresnel
reflection coefficient at the bottom interface. The metric coefficient h, appropriate for the
wedge problem turns out to be the local depth of the water column. We have also chosen
a rotated coordinate system, with the range coordinate u running along the bottom of the
wedge; in this way, the impedance boundary condition involving p~18G/dv can be satisfied

exactly.

In 2 normal mode interpretation, the invariant in Eq. (2.8) is equivalent to

2hyk1 + ¢+ 7 = 2nm, , (2.9)
where
N mKr1 — K2
= 2.
¢ =1ilog . (2.10)

is the phase of the bottom reflection coefficient, s is the vertical wavenumber in the bottom
halfspace and m = pa/p) with p; and p denoting the densities in the water and bottom re-

spectively. Note that Eq. (2.9) simply states that the round trip phase accumulation between
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the top and bottom boundaries should be equal to 2nn where n is the mode number. This is
consistent with the notion that a mode is a result of a constructive interference of an upgoing

and downgoing plane wave of equal amplitude and vertical wavenumber.

In conventional adiabatic mode theory, an adiabatic mode may propagate without cou-
pling to other modes, thereby preserving its modal identity but yet continually adjusting
its depth profile to that of the local environment and adjusting its amplitude to conform to
energy conservation considerations. It is precisely this constrained behaviour of the adiabatic

mode that is being represented in Eq. (2.9).

In Refs. [28, 17] it was assumed that the spectral invariant can be generalized to any
spectral value 3, such that the spectral variables at any two range points u’ and u are related

by
I,(8',4') = L,(B,u). (2.11)

Incorporating the symmetry between B(u’) and B(u) implied in Eq. (2.11) into the spectral
integral representation resulted in the presence of the operational forms [df(u’) dB(u)]'/? in
Eq. (2.4).

The generalization made in Eq. (2.11) means that the spectral invariant is capable of
mapping not only the discrete modal wavenumbers but also the continuous spectrum as well.
However, our numerical results will show that the mapping is correct only for the discrete
spectrum. To see this, we note that the spectral mapping is analogous to counting the number
of zero crossings (tracking of phase accumulation between the top and bottom interfaces) in
the mode shapes. In the continuous or leaky part of the spectrum where the oscillatory nature
of the mode shape penetrates the bottom, one must in theory track phase changes right
through the bottom instead of just in the water column. For leaky modes that are growing
exponentially in depth, there is an infinite number of zero crossings rendering the phase
tracking impossible This is consistent with the fact that leaky modes radiate energy into the
bottom halfspace. When a mode is cutoff, it is moving from the discrete to the continuous
part of the spectrum. When this happens, the vertical wavenumber tends to remain relatively
constant with the field radiating into the bottom halfspace at a certain angle - corresponding
to the beamlike radiation pattern found in the numerical results of Jensen and Kuperman [31].

Under these circumstances it is therefore incorrect to continue employing the same spectral
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invariant determined by the channel depth alone to determine the horizontal wavenumbers
at other ranges. Consequently, another form of spectral mapping must be devised for the
continuous spectrum. Below we illustrate this behaviour by presenting the spectral integral
solutions for the two benchmark problems. The expressions for the depth-dependent Green’s
functions will be adopted from Ref. [17]. However, all results have been reproduced using

SAFARI [16] for computing the depth-dependent Green’s functions as well. ’

2.3 The Benchmark Problems

We consider two of the ASA benchmark problems presented in Ref. [30]. The environment
consists of a homogeneous water column ¢; = 1500m/s,p; = lg/cm3 limited above by a
pressure-release flat sea surface, and below by a sloping sea floor. The water depth at the
source position is 200 m, decreasing to zero at a distance of 4 km from the source with a slope
of approximately 2.86°. Field solutions are computed for a 25-Hz source placed at mid-depth
(100 m) and for two receivers at 30- and 150-m depth, respectively. The points in range
where the two receivers cross the water-bottom interface is 3.4 km for the shallow receiver
and 1 km for the deep receiver. Two different bottom boundary conditions are treated. The
first is the idealized wedge where we have a perfectly reflecting bottom and the second is a
penetrable lossless bottom. For the latter case, the bottom is a homogeneous fluid half-space

with a compressional speed of 1700 m/s and a density of 1.5 g/ cm’.

2.3.1 A : The “Ideal” Wedge

For the ideal wedge, the depth function is hy = (Rmes — =) tana , where a is the wedge
angle, Rynqz is the maximum range from the source to the receiver (4 km in this case) and z
is the horizontal range from the line source to the receiver. Choosing the source coordinates
(primed quantities) as reference, then for a receiver depth of 30 m and a source depth of 100

m , we have

W' =0, v=30/hy,, o =100/200=0.5. (2.12)
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The spectral invariant is given by I, = exp(2¢h, &), which implies that

exp(2ihyk)) = exp(2ihyky),

or
hyky = hyk. (2.13)

The resulting depth-dependent Green’s function is

_sin(hv< k1 v )sin(ky, k1 [1 -0, ])

2.14
(a1 ) /7 i) (214

v = )

where

Fie = o ), ) ifo>9

v, =,

K1y = K1 |g(ug,)s )

b ifv <,

K1, = K1 g ,6)r )

and & (u, Bo) = [w?/c} — B?(u, B,)]/? is the vertical wavenumber in the fluid. The complete

spectral integral is then

A R A L /oo _Sin(h’v<'{’1<'U<)Sin(h‘v>“1> [ 1- v, ])
G(U,’U, u,v ) 2r Jo (Fi1> K1, )1/2 Sin(hvli)
, 7\ 1/2 ”
X ’;—" (%) X exp (z/ B(a) dﬂ) dg'. (2.15)
v u’

2.3.2 B : Penetrable Lossless Wedge

The spectral integral for the penetrable wedge is given by

G(u,v;u',v') ~ -21_7r /000 Gy exp (z/: B(Z) da':) (%) v dg’,
(2.16)
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where the depth dependent Greens’ function is now given by [17]

Gv ~ {_Zi[(_r\De2ihun1)—l/2_(_PDGZihum)l/2]}—l
x [~iexp(—ihy_r1_v.) +iexp(ihy_K1_ v)] (K1, K1, )1/2

X {(1"D)i/2 explihy, k1, (1 - v, )]+ (l"D);l/2 exp[—ihy k1, (1 —v, N

0<(v.,v,)<1 (2.17)
where
\
v, =,
K. =Klpw 6.)
UN = v, > if o> ’U,,
K1, = K1)

(Tp)s =Tp |60

/

v, =w,
u, =u

K',1< =K1 |ﬁ(u,ﬁo)7

vy, =7, . if v </,
Uy =/,

K, = Al 6.,

Tp)s =T Iﬂ(u',ﬂa) )

and k2 (u, Bo) = [w?/c2? — B2(u, B,)]/? is the vertical wavenumber in the bottom.

2.4 Numerical Results

2.4.1 A : “Ideal” Wedge

Fig. 2-1 compares the spectral integral solution with those generated using the conventional
adiabatic mode theory (SUPERSNAP code [32]). The two solutions show good agreement -
in fact, the spectral soiution reproduce the details at the modal cut-off ranges more accurately

than SUPERSNAP (see COUPLE solution in Ref. [30]). Therefore, in this idealized ocean
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Figure 2-1: ASA Benchmark I : Ideal wedge. Solid curve : Spectral integral method, Dashed
curve : SUPERSNAP.

waveguide where we do not have energy continually leaking away from the water column, the

adiabatic transform solution performs excellently.

2.4.2 B : Penetrable Wedge

In the penetrable, lossless wedge, propagation in the water column is dominated by modes
1, 3 and 5 which cut off at 3362, 2086 and 810 m ranges respectively. To demonstrate the
limitations of the traditional adiabatic mode theory, where the continuous spectrum is not
computed, we have included the SUPERSNAP solution. We used the FEPE [33] solution as

our reference since it is verified in Ref. [33] that the FEPE provides accurate solutions to the

ASA benchmark problems.

Fig. 2-2 compares the parabolic equation (PE) reference solution with those obtained using
the spectral and adiabatic mode solution. For the shallow receiver in the water column, the
spectral solution agrees well with the PE up to about 3100 m when mode 1 is approaching

its cut-off. Here it is clear that in addition to properly tracking the modal spectra across the
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Figure 2-2: Comparison of results from PE, SUPERSNAP (30 m only) and the spectral
integral. (a) Receiver at 30m, (b) receiver at 150m. Solid : PE, Dashed : Spectral integral,

Dotted : SUPERSNAP.
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entire range, the invariant reproduces the continuous spectrum sufficiently well to give the
correct solution cven at ranges near the source. On the other hand, the cenventional adiabatic
mode solution is poor because of the relative small number of modes and the associated
significance of the continuous spectrum. Unfortunately, the nice agreement between the
spectral representation and the PE in the water column does not extend to the solution for
the bottom halfspace; the poor solution provided by the spectral integral in the sediment
halfspace supports the hypothesis described above concerning the failure of the invariant to

map the entire continuous spectrum.

We illustrate this further by running the same benchmark but instead consider a bottom
similar to that of the Bucker waveguide [1]. The geometry of the waveguide remains the
same except that now the environment is characterized by a strong density contrast at the
bottom which yields a large number of virtual modes. Furthermore, the sound speed contrast
(c; = 1500 m/s , c; = 1510 m/s) is small, yielding only a small number of normal modes with
real propagation wavenumber. Now we have a situation where the continuous spectrum with
its oscillatory nature in the bottom is obviously important. We used the higher-order PE
code FEPE [33] to generate the reference solutions. To justify the use of FEPE for the Bucker
waveguide, we have verified that in the equivalent range-independent Bucker waveguide, the

FEPE solution agrees with that of SAFARI.

Fig. 2-3a shows the results for a density contrast (pz/p1) of 1.8 and Fig. 2-3b is for a
contrast of 2.1. We see that the solution in the water column deteriorates rapidly for the
higher density contrast case, again indicating the failure of the spectral invariant to properly

map the bottom penetrating virtual modes for this problem.

2.5 Summary

Extensive numerical experiments have shown that the wavenumber integration formulation
in Refs. [28, 17] work well on cases where the acoustic field is well described by propagating,
discrete modes. This is consistent with the fact that the present invariant is constructed from
dominant asymptotics, and is only valid for the discrete modal wavenumbers. Consequently,

this is also the cause of the poor solution in unbounded halfspaces or in situations where the
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Figure 2-3: Propagation in a range-dependent Bucker waveguide. (a) Density contrast = 1.8.
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halfspace differ only by 10 m/s. Solid : PE, Dashed : Spectral integral.
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field is dominated by leaky modes, since the present invariant does not allow for the proper
tracking of the wavenumbers past the cutoff region. In the discrete spectrum, where the field
is evanescent in the halfspace, the spectral mapping coincides with the constraired adaptation
of the conventional adiabatic mode. However, the virtual modes, and the continuous spectrum
in general, with the dominant energy in the bottom, are not properly handled by the present
spectral invariant. The physical explanation for this is the following: The coupling of a mode
into a radiating field in the bottom, represented in the theory by the mapping of a discrete
spectral component into a continuous component, is happening over a relatively short range
interval. As shown by Jensen and Kuperman [31], the result of this cutoff process is a beam
radiating into the bottom halfspace. Since this beam is not interacting with any boundaries,
it propagates with constant vertical and horizontal wavenumber spectrum. The continued
use, beyond the cutoff range, of the spectral mapping controlled by the channel alone will
change the vertical wavenumber of the beam, and is therefore inconsistent with the physics.
This restricts the applicability of the adiabatic spectral mapping to situations where the field
is largely modal in nature, and the results produced for receivers in the bottom is in general
incorrect. This suggests that a more refined asymptotic theory is needed which would help
in establishing a more robust invariant that would permit tracking the wavenumbers past
cutoff. Another problem with spectral mapping techniques of this kind is the need to search
for complex roots. Since this search for the mapped spectral values at the new range step, any
errors in the search process can erroneously contribute to rnode coupling thereby corrupting

the numerical results.

It is interesting to note that generalized transforms have been developed in the field
of electromagnetics for inhomogeneous multilayered structures of varying thickness. These
generalized transforms provide a suitable basis for the expansion of electromagnetic fields in
structures with non-separable geometry [34, 35, 36, 37]. Since one should be able to make
analogies between electromagnetic and acoustic wave propagation [38], it would be interesting

to see if these generalized transforms can be applied to the field of underwater acoustics.



Chapter 3

The Spectral Super-Element
Approach

3.1 Introduction

In the previous chapter we showed that the spectral invariant method is not suitable for
implementation as a general purpose range-dependent code. In addition, its extension to the
elastic case is not obvious and possibly non-trivial. We next turned to a spectral element
method previously developed by Seong [25] where the formulation is described in the frame-
work of a boundary integral method. In this chapter, we present the same fluid formulation in
a different manner and using a different set of notations which make it easier to understand.
In addition, we introduced important changes that extended the method to include handling
of large scale problems. These changes include the implementation of the single-scatter ap-

proximation as well as a two-pass marching scheme that allows the reverberation field to be

obtained as well.

In the present spectral super-element method, the range-dependent ocean is divided into
a series of range-independent sectors separated by vertical boundaries. In spite of some
similarity to the traditional spectral element approach, there is a fundamental difference in
terms of the horizontal dependence of the solution. In the spectral element approach this

dependence is included in the degrees of freedom, whereas it is given explicitly in terms of a

37
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boundary integral in the present super-element approach. This is the key to the efficiency of
the present approach to propagation in waveguides of long horizontal extent, prohibitive to

traditional spectral element approaches.

The field in each sector or super-element is expressed as a superposition of that pro-
duced by any real scurce that might be present in the sector and the field produced by panel
sources representing the discontinuities of the vertical boundaries. Since the super-element
is horizontally stratified, the source field is given by a wavenumber integral, with the kernels
determined very efficiently using the Direct Global Matrix (DGM) approach (39, 16]. The
panel source contributions are expressed as a boundary integral which is changed to a dis-
crete summation of influence functions by expanding the field along the vertical boundary in
orthogonal polynomials. Using Legendre polynomials for the expansion, wavenumber integral
representations for the influence functions are obtained. The kernels of these integrals are

also evaluated very efficiently using DGM.

Since it does not rely on any wavelength-dependent discretization in the horizontal di-
rection, the spectral super-element approach can be applied to short- as well as long-range
propagation and reverberation problems. The wavenumber integration approach inherently
decomposes the total solution into spectral components which is important for physical in-

terpretations.

We describe two different solution algorithms. The first is the original global approach
by Seong [25] yielding both the forward propagating field and the back-scattered compo-
nents. The coefficients are obtained from simultaneously matching the boundary conditions
along all vertical sector boundaries. For ocean environments with continuously changing
bathymetry, the construction and inversion of this matrix in a global manner presents a
severe computational load. This deficiency has motivated the search for a more efficient for-
mulation of the hybrid scheme. By employing the single-scatter approximation, where the
back-scattered component from the opposite vertical boundary is neglected, a computation-
ally efficient forward-marching scheme can be derived. We have also implemented a 2-way
marching scheme providing a single-scatter approximation to the reverberation from large

scale features, similar to the approach used in the two-way PE [6].
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Figure 3-1: Super-element discretization of range-dependent ocean waveguides
3.2 Stratified Super-Elements

In the spectral super-element approach, the environment is first divided into a series of range-
independent sectors or super-elements, separated by vertical boundaries or cuts, as illustrated
in Fig3-1. The different grey-scales within each super-element denote layers with different

material properties. Within each sector, the ocean environment is horizontally stratified.

In deriving the spectral-element equations we will assume the acoustic field to be plane.
Thus, in order to account for cylindrical spreading in axisymmetric scenarios, the spreading
factor is applied explicitly to the resulting field. The validity of this approach is described in

Appendix A and an example of a numerical calculation is shown in Fig. 3-7b.

Within each sector the acoustic pressure of time dependence expiwt is given by
p(r) = p’(r), (3.1)
where ¢ is the displacement potential, satisfying the Helmholtz equation [i],

(V2 + B(r)] 6(r) = £(r) - (3:2)
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and r represents the spatial coordinates (z,z). The field in sector j is now expressed as a
superposition of the field produced in the stratified element in the absence of the vertical
boundaries, ¢*, the field arising from the left boundary ¢~, and the field arising from the

right boundary, ¢¥,
p(z,2) = ¢*(z,2) + ¢~ (x,2) + ¢7 (2, 2) (3.3)

The contributions ¢* from the vertical boundaries are determined using an indirect bound-
ary integral method [25], based on Green’s theorem for the virtual element obtained by

eliminating the other vertical boundary and letting the element continue to infinity,

#w = [, [G(r, 92D _ e 20T g (3.4)
Here S* is the boundary of the semi-infinite elements. G(r,r¥) is an arbitrary Green’s func-
tion satisfying the homogenous Helmholtz equation everywhere within the virtual element
but not necessarily the boundary conditions. By choosing a Green’s function which satisfies
all boundary conditions at the horizontal interfaces, including the lower and upper bound-
aries of the super-element, then the contributions to the surface integral from the horizontal
boundaries are eliminated. Note here, that the super-elements always have finite depth.
Thus, in the presence of a lower halfspace, the lower boundary of the super-element is chosen
deep enough into the halfspace to ensure that the field satisfies the radiation condition along
the horizontal boundary, in which case the associated surface integral contribution vanishes.
We would like to emphasize that this is different from the false bottom modal formulation
of Evans [15] where the false bottom is introduced to achieve a complete mode set. In our
approach, we only need to truncate the last layer at a depth where the dominant part of the

field is downgoing.

If in addition we choose a Green’s function which is symmetric in the horizontal coordinate
z, G(r,r') = G(|z — z'|;2,7 ), then the term involving G/dn* in Eq.(3.4) will vanish,

yielding s
#m) = [, G )2 g (3.5)
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3.3 Field Expansion

The boundary conditions to be satisfied between the super-elements, together with Eq. (3.5)
now provides an integral equation for the field ¢* on the vertical boundaries of the super-
element, the numerical solution of which requires some kind of discretization. For fluid
super-elements, the boundary conditions are the continuity of pressure and the horizontal

component u of displacement, i.e. at the vertical boundary j separating super-elements j

j j+1
{ u(zj, z) } ={ u(zj, z) } (3.6)
p(zj, 2) p(zj,2)

A superscript is used to identify the super-element here and in the following. Since the field

and 7 +1,

within each layer in the stratification is a smooth function of depth, we here choose a Galerkin
boundary element approach [1]. In the Galerkin approach, the continuity of the field across

the vertical boundaries is expressed in the weak form
hn . . .
/ W (zj,2)[u! T (25, 2) — v (2;,2)]dz =0, (3.7)
0

where z is the local depth coordinate and similarly for the pressure. The field parameters
displacement and pressure are now expressed as expansions in terms of a set of basis func-
tions. By choosing an orthogonal set of expansion functions Eq. (3.7) requires the expansion
coefficients in the two neighboring sectors to be identical. Here we choose an orthonormal

set of Legendre polynomials, normalized within each layer n:

J J
un(z, 2 o7 U _
Pn(z, 2) m=1 | Sam (27)
where m is the order of expansion, P, is the Legendre function and h, is the thickness of

layer n. The argument to the Legendre polynomial is the normalized, local depth coordinate
5 = %= hn/2
" hp/2

With the normal derivative of the displacement potential in the kernel of Eq. (3.5) repre-

(3.9)

senting the horizontal displacements at the vertical boundaries, insertion of Eq. (3.8) yields

the following expression for the total field in super-element j

d(z,2) = ZFlk T —Zj1,2) {Ulk} F“c —z,2) {Utk} +¢*(z,2) . (3.10)

Lk
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Here, {U;}V and {U;.} represent the unknown panel source strengths at the left and right

boundary, respectively, of super-element number j, and
Jj 2r [t _ 1N g=f
Fi(z,2) = E/lPk—l(zz) G(z;2,2) dz; - (3.11)

Expanding the field parameters in Legendre polynomials within each layer n as in Eq. (3.8)

then yields the following expression for the field expansion coefficients in terms of the unknown
panel source strengths, {Ux}J

J J
{Mﬂﬂ}z{WWﬂ}+
Snm(z) Snm(2)

E { Cnm,lk(l'—-'lf'j) }J {Ul;}] _ { —Cnm,lk($j+1 - z) }j {Ul_llc_}j , (3.12)

Lk Dy k(z — z5) Dpm k(1 — )

and U}, and S}, are the expansion coefficients for the displacement and pressure produced
by sources within the super-element. C,’;mxk(a:) and Dflm,,k(:n) are the expansion influence

functions for displacement and pressure, respectively,

J
{ Cnm,lk(x} } — 2m—1 /1 { a/am }‘Fl:;c(z,z) Pm—-l(zn) dzpn. (313)

Dnm,lk (-T) 2 -1 in2

3.4 Influence Functions

It is clear from Egs. (3.11) and (3.13) that the influence functions formally are obtained by
a double depth-integral of the symmetric Green’s function. However, using the direct giobal
matrix (DGM) approach [39] we can replace these depth integrals by a wavenumber integral
representation.

Basically the influence functions represent the expansion coefficients of order m in layer n
produced by a panel source of order k in layer . Thus, the total field is given as a superposition
of the field JF produced by the panel source in the absence of boundaries, and homogeneous

solutions ¢* accounting for interface reflections and transmissions [1]

¢%(z, 2) = ¢%(z,2) + ¢ (2, 2) (3.14)
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To determine the spectral representation of the field produced by the panel sources we use
a generalization of the approach used by Heelan [40] for the constant stress panel. Thus,

consider the panel source of order k in layer I, representing the displacement distribution

al ) 0 2<0,z>h (3.15)
wy(zj-1,2) = : .
HP(z) 0<z<h

The displacement potential which satisfies the Helmholtz equation and the radiation condition

can be written in terms of vertical wavenumber spectral representation as

~ w ~ N
du(z,2) = / Ap(n) e~ in==m/2) g (3.16)
~00

where 7 and 7y = iy/n% — klz are the vertical and horizontal wavenumbers respectively and k;

is the acoustic wavenumber.

Differentiating Eq. (3.16) with respect to z to produce the horizontal displacement wu,

followed by the forward Fourier transform with respect to z gives
. h 1 [ )
—~yAi(n) e FTeM/2 = —/ (z,2z)e" dz . (3.17)
21 J_x

In this thesis, we employ the following definition for the Fourier transform pair,

o »

fe) = [ gme = dn,
—00

% /_ : F(2)e™ da. (3.18)

g(n)

Substituting the boundary condition at z = 0, Eq. (3.15), and using the identity [41],
hy . .
[ Pea@edz = ey (unf2) (3.19)
0
the wavenumber kernel becomes
. 1, ..
Ai(n) = —S T ke (hin/2) . (3.20)

Note that the integration over z in the transform has been performed analytically and is

accounted for by the spherical Bessel function j_i. Substitution into Eq. (4.13) yields

. 1 o] )
¢1k(z,z)=—;z"°* / e~ e~ Mz=h/D) 5\ (hyn/2) dn, (3.21)
—00
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which is the required free-space Green’s function for the panel source in Eq. (3.15).

The DGM approach for the multi-layered sector requires the integral representation for
the free-space Green'’s function to be expressed in terms of the horizontal wavenumber. Using
contour integration as devised by Heelan [40], the vertical wavenumber integral of Eq. (3.21)

is converted into a horizontal wavenumber integral,

R % ;
b (z,z) = —i*! / 1 Jk—1 (—ZShlal

-0

)e—'z—’"/zlal e~ % ds, (3.22)

where s is the horizontal wavenumber, oy = /s2 — k?, and S = sign(z — hy/2).

The above representation is valid only for z < 0 and z > h; , but still allows for the
application of the global matrix method when satisfying the horizontal interface boundary

conditions since it is at the interfaces z = 0 and z = h; of each layer that the fields are being

matched.

We now simply use Eq.(3.22) as the source contribution in the SAFARI code [16] to

determine the associated homogeneous solution in layer n

— 00 .
Fnik(z,2) = / [ A e + A o] e ds . (3.23)
-0

The influence functions are then obtained by expanding the total field in layer n in Leg-
endre functions. The expansion of the homogeneous solution g's,,,,,c is performed directly using

the identity in Eq. (3.19) to yield the homogeneous contribution to the influence functions:

= J
nm lk(x) m—1 e 18 —
’ =—(2m -1 m A
{ Dy 1() } (2m —1): /_oo { o? } [ 21k (8)

The corresponding direct contributions from the panel sources within the same layer are
obtained by expanding the vertical wavenumber integral in Eq. (3.21) in Legendre functions,

again using the identity in Eq. (3.19),
R J
Dnm,lk (.’l:) 2m -0

1 —zy . (Bam\. (R
{ y }e”"am_l(%")ak_l(—;—”), (3.25)
P/
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p=0 _ jth sector interface

*_ — -
Layer2 SD d.(Rs,z) AN¢)) (0,2)
o __ J ‘ J+1

Figure 3-2: Connecting two sectors together via the boundary conditions

where 4, is the Kronecker delta and (n = (2m — 1)(—1)™~!. Each combination of indices
! and k represents a single SAFARI run. Howe-er, the DGM can treat multiple right hand
sides simultaneously. Hence, Ai“c, and therefore all influence functions can be found using
SAFARI for all combinations of the indices n,m,l, and k with just a single global matrix
inversion. This makes the algorithm relatively efficient even for problems with a large number

of layers and high orders of expansion.

3.5 Element Connectivity

Inserting the field expansions in Eq. (3.8) into the weak form of the boundary conditions in

Eq. (3.7) leads to the connectivity equations between super-elements j and j + 1,

J Jj+1
Unm(x;) ) Unm(zj) n=1,...N,
Snm(xj) Snm(xj) m= 1,..-M.
Here N is the number of layers, and M is the number of expansion terms used within each

layer. Fig. 3-2 shows a picture of the coupling between the sectors. Inserting Eq. (3.12) into
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Eq. (4.36) then yields the following linear system of equations for the unknown panel source

strengths for super-elements j and j + 1,

C (0) Ak +1 -C (L ) i +1
Z nm,lk U= j nm,lk j+ U j
{ ,l } { l }] { ’l " } { l }]

Lk Dnm,lk(o) Dnm lk (Lj+1)
Cnm lk(O nm, lk(L ) _3J
U,
" { Dnm,lk(o } { lk} { nmlk(L) } { lk}

* * j+1
- { Unm(zj) } _ { Unm(zj) } (3.26)
S;;m(xj) S;;m(w.’l)
Here, L; is the horizontal length of the super-element. Solution of Eq. (3.26) yields the panel
source strengths {Ulf } in super-element j, and the resulting field is then given by Eq. (3.12),

with the influence functions obtained through evaluation of the wavenumber integrals in

Egs. (3.24) and (3.25), using the FFP approach [1] and Gaussian quadrature, respectively.

3.6 Numerical Implementation

3.6.1 Global Solution

In the global approach, the influence matrix for all sectors are computed to determine the
coefficients in Eq. (3.26) which is then solved directly for all sector boundaries. This approach
accounts for multiple scattering between sector boundaries. In order to set up this global
influence matrix, the environment must be discretized such that the depth of each layer is
the same for all sectors. In an ocean environment where the bathymetry changes continuously,
such as a coastal wedge, a straight forward stair-case discretization of the bathymetry will
require an excessively large number of layers. Here lies the greatest deficiency of the global

approach.

3.6.2 Marching Algorithm

A computationally efficient forward marching scheme can be derived by employing the single-

scatter approximation, where the back-scattered component from the forward vertical bound-
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ary is neglected. Thus, ignoring the term with {U;f}/*! yields the following marching form

of Eq. (3.26),

Jj+1 J
Chm lk(o) _J+l — Cnm lk(o) J
3 U 9 U+
Lk { } { ik} * { Dy 1k (0) } { lk}

Dy 1(0)
Uin(e) ' [ Uima) V", [ o) | gy 10 ]
={ } —{ " } + { ’ } {Uz} (3.27)
Sam(Z) Sam(z5) D ik(L;)

After solving Eq. (3.27) at super-element boundary j, the field everywhere in the next
sector follows from Eq.(3.12) with the backward propagating field ignored. The marching
algorithm therefore decouples the global problem into a local one. This decoupling reduces
tremendously the amount of computational resources needed for the code but introduces
a unique problem. When we propagate the field from one sector to the next, the layer
structure at sector j may be different from that at sector j + 1. This implies that the set of
expansion coefficients at sector j cannot be used directly at the next range step but instead
new sets of coefficients need to be derived. In Appendix J we discuss this in greater detail
and derive mapping matrices that allow us to 'march’ the expansion coefficients from one
range step to the next, even when the layering structure has changed. Even though this is

only an approximate solution due to the inherent truncation in the orders of expansion, our

numerical experiments have shown that it does improve the solution.

3.6.3 Reverberant Field

In the global approach, the forward and back scattered fields are computed simultaneously.
Using an approach similar to the two-way PE solution [6], we can recover an approximation to
the reverberant field from the marching solution as well. We start the forward solution at the
source range and propagate the outgoing field across the range-independent sectors. At each
vertical boundary, the influence matrix and the panel source strengths in the back-scattered
direction are saved for later use. Starting at the maximum range, a back-scattered field is
marched backwards towards the source. During this backward pass, the source strengths
saved from the forward pass are added in. This process thus recovers the backscattered field

in all the sectors.
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3.7 Numerical Examples

In the following we illustrate how the present approach provides accurate solutions to canon-
ical propagation and reverberation benchmark problems. Unless otherwise stated, the wa-
ter column is assumed to be homogeneous with a sound speed of 1500 m/s and density
p = 1.0g/cm®. As reference solutions, we use the FEPE [33] and COUPLE codes [15]. All
our solutions are obtained using only four orders of expansion in the field parameters within

each layer.

3.7.1 A : ASA Penetrable Wedge Benchmark

Example A is the socalled ASA benchmark problem involving a cylindrically symmetric
sloping ocean bottom [30]. The environmental model is shown in Fig. 3-3. This problem
is considered to illustrate the accuracy of the outgoing field obtained using the marching
algorithm. The water depth decreases linearly from 200m at r = 0 to zero at r = 4km. A
25-Hz point source is placed at mid-depth. In the homogeneous sediment, ¢ = 1700 m/s,
p = 1.5g/cm®, and o = 0.5 dB/X. The backscattered field is negligible for this problem
[42]. The environment is discretized into 17 layers, each of about a wavelength in depth, and
113 range sectors. The solutions for this problem appear in Fig. 3-4. The solid line is the
solution obtained with the FEPE and the agreement is very good for the shallow receiver
and satisfactory for the deeper receiver and for most practical purposes the differences can

be considered as insignificant.

3.7.2 B : SACLANT Stair-Step Discontinuity

Example B, taken from Jensen and Gerstoft [43], involves a stair step in the ocean bottom
with the ocean bottom acoustic parameters of example A. The water depth is a constant 200m
for r < 1.5 km and 150 m for 7 > 1.5 km. A 25-Hz line source is placed at depth z = 100m.
The abrupt change in the envircnment causes a significant amount of energy to be reflected
from the stair face and into the water column. We solved this problem using only 2 range
sectors and 8 layers down to a depth of 350m. Fig. 3-5a shows the environmental model and

our solutions to the stair-step problem appear in Fig. 3-5b and Fig. 3-5c. The super-element
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4000 m
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Figure 3-3: Ex. A : Schematic for the ASA benchmark problem

solution and the two-way coupled mode field are in excellent agreement. For this problem
with only one vertical sector boundary, the global and marching schemes provide identical

results.

3.7.3 C : SACLANT Half-Cylindrical Ridge

Example C, also from Jensen and Gerstoft [43], involves a half-cylindrical ridge in the ocean
bottom with the ocean bottom acoustic parameters of Example B. A 25-Hz line source is
placed at depth z = 100m. The ridge is positioned 1.5 km downrange and has a height of 50
m (~ 1 wavelength) above the sea floor. The environment is shown in Fig. 3-6a and in Fig. 3-
6b and Fig. 3-6c, we present the super-element and the two-way coupled mode solutions.
Despite the fact that the dominant lengthscale of the ridge is of the order of a wavelength
and that we are using a single scatter formulation (with 10 range segments), the agreement

between the two solutions is remarkable.

3.7.4 D : Cylindrical Fluid Seamount

Example D shown in Fig. 3-Ta consider a seamount in a cylindrically symmetric ocean en-
vironment [19]. A 25 Hz source is located in the middie of the waveguide. The depth of

the water column at the source range is 200 m. A 135 m high seamount has inner radius 5



CHAPTER 3. THE SPECTRAL SUPER-ELEMENT APPROACH 50

(a)
30 F = 25 Hz
SD = 100 m
RD = 30 m

0 ' 1 2 3 4
Range (km)
40
50
)
@D 60
N’
o
o 70+
—J
801
90 . ; .
0 1 2 3 4
Range (km)

Figure 3-4: Solutions for the ASA benchmark (Ex. A). (a) Receiver at 30m, (b) Receiver at
150m: Solid - FEPE; Dashed - Spectral super-element solution.



CHAPTER 3. THE SPECTRAL SUPER-ELEMENT APPROACH 51

[\
100 m £ ¢ = 1500 m/s
2 p=1glc
o
Freq. = 25Hz
\
£ !
o
wy
|
¢ =1700 m/s
a=0.5dB/)\
p=1.5glc

- 1500 m
302

Freq: 25.0 Hz
SD: 100.0 m
RD: 50.0 m

Normal stress (dB)

70

0.0 0.5 1.0 15 2.0
Range (km)
(c)
20 Freq: 25.0 Hz
SD: 100.0 m
RD: 170.0 m
)
D 301
-
[72]
[22]
bt
+— 404
[72]
©
£
o 501
z
60 T T r
0.0 0.5 1.0 1.5 2.0

Range (km)

Figure 3-5: Backscattering from stair-step ridge (Ex. B). (a) Schematic of the problem, (b)
Receiver at 50m, (c) Receiver at 170m: Solid - COUPLE; Dashed - Spectral super-element

solution.
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Figure 3-6: Backscattering from half-cylindrical ridge (Ex. C). (a) Environment, (b) Receiver
at 50m, (c) Receiver at 170m: Solid - COUPLE; Dashed - Spectral super-element solution.
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Figure 3-7: Cylindrical seamount (Ex. D). (a) Environment, (b) Receiver at 50m. Solid -
COUPLE; Dashed - Spectral super-element solution.



CHAPTER 3. THE SPECTRAL SUPER-ELEMENT APPROACH 54

km and outer radius 10 km. The bottom is a homogeneous half-space with a sound speed
of 1700 m/s and density 1.5g/cm®. The attenuation in the bottom is 0.5dB/X. We solved
this problem using only 3 range sectors and 8 layers down to a depth of 400m. Comparisons

between COUPLE and our solutions are shown in Fig. 3-7b.

3.7.5 E : Coastal Wedge with a Faulted Basement Layer

Example E, taken from Collins and Evans [6], involves a 25-Hz line source in an ocean with
a sloping sediment overlying a faulted basement layer. The ocean depth is 200 m for r < 5
km and decreases linearly from 200 m at 7 = 5 km to 60 m at » = 10.173 km. The source
is placed at a depth of 112 m so that only the first and third modes are excited. The sound
speed in the water column is 1704.5 m/s, p = 1.15g/cm3, and B = 0.5 dB/X in the sediment.
Within the basement layer, which consists of z > 400 m for r < 9 km and of z > 300 m for
> 9 km, ¢ = 1850 m/s, p = 1.5g/cm3, and 8 = 0.5 dB/\. Fig. 3-8a shows the contoured
wavefield in the absence of the basement fault and Fig. 3-8b shows how the fault deflects the
down going beam back towards the surface and excites a field in the water column consisting

mainly of the third mode.

3.7.6 F : Reverberation & Scattering Workshop Test 2a

This example is taken from the 1994 Reverberation and Scattering Workshop [44].This test
case is intended to test the accuracy of discretized codes when the scattering surface is
discretely varying in height and range. A rectangular object of height 100 m and width 120
m is place at a range of 3 km from the point source. The water depth at the source is 150
m. The water sound speed is a constant 1500 m/s. The bottom is a half space with a sound
speed of 1800 m/s, a density of 1.5 g/cm? and an attenuation of 0.5 dB/A. The dimensions
of the discontinuity (height and width) are defined by the center frequency of 30 Hz (i.e.,
50 m and 60 m respectively). Fig. 3-9 shows the test geometry as well as the forward and
backscattered normal stress for a receiver depth of 45 m. We note that there is excellent

agreement among the three solutions.
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Figure 3-8: Wedge overlying a basement fault (Ex. E). (a) Contoured field without the fault,
(b) Contoured field with the fault present
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Figure 3-9: R & S Workshop Test 2a (Ex. F) : (a) Test geometry, (b) Forward normal
stress, (c) Backscattered normal stress. Solid : COUPLE, Dashed : VISA, Dotted : Spectral

super-element.
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3.7.7 G : Reverberation & Scattering Workshop Test 2b

This example is similar to Example F except that the scatterer has a half-cylinder endcap.
The CORE and VISA solutions were generated using 20 sectors to represent ihe endcap.
Fig. 3-10 shows the test geometry as well as the forward and backscattered normal stress for
a receiver depth of 45 m. We solve this problem using a point source configuration. The
CORE and VISA solutions have good qualitative agreement with the COUPLE reference
solution. The discrepancy is due to the breakdown of the single-scatter approximation as
well as probably a poor representation of the endcap with 20 sectors. Increasing the number

of sectors would most likely increase the errors arising from the single scatter approximation.

3.7.8 H : Reverberation & Scattering Workshop Test 3a

Example H is intended to test the ability of backscatter codes to accurately handle multi-
ple scattering when the scattering surfaces are discretely varying in height and range. The
schematic in Fig. 3-11(a) illustrates the configuration, which is very similar to Example F. In
this case an additional scattering object has been added to the environments of Example F.
The leading edge of a second rectangular scattering object is placed 100 m from the trailing
edge of the first rectangular object. Each rectangular object has a height 100 m and a width
120 m. The first object is placed at a range of 3 km The water depth at the source is 150 m.
The water sound speed is a constant 1500 m/s. The bottom is a half space with a sound speed
of 1800 m/s, a density of 1.5 g/cm? and an attenuation of 0.5 dB/A. We solve this problem
with a line source. Fig. 3-11(b) and (c) shows the forward and backscattered normal stress
at a receiver depth of 45 m for the various codes. Note that we have added a constant factor
of 2.4857 dB (10logy/7) to the COUPLE reference solution to account for the difference in

source normalizations.

3.7.9 1I: Reverberation & Scattering Workshop Test 3b

This example is similar to Example H except that the scatterers have half-cylinder endcaps on
them so that now the scattering surfaces are continuously varying in height and range. The

CORE and VISA solutions were generated using 20 sectors to represent the endcap. Fig. 3-12
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Figure 3-10: R & S Workshop Test 2b (Ex. G) : (a) Test geometry, (b) Forward normal
stress, (c) Backscattered normal stress. Solid : COUPLE, Dashed : VISA, Dotted : Spectral

super-element.
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shows the test geometry as well as the forward and backscattered normal stress for a receiver
depth of 45 m. We solve this problem using a line source configuration. The agreement with
COUPLE is quite good though we see less favourable agreement in the backscatter due again
to the inapplicability of the single-scatter approximation. As in Example H, the COUPLE
solution was adjusted by 2.4857 dB.

3.8 Summary

In this chapter, we introduced the single-scatter approximation that decouples the global ap-
proach of Seong [25] into a local one that can be easily solved using a marching scheme. A
2-way marching algorithm then recovers the back-scattered field in an efficient manner. These
modifications greatly reduce the computational requirements of the original fully-coupled for-
mulation and paves the way for extending the method to mixed fluid-elastic stratifications.
Several canonical propagation and reverberation problems are used to demonstrate the accu-

racy and versatility of the modified solution technique.
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Chapter 4

Spectral Super-Element Approach
for Elastic Media

4.1 Introduction

The modifications presented in the previous Chapter laid the groundwork for extending the
method to include arbitrary fluid-elastic stratifications in a practical elastic code. Here, we
present the theoretical development but we will depart from the previous notation and instead

describes the approach in terms of symmetric and anti-symmetric source contributions.

4.2 Stratified Super-Elements

The equations of motion for a homogeneous isotropic elastic solid in plane strain are given
by [45, 46]

2
(/\-5-2;1)V\7-u—;ﬂ7xqu+pf=p%7;—l , (4.1)

where A and p are the Lameé constants, p is the density, u = (u, w) is the displacement vector
and f is the body force per unit mass of material. We write the displacement vector in terms

of two scalar potential fields, ¢ and %, i.e.,
u=Ve¢+Vx(0,1,0), (4.2)

62
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where the first and second term represents the dilatational and rotational part of the solution

respectively. These potentials are solutions of the scalar wave equations

1 8%¢ 1%

2, __ -2 ¥ 2y = 2 7
V ¢ - C% 6t2 I w Cg atz ? (4'3)

where c, and c; are the compressional and shear wave speeds respectively, and are given by

62=A+2[1- C2"H°

r p 7 p
Assuming an exp (iwt) harmonic time dependence (suppressed henceforth), the potentials

then also satisfy the following Helmholtz equations
(v2+r?)p=0, (V2+r?)yp=0,

where h = w/c, and k = w/c, denote the wavenumbers for the compressional and shear waves
respectively.

The field in each sector is now expressed as a superposition of the field produced in the
stratified element in the absence of the vertical boundaries, u*, the field arising from the left

boundary u~, and the field arising from the right boundary, u,
u(z, z) = u*(z,2) +u (z,2) + ut(z,2), (4.4)

where u is taken to denote contributions from the potential ¢ and in the case of an elastic

stratification, also includes contributions from 1.

The wavefields are determined using an indirect boundary integral method [47], based
on Green’s theorem for the semi-infinite virtual element obtained by eliminating the other

vertical boundary and letting the element continue to infinity,
u¥(r) = /3 [ Gl r®) ti(rs0%) — Hy(rir*in®) u;(r) ] dS*. (4.5)

Here u;(r) and t;(r;n*) are the r; components of the displacements and tractions on the
boundary of the semi-infinite elements S*. Gji(r,r*) and Hj;(r,r*;n*) are the jth compo-
nents of the displacement and traction of the Green’s functions at the point r on the surface

S* with outgoing normal n*, due to a unit force applied in the ith direction at a point r¥.
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Note here, that the super-elements always have finite depth. Thus, in the presence of a
lower halfspace, the lower boundary of the super-element is chosen deep enough into the half-
space to ensure that the field satisfies the radiation condition along the horizontal boundary,

in which case the associated surface integral contribution vanishes.

To solve the integral equation in Eq. (4.5), we introduce both symmetric and antisym-
metric panel sources at the boundary. A displacement formulation in combination with the
Galerkin approach is then used to reduce the integral equation into a system of linear equa-
tions, the unknowns of which are the source strengths for the panel sources. Once these
unknown source strengths are determined, the wavefield in each sector can be determined ef-
ficiently using Fast Field Program (FFP) techniques. As in the Direct Global Matrix (DGM)
method, we express the field in each layer as a superposition of the field produced by the
panel source within the layer in the absence of boundaries, referred to as the direct panel
contribution i@, and an unknown field @i which is necessary to satisfy the boundary conditions

at the layer interfaces [1],
u=1u+1. (4.6)

The latter field must satisfy the homogeneous equations of motion and is referred to as the
homogenesus solution. In other words, they are the source-free waves that must be added to
the direct panel contributions to satisfy the boundary conditions. The homogeneous field is

governed by Eq. (4.1) with the body force term f equal to zero.

4.3 Field Expansion

The boundary conditions to be satisfied between the super-elements, together with Eq. (4.5)
now provides an integral equation for the field u* on the vertical boundaries of the super-
element, the numerical solution of which requires some kind of discretization. For fluid super-
elements, the boundary conditions are the continuity of pressure and particle displacement,

i.e. at the vertical boundary j separating super-elements 7 and j + 1,

j J+1
{ u(z;, 2) } ={ u(z;, z) } , @)
p(.’Ej,Z) p(:z:j,z)
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and for elastic super-elements, the boundary conditions are the continuity of stresses and

displacements, i.e.,

u(z;, 2) ’ u(zj, ) a

w(zj,z) | _ ) wz,2) _ (4.8)
0zz(Z;, 2) 02z(Zj, 2)
022(Zj, 2) 012(Zj, 2)

A superscript is used to identify the super-element here and in the following. Since the field
within each layer in the stratification is a smooth function of depth, we here choose a Galerkin
boundary element approach [1]. In the Galerkin approach, the continuity of the field across

the vertical boundaries is expressed in the weak form
te . . .
[ v, 2) 00+ (25,2) - w (@, 2)ldz = 0, (4.9)
0

and similarly for the stresses. The displacements and stresses are now expressed as expansions
in terms of a set of basis functions. By choosing an orthogonal set of expansion functions
Eq. (4.9) requires the expansion coefficients in the two neighboring sectors to be identical.

Here we choose an orthonormal set of Legendre polynomials, normalized within each layer £:

J

u(z, 2) U (z)
w(z, 2) o & | Wem(z) i
- Pp1(Z 4.10
omfn [ ) T [ (410)
9z2(2, 2) /1 Sem(z)

where m is the order of expansion, P,, is the Legendre function and t; is the thickness of
layer £. The argument to the Legendre polynomial is the normalized, local depth coordinate
z—tp/2

te)2
The expansion coefficients Uy, (z) through Sgn(z) are functions of Ugn(0) and Wer (0), the

(4.11)

Zz =

unknown panel source strengths of the symmetric and antisymmetric source respectively.
In effect, they are like the Green’s functions for the panel sources. As outlined earlier, we
decompose these Green’s functions into two components: one corresponding to the direct
field due to the panel source in the layer, the other corresponding to the reflections from the

layer interfaces. We can then write the expansion coefficient U, () as

Ut (z) = Utm(z) + Uem (), (4.12)
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where Ugp(z) and Upp(z) denote the direct and homogeneous contributions respectively.
The other coefficients can also be written in a similar manner. These expansion coefficients
are used in the Galerkin scheme when solving the boundary integral equation. We first derivc
vertical wavenumber representations and subsequently these are transformed into wavenum-
ber representations suitable for the DGM method. These latter forms are also useful for

efficient computation of the resultant field.

4.4 Direct Panel Source Contribution

We start by defining the potentials for the panel sources. The compressional and shear
displacement potentials which satisfy the Helmholtz equation and the radiation condition

can be written in terms of vertical wavenumber spectral representation as

oo .
belz,z) = [ AdmeTemineuld gy,
(e <]

oo .
Yoz, z) = / By(n) e~ n—t/2) gy (4.13)
—00

where 7, 7y = iy/n? — h? and 40 = i\/n% — k2 are the vertical and horizontal wavenumbers
respectively. The quantities A;(n) and By(n) are the source spectrums to be determined from

boundary conditions at the vertical interface.

4.4.1 The Symmetric Problem

The symmetric problem is characterized by two conditions at the discontinuity (z = 0),

ou Ow
0’,_-2(0, Z)//" = & + a_l‘
= 0, (4.14)
17 ls;
u(0,2) = a—: - 5%,

{ 5% Upm(0)Pn-1(2), 0<z<t w15)

0. otherwise
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Substitution of Eq. (4.13) into Eq. (4.15) yields a relationship between Ug,(0) and A¢(n) and
subsequently Eq. (4.15) becomes,

00 2 ) )
U(O,Z) = / ﬁ Ag)(fl) emtg/? e~z dn’

= Z Uem(0)Pr—1(2), (4.16)

m=1

where ¢ = 2n? — k2. We define the Fourier transform pair as

10 = [ gme an,

0 = 5 [ f@em d: (4.17)
a\n - 271' oo I .
and taking the forward transform with respect to z of Eq. (4.16), we obtain,
) 1 & te .
so VE2 40 () g2 =3 Uen(0 /0 Pn1(2)€ dz. (4.18)
m=1
Making use of the relation [41],
te . . t
[ Poca@)eim dz =t ein% m=1 (—g’l) (4.19)

where j,,_; is the spherical Bessel function, we obtain for the symmetric part of the source

spectrum Ag(7n),

A% > Jim- ten
Z 0)i ]m i\ 5 (4.20)

Substitution of the above into Eq. (4.1

4) yields,
) e t
By’ (n) = ——7" Z U (0)i™ ™ jim— 1( f;’) (4.21)

4.4.2 The Antisymmetric Problem

The antisymmetric problem is similarly characterized by two conditions at the discontinuity,

A+2 ou A Ow
00 2/n = (%5 ) St a5 =0 (4.22)
96 9
w(0,2) = af’“a:f

t_l- Zm:l Wlm(O)P -1(2)7 0 S z S tl (423)
0 otherwise
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After some algebra we obtain the antisymmetric part of the source spectrum as,

20 & P t
A0 = T Y Wen(0m o (51, (4.2
m=1
= 1. [t
Bf)( ) = % ZWEm(O)Zm 1.7m—1 (ZTT’) (4.25)
m=1

4.4.3 Series Representations

The unknown panel source strengths Uy, (0) and Wy, (0) are now determined through match-
ing the relevant boundary conditions at the vertical cut. We do this by the Galerkin boundary
element approach which simply requires that the expansion coefficients in the two neighbour-
ing sectors be identical. These expansion coefficients can be straight-forwardly extracted
from the potential representations above by using the orthogonality relation for the Legendre
polynomials. In practice, we need to truncate the infinite series expansions at a sufficiently
high order. Since the Legendre polynomials represent the vertical variation in the field, one

can obtain the truncation limit from an estimate of the number of normal modes.

Let us consider the coefficient Uy (z),
2T o -
ug(z,2) = % > Uu(z) Pioa(2). (4.26)
k=1

We first multiply both sides of Eq. (4.26) by P,—1(Z). Integrating over the layer thickness

and using the orthogonality properties of Legendre polynomials,

te —L—t k
[ Poa® @ dz =§ =T "7 (4.27)
0 0 m#k
together with the identity,
te =\ ,—inz _ -inil- -m—1 m—1 ten
Pp1(2) e dz =ty 72" (=1)"77 jma 5 ) (4.28)

and the expressions for the source spectrums derived previously, we obtain

“ oc oc M2
Uom(z) = Cm 3 i™+F~2 / dn { [—;—”ie-” + ?7’2-6""‘5] Use(0)
k=1 -

21 _ 7 _ . t . t
+ [_ ':7’)’ ry+ n<p ’5] Wek } Jm—l(%n) Jk—-1 (%’7), (4-29)
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where Cp, = (2m — 1){nte/(27) and {m = (—1)™~. Expansion coefficients for the other field
paraieters can be obtained in a similar fashion and are summarized in Appendix C. When
evaluating these integrals, we can exploit their symmetries in (m, k) to reduce the amount of
computation. In addition, for z = 0, some of the integrals can be evaluated in closed-form.

In Appendix H, we discuss some of the numerical issues involved in evaluating these integrals.

4.4.4 Horizontal Wavenumber Representations

The displacement potentials in the vertical wavenumber domain are

o 2 .
#w) = [ | L+ —’-;l@(n)]e-me~m<z—tt/2> dn,

—00 K'y

i) = [7 [l + Srem | e kDan,  @430)

where
— tem
rm = 3 Um0 i"‘“ljm_l(?),

o = 3. Wen(® " jms(2)). (431)

m=1
The DGM method for the multi-layered sector requires the integral representations for the
free-space Green’s function to be expressed in terms of the horizontal wavenumber, s. Using
contour integration as devised by Heelan [40], the vertical wavenumber integrals of Eq. (4.30)

are converted into horizontal wavenumber integrals. After some algebra, the potentials in

the s—domain become

o0 . .
¢E(Z,Z) = / [__1_9._ I‘( zSa) + 2252(1 6(—‘28(1)] e-—|z—-£2£|a 2 e 1Ts dS,

—oo sK?

"/’l(za Z)

where

/_Z [ %56 p(-isp) - = O zSﬁ)] —|z-4|ﬂﬂ e ds, (4.32)

S = sign(z —1t/2),
ia = Vh2-s?
iB = ViZ—s,

9 = 20% +kK2,

w = 2s%—kK2
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and I' and @ are given by Eq. (4.31). The potentials given by Eq. (4.32) are valid only for
z < 0 and z > i, but still allows for the application of the global matrix method when
satisfying the horizontal interface boundary conditions since it is at the interfaces z = 0 and
z = ty of each layer that the fields are being matched. However, it is desirable to have a
horizontal wavenumber integral representation that is valid within the layer so that efficient
FFP techniques can be employed for the resulting field computation. In Appendix B we
derive a discretized equivalent point source horizontal wavenumber representation for these
potentials that is valid for 0 < z < #,.

We now simply use Eq. (4.32) as the source contribution in the SAFARI code [16] to
determine the associated homogeneous solution, the expansions of which are described in the

next section.

4.5 Homogeneous Solution

The horizontal wavenumber integral representation for the homogeneous solution can be
obtained by a direct extension of the equations presented in Schmidt and Jensen [48]. The
complete homogeneous solution is given by the sum over all finite layers as well as over all
orders of expansion. Using the orthogonality relation of Legendre polynomials, expansion

coefficients can be extracted as

_ N-1 o© o
Vim(z) = (2m — 1)i™! / > K Be Jom
0 n=2 k=1
X [Unk(0) Agnk + Wink(0) Conk ] €7 ds, (4.33)
where
_ R
Vin(@) = | Um Wen Tem Sem ] ;
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= . b 73 72 _h

E, = dla.g[e 7% 3% ¢72P ¢ 2ﬂJ,
- B + i LT
Apnk = [ Apne Aink Boar Bink ] )

T
_ - + - +
Cenk = [Ce,nk Cink Donk De,nk] ’

i ding i1 (%22) , G (%) sm-s (%2, Gmim-1 (%2)].

Each combination of indices n and k represents a single SAFARI run. Here Aznk and BZ nk aTe

G

&~

3
Il

respectively the up/down going compressional and shear waves in layer ¢ due to the kth order
symmetric source in layer n. The corresponding quantities from the antisymmetric source
are CZ: ok and D;fnk. However, the DGM can treat multiple right-hand sides simultaneously
and hence all the amplitudesyof the up/down going waves can be found with just a single
global matrix inversion. This makes the algorithm very efficient eveﬁ for problems with a
large number of layers and high orders of expansion. In addition, we can make use of the
symmetries in the amplitudes of these up/down traveling waves to reduce the computation
to only the positive spectrum. In particular, the free-waves of the symmetric panel source

exhibit the following symmetry,

Aznk(_s) = Aznk(s)v

Bik(—s) = —Biu(s). (4.34)

For the antisymmetric source we have,

C?:nk(—s) _Cti,:nk(s)v

Df(=s) =  Diuls) (4.35)

Note that further simplifications can be easily derived from the above relations when z = 0.

4.6 Element Connectivity

Inserting the field expansions in Eq. (4.10) into the weak form of the boundary conditions in

Eq. (4.9) leads to the connectivity equations between super-elements j and j+1. The number
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of equations for each layer depends on the number of expansion terms used as well as the

type of media in super-elements j and j + 1. In general, the connectivity equations are

J J+1
Ugm (z;) Ugm(z;)
Wem(z;5) _ Wem(z5) ’ £=1,...N, (4.36)
Tgm(:l:j) Tgm(:l:j) m=1,...M
Sem(z;) Sem(z;5)

Here N is the number of layers, and M is the number of expansion terms used within each
layer. By systematically matching boundary conditions along the vertical cut, we obtain a
linear system of equations for the unknown panel source strengths for super-elements j and
J + 1. Once the unknown source strengths are determined, the resulting field can then be
determined efficiently with DGM using the horizontal wavenumber spectral representations.
The reader is referred to Sec. 3.6.2 for a discussion on implementing an efficient marching

algorithm from the system of connectivity equations.

4.7 Summary

We have proposed a new approach to model the range-dependent elastic ocean environment.
The proposed method is not limited to weak range dependence and is capable of dealing
with both short and long range propagation. Exact seismo-acoustic boundary ccnditions
are satisfied at both the horizontal and vertical interfaces and the method should be able to
handle large contrasts in the primary direction of propagation. In Chapter 5, we put the code
through an exhaustive series of tests and benchmark problems. In the course of developing
this model, we have also derived an alternative formulation based on Chebyshev polynomials.
Even though this is never implemented, some of the derivations are quite interesting and the

interested reader is referred to Appendix K for a complete description.



Chapter 5

The Elastic Benchmarks

The subject of quality assessment of numerical codes is an important one. The approach we
choose to benchmark and validate our code can best be summed up by a comment made by

Finn Jensen at the 112th Acoustical Society Meeting in Anaheim, CA, in 1986 and I quote,

While it is easy for anybody to produce “interesting” field solutions with a
model, it is extremely difficult even for ezperts to generate numerical results that
can be considered an accurate solution to a stated (propagation) problem. This dif-
ficulty derives from insufficient knowledge both of the approzimations introduced
to formulate a sclvable set of equations, and of the accuracy and convergence prob-
iems associated with the numerical implementation itself. Excluding experimental
data, there are in principle only two ways to gain confidence in the numerical re-
sult (even if reciprocity and energy conservation checks have been made): (1) Use
a different model to confirm the validity of the original solution; or (2) Compare
the numerical result with an accepted reference solution to a similar propagation

problem. Currently, the intermodel comparison is the only route...”

It is interesting to note that after almost a decade, the intermodel comparison method
still remains as the only viable method to test and validate new formulations or modeling
approaches. In this chapter, we developed a series of benchmarks aimed at testing the present

formulation. These benchmarks are derived from several sources. Some are new and some

73
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are modified examples taken from the existing literature. These benchmarks serve help to
test and validate many aspects of our formulation and code, particularly its correctness and
robustness. They are also useful as common yardsticks when making inter-model compar-
isons. Our solutions were obtained with a boundary element code by Gerstoft and Schmidt
[22], the virtual source algorithm (VISA) by Schmidt [24], a finite element parabolic equation
code by Collins [13] and the spectral super-element code [49]. Unless otherwise noted, the
spectral super-element solutions are obtained using only four orders of expansion in the field
parameters within each layer. In addition, in each of the examples, we take the water column

to be lossless with a sound speed of 1500 m/s and a density of 1 g/cm3.

5.1 Benchmark Problems

5.1.1 A : Modified NORDA Case 3

Example A is based on case 3A used in the NORDA Parabolic Equation Workshop [50]. This
problem was first modified for use as a test case for elastic PE by Wetton and Brooke [11] and
we run a slightly different version here. The waveguide, illustrated in Fig. 5-1(a), consists
of a water layer with a thickness of 100 m, over a solid layer with a thickness of 100 m, a
density of 1.2 g/cm3, a compressional speed of 1590 m/s, and a shear speed of 500 m/s. The
fluid is assumed to be lossless and the solid has a compressional attenuation of 0.2dB/\ and
a shear attenuation of 0.5 dB/A. A 25-Hz line source is placed at a distance of 5 km from
an artificial transparent interface. The primrary test here is to see how well energy is coupled
through a transparent vertical interface and represents the extreme case of a low-contrast
vertical step. Comparisons between SAFARI and our solutions for receiver depths of 50 and
110 m are shown in Fig. 5-1(b) and Fig. 5-1(c). For clarity we have shown the solution from
2 to 8 km and we see that the super-element solution agrees well with SAFARI. For ranges
less than 5 km, the super-element formulation reduces to SAFARI exactly and we see perfect
agreement in the solutions. For ranges beyond the artificial interface, the agreement is still

quite good for both receivers, indicating proper coupling across the interface.
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Figure 5-1: Modified NORDA 3A test case (Ex. A). (a) Test configuration, (b) Receiver at
50 m, (c) Receiver at 110 m. Solid : SAFARI, Dashed : Spectral super-element.
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Figure 5-2: Ex. B. Configuration for single layer benchmarks

5.1.2 B : Single Layer Benchmarks

The next benchmark consists of a set of 2-sector problems shown in Fig. 5-2. The waveguide is
bounded at the top and bottom by a pressure release boundary. A 25-Hz line source is placed
at a depth of 25 m and at a distance of 2 km from the vertical discontinuity. By bounding the
waveguide by pressure release boundaries, this benchmark requires the propagation code to
properly conserve energy before one can arrive at the correct answer. In addition, by varying
the material properties on both sides of the discontinuity, we can assess the sensitivity of a
particular code to contrast in the primary direction of propagation. Table 5.1 shows the 4

different configurations that we have chosen.

The BEM code [22] is expected to produce good results for this set of benchmarks and is
therefore taken as the reference solution. Solutions for the normal stress at a receiver depth
of 35 m are shown in Fig. 5-3 and Fig. 5-4 and we generally have good agreement among the

three solutions. We present the backscatter solutions in Fig. 5-5.
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BENCHMARK

Parameters | Bl B2 B3 B4
P 1.0 1.5 1.5 1.5

Left cp 1500 | 1700 | 1700 | 1700
sector Cs 0 700 | 700 | 700
op 02 | 02 | 0.2 ; 0.2
Qs 0 05 | 0.5 | 0.5
p 1.5 1.0 1.5 1.5

Right 1700 | 15006 | 1700 | 1800
sector Cs 700 0 700 | 900
ap 02 | 02 | 0.2 | 0.2
Qs 05 | 05 | 05 | 0.5

77

Table 5.1: Parameters for the series of 2-sector canonical test problems. Wave speeds are

given in m/s, densities in g/cm?®, and attenuation in dB/A.
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Figure 5-3: Solutions to the single layer benchmarks. (a) Case B1, (b) Case B2, Solid : BEM,
Dashed : VISA, Dotted: Spectral super-element.
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Figure 5-4: Solutions to the single layer benchmarks. (a) Case B3, (b) B4, Solid : BEM,

Dashed : VISA, Dotted: Spectral super-element. For (a), instead of the BEM, we use

SAFARI as the reference solution
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Figure 5-6: Ex. C : Schematic of the elastic cylindrical seamount

5.1.3 C : Elastic Cylindrical Seamount

Example C, shown in Fig. 5-6, consider an elastic seamount in a cylindrically symmetric ocean
environment. The fluid version of this problem first appeared in Gilbert and Evans [19]. A
25-Hz source is located in the middle of the waveguide. The depth of the water column
at the source range is 200 m. A 135 m high seamount has inner radius 5 km and outer
radius 10 km. The bottom is a homogeneous half-space with a compressional sound speed
of 1700 m/s and a shear speed of 700 m/s. The density is 1.5g/cm® and the compressional
and shear attenuation in the bottom is 0.2 dB/XA and 0.5 dB/)\ respectively. We solved
this problem using only 3 range sectors and 8 layers down to a depth of 400 m. We show
both forward and back-scattered dilatational and shear stress at a receiver depth of 80 m.
Comparisons between the virtual source algorithm and the super-element method are shown
in Fig. 5-7 and 5-8. In forward scatter, we have excellent agreement between the two solutions.
There is also good agreement in the back-scatter solutions. The increase in back-scatter
energy at the source range in Fig. 5-8(a) is due to the fact that for a point source in a
cylindrically symmetric waveguide the back-scattered energy focuses at the source range.
The high-frequency oscillations seen in the back-scatter VISA solution are due to numerical

noise creeping into the extremely low field values computed.
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Figure 5-7: Elastic cylindrical seamount (Ex. C). Receiver at 80 m. (a) Forward scattered

bulk stress, (b) Forward scattered shear stress. Solid - VISA; dashed - Spectral super-element.
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Figure 5-8: Elastic cylindrical seamount (Ex. C). Receiver at 80 m. (a) Back scattered bulk
stress, (b) Back scattered shear stress. Solid - VISA; dashed - Spectral super-element.
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Figure 5-9: Ex. D : Embedded step discontinuity

5.1.4 D : Low Contrast Embedded Elastic Step

Example D, taken from Collins [12] and shown in Fig. 5-9 involves two solid layers and a step
discontinuity in layer thickness. A 25-Hz source is placed at a depth of 50 m in the upper
layer, which is 500 m thick for ranges less than 7 km and 250 m for ranges beyond 7 km.
The compressional and shear speeds in the upper layer is 1500 m/s and 700 m/s respectively
and the medium is assumed to be lossless. The lower layer is a half-space with compressional
and shear speeds equal to 1600 m/s and 750 m/s respectively. The attenuations in the lower
medium is 0.5 dB/\ for both wave types. The density in the upper and lower medium is
1g/cm® and 1.2g/cm3 respectively. This particular problem has a very low contrast across
the vertical interface and we present forward and back-scatter solutions at two receiver depths.

In the forward direction, we have good agreement between the three solutions.

In the back-scatter, there is some disagreement, particularly near the scattering surface.
We believed this is due to inaccuracies associated with the large dynamic range between the

forward and back-scattered field.

5.1.5 E : High Contrast Embedded Elastic Step

Current PE-based formulations converges only for small differences across the vertical inter-
faces between the range-independent regions. Therefore, it is interesting to test the perfor-

mance of a model under high contrast conditions and we have constructed Example E which
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Figure 5-10: Embedded elastic step (Ex. D). Total normal stress. (a) Receiver at 100 m. (b)
Receiver at 300 m. Solid - BEM; Dashed - VISA; Dotted - Spectral super-element.



CHAPTER 5. THE ELASTIC BENCHMARKS 86

(9)
>0 Freq: 25.0 Hz
SD: 50.0 m
RD: 1000 m
P 55-
m
o
p—g
[7)]
J)
)
=
n
©
£
—
o
=z
0 1 2 3 4 5 6 7 8 9 10
Range (km)
(b)
S0 Freq: 25.0 Hz
SD: 50.0 m
RD: 300.0 m
~~
m
o
~—
)
1)
)
o
n
©
£
—
o
=

Range (km)
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is essentially a high contrast version of Example D. The lower layer now has a compressional
speed of 2000 m/s and a shear speed of 1200 m/s. It is hoped that the stronger back-scatter
field might help eliminate differences due to the numerics. Again in Fig. 5-12 we see good
agreement in the forward direction between the three different solutions. There is also good

qualitative agreement in the back scatter.

5.1.6 F : Impedance Change at a Vertical Boundary

The issue of how well a particular formulation handles the dynamic range in a problem
is an interesting one. An algorithm that performs well when there is a strong contrast in
the vertical direction does not necessarily impiies that it will work well at low contrasts.
In Example F, we design a simple fluid test case to examine the behaviour of the code
under changes of impedance across the vertical cut. We employ the 2-sector waveguide
configuration of Example B and starting from a low-contrast problem, we systematically
increase the sound speed in the right sector. Since all the other parameters in the problem
remain the same, we should see the back-scattered field increasing in a way proportional to
the impedance change at the vertical boundary. If a formulation is unable to handle large
dynamic ranges in the field values, we will observe that the calculated field is insensitive to
small changes in the sound speed. The left sector has a nominal sound speed of 1500 m/s
and we systematically doubles the sound speed difference between the left and right sector
from 0.625 m/s to 80 m/s. The increment is sufficiently small such that we can assume that
the reflection coefficient is correspondingly doubled and hence we should expect to see a 6
dB increase in the backscattered field. Fig. 5-14 shows the depth-averaged backscattered
field at the source range obtained using the various codes. From our tests, we observed that
the integral methods (BEM and spectral element) which rigorously attempts to account for
both the forward and back-scattered field simultaneously, regardless of their dynamic range,

breaks down earlier than VISA, which determines the field solely as a reflection-transmission

problem at the interface.
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Figure 5-12: High contrast embedded elastic step (Ex. E). Total normal stress. (a) Receiver
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Figure 5-14: Dynamic range test - The average field at range zero as a function of sound

speed contrast (log scale). *: BEM; +: CORE; o: VISA. For reference, the dotted line shows

a 6 dB increase per sound speed doubling but with arbitrary absolute location.
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BENCHMARK
Parameters G H
P 1.5 1.0
Host Cp 1500 1500
Media Cs 700 0
ap 0.1 0.1
s 0.2 0.
P 0.001 1.5
cp 340 1700
Corner Cs 0 800
ap 0.1 0.1
Qs 0.0 0.2

Table 5.2: Parameters for the corner problems. Wave speeds are given in m/s, densities in

g/cm?, and attenuation in dB/).

5.1.7 G,H : Corner Problems

Example G and H considers reflection and diffraction from a corner. We have a beam im-
pinging onto a corner of a square at an angle of 45 degrees measured from the horizontal.
The array is made up of 20 sources spaced at 30 m apart, extending from the surface down to
a depth of 580 m. Again, we can construct a multitude of different combinations for the host
media (containing the source) as well as the corner. Example G, shown in Fig. 5-15, considers
the case of an elastic host media and an air corner. Example H, shown in Fig. 5-16, has a
fluid host media with an elastic corner. The relevant parameters for the problem are listed in
Table 5.2. We present only VISA generated solutions for the total bulk and shear stress. We

see that the characteristic symmetric 'butterfly’ field contours are very useful features when

comparing solutions.
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Figure 5-15: Ex. G : Schematic for Elastic-Air corner problem
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Figure 5-16: Ex. H : Schematic for Fluid-Elastic corner problem
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Figure 5-17: Elastic-Air corner (Ex. G) - VISA solution (a) Total dilatation (b) Total shear
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Figure 5-19: Ex. I: Environment for the ASA elastic wedge

5.1.8 I : Elastic ASA Wedge

Example I, shown in Fig. 5-19 is test case 3 from the Parabolic Equation Workshop II [51].
This is an elastic version of the standard ASA wedge benchmark problem. A 25-Hz point
source is placed at 100 m depth. The ocean depth decreases linearly with range from 200 m
at the source range to zero at 7 = 4 km. The ocean bottom has a compressional sound speed
of 1700 m/s and a shear speed of 800 m/s. The density is 1.5 g/cm?® with the compressional
and shear attenuations at 0.5 dB/)A. The environment is discretized into 17 layers, each of
about a wavelength in depth, and 56 range sectors. In Fig. 5-20 we present solutions from
the parabolic equation model and the super-element method. There is good agreement for
the shallow receiver and for the receiver in the bottom, the agreement is still quite good and
the differences are primarily due to the particular manner in which the environment is being

discretized.

5.1.9 J : Mode conversion - Point Source

Mode conversion from compressional waves to shear and vice versa is an extremely important
physical process. It is also the single most important complicating factor in most parabolic

equation formulations. Example J considers just this particular problem. A 25-Hz point
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source is placed at 25m depth in a 100-m deep waveguide bounded at the top and bottom by
presure-release boundaries. We set up a 2-sector problem with the compressional and shear
speed in the left sector being 1700 m/s and 700 m/s respectively. The density is 1.5 g/cm?
and the compressional and shear attenuation is 0.2 dB/X and 0.5 dB/ ) respectively. In the
right sector, we have a solid with a compressional speed of 3000 m/s and a shear speed of
1700 m/s. All other parameters remain the same. Here we see that the compressional speed
in the left sector is matched to the shear speed on the right, resulting in strong coupling of
P-waves from the left to S-waves on the right. Another complicating factor is the extremely
large contrast in the sound-speeds. In Fig. 5-21 we show the forward-scattered solutions for
the normal stress, vertical and horizontal particle velocity. Fig. 5-22 shows the corresponding

back-scattered field.

5.1.10 K : Mode conversion - Vertical Point Force

In Example K, we run the same problem but this time with a vertical point force of 1 N placed
in the middle of the waveguide. From the symmetry of the waveguide we can see that now
most of the excitation at the vertical discontinuity will be of the shear waves. This example
provides a good test of the code to properly model compressional to shear wave conversions.

The solutions for this example are shown in Fig. 5-23 and Fig. 5-24.

5.1.11 L : Mode conversion - Horizontal Point Force

Again Example L is identical to Example K except that this time we use a horizontal point
force of 1 N placed in the middle of the waveguide. At the vertical interface, most of the
excitation will be from the longituidinal waves which couples strongly to the shear waves in

the right sector. The solutions for this example are shown in Fig. 5-25 and Fig. 5-26.

5.1.12 M : Step Periodic Roughness Patch

Example M considers a step periodic roughness patch shown in Fig. 5-27. A similar fluid
example was first treated by Evans and Gilbert [52]. The patch extends from 5-10 km and the

depth variations consists of steps which are 10 m high, 100 m long and 200 m apar.. Hence
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Figure 5-21: Mode conversion with a point source (Ex. J) - Forward scattered field (a)
Normal stress, (b) vertical particle velocity, (c) horizontal particle velocity; Solid : BEM,

Dashed : VISA, Dotted : Spectral super-element
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Figure 5-22: Mode conversion with a point source (Ex. J) - Backward scattered field (a)

Normal stress, (b) vertical particle velocity, (¢) horizontal particle velocity; Solid : BEM,

Dashed : VISA, Dotted : Spectral super-element
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Figure 5-23: Mode conversion with a vertical point force (Ex. K) - Forward scattered field
(a) Normal stress, {(b) vertical particle velocity, (c) horizontal particle velocity; Solid : BEM,

Dashed : VISA, Dotted : Spectral super-element.
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Figure 5-24: Mode conversion with a vertical point force (Ex. K) - Backward scattered field
(a) Normal stress, (b) vertical particle velocity, (c) horizontal particle velocity; Solid : BEM,

Dashed : VISA, Dotted : Spectral super-element.
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Figure 5-25: Mode conversion with a horizontal point force (Ex. L) - Forward scattered field

(a) Normal stress, (b) vertical particle velocity, (c) horizontal particle velocity; Solid : BEM,

Dashed : VISA, Dotted : Spectral super-element.
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Figure 5-26: Mode conversion with a horizontal force (Ex. L) - Backward scattered field (a)

Normal stress, (b) vertical particle velocity, (c) horizontal particle velocity; Solid : BEM,
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Figure 5-27: Ex. M : Configuration for step periodic roughness patch

there are 5 steps per kilometer. The source, at a frequency of 50 Hz, is at a depth of 18 m,
and Fig. 5-28 shows the bulk stress for receiver depths of 50 and 150 m. The spectral element
solution is computed using eight orders of expansion. The transmission loss is compared to
the reference solution for a flat-bottom waveguide (SAFARI). For the bottom receiver, we
see an increase in the field below the roughness patch and this is a result of energy being
dumped from the water column into the bottom. This behaviour is most clearly seen in the
contour plots of Fig. 5-29. This test problem provides a good example of energy loss due to

bottom roughness.

5.1.13 N : Elastic Half-Cylindrical Ridge

Example N, shown in Fig. 5-30a, is modified from an equivalent fluid example in Jensen and
Gerstoft [43]. It involves a half-cylindrical ridge in the ocean bottom with a compressional
sound speed of 1700 m/s and a shear speed of 700 m/s. The density is 1.5g/cm® and the
compressional and shear attcnuation is 0.2 dB/A and 0.5 dB/) respectively. A 25-Hz line
source is placed at depth z = 100m. The ridge is positioned 1.5 km downrange and has

a height of 50 m (~ 1 wavelength) above the sea floor. Fig. 5-30 shows the backscattered
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Figure 5-28: Step periodic roughness patch (Ex. M). Forward dilatation : (a) Receiver at 50
m. (b) Receiver at 150 m. Solid - SAFARI; Dashed - Spectral super-element.
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Figure 5-29: Step periodic roughness patch (Ex. M). Forward dilatation : (a) SAFARI

solution without the patch (b) Spectral super-element solution with the roughness patch
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Figure 5-30: Backscattering from an elastic half-cylindrical ridge (Ex. N). (a) Environment
(b) Receiver at 50m, (c) Receiver at 170m: Solid - BEM; Dashed - VISA, Dotted - Spectral

super-element solution.
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Figure 5-31: Ex. O : Configuration for the ice lead problem

field at two receiver depths for the boundary element method, VISA and the super-element
method. In this example, the BEM solution is believed to be the most accurate. There is
only qualitative agreement between all the three solutions and we believed this is largely
due to errors associated with the single scatter formulation. The ridge is about the size of
a wavelength and internal resonancés of this nature (multiple scattering within the ridge)

cannot be properly handled with the single-scatter formulation.

5.1.14 O : Elastic Ice Lead

Example O, shown in Fig. 5-31, considers a problem in which we have water penetration
through a portion of an ice sheet. The ice has a compressional speed of 3000 m/s and shear
speed of 1700 m/s. The compressional and shear attenuation is 0.2 dB/X and 0.5 dB/A
respectively. The ice segments are floating on water with a sound speed of 1440 m/s and a
density of 1 g/cm3. A 200-Hz line source is placed 1 m below the surface of the ice sheet and
we present solutions for the bulk stress and vertical particle velocity at receiver depths of 5

and 10 m. The spectral element solutions are obtained using only eight orders of expansions.
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Figure 5-32: Ice lead problem (Ex. O). Forward vertical velocity : (a) Receiver at 5 m (b)
Receiver at 10 m. Solid : VISA, Dashed : Spectral super-element
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Figure 5-33: Ice lead problem (Ex. O). Forward dilatation : (a) Receiver at 5 m (b) Receiver
at 10 m. Solid : VISA, Dashed : Spectral super-element
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Figure 5-34: Ex. P : Configuration for the entrenched elastic layer problem

5.1.15 P : Entrenched Elastic Layer

Example P, taken from Collins [13] and shown in Fig. 5-34, is similar to the embedded step
problem with two modifications: (1) the stair step is removed; and (2) a layer with the same
elastic properties as the lower layer is embedded in the upper 150 m of the upper layer for
ranges greater than 7 km. In Fig. 5-35 and 5-36 we show the forward and back scattered

normal stress for two receiver depths.

5.1.16 Q : Lloyd-mirror beam diffraction

Example Q is similar to the corner diffraction problems discussed earlier. However, instead
of generating the beam with a vertical line array, the beam in this problem is part of the
Lloyd-mirror beam pattern. The problem is set up such that we have only one beam tilted at
an angle of 30° from the sea surface. The position of the corner protrusion is positicned such
that the beam is directed at its corner. This test is particularly useful for those codes which
does not handle vertical arrays of sources. Fig. 5-37 shows the environment and Fig. 5-38
shows the contour plot for the total normal stress. Transmission loss comparisons with the

BEM and VISA solutions are shown in Fig. 5-39 and Fig. 5-40 for both the forward and
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Figure 5-35: Entrenched layer problem (Ex. P). Forward normal stress: (a) Receiver at 100
m (b) Receiver at 300 m. Solid : BEM, Dashed : VISA, Dotted : Spectral super-element
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Figure 5-37: Ex. O : Configuration for the Lloyd-mirror beam diffraction problem

backscattered field respectively. Again, one can construct several different benchmarks by

changing the host and corner media.

5.2 Summary

In this chapter we have presented a wide variety of benchmarks and their solutions. Even
though some of these benchmarks do not represent realistic ocean environments, they nev-
ertheless serve the very important objective of testing the integrity of the code as well as
the robustness of the formulation. Many other variations can be derived from the simple
examples presented here. Our test cases should also serve as a very useful reference for other
modelers as well. The results of our inter-model comparisons demonstrated the accuracy and
versatility of the spectral super-element approach in solving a wide variety of seismo-acoustic
problems. In the process of our testing we also learned that the choice of field parameters
for making comparisons is very important. In particular, the ’equivalent shear stress’ which
is defined as the contribution from only the shear potential may not be an ideal candidate
because it is not a physical variable, unlike displacements, and in some cases may be ex-
tremely unstable to compute. These benchmarks also highlight the fact that back-scatter is a
particularly difficult process to model, compared to the forward field. This is especially true

in cases where there exists a large dynamic range between the forward and back-scattered
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o BE= 25042 SD= 300M

Figure 5-38: Diffraction from a Lloyd-mirror beam (Ex. O). Total normal stress (Spectral

super-element solution)

field. In these cases, boundary integral methods that try to simultaneously account for the
large dynamic range may fail, and when this happens they are more likely to get the for-
ward field correct but arriving at an incorrect back-scattered field. On the other hand, the
VISA formulation which determines the field solely as a reflection-transmission problem at

the interface tends to be more robust numerically.
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Chapter 6
Epilogue

In this thesis, we examined the application of coupled wavenumber integration techniques
to solving the wave equation in range-dependent elastic environments. In particular, we are
interested in solution techniques that are able to handle both short- and long-range propa-
gation as well as model reverberation from large scale features. These techniques should also
be spectral-based since they provide for the decomposition of the wavefields into fundamental

modal components which helps in the physical interpretation of the numerical results.

In the first part of the thesis, we performed extensive numerical experiments using the
adiabatic transform technique developed by Lu and Felsen [17]. The main result of these
experiments is that the adiabatic transform approach works well in situations where the
wavefield is largely modal in nature. The work contributed towards a better understanding
of the mechanics behind the so-called ’spectral mapping’ techniques of Kamel and Felsen [28]
and Lu and Felsen [17]. A method proposed by Tang and Guo [29] using the method of mul-
tiple scales also falls within this category. An important conclusion arising from this study is
that the standard adiabatic mode approach is invalid for virtual modes - a point that is not
often appreciated. Generally, any solution technique that relies on tracking the horizontal
wavenumber as the environment changes must not only do a good job in the discrete spectrum
but also track the complex eigenvalues of leaky modes [18]. The design of suitable spectral
invariants valid over a wide spectrum of wavenumbers is a difficult task and any approach

based on such techniques should be used with great care. Another major gripe with such

118



CHAPTER 6. EPILOGUE 119

techniques is the need to search for complex roots, which is an extremely time consuming
and unreliable process, rendering codes based on spectral mapping slow and possibly requir-
ing human intervention in the root searching process. Since the spectral mapping process
essentially determines the spectral content of the wavefield at any range step, any errors in
the search process can erroneously contribute to mode coupling. It is also unclear how the

adiabatic transform technique can be extended to elastic environments.

The next part of the work involves the generalisation of the spectral element method
developed by Seong [25). We first introduced several important modifications to the original
fluid formulation. One of these is the introduction of the single-scatter approximation that
decouples the global problem into a local one, thereby reducing tremendously the computa-
tional resources required. We also implemented a two-way marching algorithm that recovers
an approximation to the back-scattered field. We also derived mapping matrices that permit
us to map the expansion coefficients across sectors with different layer structures. These
modifications are important because, with these extensions, the spectral element approach
can now handle a much broader class of problems but still requiring only a modest amount
of computational resources. We have now laid the groundwork for generalising the method

to include the effects of elasticity in a practical code.

The most significant contribution of this thesis is the extension of the spectral method
to handle arbitrary fluid-elastic stratifications. The formulation is new and non-trivial par-
ticularly in its implementation. An indirect contribution is that the derived potentials for
the panel sources are also useful as virtual sources in the recently developed VISA code [24].
We have also expanded our tcolbox of available source types to include vertical and horizon-
tal point forces. Including these fundamental source types allow us to model more complex
seismic processes, such as vertical strike faults [26]. The rigorous testing that we put our
code through is also another important contribution. The benchmarks that we have designed
have proved useful not only in testing our code but also in identifying weaknesses in other
existing codes. These test problems will be an important resource for modelers involved in
developing numerical propagation codes. In our benchmarking efforts, we have also learned
several important lessons. Firstly, the choice of field parameters for making comparisons is

very important. In particular, the ’equivalent shear stress’ which is defined as the contribu-
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tion from only the shear potential may not be an ideal candidate because it is not a physical
variable, unlike displacements, and in some cases may be extremely unstable to compute.
These benchmarks also highlight the fact that back-scatter is a particularly difficult process
to model, compared to the forward field. This is especially true in cases where there ex-
ists a large dynamic range between the forward and back-scattered field. In the design of
benchmarks, we found that fundamental source types such as the horizontal or vertical point
forces, when placed in a symmetric waveguide, are extremely useful for exciting certain elastic

wavefields for testing specific part of a code.

As always, there are further issues that could be addressed:

e Quadrature errors tend to control the accuracy of the final solutions. It would be
useful to investigate further techniques, particularly from the mathematics literature,
to apply to our integrals. Improving the numerical integration of our rather pathological

integrals would go a long way towards further improving the robustness of the code.

e The modeling of the half-space is presently being done with dummy interfaces. This is
not only inefficient but also degrades the solution somewhat due to accumulated errors
in the quadratures. The present method of using basis function has been shown to fail

[25] and a directed effort using new approaches would be needed.

e The current implementation allows for only either an explosive point source or a vertical
or horizontal point force as our source types. The next step would be to find an efficient
manner to include more than one source without resorting to having an artificial layer
at the depth of each source. Ultimately, we would like to have the capability to include

line arrays in our simulations.

e Time domain solutions by Fourier synthesis can be included easily.
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Appendix A

Axisymmetric Environments

For cylindrical geometries, the Helmholtz reduced wave equation is

19/ 8%\ 8%

We can separate out the cylindrical spreading effect by introducing

8r,9) = [0 (r,2), (A.2)

where the coefficient is selected to give 0 dB loss at 7 = 1 m. Eq. (A.1) then becomes

0%¢

2
¢ 1¢+ﬁ+h2¢=0. (A.3)

o2 T a2

For large r;, we may neglect the second term, and we see that cylindrical spreading can
be treated with the present 2D derivation simply by including a factor of 1/%%,'- in the final

evaluation of the field.
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Appendix B

Point Source Representation for

Panel Sources

We derive a discretized equivalent point source spectral representation for the potentials of
the distributed panel sources that is valid everywhere inside a layer. This allows the field
computation to be carried out by efficient Fast Field Program (FFP) techniques. To simplify

notation, we use a generic form,

o 1 e—le=%v
Py(z,2) = / ) [A I'(-iSv) + B ©(—iSv) ] e "% ds, (B.1)
where
v = aq,
A = —(20% +&?),
B = 2isSa, (B.2)
for the compressional potential ®, = ¢, and
v = ﬁa
A = -—2is8p,
B = —(252—&?), (B.3)
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when ®, is refering to the shear potential 4,. Using the expressions for I" and © in Eq. (4.31),

we arrive at

2= [ 5[4 Um0

m=1
ey L
+ B Y T Win(Omoa) | x S e s (B.4)
m=1 v
where x = —it,Sv/2. We now replace the spherical Bessel function with its integral repre-
sentation [53],
1 ™
Jab0) = 5 (=9)1 / ¢X<%50 P (cos 6) sin do. (B.5)
0
Making the change of variable,
cosf = w2 (B.6)
we obtain
oo 1 e
2@ = [ S{X [4Um0) + BWem()]
-0 K m=1
1 te Zze — 1 /2 e—izs
() )
X % Jo e 1 122 dz;, ” ds (B.7)

The above equation converges for every field point z and is in the form of a continuous
distribution of acoustic point sources. Numerical evaluation of the inner integral is a very
expensive operation and instead we will replace it with a summation of point sources. These
point sources are located at the Gauss-Legendre quadrature points. We first make the fol-
lowing change of variable,

_ Z T t/2 t:/t2£/ 2 (B.8)

for the inner integral to obtain,

t — 1
1 e 12—zslv Pm-—l( zs__t_lﬁ) dzs = 1/ Pr-1(2) e—lz—%‘ )l ¢ (B.9)
te Jo te/2 2/

Finally, the equivalent point source representation for the generic form of the potential is

—_ OO
(o o] ez:z:s

Py(z,2) = Z /Oo 2

+ Bng(O)] Pr_1(tj) Wy e~17=% G40l (B.10)

3 [A Ugm (0)
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where N, is the number of discrete sources used to represent the continuous panel sources.
A general rule of thumb is that N, is at least twice the order of Legendre expansion used.

The Gauss quadrature points ¢; and weights W; are given by [53]

t; = jth zero of Pp_i(z),

Wy = g Pl (B.11)



Appendix C

Direct Solution for Panel Sources

Horizontal Wavenumber Representation

The potentials in the s—domain are

0 . .
®y(z,2) = / [_i [(—iSa) + 2iSa 9(——iSa)] e—li—HEla g e ds,

oo | SK2 K2

<[ 288 . . w . a8 S _;
Tz,z) = [ ) [— = F(—zSﬁ)—W@(—zSﬂ)]el H9 2 e ds. ()
The field expressions required for the DGM forcing can be compactly written in matrix form,
-~ w m A ~ ~ ~ -
Vi(z,2) = 3 / [Usm(0) K, + Wern(0) K, B T, e7i% ds, (C2)
m=1 /X
where
. T
Ve,2) = [u w oufp oufp]
E = diag [e"z‘%{“"',e_lz_%lﬂ],
P [im-l jme1( ~iSteer/2 )]
" ™ i (—iStB/2) ]
isda™l  —2isB
K 1 S9 —-28s?
TR | —wa! 45?8 |

—2iSs¥ 2iSsw
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2852 -Sw
. 1 | —2isa  iswp!
k? | 2iSsw —2iSsw

-452q w?p!

with

)
Il

sign(z — t¢/2),
= VsZ-he
s2 _ K2,

= 22— K2,

< 8 w 9
il

= 20° + K%

Basis Function Expansion

The potentials in the vertical wavenumber domain are given by

m .
®y(z,2z) = / [ T(n) + = 2 @(n)] e Te~MGz=4/2) gy

2(5

v = [ |-% 2"’ D) + 5= 0n) | em=teme—4r2) dy

The expansion coefficients can be compactly expressed as

Vim(z) = Cp ¥ imHe=2 / OO[UEk(O) K,
k=1 -

2 I t . i
+ Wi (0) K, ] E jm1 (-g—q)]ka(—gl) dn,

where
. R R . . T
Vem(z) = [ Um Win Tem Sem ] ,
E - [e—a:'y e—xé' ]T,
—p 2n?
. __1 .
R 1 | —¢ 2ind
Ku = 2 Z(P’_yl 2 ?
K oy —4n°é

2inp  —2inyp
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—2iny  inpd~!
. 1 | 29 —p
Kw = 3 . .
K 2inp  —2inyp
—dn?y 25!
with
Cm = (_l)m_l’

= Yo
Cn = 27T(2m 1)¢m,

0

p = 2n°—kK°.

Note that the third parameter refers to the stress quantity o, /p instead of o,,/pu.
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Appendix D

Homogeneous Solution for Panel

Sources

Horizontal Wavenumber Integral Representation

The horizontal wavenumber integral representation for the homogeneous solution can be
obtained by direct extension of the equations presented in Schmidt and Jensen [48]. The

complete solution is given by the sum over all finite layers as well as over all orders of

expansion.
N-1 oo o _ _ _ _ )
w@m)=3 Y [ RE[Un(©) A + War(0) Cle ™ ds, (D.1)
n=2 k=177
where
B - T
Vg(.’L‘,Z) = | v w azz//‘ azz/ll'] ’

[ —is  —is  iB —iB
— — o S S
w w -2s8 2sB

| 2isa —2isaa —iw —iw

E = disg[e™, e~ ¢, lt0f],
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- T
A = [AE:nIc Aanc Bé:nk Bz,-nk] '

T
C = [C[,nk Cink Dink Dz,_nk] : (D.2)

Each combination of indices n and k represents a single SAFARI run. Here A;f"k and B;f nk
are respectively the up/down going compressional and shear waves in layer £ due to the kth
order symmetric source in layer n. The corresponding quantities from the antisymmetric

source are Cf,, and Df .

Series Representation

Using the orthogonality relation of Legendre polynomials, expansion coefficients can be ex-

tracted as
: oo N—-1 o0 -
Vom(z) = (2m — 1)im1 / S Ry By Jom
=0 pn=2 k=1
X [Unk(0) Agnk + Wnk(0) Conk ] €7 ds, (D.3)
where
_ ~ _ _ _ T
Vim(z) = [ Um Wem Tun Sem ] .
—1is —1is 16 —i3
— - a S S
K, =
-9 - 2s3 —2sf8
2isaa —2isa —iw —Iiw
= . ey U, g _Uug
E, = diag|le 2%,e 2%, e 2",e 27|,
A - + - + 7
Ak = [Al,nk Aj ok Biak Bz,nk] ’

T
- - + - +
Cenk = [Ce,nk Ce,nk De,nk Denk] )

J iag |51 (2 (it . (it (it
Jem = dla‘g []m—l (2—;9‘) y CmIm—1 (l_é") y Jm—1 (%) y CmJm—1 (%ﬂ)] .

Note that the third parameter refers to the stress quantity o,/ instead of o,,/u.



Appendix E

Direct Solution for Physical Sources

In the current implementation, we allow for three types of sources - the explosive point
source, vertical point force and horizontal point force. Note here that in the basis function

representations, the third field parameter refers to the stress o;,/u instead of 0, /p.

E.1 Explosive Point Source

The explosive point source has the following integral representations,

¢* — /oo e-|z-z,|a e—i(z—z,)s ds

—00 a

x* = 0, (E.1)

where z; and z; is the source depth and range respectively.

Horizontal Wavenumber Integral Representation

Field equations for the acoustic point source are given by
* 00« .
vi(z,2) = / Ke ™ l#—%slangmilz=2s)sgg. (E.2)
—00
with
T
ve(z,2) = [ w u o /p Ozz/1t ] ’
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— sign(z — zg)
* —1s/a
K = /
w/a

2is sign(z — z,)

Basis Function Expansion

132

Extracting the expansion coefficients via the orthogonality relation of the Legendre polyno-

mials gives us

* w * 2 7, s { 4 3
Vm(fla‘) — (2’"’1 _ l)im—l/ Ke-%ajm—l (’_%2) e—-l(.l:-—xa).s ds,

00
where
* [ % * * * T
Vm(m) = | Uem Wem Tem  Sem ] ’
( —is/a
K = — sign(z — z;)
—-J/a
| 2¢s sign(z — 2)

E.2 Vertical Point Force

The vertical point force has the following integral representations,

w .
¢* _ sign(z - zs) / e—]z—zsla e—-z(:z:—zs)s dS,

—00
Pt o= i /oo 3 mle=zlB gmile=as)s g
-0 B

Horizontal Wavenumber Integral Representation

Field equations for the vertical point force are given by

‘*’e(l', z) = /oo {I*{e—lz—hlan + je—lz—zalﬁn }e—i(”"“)sds,
—00

(E.3)

(E.4)

(E.5)
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with

T
vi(z,z) = [w u O /p a:cz/ll ] )

,
a0 4

* —1is sign(z — z;)
w sign(z — z)

2isa

s*/B

is sign(z — z)

G
i

—2s2 sign(z — z;)

\ —isw/f

Basis Function Expansion

The expansion coefficients are given by
* oo * t it
Vm(z) = (2m — l)im‘l/ { Ke 7% jmi (___’ ;a)
)

+ 36_%3 jm-l(%) } e i(F=%s)s gg. (E.6)

2
where
* F % * * * T
Vm(z) = I Utn Wem Ten Sem ] ’
4 .
—18
* -
K = | )
—19 sign(z — z)
{ 2isa
( 18
2
* S
[ /B
252

| —isw/B



APPENDIX E. DIRECT SOLUTION FOR PHYSICAL SOURCES

E.3 Horizontal Point Force

The horizontal point force has the following integral representations,

¢t — Z/OO ie-—]z-—-z,kt e—i(z~1,)s ds,

P = —sign(z — z) /oo

—0

—00

Horizontal Wavenumber Integral Representation

Field equations for the horizontal point force are given by

* 00 * * .
ve(z, 2) =/ { Ke l2—3len 4 Je~lz—2s18n } e—:(z--z,)sds’
—00

with

*
ve(z, 2)

Cf #

Basis Function Expansion

r T
= | w u oz:/1 azz/u] )

—1is sign(z — z)
s?/a
swja

| —2s? sign(z — z;)

( is sign(z — zg) ]
-8
—2isf3

w sign(z — z;)

= <

\

The expansion coefficients are given by

Vim(z) = (2m — 1)i™!

) % it
/ { K e—ﬁ,}a jm—l (w)

e—lz—:,[[i C—i(:z:—x,)s ds.
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where
* [ % * * * T
Vm(z) = | Um Wen Tem Sem ] :
( s?/a
* —is sign(z — z
K = o gn( s) ’
—isd/a
| —252 sign(z — zs)

-B
is sign(z — z)
2isf3

w sign(z — z;)

Cd #
I

N
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Appendix F

Homogeneous Solution for Physical

Sources

Horizontal Wavenumber Integral Representation

The integral representations are given by

[ .
Vo(z,2) = / K E A e ilz=2s)s g, (F.1)
~00
where
} i T
Vo(z,2) = v ow O/ Gzz/u] )

~is  —is i —if |
- (4] 8 S
w w —-2s83 2s8

| 2isa¢ —2isa —iw —iw |

=h
Il

E = diag [e'z" , ezt o=2f e(z“t‘)ﬂ] ,

-~

T
A = [4; Af By B}
Note how the depth separated part is written such that waves generated at each horizontal

interfaces decays as they propagate away, rendering the scheme unconditionally stable.
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Basis Function Expansion

Similarly, the basis function expansions are
- o L . . .
Vem(z) = (2m — 1)i™1 / Ky Be Jom A e7i2)5 g, (F.2)
- 00
where K, E and J are the same as that of the homogeneous solution for the panel source.
- - - . - T
Ven(@) = [ Oum Win Tem Sem | -
—is  —1is i —ip
- —a a s s
Kl = ’
-9 -9 2s3 —2sf
2isa —2isa —iw —iw

. ki _t
E, = dlag[e 2% e72% e 2P e ],

T
A, = [4; A B Bf ],

diag [jm_1 (z—t;g) > mim=1 (%2) > Jm-1 (#) > GmIm=1 (%é)] '

Note here that the third parameter refers to the stress o,;/p instead of o,,/p.

jfm



Appendix G

Deriving s-domain Forms for Panel

Sources

This Appendix is largely adapted from Woojae’s thesis [25] and is included here for com-
pleteness. No modifications are needed in the elastic case since it turns out that there is only
one branch point in each potential and the same deformation technique can be applied to
each potential independently. Below, we describe the technique applied to the potential for

the symmetric source.

The panel sources which are originally written in terms of a vertical wavenumber integral,
m .
Ba,z) = [ Am) e VIR e inay (G.1)
-0

must be re-written into an integral in terms of a horizontal wavenumber so that we can
use the direct global matrix method for layered media (SAFARI) to obtain the corresponding

homogeneous solutions. To this end, we employ the mechanics of complex contour integration.

CASEI (z <1/2)

Consider a closed contour integration in the complex £ plane as indicated in Fig. (G-1)

. —iz z—1 2_p2 5
I= }4 A(ir/€2 — h?) e7i%€ e—HVER —\/é_,j_—_wdg (G.2)
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T Im(£)
Branch cuts f /cz h?
ranchn cuts ror -
A’/
-h Re(8)
-~ 1 - —
Ci ' +h
Cc3
C2
CR

Figure G-1: Contour deformation to derive horizontal wavenumber representation.

where the analytic function A is the same as that of Eq. (G.1) and A is the acoustic medium
wavenumber with a small negative imaginary part accounting for the volume attenuation

which can be either specified or taken from an empirical formula [16].
The branch cuts originating from the square root singularities +h and extending to infinity
are chosen such that \/¢? — h? becomes purely imaginary along the branch cut. Denoting

each contribution of the closed contour as depicted in Fig. G-1 and realizing that there are

no singularities inside the closed contour, Cauchy’s theorem gives us

I'=1Ic, + Ic, + Ic; +1Ic, + Ic, =0. (G.3)

Since C is running along the real axis of the complex ¢ plane,

%) . ;
Ic, = / A(iV/s2 — h2) g8 e pVE-E 15 g (G.4)
o0

2 _ h2
and this is the required horizontal wavenumber integral representation. Along C, and C3, the

arguments of \/¢2 — h? are —% and J respectively so that the following change of variables

are valid:

-

£2—h? = —in along C (G.5)
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&2 —h?2 = +ip along Cs. (G.6)

With the above change of variables,

Toy+Ioy = [ Alm) e VTR citeminay — [T Ay e de-bnay
— __/ A(Tl) e—a:\/m e—z(z—-z-)n dﬂ
—00

where the last equality comes directly from Eq. (G.1). Denoting the kernel of Eq. (G.2) as
f (&), on the circular arc C,, the value of (£ — h)f(£) — O uniformly as p — 0. Thus from the
theorem on limiting contours,

lo, =m | 7(e)de =0. (G8)
Using Jordan’s lemma, the contribution along the infinite circular arc Cg vanishes if the
kernel f(£) without the e~**¢ part, where z > 0 for our choice of coordinate system, tends

uniformly to zero

Ic, = lim f()dé =0 (G.9)
Cr
Using the principal asymptotic expansion for large arguments of the Bessel function [53] in
Eq. (3.20), we obtain

62 —_
" (gz—lz{z‘)‘ [e=-OVER | VB (G.10)

So as long as z < 0, the kernel tends uniformly to zero along the infinite circular arc and Ic,

becomes zero. Collecting Eq. (G.3) through Eq. (G.10), we arrive at the desired equivalent

horizontal wavenumber integral representation as

o) . ;
oz, 2) = / A(iV/52 — R2) e7io = VR 12 g (G.11)
-0

§2 — h2

which is valid for z < 0.
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CASE II (z > 1/2)

Following the same analogy as the previous case, the horizontal wavenumber integral valid
for z > [ becomes
o] . ;
o(z,2) = / A(—iVs? — h2) e e~z 3)VeT=h —;—s-—gids . (G.12)
—00 8¢ —
Collecting Eq. (G.11) and Eq. (G.12),
00 ) .
Pz, 2) =1 / A(—sign(z — 5)1’\/ 52 — h2) e~ lz=3IVsT—R -2—sh—2— e ds (G.13)
-0 S§° —
which is valid for z < 0 and z > . Although this equation is not valid inside the finite
layer where the displacement solution is located, it is still useful to find the accompanying
homogeneous solutions for layered medium using the direct global matrix method since the
boundary conditions are applied at the interface of the layers where the expression is still

valid.



Appendix H

Numerical Evaluation of Influence

Integrals

In Chapter 4, we presented the mathematical formulation of our spectral super element
method that is capable of handling arbitrary fluid-elastic stratifications. The implementa-
tion of the theory into a numerical code requires special attention. In particular extra care
must be given to the numerical quadrature of the infinite integrals required to obtain the
expansion coefficients. These integrations are particularly difficult since the integrands are
slowly convergent and highly oscillatory at infinity with an irregular oscillatory frequency
determined by the relative orders of two spherical Bessel functions. In addition, at large
wavenumbers, we require proper cancellation of the contributions arising from the symmetric
and antisymmetric sources in order to arrive at a finite value for the expansion coefficients.
Here we describe the various quadrature schemes adopted to deal with the integrals. Exten-
sive numerical experiments have showed that the adaptive integration approach is the most

robust and consistently provided good results.

H.1 Adaptive Integration

We use adaptive integration routines from the QUADPACK [54] library, particularly subrou-

tine QAGS. In addition, we have also included an improved version of the subroutine called
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QXGS [55]. QUADPACK is a collection of FORTRAN programs for the numerical evalua-
tion of integrals. The programs are explicitly written for one-dimensional integrals with real
integrands. We have implemented wrapper routines that does the same for complex-valued
integrands by integrating the real and imaginary parts separately. This is not necessarily
the most efficient but nevertheless produces very good results. We transform our infinite
integrals into finite ones with the domain of integration between zero and unity. After that,

we simply use the QUADPACK routines directly with no further manipulation.

H.2 Integrating in Between Zeros of the Integrand

We have also implemented a brute force method in which partial sums of the integrand are
obtained by integrating in between the zeros of the oscillating integrand. An acceleration

technique is then used to speed up the convergence of the partial sums.

H.3 Automatic Gauss-Chebyshev Quadrature

In addition to the above two methods, we also employ an automatic Gauss-Chebyshev quadra-
ture technique. The discussion presented here follows closely that of Li [56]. We use a modifi-
cation of the standard Gauss-Chebyshev quadrature developed by Perez-Jorda et. al. [57] and
Perez-Jorda and San-Fabian [58]. Their formulation is based on an n-point Gauss-Chebyshev
quadrature formula of the second kind. The n-point Gauss-Chebyshev quadrature formula

of the second kind can be expressed as [53]

' f(a) n
L, Ve P R (H.1)

where the abscissas are specified by zI* = cos(§) where

(2 — 1)m

H.2
— (H2)

B =
and the weights are

w} =7/n. (H.3)
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Perez-Jorda et. al. [57] made a change of variable,
m=1+%[z\/l—zQ{1+—§(1—22)}—cos'l(z)], (H.4)

in a general integral of f(z) on the interval [-1,1]. To extend the integration to the more

general interval [a, b] instead, where a and b are real numbers, the integral can be rewritten

I=/f dz,

_ 8(b-a) B f("”“z+b+"')(1—z2)\/1~z2dz. (H.5)

3r 2 2
Using Egs. (H.1)-(H.3), the integral above can be expressed as

as

L - b
e S s( et 2, o)
i=1
2 2 27
tl' Pl J— i —_ in2 p—
z; 1+ - [sm(a) cos(a) { 1+ 3 sin (@) } iy} }, (H.7)
where
i
— H.
¢ T n¥r (HE)
8(b—a) - 4
LL— )
w} 3T 1) sin®(a). (H.9)

Egs. (H.6)-(H.9) form the basic formulas for n-point Gauss-Chebyshev quadratures. When

more points are required, the (2n + 1)—point formula can be written as

2n+1
—a b+a
sy = z winH f( A : )

The summation can be divided into two separate sums for the even and odd terms,
2n+l ¢ 270 ont bta
Iy = Z wy;' ( Ty T+ 5 )
b—a b+a
+ Z wyisy f ( Toid1 + ) (H.11)

From Eqgs. (H.6) and (H.9), it is easy to show that

2n+1 n
Ta; = I,
2n+1 1 n
Wa; - 5 w; (H'lz)
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so that Iy, can be written in terms of I, as

I _ I ~  ont1 p( 0@ ony1, bta

mi1 =5 F > wirhl f 7 Tait1 + 5 ) (H.13)
i=0

The above recursive relation is very useful for automatic numerical integration since it permits

the approximation to be repeatedly refined until it passes a convergence test.

H.4 Contour Integration

Some attempts were made to apply complex integration techniques to reduce the infinite inte-
grals to a more manageable form. Only one approach seems promising and the mathematical
details are presented in Appendix I. The resultant integrals obtained from that analysis are

numerically integrated using QUADPACK as well as Gauss-Chebyshev quadratures.



Appendix I

Contour Integration for Panel

Source Solutions

It is not immediately obvious that the infinite range of integration in the panel source solutions
can be reduced to a finite one which is more amenable to numerical computations. Following
a similar procedure by Krenk and Schmidt [59], we show that this is indeed possible, via
complex plane integration techniques. This technique was also successfully used to study
acoustic scattering by a strip [60]. As an example, we tackle the normal stress integral

or (2n? - k2)2 _ - . t . t
Toue,z) = Gt [F[BT_8 coorggts oot | s (") ucs (1) an, ()

where

2ut . _
Qmi = 7= (2m = 1) G ™52 (12)

Here, we will only treat the case of z = 0. When z # 0, only an additional multiplying

exponential factor need to be taken into account. We first observed that the integral above

is symmetrical so that
Tk(z, 2) = Tim(z, 2), (L.3)

implying that we can restrict our analysis to m < k, without any loss in generality. We define

our kernel to be

fm) =771 (20" — %)% — 49?6, (L4)
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where
vVni2—h? np>h (L5)
v = ; :
ivh?—n? n<h
and

I (L6)
VK2 — n? n<n. .

Next we look at the limiting forms of f for n — oo and 1 — 0. It is straightforward to show

that
lim f(n) = 2n(h2—n2)+n—1(3h4—2n2h2+§n4) +0(™3) (L7)
n—00 2 2 b .
lim f(n) = —ik*h7L. (1.8)
n—0

The principle behind the contour integration is to write one of the spherical Bessel functions

in the integrand as the sum of spherical Bessel functions of the third kind
24n(s) = D (s) + hP (s), (L9)
resulting in
Qme [* 1) (ten 2) (ten\]. ten
Trmk(z,2) = —2-:—2 /0 f(n) [h‘Sn)—-l (—2—) +h2) (7)]Jk—1(7) dn. (1.10)

The argument is then extended to the complex half-plane R(z) = s > 0. For large values of

z the asymptotic behaviour of the spherical Bessel functions of the third kind is [53]

B(z) ~ i—(0HD) ;=1 iz, (I.11)
B2 (z) ~ i+l g1 iz, (1.12)

Together with Eq. (1.7), we conclude that the part of the integrand containing hS,l)(z) be-
haves asymptotically like |z|~! in the upper half-plane, while that containing hs,z)(z) behaves
asymptotically like |z|~! in the lower half-plane. The integration contours in the complex
s-plane is shown in Fig. I-1. The first term in Eq. (1.10) is now integrated along the closed
contour in Fig. I-1a, while the second is integrated along the contour in Fig. I-1b. As neither

of the integrands contains any poles within the contour, the original integral in Eq. (I.10) can
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(@ (b)| Im(s)
)
p P Re(s)
h x Re(s) h x
1
Im(s)
Figure I-1: Integration contours in the complex s-plane: (a) hsll)-contour; (b) IS -contour;

Reprinted from Krenk and Schmidt.

be replaced by integrals over the remainder of the contours, taken in the opposite direction.
In these integrals, the large quarter circles do not contribute. The contributions from the

imaginary axis cancel as a consequence of the symmetry relation
h,s,ll)(—z) gr(—2) = B2 (2) jr(2) m + k = even. (I.13)

Note that this symmetry is valid only when m + k is even, which ezcludes the use of this
technigue for the displacement equations. The contributions from the small quarter circles
depend on the asymptotic behaviour of the integrand as z — 0. From [53], we obtain the

asymptotic behaviour of the product of the special functions for small z as

W24 (2) dens(2) ~ i i | 47, (114
where
(2k-3)1  1-3...(2k-3)
2m-1!'  1-3...2m-1) (1.15)

As previously stated, we can impose the condition m < k without any loss of generality.
Doing that and neting from Eq. (1.8) that the kernel tends to a constant independent of 7 for

small 7, we conclude that the contribution to the integral for small 7 is going to be totally
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dominated by the product of the special functions. It is straightforward to see that the worst
case decay occurs for the case when m = k, when we then have

@k-3)1 1

@m-1 " 2 -1 (1.16)

Carrying out the resulting integration around the quarter circle at a small distance e from

the origin yields

_ ‘_.4—7I¢_13_/5_.4z’@_
I, = /ie ths TR » ihk 51 =0. (I.17)

The small quarter circles therefore do not actually contribute to the integral. Putting the

various components of the contour integral together, we arrive at

Tok(z,2) = gmk l-»o {/h —(21’,—2 __—,:27)2 h(2) (tezn) Jk—1 (t%n) dn
+ ["an = 2 () s () an ) (138)

In the limit as € — 0, each integral is continuous and

—i h (2n% — t ) tor
Tonk(z, 2) = ———Z’gmk { A @r <) n,—h _ﬂn) h ( ;ﬂ) Jk—l(%’) dn

+/ 4Py /k2 — 2 B2 (t”’)' l(t—;ﬂ) dn} (L.19)

The same technique can be employed to deal with the shear stress integral from the anti-

symmetric panel source, resulting in

- [ R ()05
+ / 2” — h‘” (%”) jk_l(ffz—") dn} (1.20)




Appendix J

Mapping Expansion Coefficients

The usual method of handling a continuously changing bathymetry is to perform a stair-case
discretization. The important interfaces with strong impedance contrasts are the horizontal
and vertical interfaces along the stair steps. Unlike most one-way formulations, in the spectral
element method the treatment of boundary conditions at both the horizontal and vertical
interfaces are accurately implemented. However, in the spectral element method we encounter
another kind of difficulty. When propagating the field from one sector to the next, the layer
structure at sector j may be different from that at sector j + 1. As shown in Fig. J-1, we see
that layer n in sector j has a height of I, whereas the corresponding layer in sector j + 1 has
a height of I7*!. This implies that the set of expansion coefficients at sector j cannot be used
directly at the next range step but instead new sets of coefficients need to be derived. In this
Appendix, we derive mapping matrices that allow us to 'march’ the expansion coefficients
from one range step to the next, even when the layering structure has changed. Even though
this is only an approximate solution due to the inherent truncation in the orders of expansion,

our numerical experiments have shown that it does improve the solution.

J.1 Case I - Splitting a Layer

To obtain the new coefficients, we simply assume that the field at the previous range step

are to be expanded again at the next range step except that it is now over the entire depth
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Sector ) Sector j+1
1 T
/ 1
] n j+1
Reference [C—a 1 {UO)} Iy
Interface /

]
]
]

o :

L ! {U0) 7777777777
1N ——r‘e{'"(b)} "
! G ¢ Y et
| v \

\ /.
Unknown coefficients
Known coefficients

Figure J-1: Splitting of single layer

of ! + lflill In this case, the known vector of coefficients is {U}%(0)} and we denote the
new unknown coefficients at sector j + 1 as {UZ(0)} and {U"'(0)}. We then obtain two
matrices C; and C, which map the old coefficients to the new. These matrices are of size
M x M where M is the order of expansion used in the basis representation of the wavefields.
Matrices C; and Cj can be straightforwardly obtained using the orthogonality properties of

the Legendre polynomials. The final expressions for the new coefficients are

M 2%k —1 [E
OO} = 3 (VRO g [ Bnet(3) Prea(@) 0
M 741 )i+l
2k—1 [" +ln+l ~ -
WO} = Y va)} /ﬂ N Pnr(3) Poa(B) dz,  (3.1)
m=1 n+1 n
where
z = 2z-4/2)/8,
a = 2z-B/2)/8",
b o= 2(z-EY - /2)/10

The integrals in Eq. (J.1) are easily obtained using symbolic manipulation packages such
as MAPLE [61] or Mathematica [62] and we note that the matrices so obtained are upper-

triangular.
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Sector j Sector j+1
; :
Reference ! !
interface 1 }'I : {U:(O) )/' [C[] \ : lj+l
]
. | "
1 ! n 0)}
- 7] ! {4 (
/1 1
1 oy / =
J
1
n+l [Cb] :
1
/ \ !
7/ A ezt
Known coefficients Unknown coefficients

Figure J-2: Combination of 2 layers
J.2 Case II - Combining 2 Layers

A similar analysis can be performed for the case when two layers contribute to the field at
the next sector. This situation is presented in Fig. J-2. Instead of having two unknown sets
of coeflicients, we now have only one which is to be determined as a linear combination of

the two known sets at sector j. The expansion coeflicients at sector j + 1 is now given by
{Un0)) = Z (UpO) T L[ Ps(@) B (2)
n+1 2m —1 B+, - _
+ Z WO} = /l] Pi—1(b) Py (2) dz, (3.2)

where the normalized depth arguments to the Legendre polynomials are now given by

z = 2z-§/2)/5r,
a = 20z-6/2)/1,
b o= 2z-8-8,/2)/8,,.

In addition, the mapping matrices so obtained are lower-triangular.



Appendix K

Elastic Media - Chebyshev

Polynomial Formulation

K.1 Field Expansions

We expand the field parameters in a complete sequence of Chebyshev polynomials, in which

we also explicitly include the square root singularity for the svresses,

u(:c,z) Ulm(l')
w(z, 2) o0 & Wom ()
T 1 m(Z), K.1
922(2,2) /1 te i1 | Tem(2) [1 - (2/0)?]2 Ym(2) (K.1)
0z2(z,2)/p Sem(z) [1 — (2/&)2]_%

where a = t4/2, Z = z — a and t; is the thickness of layer £. Note that the depth coordinate
z ranges from 0 to t,. The unknown source strengths Uy, (0) through Sg.,,(0) are to be

determined by matching boundary conditions along each vertical discontinuity.

K.2 Expansion Eigenfunctions

The eigenfunctions ,,(Z) are described by

() = { iV2 sin[m a.rcsi.n(f?_/a)] m=024,... «2)
V2 cos[marcsin(z/a)] m = 1,3,5,...

153



APPENDIX K. ELASTIC MEDIA - CHEBYSHEV POLYNOMIAL FORMULATION 154

or
Yom(Z) = V2 sin[marcsin(z/a)]
Yom+1(2) = V2 cos[marcsin(z/a)]

It is easy to show via a change of variable that these eigenfunctions are the usual Chebyshev

} m=0,1,2,3,... (K.3)

polynomials, i.e.

Tm[y/1 — (2/a)?] = cos[m arcsin(z/a)]. (K.4)

In addition the eigenfunctions have the following property,

FV2mra! I (ce) m=024,...
V2mro~! J,(ca) m=135,...

a

Ym(z) €57 dz = { (K.5)

—a

where Jy,(z) is the Bessel function of integer order m. The orthogonality property of vy, (z)

is given by

/_ (@® — 2%) % Y (@)yl(z) dz = . (K.6)

K.3 Displacement Potentials

We define displacement potentials
w .
lw,2) = [ Adn) e e ay,
—oo

o0 .
Yo(z,2) = / By(n) e~ e7"1=72) dp, (K.7)
—00

where A;(n) and By(n) are the source spectrums at the discontinuity and

v = \/n?—h?
5 = /52 —r2, (K.8)

where 7 is the vertical wavenumber and h and x are the compressional and shear medium
wavenumbers respectively. The horizontal wavenumbers are given by —iy and —id respec-

tively.
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The Symmetric Problem

The symmetric problem is characterized by two conditions at the discontinuity (z = 0),

ou 0O
02:(0,2)/p = 5;+6_:=0’
o® 0¥ 21r s
u(0,z) = e E Uem (0) ¥m(2). (K.9)

Substitution of Eq. (K.7) yields,

00 2 .
u0,2) = [~ " AP e a,

2T _
= 5 > Uem(0) ¥m(2)- (K.10)
m=1

We define the Fourier transform pair as,

1@ = [ gme = an,
o0 = 5 [ 1@ da (K.11)

Taking the foward transform of Eq. (K.10), we obtain,

ﬂ-—A‘” yem =L i Ugm(0) / " m(2)e™ dz (K.12)
2772—H 77 t L2 m 0 m ’ .

where we have truncated the limits of integration to the domain where the panel source

strengths are non-zero. By making a change of variable z = zZ = 2 — a, we obtain

t . ) a .
Com(3) £ dz = e [y (2) 5 d, (K.13)

-a

whence Eq. (K.5) may be used directly except for an extra multiplying factor of exp(+ina).

We then obtain for the symmetric part of the source spectrum Ay(7),
2 — k2 & mm
AP 0) = =5 3 Uem(0) V2 ()™ = I (ra). (K.14)
m=1

Similarly,

B = -2 3 Uen(0) V (~1)™ 55 Jn(ra). (K.15)
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The Antisymmetric Problem

The antisymmetric problem is again characterized by two conditions at the discontinuity,

A+2 ou MO
om0 = (FF) Gt g =0
oP Ov or X _
w(0,z) = 5‘*‘%— . mzﬂ Wern (0) ¥m(2),

where A and p are the Lamé constants. Proceeding as before, and noting that

& = (A+2u)/p,

& = u/p
Y- = -k
(}\+2,u) _ E?l_ K2
U T2 AY
2
Ao
m h
we obtain
2 mm
AP = 5 3 Wem(0) V2 (=1)™! T Jm(na)
m=1
Similarly,

Horizontal Wavenumber Representations for Potentials

The displacement potentials in the vertical wavenumber domain are

o [ on2 — k2 2i o i
®y(z,2) = /.oo [_——nﬂzn’)’ C(n) + pol (")(7])] e~V in(z—a) dn,
_ o 21 27’2 — K —z6 ,—in(z—a)
¥y(z,2) = /_oo [—F L(n) + T @(ﬂ)] e e dn,

where

Tm) = 3. Um(0) V2 (—l)mﬂﬁng(m),
m=1

o = 3 Wu(0) V2 (—1)'"+1”t‘—ij<na).
m=1

(K.16)

(K.17)

(K.18)

(K.19)

(K.20)

(K.21)



APPENDIX K. ELASTIC MEDIA - CHEBYSHEV POLYNOMIAL FORMULATION 157

The above integral representations for the potentials can be cast in the form of horizontal

wavenumber integrals via contour deformation. The s—domain representations are,

o0 s '
Py(z,2) = i / [A(—z'Sa)} elmale 2 gins g,

—o0

Uy(z,2) = i /_ °:o [B(—z'Sﬁ)] e_lz_"lﬂ%e_i” ds, (K.22)

where S = sign(z — a). In the horizontal wavenumber definitions, the vertical wavenumbers

are now given by

ia = Vh?-s2
iB = Vk2-s2 (K.23)
In addition, we note that (—iSa)? = —a?, (—iSB)? = —B3% and 26 + k? = 2(s? — k%) + k% =
252 — k2. The source spectrums in the s—domain are therefore given by
, 202 + K2 : 2i ,
A(—iSa) = ~~Sar? I'(—iSa) + — O(—iSa),
. 2i . 252 —
B(-iSB) = —— I‘( 1SB) — ~SSBrE O’——zS,B) (K.24)

where we have used is in places where § and 7 occurs. The potentials in the s—domain are

therefore given by

— * 202 + K2 ; 2 ; ~|z—ala $ _—izs
Py(z,2) = /_oo [—z SanZ I'(—iSa) — — 6(—1,801)] e 5 ds,
v = [ [ T-ise) - L —isp) | e7leol 2 i ds, (K.25)
’ —o0 | &2 sSPK? B T

where

[(—iSv) = Z Uen(0) (—1)™+! m“J m(—iSav),

m; , mT
O(-iSv) = zz 1™+ % m(—1iSav). (K.26)

It is important to point out here that in the limit of vanishing layer thickness, the lowest
order term recovers the potentials for the point source case. This can be seen by noting that
iSv
li ~1 J)(~iSav) = ———.

t[l_% te” " Ji(—iSav) 2

This explains the normalization factor of ¢,~! in the series expansion. The factor of 27 is

(K.27)

there for convenience.
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K.4 Panel Source Solution

Horizontal Wavenumber Representation

We can now obtain horizontal wavenumber integral expressions for the field parameters simply
by definitions and via Hooke’s law. For example, the horizontal displacement u{z, z) is given
by

u(z,z) = g—f - %—f = —is® + SPP, (K.28)

where we have used the fact that 0¥ /9z = —SB¥ and 0®/9z = —Sa®, and S = sign(z—a).
This result is most easily seen by splitting the absolute operator in the z—dependence into two
regions, i.e. z < tp/2 and z > t;/2 and performing the differentiations separately. Collecting

together the I' and © terms in Eq. (K.28), we have

2 2
U = * i —sS M e~2—ale + 258 e~ lz—alB| T g—izs ds,
—o0 K2 032
w8 = 00 l 2 942 g—lz—ala _ 1(232 _ I‘.',2) e~ lz-elB| @ ¢—izs 4. (K.29
-0 K2 | B

The components u(Y) and u(5) represent the displacements due to the symmetric and asym-
metric sources respectively. Note that u(¥) and u() are out of phase. The complete system

of equations in matrix notation is given by

u(z, z)

w(z, 2) o X foo A o
oz, 2)u [ Tt mX_:l /_oo Un(O) K, + W0 K, JEJ_e®ds, (K.30)
02:(Z, 2) /11

where

E = diag [e"’"“'“,e""“w],

;o [ m (=1)™*! J,(—iSaa) J
" m (—1)™+1 I, (=iSaf) |’
—58(202 + K?) a2 28s
2. = 1 i(2a? + K?) a1 —2is2371
YR iS22 — k2)(202 + K2) a2 4iSs? ’

25(2a% + K?) o7 —25(2s% — k2) g1
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2is2a~! —i(2s? — k2) g1
. 1 28s ~8s (25% — k2) B2
K | —25(2s* — k%) « 25(2s% — k2) g1
—4iSs? iS (252 — K?)% g2
with
a = t/2,

ia = Vh?-s?
8 = \/;“2 - '527
2 = 262 4+ K2 (K.32)

282 — K

Chebyshev Expansions Representations

In the Chebyshev expansion form shown in Eq. (K.1), we see that the complete field is deter-
mined once the respective expansion coefficients Uy, (z) through Sg,(z) are determined.
These expansion coefficients are functions of the unknown source strengths U, (0) and
W¢m(0). In order to solve for these unknown source strengths for each layer £, we first
obtain a system of equations from satisfying boundary conditions at the vertical cut. We do
this using the expansion forms for the field variables. In this section, we derive the vertical

wavenumber representations for the necessary field parameters. Let us censider the coefficient

Ulj (z)v

up(z,2) = 3—: z Ugj(z) ¥;(2). (K.33)
j=1

We can use the orthogonality properties of the Chebyshev polynomials to reduce the right-
hand side of Eq. (K.33) as such,

@ [0 G/ o) vr(2) d:

“lﬂ

Z
Z i(z) [1—(x/a V217 % i (z) %i(z) dz

= a7r2 Un(z), (K.34)
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where we have made a change of variable of z = Z = z — a. The left-hand side of the integral

becomes (upon changing the order of integration),
te — 27—1 —
Ins = [ wl@2) 1= (2/a) 7 Ym(2) dz,
te
= [" v+ in®] (- (/a7 vn(2) d,

00 . t z .
= / dn [-yA(n)e™>" + inB(n)e~%%] ¢ C_¥m®) e " dz. (K.35)
—00

01— (2/a)?

Performing the depth integration using the identity
/ [1-(2/a) 2] m(Z) € dz = ae”™ Z,,(na), (K.36)

where Z,, is derived in Appendix K.9, we arrive at

(o9}

Uen(z) = [ 17 Aln)e™ +inBln)e™) 2 Zm(na) dn. (K.37)

—00
Using the source spectrum expressions derived previously, we obtain after some algebra,

0 . 00 2 _ .2
Upnte) = X2 3 9+t [ {[F2Lor 4 2emst] 0

2
ﬂt! j=1 KN

2' y 2 2 —_ 2
+ [_%Ze—x’v + %—K—le“ﬁ] ng(())} Zm(na) Jj(na) dn. (K.38)

Expansion coefficients for the other field parameters can be derived similarly and they are

given by
U(z, 2)
W(z, z) V2 &
T T, D 0)K, + Wi (0)K, ]JE Zn(na)J;(na) dn(K.39
T(z,z)/p | Tt g J / m(0)K,] (na)Jj(na) dn(K.39)
S(z,2)/u
where
E = [e—x'r e—:c& ]T’
—pn! 2n
: —ipyt  2i8
Ku==-% ©y |
K5 Py it —4d

2 —2ip
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-2y dp Tl
. 1 2 —pn! ,
K, = = ! o , (K.40)
K 2ip —2ip
—dyn ¢? 67 7!
and
a = tgf2,
S = sign(z —a),
¢ = 2’ -,
Y = V 772 - h21
§ = n? -k (K.41)

Note that the third expansion coefficient corresponds to the stress component oy /p rather
than o,,/u since the Chebyshev expansion forms are used for satisfying boundary conditions

along the vertical cut.

K.5 Homogeneous Solution

The horizontal wavenumber integral representation for the homogeneous solution to the panel
sources can be obtained by a direct extension of the equations presented in Schmidt and
Jensen [48]. The only change needed is that the solutions need to be summed over all finite
layers as well as over all orders of expansion. The basis expansion form of the homogeneous
solution can be obtained through a direct application of the orthogonality properties of the

Chebyshev polynomials. One need only perform 2 integrals to arrive at the desired solutions,

namely
te e .
/ Ym(2)e **dz = / Ym(2)e™ " dz
0 0
, a .
= e Ym(z)e™ dr
—-a

= e % V2mna~! Jp(—iea), (K.42)

where we made a change of variable a = i7). In addition, it is straightforward to show that

t
/0 “bm(2)eE 0% 4y = 6= Immal (~1)™ ! I, (~iac). (K.43)
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By using the analytic continuation property of the Bessel function, Eq. (9.1.35) in [53], we

can reduce the Bessel function computations to only positive arguments,

Jo(=2) = (=1)* Ju(2) (K.44)

Horizontal Wavenumber Representations

The field equations can be written as a superposition of homogeneous solutions for the two
type of panel sources located in each finite layer (n = 2,...,N — 1) over each order (k =

1,2,...) of expansion.

N-1 oo o _ _ . _ R _ )
Yz, 2) = 3 / K E [Ux(0)A + Wu(0)C] e ds, (K.45)
n=2 k=1 =00

where the matrices are given by
_ T
Ve(z,2) = [ U W O, /p o /u ] )

—is  —is i —if
-« @ s S
w w —2s8 2s8

2isa —2isa —iw —iw

=
I

E = dlag [e_za , e(z_tl)a , e_zﬂ, e(z_tt)ﬁ] ,
- B . _ LT
A = [ Apnk Aink Bink Bink ] ’
—~ + - + 1F
C = [ Conk Cink Dink Dink ] ’

and @w = 252 — k2. The unknown vectors A and C are the down and up-going (superscript
F) compressional (A and C) and shear (B and D) waves due to the horizontal and vertical

panel sources. Each combination of indices n and k represents a single SAFARI run.



APPENDIX K. ELASTIC MEDIA - CHEBYSHEV POLYNOMIAL FORMULATION 163

Chebyshev Basis Representations

Using the orthogonality relation of Chebyshev polynomials, expansion functions can be ex-

tracted as
_ N-1 oo o _ . _ . _ R _ ]
V(@) =iv2m(-1)"r 3" % / K E T [Uuh(0)A + Wni(0)C] e ds,  (K.46)
n=2 k=1 -0

where the matrices are given by

. _ T
Vim(z) = | Um Wem Tem Sem ] )

—is  —is i  —ip

- a S S

K =
- -4 2sB3 —2sp
| 2isa —2isa —iw —iw
E = diag [e"%"‘ , e~ , e‘iztﬂ, e—%ﬁ] ,
_ _ N _ + 17
A = [ Agnk Afnk Bink Bink ] )
— _ N B .7
C = [ Conk Conk Dink Dink ] ’
J = diag [a_l Jm(iaa), Cmatl']m(":aa), ﬁ_lJm(iaﬂ) ) Cmﬂ_lJm(iaﬂ)] )
and
a = tg/2,
Cm — (_1)m+1
w = 2s°-— nz,

9 = 2a°+ K.
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K.6 Symmetries of the Influence Function Integrals

Panel Source Contribution

This section examines some of the symmetry properties of these integrals which will be useful
not only for reducing the amount of numerical computations required but would also help
improve accuracy by removing the need to perform quadratures that would produce vanishing

results. Specifically we look for two main kinds of symmetry that may be exploited,

e Simplification of the integrand for the case z = 0, i.e. right at the discontinuity, and

o the even-odd properties of the integrand.
Before we proceed, we note that for the displacements at z = 0, we encounter the following
integral,
*
1= [ 07 Zu(na) 3j(10) dn. (K47)
—00

The above integral is derived in Appendix K.10 and in the discussion below, we denote the

one-sided form of Eq. (K.47) as
. *© -1
Im,g) = [~ 17 Zn(na) J;(na) dn. (K.48)
As an example, we will consider the derivation for the case of the horizontal displacement, u,

© [ 2% — K2 2 ,
Uy (2,2) = C; / [ _’;2_””6—” + E—Ze-ﬂ‘ } U (0)Zm(na) Jj(na) dn  (K.49)
-0

where C; denotes v2(—1)7*! j/nt,. When z = 0 the above reduces to
) o0 -1
Unj(0,z) = Cj Um(0) n™" Zm(na) Jj(na) dn
—00

_ { 2Cj Um(0) I¢(m,j) m,j = odd or even (K.50)

0 otherwise,

For the case when z # 0, the kernel is given by

2__ 2
fn) = | - me ™ 4 et | Zn(na) 30n0), (K 51)
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which exhibits symmetry of the form

f(m) m+j=even
—f("’) m+.7 = Odda

fl=n) = (=1)™" f(n) = { (K.52)

thereby reducing the integral to
0 m+j = odd
Uny(2,2) = ! (K.53)
2C; [;° f(MUm(0)dn m+j = even,

For the antisymmetric contribution,

o0 _ Z _
U:; (z,2) =Cj / [ — g€ =+ K—25(2n2 — K%)e~%8 ] Wi (0)Z5n(na) Jj(na) dn, (K.54)
—00
and no simplification is possible for = 0. When z # 0, the kernel equals

$0) = [ B+ St = e | Zntna) Jj(na), (K.55)

which exhibits symmetry of the form

; f(m) m+j=odd
fl=m) = (=1)™H* f(n) = , (K.56)
—f(n) m+j = even,
thereby reducing the integral to
o0
Upmi (2, 2) = 2C; / fMWn(0)dn  m+j=odd (K.57)
0

Similar manipulations will bring out the symmetry properties in the other field variables.

Homogeneous Contributions

We make use of the fact that for the symmetric source,

Bfi(=5) = —Biu(s), (K.58)
and for the anti-symmetric source,

sznk(_s) = —Cl#,:nk('s)’

‘Dz:nk(_s) = Dz:nk(s% (K59)

where Ae:F,nk and C’an are the amplitudes of the up/down going compressional waves and

B{,; and Df , are the amplitudes of the up/down going shear waves.
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Symmetric Source

For clarity, we treat the expression given by each combination of indices n and k individually

as (and dropping the constant factor of i\/im(— 1)™x),
w .
Ulm,nk(l‘) = / [-—is A+ Qo + 18 B_ Q,B ] e~ izs ds,
—00

w .
th,nk(ﬂl) = / [—a A_ Qa + s B+ Qﬂ ] e T8 ds,

—00

(2] .
Tonnie@) = [ (=944 Qa + 296 B Qp] e ds,
o

Semak(z) = /: [2isa A- Qo — iw By Qp] e % ds, (K.60)
where
¢ = (=™,
w = 25°—kK2,
9 = 2a%+ kK2,
Ar = Apy +CnAf s
Ao = A~ Al
By = B+ mBiu
B_ = By —(mBia
Qe = e a7l Jp(iaa),
Qs = €% 7 In(iaf). (K.61)

Since the amplitudes of the up and down-going compressional waves are symmetric with

respect to s, therefore at £ = 0, the above set of equations reduces to,

Uim,nk (0) =0
S
Wemnk(0) = 2 /(; { —aA_Qn + s By Qs } ds,

Tonnu®) = 2 [ { <04, Qu + 285 Q5 } a5
Slm,nk(o) =0 (K.62)
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When 2 # 0, we have the exponential term e~***, which can be written as e~** = coszs —

isinzs. Again, using symmetry arguments for the integrands, we arrive at

o0

Upnk(z) = 2 / —isin(zs) [ —is A+ Qo + 16 B_ Qg ds,
0
o0

Wenk(z) = 2 / cos(zs) [ —a A- Qo + s B4 Qg ds,
0
o0

Tp(z) = 2 / cos(zs) [ -9 Ay Qa + 258 B_ Q5] ds,
0

Senk(z) = 2 /Ooo —isin(zs) [ 2isa A- Q. — iw By Qp]ds, (K.63)

Anti-symmetric Source
Following a similar argument, we obtain for the contributions at the cut z =0,

Usn(®) = 2 [ [=is Ax Qa + i B- Qs ) ds,

Wl,nk(o) =0

Tl,nk(o) = 0

Senk(0) = 2 / [2isa A~ Qu — iw By Qg ) ds. (K.64)
0

When z # 0, we have
oo
Ueni(®) = 2 [ cos(zs) [ ~is A Qa + i8 B- Q] ds,
0
oo
Wenk(z) = 2 / —isin(zs) [ —a@ A- Qo + s B+ Qplds,
0
Tenk(z) = 2 / —isin(zs) [ -9 A+ Qo + 258 B_ Qp] ds,
0

Seni(z) = 2 /0 > cos(zs) [ 2isa A_ Qo — iw By Q] ds, (K.65)
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K.7 Physical Source Solution

Horizontal Wavenumber Integral Representation

Field equations for acoustic point source are given by
* o x .
vy(z, z) =/ Ke |#2slang—ilz=zs)s g (K.66)
—00

with
I*{ = )

where 2; and z; is the source depth and range respectively.

Basis Function Expansion

Again, extracting expansion coefficient function gives us

* o0 4 .
Vm(z) = \/§m(—1)m7r/ Ke_%aa_l.]m(iaa) e~iz=2s)s g, (K.67)
—00
where
—is/a
* -1
K=
-9/

2is
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K.8 Homogeneous Solution for Physical Sources

Horizontal Wavenumber Integral Representation

The integral representations are given by
w —~ d - .
Fo(z,2) = / K B A eie=2)s g, (K.68)

where

— «a S S

K = ’
w w  —2s8 2sP
2isa —2isa —iw —iw

E = diag [e—za’ e(Z—t()a, e—Zﬁ, e(z—Q)ﬂ] ’

-~

v
A = [ A, A, By B ]
Note how the depth separated part is written such that waves generated at each horizontal

interfaces decays as they propagate away, rendering the scheme unconditionally stable.

Basis Function Expansion

Similarly, the basis function expansions are

~ o L L L .
Vm(z) = VZm(-1)"x / KEJ A e iz=3)s gg, (K.69)

—00

where K, E and J are the same as that of the homogeneous solution for the panel source.

[ s —is i —iB ]
- —a « s s
K = ,
- -9 288 —2s8
| 2isa —2isa —iw —iw |
~ . Uty e U lug
E = diag|le ™ 2%,e7 2%, e 27,727,
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- T
A [4; 4F B Bf ],

it
Il

diag [a_l Jm(iaa) P Cma—lJm(‘;aa) ) ﬂ_lJm(iaﬁ) ; Cm,@_l*]m(iaﬂ)] s

and G = (=1)™+1.
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K.9 Derivation of Z,,(na)

We have

a .
Zntna) = [ L2l i g,

where the eigenfunctions are defined as

() iv2 sinfmarcsin(z/a)] m = 0,24,...
m\Z) =
V2 cos[marcsin(z/a)] m = 1,3,5,...

Case of m = odd

In this case,
a i .
Z(na) = V3 cos[m arzcsm(;z:/a)] e—iT g
—a a“ —
We first make the change of variables,
y = z/a,
B = na,

which transforms the integral to

+1 i :
Z,(na) = V3 / cos[m arcsin(y)] e~V gy
-1

Vv1—1y?

Next, letting sin~!(y) = z, or cos(z) = /1 — 42, we arrive at

cos[marcsin(y)] _ cosmz

- K

V1-—1y? cosT

and using Eq. (1.391.4) from [53] for the case of m = odd, we have

m~—1

cos Mz 13[ {1 1—cos?z }
T T (k-7 (-
cosz o sin i_z.ﬁ)_

I

We now have

m—1

+1 2 1—cos’z X
Z = V2 1— ——— Ve ifyg
m(na) = V2 /—1 H { sin? 5—2152;1 . } ’ v

k=1

(K.70)

(K.71)

(K.72)

(K.73)

(K.74)

(K.75)

(K.76)

(K.77)
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and since cos? £ = 1 - 32, it is easy to see that in expanding the products of sums above, we

require the solution to integrals of the form

Q= [ a-pr ey (<78)
-1

Using Eq. (3.387.2) from [53] with

p = —p=-na, (K.79)
we obtain

+1 .
Q= [ a-rea,
— \/7?211+1/2 T(n+1) u—(n+1/2) Jn+-§-(“)7

n! 27+l T

= e =) Jn_}_%(-—na). (K.80)
Using the following,
. 7
IJn = EZ- Jn-}-% (Z)’
jn(=2) = (=1)" jn(2), (K.81)
we obtain
Qn(B) = n! 21 7" ju(B), (K.82)

where 8 = na. Using both Eq. (K.77) and Eq. (K.82), we can now build up closed form

expressions for any m,7n and a.

Case of m = even

In this case,

@ sin[marcsin(z/a)]

Zn(na) =ivV2 e dr. (K.83)

22 — 22

Making the same change of variable as before, we obtain

2, (na) = z\/_z_ [-I;l Sln[%(?})] e~ By dy. (K.84)
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Letting sin~*(y) = z, or cos(z) = /1 — 32, we arrive at

sin[m arcsin(y)] sinmz
= K.
V1—12 cosz ’ (K.85)

and using Eq. (1.391.1) from [53] for the case of m = even, we have

m-—-2

: 2 _ 2
T — msinz [ {1—1—7%2;[—”“}. (K.86)
coszT P} sin® 77
Collecting terms, we have
1 m%-_z 2
+ 1— )
Zn(na) =ivV2m / sinz H {1 — ————%(%T—I-} e"PY dy, (K.87)

and since cos?z = 1 — y? and sinz = y, we see that in this case we are concerned with
integrals of the form
+1 )
Fa(®) = [y (1 =9D" e ay. (K.88)
To obtain closed form expressions for the above, we employ a generalization of the Poisson’s

integral as presented in Eq. (8) on Pg. 369 of [63],

22 T(v+ 1) T3) L2v +m) m Jvm(2)

" izCOS P W 2 —
/0 €256 O (cos ) sin” ¢ deb e . (K.89)

zl/
which is valid for R(v) > —1/2. We start with the change of variable ¢t = cos¢. For the

Gegenbauer polynomial, we let m = 1 and note that

Cp = 2At. (K.90)

Now,

Ry(z) = /0 i €25 C¥(cos ¢) sin® ¢ do,
+1 1
= / e*t CY(t) [1 -tV 2 dt. (K.91)
-1

Finally, we let n = v — 1/2, z = —f3, resulting in

+1 .
Ry(=p) = @n+1) [ y(1-y)" e dy = (2n+1) Ra(B). (K.92)
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Re-arranging,

Rolf) = 5o Ral=H).
i 2T+ 1) T(L) T@n +2) Jnr1ei(-=H)
T o+l F(2n+21) —E (K.93)

We further note that I'(3) = /7 and the conditicn R(v) = R(n + 1/2) > —1/2 is satisfied.

Placing in terms of spherical harmonics, we arrive at
Rn(B) = —in! 2" 7" jn11(8), (K.94)

where [ = na.

The first 8 terms for Z,,(7, a)

In this section we present the first 8 terms for the series, Z,, obtained using the expressions

derived in Appendix K.9. Here, we let the arguments to Z,, be simply 8 where 8 = na.

Zy = 0,

2 = 2V25(B),

2, = 2v2;(B),

Z; = 4v3 116
,B b

z = vi[222 s

Z5s = \/5-256%#—80%@ +10j0(ﬂ)],

Zs = V2 '512%-5—) —1281'2% +12j1(,6)],

Z = V2 -6144%)- — 1792 j"’ﬂ(f) +224 jléﬂ) —14j0(ﬁ)],

Z = V2 [12288 j4ﬂ(f) ~ 3072 J?’K# +320j2(% - 16 jl(ﬁ)]. (K.95)
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K.10 Derivation of I.(m, j)

In obtaining the field equations in the vertical wavenumber domain, we encounter for z = 0,

an integral of the form,

I(m, j) = / 2 35(ne) Zm(na) dn, (K.96)

where the superscript indicates the 2-sided form of I.(m,j). We note that for m = odd, a

typical term in I.(m, j) is of the form
Zn = cm (na)™* jr(na), (K.97)

and for m = even, a typical term would look like

Zm = cm jk(na) (na)**! k>0 (K.98)
where ¢, is a real constant. We therefore need to evaluate 2 different forms, namely
© 1 Jk(na)
Y = / - J i\na d )
odd - j(na) nay "
© 1 Jk(na)
Y. = = J; dn. K.99
e = [ - 35(na) ZSE dn (K.99)
A simple change of variable, z = na, transforms the above to
o0
Yo = [ o757 3(0) jula) do,
—oo
[o0]
Yo = [ 57 3,(0) jn(a) do. (K.100)
—oQ

Since the spherical harmonics are Bessel functions of fractional orders, we can rewrite the

above (after employing symmetry for negative 7) as

j = even
Youd = { 2,/5 [ o1 3j(2) Jyp1(2) do j =odd (K.101)
and
ven = { 7 modd (K.102)
2,/3 f5° 27573 Jj(2) Iy (2) do j =even
We next use Eq. (6.574.2) in [53] with appropriate substitutions to obtain,
I'(k+2) .
L(m, ) = 21:_\/:_71 j I‘(k-—;-‘?;i)2l')‘(k+1+3) :,J : odd (€.103
,j = even

T(k~%+1) T(k+4+1)
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