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Robust State Estimation with Sparse Outliers

Matthew C. Graham1 and Jonathan P. How2

Aerospace Controls Laboratory, MIT, Cambridge, MA, 02139

Donald E. Gustafson3

Draper Laboratory, Cambridge, MA, 02139

One of the major challenges for state estimation algorithms, such as the Kalman

�lter, is the impact of outliers that do not match the assumed Gaussian process and

measurement noise. When these errors occur they can induce large state estimate

errors and even �lter divergence. This paper presents a robust recursive �ltering

algorithm, the l1-norm �lter, that can provide reliable state estimates in the presence

of both measurement and state propagation outliers. The algorithm consists of a

convex optimization to detect the outliers followed by a state update step based on

the results of the error detection. Monte Carlo simulation results are presented to

demonstrate the robustness of the l1-norm �lter estimates to both state prediction

and measurement outliers. Finally, vision-aided navigation experimental results are

presented that demonstrate that the proposed algorithm can provide improved state

estimation performance over existing robust �ltering approaches.

I. Introduction

In state estimation problems, it is often assumed that the process and measurement noise

in the system are Gaussian distributed [1, 2]. However, for many practical problems the Gaussian

assumption is violated by di�cult to model errors (i.e. multipath [3], state prediction errors in target

tracking [2]) that can be interpreted as outliers relative to the nominal Gaussian noise distribution.
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Moreover, algorithms such as the Kalman �lter and extended Kalman �lter are not robust to outliers

and the accuracy of their state estimates signi�cantly degrades when the Gaussian noise assumption

does not hold [4].

A number of robust state estimation algorithms have been developed to mitigate the impact

of outliers. Typically these algorithms focus on determining when measurements are corrupted

with outliers and either ignoring them entirely [5] or reducing their e�ect on the updated state

estimates [4, 6�9]. Unfortunately, by focusing solely on measurement errors, these algorithms can not

guarantee good performance when there are also large errors in the state predictions. In those cases,

the algorithms incorrectly detect outliers in the measurements and end up ignoring information that

could help correct the erroneous state estimates [10].

The main contribution of this paper is a robust recursive �ltering algorithm, the l1-norm �lter,

that can provide accurate state estimates in the presence of both state prediction and measurement

outliers. The l1-norm �lter detects the presence of outliers using the solution of a convex program.

Given that information, the �lter updates the state estimates by jointly estimating the detected

errors and the states using the information �lter [11]. The algorithm is computationally e�cient as

it combines a convex optimization with standard recursive �ltering steps.

To demonstrate the e�ectiveness of the l1-norm �lter, it is evaluated and compared against

other robust �ltering approaches using both Monte Carlo simulations and experimental data. The

experimental dataset presents an urban vision-aided navigation scenario with GPS and stereo vi-

sual odometry measurements. In the context of vision-aided navigation, the state prediction errors

correspond to the accumulated drift and bias errors from the visual odometry while the measure-

ment outliers correspond to GPS errors such as multipath. These simulations and experiments

demonstrate that the l1-norm �lter can match the performance of state-of-the-art robust �ltering

algorithms, when measurement outliers are present. More signi�cantly, the l1-norm �lter can pro-

duce accurate state estimates in the presence of both state prediction and measurement outliers,

which none of the other robust �ltering algorithms can guarantee.

The paper is organized as follows. Section II discusses related work in robust �ltering. The

l1-norm �lter is presented in Section III. Performance evaluations of the l1-norm �lter using Monte
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Carlo simulations are shown in Section IV, �nally experimental results are given in Section V, and

conclusions and future work are presented in Section VI.

II. Related Work

This section discusses related work in robust state estimation and provides a brief summary of

previous work on the l1-norm �lter.

A. Robust State Estimation

A number of robust �ltering algorithms have been developed using concepts from robust statis-

tics [4, 6]. A major drawback of these algorithms is that they can only handle situations with

measurement outliers or state propagation outliers, but not both. The H∞ �lter is an alternative

robust �ltering algorithm that minimizes the worst case estimation error given arbitrary noise [12�

14]. Although the H∞ �lter does guarantee bounded state estimation error, under nominal noise

conditions (i.e. white, zero-mean and Gaussian), the H∞ �lter estimates can in fact be worse (in

a least-squares sense) than those generated by the Kalman �lter (KF) [14]. The �lter presented in

this paper avoids the downsides of both the robust statistics-based and H∞ �lters because it can

provide robust state estimates in the presence of simultaneous state propagation and measurement

outliers. Furthermore, it is shown in this paper that under nominal (i.e. Gaussian) noise conditions

the l1-norm �lter solution is equivalent to the KF solution.

More recently, a number of robust �ltering algorithms have been developed that adapt the

system noise parameters over time using variational Bayesian (VB) inference [7�9, 15]. VB �lters

achieve robust estimates by introducing uncertainty into the system noise model (i.e. assuming that

the mean and covariance of the noise are random variables) and then jointly solving for the states and

noise parameters at each time step. This procedure provides robustness to unmodeled measurement

errors because the update procedure can adjust the measurement noise covariance online and as a

result can increase the covariance of corrupted measurements. This in turn reduces the impact of

the measurement errors on the state estimates because the gain for the measurements is decreased

as their noise covariance increases. While the state and parameter updates are iterative for these

methods, they closely resemble the KF updates and usually exhibit fast convergence [7, 15]. The
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major drawback of these methods is that they do not try to adapt the process noise parameters,

and as a result may be susceptible to unmodeled errors in the state propagation. This behavior is

demonstrated both in simulation and experimentally in Sections IV and V of this paper.

The l1-norm �lter is similar to convex optimization based robust �ltering algorithms proposed by

Mattingley and Boyd [16] and Kim et al. [17]. However, a major di�erence between the algorithms is

the set of models that are used. The models used in the other convex optimization based �lters only

consider measurement outliers. As with the other robust �ltering algorithms discussed, by ignoring

the possibility of large state prediction errors, the �lters proposed by Mattingley and Boyd, and

Kim et al. can not guarantee robust state estimates when they occur. In contrast, the l1-norm �lter

considers a more general set of error models in the system dynamics, i.e. both state prediction and

measurement outliers, that reduce to those used by Mattingley and Boyd, and Kim et al. if the

state prediction errors are zero.

All of the convex optimization based algorithms solve an l1-norm minimization problem to

calculate state estimates that are robust to unmodeled errors. The l1-norm �lter di�ers from the

other convex optimization approaches to robust �ltering because it does not use the output of the

l1-norm minimization directly in the state update equations, which can lead to several issues with

the �nal state estimates. First, the error estimates generated by the l1-norm minimization are

biased [18], which can in turn cause the state estimates to be biased. Additionally, there is no

clear way to calculate the covariance of the error estimates using the l1-norm minimization. This

means that there is no way to account for the correlations between the error estimates and the state

estimates, which can impact the accuracy of the state covariance calculations. The robust �lter

developed by Mattingley and Boyd assumes that the �lter covariance has reached steady-state so

that the covariance of the error estimates is unnecessary. None of the other convex optimization

�lters address the issue of bias induced by the l1-optimal solution. In contrast, the l1-norm �lter

presented here provides an unbiased estimate and a proper accounting of the state covariance by

jointly estimating the state and the non-zero error terms detected by the l1-norm minimization

using the information �lter.

There have also been several recent Kalman �ltering techniques proposed in the compressed
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sensing literature (CS-KF approaches) that contain an l1-norm minimization as a subroutine [19�21].

The CS-KF algorithms are used to estimate sparse state vectors and apply an l1-norm minimization

to promote sparsity in the state estimates. In contrast, the l1-norm �lter estimates a dense state

vector and applies the l1-minimization as a means of detecting sparse outliers that have corrupted

the measurements and state predictions. Thus, while both approaches apply similar algorithmic

techniques the problems they are solving are quite di�erent.

B. Previous Work on the l1-norm �lter

This paper builds on and extends previous work on the l1-norm �lter that was presented by

Mohiuddin et al. [22]. This paper presents a formal derivation of the l1-norm �lter update equations

that was not discussed in the prior publications. This analysis provides additional insight into the

l1-norm �lter update equations and how they relate to standard state estimation algorithms like

the Kalman �lter. Finally, this paper also analyzes the impact of incorrect outlier detection on the

�lter estimates which had not been considered or investigated in previous work.

III. Robust State Estimation Using the l1-norm Filter

This section develops the l1-norm �lter algorithm which consists of two parts:

1. Identi�cation of outliers in the state propagation and measurements by solving a convex op-

timization problem

2. Updating the state estimates given the results of the error identi�cation step

A. System Models and Problem Statement

It will be assumed that the state dynamics and measurements are linear and corrupted by

both additive white Gaussian noise as well as additive sparse errors. Sparse in this context means

that at least some components of the errors are equal to zero. Given these assumptions, the state

propagation and measurement models are assumed to take the form:

xk+1 = Fkxk + wk + ep
k (1)

yk+1 = Hk+1xk+1 + vk+1 + em
k+1 (2)
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where Fk is the state transition matrix, Hk+1 is the measurement matrix, wk and vk+1 are the

Gaussian process and measurement noise, respectively, and ep
k and em

k+1 represent the sparse errors.

Note that without the errors, ep
k and em

k+1, these equations are in the standard form of the KF state

propagation and measurement equations. The rest of the assumptions for the state prediction and

measurement models are as follows:

1. wk and vk+1 are white and zero-mean with covariances Qk and Rk+1 respectively

2. wk and vk+1 are mutually uncorrelated (i.e. E[vk+1w
T
k ] = 0, ∀ k)

3. The number of combined non-zero components of ep
k and em

k+1 is less than or equal to the

number of measurements

The �rst two assumptions are standard for the KF. The �nal assumption about the sparse errors is

required to ensure a valid state estimate using the l1-norm �lter. The third assumption is discussed

in more detail during the state-update portion of this section.

The objective of the state estimation problem is to calculate a state estimate, x̂k+1|k+1, that

minimizes the mean squared state estimation error, E[(xk+1|k+1− x̂k+1|k+1)T (xk+1|k+1− x̂k+1|k+1)]

given an estimate of the state at time k, x̂k|k, and a set of measurements up to time k+1. It will be

assumed that the estimation error at time k, x̃k|k = xk−x̂k|k, is zero-mean and Gaussian distributed

with covariance Pk|k.

For a system with state dynamics and measurements governed by (1) and (2), solving for

x̂k+1|k+1 also entails solving for êp
k|k+1 and êm

k+1|k+1. It should be noted that without the sparsity

assumption, this estimation problem is potentially ill-posed and could have multiple solutions. The

sparsity assumption acts as a regularizer for the estimation problem that favors �simpler� explana-

tions of the measurements when outliers occur.

B. Error Detection

This section formulates an optimization problem that can approximately solve for the sparse

errors. The output of the optimization will be used to determine which components of ep
k and em

k+1

are non-zero. Discussion of how the states and errors are estimated given this information will be
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covered in the next subsection.

Before the optimization problem can be de�ned, the measurement residuals need to be expressed

in terms of the sparse errors, ep
k and em

k+1, and the a priori state estimate. The a priori measurement

residuals at time k + 1 can be expressed as:

ỹk+1 = yk+1 −Hk+1Fkx̂k|k

= Hk+1

(
Fkxk + wk + ep

k − x̂k+1|k
)

+ vk+1 + em
k+1 (3)

= Hk+1

(
Fkx̃k|k + wk + ep

k

)
+ vk+1 + em

k+1 (4)

After rearranging terms in (4) and de�ning ek+1 ≡

 ep
k

em
k+1

 and uk+1 ≡ Hk+1

(
Fkx̃k|k + wk

)
+vk+1,

the residuals can be related to the error terms by

ỹk+1 =

[
Hk+1 I

]
ek+1 + uk+1 (5)

The errors could be estimated from the under-determined system of equations in (5) by solving for

the minimum l2-norm vector that corresponds to the measurement residuals (using a pseudo-inverse

least squares solution [11]). However, this approach is not suitable for estimating sparse vectors

such as ek+1 because it tends to allocate signal energy to all of the components of the vector being

estimated instead of concentrating it on a few components, thus returning a non-sparse estimate of

a sparse vector.

Based on the sparsity assumption, the estimates for ek+1 should have as few non-zero entries

as possible. Additionally, if the error estimates are equal to the true error values (i.e. êk+1 = ek+1)

then the corrected measurement residuals, ỹ = ỹk+1−
[
Hk+1 I

]
êk+1, will be equal to uk+1. Note

that uk+1 is a zero-mean normally distributed random variable with covariance

Σ = Hk+1

(
FkPk|kF

T
k +Qk

)
HT

k+1 +Rk+1

For a normally distributed random variable p ∈ Rn with covariance, W , the weighted inner

product pTW−1p is χ2 distributed with n degrees of freedom. Given these observations, one way

to obtain a good estimate of ek+1 is to minimize the number of non-zero entries while ensuring that

ỹT Σ−1ỹ ≤ τ , where τ is set based on the χ2 c.d.f. [18]. Mathematically this optimization can be
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expressed as

min
êk+1

‖êk+1‖0 (6)

subject to ỹT Σ−1ỹ ≤ τ

where ‖·‖0 is a shorthand expression for the number of non-zero components of a vector [23]. Because

this optimization involves searching over a combinatorial set of sparse vectors, it is computationally

intractable in general [23]. Fortunately, a tractable approximate solution to (6), can be found by

solving the convex optimization [18]

min
êk+1

‖êk+1‖1 (7)

subject to ỹT Σ−1ỹ ≤ τ

The optimization in (7) can be recast as a second-order cone program for which a number of e�cient

algorithms have been developed [24, 25].

In practice, the optimization posed in (7) is acting as a consistency check between the mea-

surements and the a priori state estimate generated by the nominal state propagation model,

x̂k+1 = Fkx̂k. If there is an inconsistency, then the l1 minimization can both detect and attribute it

to speci�c error sources in the measurements and state propagation in one computationally e�cient

step. In the case where no errors are present, then the residuals should already satisfy the inequality

constraint and the error estimates will be equal to zero.

Although the l1-minimization step tends to return a sparse estimate of the errors, the estimate

often has small spurious non-zero components that are a result of measurement noise. To ensure

that the error estimates are su�ciently sparse, the solution returned by the l1-minimization is

thresholded based on the expected noise level. Any elements of the l1-optimal error estimates that

are smaller than the expected noise level (as determined by a χ2-test) are set to zero. This step

ensures that only errors that are inconsistent with the Gaussian process and measurement noise are

considered in the state update update portion of the algorithm. Sparse estimates of the errors could

also be obtained by applying the reweighted l1-norm minimization (RWL1) approach proposed by

Candes et al. [26]. However, since RWL1 requires iteratively solving an l1-minimization multiple
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times, it remains to be seen, if the solution can be generated at the high rate needed for navigation

systems.

It should also be noted that while there is extensive evidence in the compressed sensing literature

that the l1-norm minimization encourages sparse solutions [26] the solution to Equation 7 is not

guaranteed to coincide with the solution to Equation 6. The impact of missed detections and false

alarms in the error detection procedure will be discussed in more detail in Section III E.

C. State and Error Estimation

After performing the error detection, the state estimates are updated by augmenting the state

vector with the non-zero error terms and then jointly estimating the errors and states using the

information �lter. The combination of thresholding the l1-optimal solution followed by re-estimation

is a common procedure in sparse signal estimation usually referred to as debiasing [18, 27], because

in practice the l1-optimal solutions are biased [18].

The information �lter is a recursive �lter that is algebraically equivalent to the KF [28], but

performs operations on the information matrix, Λk|k, and information state, d̂k|k instead of the

state and covariance. Given a state estimate, x̂k|k, and covariance, Pk|k, the information matrix

and state are de�ned as:

Λk|k =
(
Pk|k

)−1
(8)

d̂k|k = Λk|kx̂k|k (9)

The information �lter is particularly useful for situations where some of the states have uninformative

prior estimates (such as the non-zero terms of ep
k and em

k+1).

The a priori measurement residuals in (3) will be used to derive the information �lter update

for the state and error estimates. First, de�ne the augmented state vector zk+1 as

zk+1 =


x̄k+1

ep,nz
k

em,nz
k+1

 (10)

where x̄k+1 = Fkxk + wk and the superscript nz denotes only the non-zero components (as deter-

mined by the l1-norm minimization) of the respective errors. After substituting in the de�nition of
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zk+1, the measurements can be expressed as

yk+1 = [Hk+1 Hp Im] zk+1 + vk+1

= H̄k+1zk+1 + vk+1 (11)

where Hp is equal to the columns of Hk+1 corresponding to the non-zero terms in êp
k and Im is

equal to the columns of the identity matrix corresponding to non-zero entries in êm
k+1.

The prior estimate of x̄k+1|k can be expressed as

ˆ̄xk+1|k = Fkx̂k|k

and the associated covariance is Px̄ = FkPk|kF
T
k + Qk. Since the prior estimates of the errors are

assumed to be uninformative, the information matrix ẑk+1|k will be

Λk+1|k =


P−1

x̄ 0 0

0 0 0

0 0 0

 (12)

with the information state, d̂k+1|k given by (9). After calculating the information matrix and state,

they can be updated as follows [11]

d̂k+1|k+1 = d̂k+1|k + H̄T
k+1R

−1
k+1yk+1 (13)

Λk+1|k+1 = Λk+1|k + H̄T
k+1R

−1
k+1H̄k+1 (14)

After updating d̂k+1|k+1 and Λk+1|k+1, the covariance P
z
k+1|k+1 and state estimate ẑk+1|k+1 can be

calculated from (8) and (9), respectively.

Recall that the total number of non-zero entries in ep
k and em

k+1 was assumed to be less than or

equal to the number of measurements. The update procedure in (13) and (14) sets the upper bound

on the allowable sparsity of the unmodeled errors. Note that the number of combined non-zero

components of em
k+1 and ep

k must be less than or equal to the number of measurements in order to

ensure that Λk+1|k+1 is full rank and can be inverted. If Λk+1|k+1 is singular then it can not be

inverted and ẑk+1|k+1 can not be calculated.

After calculating ẑk+1|k+1, the posterior state estimate, x̂k+1|k+1, corrected for the sparse errors,
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is

x̂k+1|k+1 = ˆ̄xk+1|k+1 + êp
k|k+1 (15)

with covariance

Pk+1|k+1 = P x̄
k+1|k+1 + P ep

k+1|k+1 + Px̄e + Pex̄ (16)

where P x̄
k+1|k+1 is the covariance of ˆ̄xk+1|k+1, P

ep

k+1|k+1 is the covariance of êp
k|k+1, and Px̄e and

Pex̄ are the cross covariance matrices of ˆ̄xk+1|k+1 and êp
k|k+1, all of which can be obtained from

P z
k+1|k+1:

P z
k+1|k+1 =


P x̄
k+1|k+1 Px̄e ·

Pex̄ P ep

k+1|k+1 ·

· · ·



D. Algorithm Summary

The l1-norm �lter is summarized in Algorithm 1. There are two main components of the

algorithm: outlier detection and a state update based on the outlier detection. Steps 1 and 2

encompass the outlier detection portion of the algorithm, where a constrained l1-norm optimization

is used to estimate the sparse vectors ep
k and em

k+1. A χ2-test is applied to the error estimates

calculated by the l1-norm optimization to determine which non-zero components of êp
k or êm

k+1 are

too large to be explained by the Gaussian process and measurement noise. The large non-zero

components of êp
k and êm

k+1 are then re-estimated in the state update step to calculate the robust

state estimates.

The state update phase of the algorithm occurs in steps 3�6. The states and non-zero com-

ponents of the errors are solved for by augmenting the state vector and then processing the mea-

surements using the information �lter. This portion of the algorithm is closely related to the KF.

Calculating the information state and information matrix (step 3) requires applying the KF state

propagation equations, while the state update equations for the KF are analogous to steps 4�6.
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Algorithm 1 l1-norm Filter

Require: x̂k|k, Pk|k, yk+1

1. Solve l1 minimization problem in (7) for êk+1

2. Apply χ2-test to determine non-zero components of êk+1

3. Form information state (d̂k+1|k) and matrix (Λk+1|k) for augmented state vector ẑk+1|k

4. Update d̂k+1|k, Λk+1|k with (13)�(14)

5. Calculate P z
k+1|k+1, ẑk+1|k+1 with (8)�(9)

6. Calculate x̂k+1|k+1, Pk+1|k+1 using (15)�(16)

return x̂k+1|k+1, Pk+1|k+1

E. Algorithm Analysis

This section will derive closed form expressions for the posterior state estimates and covariance

using the l1-norm �lter. These expressions will provide additional insight into the l1-norm �lter

and allow analysis of the l1-norm �lter when the errors detected by the l1-norm minimization are

incorrect.

To simplify the derivations that follow, it will be assumed without loss of generality that the

states and measurements have been ordered so that they can be partitioned into subsets that are

impacted by ep
k and em

k+1. After ordering the states and measurements, xk+1, yk+1, Hk+1 and Rk+1

can be partitioned as

xk+1 =

 xp̄

xp

 , yk+1 =

 yu

yc

 , Hk+1 =

Hp̄u Hpu

Hp̄c Hpc

 , Rk+1 =

Ru 0

0 Rc


where the subscripts u and c denoted corrupted and uncorrupted measurements respectively, and

the subscripts p̄ and p indicate state variables that are uncorrupted and corrupted by ep
k respectively.

Similarly, the a priori state information matrix and covariance matrix can be partitioned as

Λk+1|k =

Λp̄ Λp̄p

Λpp̄ Λp

 and Pk+1|k =

 Pp̄ Pp̄p

Ppp̄ Pp


The posterior covariance of the states and errors can be calculated by inverting the posterior
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information matrix in (14):

P z
k+1|k+1 =


P−1
k+1|k +HTR−1H HTR−1Hp HTR−1Im

HT
p R
−1H HT

p R
−1Hp HT

p R
−1Im

ITmR
−1H ITmR

−1Hp ITmR
−1Im



−1

Note that the general form for a blockwise inverse of a matrix isA B

C D

 =

 (A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

 (17)

The derivation of the update formulas will proceed by applying blockwise inversion using A =

P−1
k+1|k +HTR−1H. After selecting A, D−1 can also be calculated by blockwise inversion:

D−1 =

 (HT
puR

−1
u Hpu)−1 −(HT

puR
−1
u Hpu)−1HT

pc

Hpc(H
T
puR

−1
u Hpu)−1 Rc +Hpc(H

T
puR

−1
u Hpu)−1HT

pc

 (18)

Given these de�nitions, it can be shown that the covariance term P x̄
k+1|k+1 in (16) can be

described using an update formula similar to a KF update:

Lemma 1. P x̄
k+1|k+1 = (I −KH)P x̄

k+1|k where

KH =

 K̄Hp̄u 0

−Λ−1
p Λpp̄K̄Hp̄u 0

 , K̄ = Pp̄H
T
p̄u

(
R̄u +Hp̄uPp̄H

T
p̄u

)−1

R̄u = (R−1
u −R−1

u Hpu(HT
puR

−1
u Hpu)−1HT

puR
−1
u )−1

Proof. Note that P x̄
k+1|k+1 is equivalent to the the top left entry in P z

k+1|k+1. Therefore it can be

expressed as

P x̄
k+1|k+1 = (P−1

k+1|k +HTR−1H −BD−1C)−1

=

Λp̄ +HT
p̄uR̄

−1
u Hp̄u Λp̄p

Λpp̄ Λp


−1

P x̄
k+1|k+1 can now be calculated using blockwise inversion, but �rst note that Pp̄ = (Λp̄ −

Λp̄pΛ−1
p Λpp̄)−1. Using this fact, the upper left hand term of P x̄

k+1|k+1 is

P x̄
p̄ = (Λp̄ − Λp̄pΛ−1

p Λpp̄ +HT
p̄uR̄

−1
u Hp̄u)−1

13



= (Pp̄ +HT
p̄uR̄

−1
u Hp̄u)−1

= Pp̄ + Pp̄H
T
p̄u

(
R̄u +Hp̄uPp̄H

T
p̄u

)−1
Pp̄

= (I − K̄Hp̄u)Pp̄

where the third equality follows from the matrix inversion lemma.

Applying the rest of the blockwise inverse formula leads to

P x̄
k+1|k+1 =

 (I − K̄Hp̄u)Pp̄ −(I − K̄Hp̄u)Pp̄Λp̄pΛ−1
p

−Λ−1
p Λpp̄(I − K̄Hp̄u)Pp̄ Λ−1

p + Λ−1
p Λpp̄(I − K̄Hp̄u)Pp̄Λp̄pΛ−1

p



=

 (I − K̄Hp̄u)Pp̄ Pp̄p − K̄Hp̄uPp̄p

Ppp̄ + Λ−1
p Λpp̄K̄Hp̄uPp̄ Pp + Λ−1

p Λpp̄K̄Hp̄uPp̄p


= (I − K̄H)P x̄

k+1|k

Given (Equation 18) and Lemma 1 the �nal form of the state estimates and covariance in the

l1-norm �lter are given by the following theorem.

Theorem 1. The l1-norm �lter state estimates in (15) can be expressed as:

x̂k+1|k+1 =

 x̂p̄
k+1|k + K̄(yu −Hp̄ux̂p̄

k+1|k)

H−Lpu (yu −Hp̄ux̂p̄
k+1|k+1)

 (19)

In addition, the posterior covariance matrix in (16) is given by:

Pk+1|k+1 =

 P x̄
p̄ −P x̄

p̄ (H−Lpu Hp̄u)T

−H−Lpu Hp̄uP
x̄
p̄ (HT

puR
−1
u Hpu)−1 +H−Lpu Hp̄uP

x̄
p̄ (H−Lpu Hp̄u)T

 (20)

where

H−Lpu =
(
HT

puR
−1
u Hpu

)−1
HT

puR
−1
u

Proof. Using (9), (13) and the blockwise inversion formula for P z
k+1|k+1, the updated state and error

estimates are

ˆ̄xk+1|k+1 = P x̄
k+1|k+1

(
P−1
k+1|kx̂k+1|k +HTR−1y −BD−1ie

)
14



ênz
k+1|k+1 = −D−1CP x̄

k+1|k+1

(
P−1
k+1|kx̂k+1|k +HTR−1y −BD−1ie

)
+D−1ie

= −D−1C ˆ̄xk+1|k+1 +D−1ie

where

ie =

 HT
p R
−1y

ITmR
−1y


The matrices BD−1 and D−1C arise from the blockwise inversion of Λk+1|k+1 and can be shown to

be

BD−1 =

(H−Lpu Hp̄u)T HT
p̄c − (H−Lpu Hp̄u)THT

pc

I 0

 , D−1C =

 H−Lpu Hp̄u I

Hp̄c −HpcH
−L
pu Hp̄u 0


Note that only êp appears in (15), thus it is only necessary to calcuate êp,nz. After substituting

the values of BD−1, D−1C and ie the estimates of the non-zero ep terms are:

êp,nz = H−Lpu (yu −Hp̄uˆ̄x
p̄
k+1|k+1)− ˆ̄x

p
k+1|k+1 (21)

After substituting BD−1 and the value for P x̄
k+1|k+1 from Lemma 1 into the update equation

for ˆ̄xk+1|k+1 the result is

ˆ̄xk+1|k+1 =

 ˆ̄x
p̄
k+1|k+1

ˆ̄x
p
k+1|k+1

 =

 (I − K̄Hp̄u)ˆ̄x
p
k+1|k + (I − K̄Hp̄u)Pp̄H

T
p̄uR̄

−1
u yu

ˆ̄x
p
k+1|k+1

 (22)

The second term in the ˆ̄x
p̄
k+1|k+1 can be simpli�ed using a Schur identity [29] as

(I − K̄Hp̄u)Pp̄H
T
p̄uR̄

−1
u yu = (P−1

p̄ +HT
p̄uR̄

−1
u Hp̄u)−1HT

p̄uR̄
−1
u yu

= Pp̄H
T
p̄u(Ru +Hp̄uPp̄H

T
p̄u)−1

= K̄yu

Thus the estimate of x̄p̄ is

ˆ̄x
p̄
k+1|k+1 = ˆ̄x

p
k+1|k + K̄(yu −Hp̄uˆ̄x

p
k+1|k) (23)

Combining the results in (21) and (23) leads to the �nal form of the l1-norm �lter state estimates

given in (15):

x̂k+1|k+1 =

 ˆ̄x
p̄
k+1|k+1

ˆ̄x
p
k+1|k+1

+

 0

êp,nz


15



=

 ˆ̄x
p
k+1|k + K̄(yu −Hp̄uˆ̄x

p
k+1|k)(

HT
puR

−1
u Hpu

)−1
HT

puR
−1
u (yu −Hp̄ux̂p̄

k+1|k+1)


This proves the state estimate portion of the theorem.

The matrices P ep

k+1|k+1, Px̄e, and Pex̄ in (16) can be extracted from P z
k+1|k+1 using the blockwise

inversion formula. After substituting in the values of BD−1, D−1C and D−1 the sum of P ep

k+1|k+1,

Px̄e, and Pex̄ is

P ep

k+1|k+1 + Px̄e + Pex̄ =

 0 −P x̄
p̄p − P x̄

p̄ H̄
T
p̄u

−P x̄
pp̄ − H̄p̄uP

x̄
p̄ −P x̄

p + (HT
puR

−1
u Hpu)−1 + H̄p̄uP

x̄
p̄ H̄

T
p̄u

 (24)

Substituting (24) into (16) gives the expression for Pk+1|k+1 in the theorem:

Pk+1|k+1 =

P x̄
p̄ P x̄

p̄p

P x̄
pp̄ P x̄

p

+ P ep

k+1|k+1 + Px̄e + Pex̄

=

 P x̄
p̄ −P x̄

p̄ (H−Lpu Hp̄u)T

−H−Lpu Hp̄uP
x̄
p̄ (HT

puR
−1
u Hpu)−1 +H−Lpu Hp̄uP

x̄
p̄ (H−Lpu Hp̄u)T



There are several conclusions about the behavior and performance of the l1-norm �lter that can

be drawn from Theorem 1. First, notice that the estimate of xp in (19) is in fact a least-squares

estimate given ˆ̄x
p̄
k+1|k+1 and the uncorrupted measurements, yu. In other words, the l1-norm �lter is

re-initializing the estimate of xp using the current set of uncorrupted measurements. Additionally,

note that the estimates and covariance do not depend on the measurements corrupted by em
k+1.

This can be seen by observing that the updates do not include any terms that involve yc, Hc, and

Rc. Thus, the same estimates can be reached by discarding the measurements that correspond to

non-zero em
k+1 detections before the joint state and error estimation step. These observations also

indicate that the performance of the l1-norm �lter, for the case when only measurement outliers are

present, should be comparable to a KF that discards measurements with residuals that exceed a χ2

threshold. This behavior is veri�ed using Monte Carlo simulations in Section IV.

In addition, when all sparse errors are correctly detected, the l1-norm �lter estimates are unbi-

ased. The proof of this result will require the following lemma.
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Lemma 2. K̄Hpu = 0

Proof. First note that

R̄−1
u Hpu = R−1

u Hpu −R−1
u Hpu(HT

puR
−1
u Hpu)−1HT

puR
−1
u Hpu

= R−1
u Hpu −R−1

u Hpu = 0

Applying a Schur identity [29] shows that

(
R̄u +Hp̄uPp̄H

T
p̄u

)−1
= R̄−1

u − R̄−1
u Hp̄u(P−1

p̄ +Hp̄uR
−1
u HT

p̄u)−1HT
p̄uR̄

−1
u

Combining these results shows that

K̄Hpu = Pp̄H
T
p̄u

(
R̄u +Hp̄uPp̄H

T
p̄u

)−1
Hpu

= Pp̄H
T
p̄u(R̄−1

u Hpu − R̄−1
u Hp̄u(P−1

p̄ +Hp̄uR
−1
u HT

p̄u)−1HT
p̄uR̄

−1
u Hpu) = 0

Theorem 2. If Step 2 of Algorithm 1 detects all non-zero components of ep
k and em

k+1 then x̂k+1|k+1

is unbiased.

Proof. Using (19), the posterior state estimation error is

x̃k+1|k+1 =

 x̃p̄
k+1|k+1

x̃p
k+1|k+1



=

 xp̄
k+1 − x̂p̄

k+1|k + K̄(yu −Hp̄ux̂p̄
k+1|k)

xp
k+1 −

(
HT

puR
−1
u Hpu

)−1
HT

puR
−1
u (yu −Hp̄ux̂p̄

k+1|k+1)



=

 (I − K̄Hp̄u)x̃p̄
k+1|k + K̄(Hpuxp

k+1 + vu
k+1)

−
(
HT

puR
−1
u Hpu

)−1
HT

puR
−1
u (Hpux̃p̄

k+1|k+1 + vu
k+1)

 (25)

After applying Lemma 2, x̃p̄
k+1|k+1 can be shown to be

x̃p̄
k+1|k+1 = (I − K̄Hp̄u)x̃p̄

k+1|k + K̄vu
k+1

and thus E
[
x̃p̄
k+1|k+1

]
= 0. Moreover this implies that E

[
x̃p
k+1|k+1

]
= 0.
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In the case where the error detection worked perfectly, these results indicate that the l1-norm

�lter performs as desired: it ignores faulty measurements that could negatively impact the state

estimates and it corrects erroneous state estimates. But since the l1-norm solution is not guaranteed

to correctly detect em
k+1 and ep

k it is also important to evaluate the impact of incorrect error detection,

either false alarms or missed detections.

In the case of false alarms (i.e. incorrectly detecting an error when it is not present), the l1-norm

estimates will still be unbiased, the only cost will be an increased posterior state covariance.

Theorem 3 (False Alarm Case). If there are false alarms in Step 2 of Algorithm 1 then x̂k+1|k+1

will be unbiased. However, Pk+1|k+1 ≥ P opt
k+1|k+1, where P

opt
k+1|k+1 is the posterior covariance if no

false alarms had occurred.

Proof. If there are false alarms, the residuals will take the same form as (25) and thus the estimates

will remain unbiased.

To simplify the covariance portion of the proof, em
k+1 and ep

k false alarms will be handled

separately. If there are em
k+1 false alarms the information matrix without false alarms and the

l1-norm �lter information matrix will take the following forms:

Λopt
k+1|k+1 = Λk+1|k +HT

u R
−1
u Hu +HT

c R
−1
c Hc

Λl1
k+1|k+1 = Λk+1|k +HT

u R
−1
u Hu

Taking the di�erence of the two shows that

Λopt
k+1|k+1 − Λl1

k+1|k+1 = HT
c R
−1
c Hc > 0

Which implies that Λopt
k+1|k+1 > Λl1

k+1|k+1 which in turn implies that P opt
k+1|k+1 < P l1

k+1|k+1.

If there are ep
k false alarms the information matrix without false alarms and the l1-norm �lter

information matrix will take the following forms:

Λopt
k+1|k+1 =

Λp̄ +HT
p̄ R
−1Hp̄ Λp̄p +HT

p̄ R
−1Hp

Λpp̄ +HT
p R
−1Hp̄ Λp +HT

p R
−1Hp



Λl1
k+1|k+1 =

Λp̄ +HT
p̄ R
−1Hp̄ HT

p̄ R
−1Hp

HT
p R
−1Hp̄ HT

p R
−1Hp


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Taking the di�erence of the two shows that

Λopt
k+1|k+1 − Λl1

k+1|k+1 =

 0 Λp̄p

Λpp̄ Λp

 ≥ 0

Which implies that Λopt
k+1|k+1 ≥ Λl1

k+1|k+1 which in turn implies that P opt
k+1|k+1 ≤ P

l1
k+1|k+1.

Another interpretation of this theorem is that false alarms in the error detection step will reduce

the amount of information available to the �lter to reduce the covariance. If the false detections

are measurement errors, the �lter will ignore those measurements and thus will lose the ability to

reduce the state covariance with those measurements. If the false detections are state prediction

errors, the prior information about those states will be ignored and as a result the covariance for

those states will be larger.

Finally, if there are missed error detections the following theorem demonstrates that the l1-norm

�lter estimates will be biased.

Theorem 4 (Missed Detection Case). If any non-zero terms in ep
k or em

k+1 are not detected in Step

2 of Algorithm 1, then x̂k+1|k+1 will be biased. In the worst case where no outliers are detected, the

bias will be equal to bKF , the bias of the Kalman �lter estimates.

Proof. Let ep
p̄ and em

u be the undetected state prediction and measurement outliers respectively.

Then the posterior state estimation error will be

x̃k+1|k+1 =

 (I − K̄Hp̄u)(x̃p̄
k+1|k + ep

p̄) + K̄(vu
k+1 + em

u )

−
(
HT

puR
−1
u Hpu

)−1
HT

puR
−1
u (Hpux̃p̄

k+1|k+1 + vu
k+1 + em

u )

 (26)

Taking the expected value of x̃k+1|k+1 shows that

E
[
x̃k+1|k+1

]
=

 (I − K̄Hp̄u)ep
p̄ + K̄em

u(
HT

puR
−1
u Hpu

)−1
HT

puR
−1
u (Hp̄u)(I − K̄Hp̄u)ep

p̄ + (I +Hp̄uK̄)em
u

 (27)

thus the estimates are biased.

If no outliers are detected, then

x̃k+1|k+1 = x̃p̄, Hp̄u = Hk+1 and K̄ = Pk+1|kHk+1

(
Hk+1Pk+1|kH

T
k+1 +Rk+1

)−1
= KKF

where KKF is the Kalman gain. Thus the bias is

bl1 = (I −KKFHk+1)ep
k +KKFem

k+1 (28)
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The Kalman �lter residuals in this case would be

x̃KF = (I −KKFHk+1)(x̃k+1|k + ep
k) +KKF (vk+1 + em

k+1) (29)

Taking the expected value of (29) shows that the Kalman �lter bias is

bKF = (I −KKFHk+1)ep
k +KKFem

k+1 = bl1 (30)

While returning biased state estimates is an issue, note that the bias can be absorbed into

the ep
k term and detected and corrected by the l1-norm �lter at the next measurement update.

Also note that if none of the outliers were detected (the worst-case scenario) the bias in x̂k+1|k+1

will be no worse than the bias for the Kalman �lter estimates. These results also indicate that it

is preferable to set the χ2 threshold τ conservatively (i.e. choosing a value that corresponds to a

95% con�dence interval rather than a 99% con�dence interval) because it will reduce the likelihood

of biasing the state estimates. Finally, unless the measurement noise and sparse error terms are

pathologically adversarial (e.g. a set of large outliers are exactly canceled by the measurement and

process noise and thus rendered undetectable), a missed error detection should typically correspond

to a small error that would be di�cult for any detection scheme to distinguish from the process and

measurement noise.

F. Application to Nonlinear Systems

The l1-norm �lter can also be applied to nonlinear systems using an extended Kalman �lter

(EKF) based algorithm. In that case, the matrices Hk+1 and Fk will be the Jacobians of the

nonlinear measurement and state propagation functions, respectively, evaluated at the current state

estimate. Additionally, the information �lter update in step 5 of Algorithm 1 should be replaced

with an extended information �lter update.

It should also be noted that, as with the EKF, the theoretical guarantees for the nonlinear

version of the l1-norm �lter are not as strong. For instance, it can not be guaranteed that the

state estimates will be unbiased because of the impact of linearization errors. However, the Monte

Carlo simulations and experimental results in the next two sections demonstrate that the nonlinear
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version of the l1-norm �lter can provide superior state estimation performance relative to other

state-of-the-art robust �ltering algorithms.

IV. Monte Carlo Simulation Results

A simulated target tracking scenario is used in this section to evaluate the performance of the

l1-norm �lter in the presence of unmodeled measurement and state prediction errors. Monte Carlo

trials were run for three di�erent cases: scenarios with measurement errors only, scenarios with

state prediction errors and �nally scenarios with simultaneous measurement and state prediction

errors. Several other �ltering algorithms were also evaluated in order to demonstrate the improved

performance of the l1-norm �lter, especially in cases where both unmodeled state prediction and

measurement errors occur.

A. Simulation Setup

The Monte Carlo trials simulate a 2D single target tracking scenario with position and velocity

measurements. The estimated states were the target position and velocity. Four independent sets

of position and velocity measurements of the target were simulated with an update rate of 1 Hz.

The target dynamics were simulated using a constant velocity model [2] and the total length of each

Monte Carlo trial was 30 seconds. The nominal process and measurement noise covariances were

Qk = 0.1



∆t4/4 0 ∆t3/2 0

0 ∆t4/4 0 ∆t3/2

∆t3/2 0 ∆t 0

0 ∆t3/2 0 ∆t


, σ2

range = 1m, σ2
range−rate = 0.1m/s

where ∆t = 1s is the propagation time between sets of measurements.

Measurement errors were simulated by sampling the measurement noise for the position (veloc-

ity) measurements from a Gaussian distribution with a mean of 30 meters (1 meters/sec.) instead

of the nominal zero mean distribution. State prediction errors were induced by sampling the process

noise from a Gaussian distribution with a larger covariance (Q̄ = 10 ·Qk) than the nominal process

noise model while generating the target trajectory. For the simulations with both state prediction

and measurement outliers, the number of measurement outliers at any time step was chosen to
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ensure that the error sparsity requirements for the l1-norm �lter were met (i.e. the dimension of

the non-zero state prediction and measurement errors were less than or equal to the number of

measurements).

For each set of Monte Carlo trials, the performance of the l1-norm �lter was compared against

the Kalman Filter (KF), unscented Kalman �lter (UKF) [30], a robust statistics based Kalman �lter

(RKF) [4, 6], and a variational Bayes robust �lter (VBAKF) [7]. The χ2 threshold parameter τ

for the l1-norm �lter was set to 15.5073, which corresponds to a 95% con�dence interval for the

χ2 test. The robust cost function for the RKF was chosen so that it was equivalent to a KF that

discards measurements with residuals that fail a χ2-test. The threshold for the RKF χ2-test was set

to match the χ2 thresholds used in the l1-norm �lter so that if only measurement errors are present

the RKF and l1-norm �lter will identify the same set of corrupted measurements.

B. Measurement Error Only Results

The �rst set of simulations focused on assessing the performance of the l1-norm �lter when

errors were present in the measurements only. The percentage of measurements that were corrupted

with the o�-nominal noise was varied from 0 to 100% in increments of 10%. For each percentage

level, 100 Monte Carlo trials were performed with the corrupted measurements chosen uniformly at

random.

The average position error as a function of the percentage of corrupted measurements is shown

in Figure 1. Error bars were left o� of the UKF and EKF results to preserve the clarity of the plot.

As the number of measurement outliers increases, the performance of the non-robust �lters (EKF

and UKF) degrades signi�cantly. In contrast, the robust approaches are able to maintain reasonable

average positioning errors even as all of the measurements are corrupted with errors. Additionally,

these plots empirically verify that the l1-norm �lter and the RKF performance are similar when

only measurement outliers are present.

Finally, the average probability of detection (Pd) and probability of false alarm (Pfa) for em
k+1

were 0.9996 and 0.0 respectively. The average Pfa for ep
k was 0.008 and the majority of the false

alarms can be attributed to correcting biases introduced by missed em
k+1 detections.
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Fig. 1 Average position error vs. fraction of corrupted measurements

C. Process Error Only Results

The next set of simulations focused on assessing the performance of the l1-norm �lter when errors

were present in the state predictions only. The percentage of state updates that were corrupted with

the o� nominal noise was varied from 0 to 100% in increments of 10%. For each percentage level, 100

Monte Carlo trials were performed with the corrupted state updates chosen uniformly at random.

The average position error as a function of the percentage of process errors is shown in Figure

2. Error bars were left o� of the RKF and VBAKF results to preserve the clarity of the plot. The

l1-norm �lter results and EKF results are nearly identical in this case and correspond to the line

at the bottom of the plot. In contrast to the measurement error only results, the EKF and UKF

outperform all of the robust �lters (with the exception of the l1-norm �lter) even when only a small

fraction of the state updates are corrupted with additional noise. In this case, the error models

for the RKF and VBAKF are not adequate to compensate for the additional noise because neither

algorithm accounts for additional errors in the process model beyond the nominal process noise.

The l1-norm �lter explicitly models for both process and measurement errors and thus is able to

correct for the additional process noise when it is present.

For this example, Pd and Pfa for ep
k were 0.12 and 0.0 respectively. There were no em

k+1 false

alarms. The low Pd values can in part be attributed to the distribution chosen for ep
k, which was

zero-mean but had a larger covariance than the nominal process noise. At least some of the samples

drawn from that distribution would be consistent with the nominal process noise and thus di�cult

to detect. These results indicate that correcting for the largest state prediction errors (i.e. the ones
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Fig. 2 Average position error vs. fraction of process errors

most likely to be detected) provides a signi�cant performance gain. In addition, they bolster the

claim that when there are missed detections in the l1-norm �lter they often correspond to errors

that are small relative to the measurement and process noise and thus will have limited impact on

the state estimates.

D. Combined Measurement and Process Error Results

The �nal set of simulations focused on assessing the performance of the l1-norm �lter when

errors were present in both the state predictions and measurements. In this case, the percentage of

state updates that were subject to the o� nominal noise and the percentage of measurement errors

were varied together (i.e. 10% of measurements were corrupted and 10% of state updates were

corrupted for the same set of Monte Carlo trials). For each percentage level, 100 Monte Carlo trials

were performed with the corrupted measurement and state updates chosen uniformly at random.

The simulations were only run up to 80% error corruption because after that the error sparsity

assumption could not be satis�ed.

The average position error as a function of the percentage of process errors is shown in Figure 3.

This set of trials represents a worst case scenario that only the l1-norm �lter can handle. The EKF

and UKF estimates are not robust to the measurement errors and thus have large state estimation

errors while the RKF and VBAKF can not correctly compensate for the process errors. Only the

l1-norm �lter is able to correctly compensate for both the state prediction and measurement errors

when they occur simultaneously and is able to maintain reasonable performance even when the
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Fig. 3 Average position error vs. fraction of process and measurement errors

majority of the state predictions and measurements are incorrect.

For this example, Pd and Pfa for em
k+1 were 0.9996 and 0.0 respectively. Pd and Pfa for ep

k were

0.15 and 0.005 respectively. As with the measurement error only case, the majority of the ep
k false

alarms can be attributed to correcting biases introduced by missed em
k+1 detections.

Overall these Monte Carlo simulations show that the l1-norm �lter can provide robust state

estimates over a broader range of conditions than other robust �ltering algorithms. In situations

where only measurement errors are present, the l1-norm �lter can match the performance of state-

of-the-art robust �ltering algorithms. For situations with state prediction outliers the l1-norm �lter

can provide superior performance to other robust �ltering approaches because it explicitly models

state predictions errors while the other algorithms do not.

V. Vision-Aided Navigation Experimental Results

This section presents experimental results demonstrating the performance of the l1-norm �lter

applied to vision-aided navigation in an urban area. In the data collected, GPS measurements were

corrupted intermittently with multipath, while the state predictions were corrupted by drift from

visual odometry measurements. Three other �ltering approaches (the EKF, and two robust �ltering

techniques) are compared to the performance of the l1-norm �lter. This experiment demonstrates

that the l1-norm �lter is able to outperform the other algorithms because it can compensate for both

the GPS measurement errors and the accumulated state prediction errors from the visual odometry

measurements.
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A. Vision-aided Navigation Background

Vision-aided navigation focuses on how to fuse visual information captured from a camera with

other sensors to localize a vehicle in a global coordinate system.

In recent years, vision-aided navigation has been demonstrated on a number of platforms. Often

these systems fuse visual odometry with other sensors (IMU, GPS, LiDAR) to generate a global

state estimate. Visual odometry has several error sources that can impact the accuracy of these

state estimates. Most notably, a bias is introduced by long range features in stereo visual odometry

[31, 32]. Scale factor and misalignment errors in the visual odometry data can also occur and cause

the navigation solution to drift over time [33].

Although recursive �ltering approaches to vision-aided navigation have been developed [34],

many current approaches use optimization-based pose graph estimation techniques to generate the

navigation solutions [31, 35]. Recent research has shown that optimization based approaches to

vision-aided navigation can outperform recursive �ltering algorithms for a number of applications

[36]. One reason that pose graph optimization tends to perform better than �ltering is that previous

poses can be updated each time the optimization is solved, thus allowing errors in previous pose

estimates to be corrected, leading to a more accurate positioning solution at the current time. In

contrast, �ltering algorithms can not retroactively change previous state estimates in an e�cient

way because the estimates are marginalized out at each measurement update. Thus, any state

estimation errors made earlier in the �lter will propagate forward to future state estimates.

The l1-norm �lter tackles this problem by detecting situations when the current state estimate is

inconsistent with the current set of measurements. After detecting these situations, the �lter adjusts

the state estimates to account for the impact of state estimation error that has been propagated to

the current time step. In this way, the l1-norm �lter can adjust its state estimates when drift errors

accumulate without having to resolve for any of its previous estimates.

B. Vision-aided Navigation with the l1-norm Filter

There were several challenges associated with using both vision and GPS measurements in the

l1-norm �lter. First, the GPS and visual odometry data were not being generated at the same
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rate (10 Hz for the vision vs. 1 Hz for the GPS). In practice, large errors in the visual odometry

are not observable unless there is additional information from another measurement such as GPS.

Thus, the majority of the visual odometry measurements could not be checked for errors directly

by the l1-norm �lter. Additionally, it was found that the errors in the visual odometry data were

often below the detection threshold of the l1-norm �lter for any given measurement even when GPS

measurements were available. Fortunately, it was determined that the cumulative e�ects of the

visual odometry errors (over several sets of measurements) were large enough and could be detected

by the l1-norm �lter as state propagation errors, ep
k, when GPS measurements were available.

One more step had to be added to the l1-norm �lter procedure to provide reasonable naviga-

tion performance with the visual odometry data. The position states were not directly observable

using the visual odometry data and as a result their covariance grew substantially in between GPS

measurement updates. Since the state covariance was used in the thresholding step (Step 2 in Al-

gorithm 1) in the l1-norm �lter to determine which errors were non-zero, this often led to situations

where large values of êp
k were being thresholded out and ignored, which then caused large state

estimation errors. To repair this problem, an additional criterion was added to the thresholding

step. If a component of êp
k was above a threshold level, then that component was estimated using

the information �lter regardless of the outcome of the χ2 thresholding step.

C. Experimental Setup

The data used for this experiment was collected while driving along roads in the Boston area.

Environments driven through varied between dense urban canyons and areas of good GPS coverage

along the Charles River. The total time for the experiment took approximately 25 minutes from

start to �nish and the total distance covered was 7.32 km. Vehicle speeds varied between 0 and

72 km/h. The estimated states were the car's position and velocity in Earth-Centered Earth-Fixed

coordinates.

The sensors used for the experiment were a dashboard-mounted stereo vision camera (Point

Grey BumbleBee2 with a resolution of 512 x 384 and 43◦ �eld of view) and a consumer grade GPS

receiver (uBlox EVK-6T). Visual odometry measurements (measuring the change in position of the
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car between camera frames) and GPS pseudoranges were processed in the navigation �lter. Visual

odometry measurements were provided at 10 Hz while the GPS receiver reported pseudoranges at

1 Hz when they were available. More details about the system used for the experimental data can

be found in [37]. A high accuracy GPS positioning solution that was generated by the receiver was

used as ground-truth for the experiment.

The pseudoranges and state predictions were compared against the truth data to verify that the

error sparsity assumptions were satis�ed. These comparisons indicate that, during the experiment,

at most 2 pseudorange measurements were corrupted with multipath at each time step and that,

when multipath errors occurred, there were at least 6 total pseudorange measurements available.

When large state prediction errors occurred (i.e., ep 6= 0), at least 6 pseudorange measurements

were available. Additionally, the results showed that simultaneous state prediction and multipath

errors never occurred. Therefore, during the experiment, the error sparsity requirements of the

l1-norm �lter were satis�ed because the number of available measurements was always larger than

the number of non-zero entries of the sparse errors.

D. Experimental Results

The experimental data was processed using the l1-norm �lter as well as three other algorithms

to compare the performance of each in an urban navigation scenario. The visual odometry mea-

surements were modeled using the stochastic cloning technique proposed by Roumeliotis et al. [38].

The vehicle dynamics were modeled using a constant velocity model [2].

The three other algorithms were an EKF, a VB robust �lter called the outlier robust Kalman

�lter (ORKF) [9, 15], and an EKF that uses robust statistics to reduce the impact of measurement

outliers. In the experimental results, the last �lter will be referred to as the robust Kalman �lter

(RKF) and is similar to algorithms presented by Masreliez and Martin [4] and Schick and Mitter

[6]. Since the EKF is not a robust estimator and the experimental dataset contains both GPS

multipath errors and visual odometry drift and bias errors, the robust �ltering algorithms should

produce better results than the EKF.

A comparison of the positioning error of the navigation solutions for the four algorithms is shown
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Fig. 4 Positioning error vs. time for each of the algorithms

Fig. 5 Impact of visual odometry errors on the RKF (shown in red) and ORKF (shown in

magenta) solutions. In this case, the turning motion of the car at the intersection induced

errors in the visual odometry solution because most of the features that were being tracked

left the �eld of view of the camera. GPS truth in this �gure is shown in orange.

in Figure 4. The RKF solution has a number of instances where the positioning error exceeds all of

the other algorithms by a signi�cant amount. These large errors are primarily caused by the fact that

the RKF can not distinguish between a priori state estimation errors (in this case caused by errors

accumulated from the visual odometry measurements) and GPS measurement errors. For instance,

the large deviation from truth shown in Figure 5 is the result of accumulated visual odometry errors

that occurred, when the vehicle turned at the intersection. In this case, the turning motion of the car

induced errors in the visual odometry solution because most of the features that were being tracked

left the �eld of view of the camera. The GPS measurement residuals became large and as a result,

the RKF signi�cantly downweighted GPS measurements that could have been used to correct for
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Fig. 6 Impact of multipath on the EKF navigation solution (shown in blue). The multipath

errors are caused by re�ections o� of the tall buildings near the road. The ORKF (shown in

magenta), RKF (shown in red) and l1-norm �lter (shown in green) were able to detect and

compensate for the impact of the multipath in this case.

the accumulated visual odometry errors in the state estimates. In the case shown in Figure 5, the

ORKF also takes more time than the EKF and l1-norm �lter to recover from the visual odometry

errors because it can not di�erentiate between the state propagation errors and GPS measurement

errors and also ends up downweighting GPS measurements that could help the �lter converge to

the correct solution.

In contrast, the l1-norm �lter was able to determine that the large measurement residuals were

the results of a priori state errors instead of GPS measurement errors and as a result, was able to use

the GPS measurements to recover from the visual odometry errors. The EKF was not signi�cantly

a�ected in these situations because even though visual odometry errors have accumulated in the

state estimates, processing the GPS measurements quickly corrects for the impact of the error

because the measurement residuals are so large.

Upon examining the EKF results, there are several large positioning errors around 11 minutes

into the experiment. These are the result of multipath errors in the GPS pseudorange measurements

caused by a large building (see Figure 6 for a more detailed view). In this case, all of the robust

�lters were able to detect and eliminate the impact of the multipath on the navigation solution as

expected.

Summary statistics for all of the algorithms are shown in Table 1. Based on this dataset,
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Table 1 Comparison of Positioning Error Results

Algorithm Mean Error (m) σ Error (m) Max Error (m) Error Relative to EKF (m)

EKF 15.10 10.16 70.45 0.0

RKF [4, 6] 15.53 9.66 61.47 0.43

ORKF [9, 15] 12.38 7.51 53.10 -2.72

l1-norm Filter 12.00 6.87 39.76 -3.10

the l1-norm �lter is able to provide the best solution out of the four algorithms. It is able to

provide accurate state estimates when the GPS measurements are corrupted with multipath and

avoids incorrectly ignoring GPS as the ORKF and RKF do when signi�cant visual odometry errors

accumulate. Additionally, the l1-norm �lter has the ability to perform state estimation reliably when

both of these situations occur simultaneously, which none of the other algorithms can guarantee.

The absolute position errors shown in Table 1 are larger than one might expect from a naviga-

tion solution based in part on GPS data. In this experiment, additional corrections for errors in the

pseudoranges due to ionospheric e�ects (i.e. corrections generated by the Wide-Area Augmentation

System (WAAS)) were unavailable and as a result the pseudoranges were biased. Although errors

due to ionspheric delays could have been corrected using WAAS data, localized errors in the pseu-

doranges such as GPS multipath could not have been compensated for and would still have been

present. Additionally, the WAAS corrections would not have had an impact on the visual odometry

errors that occurred. Thus, while using WAAS corrections would have reduced the absolute error

for all of the algorithms, the reductions in error relative to the EKF (the �nal column of Table 1)

would still have occurred because they are related to the compensation of multipath and visual

odometry errors that the WAAS corrections could not �x.

VI. Conclusions and Future Work

This paper presented a recursive state estimation algorithm, the l1-norm �lter, that improves

robustness to both unmodeled state prediction and measurement errors. The l1-norm �lter detects

the presence of unmodeled errors using a convex optimization. Given that information, the �lter

can then adjust the a priori state estimates and measurements accordingly to compensate for the
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errors. The algorithm is also computationally e�cient as it combines a convex optimization with

standard recursive �ltering steps.

A simulated target tracking scenario was used to evaluate the performance of the l1-norm

�lter and compare it to existing state of the art robust state estimation algorithms. The l1-norm

�lter was also evaluated on a dataset consisting of visual odometry and GPS data collected in urban

areas around Boston. In both cases, the l1-norm �lter was able to outperform state-of-the-art robust

state estimation algorithms, because it could compensate for both state prediction and measurement

outliers that occurred in the data.

It would be worthwhile to investigate whether the hard thresholds that are set in the l1-norm

�lter for detecting unmodeled state estimation and measurement errors can be adapted online so

that a poor initialization of the thresholds does not impact the �lter performance. Finally, testing

the algorithm on datasets with more sensors to determine the broader applicability of the sparse

error model used to develop the l1-norm �lter would be bene�cial.
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