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Persistent Monitoring of Events with Stochastic Arrivals
at Multiple Stations

Jingjin Yu1,2 Sertac Karaman3 Daniela Rus1

Abstract—This paper is concerned with a novel mobile sensor
scheduling problem, involving a single robot tasked with moni-
toring several events of interest that occur at different locations.
Of particular interest is the monitoring of events that can
not be easily forecast. Prominent examples range from natural
phenomena (e.g., monitoring abnormal seismic activity around a
volcano using a ground robot) to urban activities (e.g., monitoring
early formations of traffic congestion in the Boston area using
an aerial robot). Motivated by these examples, this paper focuses
on problems where the precise occurrence time of the events
is not known a priori, but some statistics for their inter-arrival
times are available from past observations. The robot’s task is to
monitor the events to optimize the following two objectives: (i)
maximize the number of events observed and (ii) minimize the
delay between two consecutive observations of events occurring
at the same location. Provided with only one robot, it is crucial
to optimize these objectives in a balanced way, so that they are
optimized at each station simultaneously. Our main theoretical
result is that this complex mobile sensor scheduling problem
can be reduced to a quasi-convex program, which can be solved
in polynomial time. In other words, a globally optimal solution
can be computed in time that is polynomial in the number
of locations. We also provide computational experiments that
validate our theoretical results.

I. INTRODUCTION

Consider a single robotic vehicle that is tasked with mon-
itoring events that occur at several locations. Unfortunately,
the precise occurrence time of an event is unknown to the
robot a priori. Hence, the robot must travel to the particular
location and wait for the event to occur, in order to monitor
the event and capture the data associated with it. Ideally, one
would like to monitor all events at all locations. However,
provided with a single robot, one must optimize the schedule
of the robot to ensure that all locations are observed equally
well as best as possible, i.e., in a balanced manner. Two major
objectives are to (i) ensure that a large number of events are
observed at each location and (ii) ensure that the delay between
two observations of events at any given location is minimized.
Optimizing these objectives in a balanced manner is a fairly
complex, multi-objective scheduling problem.
The problem setup we study in this paper is novel, and

it is applicable to a broad set of applications concerning
persistent data collection through monitoring a set of events
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Fig. 1. (a) One of many potential applications of our persistent monitoring
formulation, in which an UAV (robot) is given the task of continuously
gathering stochastically occurring (data) events at a set of fixed locations
(the surface areas under the colored cones). The sizes of the colored discs
represent the stochastic arrival rates of events at the locations. (b) Illustration
of the underlying geometric problem setting. At each point of interest, say
location (station) i, events arrive following a Poisson process with intensity
λi. It takes a robot τi, j time to move from station i to station j, during
which no observation can be made. The associated plots roughly capture the
(exponential) distributions of event arrivals associated with the stations.

at various locations. The events of interest include natural
phenomena (e.g., volcanic eruptions and early formations of
blizzards, hailstorms, and tsunamis), biological disasters (e.g.,
early formations of epidemic diseases on animal or plant
populations), as well as military operations (e.g., terrorist
attacks). The key common characteristic of these events is that
their precise time of occurrence can not be easily forecast,
although the statistics regarding how often they occur may
be available from past experience. Hence, the data-collecting
robot must wait at the location of interest to capture the event
once it occurs. Then, the fundamental scheduling problem is to
decide how much time the robot should spend in each location
to archive various objectives, such as those described above,
in a balanced way. Our main theoretical result is that this
complex multi-objective mobile sensor scheduling problem
can be reduced to a strictly quasi-convex optimization problem



that can be solved in polynomial time. Hence, the (unique)
globally optimal solution of this complex scheduling problem
can be computed in time that is polynomial in the number of
locations.
Broadly speaking, persistent monitoring problems appear

naturally whenever only limited resources are available for
serving a set of spatially-dispersed tasks. Motivated by a
variety of potential applications [1], [2], several authors have
studied persistent monitoring problems [3]–[11]. For example,
in [3], the authors consider a certain weighted latency measure
as a robot continuously traverse a graph, in which the vertices
represent the regions of interest and the edges between the
vertices are labeled with the travel time. They show that
the problem of minimizing the maximum latency across
all stations is computationally intractable, and they present
an approximation algorithm. In [5], the authors consider a
persistent monitoring problem for a group of agents in a
one-dimensional mission space. They show that this problem
can be solved by parametrically optimizing a sequence of
switching locations for the agents. The problem of generating
speed profiles for robots along predetermined closed paths
for keeping bounded a varying field is addressed in [10].
The authors characterize appropriate policies for both single
and multiple robots. In [11], decentralized adaptive controllers
were designed to morph the initial closed paths of robots to
focus on regions of high importance.
In contrast to all the references cited above, the problem

studied in this paper focuses on transient events, emphasizing
unknown arrival times (but known statistics). The event arrival
times being unknown forces the robot to wait at each station
in order to observe the events of interest.
Persistent surveillance problems are intimately linked with

coverage problems. Coverage of a two-dimensional region has
been extensively studied in robotics [12]–[14], as well as in
purely geometric settings, for example, in [15], where the
proposed algorithms compute the shortest closed routes for
continuous coverage of polygonal interiors under an infinite
visibility sensing model. Coverage with limited sensing range
was also addressed later [16], [17]. If the environment to be
monitored has a 1-dimensional structure, discrete optimization
problems, such as the Traveling Salesman Problem, often arise
[3]. In most coverage problems, including those cited above,
the objective is to place sensors in order to maximize, for
example, the area that is within their sensing region. The
persistent surveillance problem we study in this paper is a
special case, where the limited number of sensors do not allow
extensive coverage; hence, we resort to mobility in order to
optimize the aforementioned performance metrics.
Persistent monitoring problems are also related to (static)

sensor scheduling problems (see, e.g., [18]–[20]), which are
usually concerned with scheduling the activation times of
sensors in order to maximize the information collected about a
time-varying process. The problem considered in this paper in-
volves a mobile sensor that can travel to each of the locations,
where the additional time required to travel between stations is
non-zero. The mobile sensor scheduling literature is also rich.

For instance, in [21], the authors study the control of a robotic
vehicle in order to maximize data rate while collecting data
stochastically arriving at two locations. The problem studied
in this paper is a novel mobile sensor scheduling problem
involving several locations and a multi-objective performance
metric that includes both the data rate and the delay between
consecutive observations.
The main contributions of this paper are two-fold. First, we

propose a novel persistent monitoring and data collection prob-
lem, with the unique feature that the precise arrival times of
events are unknown a priori, but their statistics are available.
Modeling the arrival of events as a stochastic process allows
our formulation to encompass several practical applications,
where the precise occurrence times of the events of interest
can not forecast easily. Second, focusing on cyclic policies, we
establish that this fairly complex multi-objective mobile sensor
scheduling problem admits a globally optimal solution that can
be computed efficiently in polynomial time. Surprisingly, it can
be shown that the main objective is quasi-convex on its entire
domain, which greatly simplifies the computation for finding
the extremal values.
The rest of the paper is organized as follows. A precise

definition of our persistent monitoring problem is provided in
Section II. We then carry out the analysis and present our
main result in detail in Section III, followed by experimental
validation through simulation in Section IV. We conclude with
Section V.

II. PROBLEM STATEMENT

Before formulating the problem, for convenience, we list
several frequently used symbols and their meanings in Table I.
When in doubt, the reader is referred to this table.
We study the problem of using a single robot to monitor

events that occur at different stations. The robot can monitor
one station at a time. It can travel from one station to another
if the two stations are topologically connected. The precise
time that an event will occur is not known to the robot a
priori. However, the robot is provided with their statistics, for
example the inter-arrival times, for each station. The robot can
observe an event generated by a station if and only if it is at the
same station at the time of occurrence, in which case the robot
collects valuable data regarding that particular station. Roughly
speaking, our objective is to design a scheduling policy for the
robot to ensure that:

• Objective.(i) maximize the number of events that is
observed at each station in a balanced way;

• Objective.(ii) minimize the delay between consecutive
observations at a particular station for all stations.

Below, this problem is formulated as a multi-objective opti-
mization problem. In Section III, it is shown that an important
special case, involving a chain of stations, can be reduced to
a quasi-convex program that can be solved efficiently. Hence,
the running time of the algorithm that solves this special case
is polynomial in the number of stations.
A more formal description of the problem is the following.

Consider a network of n stations, represented by a connected



TABLE I
LIST OF FREQUENTLY USED SYMBOLS AND THEIR INTERPRETATIONS.

vi,ki Stations to be monitored
λi Intensity of the Poisson process at station i
τi, j Travel time from station i to station j
π Cyclic policy of the form ((k1, t1), . . . ,

(kn, tn)), in which ti is the time spent by the
robot at station i in one policy cycle

T Total time incurred by a policy cycle
Ttr Total travel time per policy cycle
Tobs T −Ttr, total observation time per policy cycle
Ni(π) The number of events collected at station i in

one period of the policy π
Ti(π) The time between two consecutive event ob-

servations at station i containing travel to
other stations, for the policy π

Π argmaxπmaxiαi(π)
p(X) Probability density of a random variable X
Pr(e) Probability of an event e
E[X ] Expected value of a random variable X

αi(π) E[Ni(π)]/∑nj=1E[Nj(π)]

graph G = (V,E), where V = {v1,v2, . . . ,vn} is the set of
vertices and E is the set of (directed) edges. If there exists
an edge (vi,v j) ∈ E between vertices vi and v j, then stations
i and j are connected, meaning that the robot can travel from
station i to station j directly. The time it takes the robot to
travel from station i to station j is denoted by τ i, j .
Station i generates events at random time instances. More

precisely, we model the arrival of events at station i with a
Poisson process of intensity λi. These statistics, that is, the
arrival processes being Poisson and their intensities being λ i,
are all known to the robot a priori, although the precise arrival
times are not known beforehand.
A problem instance is fully characterized by the following

parameters: (i) the graph, G = (V,E), that represents the
network of stations; (ii) the travel time, τ i, j , from station i
and j for all i, j with (vi,v j) ∈ E; (iii) the arrival rates of the
events, λi, for each station i. Given such a problem instance,
we would like to design a routing policy for the robot to visit
each station and spend a certain amount of time, in order to
collect data through observing events so as to optimize the
objective function, which we roughly described above. Precise
definitions of these objectives will follow shortly.
A cyclic policy is one that the robot visits each station in a

fixed order and spends a fixed amount of time at each station.
More precisely, a cyclic policy is fully characterized by: (i) an
ordering of stations, say k1,k2, . . . ,kn, where ki ∈ {1,2, . . . ,n}
and ki �= k j for all i, j, and (ii) the time spent at each station,
say ti time units at station i. Such a cyclic policy is executed
by first visiting station k1 to spend t1 time units, then visiting
station k2 to spend t2 time units, then visiting station k3 to

spend t3 time units, and so on. A cyclic policy, which we
denote by π , can be represented by the parameters listed above,
as in π =

(
(k1, t1),(k2, t2), . . . ,(kn, tn)

)
. Throughout the paper,

we consider only cyclic policies.
Given a cyclic policy π =

(
(k1, t1),(k2, t2), . . . ,(kn, tn)

)
, we

define the aforementioned two objectives as follows. Let
Ni(π) denote the number of events that are observed at
station i during one cycle. Define the fraction of events
observed at station i as αi(π) := E[Ni(π)]/E[∑nj=1Nj(π)] =
E[Ni(π)]/∑nj=1E[Nj(π)]. To formalize the first objective, we
consider selecting a policy π that maximizes the minimum
fraction of events, where the minimum is taken across all
stations, i.e.,

max
π
min
i

αi(π) =maxπ
min
i

E[Ni(π)]
∑nj=1E[Nj(π)]

. (1)

This objective function maximizes the fraction of events
observed at each station.1 It does so in a balanced manner,
maximizing the minimum αi across all stations.
We formalize the second objective as follows. Suppose the

cyclic policy is run until time tstart such that (i) at least one
event is observed at each station up until time tstart and (ii)
the robot is at the beginning of a new cycle at time t start.
For each station i, define Ti(π) as the time between the
following two observations: (i) the last event that was recorded
at station i before tstart and (ii) the first event that is recorded at
station i after tstart. In essence, Ti(π) is the delay between two
consecutive observations that fall into different observation
windows, at station i. Our objective is to minimize these
delays, again in a balanced manner across all stations. Hence,
we consider choosing a policy that minimizes the maximum
delay across all stations, i.e.,

min
π
max
i

E[Ti(π)]. (2)

In most cases, both objectives are equally important. One
would like to maximize both the fraction of observations and
minimize delays between observations, in some balanced man-
ner across stations. Interestingly, the set of policies that opti-
mize the first objective function is not unique; in fact, there are
infinitely many such cyclic policies. We compute the optimal
(cyclic) policy for the second objective function among those
policies that optimize the first objective function. That is, we
compute the (unique) policy π ∗ = argminπ∈Π maxi E[Ti(π)],
where Π := argmaxπ ′miniαi(π ′). Below, we prove that Π is
an uncountably infinite set of cyclic policies and π ∗ is unique.

III. THE OPTIMAL SCHEDULING ALGORITHM
AND ITS ANALYSIS

In this section, we provide a cyclic routing policy (al-
gorithm) that solves the problem described in the previous
section. We prove that the proposed policy is optimal. First,
we show (via Lemma 1) that for any fixed time period T , there

1Ideally, we would like to define the notion of expected fraction of events
observed at station i as follows: E[Ni(π)/∑nj=1Nj(π)]. However, the random
variable Ni(π)/∑nj=1Nj(π) is not well defined, as its denominator may be
zero. Instead, we use the well-defined expression E[Ni(π)]/∑nj=1E[Nj(π)].



is a unique cyclic policy π that optimizes the first objective
(Equation (1)). However, the optimal policies for different
T ’s assign the same value to Equation (1), giving rise to
a continuum of solutions for the first objective. This issue
is resolved by our main theorem (Theorem 2), which shows
that there is a unique T that optimizes the second objective
(Equation (2)).
Throughout this section, we consider an important special

case where the locations are connected in a “closed chain”
configuration. That is, we consider the network of locations
represented by the graph G = (V,E) where the vertex set is
V = {v1,v2, . . . ,vn} and the edge set E is such that (vi,vi+1) ∈
E for all i∈ {1,2, . . . ,n−1} and that (vn,v1)∈ E. In this case,
the locations form a closed chain, hence the robot must visit
the locations in a fixed order. Our main result (Theorem 2)
applies to this important case. We conjecture an important
generalization of our result in Section V.
Let us consider the first objective function only and momen-

tarily ignore the second objective function. Then, the following
lemma characterizes the set of all policies that optimize the
first objective function, which was given by Equation (1).
Since we consider only cyclic policies, the travel time Ttr for
the robot per cyclic period is fixed:

Ttr = ∑
i, j

τi, j 1≤ i≤ n, j = (i+ 1) mod n. (3)

For notational convenience, we define γ i := 1/(λi∑nj=1(1/λ j)).

Lemma 1 Among all cyclic policies, a cyclic policy π =
((k1, t1), . . . ,(kn, tn)) optimizes the first objective function, i.e.,

π ∈ argmax
π ′

min
i

E[Ni(π ′)]
∑nj=1E[Nj(π ′)]

if and only if
ti = γi(T −Ttr), (4)

where T = ∑ni=1 ti + Ttr is a parameter (the cyclic policy’s
period). For T > Ttr, the resulting cyclic policy optimizes the
first objective. Moreover, such a cyclic policy π satisfies:

E[N1(π)] = E[N2(π)] = · · · = E[Nn(π)]. (5)

PROOF. Since we are looking at cyclic policies, by linearity
of expectations, the value of the first objective, as defined in
Equation (1), remains the same if we only look at a single
policy cycle (versus looking at an infinite time horizon). We
show that for arbitrary T > Ttr, choosing ti’s according to
Equation (4) yields the same optimal value for Equation (1).
Now fixing a policy π , after spending t i time at station i, the
robot collects E[Ni(π)] = λiti data points in expectation. This
yields

αi(π) =
E[Ni(π)]

∑nj=1E[Nj(π)]
=

λiti
∑nj=1λ jt j

.

It is straightforward to see that miniαi(π) is maximized if
and only if Equation (5) is satisfied, yielding a value of 1/n
for Equation (1). Solving the equations λ 1t1 = . . . = λntn and

∑ni=1 ti = T −Ttr together then yields Equation (4). �

Lemma 1 has two important implications. Firstly, any cyclic
policy that equalizes the expected number of events observed
at each station optimizes the first objective function given
by Equation (1). This provides us with an uncountably in-
finite set of optimal policies (optimal for the first objective
function only), which is the second immediate implication of
the lemma. Any cyclic policy that satisfies Equation (4) is
optimal, independently of the value of T . Let us emphasize
that Lemma 1 is particularly important since it characterizes
the set of policies that optimize the first objective function
given by Equation (1). Next, we show that, among those cyclic
policies that optimize the first objective function, there exists a
unique cyclic policy that optimizes the second objective (see
Equation (2)). Moreover, this unique optimal policy can be
computed by solving a quasi-convex optimization problem,
which can be done efficiently in polynomial time.

Theorem 2 Let Π denote the (uncountably infinite) set of
cyclic policies that maximizes the first objective function given
by Equation (1), i.e.,

Π := argmax
π

min
i

αi(π). (6)

Then, there exists a unique cyclic policy in Π that minimizes
the second objective function given by Equation (2). This
policy is in the form given by Equation (4), i.e.,

t∗i = γi(T ∗ −Ttr) for all i, (7)

where

T ∗ := argmin
T>Ttr

max
i

[ 2
λi

+
(T − ti)(1+ e−λiti)

1− e−λiti

]
, (8)

which is a quasi-convex optimization problem, i.e., the ob-
jective function is quasi-convex in T . Hence, the optimal
policy that solves the problem described in Section II can be
computed efficiently in polynomial time.

To prove Theorem 2, we must first compute E[Ti(π)]. This
computation is addressed in Lemma 3.

Lemma 3 Let π = ((k1, t1), . . . ,(kn, tn)) be a cyclic policy and
let T = Ttr+∑ni=1 ti be the period of the cyclic policy. Then

E[Ti(π)] =
2
λi

+
T − ti− tie−λiti

1− e−λiti
. (9)

PROOF. To compute E[Ti(π)], without loss of generality, fix an
observation window at station i and call it observation window
0, or o0. We further assume that o0 contains the arrival of at
least one event. We look at all observation gaps on the right of
o0. Any observation gap g j contains the following parts, from
left to right: 1. t le f tj , the overlap of g j with the observation
window on g j’s left end, 2. T − ti, the first observation break
(an observation break for station i is the time window between
two consecutive visits to station i), 3. 0 ≤ m < ∞ additional



policy cycles (of length T each), and 4. t rightj , the overlap of g j
with the observation window on g j’s right end. As an example,
in Figure 2, the start and end of the observation gap g j are
marked with the two red lines, respectively. The parts t le f tj ,

the first observation break T − ti, and t rightj are also as marked.
The gap g j further contains two additional policy cycles, i.e.,
m = 2. In this case, we say that g j spans m+ 1 = 3 policy
cycles.

i
t

T - t

t leftj t rightjT

Fig. 2. Illustration of the components of an observation gap.

To compute E[Ti(π)], we split it into two steps: 1. compute
the probability pm of a gap g j spanning m+ 1 policy cycles
for any m≥ 0, and 2. compute E[Ti(π)] as

E[Ti(π)] =
∞

∑
m=0

Empm, (10)

in which Em is the expected length of a gap g j spanning m+1
policy cycles. Note that Equation (10) holds as long as the
expectations E[Ti(π)] and Em are computed with the same
underlying distribution. We can compute Em with

Em = E[tle f tj ]+E[trightj ]+T − ti+mT2E[t le f tj ]+T − ti+mT.
The second equality holds because E[t le f tj ] = E[trightj ] by sym-
metry (i.e., a time reversed Poisson process is again a Poisson
process with the same arrival rate). To compute pm, note that
we never need to consider the left side of a gap g j. This is
true because as we look at an infinite sequence of consecutive
gaps g1, . . . ,g j, . . ., by assumption the left most observation
window (which is o0) overlapping with g1 is already fixed.
Once the right most observation window overlapping with g 1
is set (with certain probability), this explicitly fixes the left
most observation window overlapping with g2 and recursively,
the left most observation window overlapping g j. Therefore,
the probability of g j spanning m+ 1 policy cycles is

pm = e−mλiti(1− e−λiti).

The first term in the expression for pm, e−mλiti , is the
probability that g j does not stop at 0,1, . . . ,m−1 policy cycles,
where the probability of no event happening in each additional
cycle in the sequence is e−λiti . They can be combined due to
the memoryless property of the exponential distribution. The
second term (1−e−λiti) is the probability that at least one event
happens in the right most observation window overlapping g j.
Noting that the terms 2E[t le f tj ]+T − ti appear in all Em’s, we
can rewrite E[Ti(π)] as

E[Ti(π)] = 2E[t le f tj ]+T − ti+
∞

∑
m=1

mTe−mλiti(1− e−λiti)

(11)

in which
∞

∑
m=0

mTe−mλiti(1− e−λiti) = T (1− e−λiti)
∞

∑
m=1

∞

∑
k=m

e−kλiti

= T (1− e−λiti)
∞

∑
m=1

e−mλiti

1− e−λiti
=

Te−λiti

1− e−λiti
.

(12)
The computation of E[t le f tj ] is carried out as follows. By
assumption, at least one event happens during the given
observation window of length t i. Let the number of events
within this ti time be n (the probability of which is Pr(n,λ iti)=
(λiti)ne−λiti/n!) and let τ1 be the arrival time of the first
event among these n events. For each n ≥ 1, the distribution
of the n events is a uniform distribution in [0, t i]. We have
Pr(τ1 > t)0≤t≤ti = ((ti− t)/(ti))n, which gives us the pdf

p(τ1 = t)0≤t≤ti =
n(ti− t)n−1

tni
. (13)

Equation (13) gives us E[τ1] = ti/(n+ 1). Then

E[tle f tj ] =

∞

∑
k=1

ti
k+ 1

Pr(k,λiti)

1−Pr(0,λiti) =
1

1− e−λiti

∞

∑
k=1

ti(λiti)ke−λiti

(k+ 1)!

=
1

λi(1− e−λiti)
(1− e−λiti −λitie−λiti) =

1
λi

− tie−λiti

1− e−λiti
.

(14)
Finally, plugging Equations (12) and (14) into Equation (11)
yields Equation (9). �

PROOF OF THEOREM 2. We now prove the quasi-convexity
of of E[Ti(π)]. For notational convenience, define γ i := σ/λi.
Note that we implicitly use the fact that all functions used
in the proof are continuous. Substituting Tobs = T − Ttr and
ti = γiTobs into the RHS of Equation (9) yields

E[Ti(π)] =
2
λi

+
T − ti− (T − ti)e−λiti +(T − 2ti)e−λiti

1− e−λiti

=
2
λi

+
T − ti− tie−λiti

1− e−λiti

=
2
λi

+
Tobs+Ttr− γiTobs− γiTobse−λiγiTobs

1− e−λiγiTobs
.

(15)

Noting that by scaling the unit of time, we may assume that
λi = 1. Using this and letting x := γiTobs gives us

E[Ti(π)] = 2+
Ttr+( 1γi − 1)x− xe−x

1− e−x = 2+
Ttr+( 1γi − 2)x
1− e−x + x,

(16)
in which Ttr > 0 and γi ∈ (0,1). For convenience, we let α :=
Ttr and β = 1/γi−2. Showing that E[Ti(π)] is quasi-convex is
equivalent to showing that

f (x) := x+(α +βx)/(1− e−x)
is quasi-convex for x > 0,2 α > 0, and β > −1, the second

2In the rest of the proof, the domain of x is assumed to be (0,∞).



derivative of which is

f ′′(x) =
ex(α(ex+ 1)+β (ex(x− 2)+ x+ 2))

(−1+ ex)3 . (17)

Since ex(x− 2)+ x+ 2 is strictly positive,3 f ′′(x) > 0 for
β ≥ 0. Therefore, f (x) is convex for β ≥ 0. We are left to
show that f (x) is quasi-convex for β ∈ (−1,0). We proceed
by first establishing some properties of the function

g(x) = α(ex+ 1)+β (ex(x− 2)+ x+ 2) (18)

for α > 0, and β ∈ (−1,0). We have g(x) ∈ C∞ for x ≥ 0,
g(0) = 2α > 0, limx→∞ g(x) =−∞,

g′(x) = (α +βx−β )ex+β

and
g′′(x) = (α +βx)ex.

Because (α + βx) is linear, monotonically decreasing and
crosses zero at most once, and ex is positive and strictly
increasing, g′′(x) has at most a single local extrema (a
maxima) before it crosses zero. Therefore, g ′(x) has at most
two zeros and must first increase monotonically and then
decrease monotonically, implying that g(x) has at most three
zeros. Since g(0) > 0 and limx→∞ g(x) = −∞ < 0, g(x) has
either one or three (but not two) zeros. For g(x) to have three
zeros, g′(x) must have two zeros. Since limx→∞ g′(x) = −∞
(because βxex eventually dominates and β < 0), we must
have g′(0) < 0. This is not possible because g′(0) = α > 0.
Therefore, g′(x) can cross zero and change sign at most
once, implying that g(x) has a single zero. That is, g(x) is
positive for small x and then remains negative after crossing
zero. Because f ′′(x) = (exg(x))/(−1+ex)3 and ex/(−1+ex)3
is strictly positive, f ′′(x) behaves similarly as g(x) (i.e.,
f ′′(0) > 0, crosses zero only once as x increases, and stays
negative after that). This implies that for every fixed α > 0 and
β ∈ (−1,0), there exists x0 > 0 such that f (x) is convex on
x∈ (0,x0) and concave on x∈ (x0,∞). Now because f (x)→ ∞
for both x→ 0+ and x→ ∞, and f (1) < ∞, f (x) must have
a single local minima (and therefore, a single global minima
on R

+). To see that this is the case, as f (x) turns from
convex to concave at x= x0, we must have f ′(x0)≥ 0 because
otherwise f ′(x) < 0 for x > x0 due to f (x)’s concavity. We
then have limx→∞ f (x) < ∞, a contradiction. Thus, f (x) has
a single minimum on x ∈ (0,x0). Finally, to see that f (x)
is quasi-convex, we note that limx→∞ f ′(x) = 1 + β > 0,
implying that f ′(x) > 0 on all x ∈ (x0,∞). We then have
that f (x) is monotonically increasing on x ∈ (x0,∞). From
here, the quasi-convexity of f (x) can be easily established
following definitions. �

Interestingly, one can further show E[Ti(π)]’s monotonic
dependency with respect to λ i, holding other parameters fixed.

3To see this, let h(x) = ex(x− 2) + x+ 2; then h(0) = 0, h′(0) = 0, and
h′′(x) = xex > 0 for all x> 0. Therefore, h′(x)> 0 and h(x)> 0 for all x> 0.

Proposition 4 For fixed σ , policy period T , and policy π
given by Equation (4), E[Ti(π)] increases monotonically as
λi increases.

PROOF. Plugging Tobs := T −Ttr and σ := 1/(∑ni=1(1/λi)) into
Equation (9) and treating it as a function of λ i with T,Ttr, and
σ all fixed, we get

fN(λi) =
2
λi

+
T − σTobs

λi
(1+ e−σTobs)

1− e−σTobs
, (19)

the derivative of which is

f ′N(λi) =
σTobse−σTobs+σTobs+ 2e−σTobs− 2

λ 2i (1− e−σTobs)
, (20)

which is strictly positive for all positive σTobs and arbitrary
positive λi, implying that fN(λi) increases monotonically
with respect to λi. �

Proposition 4 implies that Equation (2) is always determined
by the Poisson process with the largest intensity. Therefore,
we only need to look at the single largest λ i when we optimize
the second objective.

IV. COMPUTATIONAL EXPERIMENTS

Our experimental setup is a direct adaptation of the UAV
monitoring application illustrated in Figure 1. The UAV is
tasked to fly continuously along the six locations of inter-
est and hover over each location for some time to capture
stochastically occurring events at these locations. The input
consists of historical data for the event arrival rates λ i’s at
the event locations and the time needed for traveling between
the event locations. Table II lists λi’s and τi, j’s (the ground
truth) for the experiment. The time unit is hour (hr). Figure 3
illustrates the stochastic nature of the event arrivals (note that
these are standard simulations of the exponential distributions
and Poisson processes). In addition to the large range of
average arrival rates at different stations (e.g., events arrive
at station 3 five times more frequent than they do at station
1), the stochastic arrival times can vary greatly within the
same station. The UAV must balance the amount of data
collected at all stations despite the different arrival rates
while not incurring large delays in event observations between
consecutive visits to the same location.
The two goals of our experimental effort are to (i) further

demonstrate the correctness of our theoretical developments,
and (ii) investigate the performance of the proposed algorithm
with respect to various measures. For the first goal, we measure
how well our theoretical predictions hold up by comparing
simulation outcome to our analytical result side by side.
For the second, we verify that the computed optimal policy
achieves all the design expectations. We also compare it with
a non-optimal policy and contrast their performances.
The source code for our simulation software was developed

using the Java programming language, and the simulation
software itself was executed on a computer with a 1.3GHz
Intel Core i5 CPU and 4GB memory. Mathematica 9 was used
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Fig. 3. (a) Histogram over the event arrival times since the last event arrival
for the Poisson processes in our experiment over a time horizon of 10000
days. The bucket size (on the x axis) is 0.1 hour. (b) Histogram over the
number of events arriving in an 24-hour window for the different Poisson
processes over 10000 runs.

for computing the optimal policy using the gradient descent
optimization procedure.

TABLE II
THE GROUND TRUTH (EVENT ARRIVAL RATES AND TRAVEL TIMES) USED

IN OUR SIMULATIONS.

Station
1 2 3 4 5 6

λi (1/hr) 0.5 1.3 2.5 1.2 1.6 0.9
τi,i+1 mod 6 (hrs) 0.15 0.25 0.1 0.3 0.2 0.2

A. Empirical Verification of Theorem 2
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Fig. 4. The simulated versus computed values for E[Ti(π)]. We observe that
the mean of the simulated runs agrees very well with the value computed
directly from Equation (9) for all choices of T ’s, wheres the variance grows
larger as T → Ttr.

In addition to the proof, we empirically check the cor-
rectness of Theorem 2 via simulations (simulation valida-
tion of Lemma 1 is omitted given its obvious correct-
ness). Our first computational experiment validates Equa-
tion (9) by performing both simulation and direct com-
putation side by side and comparing the results, for
the aforementioned case. In simulation, for each fixed
T ∈ {1.3,1.4,1.7,2.2,3.2,6.2,11.2,21.2,51.2,101.2}, we sim-
ulated the Poisson process for enough number of periods

(roughly 2× 105 in the worst case) to gather at 2000 delays
by simulating the the policy. This gave us 2000 samples of the
random variable Ti(π) from which we computed the mean and
standard deviation. Direct computation based on Equation (9)
were also carried out. To avoid cluttering the presentation, only
λ = 0.5 was used (plots for other λ are similar).
The results of this simulation study are presented in Fig-

ure 4, in comparison with the optimal policy that is directly
computed using the gradient descent procedure. Notice that
the expected delay in simulation results match that of the
computed policy exactly for all choices of T ’s. We also ob-
serve from the simulation study that the variance of the delay
increases as T approaches Ttr. This should be intuitively clear,
since, as Tobs = T −Ttr → 0+, the length of each observation
window decreases when compared to Ttr; in fact, the ratio
of the two approaches zero, which leads to the unbounded
increase in the variance of the number of events observed in
a given observation window.
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Fig. 5. The computed E[Ti(π)] for λ1, . . . ,λ6 and T ∈ [1.3,101.2].
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Fig. 6. The computed E[Ti(π)] for λ1, . . . ,λ6 and T ∈ [3.25,7.75] with ΔT =
0.025 increments.

After empirically verifying that Equation (9) is accurate,
we shift our attention to the quasi-convexity of Equation (9)
and its monotonicity in λi. We compute E[Ti(π)] for all six
λi’s and plot the result at two different scales in Figure 5 and
6. Figure 5 shows that E[Ti(π)] is quasi-convex for all λi’s.
Figure 6, the zoomed-in version of Figure 5, further reveals



that E[Ti(π)] depends on λi monotonically for fixed period T ,
confirming the claim of Proposition 4.

B. The Performance of the Proposed Algorithm

To compute the optimal cyclic patrolling policy’s parame-
ters, by Proposition 4 we only need to look at E[Ti(π)] for λi=
2.5. The period T that minimizes Equation (9) for λ i= 2.5 can
be easily computed using standard gradient descent methods.
Our computation yields T ∗ = 4.59. The corresponding pol-
icy is then defined by π = (1.18,0.45,0.24,0.49,0.37,0.67).
Since our theoretical results guarantee the performance of the

TABLE III
COMPARISON OF AN OPTIMAL POLICY WITH A NON-OPTIMAL ONE.

Station
αi(·) E[Ti(·)] (hrs) σE[Ti(·)] (hrs)

π π ′ π π ′ π π ′
1 0.17 0.06 10.1 18.3 7.5 16.0
2 0.17 0.16 10.1 8.9 7.4 6.4
3 0.16 0.31 10.3 5.9 7.7 2.9
4 0.16 0.15 10.2 9.3 7.9 6.5
5 0.17 0.20 10.2 7.6 7.6 5.0
6 0.17 0.11 10.1 11.3 7.5 8.7

patrolling policy, we carried out a single simulation experiment
in comparing the optimal policy with non-optimal policies. For
our comparison, we evenly distributed Tobs = T − Ttr = 3.39
among the stations and obtained an alternative policy π ′ that
spends 0.57 (hours) at each station per cycle. We simulated
both policy for 100000 policy periods. The simulation results
(α(·), E[Ti(·)], and the standard deviation of E[Ti(·)], denoted
σE[Ti(·)]) are listed in Table III. The result speaks for itself:
Under the optimal policy π , αi(π)’s are uniform across all
stations. At the same time, E[Ti(π)]’s are also very uniform
and are all about twice of the policy cycle time T ∗ = 4.59. On
the other hand, under policy π ′, station 1 often gets neglected
with an α1(π ′) = 0.06 and a E[T1(π ′)] = 18.3, which are both
much worse than those for the optimal policy π .

V. CONCLUSIONS

In this paper, we introduced a novel persistent monitoring
problem and data collection in which the arrivals events
at multiple stations are driven by stochastic processes. We
studied the performance of cyclic policies on two objectives:
(i) balancing the average number of events to be collected at
each station so that no station receives insufficient or excessive
monitoring effort, and (ii) minimizing the maximum delay
in observing two consecutive events generated by the same
process between policy cycles. We focused on an important
special case where the locations to be visited form a closed
chain. We showed that such a problem admits a unique
cyclic policy that optimizes both objectives. Moreover, we
established that the the second and more complex objective
turned out to be quasi-convex, allowing efficient computation
of the optimal policy with standard gradient descent methods.
We conjecture that these results can be applied to the general

case where the locations are connected in an arbitrary way,
rather than the closed chain configuration. We conjecture that
in this general case, the optimal solution can be obtained by
first solving a Traveling Salesman Problem (TSP), and then
computing a schedule along the optimal TSP tour using the
algorithm we propose in this paper.
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