
MIT Open Access Articles

Stepwise refinement of heap-manipulating code in Chalice

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Leino, K. Rustan M., and Kuat Yessenov. “Stepwise Refinement of Heap-Manipulating
Code in Chalice.” Formal Aspects of Computing 24.4–6 (2012): 519–535.

As Published: http://dx.doi.org/10.1007/s00165-012-0254-3

Publisher: Springer-Verlag

Persistent URL: http://hdl.handle.net/1721.1/105892

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/105892

DOI 10.1007/s00165-012-0254-3
BCS © 2012
Formal Aspects of Computing (2012) 24: 519–535

Formal Aspects
of Computing

Stepwise refinement of heap-manipulating
code in Chalice
K. Rustan M. Leino1 and Kuat Yessenov2

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
2 MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, USA

Abstract. Stepwise refinement is a well-studied technique for developing a program from an abstract description
to a concrete implementation. This paper describes a system with automated tool support for refinement, powered
by a state-of-the-art verification engine that uses an SMT solver. Unlike previous refinement systems, users of the
presented system interact only via declarations in the programming language. Another aspect of the system is that
it accounts for dynamically allocated objects in the heap, so that data representations in an abstract program can
be refined into ones that use more objects. Finally, the system uses a language with familiar imperative features,
including sequential composition, loops, and recursive calls, offers a syntax with skeletons for describing program
changes between refinements, and provides a mechanism for supplying witnesses when refining non-deterministic
programs.

Keywords: Stepwise refinement; Data refinement; Heap refinement; Chalice; Abstract predicates; Fractional
permissions; Program verification

0. Introduction

The prevalent style of programming today uses low-level programming languages (like C or Java) into which pro-
grammers encode the high-level design or informal specifications they have in mind. From a historical perspective,
it makes sense that this style would have come from the view that what the programming language provides is
a description of the data structures and code that the executing program will use. However, upon reflection, the
style seems far from ideal, for several reasons. First, the gap between informal specifications to executable code
is unnecessarily large, leaving much room for errors. Second, errors in the informal specifications may best be
discovered by execution, simulation, or property discovery, but such processes cannot be applied until a machine
readable description—here, the low-level code—is in place. Third, programmers often understand algorithms in
terms of pseudo-code, which abstracts over many nitty-gritty details, but such pseudo-code is confined to white-
boards or the heads of programmers, rather than being recorded as part of the program text. Fourth, interesting
software goes through considerable evolution, which includes the introduction of various optimizations; these
usually take the place of the old code, making them harder to understand both when they are being developed (“is
this really doing what the unoptimized code did?”) and when the code is later examined for human understanding.

Correspondence and offprint requests to: K. R. M. Leino, E-mail: leino@microsoft.com

520 K. R. M. Leino, K. Yessenov

Fifth, another important fact of program evolution is that it involves multiple developers, whose introduction to
the code immediately takes them into the gory depths of all the low-level decisions that have been made.

An alternative style of programming uses stepwise refinement, starting from a higher-level description of
what the program is intended to do and then giving various levels of pseudo-code until the low-level code
is in place. This is an old idea due to Dijkstra [Dij68] and Wirth [Wir71] and given mathematical rigor by
Back [Bac78]. It underwent much theoretical development during the 1980s and 1990s (e.g., [BvW98, Mor87,
GV90, Jon90, WD96, Abr96]), prominently including Carroll Morgan’s work on programming from specifications
[Mor90]. The technique has been successfully applied in practice where program correctness has been critical (e.g.,
[Abr06, Cle, MLM+97]). Some tool sets, like Rodin [ABH+10] and Atelier B [Cle], support the refinement process.

To reap the benefits of the refinement process, the intermediate stages of program development (that is, the
various levels of pseudo-code) must be recorded and preserved in a format that is appropriate for consumption by
human engineers as well as analysis tools. In computer science, we usually refer to such a format as a programming
language (or modeling language, or specification language). As engineers work with it, the language and its
associated tool set become the engineers’ primary thinking aid.

In this paper, we take refinement closer to important facilities of present-day programming and verification.
On the programming side, we use a class-based language, which means that the various stages of refinement

look more like the code programmers are used to writing. The implementation of a class is often built on other
(tailor-made or library-provided) classes. More precisely, the data of an object is represented by the object’s
fields and by other dynamically created objects accessible from those fields. While this is taken for granted by
programmers, we are aware of only one previous treatment of refinement that allows abstract fields to be refined
in a general way into new objects of instantiable classes [FOTSY10].

On the verification side, we integrate automatic verification support, like that found in leading-edge program
verifiers (e.g., [CDH+09, BFM+09, BHL+10, BFL+11, Lei10]), based on a satisfiability-modulo-theories (SMT)-
solver foundation. This means that programmers can focus more on the program under development with fewer
distractions of having to manually guide a separate proof assistant.

More specifically, our contributions in this paper are:

0. a view of heap-manipulating code, based on a model of memory permissions, that allows refinement steps to
introduce new object instances in data representations

1. a checking algorithm that encodes refinement proof obligations (as input to an automatic verification engine)
to harness the power and automation provided by an SMT solver

2. facilities in the language for describing a refinement in terms of the differences from the previous refinement
and for supplying an abstract witness when coupling relations are non-deterministic

3. a prototype implementation as an extension of the language and verifier Chalice [LM09, LMS09], which uses
the Boogie verification engine [LR10] and the Z3 SMT solver [dMB08].

Our prototype implementation explores the vision of refinement where the programmer interacts with the tool
solely via the constructs of the programming language, but it is not the final word. We hope that it will continue
to inspire improvements in the program development process to make programs easier to write, maintain, and
reason about.

In Sect. 1, we review refinement, using an example in our refinement system. We then describe a problem that
arises when trying to introduce instances of a reusable class as part of the data representation of another object.
In Sect. 2, we review the model of memory permissions in Chalice and then present how we use that model to
provide a sound solution to the data-refinement problem. We describe our syntactic skeletons facility in Sect. 3
and our checking algorithm in Sect. 4.

1. Introductory examples

Intuitively, to say that a program A is refined by a program B is to say that for any context where A’s behavior
is acceptable, substituting B for A would also make for acceptable behavior. In other words, B ’s behavior is
acceptable wherever A’s behavior is. We take the behavior of a program to be what can be observed by relating its
possible pre- and post-states, and in this paper we ignore issues of termination. We also ignore other important
properties of programs, such as information flow [DD77, Mor12]. In our setting, a class is refined by another if
all its methods are refined by the corresponding methods of the other class. Consequently, the compiler or user
can freely choose to replace a class by one of its refinements, while maintaining the correctness of the program
as a whole.

Stepwise refinement of heap-manipulating code 521

Fig. 0. An initial description of a method that checks for duplicate elements in a given sequence. The method Find has an in-parameter s and
an out-parameter b

In Sect. 1.1, we review refinement by walking through an example development of a program in our system.
The refinement steps will be familiar to anyone acquainted with stepwise refinement; the example gives us the
opportunity to showcase how one works with our system. The example is also available in video form as an
episode of Verification Corner.1 In Sect. 1.2, we describe a problem with data refinement and objects.

1.1. Algorithmic refinement

1.1.1. Top-level description

Let us write a procedure that computes whether or not a given sequence has any duplicated elements. We introduce
the procedure as a method in a class, as one would in an object-oriented language.

The initial description of the behavior of this method can be given as a pre- and postcondition specification
à la Eiffel [Mey88], the precondition describing when the method is defined and the postcondition describing its
effect. However, there are cases where it is more straightforward to describe the effect using a method body. In
Fig. 0, we use the latter option (with a trivial, and hence omitted, precondition true).

A sequence in our language is a mathematical value, just like booleans and integers. A sequence subscripted
by a single index returns that element of the sequence; subscripted by an interval, it returns the subsequence
consisting of the specified elements. Sequence indices start with 0, the length of a sequence s is denoted |s|, and
s[i := e] (used later) denotes a sequence like s except that element i has the value e. Every interval [a..b] is
half-open, that is, it denotes the integers x that satisfy a � x < b. The existential quantifier in the specification
statement in Fig. 0 can be read as “there exists an index i in the range from 0 to less than the length of s, such
that element i of s also occurs among the first i elements of s”. In other words, the existential evaluates to true
iff s has a duplicate element.2

Because this is the initial description of our method, there is nothing to verify, other than the well-definedness
of the operations used. In particular, there is no check that this actually describes the program we have in mind.3

However, since this description is clearer than, say, an optimized program with loops, a human may stand a better
chance of proof reading this description.

In summary, the thing to notice about our program’s initial description in Fig. 0 is the emphasis on what is
to be computed, not how it is computed.

1.1.2. Introducing a loop

A compiler may or may not be able to compile the existential quantifier we used in the body of Find, and it is
unlikely to compile it efficiently. So, let’s help it along. Figure 1 introduces a class whose Find method refines the
one in Fig. 0. To reason about the loop, we supply a loop invariant; our system checks the invariant to hold on
entry to the loop and to be maintained by the loop body. The loop invariant and the negation of the loop guard
imply that b will end with the same value as in Fig. 0, hence establishing the correctness of the refinement.

1 http://research.microsoft.com/verificationcorner.
2 Other starting points are also possible; for example, the assignment statement b := exists i,j in [0..|s|] :: i != j ∧ s[i] == s[j];.
3 Omissions and other errors in the top-level specification may become evident when clients of the class are verified (using Chalice). Moreover,
various techniques and tools exist for checking that a software specification or model has desired properties (among many, see, e.g., [Jac06,
LB03]). Such checks could be applied to the top-level specification in the refinement, but we do not focus on such checks here.

http://research.microsoft.com/verificationcorner

522 K. R. M. Leino, K. Yessenov

Fig. 1. A refined Find method, where the specification statement in Fig. 0 has been replaced by code that uses a loop

Fig. 2. A further refinement of Find, introducing a sequence of booleans that keep track of which numbers have been encountered so far by
the loop. The correctness of the code relies on including precondition (0) in the original description of Find in Fig. 0. The occurrences of “_”,
and also the while statement without a loop guard, are concrete syntax in our language and stand for the corresponding pieces of code in
the method being transformed

The transformation from Figs. 0 to 1 offers two key benefits to programmers. First, both versions of the
program remain part of the program text. This means that someone trying to understand the program can start
by studying the more abstract description in Fig. 0 and then move to the more concrete description in Fig. 1.
Second, our system verifies the correctness of the transformation (in less than 0.05 seconds). This checks the
refinement step to be correct; furthermore, it ensures that future changes to either Figs. 0 or 1 will keep the two
in synch. The proof does not come entirely for free, since loop invariants have to be supplied by the user, but in
contrast to previous refinement tools, the interaction stays at the level of the program and the user never issues
any commands to the underlying theorem prover.

1.1.3. Adding an efficient data structure

The method in Fig. 1 still contains a point of inefficiency, namely the assignment to c. Let’s do another refinement,
this time adding (in the jargon, superimposing) a sequence of booleans that keeps track of which numbers have
been encountered so far.

Stepwise refinement of heap-manipulating code 523

Suppose the specification of the original program is revisited and we are now provided with a restriction on
the input, namely that the elements of s are to be among the first 100 natural numbers. We express the restriction
by the following precondition, which we add to the program in Fig. 0:

requires forall i in s :: i in [0..100]; (0)

This going back to and changing the original description is common in practice, because all necessary restrictions
may not be evident at the onset of the program development [Abr06].

Figure 2 shows the new refinement. It uses the keyword transforms for method Find, which allows us to
transform the method body at the level of its statements. (The keyword refines swe used in Fig. 1 is a special
case of transforms that says the entire method body is being replaced.) The body of Find in Fig. 2 uses a skeleton
syntax that we will describe in Sect. 3. Essentially, a skeleton keeps the structure of if and while statements
(but does not syntactically repeat guards or invariants), has the option of replacing (keyword replaces) various
update statements, can add (superimpose) new statements, and uses “_” as a wildcard denoting other statement
sequences of the method body being transformed.

Our refinement introduces bitset as a sequence of 100 booleans, all initially false (i.e., initially, true is not
in the sequence, which we conveniently express here using a specification statement [Mor90]). The loop body sets
element s[i] of bitset to true, thus maintaining the properties that are recorded as loop invariants: the length
of bitset remains 100, any element s[i] encountered so far has been recorded in bitset, and anything recorded
in bitset has been encountered in s.

With these properties of bitset, we are able to replace the assignment of cwith a simpler assignment statement.
When the refinement in Fig. 2 is verified, the loop invariants in Fig. 1 do not need to be re-verified and neither
does the postcondition that was verified in Fig. 1. In this way, refinement localizes proof obligations.

1.1.4. Summarizing the example

This concludes our introductory example. One can imagine further refinements, such as changing bitset from
being a sequence to being an array (to avoid the costly sequence-update operation in the loop in Fig. 2, or
terminating the loop as soon as b is set to true, or avoiding the loop altogether if the length of s exceeds 100).

Given Figs. 0, 1, and 2 and the precondition (0), our system performs the verification automatically in about
1 second.

1.2. Data refinement

The previous example did not involve the heap. Our next example does. We review the idea of data refinement
and demonstrate an important problem that occurs in the presence of pointers and instantiable object libraries
[FOTSY10].

Our motivating example comes in three pieces: a class, a client of the class, and a refinement of the class. If
a sound refinement system verifies these pieces, then one can replace the client’s use of the class by the refined
class. In our example, such a replacement would lead to a run-time error, which tells us that soundness requires
the refinement system to report some error. The question is then where the error is to be detected and reported
during verification.

The class we consider is a simple counter, see Fig. 3. Method Get() returns the current value of the counter
and Inc() increments it. The somewhat mysterious method M() is described as returning any Cell object, where
Cell is another class shown in the figure. The specification statement in the body of M() says to set r to any value
satisfying the condition in brackets. It seems reasonable that a verification system would consider classes Counter
and Cell to be correct.

In Fig. 4, we show a client of the Counter class. It allocates a Counter object. Then, it calls Get() twice and
checks, with an assert statement, that the counter was unchanged. Between the two calls to Get(), it obtains a
Cell via the M() method and sets the cell’s x field to the arbitrary value 12.4 Here is one way one might argue
for the correctness of the client: the description of M() says that the only effect of M() is to set its out-parameter,
updating cell.x has no effect on cnt.n (after all, x and n are different fields and cell and cnt are not aliased since
they point to objects of different types), and therefore the correctness of the assert follows from the description
of Get().

4 If the direct access of field x in class Client bothers you, you may consider our same class but with a SetX method in Cell.

524 K. R. M. Leino, K. Yessenov

Fig. 3. A simple class that provides the functionality of a counter, as well as (a rather unmotivated) method that returns a cell object

Fig. 4. An example client of the code in Fig. 3. This code is correct only if the asserted condition will always evaluate to true

In Fig. 5, we show a refinement of class Counter. It superimposes a field c, sets c to a new (dynamically
allocated) Cell object, and maintains the coupling invariant n == c.x. This kind of data refinement, where one
data representation is replaced by another, has been studied extensively (e.g., [Hoa72, Mor90, GV90]), but—
surprisingly—not much in the presence of pointers and dynamic storage. In our example, which uses pointers
and dynamic storage, one might argue that CCounter is a correct refinement of Counter as follows (for now, we
ignore some issues, like initialization): Whatever Get() and Inc() did with n in Counter, they now do with c.x in
CCounter; moreover, Counter says nothing about which Cell is returned by M(), giving CCounter total freedom
in what it returns.

The problem here is that CCounter fails to be a valid refinement since it cannot be substituted in place of
Counter in Client. We propose a solution to this problem that relies on the permission model of Chalice. The
solution requires more specifications for the Counter methods. Depending on which specification is chosen for
method M(), our tool will either blame the client or the refinement.

Fig. 5. A sketch of a class to refine the behavior of Counter in Fig. 3. Class CCounter implements n in Counter by c.x

Stepwise refinement of heap-manipulating code 525

2. Heap refinement

The memory model that underlies our heap-aware refinements uses permissions [Boy03] and implicit dynamic
frames [SJP09]. This model forms a core of the language and verifier Chalice [LM09, LMS09], into which we
have incorporated our refinement system. Chalice and our extensions are available as open source5 and can be
run either from the command line or from within the Microsoft Visual Studio IDE.

2.1. Permissions

A heap location is identified by an object-field pair. Heap locations have associated access permissions, which
can be transferred between activation records (i.e., method-invocation instances and loop iterations) in a running
program. Every heap-location access (i.e., read or write) requires the current activation record to have sufficient
permissions for the access. Permissions are ghost entities: they can be mentioned in specifications and are used
by the verifier, but they need not be present at run-time in a verified program.

For example, the Inc method in Fig. 3 reads and writes the field n. As the method is written in the
figure, the Chalice verifier will report an error of insufficient permissions for these accesses, because activation
records of Inc() have no permissions. To equip Inc() with permission to access n, one declares a precondition
requires acc(n);. The evaluation of this precondition checks that the caller does indeed have access to n and
then transfers that permission to the callee. In this example, it is also desirable to return the permission to the
caller, which is achieved by declaring a postcondition ensures acc(n);.

Specifications can mention several access predicates, which are evaluated in order. For example, suppose a
method declares the precondition acc(x) ∧ acc(y). The caller will then be checked for permission to x, then that
permission will be transferred to the callee, then the permission to y will be checked and transferred.

We say that the caller exhales the precondition, meaning that it checks the conditions and access predicates in
the precondition and transfers the entailed permissions to the callee. The callee inhales the precondition, meaning
that it gets to assume the conditions in the precondition and receives the entailed permissions.

Note that a specification like acc(p.x) ∧ acc(q.x) is satisfiable only if p and q are pointers to different objects.
For if p and q are equal, then p.x and q.x denote the same heap location. Thus, after the permission to p.x has
been (checked and) transferred, then the check for permission to q.x will fail.

Permissions can be divided among activation records. Write access requires full permission (100%), whereas
any non-zero fraction of the full permission suffices for read access. Syntactically, a fractional permission is
indicated by supplying a second argument to acc, specifying a percentage of the full permission; for example,
acc(x,50) indicates half of the permission to x. One can also simply write rd(x) to denote a non-zero permission to
x and leave it to the verifier to infer an appropriate fraction; we will not describe the details here, but see [HLMS11].

If, after evaluating the precondition, a caller still has some permission to a heap location, then the caller
can be sure the callee will not modify the heap location because the callee will not be able to obtain the full
permission. Because of the evaluation order of predicates, acc(x,50) ∧ acc(x,50) is equivalent to acc(x), since
the two fractions add up to the full permission; and the condition acc(x,80) ∧ acc(x,30) is never satisfiable,
since 110% is more than 100%.

Note that all proper fractions grant the same permission to read; 1% and 20% and 99% are all the same in
this respect. The reason for keeping track of specific fractions is so that one can determine if various fractions
add up to 100%, which would imply write permission.

When an activation record allocates a new object, it receives full permission to all fields of the object. It
is possible for a program to squander permissions: any permission remaining in an activation record after the
postcondition has been evaluated is forever lost, in effect rendering the corresponding heap locations readonly.

Access predicates can only be mentioned in positive positions (e.g., not as antecedents of implications). For
more details about permissions in Chalice, see [LM09, HLMS11].

Consider the Counter example in Sect. 1.2. One way to make it verify is to declare acc(n) as a pre- and
postcondition of Inc() and Get(). (Alternatively, Get() could use a fractional permission, since it only reads n.)
This would also verify the client in Fig. 4, if it were not for the update of cell.x, for which the client has no
permissions. As it stands, method M() says nothing about the Cell being returned. In particular, it does not say
or imply anything about the permission to this Cell’s x field, and therefore the verifier will report an error that
the client code attempts to modify a heap location (namely, cell.x) to which it has no permissions.

5 http://boogie.codeplex.com

http://boogie.codeplex.com

526 K. R. M. Leino, K. Yessenov

Alternatively, if we want callers of M() to be able to (read or) modify the x field of the Cell returned, we can
change M() accordingly:

method M() returns (r: Cell)
ensures acc(r.x);
{ spec r [acc(r.x)]; }

This postcondition gives the caller full permission to r.x, and thus Client verifies. Note that we also updated the
specification statement in the body of M(), which now says to pick not just any Cell for r, but one for which full
permission of x is available, and thus Counter verifies.

2.2. Coupling invariants for the heap refinement

In our running example, the field n of Counter is represented with c.x in the refinement. The relationship between
the abstract location n and the concrete location c.x is captured in the coupling invariant declaration inside the
refinement class CCounter:

replaces n by acc(c) ∧ acc(c.x) ∧ n == c.x (1)

The latter part of the formula is the familiar logical equality. The former part is unique to Chalice’s permis-
sion system. Intuitively, this coupling invariant grants CCounter a license to trade permissions to access n for
permissions to access c and c.x. Given such a license, the body of method Inc may write the field c.x, since it
has full access to n, which, by virtue of the coupling invariant, warrants full access to c.x.

If only a fractional permission to n is traded, then the permissions to c and c.x are scaled accordingly. This
is done by multiplying the permissions mentioned in the coupling invariant by the fraction of n’s permission that
is being traded.

Let’s go back to the CCounter example. As written in Fig. 5, the refinement of M fails to verify since assignment
r := chas insufficient permissions to read c. Now imagine that we add the precondition acc(n) to M in class Counter
(we cannot add acc(c) directly, since c is declared in the refinement). We should also add the postcondition acc(n)
or, otherwise, the client is not able to inspect n after making a call to M:

method M() returns (r: Cell)
requires acc(n);
ensures acc(n) ∧ acc(r.x);

However, even with these permissions in place, the refinement M fails to verify since both acc(n) and acc(r.x)
individually imply full access to c.x. Since the postcondition is never satisfiable, our tool reports that CCounter
does not refine Counter.

3. Surface syntax

In this section, we present our extensions to the syntax of Chalice [LMS09] to support program refinement.
These extensions include class and method refinement declarations, coupling invariants, and program structure
skeletons.

3.1. Class refinement

We extend the syntax of Chalice with a declaration for class refinement:

class B refines A { . . . }

This declaration introduces class B as a refinement of class A. We refer to B as a concrete class and to A as
an abstract class in the context of this refinement (A may in turn be a refinement as well). For B to be a valid
refinement of A, it must satisfy the following three conditions:

0. Every declared member of A is present in B . B may refine a subset of methods of A but the rest are carried
over to B . Similarly, fields of A are also fields of B . B may add methods which are not present in A and may
superimpose fields.

Stepwise refinement of heap-manipulating code 527

Fig. 6. Refinement of a program that computes the sum of cubes. The highlighted lines show the new code in the program in 7c

1. B may declare a class-wide coupling invariant I to simultaneously replace fields fi of A:

replaces f1, . . . , fk by I

The access predicates inside I are split evenly between fi . The coupling invariant grants an activation record
with write access to a field fi , a k -th fraction of permissions to the concrete representation.

2. B may declare a method m to be a refinement of a method m in A using either the refines or transforms
keyword instead of the method keyword.

It is often the case that individual methods of a concrete class require only a small number of changes to
select statements of the corresponding method of the abstract class. The programmer’s insight to deriving such
a concrete, refined implementation can often be expressed as a set of transformation rules that introduce new
statements and substitute parts of the abstract program. The example in Fig. 6 demonstrates one such scenario:
the insight behind this refinement is the mathematical identity

∑n
i�0 i3 � (∑n

i�0 i
)2

that lets one compute a sum
of cubes with a single multiplication. To verify this optimization, a programmer needs to introduce a new local
variable t and establish coupling with the variable s using a loop invariant. This transformation is succinctly
expressed in Chalice as a skeleton, see Fig. 6b.

Skeleton methods such as the one in Fig. 6 are declared using the keyword transforms. Figure 1 shows another
way to declare a refined method. The refines keyword is used to mark a method that substitutes the entire code
in the abstract method by concrete code supplied by the declaration.

3.2. Skeletons

Skeletons are transformation rules that are composed of code navigation and rewrite operations. Given an abstract
program, a skeleton serves as a template that is filled in by statements taken from the abstract program. It does
so by pattern matching control flow of the abstract program against a set of pre-defined primitive substitutions.

Abstractly, a skeleton is a partial function from an abstract syntax tree (AST) of an abstract program to an
AST of the concrete program. Since a skeleton maintains the original control flow structure, it helps us to think
of each statement of the resulting program as being one of:

• a normal statement
• a refinement block R[A,B], which replaces a sequence A of abstract statements by a sequence B of concrete

statements
• a loop refinement L[I ,Q], which adds a loop invariant I to an existing loop and replaces its body by Q

528 K. R. M. Leino, K. Yessenov

In a well-formed refinement block R[A,B], B declares all the local variables declared in A. Our checking algorithm
benefits from the localized verifications arising from the fine structural mapping between the abstract and concrete
code embodied in these refinement blocks and loop refinements.

A skeleton S is defined inductively from a set of primitive wild-card skeletons and sequential composition:

• A skeleton _ is a block pattern that matches any sequence of non-conditional non-iterative deterministic
statements and acts as an identity transformation.

• A skeleton * matches any sequence of statements and acts as an identity transformation.
• A skeleton replaces * by { B } matches any sequence of statements A and produces R[A,B].
• A skeleton if { S0 }matches a single if statement and produces an if statement with S0 applied to its branch;

a skeleton if { S0 } else { S1 } is analogous.
• A skeleton while invariant I { S0 } matches a single while loop and produces a while loop with an addi-

tional loop invariant I and the body P that is obtained by applying a skeleton S0 to the body of the original
loop. We use the notation L[I ,P] for such a loop refinement.

• A skeleton replaces v by { B } matches any statement A that affects variables in list v. The resulting refine-
ment block is R[A,B]. This pattern is used to provide witnesses to nondeterministic specifications or call
statements and to rewrite assignment statements. Our checking algorithm resolves angelic non-determinism as
described in Sect. 4.

• A skeleton B consisting of Chalice statements matches only the empty program and produces B .
• A sequential skeleton S0;S1 matches S0 greedily (i.e. consuming as many statements as possible) and then

matches S1 against the rest of the program. It produces a sequential composition of the results of S0 and S1.

Note that skeletons with wildcards match greedily. This makes the matching process deterministic and avoids
the need for back tracking.

Skeletons are partial functions, so that a change in the abstract program could potentially make them inap-
plicable. In this sense, they are fragile. However, they save the programmer the work of copying code and offer
an effective mechanism of documenting critical design decisions in code. Even though our matching mechanism
is deterministic, Chalice also lets the programmer inspect the final concrete code after applying all the skeletons
by a command-line switch.

Skeletons are by no means the only way to communicate structural similarity between concrete and abstract
code to our verification algorithm. One could imagine using statement labels to explicitly map statements or
basic support from an integrated development environment (IDE) that would permit writing refinement blocks
visually as nested code blocks.

4. Checking algorithm

Our system leverages the power of an automatic reasoning engine, like the collection of first-order decision
procedures available in modern satisfiability-modulo-theories (SMT) solvers (e.g., [dMB08]), to reason about
program refinements. How to produce input for such a reasoning engine is well known (see, e.g., [BCD+06]):
essentially, one produces a formula of the form

P ⇒ wp[[B ,Q]] (2)

where P and Q are the declared pre- and postconditions of a procedure, B is the body of that procedure, and
wp[[B ,Q]] is the weakest precondition of B with respect to Q [Dij76]. If expressions are first-order terms and loops
and calls are handled via specifications (as usual), then (2) will be a first-order formula. However, to verify that
a program B refines a program A, one needs to check that B can be substituted for A in any context, which is
expressed in terms of the weakest preconditions as

(∀Q • wp[[A,Q]] ⇒ wp[[B ,Q]]) (3)

where the quantification of Q ranges over all predicates [Bac78]. Since this is a second-order formula, it is not
directly suitable as input to an SMT solver.

To express formula (3) in a first-order setting, we apply two techniques. First, monotonicity of the refinement
relation with respect to the sequential composition permits us to prove it locally for isolated statements and
blocks of code. A block in the abstract program is matched against its refinement block in the concrete program.
Second, non-deterministic abstract statements are refined separately by refinement blocks that produce witnesses
to such statements.

Stepwise refinement of heap-manipulating code 529

Fig. 7. Refinement of a non-deterministic program in two steps. To establish refinement of the program in a by the program in c, Chalice
requires the intermediate program in b, which solely refines the specification statement

The refinement condition (3) is expressible in a different form that avoids predicate quantification using a
coupling invariant I [GP85]:

wp[[A,�]] ∧ I ⇒ wp[[B ,¬wp[[A,¬I]]]] (4)

The condition wp[[A,¬I]] characterizes the set of states from which A is guaranteed to reach ¬I , and hence
¬wp[[A,¬I]] is the set of states from which there is some possible execution of A that does not establish ¬I . In
other words, formula (4) says that for any execution of B (starting from an initial state satisfying I and on which
A is defined), there is a possible angelic execution of A such that I is reestablished in the final states of B and A.
This is also known as a forward simulation [WD96].

Here is an alternative explanation of formula (4), thinking of programs and the coupling invariant as being
relations on pairs of states. Let σ and σ ′ range over abstract states (that is, A’s state space) and let τ and τ ′ range
over concrete states (that is, B ’s state space). Then, formula (4) says:

(∀σ, τ • (σ,) ∈ A ∧ (σ, τ) ∈ I ⇒
(τ,) ∈ B ∧ (∀ τ ′ • (τ, τ ′) ∈ B ⇒ (∃σ ′ • (σ, σ ′) ∈ A ∧ (σ ′, τ ′) ∈ I)))

where we have used the notation (s,) ∈ S as a shorthand for (∃s ′ • (s, s ′) ∈ S).
If A is deterministic, then any execution is angelic and we can cancel the double negation in formula (4), and

simplify it to:

wp[[A,�]] ⇒ wp[[assume I ; B ; A; assert I ,�]] (5)

Here, A and B operate in disjoint state spaces, but their initial and final states are paired using I . We have already
mentioned how I is declared for the superimposed heap locations using the replaces keyword. The local variables
of A are bound to the local variables of B via logical equality. The superimposed local variables in program B
are left unconstrained by I .

If the program A is non-deterministic, then formula (5) is a sound but not complete characterization of
refinement. Chalice provides two ways to introduce (demonic) non-determinism into a program: specification
statements and call statements. Both are specified using declarative pre- and postconditions. Verifying refinement
of a single non-deterministic statement A by a program B amounts to extracting witnesses from B that satisfy
the postcondition of A. To provide such witnesses, the program B must assign to the abstract variables that
are constrained by the postcondition of A within the refinement block, in which case it suffices to check that
the assigned values (which might be demonically non-deterministic) satisfy this postcondition at the end of the
block. We have imposed a restriction that non-deterministic statements must be refined individually since Chalice
uses automated first-order SMT solvers. A consequence of this restriction is that refinement of non-deterministic
constructions might require multiple steps, as demonstrated in figure Fig. 7.

530 K. R. M. Leino, K. Yessenov

In Chalice, programs are structured into classes and methods. To verify that a method m in a class A is refined
in a class B, we check that:
0. B.m has the same precondition but possibly a stronger postcondition.
1. B.m accepts the same number of inputs as A.m and returns as many outputs plus possibly more.
2. The body of B.m is a refinement of the body of A.m.

The surface syntax (see Sect. 3) allows us to compute the correspondence between abstract statements of
A.m and concrete statements of B.m. Once code substitutions are localized to the disjoint refinement blocks
R[P ,Q] and loop refinements L[I ,Q], Chalice generates a Boogie program C [BCD+06, LR10] that encodes the
refinement condition. Here, P is a block of code within the body of A.m, Q is the replacement block of code in
the refinement B.m, and I are new loop invariants in B.m. Program C takes the same inputs as A.m and produces
the same outputs as B.m. The superimposed fields of class B and new local variables in B.m are declared in C .
Translation then proceeds by inserting refinement checks into the refinement blocks.

Sequential refinement block R[P ,Q] A sequence of statements P in A.m that is a part of a refinement block is
transformed into the following sequence of instructions in the Boogie intermediate language. These steps bear
resemblance to formula (5, but with exhale and inhale in place of assert and assume, and a way to allow witnesses
to resolve non-determinism.

0. Duplicate the state (the heap, the permission mask, and the local variable environment).
1. Permissions to access the superimposed fields are derived from the permissions of the replaced fields by

splitting the fractional access permissions inside the invariant evenly among the replaced fields (see the
general rule for the replaced fields in Sect. 3).
The coupling invariant is then scaled by the amount of permissions to the replaced field held in the primary
copy times its share of the invariant, and inhaled into the secondary copy. The inhale operation in Chalice
transfers permissions to the callee and assumes the truth of the logical condition similar to assume-guarantee
reasoning in the sequential verification [LM09, HLMS11]. Permissions to access the replaced fields are
analogously exhaled from the secondary copy.

2. Execute Q from B.m normally using the secondary copy of the state.
3. Execute P from A.m angelically using the primary copy of the state. Here Chalice faces a limitation as it is only

capable of expressing in Boogie angelic execution of deterministic programs, call statements, and specification
statements. If P is a single non-deterministic statement, then Chalice replaces P with

Q ; assert post [P]

where post [P] is the postcondition of P . This essentially lets Q compute a witness that is then checked to
satisfy post [P].

4. Check the coupling between the two copies of the state. For the local variables from A.m, assert the logical
equality. The coupling invariant is scaled again by the amount of permissions to the replaced field held at the
end of P times its share, and exhaled from the secondary copy. The exhale operation checks that the copy
holds sufficient amount of permissions and asserts the truth of the logical condition.
If there are multiple refinement blocks in B.m, the values of the superimposed fields and local variables are
carried over to the subsequent refinement blocks.

Loop refinement L[I ,Q] Chalice adds assertions to establish the new loop invariant I at the entrance of the loop
and to show that the body Q maintains it. The body of the loop itself might contain refinement blocks and loop
refinements.

Figure 8 shows a simplified encoding into Boogie of the refinement of the program for computing the sum of
cubes from Fig. 6. The two additional loop invariants are assumed at the beginning of the loop body and asserted
at the end. The Boogie program is fed through the Boogie tool’s pipeline and into the automated theorem prover
Z3 [dMB08].

Modular refinement Chalice can optionally assume correctness of the abstract program to prove refinement of
the concrete program. All pre-existing assertions of A are eliminated from C by turning them into assumptions,
provided the updates to those variables have not changed. For example, the loop invariant i � n from the
abstract version of the program in Fig. 6 is assumed throughout the encoding in Fig. 8.

The technique effectively modularizes the verification of the program into refinement steps. We hope that by
structuring specifications and code into refinements, we can also better tackle the verification of programs that
without the refinement extension are challenging to Chalice.

Stepwise refinement of heap-manipulating code 531

Fig. 8. Refinement condition in Boogie of a program for computing the sum of cubes from Fig. 6

5. Related work

Refinement has a rich literature, see for example the references we mentioned in the introduction, and can be
described in a beautiful lattice-theoretic framework [BvW98] (and see also [Mor94]). The idea of reasoning about
data structures abstractly and hiding their concrete manifestations was used extensively in, for example, SIM-
ULA [DMN70] and CLU [LG86]. Hoare [Hoa72] suggested the use of a coupling invariant (aka representation
invariant) to describe the connection between the abstract and concrete views.

Hoare’s treatment and most subsequent treatments of data refinement (e.g., [Jon90, Mor90]) do not consider
refinements into new objects of previously defined classes. For example, Mikhajlova et al.[MS97, BMvW00]
consider data refinement in an object-oriented language, but their coupling invariants only relate the fields in a
class and a subclass, not any other objects in the heap accessible via those fields. Similarly, Grandy et al. use the
KIV tool to do refinement for Java programs, but the concrete programs contain all new classes, not instances of
previously defined classes [GSR07].

As far as we know, only Filipović et al. have spelled out and tackled the general problem of data refinements
into dynamic storage before [FOTSY10]. We have reached the same conclusions as they, that a client is not
allowed to update a heap location just because it is able to reach that heap location. That is, just because a client
is able to compute an address in the heap (even if the programming language can guarantee something about the
type of the value stored in that heap location, which is the case for cell.x in Fig. 4) does not mean the client
is allowed to access that heap location. When no pointers are involved, it is reasonable to restrict the concrete
representation used in a data refinement to variables or fields introduced as part of the refinement. But to let the

532 K. R. M. Leino, K. Yessenov

concrete representation include instances of previously declared classes, it is necessary to generalize the notion
of “variables used by the concrete representation” to “heap locations used by the concrete representation”. Both
Filipović et al. and we achieve this.

The biggest difference between the work of Filipović et al. and ours lies in how the coupling relation is
provided. In particular, we make the coupling invariant part of the concrete program text, and we make it explicit
which abstract variables are being replaced. Also, our work includes an implementation in a tool.

Our coupling invariants (like (1)) declare a relation on not just the values of abstract and concrete variables,
but also on the access permissions to these variables. This is quite related to the treatment of abstract predicates
[PB05], as implemented for example in VeriFast [JP08] and Chalice [LMS09, HKMS12]. In particular, entering the
concrete view corresponds to opening (aka unfolding) a predicate, and returning to the abstract view corresponds
to closing (aka folding) the predicate. Two differences are that our abstract variables need not have boolean type
(so they are more like model fields, see, e.g., [HLL+12]) and our coupling-invariant declarations allow a list of
abstract variables to be replaced by concrete ones.

Jones’s work on πoβλ includes data refinement and does allow the concrete program to allocate and make
use of new objects of previously defined classes [Jon96]. However, this is achieved by the draconian rule that an
object reference is not allowed to be passed “over” another, meaning that methods cannot take object references
as in- or out-parameters.

Several tools are available for refinement. The Rodin tool set [ABH+10] includes an impressive assortment of
development and testing facilities. At its core is the Event-B formalism [Abr10a], which in turn draws from action
systems [BS91]. The executable part of an Event-B program consists of a set of guarded multi-assignment state-
ments. This makes refinement checking much simpler than if the events had a more complex structure. Designed
to handle concurrency, sequential control flow has to be encoded manually by introducing state variables. In con-
trast, our language uses common programming constructs like sequential composition, if and while statements,
and method calls. Although the Chalice language and verifier support concurrency, we have not investigated the
connection between these features and refinement, whereas concurrency and refinement have always been present
in Event-B. While pointers and fields can be encoded in Event-B (e.g., [Abr03]), it does not facilitate refinements
that introduce new objects of previously defined classes. Rodin provides a slick IDE in Eclipse. Its proof assistant
is mostly automatic, but frequently requires some manual interaction with the proof assistant.

Atelier B [Cle] is a refinement tool set that supports both the Event-B and B formalisms [Abr96]. In B,
programs are sequential and hierarchically structured, like in Ada. Indeed, once programs have been refined into
sufficient detail, the system can produce executable Ada or C code. Atelier B and its support tools have been put
to impressive use [Abr06]. As in Rodin, it does not facilitate refinements that introduce new objects of previously
defined classes, and conducting proofs requires manual interaction with the proof assistant.

Perfect Developer is a refinement-based language and IDE for developing object-oriented programs [Esc01].
Its strength lies in inlining objects (i.e., treating classes as records), where the well-studied rules for data refinement
apply. One can also use a mode where objects are instead accessed via pointers (as usual in object-oriented pro-
grams), but then its custom-built prover, which is automatic and does not permit manual intervention, can easily
get stuck [CMM05]. In this mode, the support for and soundness of refinement into new objects is not clear to us.

While research on refinement has not focused on how object references are introduced and used, a lot of ver-
ification research, especially in the last decade, has. The central problem occurs when two objects are abstractly
aliased [LN02], meaning that one is used as part of the internal representation of the other. In such cases, a
modification of one object can affect the other, and a verification system must be able to detect or prevent such
possibilities.

For this purpose, there are specification and verification techniques like ownership (e.g., [CD02]), dynamic
frames [Kas06], separation logic [Rey02], and implicit dynamic frames [SJP09]; for a comparison of these tech-
niques, see [HLL+12]. The condition that describes the consistent states of an object’s data representation is called a
class invariant [Mey88]. In verification, it becomes necessary to keep track of whether or not a class invariant holds,
which, due to the possibility of reentrancy, is not necessarily just the boundaries of public methods [BDF+04].
The frame of a method describes which parts of the program state the method may modify. In verification, it is
also necessary to know the frames of methods, because the frame of an object is not necessarily entirely hidden
from clients. Class invariants and framing complicate the specifications one has to write to do verification.

For refinement, there is hope that these specifications can be made simpler. The reason is that in the abstract
view of a program, the representation of an object is not yet conceived, and therefore there is no abstract aliasing,
class invariants do not relate the fields of multiple objects, and frames are just subsets of the abstract variables.

Stepwise refinement of heap-manipulating code 533

A common discipline in object-oriented programming is that subclasses are to be used as behavioral subtypes.
This discipline has been formalized, with some variations in the treatment of one- and two-state class invariants
[Lea91, LW94, SH02]. Behavioral subtyping is closely related to refinement in that it describes when one class
can be replaced by a subclass.

In recent work, Tafat et al. [TBM10] consider data refinement in an object-oriented language. Building
on a specification methodology that uses ownership, they treat the abstract state as model fields [LM06] and
propose a syntax for specifying abstract witnesses when a non-deterministic coupling invariant is used. They
limit refinements to one step, between an abstract level given as a pre- and postcondition specification and
a concrete level given as code. The up-side of this limitation is that it makes it easier to generate first-order
verification conditions, since a formula like P ⇒ wp[[S ,Q]] can be used. In their setting, it is necessary to include
preconditions that say whether or not class invariants hold, so the hope that specifications may become simpler
than for verification is not fully realized. They do not provide an extensive treatment of framing.

The impressive verification of the seL4 operating system kernel also makes use of data refinement [KSW10].
It seems that their refinements could be extended to our way of dealing with refinements into new instances of
previously existing classes, because the seL4 model includes memory capabilities, which are like the permissions
used by Chalice.

Finally, we mention that Event-B also has a syntactic construct for specifying a witness when an event is
refined [Abr10b].

6. Conclusions

We have presented a refinement system that allows objects to be refined into aggregate objects and whose reasoning
engine is built on a powerful SMT solver. The language uses features common in object-oriented languages,
coupling invariants can mention multiple objects, it is possible to supply abstract witnesses for non-deterministic
coupling invariants, and refinement steps can be prescribed using a duplication-saving syntax of code skeletons.

We have implemented a prototype checker by incorporating the refinement features in Chalice. So far, we have
applied the prototype only to smaller examples, partly due to the fact that Chalice currently does not support
sets or maps, which often occur in refinement examples. In the future, we would like to gain more experience with
this prototype.

Our work also suggests some other research to be done. It would be interesting to explore the possibility of
including language features like instantiable classes in a well-developed refinement tool like Rodin. The language
and specifications in Chalice were designed to support concurrency, so we imagine that it would be interesting to
combine those features with refinement. Finally, we expressed a hope that refinement specifications could work
out to be simpler than the specifications one needs for more traditional verification; we would love to see that
issue resolved in the future.

Acknowledgments

This work was performed while Kuat Yessenov was doing a research internship at Microsoft Research. We are
grateful to Peter Müller who suggested we might try to base our refinements on the permissions in Chalice rather
than on the dynamic frames of Dafny [Lei10], where we had started. We thank Emil Sekerinski and the referees
for comments on drafts of this paper.

References

[ABH+10] Abrial J-R, Butler M, Hallerstede S, Hoang TS, Mehta F, Voisin L (2010) Rodin: an open toolset for modelling and reasoning
in Event-B. Int J Softw Tools Technol Transf

[Abr96] Abrial J-R (1996) The B-Book: assigning programs to meanings. Cambridge University Press, Cambridge
[Abr03] Abrial J-R (2003) Event based sequential program development: Application to constructing a pointer program. In: Araki K,

Gnesi S, Mandrioli D (eds) FME 2003: formal methods, international symposium of formal methods Europe. Lecture Notes
in Computer Science, vol 2805. Springer, Berlin, pp 51–74

[Abr06] Abrial J-R (2006) Formal methods in industry: achievements, problems, future. In: Osterweil LJ, Dieter Rombach H, Soffa
ML (eds) 28th international conference on software engineering (ICSE 2006). ACM, New York, pp 761–768

[Abr10a] Abrial J-R (2010a) Modeling in Event-B: system and software engineering. Cambridge University Press, Cambridge
[Abr10b] Abrial J-R (2010b) Modeling in Event-B: system and software engineering. Cambridge University Press, Cambridge

534 K. R. M. Leino, K. Yessenov

[Bac78] Back RJR (1978) On the correctness of refinement steps in program development. PhD thesis, University of Helsinki. Report
A-1978-4.

[BCD+06] Barnett M, Chang B-YE, DeLine R, Jacobs B, Leino KRM (2006) Boogie: a modular reusable verifier for object-oriented
programs. In: de Boer FS, Bonsangue MM, Graf S, de Roever W-P (eds) Formal methods for components and objects: 4th
international symposium, FMCO 2005. Lecture Notes in Computer Science, vol. 4111. Springer, Berlin, pp 364–387

[BDF+04] Barnett M, DeLine R, Fähndrich M, Leino KRM, Schulte W (2004) Verification of object-oriented programs with invariants.
J Object Technol, 3(6):27–56

[BFL+11] Barnett M, Fähndrich M, Leino KRM, Müller P, Schulte W, Venter H (2011) Specification and verification: the Spec#
experience. Commun. ACM, 54(6):81–91

[BFM+09] Baudin P, Filliâtre JC, Marché C, Monate B, Moy Y, Prevosto V (2009) ACSL: ANSI/ISO C specification language, version
1.4. http://frama-c.com/

[BHL+10] Ball T, Hackett B, Lahiri SK, Qadeer S, Vanegue J (2010) Towards scalable modular checking of user-defined properties. In:
Leavens GT, O’Hearn P, Rajamani SK (eds) Verified software: theories, tools, experiments, (VSTTE 2010). Lecture Notes in
Computer Science, vol 6217. Springer, Berlin, pp 1–24

[BMvW00] Back R-J, Mikhaljova A, von Wright J (2000) Class refinement as semantics of correct object substitutability. Formal Aspects
Comput 12(1):18–40

[Boy03] Boyland J (2003) Checking interference with fractional permissions. In: Cousot R (ed) Static analysis, 10th international
symposium, SAS 2003. Lecture Notes in Computer Science, vol 2694. Springer, Berlin, pp 55–72

[BS91] Back R-J, Sere K (1991) Stepwise refinement of action systems. Struct Program 12(1):17–30
[BvW98] Back R-J, von Wright J (1998) Refinement calculus: a systematic introduction. Graduate Texts in Computer Science. Springer,

Berlin
[CD02] Clarke D, Drossopoulou S (2002) Ownership, encapsulation and the disjointness of type and effect. In: Proceedings of the 2002

ACM SIGPLAN conference on object-oriented programming systems, languages and applications, OOPSLA 2002. ACM,
New York, pp 292–310

[CDH+09] Cohen E, Dahlweid M, Hillebrand M, Leinenbach D, Moskal M, Santen T, Schulte W, Tobies S (2009) VCC: a practical
system for verifying concurrent C. In: Berghofer S, Nipkow T, Urban C, Wenzel M (eds) Theorem proving in higher order
logics, 22nd international conference, TPHOLs 2009. Lecture Notes in Computer Science, vol 5674. Springer, Berlin, pp 23–42

[Cle] ClearSy. Atelier B. http://www.atelierb.eu/.
[CMM05] Carter G, Monahan R, Morris JM (2005) Software refinement with perfect developer. In: Aichernig BK, Beckert B (eds) Third

IEEE international conference on software engineering and formal methods (SEFM 2005). IEEE Computer Society, New
York, pp 363–373

[DD77] Denning DE, Denning PJ (1977) Certification of programs for secure information flow. Commun ACM 20(7):504–513
[Dij68] Dijkstra EW (1968) A constructive approach to the problem of program correctness. BIT 8:174–186
[Dij76] Dijkstra EW (1976) A discipline of programming. Prentice Hall, Englewood Cliffs
[dMB08] de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: TACAS 2008. Lecture Notes in Computer Science, vol 4963.

Springer, Berlin, pp 337–340
[DMN70] Dahl O-J, Myhrhaug B, Nygaard K (1970) Common base language. Publication S-22, Norwegian Computing Center
[Esc01] Escher Technologies, Inc. (2001) Getting started with perfect. http://www.eschertech.com
[FOTSY10] Filipović I, O’Hearn P, Torp-Smith N, Yang H (2010) Blaming the client: on data refinement in the presence of pointers.

Formal Aspects Comput 22(5):547–583
[GP85] Gries D, Prins J (1985) A new notion of encapsulation. In: Proceedings of the ACM SIGPLAN 85 symposium on language

issues in programming environments. SIGPLAN Notices, vol 20, No. 7. ACM, New York, pp 131–139
[GSR07] Grandy H, Stenzel K, Reif W (2007) A refinement method for Java programs. In: Bonsangue MM, Johnsen EM (eds) Formal

methods for open object-based distributed systems, 9th IFIP WG 6.1 international conference, FMOODS 2007. Lecture Notes
in Computer Science, vol 4468. Springer, Berlin, pp 221–235

[GV90] Gries D, Volpano D (1990) The transform—a new language construct. Struct Program 11(1):1–10
[HKMS12] Heule S, Kassios IT, Müller P, Summers AJ (2012) Verification condition generation for permission logics with abstraction

functions. Technical Report 761, ETH Zurich
[HLL+12] Hatcliff J, Leavens GT, Rustan M. Leino K, Müller P, Parkinson M (2012) Behavioral interface specification languages. ACM

Comput Surv, 44(3)
[HLMS11] Heule S, Rustan M. Leino K, Müller P, Summers AJ (2011) Fractional permissions without the fractions. In: 13th workshop

on formal techniques for Java-like programs, FTfJP 2011
[Hoa72] Hoare CAR (1972) Proof of correctness of data representations. Acta Informatica 1(4):271–281
[Jac06] Jackson D (2006) Software abstractions: logic, language, and analysis. MIT Press, Cambridge
[Jon90] Jones CB (1990) Systematic software development using VDM. International Series in Computer Science, 2nd edn. Prentice

Hall, Englewood Cliffs
[Jon96] Jones CB (1996) Accommodating interference in the formal design of concurrent object-based programs. Formal Methods

Syst Des 8(2):105–122
[JP08] Jacobs B, Piessens F (2006) The VeriFast program verifier. Technical Report CW-520, Department of Computer Science,

Katholieke Universiteit Leuven
[Kas06] Kassios IT (2006) Dynamic frames: support for framing, dependencies and sharing without restrictions. In: Misra J, Nipkow T,

Sekerinski E (eds) FM 2006: formal methods, 14th international symposium on formal methods. Lecture Notes in Computer
Science, vol 4085. Springer, Berlin, pp 268–283

[KSW10] Klein G, Sewell T, Winwood S (2010) Refinement in the formal verification of seL4. In: Hardin DS (ed) Design and verification
of microprocessor systems for high-assurance applications. Springer, Berlin, pp 323–339

[LB03] Leuschel M, Butler M (2003) ProB: a model checker for B. In: Araki K, Gnesi S, Mandrioli D (eds) FME 2003: formal
methods. Lecture Notes in Computer Science, vol 2805. Springer, Berlin, pp 855–874

http://frama-c.com/
http://www.atelierb.eu/
http://www.eschertech.com

Stepwise refinement of heap-manipulating code 535

[Lea91] Leavens GT (1991) Modular specification and verification of object-oriented programs. IEEE Softw 8(4):72–80
[Lei10] Leino KRM (2010) Dafny: an automatic program verifier for functional correctness. In: Clarke EM, Voronkov A (eds) LPAR-

16. Lecture Notes in Computer Science, vol 6355. Springer, Berlin, pp 348–370
[LG86] Liskov B, Guttag J (1986) Abstraction and specification in program development. MIT Electrical Engineering and Computer

Science Series. MIT Press, Cambridge
[LM06] Leino KRM, Müller P (2006) A verification methodology for model fields. In: Sestoft P (ed) Programming languages and

systems, 15th European symposium on programming, ESOP 2006. Lecture Notes in Computer Science, vol 3924. Springer,
Berlin, pp 115–130

[LM09] Leino KRM, Müller P (2009) A basis for verifying multi-threaded programs. In: Castagna G (ed) Programming languages and
systems, 18th European Symposium on Programming, ESOP 2009. Lecture Notes in Computer Science, vol 5502. Springer,
Berlin, pp 378–393

[LMS09] Leino KRM, Müller P, Smans J (2009) Verification of concurrent programs with Chalice. In: Aldini A, Barthe G, Gorrieri R
(eds) Foundations of security analysis and design V: FOSAD 2007/2008/2009 tutorial lectures. Lecture Notes in Computer
Science, vol 5705. Springer, Berlin, pp 195–222

[LN02] Leino KRM, Nelson G (2002) Data abstraction and information hiding. ACM Trans Program Lang Syst 24(5):491–553
[LR10] Leino KRM, Rümmer P (2010) A polymorphic intermediate verification language: design and logical encoding. In: Esparza J,

Majumdar R (eds) Tools and algorithms for the construction and analysis of systems, 16th international conference, TACAS
2010. Lecture Notes in Computer Science, vol 6015. Springer, Berlin, pp 312–327

[LW94] Liskov B, Wing JM (1994) A behavioral notion of subtyping. ACM Trans Program Lang Syst 16(6)
[Mey88] Meyer B (1998) Object-oriented software construction. Series in Computer Science. Prentice-Hall, NJ
[MLM+97] Martin AJ, Lines A, Manohar R, Nyström M, Pénzes PI, Southworth R, Cummings U (1997) The design of an asynchronous

MIPS R3000 microprocessor. In: 17th conference on advanced research in VLSI ARVLSI ’97. IEEE Computer Society, New
York, pp 164–181

[Mor87] Morris JM (1987) A theoretical basis for stepwise refinement and the programming calculus. Sci Comput Program 9(3):287–306
[Mor90] Morgan C (1990) Programming from specifications. Series in Computer Science. Prentice-Hall International, NJ
[Mor94] Morgan C (1994) The cuppest capjunctive capping, and Galois. In: Roscoe AW (ed) A classical mind: essays in honour of

C.A.R. Hoare. International Series in Computer Science. Prentice-Hall, NJ, pp 317–332
[Mor12] Morgan C (2012) Compositional noninterference from first principles. Formal Aspects Comput 24(1):3–26
[MS97] Mikhaljova A, Sekerinski E (1997) Class refinement and interface refinement in object-oriented programs. In: Fitzgerald JS,

Jones CB, Lucas P (eds) FME ’97: industrial applications and strengthened foundations of formal methods, 4th international
symposium of formal methods Europe. Lecture Notes in Computer Science, vol 1313. Springer, Berlin, pp 82–101

[PB05] Parkinson MJ, Bierman GM (2005) Separation logic and abstraction. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT
symposium on principles of programming languages, POPL 2005. ACM, New York, pp 247–258

[Rey02] Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: 17th IEEE symposium on logic in computer
science (LICS 2002). IEEE Computer Society, New York, pp 55–74

[SH02] Shield J, Hayes IJ (2002) Refining object-oriented invariants and dynamic constraints. In: 9th Asia–Pacific software engineering
conference (APSEC 2002). IEEE Computer Society, New York, pp 52–61

[SJP09] Smans J, Jacobs B, Piessens F. Implicit dynamic frames: Combining dynamic frames and separation logic. In: Drossopoulou S
(ed) ECOOP 2009—Object-oriented programming, 23rd European conference. Lecture Notes in Computer Science, vol 5653.
Springer, Berlin, pp 148–172

[TBM10] Tafat A, Boulmé S, Marché C (2010) A refinement methodology for object-oriented programs. In: Beckert B, Marché C (eds)
Formal verification of object-oriented software, papers presented at the international conference, pp 143–159

[WD96] Woodcock J, Davies J (1996) Using Z: Specification, refinement, and proof. Prentice Hall, NJ
[Wir71] Wirth N (1971) Program development by stepwise refinement. Commun ACM 14:221–227

Received 23 December 2011
Accepted in revised form 28 May 2012 by Peter Höfner, Robert van Glabbeek, Ian Hayes and Jim Woodcock
Published online 2 July 2012

	Stepwise refinement of heap-manipulating code in Chalice
	Abstract
	0 Introduction
	1 Introductory examples
	1.1 Algorithmic refinement
	1.1.1 Top-level description
	1.1.2 Introducing a loop
	1.1.3 Adding an efficient data structure
	1.1.4 Summarizing the example

	1.2 Data refinement

	2 Heap refinement
	2.1 Permissions
	2.2 Coupling invariants for the heap refinement

	3 Surface syntax
	3.1 Class refinement
	3.2 Skeletons

	4 Checking algorithm
	5 Related work
	6 Conclusions
	Acknowledgments
	References

