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Topological Dirac and Weyl semimetals have an energy spectrum that hosts Weyl nodes appearing in
pairs of opposite chirality. Topological stability is ensured when the nodes are separated in momentum
space and unique spectral and transport properties follow. In this work, we study the effect of a space-
dependent Weyl node separation, which we interpret as an emergent background axial-vector potential, on
the electromagnetic response and the energy spectrum of Weyl and Dirac semimetals. This situation can
arise in the solid state either from inhomogeneous strain or nonuniform magnetization and can also be
engineered in cold atomic systems. Using a semiclassical approach, we show that the resulting axial
magnetic fieldB5 is observable through an enhancement of the conductivity as σ ∼ B2

5 due to an underlying
chiral pseudomagnetic effect. We then use two lattice models to analyze the effect of B5 on the spectral
properties of topological semimetals. We describe the emergent pseudo-Landau-level structure for different
spatial profiles ofB5, revealing that (i) the celebrated surface states of Weyl semimetals, the Fermi arcs, can
be reinterpreted as n ¼ 0 pseudo-Landau levels resulting from a B5 confined to the surface, (ii) as a
consequence of position-momentum locking, a bulk B5 creates pseudo-Landau levels interpolating in real
space between Fermi arcs at opposite surfaces, and (iii) there are equilibrium bound currents proportional to
B5 that average to zero over the sample, which are the analogs of bound currents in magnetic materials. We
conclude by discussing how our findings can be probed experimentally.

DOI: 10.1103/PhysRevX.6.041046 Subject Areas: Atomic and Molecular Physics,
Condensed Matter Physics,
Topological Insulators

I. INTRODUCTION

Electronic and lattice degrees of freedom are inevitably
intertwined in solid-state physics [1]. With the advent of
graphene [2], a remarkable effect was soon acknowledged:
Elastic deformations of the lattice originating from strain
can couple to the low-energy Dirac quasiparticles of
graphene as a pseudomagnetic or axial-magnetic-vector
potential [3–5]. In order to preserve time-reversal sym-
metry, the axial-vector potential couples to the two valleys
with an opposite sign. Spatially inhomogeneous strain
generates an effective axial magnetic field B5 and gives
rise to a pseudo-Landau-level spectrum at low energies [6].
Strain-induced pseudo-Landau levels have been observed
with scanning-tunneling microscopy both in real [7] and
artificial graphene [8,9]. The realization of Landau levels
without real external magnetic fields results in effective
fields as high as 300 T and is a direct consequence of

the Dirac nature of the carriers, exemplifying the unique
response of this class of systems to strain.
In this respect, Weyl and Dirac semimetals in three

dimensions (3D) [10,11] are expected to behave as 3D
cousins of graphene and host similar effects. A Weyl
semimetal is a state with pairs of band-touching points
with linear dispersion, also called Weyl nodes. The Weyl
nodes are sources and sinks of Berry curvature, i.e., Berry
curvature monopoles, in momentum space. The charge of a
monopole defines the chirality of the corresponding node,
and the two partners of a pair of nodes must have opposite
chirality. Since monopoles can only annihilate in pairs,
Weyl nodes are topologically protected as long as they are
separated in momentum space by a vector b. Dirac
semimetals can then be regarded as special cases of
Weyl semimetals, where nodes of opposite chiralities are
located at the same momentum but additional symmetries
constrain the system to remain gapless.
The vector b can be alternatively interpreted as an axial

gauge field since it couples with an opposite sign to Weyl
nodes of opposite chirality [12–17]. This interpretation
suggests that if b is varied in space, it will generate a
nonzero axial magnetic field B5 ¼ ∇ × b that couples to
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fermions of opposite chirality with an opposite sign. This
observation, together with the recent theoretical evidence
that effective gauge fields can emerge in strained Weyl
semimetals [18–21], is an importantmotivation of our study.
The main purpose of this work is therefore to address the

effect of an axial magnetic field B5 arising in any type of
Weyl and Dirac semimetal. We first discuss that the
physical mechanism for the emergence of B5 depends
on the presence or absence of time-reversal symmetry.
When a Weyl semimetal preserves time-reversal symmetry,
each pair of nodes has a time-reversed partner (hence, the
minimal number of nodes is four). In this case, B5 can be
generated by an inhomogeneous strain profile and has an
opposite sign for each time-reversed pair of nodes such that
time-reversal symmetry is preserved. In contrast, time-
reversal breaking Weyl semimetals are not subjected to this
constraint, and B5 can emerge either from an inhomo-
geneous magnetization or strain [13,18]. Then, a richer set
of phenomena can occur, with the example of a finite
angular momentum for the electronic states [22].
Here, we naturally unify these mechanisms under a

single framework by considering any Weyl semimetal in
the presence of a spatially varying Weyl node separation.
We discuss the effect of inhomogeneous nodal separation
on (i) the changes in the spectrum due to the emergence of
pseudo-Landau levels and (ii) transport and, in particular,
the effect on the conductivity. In exploring (i), we will show
that the Fermi arcs, the characteristic surface states of
topological semimetals [23,24], can be reinterpreted as the
chiral n ¼ 0 pseudo-Landau level associated with a large
B5 confined to the surface. On the other hand, the presence
of a finite B5 in the bulk also creates pseudo-Landau levels.
The n ¼ 0 pseudo-Landau level of the bulk is then
smoothly connected to the surface arcs. We find that this
follows from a known phenomenon in the two-dimensional
quantum Hall effect, sometimes referred to as position-
momentum locking; the average center position of a
Landau-level wave function in one planar direction, say
hyi, is determined by its momentum in the perpendicular
direction, kx. Such a concept, considered recently in some
detail for real magnetic fields in Weyl semimetals [25,26],
will also be of use here. We find that these results
significantly depart from the naive expectation gained from
studies of strained graphene [3–5] from which the bulk
zeroth pseudo-Landau level is expected to have opposite
chirality with respect to the Fermi arcs [13,27]. Regarding
(ii), we will show, based on both field theoretic arguments
and a rigorous semiclassical calculation, that a finite bulk
B5 enhances the conductivity of a Weyl semimetal as
σ ∼B2

5. This response is related to a charge anomaly, much
like the topological negative magnetoresistance σ ∼B2 is
rooted in the chiral anomaly [28].
Moreover, we find that a time-reversal breaking Weyl

semimetal may support bound currents originating in a
chiral pseudomagnetic effect driven by B5. This effect

exists in equilibrium, unlike the standard chiral magnetic
effect [14–16,29–33] which is strictly zero in a nondy-
namical situation [34–38].
The advances made on the experimental front in recent

years allows us to explore the feasibility and detectability of
these effects while considering a wide range of possible
platforms. While Dirac and Weyl semimetal material
growth thrives in condensed matter [39–68], they could
also be engineered with cold atoms [69]. This provides
access to inversion-breaking semimetals that are currently
the standard in the solid state (with notable potential
exceptions [67,68]), as well as to time-reversal breaking
semimetals in cold atoms. We end this paper with an
estimate of the magnitude of these effects based on real
material parameters and discuss how the phenomena
described here might be detected.
The structure of this paper is as follows. In Sec. II, we

review how inhomogeneous strain (magnetization) in time-
reversal-invariant (broken) Weyl and Dirac semimetals
leads to an effective axial magnetic field or, alternatively,
a space-dependent Weyl node separation. In Sec. III, we
predict the enhancement of the conductivity of Weyl and
Dirac semimetals due to a uniform axial magnetic field and
relate it to the underlying associated chiral pseudomagnetic
effect. The latter leads to bound currents flowing within the
material and along the boundary, even in equilibrium, as
well as an enhanced bulk longitudinal conductivity. In
Sec. IV, we introduce two lattice models that illustrate
the spectral breakdown into pseudo-Landau levels and
explicitly calculate the bound current distribution within
a finite sample. We describe position-momentum locking
and show that any equilibrium bulk current is compensated
by surface currents. As an example of the relevance of our
findings to different contexts, we discuss the implications
of our results on the situation where two Weyl semimetals
with different Weyl node separation are brought into
proximity. Finally, in Sec. V, we provide a discussion
and proposals to experimentally observe the discussed
phenomena.

II. EMERGENCE OF SPACE-DEPENDENT
NODE SEPARATION

In this section, we review how a nonuniform magneti-
zation or strain can lead to a space-dependent node
separation. This discussion of the physical origin of axial
magnetic fields in solid-state systems will set the stage
for our general study presented in the next sections, by
introducing the main concepts and notation.

A. Time-reversal symmetric Weyl semimetal

The existence of Weyl nodes relies on breaking either
time-reversal (T ) or inversion symmetry (I). If both are
present, all energy bands are manifestly twofold degener-
ate, and, in particular, point nodes must have a degenerate
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partner with opposite chirality. If T is broken, the two
nodes of a pair are allowed to be separated in momentum
space, with the separation determined by b. If I is broken
but T is preserved, each pair must have a time-reversed
partner, such that the minimum number of Weyl nodes in
I-broken Weyl semimetals is four. In an I-broken Weyl
semimetal, the Hamiltonian of the low-energy Weyl fer-
mions for each pair is given by

HWeyl ¼
X

i¼x;y;z

X
s¼�

sviðki þ sbiÞσi; ð1Þ

where vi are the Fermi velocities, σi are Pauli matrices
spanning the orbital space of the Weyl fermions, and
s ¼ � denotes the chirality of the nodes. It is clear from
Eq. (1) that the vector b ¼ ðbx; by; bzÞ quantifies the
separation of the two nodes of a pair in momentum space.
In general, in a crystalline material, a uniform strain of

strength g alters the overlaps between wave functions in
different orbitals [18,21]. In Ref. [21], for instance, which
considered HgTe with spin-orbit-induced band inversion in
the presence of strain, found that at low energies the
spectrum consists of four pairs of Weyl nodes. Because
of the presence of strain, the Hamiltonian of each pair then
takes the form

HWeyl ¼
X
i;s¼�

viðgÞ½skiσi þ biðgÞσi�: ð2Þ

From Eq. (2), we observe that the effect of strain is twofold.
First, it modifies the Fermi velocities through viðgÞ ∼ ffiffiffi

g
p

.
Second, it controls the Weyl node separation through the
vector b with magnitude jbðgÞj ∼ ffiffiffi

g
p

. Both of these effects
are analogous to those predicted in graphene [3,5,70].
Reference [21] analyzed the effect of strain as a

homogeneous perturbation characterized by g. However,
in practice, strain can have a nonuniform profile gðrÞ. This
can occur, for instance, when there is a lattice mismatch
between a substrate and the semimetal sample or, alter-
natively, via chemically induced strain. In the former
scenario, for thin enough samples, it can be expected that
the strain profile relaxes smoothly as a function of the
distance from the substrate (quantitative estimates will be
provided in Sec. V). Let us then choose the direction
of the strain inhomogeneity to be y such that gðrÞ ¼ gðyÞ,
and assume that gðyÞ changes slowly with y, on a length
scale that is much smaller than any other microscopic
length scale. In such a perturbative regime, gðyÞ≃
g0 þ δgðyÞ with δgðyÞ=g0 ≪ 1, it is reasonable to expand
Eq. (2) to lowest order in δgðyÞ=g0. Using v½gðyÞ�≃
vðg0Þð1þδgðyÞ=2g0Þ and bi½gðyÞ�≃biðg0Þð1þδgðyÞ=2g0Þ,
one obtains

HWeyl ≃
X
i;s¼�

vðg0Þσi
�
si∂i þ biðg0Þ

�
1þ δgðyÞ

g0

��
: ð3Þ

We first note that the effect of the space-dependent Fermi
velocity due to strain [70] is of order ½δgðyÞ=g0�∂i, so it
can be neglected in the low-energy linear approximation.
An inhomogeneous velocity has been predicted recently
to result in an anomalous Hall signal transverse to the
direction in which the strain is applied [71,72]. However,
these works neglected the effect of emergent inhomo-
geneous Weyl node separation that, according to the above
analysis, is of lower order in δgðxÞ and therefore dominant.
Motivated by the above effective model, we consider the

following real-space Hamiltonian:

HWeyl ≃
X
i;s¼�

v½si∂i − bð0Þi þ δbiðrÞ�σi; ð4Þ

where bðrÞ≡ bð0Þ − δbðrÞ encodes the strain profile.
From such a model with a single pair of nodes, the
Dirac semimetal and the inversion-breaking Weyl semi-
metal can be constructed by adding time-reversal partners
of Eq. (4) in the appropriate location in momentum space in
order to restore time-reversal symmetry.
We note that in the literature, the vector b has been

referred to, depending on the context, as chiral, axial, or
pseudovector potentials. In this work, we will refer to b as
the axial-vector potential, as is customary in high-energy
physics where this field was first discussed.

B. Time-reversal-breaking Weyl semimetal

In T -breaking Weyl semimetals, the axial-vector poten-
tial b that separates the Weyl nodes in momentum space
can have its physical origin in a finite magnetization. A
hallmark example of a Weyl semimetal of this kind is
the proposal by Burkov and Balents [73], which is based
on topological-insulator–trivial-magnetic-insulator hetero-
structures. Another example is the Weyl semimetal state
induced by magnetic order at a quadratic band crossing
point on pyrochlore iridates [74]. In addition, a time-
reversal-breaking Weyl semimetal has been argued to be
consistent with ARPES measurements on YbMnBi2 [67].
Other promising recent proposals [68] suggest, relying on
ab initio calculations, that magnetic Heusler compounds
can host Weyl quasiparticles. Remarkably, alloys of the
latter kind could realize the minimal model of a T -breaking
Weyl semimetal with only two nodes and a node separation
that spans a significant fraction of the Brillouin zone.
Similar to other magnetic materials, the magnetization

that induces the Weyl semimetal state by separating two
nodes of opposite chirality in momentum space may itself
be nonuniform and become a function of position [75].
As a result, the Weyl node separation becomes a function
of position, generating an axial-magnetic-field strength. To
lowest order in the spatial variation of the Weyl node
separation (i.e., magnetization), the effective model (4) will
describe this state. We note as well that interfaces between
magnetic domains, either abrupt or continuous, could be
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modeled by the spatial profiles of b that we consider in this
work. In addition, it is plausible to expect that coating one
of the surfaces with a ferromagnetic layer or enough surface
magnetic dopants will also result in a spatially varying
magnetization. The successful realization of magnetically
doped topological insulators [76] suggests that similar
techniques could be applied in Weyl samples as well.
In addition to an inhomogeneous magnetization, a

nonuniform strain can generate an axial magnetic field
in T -breaking Weyl semimetals. Once T is broken and a
finite b exists, strain can allow us to effectively change b
from its bare value, thus changing the separation of Weyl
nodes in momentum space. Note, however, that strain on its
own cannot break time-reversal symmetry and thus cannot
induce a finite b from b ¼ 0.

C. Effective realization in cold atomic systems

While the above sections discuss realizations of inho-
mogeneous Dirac and Weyl semimetals in the solid state,
our discussion is also relevant for cold atomic systems [69].
Two appealing aspects of the latter are that different
topological properties can be extracted easily from exper-
imental data [77–79] and models that respect or break time
reversal could be engineered.
There are two further advantages of considering cold

atomic systems that are relevant to probe the effects we
discuss. First, engineering a space-dependent Weyl node
separation is experimentally feasible. A natural way to
achieve this is to smoothen the confining trapping potential
that contains the lattice [80]. Although plausible, it does not
offer the degree of control that will expose all of the salient
features we are after, but only a subset of them. A more
controlled and realistic approach is to create domain walls
between topological states [81] as already described in
Ref. [82] for Chern insulators. We elaborate on more
particulars of this proposal in the concluding section.
The second advantage of cold atomic systems is the

controlled experimental access to transport properties that
was recently discussed in the context of Chern insulators
[83,84]. The key observable is the center-of-mass velocity
vc:m: since it is simple to measure experimentally and is
connected to the current density j and particle density n
through [83]

vc:m: ¼
j
n
: ð5Þ

Although, in general, n also depends on external fields, in
our particular case, it acts as an unimportant constant factor
as we describe below. Thus, via Eq. (5), it is possible to
directly probe the longitudinal conductivity.

III. ENHANCED TOPOLOGICAL
LONGITUDINAL CONDUCTANCE

Many peculiar transport properties have been attributed
to topological semimetals [10,11], while not many of them

have proven easy to measure. One particularly striking
feature that has been confirmed in several experiments
[39–66,85] is the appearance of a nonsaturating negative
magnetoresistance [86,87]. Conductance is one of the most
accessible experimental observables to characterize the
properties of a material. Therefore, we aim here to explore
the effect of an inhomogeneous Weyl node separation on
this quantity. We show that a space-dependent axial-vector
potential b enhances the longitudinal conductance of a
Weyl semimetal through its corresponding axial magnetic
field B5 ¼ ∇ × b. We begin by introducing a coupling to
an external electromagnetic field and discussing the role of
gauge invariance. We follow this by extending a quantum
field theory argument previously used in Ref. [40] to
include pseudo-gauge fields. We then support our claims
with a more rigorous semiclassical calculation by solving
the semiclassical kinetic equation.

A. Coupling to an external electromagnetic field
and the role of gauge invariance

In order to calculate the conductivity, we couple the
Hamiltonian (4) to an external electromagnetic field Aμ ¼
ðA0;AÞ using the minimal substitution

HWeyl ¼
X
s¼�

vfs½i∂i − eAiðxÞ� − biðxÞgσi þ A0: ð6Þ

The first important property of this Hamiltonian is that
left-handed (s ¼ 1) and right-handed (s ¼ −1) Weyl fer-
mions are decoupled, experiencing a chirality-dependent
gauge field, asμ ¼ Aμ þ sbμ, where bμ ¼ ½0;bðrÞ�. For what
follows, it is useful to define the left- and right-handed field
strengths fμνs ¼ ∂μasν − ∂νasμ.
The continuity equation for the current for each species

jμs ¼ ðns; jsÞ is determined by [13,88]

∂μj
μ
s ¼ s

e3

4π2ℏ2
Es · Bs −

e
τ
ðn − nsÞ; ð7Þ

which we now discuss in some depth. The first term on the
right-hand side of Eq. (7) is composed of the left and right
effective electromagnetic fields Es ¼ Eþ sE5 and Bs ¼
Bþ sB5, where ðE;BÞ, ðE5;B5Þ, and ðEs;BsÞ are built
out of the gauge field strength Fμν ¼ ∂μAν − ∂νAμ, the
axial-gauge-field strength fμνb ¼ ∂μbν − ∂νbμ, and fμνs ,
respectively. The second term on the right-hand side is a
scattering term that acts to equilibrate the number density
ns of the left and right chiralities [89,90] with a typical
scattering time τ [91].
The conservation laws for the current jμ ¼ P

sj
μ
s and

axial current jμ5 ¼
P

ssj
μ
s can be obtained from the addition

or subtraction of the two equations composing Eq. (7). A
first inspection reveals a seemingly striking feature; neither
of the two currents is conserved. The nonconservation of jμ5
is not forbidden, and it is referred to as the chiral anomaly
[11,88,92]. If both E5 ¼ 0 and B5 ¼ 0, then one recovers
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the celebrated chiral anomaly that schematically reads
∂μj

μ
5 ∼E · B [28,88]. In this case, the vector current satisfies

∂μjμ ¼ 0, and thus charge is conserved. However, it seems
that charge is not conserved when either E5 ≠ 0 or B5 ≠ 0.
Indeed, from Eq. (7), we find that the vector current satisfies
∂μjμ ∼E5 ·Bþ E · B5 [13,17].
In fact, there is no contradiction with current conserva-

tion, which can be understood in two different ways. First,
the axial-vector potential b is an observable and thus must
be single valued, with a zero vacuum expectation value
[11]. Thus, the total flux of the resulting B5 must be zero
over a surface enclosing the entire sample; regions with B5

and −B5 compensate each other by generating an equal
number of left- and right-handed fermions separated in real
space. Then, upon applying an electric field, charge flows
from one region to the other, respecting global charge
conservation.
Second, at the quantum-field-theory level, the noncon-

servation of charge is fixed by defining a consistent current
that preserves gauge invariance. The procedure has been
described both in the context of high-energy physics [93]
and Weyl semimetals [33]: The current calculated above
(the covariant current) is complemented by Chern-Simons
currents (the Bardeen-Zumino polynomials) of the form
−½1=ð4π2Þ�ϵμνρσbνFμν, which exactly cancel the anomaly
and define the consistent current. This procedure effectively
imposes a boundary condition for the spectral flow at the
energy of the cutoff that bounds the field theory. In a lattice
system, such a cutoff is a natural quantity, and the spectral
flow is bounded by construction. Note also that this
procedure applies wherever there is a finite axial magnetic
field B5 and therefore includes the boundaries where b
jumps from zero to a finite value or vice versa.

B. Quantum-field-theory approach

Our aim is to use the chiral anomaly Eq. (7) to find the
longitudinal conductance in the presence of a finite axial
magnetic field B5. To promote the derivation in Ref. [40],
we first use that, for three-dimensional Weyl fermions,
ns ¼ μ3s=ð6π2ℏ3v3Þ, which we employ to rewrite the
steady-state form of Eq. (7) as

μs ¼
�
μ3 −

3

2
sℏv3e2τEs · Bs

�
1=3

: ð8Þ

We now recall that the component of the current parallel to
B and B5 is given by

j ¼ e2

2π2ℏ2
½μ5Bþ μB5�: ð9Þ

The first term is the chiral magnetic effect [29,30] and has
been thoroughly studied in the context of Weyl semimetals
[14–16,31–33]. This term must be zero in equilibrium
[36,37,94–96] since it is proportional to a chemical

potential imbalance μ5 ¼ 1
2

P
s sμs. The second term on

the left-hand side is the key to our results: It represents the
analog of the chiral anomaly in the presence of an axial
magnetic field B5 and can be finite in equilibrium. In the
context of dense relativistic matter, it was shown that it is
possible to generate an axial current j5 from a vector field
Bwith a conductivity proportional to the chemical potential
μ ¼ 1

2

P
sμs [97]. It follows that there is a contribution to

the vector current j generated by an axial field with the
same coefficient [98]. We refer to this term as the chiral
pseudomagnetic effect.
In order to obtain the longitudinal conductivity, we

combine Eqs. (8) and (9),

j ¼ e2

h2
X
s

sμsBs ð10Þ

¼ e2

h2
X
s

sμ

�
1 − s

3

2μ3
ℏv3e2τEs ·Bs

�
1=3

Bs: ð11Þ

Assuming that

3

2μ3
ℏv3e2τEs ·Bs ≪ 1; ð12Þ

and for the case where B ¼ Bẑ and B5 ¼ B5ẑ,
Bs ¼ ðBþ sB5Þẑ, and E5 ¼ 0, we obtain

jz ¼
v3e4τ
4π2μ2ℏ

EðB2 þ B2
5Þ þ

e2

2π2ℏ2
μB5; ð13Þ

to linear order in E. The first term is a transport (or free)
current. For the case when B5 ¼ 0, it reproduces the chiral-
anomaly-enhanced magnetoconductivity [86]. The central
result here is that for B5 ≠ 0, there is a contribution to the
bulk longitudinal conductivity coming entirely from the
spatial dependence of bðrÞ: Inhomogeneous strain or
magnetization enhances conductance in a Weyl or a Dirac
semimetal.
We now provide a physical interpretation of the second

term as a magnetization (or bound) current. Recall that bðrÞ
is analogous to a finite magnetization MðrÞ. Thus, local
bound currents given by jb ∝ ∇ ×MðrÞ ∝ B5 are allowed,
consistent with the form of the second term in Eq. (13).
Note that in the related context of the quantum Hall effect, a
finite bound current proportional to μ and the curl of the
magnetization is expected on general grounds [99]. In that
case, the bound current has its origin on the edge states,
while here they can be associated with the bulk.
We remark that the second term in Eq. (13) highlights an

important difference between semimetals that respect time-
reversal symmetry and those that do not. In the former, the
sum over time-reversed pairs of nodes will cancel out the
μB5 term. In Sec. III C, we provide further arguments that
support the interpretation of this term as a bound current,
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while in Sec. IV, we corroborate these findings by numeri-
cally studying the bound current profile within specific
lattice models.

C. Boltzmann equation approach

In this section, we outline a different and more rigorous
derivation of Eq. (13) that relies on solving the Boltzmann
equation. Within this approach, the semiclassical equations
of motion are extended to include an anomalous velocity
term that arises because of the existence of a nonzero Berry
curvature [100]. Typically, for a Weyl semimetal, the
equations of motion are written for a single flavor of chiral
fermions accounting for the physics in momentum space
centered around a particular Weyl node [86]. Both chir-
alities feel the same electric and magnetic fields. The key
difference in the present analysis is that the effective
external fields are now chirality dependent because of
the axial vector potential; both chiralities are still decoupled
but feel different effective fields.
More precisely, the effect of the effective magnetic fields

Bs ¼ ðBþ sB5Þ on the left (s ¼ þ1) and right (s ¼ −1)
chiralities can be incorporated by promoting the semi-
classical equations of motion [100] to

_rs ¼ ∂pEs
p þ _p ×Ωs

p; ð14Þ

_ps ¼ eEþ e
c
_r ×Bs: ð15Þ

Here, Es
p ¼ εsp −ms

p · Bs and Ωs
p are, respectively, the

dispersion relation, which includes a correction due to
the magnetic orbital moment ms

p, and the corresponding
Berry curvature for each chirality s. For each chirality, the
unperturbed dispersion relation of the upper band is
εsp ¼ svjpj. The Berry curvature and magnetic orbital
moment, in this case, take the simple form Ωs

p ¼
s½1=ð2jpj2Þ�p̂ and ms

p ¼ −evjpjΩs
p. We emphasize that,

consistent with the discussion in Sec. II, we neglect effects
of the higher-order corrections due to the inhomogeneous
Fermi velocity, which can enter through a space-dependent
Berry curvature [71,72,101].
The distribution function for each chirality fsp satisfies a

semiclassical kinetic equation

∂fsp
∂t þ _r ·

∂fsp
∂r þ _p ·

∂fsp
∂p ¼ Icollffg; ð16Þ

where Icollffg is the collision integral. Using Eqs. (14)
and (15), we can write

_rs ¼ D−1
p;s

�
vsp þ eE × Ωs

p þ
e
c
ðΩs

p · vspÞBs

�
; ð17Þ

where Dp;s ¼ ½1þ ðe=cÞBs · Ωs
p� and vsp ¼ ∂Es

p=∂p is the
perturbed velocity. We find that the contribution of a single
chirality to the current density is given by

js ¼ e
Z

d3p
ð2πÞ3Dp;s _rsfspðEs

pÞ;

¼ e
Z

d3p
ð2πÞ3

�
vsp þ eE ×Ωs

p þ
e
c
ðΩs

p · vspÞBs

�
fspðEs

pÞ:

ð18Þ

Within the relaxation time approximation, Icollffg ¼
−ðfsp − f0p;sÞ=τ, where τ is a scattering time [102] and
f0p;sðEk;sÞ is the equilibrium distribution function to be
evaluated at the modified dispersion relation Ek;s. We are
interested in a stationary and homogeneous solution to the
kinetic equation, which takes the form

_p ·
∂fsp
∂p ¼ −

ðfsp − f0p;sÞ
τ

: ð19Þ

Expanding the left-hand side of the previous equation to
lowest order in the fields and rearranging terms, we obtain

fsp ¼ f0p;s − τD−1
p;s

�
eEþ e

c
vsp ×Bs þ e2

c
ðE ·BsÞΩs

p

�

×
∂f0p;s
∂p : ð20Þ

Inserting the first term in Eq. (20) into Eq. (18) and
ignoring the contribution transverse to the electric field
leads to

js0 ¼ e
Z

d3p
ð2πÞ3

e
c
ðΩs

p · vspÞBsf0p;sðEs
pÞ: ð21Þ

To leading order in the magnetic field, we can make the
replacement Es

p → εsp in both the equilibrium distribution
function and the definition of the velocity. The integral
results in

js0 ¼ s
e2

h
μBs; ð22Þ

with μ the chemical potential, consistent with earlier
findings [19,32]. Summing Eq. (22) over chiralities results
in the second term in Eq. (13).
Remarkably, we have also performed a rate of entropy

production calculation in the spirit of Ref. [86] and find this
term to be absent. The reason for this absence is that the rate
of entropy production is determined exclusively by the free
current density rather than the total current density. This
result implies, as anticipated above, that Eq. (22) should be
physically interpreted as a bound current proportional to the
curl of the magnetization in the system and as such does not
contribute to transport.
Next, we insert the second term in Eq. (20) into Eq. (18)

to calculate the correction to the current corresponding to
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the deviation δfsp ¼ fsp − f0p;s up to first order in E and
second order in Bs, which reads

δjs ¼ −eτ
Z

d3p
ð2πÞ3 D

−1
p;s

�
evsp

�
E ·

∂fsp
∂p

�

þ e2

c
vspðE ·BsÞ

�
Ωs

p ·
∂fsp
∂p

�

þ e2

c
BsðΩs

p · vspÞ
�
E ·

∂fsp
∂p

�

þ e3

c2
BsðΩs

p · vspÞðE ·BsÞ
�
Ωs

p ·
∂fsp
∂p

��
: ð23Þ

Using that for the lower band Ωs
p ¼ −s½1=ð2jpj2Þ�p̂ and

ms
p ¼ −evjpjΩp

s, and after tedious but straightforward
manipulations, we obtain

δjsz ¼ −τ
�
1

3
e2v2νðμÞ þ v3e4

30π2ℏμ2
B2
s

�
E; ð24Þ

where νðεÞ ¼ ε2=2π2ℏ3v3 is the unperturbed density of
states of a Weyl node at energy ε. The first term encodes the
conductivity due to a finite Fermi surface [103,104]. The
second term is novel to this work and, upon summing
chiralities, leads to a longitudinal contribution to the
conductivity that reads

σzz ¼ τ
v3e4

15π2ℏμ2
B2
5; ð25Þ

for B ¼ 0, and represents the main result of this section. Up
to the numerical coefficient, this contribution has exactly
the same form as the first term of Eq. (13), confirming that
an inhomogeneous strain or magnetization contributes to
increase the conductivity. The numerical differences
between Eqs. (13) and (25) can be traced back to the
expansion of the modified density of states Dp;s appearing
in the denominator of Eq. (23) and the inclusion of the
magnetic moment in the semiclassical calculation. We note
as well that, as with conventional magnetoresistance, we
expect that the term Eq. (24) is also supplemented by a
Fermi surface contribution due to the Lorentz force when
the Fermi surface is anisotropic [105].
We conclude this section by computing the center-of-

mass velocity in this approach, an observable quantity in
cold atomic experiments. From Eq. (5), to obtain the center-
of-mass velocity and relate it to the conductivity, we must
compute the electron density n that to leading order reads

n ¼
X
s

Z
dp

ð2πÞ3Dp;sfsp ∼
μ3

3π2v3ℏ3
: ð26Þ

The relevant center-of-mass velocity component is
obtained by inserting Eqs. (24) and (26) into Eq. (5) to
obtain

δvzc:m: ¼
δjz
n

¼ −τ
�
e2v2

μ
þ 2

5

ℏ2v6e4

μ5
B2
5

�
E; ð27Þ

which is valid in the absence of magnetic field (B ¼ 0).
Therefore, through Eq. (27), a cold atomic experiment can
probe the anomalous longitudinal conductivity σ ∼B2

5 that
we predict by monitoring the center-of-mass motion of an
atomic cloud.

IV. SPECTRAL PROPERTIES OF
INHOMOGENEOUS SEMIMETALS

Based on the field-theoretic and semiclassical axial-
gauge-field coupling in Weyl semimetals, we now study
the effects of magnetization or strain inhomogeneities
within a microscopic lattice model realization. This allows
us to numerically corroborate the arguments presented in
the previous section. We consider two canonical lattice
models whose low-energy long-wavelength limit is given
by Eq. (4). For simplicity, we choose lattice realizations of
Weyl semimetals with the minimum number of low-energy
Weyl fermions, i.e., one Weyl fermion of each chirality,
which implies that time-reversal symmetry is broken in
both models. Our results, however, generalize to time-
reversal symmetric (but inversion symmetry-breaking)
models, and occasionally, we explicitly comment on such
generalizations.
The first minimal lattice model we use to describe Weyl

fermions coupled to axial gauge fields is motivated by the
solid-state realizations of Weyl and Dirac semimetals. It can
be obtained starting from a lattice-regularized version of a
topological insulator k · p Hamiltonian [106], such as
Bi2Se3 or related materials. A simple generalization of
this model has been used to describe the Dirac semimetals
Cd2As3 and Na3Bi [34,81]. The model has four bands,
originating from an orbital degree of freedom A, B and spin
↑;↓, and the corresponding electron operators are defined
as cr ¼ ðcrA↑; crA↓; crB↑; crB↓ÞT . The Hamiltonian H4b of
this four-band model is the sum of two terms and is
given by

H4b ¼
X
k;j

DjðkÞc†kΓjck þ
X
r;j

bjðrÞc†rΓbΓjcr: ð28Þ

The first term is the topological-insulator Hamiltonian with
Γ matrices Γj ¼ ðσzsy; σzsx; σys0; σxs0Þ, Γb ¼ σysz, and
with the components of the D vector given by

DjðkÞ ¼ −
�
sin kxa; sin kya; sin kza;

X
i

cos kia −M

�
:

ð29Þ

Here, we have set the kinetic energy scale t ¼ 1. The
matrices σx;y;z and sx;y;z are Pauli matrices acting on orbital
and spin degrees of freedom, respectively (σ0 and s0 are
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identity matrices). The Dirac mass M, which describes a
hybridization of the orbitals into bonding and antibonding
states, controls whether the material is on a trivial- or
topological-insulator phase (which may be strong or weak).
Here, we setM ≡ 3þm, such that m ¼ 0 corresponds to a
Dirac semimetal state with a 3D Dirac point at k ¼ 0, and
m > 1 (m < 0) corresponds to a trivial (topological)
insulator.
Whereas the first term in Eq. (28) respects both time-

reversal symmetry (T ) and inversion symmetry (I), a
nonzero b ¼ ðbx; by; bzÞ breaks T . To see how it is
responsible for generating the Weyl semimetal phase,
one may expand Eq. (28) to linear order in δk around
k ¼ 0 and obtain

HðkÞ ¼
X
j

ðδkj þ bjΓbÞΓj þmΓ4: ð30Þ

This result shows that b is responsible for the separation of
the two nodes in momentum space and thus couples as an
axial gauge field. Indeed, Eq. (30) should be compared to
the Weyl Hamiltonian of Eq. (4), where the node separation
was identified with the axial gauge field. In Eq. (30), the
matrix Γb takes the role of giving the axial gauge field b a
different sign at the two nodes. It should be noted, however,
that in Eq. (30) the node separation depends on both b and
m. In particular, the node separation is proportional toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jbj2 −m2

p
and vanishes (i.e., the system is insulating) for

m > jbj [14,81].
In the following, we will study Hamiltonian (28) numeri-

cally in the presence of a spatially nonuniform bðrÞ, which
gives rise to axial gauge fields B5 ≃ ∇ × bðrÞ ≠ 0. It is
important to note that ∇ × bðrÞ can only have the meaning
of an axial magnetic field coupled to Weyl fermions in
regions where m < jbðrÞj. We always take m ≥ 0 since we
are not interested in the regime where D describes a
topological insulator. A full phase diagram of the model
defined by Eq. (28) was described in Ref. [81].
The second lattice model we use to verify our results

consists of effectively spinless electrons, has only two
bands, and can be regarded as one of the two time-reversal
partners that compose the model in Ref. [69]. It is therefore
motivated by two practical considerations: (i) It is plausible
to implement it in the cold atomic context, and (ii) it falls
into the class of models tailored for the methods presented
in Ref. [82] to generate domain walls in topological
systems. In this case, the electron operators are given by
cr ¼ ðcrA; crBÞ, where A, B represent some generalized
orbital degree of freedom, and the Hamiltonian takes the
form

H2b ¼
X
k;j

djðkÞc†kσjck: ð31Þ

Here, σz ¼ �1 again represents the orbital degree of
freedom, and the components of d are given by

djðkÞ ¼ −
�
sin kxa; sin kya;

X
i

cos kia −M

�
: ð32Þ

This model breaks time-reversal symmetry; it has a
pair of linearly dispersing Weyl cones at k ¼
f0; 0;� cos−1ðM=t − 2Þg for 1 < jM=tj < 3, two pairs of
Weyl cones for jM=tj < 1, and is a gapped insulator when
jM=tj > 3. The parameter M=t controls the distance
between Weyl nodes; interpolating between M=J ¼ 2
and M=t > 3 simulates the boundary between a Weyl
semimetal with two nodes and an insulator. Therefore,
we promote M → MðyÞ, which sets the Weyl node sepa-
ration as bðyÞ by

bðyÞ ¼ ð0; 0; 2 arccosð−2þMðyÞ=tÞÞ: ð33Þ

We note that, although this model separates the Weyl nodes
in kz, any other separation direction can be chosen by
redefining d appropriately.
From our calculations, we find that both models quali-

tatively exhibit the same behavior, so we will focus mainly
on results obtained for the four-band model of Eq. (28).

A. Lattice pseudo-Landau-level structure of B5

We begin by specifying the spatial profiles of bðrÞ that
generate the axial magnetic configurations we study. In
what follows, we always take bðrÞ ¼ bxðyÞx̂, such that it
only depends on y and corresponds to an axial magnetic
field along z. Since nonzero bx implies a separation of
Weyl nodes along the x axis in momentum space, bxðyÞ
describesWeyl nodes whose separationΔkx depends on the
y coordinate. Note that this effectively corresponds to a
Landau gauge, and consequently, ðkx; kzÞ remain good
quantum numbers. Furthermore, it follows that the axial
magnetic field ∇ × b is orthogonal to the direction of node
separation. The extension of the system in the y direction is
Ly (similarly for x and z), which we measure in units of the
lattice constant a, and we assume bxð1Þ ¼ bxðLyÞ.
We first consider the series of profiles bxðyÞ shown

schematically in the bottom row of Fig. 1. The form of
bxðyÞ is such that it increases linearly from bx1 to bx2
between y ¼ l1 and y ¼ l0

1, then stays flat at bx2, and
subsequently decreases linearly again from bx2 back to bx1
between y ¼ l2 and y ¼ l0

2. As a result, between l1 and
l0
1, we have a constant and negative ∇ × b≃B5, whereas

between l2 and l0
2, we have a positive constant

∇ × b≃B5, with a magnitude that depends on the ratio
Δbx=Δl1;2, with Δbx ¼ bx2 − bx1 and Δl1;2 ¼ l0

1;2 − l1;2.
For fixed Δbx, the strength of the effective axial magnetic
field increases for decreasing Δl1;2. By taking Δl1;2 → 0,
as shown in the rightmost configuration of Fig. 1, we create
two sharp interfaces between regions of constant b ¼ bx1x̂
and b ¼ bx2x̂. We choose m [see Eqs. (28) and (30)] such
that the latter corresponds to a boundary between a Weyl
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semimetal and an insulator, i.e., m > bx1 [81]. Thus, the
configurations of Fig. 1 interpolate between axial magnetic
fields in the 3D bulk of the system and a sharp 2D boundary
between a Weyl semimetal and an insulator. The axial
magnetic field is gradually confined to a 2D surface while
increasing its strength. The energy spectra corresponding to
these axial-magnetic-field profiles are shown in the top
panels of Fig. 1, where we have set bx1 ¼ 0.0, bx2 ¼ 1.0,
and m ¼ 0.5.
Before turning to an analysis of the energy spectra

obtained from the lattice model, it is useful to recall the
Landau-level spectrum associated with axial magnetic
fields in the continuum, cf. Eq. (4). We refer to these
Landau levels as pseudo-Landau levels. For Weyl fermions
coupled to a uniform axial magnetic field B5 along the z
direction, Bz

5, the n ≥ 1 pseudo-Landau levels have ener-

gies En�ðkzÞ ¼ �ℏv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2jBz

5jn
q

and thus disperse in kz.

In addition, there is an n ¼ 0 or zeroth pseudo-Landau level
with energy E0ðkzÞ ¼ sgnðBz

5Þℏvkz. Importantly, all energy
levels are doubly degenerate: one for each of the two Weyl
nodes. In particular, the two Weyl nodes, which have
opposite chiralities, have the same E0ðkzÞ dispersion of the
zeroth Landau level. In contrast, in the presence of a
(vector) magnetic field Bz, the chirality of the n ¼ 0

branch, i.e., the upward or downward slope as a function
of kz, depends on the chirality of the Weyl nodes [28].
The pseudo-Landau-level structure of the continuum is

reflected in the low-energy part of the lattice energy spectra
shown in Fig. 1. In particular, in the leftmost panel, we
observe both a flat branch of zero energy states and flat
branches of states at higher energies. These can be
identified with pseudo-Landau levels since these do not
disperse in kx. Moreover, labeling the flat branches of states
at nonzero energies by an index n, we find that the energies
indeed scale as ∼

ffiffiffi
n

p
. In the rightmost panel, where the

axial magnetic field is confined to the sharp boundary
between the Weyl semimetal and the insulator, we still find
a branch of zero-energy states. The flat branches at higher
energies are absent. The zero-energy states are simply the
Fermi arc surface states, which must exist at such a surface
boundary because of the topology of the Weyl nodes, and
they connect the projections of the bulk Weyl nodes.
Figure 1 thus suggests that as l0

1;2 − l1;2 is gradually taken
to zero, confining the axial magnetic field to a narrower
region along y while increasing its magnitude, the n ¼ 0

pseudo-Landau level becomes the Fermi arc. The energy of
the higher n ≥ 0 pseudo-Landau levels scales as ∼

ffiffiffiffiffiffi
B5

p
and

is therefore “pushed” out of the spectrum as B5 increases,
as can be observed from left to right in Fig. 1.

FIG. 1. The top row shows the energy spectra obtained by solving Eq. (28) in the presence of a spatially varying bx ¼ bxðyÞ, as a
function of kx and for kz ¼ 0. The schematic profile of bxðyÞ corresponding to each spectrum is presented below the energy panel. From
left to right, the region of linear increase (decrease) of bx, set by l0

1 − l1 (l0
2 − l2), gradually shrinks and becomes an abrupt stepwise

increase (decrease) at l1 (l2). The latter case describes an interface between an insulator (I) and aWeyl semimetal (WSM) (all spectra are
calculated for m ¼ 0.5), and the energy spectrum exhibits the zero-energy Fermi arc surface states connecting the bulk nodes. The panel
on the left shows the pseudo-Landau-level structure of the low-energy states, arising as a result of a bulk axial magnetic field Bz

5 ¼ �B5.
As l1

0 − l1 ¼ l2
0 − l2 is decreased from left to right, the strength of the axial magnetic field is increased and the n ≥ 1 pseudo-Landau

levels (energy scales as ∼
ffiffiffiffiffiffiffiffi
nB5

p
) are pushed out of the spectrum. The n ¼ 0, however, remains at E ¼ 0 and morphs into the

Fermi arc associated with the boundary surface shared by I and WSM. In these calculations ðbx1 ¼ 0.0; bx2 ¼ 1.0Þ,
l1

0 − l1 ¼ l2
0 − l2 ¼ ð80; 60; 40; 20Þ, ðl1;l2Þ ¼ ð45; 135Þ (rightmost panel), with system size Lx × Ly × Lz ¼ 120 × 180 × 120

(all lengths measured in units of lattice constant a). The solid black dots in the upper panels indicate the (zero-energy) states for
which the wave-function support is shown in Fig. 3.
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The key implication of Fig. 1 is that the Fermi arc surface
states of a Weyl semimetal can be thought of as an n ¼ 0
pseudo-Landau level corresponding to an axial magnetic
field spatially confined to the surface boundary, i.e.,
∼Bz

5δðy − l1;2Þ. The chirality of the Fermi arc states,
i.e., their dispersion in kz (discussed in more detail below),
corresponds to the chirality of the n ¼ 0 pseudo-Landau-
level modes and depends on sgnðBz

5Þ.

B. Fermi arcs as n= 0 pseudo-Landau level

To study this correspondence in more detail, we now
consider a different set of bxðyÞ profiles, which are
shown in the middle row of Fig. 2. As is schematically
demonstrated, in this set of profiles, bxðyÞ increases and
decreases linearly from −bx to bx, and we take bx ¼ 0.5.
Furthermore, m is set to zero, such that the profiles
interpolate between bulk axial magnetic fields on the left
and an interface between two Weyl semimetals with
inverted Weyl node separation bx on the right. The
corresponding energy spectra are shown in the top panels
of Fig. 2.

Focusing first on the right panel, i.e., the sharp interface
between two Weyl semimetals with inverted bx, we find
that the branch of zero-energy states, which connect the
projections of the bulk nodes, is fourfold degenerate. These
are the Fermi arcs localized at the boundaries between the
Weyl semimetals, two for each boundary. This is consistent
with the number of arcs mandated by topology. Similar to
Fig. 1, the spectrum in the left panel exhibits the pseudo-
Landau-level structure at low energies. The flat branch of
zero-energy states corresponding to the n ¼ 0 pseudo-
Landau level is fourfold degenerate, in agreement with
the degeneracy of the Fermi arcs (2 × 2 ¼ 4). The pseudo-
Landau-level degeneracy can be understood by recalling
that each Weyl node contributes one Landau level, which is
doubled because of the two spatially separated regions
of �B5. (The counting in Fig. 1 is more subtle, which we
explain below.) From Fig. 2, we again observe that the
Fermi arcs are adiabatically connected to n ¼ 0 pseudo-
Landau levels as the profile of bxðyÞ is varied. The n ≥ 1
pseudo-Landau levels are pushed to higher energies (and
are eventually absent from the spectrum) because of the
increasing axial-magnetic-field strength.

FIG. 2. Energy spectra (top row) obtained from Eq. (28) in the presence of a spatially varying bx ¼ bxðyÞ, shown in the corresponding
central panels. The spectra were calculated using m ¼ 0.0 and bx1 ¼ 0.5, such that the rightmost panels describe an interface between
two Weyl semimetals (WSM1 and WSM2) with an inverted b axial vector. As a result, at each of the two boundaries, l1 and l2, there
will be two Fermi arcs, and the degeneracy of the zero-energy states connecting the bulk nodes is doubled compared to Fig. 1. The
energy-level structure of the leftmost panel can be understood from the perspective of bulk axial magnetic fields. In each of the two
regions, Bz

5 ¼ þB5 and Bz
5 ¼ −B5, two n ¼ 0 pseudo-Landau levels are present, one for each Weyl node, giving a total of four n ¼ 0

pseudo-Landau levels. The bottom panels show the support of the wave function of some E ¼ 0 states labeled by solid black circles as a
function of y. The wave-function support demonstrates that the Fermi arc states (on the right) are the Landau orbitals of the n ¼ 0
pseudo-Landau level (on the left). We used l1

0 − l1 ¼ l2
0 − l2 ¼ ð80; 40Þ for the first two columns, ðl1;l2Þ ¼ ð45; 135Þ for the

rightmost column, and a system size of Lx × Ly × Lz ¼ 120 × 180 × 120.
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More insight can be gained by studying the wave
functions of the Fermi arc states and comparing them to
Landau orbital wave functions. Recall that wave functions
of the lowest n ¼ 0 Landau-level orbitals are given by

Ψn¼0
kxkz

ðrÞ ∝ eikxxeikzze−ðy−kxl
2
bÞ2=2l2b ; ð34Þ

where lb is the magnetic length. The Landau orbitals are
centered around y ¼ kxl2b, which locks the y coordinate to
momentum kx. The distance between the Landau orbitals
along y, as well as the spread of the wave function, is
determined by the magnetic length lb. Since lb ∼ 1=

ffiffiffiffi
B

p
, the

magnetic length decreases as the field strength B increases.
In Fig. 2, we plot the support of the wave functions of the

zero-energy states corresponding to different values of kx.
The states for which wave functions are shown are
indicated by solid black dots in the upper panels. From
the bottom left panel of Fig. 2, we see that at each
momentum there are indeed four states, with a wave-
function support similar to that of Landau orbitals. At
kx ¼ 0, these are localized at the center of each of the two
regions of positive and negative axial magnetic fields,
Bz
5 ¼ �B5. As kx increases, the support of the wave

function is shifted along y, and in opposite directions for
Landau orbitals associated with Weyl nodes of opposite
chiralities. This result follows from the position-momen-
tum locking expressed in Eq. (34).
As the profile of bxðyÞ is changed from left to right, the

axial-magnetic-field strength is increased, and thus the
effective magnetic length is decreased. This is clearly
reflected in the wave-function support of the zero-energy
states: The spread becomes narrower, and they move closer
together. Eventually, when the axial magnetic field is
confined to the interfacial boundary between the Weyl
semimetals at l1 and l2, the Landau orbitals are localized
at the boundaries and should be viewed as the wave
functions of the Fermi arc states.
An analogous picture arises when we plot the wave-

function support of zero-energy states of the spectra in
Fig. 1, which is presented in Fig. 3. Figure 3(a) shows the
wave functions of the n ¼ 0 pseudo-Landau-level states of
the leftmost panel in Fig. 1, demonstrating the position-
momentum locking hyi ∝ kx. Note that there are only half
the number of Landau orbitals as compared to Fig. 2,
reflecting the different degeneracy of zero-energy states:
twofold versus fourfold. As is shown in Fig. 3(a), the
Landau orbitals in regions where bxðyÞ < m are absent.
The region where bxðyÞ > m divides into a part where Bz

5 is
positive and a part where Bz

5 is negative. In each region,
both Weyl nodes contribute n ¼ 0 pseudo-Landau-level
orbitals, but of opposite momentum. Figure 3(a) shows the
contribution of only one Weyl node (chirality).
Similar to Fig. 2, we observe that in Fig. 3, as the

magnetic length decreases towards zero from (a) to (c), the
pseudo-Landau orbitals become the wave functions of

the Fermi arc states localized at the surface boundary
between the insulator and Weyl semimetal. From the
perspective of Fermi arc surface states, the degeneracy
of states can be inferred from topology: The number of
Fermi arcs at each boundary is equal to the Chern-number
change across the boundary. The Chern number can be
defined when Weyl nodes of opposite (or different) Berry
monopole charge are separated in momentum space. This
suggests that, per the adiabatic connection between Fermi
arcs and n ¼ 0 pseudo-Landau levels, the degeneracy of
pseudo-Landau levels in solid-state systems has a topo-
logical origin.
The pseudo-Landau levels of the continuum are flat as a

function of kx but disperse in kz. Therefore, it is useful to
compare the spectra of the lattice model as a function of kz.
The energy spectra, obtained for the two bxðyÞ profiles of
the leftmost and rightmost panels of Fig. 1, are shown in
Fig. 4. The low-energy part of the spectrum in the left panel

(a)

(b)

(c)

FIG. 3. Plot of the support of the wave function, as a function of
y, of selected zero-energy states corresponding to the spectra
shown in Fig. 1. Panels (a), (b), and (c) correspond to leftmost,
middle, and rightmost panels of Fig. 1, respectively (graphically
indicated by the square, triangle, and hexagon). Here, in each
panel, the seven different curves correspond to different values of
kx, which are indicated by solid black dots in Fig. 1 and red
arrows in (a). Two pseudo-Landau orbitals correspond to each
value of kx, as is most clearly seen in (a). This matches the
degeneracy of n ¼ 0 pseudo-Landau levels and is consistent with
the number of Fermi arcs: one Fermi arc per boundary. Note that
as compared to the bottom row of Fig. 2, the Landau orbitals
centered in the region where bxðyÞ < m are absent, which
explains the difference in degeneracy (twofold vs fourfold as
discussed in the main text).
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of Fig. 4 clearly exhibits the pseudo-Landau-level structure,
with n ≥ 1 pseudo-Landau-level energies dispersing in kz
as ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ nB5

p
. In addition, there is an n ¼ 0 chiral

(E ∝ þkz) and antichiral (E ∝ −kz) mode, which are
localized in different spatial regions corresponding to
opposite Bz

5. This is confirmed by the wave-function
support of states with different kz in the bottom panel.
Note that the momentum kz is not locked to the y
coordinate. The right panel of Fig. 4 shows the dispersion
of the Fermi arc states in kz. The wave functions (bottom
panel) are localized at the surface boundaries. Once more,
one may think of the Fermi arcs as the n ¼ 0 chiral (and
antichiral) modes of the n ¼ 0 pseudo-Landau level. The
difference in the spread of the wave functions between
the bottom-left and bottom-right panels originates from the
difference in effective magnetic length.
At this stage, two remarks regarding the generality of our

results are in order. The first concerns the profiles of bxðyÞ
shown in Figs. 1 and 2. In all these cases, the increase or
decrease of bxðyÞ is chosen to be linear, giving rise to a
constant Bz

5. In solid-state materials, axial-vector potentials
are due to strain or magnetization inhomogeneities, and one
may expect the axial-magnetic-field strength to have a more
general dependence on position, i.e.,B5 ¼ B5ðrÞ. To verify

the application of our results to the more general case, we
calculate the energy spectrum of Hamiltonian (28) with
bxðyÞ as shown in Fig. 5(d). The corresponding spectrum is
shown in Fig. 5(c), which demonstrates two important
features. First, the n ¼ 0 pseudo-Landau level remains
nondispersive in kx and at zero energy (for kz ¼ 0).
Second, the higher pseudo-Landau levels appear to have
acquired a dispersion and shifted in energy. This result is in
agreement with the energies of the pseudo-Landau levels,

E0 ∝ sgnðBz
5Þkz and En� ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ 2jBz

5jn
q

, respectively.

Replacing Bz
5 by Bz

5ðyÞ and noting that y ∝ sgnðBz
5Þkx

because of Eq. (34), it follows that the n ≥ 1 pseudo-
Landau levels should disperse in kx, whereas the energy
of the n ¼ 0 pseudo-Landau level should not change.
This shows that our results hold for a general axial-
magnetic-field configuration.
The second remark concerns the shape of the Fermi arcs.

In Figs. 1, 2, and 4, Fermi arc states at zero energy connect
the bulk Weyl nodes in a straight line located on the kx axis
because of the nonfundamental symmetry of the model
(28). In general, the shape of the Fermi arcs is not restricted,
and the condition Eðkx; kzÞ ¼ εnode, where εnode is the
energy of the bulk nodes (assuming they are both at the

FIG. 4. Energy spectra, as a function of kz (with kx ¼ 0), and
wave-function support obtained from Eq. (28) in the presence of a
bulk axial magnetic field Bz

5 (left) and for an interface boundary
between an insulator and a Weyl semimetal (right). The spatial
profile of bxðyÞ corresponding to the left and right panels here are
given in the leftmost and rightmost bottom panels of Fig. 1,
respectively. On the left, the low-energy branch of the spectrum
has the structure of pseudo-Landau levels. The linearly dispersing
chiral (black) and antichiral (red) modes are the n ¼ 0 pseudo-
Landau levels. The wave-function support of n ¼ 0 modes is
shown for states with kz values, indicated by solid black dots. On
the right, the linearly dispersing modes correspond to the Fermi
arc surface states and are sharply localized at the boundary
interfaces l1 and l2 (see Fig. 1). The same systems sizes as in
Figs. 1 and 2 are used.

(a) (b)

(d)(c)

FIG. 5. Effect of the Fermi arc curvature and deviations from
constant axial magnetic fields. (a,b) Plot of the energy spectra
with −δt

P
i cos kiaσ

0s0 added to Eq. (28) and δt set to δt ¼ 0.25.
The bxðyÞ profiles corresponding to (a) and (b) are given in the
leftmost and rightmost bottom panels of Fig. 1, respectively, with
m ¼ 0.5. The effect of finite δt is to give kx dispersion to the
pseudo-Landau levels (a) and the Fermi arc states (b). The inset of
(b) shows the Fermi arc states in the kx − kz plane at the node
energy εnode. (c) Energy spectrum obtained from Eq. (28) with
bxðyÞ as shown in (d), with m ¼ 0.5. Profile (d) leads to a
nonuniform B5 ¼ B5ðyÞ≃ ∇ × b, which is reflected in (c),
where the n ≥ 1 pseudo-Landau levels disperse in kx because
of position-momentum locking.
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same energy), may define a curve connecting the bulk
nodes with arbitrary shape. To study the more general case,
we add −δt

P
i cos kiaσ

0s0 to Hamiltonian (28) and cal-
culate the energy spectra for two different bxðyÞ profiles.
As shown in Figs. 5(a) and 5(b), both the pseudo-Landau
levels (a) and the Fermi arcs (b) disperse in kx, implying
that the Fermi arcs trace out a curve of the form shown in
the inset of (b). We conclude from Figs. 5(a) and 5(b) that
the correspondence between Fermi arcs and n ¼ 0 pseudo-
Landau levels holds for more general Fermi arc shapes.

C. Calculation of the bound current density

As pointed out in Sec. III, the axial-vector potential b in
time-reversal-broken Weyl semimetals physically corre-
sponds to a magnetization vector and is therefore expected
to give rise to bound currents jb. Generally, the total current
in an electronic system with a finite magnetization can be
expressed as a sum of bound jb and free current jf densities
[107]. The former has the property that it must average to
zero over the system’s volume, but it is allowed to be
nonzero locally. It therefore can be expressed as the curl
of a local vector MðrÞ, the magnetization, such that
jb ¼ ∇ ×M. In the case where M is constant in the bulk,
the bound currents only exist as surface currents jsurfb that
are perpendicular to the surface normal n̂ such that
jsurfb ¼ n̂ ×M.
We now provide numerical evidence that justifies the

interpretation of the second term in Eq. (13), i.e., μB5, as a
bound current density, by calculating the current density
from our microscopic lattice models. To this end, we
consider five different linear profiles of the axial-vector
potential of the form b ¼ bxaðyÞx̂, parametrized by a ¼ 1, 2,
3, 4, 5. These trace out a finite Weyl semimetal with a Weyl
node separation that increases linearly in the y direction
[see Fig. 6(b)]. The current density jzðyÞ is computed
through the expression

jzðyÞ ¼ hĴzðyÞi

¼ 1

LyLz

X
n;kx;kz

hunkxkz jJzðyÞjunkxkzifðεnkxkzÞ; ð35Þ

where JzðyÞ ¼ ∂HkxkzðyÞ=∂kz is the current operator,
junkxkzi are the single-particle eigenstates, and fðεnkxkzÞ is
the Fermi-Dirac distribution function evaluated at the nth
eigenvalue εnkxkz . Its real-space distribution is shown in
Fig. 6(a) for different values of bxa, with an offset for clarity.
From Fig. 6(a), we observe two main features. First, for the
flat profile bx1, the current is localized at the boundaries with
equal weight but opposite sign. This is entirely consistent
with what is expected of a bound current; for a constant
magnetization, the bound currents are localized at the
interface and are normal to it (jsurfb explained above).
Second, as the slope increases (profiles bxa≠1), we observe

that the weight associated with one boundary is transferred
to the bulk, but the total current density remains zero
overall.
In order to understand both of these features inmore detail,

we express each of these linear profiles mathematically as

bxaðyÞ ¼
�

bxf − bxi
ðlf − liÞ

ðy − liÞ þ bxi

�

× ½Θðy − liÞ − Θðy − lfÞÞ�; ð36Þ

which is schematically shown in Fig. 7(b) by the light blue
curve. The corresponding B5 ¼ ∇ × b profile is set to a
constant in the bulk (which is zero for the flat profile outlined
by bx1 and nonzero for b

x
a≠1) and to two Dirac delta functions

of opposite sign corresponding to each boundary.
Setting bxi ¼ bxf ¼ bx1 results in the spectral profile

already discussed in Fig. 1 (lower row, rightmost panel):
a Weyl semimetal with two Fermi arc surface states. As
chiral surface states, the two Fermi arcs carry two com-
pensating current densities, consistent with what is
observed for the bx1 case shown in Fig. 6(a). As the
difference bxf − bxi increases, the profile traces higher values
of a in bxa≠1, and an increasing and constant B5 ¼ ∇ × b
emerges in the bulk. The relevant energy spectrum for this
situation is shown in Fig 7(c); pseudo-Landau levels
emerge, and the zeroth chiral pseudo-Landau level seems
indistinguishable from a Fermi arc.
In fact, it is possible to distinguish the surface and bulk

contribution due to position-momentum locking. As was
discussed following Eq. (34), the average guiding center
position hyi is tied to the momentum kx such that hyi ∼ kx.

(a) (b)

(c)

FIG. 6. Bound current density in an inhomogeneous Weyl
semimetal. Panel (a) shows the five different current densities
jzðyÞ corresponding to the five different profiles of the axial-
vector potential shown in (b), labeled bxa with a ¼ 1, 2, 3, 4, 5.
Larger values of a support larger axial magnetic fields
B5 ¼ ∇ × b, which create bulk pseudo-Landau levels [see
Fig. 7(c)] that compensate for the missing current density at
the boundary. Plot (c) shows the bound current density at a point
y ¼ Ly=2 belonging to the Weyl semimetal bulk for different
values of bxa.
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Thus, by tracking the dependence of the wave function of
the zeroth Landau Level Ψn¼0ðyÞ as a function of kx, we
can extract real-space information.
In Fig. 7(d), we show jΨn¼0ðyÞj2 for two representative

values of kx marked in Fig. 7(c). At kx ¼ 0, the wave
function only has a finite weight at the edges, outlining a
purely surface state. However, when bxf < jkxj < bxi , the
wave function acquires weight in the bulk associated with
the zeroth pseudo-Landau level emerging in this momen-
tum-space region. Importantly, both regions are continu-
ously connected as a function of kx, and thus, from position-
momentum locking, they are also connected in real space.
The bulk B5 creates bulk pseudo-Landau levels that
connect to the surface arcs as a consequence of position-
momentum locking. This is a central result of this work,
and it allows us to understand the different instances of
Fig. 6(a): As B5 increases, a zeroth bulk pseudo-Landau
level forms that connects the unbalanced surface states. The
current density is sensitive to this fact; the current density
lost by one Fermi arc is compensated and transferred to a
bulk zeroth pseudo-Landau level. In other words, the bound
current at one surface is compensated by the sum of bound
currents in the bulk and the remaining surface.
Taking one step back, our results can be summarized by

the identification of the second term in Eq. (13) with a
bound current due to the curl of a magnetization,

jb¼ μB5¼∇×M. We have further corroborated this result
by explicitly checking that for small fields the magnitude of
the bound current in the bulk of Fig. 6(a) increases linearly
with B5 [cf. Fig. 6(c)], and it is only finite if μ ≠ 0.
All these arguments combined establish the three main

points collected in the abstract: (i) the Fermi arcs can be
reinterpreted as n ¼ 0 pseudo-Landau levels resulting from
a B5 confined to the surface, (ii) a bulk B5 creates bulk
pseudo-Landau levels that connect to the surface arcs as a
consequence of position-momentum locking, and (iii) there
are bound currents proportional to B5 and the chemical
potential that average to zero over the sample, as occurs in
magnetic materials.
It is important to stress that the effects we discuss are

sensitive to the pseudomagnetic-field direction, in particu-
lar, whether it is parallel or perpendicular to the Weyl node
separation. In the parallel case, the bulk and surface behave
as expected: The two bulk zeroth pseudo-Landau levels
have the same chirality, which is opposite to the chirality of
the Fermi arcs at the boundaries. The surface spectral
weight is evenly distributed between each arc and com-
pensates the bulk [27]. In contrast, in the perpendicular
case considered in this work, the surface states are allowed
to have a chirality that matches that of the bulk zeroth
pseudo-Landau levels, a fact that is enforced by position-
momentum locking. The Fermi arcs at different surfaces
do not have the same spectral weight, rendering the rich
spectral structure reported here.

D. Interface between two Weyl semimetals
as a finite bulk B5

Given the above discussion, it is interesting to consider the
case of two Weyl semimetals of different Weyl node sepa-
ration that share a boundary. At this point, we can intuitively
predict the outcome: If the system abruptly changes theWeyl
node separation, this is equivalent to the appearance of a B5

that is confined to the interface. This case occurs when the
change from bxi to b

x
f is localized at a single point in space, as

shown in Fig. 7(b) (dark curve). It represents two Weyl
semimetals with two constant axial-vector potentials bxi and
bxf brought into contact. From the previous section, we expect
that currents bound to the surfaces of the two semimetals have
a different magnitude, and their difference is proportional to
∇ × ðbi − bfÞ. Alternatively, the extensions of their Fermi
arcs in momentum space are different. Therefore, we expect
that there is a finite amount of current bound to the interface
that compensates for that difference.
From a spectral point of view, it is interesting to observe

how the Fermi arcs behave in this case. To this end, we
consider the profile of bxðyÞ shown by the dark curve in
Fig. 7(b). Mathematically, it is described by

bxðyÞ ¼ bxiΘðy − liÞ þ ðbxf − bxi ÞΘðy − lsÞ
− bxfΘðy − lfÞ: ð37Þ

(a) (b)

(d)(c)

FIG. 7. Plot of the energy spectra (left panels) as a function of
kx obtained for the bxðyÞ profiles shown in (b). The first case
(a) corresponds to a heterostructure of insulator (I) and a Weyl
semimetal in which the separation of Weyl nodes changes
abruptly from bxi (WSM1) to bxf (WSM2) at ls; see Eq. (36).
In (a), the zero energy states in the green region are associated
with the “mini-arcs” localized at ls, whereas the states marked by
red are associated with the interface between the Weyl semimetals
and the insulator. In the second case (c), the separation of Weyl
nodes is changed linearly between li and lf [see Eq. (37)], as
shown by the dark blue line. The wave-function support of states
indicated by solid black dots in (c) is presented in (d).

GRUSHIN, VENDERBOS, VISHWANATH, and ILAN PHYS. REV. X 6, 041046 (2016)

041046-14



The corresponding spectrum is shown in Fig. 7(a) and is
characterized by the appearance of “mini-arcs”, fragments
of longer arcs that are surface states belonging to the
uniform system with the larger Weyl node separation bxi .
This situation is quite generic for an interface between two
topological phases with the same topological invariant—
the surface states hybridize and gap out along the region of
contact. For Weyl semimetals, we can consider this from
the perspective of assigning a Chern number to two-
dimensional slices of momentum space that lie between
two Weyl nodes [23]. The corresponding chiral edge states
hybridize and gap out in the region of overlap in momen-
tum space, which is equal to the length of the shorter axial-
vector potential bxf .
It is now straightforward to understand how the spectrum

evolves when the interface between twoWeyl semimetals is
smeared across the entire sample, which corresponds to
Fig. 7(b) (light blue curve). The spectrum in this case,
presented in Fig. 7(c), shows that the smeared interface
transforms the interfacial arc states at ls into zeroth pseudo-
Landau Levels. Moreover, this conclusion based on the
spectral information of Fig. 7(c) is corroborated by the
wave-function spread in real space shown in Fig. 7(d). As
discussed in the last section, the latter portrays how, as kx
is changed, the real-space probability density shifts from
edge to bulk. We stress that this is another complementary
instance of the discussion around Figs. 1 and 2. The surface
Fermi arcs blend with the zeroth Landau levels within a
single bxðyÞ profile, Fig. 7(b) (light blue curve), rather than
a sequence of them as in Figs. 1 and 2.
Moreover, the comparison between the light blue and

dark blue profiles in Fig. 7(b) inspires the following
physically appealing picture of how the current density
profile is distributed for the linear profile studied in
Fig. 6(b). The region between li and lf in Fig. 7(b) (light
blue curve) can be approximated by a collection of
infinitesimal discontinuities in the spirit of the trapezoidal
method for curve integration. At each discontinuity, there
are Fermi arcs that meet and annihilate with part of the arcs
of the neighboring layer. These bulk arcs carry current
density and thus act as a collection of bulk sheets that
“leak" current density into the bulk from the surface.

V. DISCUSSION AND CONCLUSION

In this work, we studied inhomogeneous Weyl and Dirac
semimetals with a space-dependent Weyl node separation.
We have discussed how such a scenario can arise either
from inhomogeneous strain or magnetization in existing
solid-state systems as well as cold atomic setups.
Underlying our results is an axial magnetic field B5 that
couples to the electronic degrees of freedom with two main
experimental consequences for both Dirac and Weyl
semimetals, which we have addressed in depth.
The first experimental consequence is a drastic change of

the spectral properties of topological semimetals. Using

two different lattice models, we have established two novel
spectral features attributed to the emergence of B5:
(i) Fermi arcs are secretly zeroth pseudo-Landau levels
due to a finite and large B5 at the boundary, and (ii) bulk
pseudo-Landau levels form because of B5 and compensate
the difference in density of states of inequivalent Fermi arcs
at opposite boundaries via position-momentum locking.
Point (i) is an inevitable consequence of the boundary
supporting a finite B5 since the Weyl node separation must
vanish in vacuum. This allows us to identify the existence
of Fermi arcs with the emergence of a boundary zeroth
pseudo-Landau level due to B5, even in the absence of bulk
inhomogeneities. Such a correspondence provides a novel
perspective on surface physics of Weyl and Dirac semi-
metals. Point (ii) is particularly relevant for spectral probes
like ARPES or STM that are sensitive to a modification of
the electronic spectrum [7–9]. Remarkably, for the par-
ticular case of time-reversal-broken realizations of inho-
mogeneous Weyl semimetals, the axial magnetic field
results in an inhomogeneous distribution of bound currents
throughout the sample, which exist in equilibrium and
average to zero over the entire volume. The appearance and
field dependence of these bound currents in the lattice
realization that we study is also consistent with our semi-
classical treatment of the response.
We envision two plausible routes to probe the effects

resulting from the bound currents discussed. Magnetic
sensors such as scanning superconducting quantum inter-
ference devices (SQUIDs) are a natural way to probe local
distributions of bound currents. Such probes were proven
very successful at detecting magnetization modulations and
inhomogeneous current distributions at interfaces such
as LAO/STO heterostructures, and in two- and three-
dimensional topological insulators (cf., Refs. [108–110]).
It is important to emphasize that nonlocal currents due to an
inhomogeneous magnetization and the bound currents due
to B5 are physically analogous phenomena, and thus it is
very likely for the latter to be detectable. The difference
between bound currents in an ordinary magnetized material
and bound currents within a Weyl semimetal is that those in
the latter emerge from a unique coupling between the Weyl
fermions and the background magnetization as described
throughout this paper.
Another promising alternative are torque experiments,

which have in fact already been conducted with Weyl
semimetals [111]. The magnetic torque τ ¼ M ×B is a
direct measure of the magnetic anisotropy of a crystal and
thus can reveal noncompensation of surface magnetic
domains.
Within our semiclassical treatment, we have predicted a

second experimentally relevant consequence, which is
related to transport: Inhomogeneities enhance the longi-
tudinal conductivity in Dirac or Weyl semimetals as
σ ∼B2

5. We find that this transport property is routed in
a chiral pseudomagnetic effect similar to the enhancement
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of the magnetoconductance due to the existence of the
chiral magnetic effect. We stress that this prediction is
applicable to all kinds of topological semimetals. Since this
enhancement is insensitive to the sign of B5, it will be
generated by each pair of Weyl nodes, a number that is of
order 10 in realistic materials.
A typical transport setup with point-contact probes,

schematically shown in Fig. 8, suffices. It represents a
thin film, or nanowire, of a topological semimetal that is
strained by a substrate with a small lattice mismatch. This
setup can be particularly relevant for strained HgTe=CdTe
heterostructures discussed in Ref. [21]. As illustrated in
Fig. 8, point-contact measurements have the additional
freedom to choose the voltage probes to be on a surface
with or without Fermi arcs (V1;2, respectively), depending
on wether the momentum-space projection of the nodes on
that particular surface coincides or not. Although for the
TaAs class of materials all accessible surfaces host Fermi
arcs, Dirac materials like Cd3As2 do present surfaces free
of arcs. Such anisotropy highlights the difference between
topological metals and more conventional strained semi-
conductors. While in the latter conductance can also be
enhanced via strain by modifying the band structure,
changing the position of the voltage probes is not expected
to result in anisotropic measurements if current jetting is
negligible [45].
The above considerations suggests a way to probe the

surface bound currents. As we have discussed extensively
in Sec. IV, surface currents on opposite surfaces in the
presence of bulk strain will not compensate each other
completely since their difference will be carried by the bulk
pseudo-Landau levels. It could be expected that two distinct

surfaces that are perpendicular to B5 will carry different
currents. Put differently, the Fermi arcs of two opposite
surfaces will not be of equal length in the presence of
bulk strain. Thus, measuring an anisotropy in the surface
currents could reveal the size of the bulk strain gradients.
However, typical surface-current signals are small, and thus
this detection mechanism is less feasible in practice.
Nonetheless, we note that the special nature of the
Fermi arcs can conspire to make the surface contribution
sizable, as in other related situations [112].
In order to assess the significance of the effects we

predict, we now estimate the magnitude of a bulk axial field
B5. For a thin sample, it is expected that strain relaxes
linearly with height over several unit cells if the lattice
constant mismatch is small. For a typical sample, such as a
Cd3As2 thin film, we can consider a height of the order of
ΔL ∼ 10 nm, and a conservative value of strain is translated
into a change in lattice constant of about 1% but can be as
large as about 10%. If we assume that the Weyl node
separation typically spans a tenth of the Brillouin zone
jbj ∼ 1=10 Å−1, then the effective magnetic field is jB5j ∼
½ðℏΔbÞ=eΔL� ∼ ðℏ=eÞ1015 m−2 ∼ 4 T. Remarkably, this
conservative estimate results in sizable magnetic fields,
certainly above the detectable threshold of magnetic
loops and SQUIDS. These fields will also induce detectable
changes in conductance that can be probed by growing
samples with differentΔL that result in different intrinsicB5.
Cold atomic systems offer a controlled alternative. For

these systems, we have proposed that the conductivity
enhancement can be measured by monitoring the center-of-
mass velocity vc:m:. This quantity is the quotient between
the current density j and the particle density n, which will
depend on the external fields in general. For small fields,
the density reduces to a trivial constant, and the center-of-
mass position is determined solely by the current density
times a constant factor. This experiment could be per-
formed in a cold atomic realization of the two-band model
used in this work. Moreover, this model, along with the
family of two-band models that host Weyl fermions [69],
is ideal to apply the method proposed in Ref. [82] to
study inhomogeneities. It relies on implementing a space-
dependent offset between neighboring sites. Applying such
an offset profile, which is feasible experimentally, results in
a space-dependent on-site potential [MðyÞ in our two-band
model] leading to a finite axial magnetic field, as described
in this work. These two considerations render cold atomic
systems as a natural platform to engineer and observe the
effects presented.
To conclude, we have shown that inhomogeneous

strain and magnetization have profound and observable
implications on the electronic spectrum and transport
properties of Dirac and Weyl semimetals. Moreover,
our general analysis provides an alternative angle to
explore distinct topological-to-trivial and topological-
to-topological interfaces, both smooth and abrupt [81].

FIG. 8. A schematic point-contact transport setup to measure
the current J (orange arrow) to determine the strain-dependent
conductivity σ ∼ B2

5 predicted in this work. Strain is induced by
the substrate with a small lattice mismatch that relaxes along the y
direction (red dashed arrow). If the Weyl node separation is b∥x̂
(blue arrow), then B5∥ẑ (green arrow). Contacts V1 (V2) probe a
surface with (without) Fermi arcs, resulting in an anisotropic
contribution to the conductivity.
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The fundamental correspondence between Fermi arcs and
pseudo-Landau levels and their connection to bound
currents departs from naive expectations and can inspire
future theoretical and experimental studies of surface
effects in Weyl and Dirac semimetals.
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Note added.—While preparing this manuscript, we
became aware of the recent related work by Pikulin
et al. [27] discussing the effect of strain generated by
torsion in inversion-breaking Weyl semimetal nanowires.
Their findings are consistent with and complementary to
our results. In particular, torsion in wires generates an
axial magnetic field B5 that is parallel to the Weyl node
separation rather than the perpendicular component
described here.
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