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Abstract The invariants of rank Joyce—Song semistable pairs over a Calabi—Yau
threefold were computed in Sheshmani (Wall-crossing and invariants of higher rank
stable pairs, Illinois J. Math., 2016), using the wall-crossing formula of Joyce—Song
(A Theory of Generalized Donaldson—Thomas Invariants. Memoirs of American Math-
ematical Society, vol 217(1020), 2012), and Kontsevich and Soibelman (Stability
structures, motivic Donaldson—Thomas invariants and cluster transformations. arXiv:
0811.2435, 2008). Such wallcrossing computations often depend on the combinato-
rial properties of certain elements of a Hall-algebra (these are the stack functions
defined by Joyce (Configurations in abelian categories. Il. Ringel-Hall algebras. Adv
Math 210(2):635-706, 2007). These combinatorial computations become immedi-
ately complicated and hard to carry out, when studying higher rank stable pairs with
rank > 2. The main purpose of this article is to introduce an independent approach
to computation of rank stable pair invariants, without applying the wallcrossing
formula and rather by stratifying their corresponding moduli space and directly com-
puting the weighted Euler characteristic of the strata. This approach may similarly be
used to avoid complex combinatorial wallcrossing calculations in ragkcases.
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1 Introduction

The Donaldson—-Thomas theory (DT in short) of a Calabi—Yau threéfdkldefined

in [3,17] via integration against the virtual fundamental class of the moduli space
of ideal sheaves. In1j3,14], Pandharipande and Thomas introduced objects given
by pairs(F, s) whereF is a pure sheaf with one dimensional support together with
a fixed Hilbert polynomial and € H°(X, F) is given as a section of. The au-
thors computed the invariants of stable pairs, using deformation theory and virtual
fundamental classes.

Following their work, Joyce and Song defined a similar notion ofwasfed sta-

ble pair, given by a sheaf and section map: O(—n) — F wheren > 0 was
chosen to be a sufficiently large integer so that the cohomology vanishing condition
H'(F(n)) = 0is satisfied. These stable pairs were equipped with a stability condi-
tion rather different than the one used i8].

Definition 1 (Joyce—Song pair stability) Given a coherent shiédkt p, denote the
reduced Hilbert polynomial of with respect to the ample line bunde (1). A pair
¢: O(—n) — F is calledstableif the following conditions are satisfied:

e pr < pp for all proper subsheaves' of F such thatF’ # 0.
o If ¢ factors through?’ (F’ a proper subsheaf df), thenpy < pr.

In this article we refer to this stability &sstability. For more on Joyce—Song stability
look at [10, Definition 12.2].

One advantage in definirtgstability, is that it enables one to compute gemeralized
Donaldson—-Thomas invariantsith respect to the invariants gfstable pairs. The
generalized Donaldson—Thomas invariants could not be calculated using the machin-
ery developed by Thomas id 7], since they were given by invariants of semistable
sheaves (not just the stable ones!). After work of Joyce and Song an interesting ques-
tion was whether one is able to study and compute the invariants of objects composed
of a sheafF and multiple sections given by the morphism - - s,: %" (—n) — F

for r > 1 (we will later denote these by rankstable pairs for short). Inlp], the

author introduced the notion of highly frozen triples (same as rastable pairs),

and used the virtual localization technique introduced by Graber—Pandhariggnde [
to compute their invariants over local Calabi—Yau threefolds (such asld§aTlhe
objects studied in15] (because of the stability condition chosen) were reminiscent
of the higher rank analog of (a twisted version of) the Pandharipande-Thomas (PT
in short) stable pairs1f]. In [16], the author studied the same higher rank objects,
but equipped with thé-stability condition, and computed their invariants using the
wallcrossing technique.

In this article we would like to introduce a direct method of calculation of such in-
variants, which involves first stratifying the moduli space of higher rank semistable
pairs into disjoint components, where each stratum contains the stablé piks

and then computing the weighted Euler characteristic of the moduli space of higher
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rank pairs with respect to the Euler characteristic of the raskata. In doing so,
we need to first define an auxiliary categdsy (which was originally introduced by
Joyce—Songl[0, Section 13.1]). The objects B, are defined similar to the higher
rank Joyce—Song pairs and they are classified basing on their numericalflags
Here, 8 denotes the Chern characterffandr denotes the number of sectionsfof
being considered in the construction. The definition of the categgrallows one to
defineweakstability conditions orB3,, (look at Definition6).

As we have shown inlf6, Theorem 5.1], the moduli stack of weak semistable objects
(we denote this by-semistable) irB, is closely related to the parameterizing moduli
stack of higher rank-semistable pairs, which enables us to obtain the following
identity:
roa 2 ~
NGy (8) = (1) BS(X, B, 7, 7). (1)

The left-hand side ofl) stands for invariants df-semistable pairs and the right-hand
side stands for invariants gfsemistable objects i, which are, roughly speak-

ing, defined as the weighted Euler characteristic of their corresponding moduli stack.
Therefore, using this identity, we aim at calculating the right-hand sid&)pti§ing

the stratification method mentioned above.

We show in this article that the result of our calculation agrees with the results ob-
tained in [L6]. In particular, we restrict our computations to the rangairs ¢ = 2),

and very explicitly calculate their invariants in some examples. As we will see be-
low, even though the computation of such invariants requires a detailed study of the
strata involved in the moduli space, the advantage of the strategy used in here is that
it is much more geometric and it avoids complicated combinatorics involved in the
method of wallcrossing. Moreover, we suspect that the methods introduced in this
article may be used to prove the integrality conjectures for the partition functions
of the higher rank Joyce—Song invariants in special cases. Todd&]itngs used a
similar stratification technique and provided an evidence of such integrality property,
proposed by Kontsevich—Soibelmét®?[ Conjecture 6].

The auxiliary category B,

Definition 2 Let X be a nonsingular projective Calabi—Yau threefold equipped with
an ample line bundl®x (1). Let = denote the Gieseker stability condition on the
abelian category of coherent sheavesXnDefine A, to be the sub-category of
coherent sheaves whose objects are zero sheaves and norsmmistable sheaves
with fixed reduced Hilbert polynomiat.*

Definition 3 Fix an integemn. Now define the categor§, to be the category whose
objects are triplegF,V,¢), where F € Obj(A,), V is a finite dimensional-
vector space, ang: V. — Hom(Ox(—n), F) is a C-linear map. Given(F, V, ¢)
and(F’, V', ¢’) in B,, define morphismsF, V,¢) — (F’, V', ¢') in B, to be pairs

1 Look at [10, Definition 13.1] for more detail.
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of morphisms(f. g), where f: F — F’ is a morphism ind, andg:V — V’'isa
C-linear map such that the following diagram commutes:

v —2 Hom(Ox(=n), F)

l | |

v —2 o Hom(Ox(=n). F).

Our definition of the categor$, is compatible with that of 10, Definition 13.1].
Now we define the numerical class of objectsBp based on 10, Section 3.1].

Definition 4 Define theGrothendieck grouk(B,) = K(A,) @ Z, whereK(A,) is
given by the image oK(A,) in K(Coh(X)) = K"™(Coh(X)). LetC(A,) denote
the positive cone afi , defined as

C(A,) = {E € K"™A,) :0# E € A,).

Now, given (F,V,¢) € B,, we write [(F,V,¢)] = ([F].dimV') and define the
positive cone ofB,, by

C(Bp) ={(B.d): B C(Ap).d>0o0r B =0andd > 0}.
We state the following results by Joyce and Song without proof.

Lemma 1 ([10, Lemma 13.2]JThe categoryB, is abelian andB, satisfies the con-
ditionthatif[F] = 0 € K(A,) thenF = 0. Moreover,B,, is noetherian and artinian

and the moduli stacl@tgfp’d) are of finite type for al(8, d) € C(B,).

Remark 1The categoryl , embeds as a full and faithful sub-categorsBipby F —
(F,0,0). Moreover, it is shown inJ0, Equation (13.3)] that every obje€F, V, ¢)
sits in a short exact sequence

0 — (F,0,0) > (F,V,¢) = (0,V,0) — 0.

Next we recall the definition ofveak(semi)stability for a general abelian category
A.

Definition 5 Let A be an abelian category. L& (A) be the quotient oKy (A) by
some fixed group. Le€(A) be the positive cone ofl. SupposdT, <) is a totally
ordered set and: C(A) — T is a map. We caliz, T, <) astability condition on4 if
whenevew, 8,y € C(A) with § = o + y then either

(@) <t(f) <t(y) or (@) >t(f)>1(y) or t(a)=1(p)=1(y).

We call (z, T, <) aweak stability condition otd if whenevera, 8,y € C(A) with
B = o + y then eitherr (@) < ©(B) < (y) or () > ©(B) > t(y). For such
(z, T, <), we say that a nonzero objeEtin A is
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o T-semistabléf for all S C E, whereS 2 0, we haver([S]) < t([E/S)),
e t-stableif for all S C E, whereS % 0, we haver ([S]) < t([E/S]),

o r-unstablef it is not r-semistablé.
Now we apply the definition of weak stability conditions to the categdsy

Definition 6 Define theweak stability conditiotiz, 7, <) onB, by T = {0, 1} with
the natural orde® < 1, andz(8,d) = 0if d = 0andz(8,d) = 1if d > 0.

Definition 6 is compatible with that of]0, Definition 13.5].

Moduli stack of objects in B,

Before constructing the moduli stack of objectsZp, we would like to provide

a different description of objects B, as complexes in the derived category. This
makes it easier to understand the strategy to construct their moduli space), By [
Lemma 13.2], there exists a natural embedding fungt@, — D(X) which takes
(F,V.,¢v) € B, to an object in the derived category given by

o> 0->VR0x(—n) > F >0—> .-+,

whereV ® Ox (—n) and F sit in degree—1 and0. Assume that dink = r. In that
caseV ® Ox(—n) = Ox(—n)®". Therefore, one may view an obje@t, V, ¢y) €

Bp as an object in an abelian sub-category of the derived category, gij@R ésn)®”

— F]. Now let us use this prespective and define the notion of flat families for objects
inB,.

Definition 7 Fix a parameterizing scheme of finite tySelLetrx: X xS — X and

ms: X xS — § denote the natural projections. Use the natural embedding functor
§:B, — D(X) in [10, Lemma 13.2]. Define th&-flat family of objects irB, of
type(B, r) as a complex

TEM @k Ox(—n) L5 F

sitting in degree—1 andO0, such that¥ is given by anS-flat family of semistable
sheaves with fixed reduced Hilbert polynomjalwith ch(F) = 8 and M a vector
bundle of rank- overS. A morphism between two suc$+flat families is given by a
morphism between the complexes

W
rgMQnyOx(—n) Y, 5 and TEM' @7k Ox(—n) —> F,

2 For more detail on DefinitioB look at [10, Definition 3.5].
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M@y Ox(—n) Vs F

L,

TgM'@ny0x(—n) ——— F.

Moreover an isomorphism between two sugHlat families inB, is given by an
isomorphism between the associated complexes

/

. ¥
TEM®nL0x(—n) L5 F  and  aiM'@nk0x(—n) 2>

TgM @y Ox(—n) _ s F

:| ) i;

TgM'@nyO0x(—n) ———— 7/,

From now on, by objects i3, we mean the objects which lie in the image of the nat-
ural embedding functdg: B, — D(X). Moreover, by theS-flat family of objects in

B, and their morphisms (or isomorphisms) we mean their corresponding definitions
as stated in Definitior.

Now we define theigidified objects inB,. These arenlygoing to provide the means
for construction of moduli stack of objects B), as a quotient stack.

1.1 Rigidified objects and their realization in the derived category

As stated in Definitior7, the objects inB, are defined so that the sheaf sitting in
degree—1 is given by a trivial vector bundle of rank isomorphic toO?’(—n).
However we have not fixed any choice of such trivialization. Below we will define
closely related objects, which we denote by rigidified object3jnby fixing a choice

of the trivialization ofO?’ (—n). These objects are essential for our construction,
as their moduli stack forms a GLC)-torsor over the (to be defined) moduli stack
of objects inB,. Therefore our plan is to essentially construct the moduli stack of
objects inB, as the stacky quotient of the moduli stack of rigidified object® jn
where the group we take the quotient with is,@C).

Definition 8 Fix a positive integer and define the sub—categdﬁ); C B, to be
the category ofigidified objects inB, of rank r whose objects are defined by tu-
ples (F,C%", p) where F is a coherent sheaf with reduced Hilbert polynonpal
ch(F) = g andp: C" — Hom(Ox(—n), F). Given two rigidified objects of fixed
type (B.r) as(F,C®, p) and(F’,C®", o) in BR, define morphism¢F, C®", p) —
(F’,C®", p') to be given by a morphisnf: F — F’ in A, such that the following
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diagram commutes:
c® —> Hom(Ox(—n). F)

cer —~ Hom(Ox (=n), F').

Remark 2Similar to before, there exists a natural embedding fungfarB? —
D(X) which takes(F,C®", p) e ij to an object in the derived category given
by -+ - 0 - C®¥®0x(—n) - F - 0 — ---, whereC® ® Ox (—n) sits in
degree—1 and F sits in degre€d. One may view an object iﬂBIFj as a complex
¢: O?’ (—n) — F such that the choice of trivialization 61?’ (—n) is fixed.

Definition 9 Fix a parametrizing scheme of finite tySe Use the natural embedding
functorR: BX — D(X) in Remark2. An S-flat family of objects of typés. r) in
BR is given by a complex

ALY @150y (—n) L F
sitting in degree—1 and 0 such that¥ is given by anS-flat family of semistable
sheaves with fixed reduced Hilbert polynomjaivith ch(Fs) = g foralls € S. A
morphism between two suckHflat families in BE is given by a morphism between
the complexes

/

A0S QL0 (—n) 255 and  xi0¥@nkO0x(—n) —> F

T @Oy (—n) —2 > F

iCI®X><Sl
,l/,/

m30 @y 0x(—n) ——— F'

Moreover an isomorphism between two sugHlat families in Bl'f is given by an
isomorphism between the associated complexes

w/
0¥ @ryOx(-n) S5 and 70 @ryOx(—n) > I,
n508 @y 0x(—n) — g

idoXXS\L =

’

0¥ @y 0x(—n) R 7}

Similar to the way that we treated objectsBy, from now on by objects irBIFj we

mean the objects which lie in the image of the natural embedding fu@BtdBIFf —

D(X) in Remark2. Moreover by theS-flat family of objects inBI'f and their mor-
phisms (or isomorphisms) we mean the corresponding definitions as stated in Defini-
tion 9.
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Notation 1 In what follows we deflném(ﬂ ) (zm(ﬂ ") respectively) to be the moduli

functors from ScpC — Groupoids Wh|ch send @ schemeS to the groupoid of
S-flat family of objects of type B, r) in B, (Bff respectively).

We will show that these moduli functors (as groupoid valued functors) are equivalent
to algebraic quotient stacks. We will also show that the moduli sﬁﬁ%’) is given

by a stacky quotient omng;” by GL,(C).
14

1.2 The underlying parameter scheme

According to DefinitiorB, an object in the categor§, consists of semistable sheaves
with fixed reduced Hilbert polynomigb. Note that having fixed a polynomial (in
variablet) p(t) as the reduced Hilbert polynomial 6f means that the Hilbert poly-
nomial of F can yet be chosen @& (¢) = kp(t)/d’! for different values ok where

d’ is the dimension of". However here we make an assumption that there are only
finitely many possible valuek = 0,1,..., N for which our computation makes
sense. We explain the motivation behind this assumption further below.

Our analysis inherits this finiteness property directly from applyib@ Proposi-

tion 13.7], where the authors show that there are only finitely many nontrivial con-
tributions to their wallcrossing computation which are induced by objects, whose
underlying sheaves could only have finitely many fixed Hilbert polynomials. In other
words, according toll0, Proposition 13.7], it suffices to consider Hilbert polynomials
Pr(t) = kp(t)/d’! induced byp and only finitely many values df = 1,2,..., N

for someN > 0. Similarly, for us there would only be finitely many suklior which

(2) holds true, which justifies the reason behind our assumption.

On the other hand, as discussed6nTheorem 3.37], the family of Gieseker-semi-
stable sheaveEk on X such thatF' has a fixed Hilbert polynomial is bounded. There-
fore, the family of coherent sheaves with finitely many fixed Hilbert polynomials is
also bounded. We will use this boundedness property in our construction of parame-
terizing moduli stacks.

Now fix the Hilbert polynomialPg (t) = P as above and use the fact that, given a
bounded familyF of coherent sheaves with fixed Hilbert polynom#al(here F de-
notes a member of the famify)), there exists an upper bound for their Castelnuovo—
Mumford regularity, given by the integet, such that for each membét of F the
twisted sheafr (m’) is globally generated for ath’ > m. Fix suchm’ and letV be

the complex vector space of dimensién= P(m’) given byV = H(F ® Ox (m)).
Twisting the sheaf by the fixed large enough integer would ensure one to get

a surjective morphism of coherent sheaVve® Ox (—m’) — F. One can then con-
struct a scheme parametrizing the flat quotienty’ & O x (—m’) with fixed given
Hilbert polynomial P. This by usual arguments provides us with Grothendieck’s
Quot-scheme. Here to shorten the notation weigedenote Quagt (V ® Ox (—m’)).
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Denote byQss c Q the sublocus of Gieseker-semistabtesemistable for short)
sheaved” with fixed Hilbert polynomialP .

Definition 10 Let n in Definition 7 be given so that > m'. Define® over Q% to
be a bundle whose fibers parameteriZ& F(n)). The fibers of the bundI@®" over
each poin{F] = {p}, wherep € Q5 parameterize M F(n))®". In other words, the
fibers of P®" parameterize the ma ??’(—n) — F (which define the complexes
representing the objects ihfj).

There exists a right action of GI') (whereV is as above) on the Quot-scheme
Q which induces an action 0f%s, after restriction to the open subschemeref
semistable sheaves. It is trivially seen that the action ofiGLon Q%% induces a right
action onP®”. However note that, since we have fixed the trivializatiortﬁ§f (—n)
for the objects iriBj}, there exists also an extra action of &GC) on P®” which is
described as follows. Let

(097 (-n) > F]
be given as a point it?®”. Let v € GL,(C) be the map given by: Ox (-n)®" —
Ox (—n)®". The action of GL.(C) on P®" is defined via precomposing the sections
of F with i as shown in the diagram below:

0% (—n)
/|
0% (—n) 2= F.

Note that, by the Grothendieck—Riemann—Roch theorem, fixing a polarization over
X and the Chern character of sheaves ag9h= g, induces the fixed Hilbert poly-
nomial for suchF. Therefore this is the reason why we index our parameterizing
moduli stacks by(8, r) instead of( P, r).

; (B.r) (B.r)
1.3 Artin stacksity, > andi))t755
By Definitions7 and9, the construction of moduli stack of objectsy andBIFj is
done similar to 15, Section 5].

Theorem 1 LetP®" be as in DefinitiorL0. Then the following statements hold true:

() Let
:]JGBr
[GL(V)}
be the stack theoretic quotient®®” by GL (V). Then, there exists an isomor-

phism of stacks
UJGBr
B:1) ~
" = ot |
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B.r)

In particular, Dﬁ( is an Artin stack.

(i) The moduli stackm(ﬂ " is a GL, (C)-torsor overim(ﬂ ) In particular, there
exists an |som0rph|sm of stacks

(®B.r)
mB) ~ Mg
Bp GL-(C) |’

(iii) Itis true that locally in the flat topology

mE" = b

P

SpecC)
[ GL,(C) } '

This isomorphism does not hold true globally unless 1.

Proof The proofs of parts (i), (ii) are essentially the same & Proposition 3.3,
Remark 3.4, Theorems 3.5]. Now we prove part (iii) by showing that there exists a
forgetful mapr: imgfg’) — zmgfl;’) which induces a map from

D

B, SpeqC)
Py [ GL,(©) }

p
to im(,f;r) and show that this map has an inverse locally but not globally unlesg.
First we prove the claim far = 1.

Forr = 1, GL;(C) = G,,. For aC-schemeS, anS-point of
SpecC
mgf&l) " [ peq )}

p m

is identified with the datéO x < s (—n) — F, L), whereLg is aG,, line bundle over

S. Letng: X xS — S be the natural projection onto the second factor. There exists
a map that sends this point to &Rpoint p € mgf;l) which is obtained by tensoring
with Lg, i.e.

L
Ox(—n)XLg ¢—> Fxnghs.

Note that tensorin@ x x s (—n) with 75 L s does not change the fact that fiber by fiber
Oxxs(—n)|ses = Ox(—n)K Lg|ses. Moreover, there exists a section map

SpeqC)
. gn(B8.1) (8,1)
S m;ﬁ —>9ﬁ;§ X[Tm .

Simply take anS-point [Ox(—n)XLs — F] € (Emgfz;l))(S) and send it to ar$-

point in
(zmgfél) x [—Sp(gqc)]) (8)

m
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by the map
[0x(-n)BLs = F] > ([0xxs(—n) > F@TFLS']. Ls).

Note that sincels is a line bundle ovelS then it is invertible and hence a section
map is always well-defined arinltgfp’l) is aG,,-gerbe ovet)thngl). Now letr > 1. It
)2

is left to show that there exists a map from

@ _ [ SpecC)
My [ GL,(C)

to Dﬁg};’) and this map does not have an inverse (section map) globally. To proceed
further, we state the following definition.

Definition 11 Consider a stackl), py:2 — Schy/C). Given two morphisms of
stacksm: X — 9 andnm,: X’ — 9), thefibered productof X and X’ over®) is
defined by the category whose objects are defined by triples’, «), wherex €
X andx’ € X' respectively andr: 71(x) — mp(x’) is an arrow inQ) such that
py () = id. Moreover, the morphisméx, x’,a) — (v, y’, B) are defined by the
tuple (¢: x — y, ¥:x’ — y’) such that

m(Y)oa = Boma(p): PE(x) — Pr(y").

Now observe that for > 1, there exists a forgetful map
.o (B.r) (B,r)
n.DﬁBEr — 93193;

which overS-points take$O x (—n) KOE" — F] (see Definitiord) to [M K O x (—n)
— J], whereM is defined in Definitiory. Moreover, there exists a map

g mP" — BGL,(C)

which send§M XOx(—n) — JF] to M by forgettingF. Finally there exists the
natural projection

SpedC)

i:SpecC) — [GL,((C)

} = BGL,(C).

It follows directly from Definition11 that the diagram

M £ pt= Sped)

P

’ SpecC
m§g" —=— BGL,(C) = [&}

GL-(©)
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is a fibered diagram and
m(éiér) = Wz%s;r) XBGL, ©) pt

However, one cannot use the same argument used for the case @fto conclude
that there exists a section map

SpegC)
. a(B:r) (B,r)
s: P - m X[GL,((C) ,

since theS-point of BGL, (C) is a GL,(C) bundle overS and this vector bundle is

trivializable locally but not globally. Therefore locally one may thlnkm‘ﬂ ") a
isomorphic to

but not globally. O

Definition 12 Definefmgf”g (7) as the substack dm(ﬂ”) parameterizing-semi-

stable objects ifB,. Smcei)ﬁ(ﬂ ") is of finite type [LO, Lemma 13.2], thet’m%3 fgs(%)
is of finite type for all(8,r) € G(Bp)

2 Stack function identities in the Ringel-Hall algebra

We review here some basic facts about the stack functions in the Ringel-Hall alge-
bras. Letdt be an ArtinC-stack with affine geometric stabilizers. Consider pairs
(R, p), wherefR is given by a finite type ArtirC-stack with affine geometric stabiliz-

ers ando = R — M is al-morphism. Now define an equivalence relation for such
pairs, where(R, p) and (R, p’) are called equivalent if there existslanorphism

t: R — R such thap’ot andp are2-isomorphicl-morphismsik — 9t. Joyce and
Song in [LO, Section 2.2] define the space of stack functiBReMt, y, Q) as theQ-
vector space generated by the above equivalence classes of(ffaip3] such that

the following relations are imposed:

(a) Given a closed substa¢l®, p|s) C (2R, p), we have

(R, p)] = [(&. ple)] + [(R\ &, plw\e)]- )

(b) Let ;% be aC-stack of finite type with affine geometric stabilizet$,denote
a quasi-projectiveC-variety, noz: Rx U — R be the natural projection and
0 R — M be al-morphism. Then

[(RAXU, pors)] = ¥ ([UD[(R. p)]. ®)
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(c) AssumeR =~ [X/G], where X is a quasiprojectiveC-variety andG a very
special algebrai€-group acting onX with maximal torusT" ©, then we have

(R0 = Y FG.TO[(X/0Q)poi?)],

0€9Q(G,TG)

where the rational coefficient8 (G, T? Q) have a complicated definition ex-
plained in P, Section 6.2]. Her€(G, T ) is the set of close@@-subgroup) of
TY suchthatQ = T% N Cg(Q), whereCg(Q) ={ge G :s5g =gs.s € Q}
and:?:[X/Q] — R = [X/G] is the natural projection-morphism. Similarly,
one defineSKOM, x, Q) by restricting thel-morphismsp in parts (a)—(c) to be
representable.

(d) There exist the notions of multiplication, pullback, pushforward of stack func-
tions inSF(MMN, y, Q) andSFOMN, x, Q). For further discussions look &t(, Def-
initions 2.6, 2.7 and Theorem 2.9].

Joyce and Song inlp, Section 13.3] define the notion of characteristic stack func-
tions Ss(f’d)(%) € ﬁz(imgp (%), x, Q). Moreover, in the instance where the moduli
stack contains strictly semistable objects, the authors defineghathmof the mod-

uli stack by the stack functioa®-4) (%) given as an element of the Hall-algebra of
stack functions supported over virtual indecomposables, we will include these defi-
nitions below.

Definition 13 Define thestack functions

TBr)zy — sB) =
SE7) = i ()
in SFa (MY ")) (for definition of SF look at [10, Definition 3.3]) for (8. r) €
C(B,). Now define elemen®") (%) in SFa|(£)thf,;25(f))
—(B) (= D" <8 2y 4 5B 5
e (1) = > 58 (3) % § P27 (1)
=1 ! (4)
(B1:71)se-0s(Br,rn)EC(Bp)

Br,r1)+++(Bn,rn)=(B,r) — B
Vi B =B Vi ke 5B (7).

wherex is the Ringel-Hall multiplication defined ii{, Definition 3.3].
Our goal in the remainder of this article is to first evaluate the element of the Hall al-
gebrae ") (%) above, by explicitly computing the right-hand side df,(and then

calculate the invariants. To do this one needs to apply the Joyce-Sergjge-
bra morphismto € #-") (7). In order to clarify the latter, we need further definitions.

Definition 14 ([10, Definition 13.3]) Define thé&uler form inB, asys,: K(B,) x
K(B,) — Z such that

X5,((B.d).(v.€)) = % (B.y) —dx([Ox (—=n)].y) + eX([Ox (-n)]. B).
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wherey(-) is the Euler form onK(Coh(X)).

Definition 15 ([10, Definition 13.11]) Define to be the subset ¢, d) in C(B,) C
K(Bp) such thatPg(¢) = kp(1)/d! fork = 0,...,N andd = 0 or 1 or2. Then
§ is a finite set 7, Theorem 3.37]. Define the Lie algebtdB,) to be theQ-vector
space with the basis of symbdl&®:4) with (8, d) € 8 with the Lie bracket

[I(ﬁﬂ')ﬁ I(%e)] = (- I)Yg,,((ﬂ,d),(%e)) 731)((’3’ d). (y.e)) A B+y.d+e) (5)

for (B+7y.d +e¢) € 8 and[AB-D, 1] = 0 otherwise. Here it can be seen thiat,
is antisymmetric and hence equatid) ¢atisfies the Jacobi-identity and that makes
L(B,) into a finite-dimensional nilpotent Lie algebra odgr

Now the Joyce-Song Lie algebra morphismdefined as thé)-linear mapagpz
SF'E;‘ldimgp — L(B,) by applying [LO, Definition 5.13] to the moduli stackt,, and
L(By).?

Definition 16 Define the invarianB3(X, g, r, 7) associated t@-semistable objects
of type(B,r) in B, by

TP (e®B)(2)) = BS(X. B.r. 7) - AP,
whereW®» is given by the Lie algebra morphism above.

From now on, to minimize the unnecessary computational complexity, we restrict
our analysis to rank pairs, i.e.r = 2. First to motivate the intuition behind our
computations we study an interesting example.

3 Direct computation of invariants in an example

Example 1Computation OB;S(X, [P1],2,7), whereX is given by the total space of
02 (1) — P

We compute the invariant af-semistable objectéF, C? ¢.2) of type ([P!],2) in
Bp. In this caseF has rank 1 over its support ang-(n) = n + y(F). Assume
that y(F) = k. In this case by computations i6,[L1] the only semistable shedf
with chy (F) = [P!] is given byOp: (k — 1) which is a stable sheaf. First we give the
description oPn{F 22 (7).

Bp,ss

By definition, an object of typg[P'], 2) in B, is identified by a comple®) x (—n)®?
— 140p1 (k — 1), where:: P! < X (from now on we suppress in our notation).
By the constructions in Sect.2, the parameter scheme ®fsemistable objects is

3 For further detail look atf0, Definition 13.11].
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obtained by choosing two sectiofs, s») such thas; € H*(Op1 (n +k —1)) fori =
1,2. Moreover sinc&p: (k — 1) is a stable sheaf, its stabilizer is given®y, .

An important point to note is that, givenzasemistable objectF, C2 ¢2), one is
always able to obtain an exact sequence of the form

0 — (F.C,¢c) — (F.C%¢pe2) — (0,C,0) — 0, (6)

for every object in the moduli stack and sing@", C2% ¢c) = 1 < 7(0,C,0) = 1,

one concludes that all objects parametrized by the moduli stack are given by ex-
tensions of rank Z-stable objects and hence all objects arstrictly-semistable.
Moreover, note that giving &-semistable object of the form

5 (s1,82)
—_—

({)X(—I/l)€B F

is equivalent to requiring the condition that, s,) # (0,0), since otherwise, one
may be able to obtain an exact sequence

0 — (C%0,0) — (C%F,0) - (0,F,0) - 0

such thatt(C20,0) = 1 > 7(0, F,0) = 0, hence(C? 0,0) (weakly) destabilizes
(C? F,0), hence a contradiction. Now use Theorgmnd find that

(#12) 2, _ [H(Op1 01+ k= 1)\ {0}/,
Mapss (O _[ GL>(©) }

_ [PH (05 (1 +k—1)%2) ")

B [ GL2(C) ]

We need to compute the element of the Hall aIgétSF%{]’z)(%). By applying Defini-
tion 13to Em%ig’sz) (%), we obtain

~

_(pl - — (ol - 1 - " = .
eW12@) =510 -5 Y sPD@EPV (@) (8)
Bi+B1=[P']

1
Now we use a stratification strategy in order to decomﬂﬁ% 12)

s (7)into adisjoint

union of strata as follows. Since the objects in the moduli stack are of(ffp& 2),

one would immediately see that the only possible decompositionte$emistable
object of type([P'],2) is given by([P!],2) = ([P!],1) + (0, 1). This means that

a strictly 7-semistable object of typgP!],2) is always given by an (split or non-
split) extension, involving an object of typéP'], 1) and an object of typgo, 1).

Note that it is allowable to flip the order of an extension, as long as the original
strictly semistable object is re-produced. Our stratification then involves a study of
the parametrizing moduli stack for the objects, depending on which extension is used

to produce them. This will enable us to decompm%ﬂ;l’l’sz) (7) into a disjoint union

of split and non-split strata (i.e. induced by split or non-split extensions).
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_ ' (P'1,2)  ~ (P'],2) o~
Definition 17 Definedy; 57(7) C My oo (7) to be the locally closed stratum

over which an object of typgP!], 2) is given by split extensions involving objects
of type ([P'], 1) and (0, 1). Definem 12 ) ¢ mP'12(3) to be the locally

Bp,nsp Bp,Ss
closed stratum over which an object of ty{i'], 2) is given by non-split extensions

involving objects of typd[P!], 1) and(0, 1).

Now we study the structure of each stratum separately.

3.1 Stacky structure (Sm%itlf)(%)

It is easy to see that arfysemistable objects of tyggP!], 2) given as
[0x(=n)®% = Opi (k—1)] = [Ox(—1)®* = Opi (k —1)] ® [0 x (—n) — 0]

has the property that the sectionss, for this object are linearly dependent on one
another. Hence the underlying parameter scheniesgimistable objects of this given
form is given by choosing a nonzero sectionfi (n + k — 1), in other words we
obtain H'(Op1 (n +k — 1))\ {0}. Now we need to take the quotient of this space by
the stabilizer group of points. We know that the condition required fesamistable
object

OX(—”)®2 (s1.52) F

to be given by split extensions of rank 1 objects is thatnds, are linearly dependent
on one another. Now pick such an object given by

(s1,0)
D2

Ox (=n) F.

The automorphisms of this object are given by the group which makes the following
diagram commutative:

(s1,0)

Ox (—n)®2 Op1(k—1)
Ox(=m)® —0 ok —1).

Hence it is seen that the left vertical map needs to be given by a subgroup 6L
which preserves;, i.e. the Borel subgroup of GI(C) whose elements are given by

2 x2 upper triangular matriceéko‘ % , Whereky, k3 € G, andk, € Al Having

fixed one of the automorphisms via fixikg, k,, k3, it is seen that, by the commu-
tativity of the square diagram, the right vertical map needs to be given by multipli-
cation byk; which is an element ofs,,. Note that one needs to take the quotient

of the parameter scheme by all isomorphisms between any two objects in the split

stratum, not just the automorphisms of one fixed representative. In general for an
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object to live in the split stratum one requires the sectibnss;) to be given by
(s1,a-s1). We observed that fixing a representative for a split object of fafskich

as fixing (s, s2) = (s1,0) as above) would tell us that its automorphisms are given
by G2, x AL Hence, taking into account all possible representatives implies that the
stabilizer group of objects in the spit stratum is given@ x Al x G,,. Hence we
obtain

1 B HO(Opi(n +k—1 0 PHY(Opi (n +k —1
W%Ii,l’pz)(f)=[ (g%EZAIXGB\{}]:[( (éf,,(:Al )))]. )

3.2 Stacky structure dm%iliszg (%)

(P'],2)

In this case, the objects imgp,nsp

form

(7) are given by non-split extensions of the

0 —— Ox(—n) —— 0%*(—n) —— Ox(—n) ——=0

Sll l(sl,sz) J/ (10)

0 — Opi(k—1) —= F 0 0.

Note that switching the place @iy (kK —1) and0 in the bottom row of diagram

(10) would produce a split extension and so such extensions cannot lie in the non-
split stratum. Now, in order to obtain non-split extensions, one needs to choose two
sectionssy, s, such thats; ands, are linearly independent. The set of all linearly
independent choices of ands, spans a two dimensional subspace 8t (n +

k — 1)) which is given by the GrassmanianZn + k).

Now, we need to take the quotient of this scheme by the stabilizer group of points in
the stratum. We know that the condition required farsemistable object

OX(—I’[)GBZ (s1,52) F

to be given by non-split extensions of rahkobjects is that; ands, are linearly
independent. Now pick such an object given by

OX(—n)EBZ (51,52) F

The automorphisms of this object are given by the group which makes the following
diagram commutative:

(51,52)

Ox (—n)®2 Op1 (k—1)
Ox(=m® —S2 0. (k- 1).
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Hence it is seen that the left vertical map needs to be given by a subgroup 6L

whose elements are given By 2 diagonal matrices of the forré kol k01 ) where

k1 € G,,. Having fixed one of the automorphisms via fixikg, it is seen that by
the commutativity of the square diagram, the right vertical map needs to be given by
multiplication byk; which is an element df,,,. Hence we obtain

1 . GQ2,n+k)
93?%%53 (T) = [—G } (11)
m

Now we are ready to compu@EkWFW]_éﬂk’l)(%) *Es(ﬁl’l)(%) appearing on the

right-hand side off). We use the fact that

Z gs(ﬂk,l)(%)*géﬂl,l)(;)
B +B=[P'] _ _ _ B (12)
= 5D () %50 (7) 4+ 50D (7) x5 I ()

and compute each term on the right-hand sidel@f §eparately.

Remark 3As we described above, there exists an action of Gl). on
S=P(H(Op1 (n +k —1))®?).

This action induces an action of the corresponding Lie algebra on the tangent space
of Sgiven by the map

0s®gl,(C) — Ts, (13)

wheregl, (C) denotes the Lie algebra associated to the group(GL. The dimension
of the automorphism group of objects representing the eleme@s$sajiven by the
dimension of the stabilizer (in GI(C)) group of these elements, which itself is given
by the dimension of the kernel of the map 8). On the other hand, the dimension
of the kernel of the map inl@) is an upper-semicontinious function. Therefore by
the usual arguments, we obtain a stratificatio® @fhich induces a stratification of

S
[GLz(C)]

into locally closed strata, such that over each stratum the dimension of the stabilizer
group is constant as we vary over points inside that stratum. Here in Defihitime

1
stated without proof that the defined strata are locally closeﬂtﬁﬁ ’1’52) (7), this is
discussed in detail and for more general cases in Appetilix
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3.3 Computation 08" (7) x50V ()

Given

5 ) = ([MH"(OPI é”*k‘””}pl),

- (%10

(o1, p2 are natural embedding mapsids , (7)), consider the diagram

2, @ Cracty, 2 |: S ]

GL2(C)
l |/rr1><n'3

|:]P’(H°(O]p1(n+k—1)))}X[Spec(<c)} P1X02 M (F) x M, ()
Gm Gm i e

whereZ’, is given by the scheme parametrizing the set of commutative diagrams

0 — Ox(-n) —— 0%*(—n) — O0x(-n) ——0

51 l l(sl ,52) l (14)

0 —> Opi(k—1) —= F 0 0.

Since that the extensions ih4) have the possibility of being split or non-split, there-
fore, we consider each case separately and define the multiplication

5D @) x5 0D (3)
in each case separately as follows below.
i S(P'L1) =y, 5(0,1) ~ /
Definition 18 Let [6s (T)*6s ' (7)]sp denote the stratum d@fro o &), 2/, over

which the points are represented by split extensions given by the commutative dia-
gram in (L4).

Definition 19 Let [§{7' 10 (7) x5 (7)]nspdenote the stratum efrz o ). 2, over
which the points are represented by the non-split extensions given by coomutative di-
agram in (4).

Therefore

§IFIN () 150D (7) = [B (@) x50D @)+ [0 (@) #5800 (9)]

nsp’

— 1 —
Now we computdd® (%) x5 (%)]s,. This amounts to choosing. s, so that
s1 ands, are linearly depending on one another. The scheme parametrizing nonzero
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sectionss; is given by P(H(Op1 (n +k —1))). Now we take the quotient of this
scheme by the stabilizer group of points. Similar to argument$gnllemma 12.1],
given any point inP(H°(Op1 (n + k — 1))) represented by the extension i), its
stabilizer group is given by the semi-direct prodG& x Hom(E3, E;), where each
factor of G,, amounts to the stabilizer group of objects giverEgs= Ox (—n) — 0
and E; = Ox(—n) — Opi(k—1) respectively. Note that the extra factor af
will not appear as a part of the stabilizer group since, by the given descriptibpn of
and E3, we know that HonGE;, E;) = 0 for every suchE, and E5. We obtain the
following conclusion:

[gs([]P’l],l) (%) >|<SS(O,I) (%)]sp = |:

P(H®(Op1(n +k — 1)))] (15)
G

Now we computdd{® P () x 51 (7)]nsp. This amounts to choosing. s, so that

s1 ands, are linearly independent and the extension in diagrafh ljecomes non-

split. Note that for any fixed value of, one hag! worth of choices fos,. Now we

need to consider all possible choicesspfand in doing so, we require the sections

s1, 52 to remain linearly independent. This gives the flag varidty, E, n + k). Hence

we obtain
F(1,2,n+k)
e
Note that the factor ofs,, in the denominator of1(g) is due to the fact that we
have used one of th&,,, factors in projectivising the bundle ef-choices over the
Grassmanian. We finish this section by summarizing our computationlByatd
(16) one obtains

[SS([IP’I],l)(%)*gS(O,l)(%)] _

nsp

(16)

30D (7) £ 50D (7) = [P(HO(OPI (n+k— 1)))} N [F(l, 2,n+k)

& o ] a7)

3.4 Computation 08" (7) x5V (7)

Now change the order 8£% " (7) ands<{¥'?" () and obtain the diagram

Z‘/21 ® @xacth T2 [ S ]

GL2(0)
l ‘/nlxzm

[SPRO) ] [P On k=D _o2v0n g, om0
Gm Gm P P .

HereZ),, is given by the scheme parametrizing the set of commutative diagrams

0 — Ox(—n) — 0%*(=n) —— Ox(-n) ——0

ol l(o,sz) l (18)

0 0 — F O]pl(k_l) HO
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Note that the computation in this case is easier since the only possible extensions
of the form given in 18) are the split extensions. The computation in this case is
similar to computation ini5) except that one needs to take into account that over

any point represented by an extension (as in diage8)) 6f £, = Ox(—n) — 0

andE; = Ox(—n) — Opi(k —1) we have HontEs, E1) = Al Hence by similar
discussions we obtain

R e | (19)
3.5 Computation o&#-2) ()
By (8), (9), (11, (12), (17) and (L9) we obtain
_ . P(H(Op1 (n + k —1))) G2,n+k)
=[] 20
1 [PH(Opi (n + K — 1)))}
2 G2, (20)
1 [F(1,2,n+k)
2 _T]
I [PHO(Op1(n + k —1)))
2 G2, x Al ]

Now use the decomposition used by Joyce and Sondirpf. 158] and write
[P(HO(Opl (n+k— 1)))}

G%nx]Al
= F(G, an, an) ) [P(HO(OPIgZ_l_ k— 1)))i|
; P(H®(Op1 (n +k —1)))
F(G,(Grm,((}m).[ " }

where F(G,G2,,G2) = 1 and F(G,G2,,G,,) = —1. Equation 20) simplifies as
follows:

B = [ FH O (IMT_ [P(Ho(opl (n+k— 1)))}
G2

Gm
. [G(z n—|—k)] JP(HO(OWM
1 [F(1,2,n+k) P(H®(Oz1 (n +k=T)) |
2 [ G ] ' G2, }
L [PH s (n 4k = 1))
T2 [ G ]
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Now use Definitior22 and write

GQ2.n+k)7 SpeC)
B MG
and
F(L,2,n+k)7] SpedC)
|:—Gm ] = X(F(1,2,n+k))-|: G, ]
S C
=x<P1>-x(G(2,n+k))-[ e )} (21)
_ 2-X(G(2,n+k))-|:8péc(c):|,

where the second equality is due to the fact that the topological Euler characteristic
of a vector bundle over a base variety is equal to the Euler characteristic of its fibers
times the Euler characteristic of the base. Bg)(@nd 1), we obtain

_1_[P(H0(opl (n+k—1))) Spec((C)}

2 G i| + x(G2,n +k))-[ C.,

_. %-X(G(2,n +h))- [Spéi@}

1 [PHO(Op1(n+k —1)))
5'[ G }

SpecC
— 5 P On k1)) D |
_ 1 ) SpedC)
——2(n+k) |: C., i|

3.6 Computation of the invariant

Now apply the Lie algebra morphisi®? in Definition 15to € (*'1:2) (7). By defini-
tion,
P E20) = (=3 040 | () g ) T

where byy"®we mean theaive Euler characteristic defined by Joyce and Sdr [
Definition 2.3], weighted by the corresponding Behrend function. Note thaf)by (

@12) = _ [PHO(Op1 (n +k —1))®?)
E):n’Bp,Ss (T) - [ GLz((C) i|

and hence

SpedqC)
e
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has relative dimensior1 — (2n + 2k — 5) = 4 — 2n — 2k overim%%f)(%). More-
over,

SpecC)
o

is given by a single point with Behrend’s multiplicityl and

P12) _ (_1)4—2n—2k.

(Moiz)*vm&n 24 V[M] = U[M]

Gm Gm

therefore,

TBr (z ~ 1 SpedC) _

\I/gp (6 ([]PI]J)(.[)) — Xna(_ z (n +k) |: me :|’ V[S,g’!ff)]) . )’([P]],Z)

_1 —_
= (-1 - (n + k)21
Finally by Definition16, we obtain
k
BS(X, 8,2,7) = ”er _ 22)

Note that a simple calculation shows that substitug{itg], 2) for (8, 2) in [16, Equa-
tion (5.2)] would give the same answer as22), Hence our result is compatible with
wallcrossing calculations.

To summarize, in SecB8 we introduced our strategy of direct computations over an
example where: = 2 and 8 was given by the irreducible clagB!]. Our strategy
involved computing the weighted Euler characteristic of the right-hand sid8).of (
After carefully analyzing the stacky structure of the moduli space of objects of type
([P'].2) (Sect.3.2), first we computed the second summand on the right-hand side
of (8) (Sects3.3and3.4). Then, by the stratification of the original moduli stack, we
showed that the first summand on the right-hand sid8)das(written as a sum of the
characteristic stack functions of the strata in a suitable way, such that essentially the
difference of the first and second summands on the right-hand si@& tirfed out

to be given as a sum of stack functions supported over virtual indecomposables. This
enabled us to apply the Lie algebra morphism defined in Definit®to both sides

of (8) and obtain the final answer i2%).

4 Direct calculations in general cases

In this section we extend the computational strategy in Seict.one level of gener-
alization further, i.e. to the case where= 2, howevers can have the possibility of
being given by a reducible class. Eventually the final generalization, which is to con-
sider semistable pairs with rank 2, follows the same strategy as will be described
in detail below.
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Remark 4As was seen above, a key condition to hold for our strategy to work is
that the strata involved in our stratification are locally closed and disjoint from one
another. In order to show that such stratification is possible for general cases, we start
below by assuming that an objeEb: O§((—n) — F,, with F, being a semistable
sheaf with reducible Chern character, is decomposable into rastijects £, =
Ox(—n) - Fy andE; = Ox(—n) — F3, whereFy, F; are stable sheaves. We then
show that the moduli space parameterizifig can be decomposed into a disjoint
union of locally closed strata, depending on hé is produced by extensions of
E1, E5. In other words, we will show below that the extensions of the form>

E, - E, — E3 — 0 (depending on being split or non-split), or the ones with the
order of the extension flipped astn—~ E; — E, — E; — 0 are all locally closed
and disjoint from one another.

Assumption 1 Throughout this section we assume thatsemistable objedtF, V,

¢v) € B, of type(B, 2) has the property thdtis either indecomposable or it satisfies
the condition thatif = B+ B; (i.e. if B is decomposable) thefy = [Fi]andf; =

[F;] such thatFy, and F; arer-stable sheaves with fixed reduced Hilbert polynomial
p- In other words 8 cannotbe decomposed into smaller classes whose associated
sheaves are natstable.

Lemma 2 Letsgﬁ"’l) and Ggﬂ”l) (for somegy, B;) denote the underlying schemes,
as in Sectl.2given as a bundl@ over ther-stable locus of the Quot-sche@&c Q,
parameterizing map8 x(—n) — F such that the Chern character @ is given
by Bx and ; respectively, satisfying AssumptiénThen, given a tuple of objects
(E1, E3) € 68D 581D the following is true:

Hom(Es3, E1) = Al if E,=~ Ej,

and
Hom(E3,E1) =0 if E; Qé E;.

Proof This is mainly due to the assumption on the stability of the sheaves involved.
Fix E; = [Ox(=n) — Fi] € 6%V andE; = [0x(—n) — F3] € %Y. Con-
sideramap/: E; — E5. By definition, the morphism betwedty and E5 is defined

by a morphism/r: F; — F; which makes the following diagram commutative:

Ox(—n) —— F

ido y \L llﬁF (23)

OX(—I’I) e F3.

By assumptionF; and F5 are given as stable sheaves with fixed reduced Hilbert
polynomial p. Hence any nontrivial sheaf homomorphism frgmto F; is an iso-
morphism. Moreover by simplicity of stable sheaves any such nontrivial isomorphism
is identified withAl, Now use the commutativity of the diagram 2gj. O
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Given a reducible clasg, there might be multiple ways to decompose it into un-
derlying smaller classe8; and ;. We will now show that having fixed a clags

and moving from one decomposition type, $ay= B + B;, to another given by

B = Bx’+ B/, will correspond to moving from one stratum to another in the ambient
moduli space oft,, such that the corresponding strata are disjoint from one another.

Lemma 3 Fix B and B; such thatf, + 8; = B and g, By and p; satisfy the con-
dition in Assumptiori. Consider an objecE, given as an element afgé’” (by this
notation we mean that an objegt may consist of a semistable sheaf with reducible
classpB) which fits into a non-split extension of objects

0— E; > E, > E; — 0,

such thatE; and E; are given by the elements &%) and 6%/ respectively.
Now supposeE| and E} are objects with classeg . 1) and (8, 1) respectively

such thatBy + B = B, Brr # Bk, B # Bi and furthermore 8, g} and ) also
satisfy the condition in Assumptidn Then it is true thatE, cannotbe given as an
extension

0> E; —> E, > E; — 0.

Proof If E, is given by both extensions then we obtain a map between the two short
exact sequences

L

0 E, E, E3 0
0 E} E, —2~ E} 0.

Hence we obtain a mapo: : E; — Ej. Since by assumptiof # By (this means
Bi1 # B becaused; + B; = Br + Bir = B), by Lemma2, we conclude thap o is
the zero map. Hencgo: factors through the magio ¢ in the following diagram:

L

0 Eq E; E3 0
gi ig
0 E, ‘> E, 2 E, 0.

SinceE; % E|, by Lemma2, g is the zero map. By considering the left commutative
square in 25) we obtain a contradiction, since the imagerfin E, cannot always
be zero. O

Now we show that flipping the order of non-split extensions will again induce disjoint
parameterizing stratum in the ambient moduli space.
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Lemma 4 Fix B and g; such thatgy + 8; = B as in Assumptiod. Now consider
E» € 6%? which fits into a non-split extension

0— FE; - E, > E; — 0,

whereE; and E; are given by the elements(ééﬂ"’l) and 6§B”1) respectively. Then
the objectFE, cannotbe given as an extension

0— E; —> Ey > E;—0,
where[E{] = (;. 1) and[E3] = (Bk. D).

Proof We prove by contradiction. Assun# fits in both exact sequences. We obtain
a map between the two sequences

L

0 E: E, Es 0
0 E] E, —2> E} 0.

Similar to before, we obtain a mgpo«: E; — Ej. SinceE; and E} have equal
classes, we need to consider two possibilities. First whea: E} and second when
E| # Ej.

If E, = Ej, then the image of the magpo is either multiple of identity ovef; or

the zero map. If the former case happens it means that the exact sequence on the first
row is split, contradicting the assumption thag fits in a non-split exact sequence.

If the map is given by the zero map, then we can apply the argument in L&nam

obtain a contradiction. IE£; 2 E’ then the mayp o is the zero map and the proof
similarly reduces to argument in proof of Lemr@a O

5 GL,(C)-invariant stratification

Now we are ready to introduce a &C)-invariant stratification omgjs)s(%) for

B satisfying the condition in Assumptioh Note that, by Theorem and Defini-
tion 12,

(8.2) g2 (8.2) (8.2) miﬁég‘
2) Ss ,2) o~ 2 _ D
mSS‘BE - |:GL(V):|’ m‘Bp,SS(T) C mﬁp,ss GLz(C)

which shows us that a suitable stratificatiorﬁiﬁ 2) after passing to the subsequent
guotient stacks and restricting to thesemistable locus, induces a GIC)-invariant

stratification oﬁmgflfgs(%). The cartoon below explains the intuition behind our strat-
egy:
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Stratification -
af2) —_— PP
P e
S
| " | "

Induced Stratification
s(8.2) .
L‘ Lm} =~ M2 Q _ W/

Fig. 1
Strictly semistable objects ini)ﬁ%g ’Z;S(%) and further stratifications
D>

Now we pass to the subsequent quotientﬁé@’z) (the picture above) and study
the stratification of-semistable loci irimgflfgs. These strata will be induced by the
decomposition types of the objects involved. Note that in this section we provide only
the description of the disjoint strata involved in our calculation and we assume that
they are locally closed. The proof of locally closedness property of these strata is

somewhat technical and so the interested reader may find the details in Apfendix

Definition 20 Defineimé’f_’s?(%) to be the parametrizing scheme of stricthsemi-
stable objects itB,, of type(f, 2) (for B as in Assumptiorl) which are obtained as an

extension of twa@ -stable objects of rank In other words, an objedi, € zmg'f_;? )
with class(p, 2) fits in an exact sequence

O—>E1—>E2—>E3—>0, (24)

whereE; andE; are7-stable objects with class€8y, 1) and(8;, 1) respectively for
somef; andpg; such thaify + g; = B.

Remark 5Note that the existence of exact sequer@ea(d the discussion in Se&.
show that all objects i®, of type (8, 2) are strictlyr-semistable. Hendmgf_ ,st) (7) =~
M2 (D).

Bp,Ss
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If the extension in Z4) is non-split then its automorphism group is obtained by
Hom(Es, E1) x G, and if split the automorphism group is obtained by Hdiw, £)

x G2, [10, p. 33]. We need these automorphism groups in order to compute the prod-
uct (x) of the elements of the Ringe—Hall algebra. These elements are given as stack
functions which parametrize objects of a given type (suctBasl) or (5;, 1)). Now
assume that the exact sequenceZd {s non-split and moreoveE; =~ FEj3. In this

case since a semistable rahlobject in mg{’_’s;) (7) is also stable, by the property

of B in Assumptionl and Lemma2, Hom(E3, E;) =~ A! and the automorphism
group of extension4) is obtained bya! x G,,. Moreover if in Q4), E; % E3, then

by Lemma2, Hom(E5, E1) = 0 and the automorphism group of extensi@d)(is
obtained byG,,.

Following similar argument for case of split extensions, we find that the automor-

phism group of the split extension 48 x G2, whenE; =~ E; andG2, whenE; %

E5. Therefore, first we decompoﬁﬁé’f_’szs) (%) into two disjoint strata

P2 @) = mE2 (7)) umE2 (7).

Hereé)ﬁﬁ‘?s’g) (7) andimgﬁ’z) (7) stand for the strata over which the objects representing
(B.2)

the elements iMig.5c () are given by non-split and split extensions respectively.
These strata are disjoint since an elemBEpte méﬁ;’?(%) cannot be given by both

split and non-split extensions. Now by Lemntasnd4, zmﬁ*?g,%)(%) can further be

stratified into a disjoint union over all possilf}g¢ andp;:

mly @ = || M@,
Br+Bi=8

Whereﬂﬁﬁ[_’é‘,;ﬂ”z)(%) stands for stratum over which, is obtained by a non-split
extension oft-stable object#; by E3 with fixed classe$f, 1) and(f;, 1) respec-
tively. Now take one of these strafmﬁ’?égﬂ”z) (%) by fixing 8, andg;. We claim that

one may decompose this stratum further into two disjoint strata, depending on the
values offy, B; respectively.

o Definegn#+#-2)(7) to be the parametrizing stack of objedts € ML (7)

such that there exists a non-split exact sequénee £, — E, — E3; — 0,
whereE; € mPD 3y andE; e mPD(3) andE; 2 Es.

Bp,ss Bp,Ss

. Definemgﬁk 12 (7) to be the parametrizing stack of objedis € 931,({_35"5'3”2) ()

such that there exists a non-split exact sequénee E; — E, — E; — 0,
whereE;, E; € P2V 3) andE; ~ E;.

Bp,ss

Lemma 5 There exists a stratification oft{;#2 (7):

mgﬁgr;ﬂzﬂ)(%) — mgﬁk:ﬁlﬂ)(%) L mgﬂkaﬂ/:z) ).
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Proof We show thaﬁﬁ(lﬂk’ﬂ”z)(%) andimgﬂ"’ﬂ”z)(%) are disjoint. Assume that
mgﬁk ,ﬂlsz) (%) n mftgﬁksﬁ] ,2) (’L:) # .
Therefore, there exists an objdtt Dﬁ,ﬁ?é‘,gﬂ’ ’2)(%) which fits in exact sequences
0—-EL—>E,—>E;—0 and 0—>E]— Ey—> E;—0,

such thatf; % E3 andE| = Ej;. Hence, one obtains a mag: E; — Ej via the
following diagram:

L

0 E, E, E; 0
l p
0 E} E, E; 0.

If E; = EJ, then the image op o: is multiple of identity overE; or the zero map.
For the former case we conclude that the first row splits, hence a contradictiosn. If
is the zero map, thep o factors through the magwo g in the following diagram:

0 Eq E, E; 0
gl J{g (25)
0 E| ‘> E, 2~ E} 0.

SinceE; =~ Ej andE; = E; thenE; = E{ and we conclude one of the fol-
lowing possibilities: either and:’ are both given as zero maps which is over-ruled
(sincer and!’ are both injections) or the mapis zero which is obviously over-ruled.
Moreover if the magg is an isomorphism thef3 =~ E’ and sinceE; =~ E} by as-
sumption, therE; = E3 which is a contradiction. Therefore, we assufez Ej.

In this casep ot € Hom(E, E%) which is the zero map by Lemn#a Then similarly

p o factors through the mago g in diagram @5). SinceE| = Ej andE; % Ej,
thenE, 2 E| and, by Lemma&, g is the zero map. By considering the left commuta-
tive square inZ5), we obtain a contradiction since the imagefin E, is nonzero.
Thereforem <72 (z) n mPeP12) (7) = o. O

So far we have proved

~ Bi152) 1~ Bi1s2) 1~
931{(1/_35,;) (7) = I_l (fmgﬂk Bi )(.L,) L mtgﬁk Bi )(,L,)).
Bk +Bi=8

Now consider the split stratuﬁmég’z) (7). We similarly decompose this stratum fur-
ther, depending on the valuesgf, §;.

o Definem'?? (7) to be the parametrizing stack of objedts € M%) (7) such
that
E> = E1® E3,

whereE, E5 € 931(‘3/2’1)(%) andE, ~ Ej.

Bp,Ss
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o Defineim(cff_"A"g”z)(%)4 to be the parametrizing stack of objedis € ?J)tgg’z)(%)
such that

E, = E1® E3,
whereE; € MED), By e ME-D and Ey 2 Es.

By the same argument as in Lemifave see that
M2 (7) = mP? (7) u ML (7).
The above arguments enable us to give a stratificatimiffszs) (7):

~ 0 ~ ~
mg’ts-’szs) (‘L’) — |_| (m(lﬁksﬂlsz) (‘L’) L Dﬁgﬂk ,B1,2) (‘L’))
Br+Bi1=8B
y (26)
o L] (A @) uaml2 ).
Bk +B1=8B

Here L]EkJrﬂI:ﬁ and UEI;"JFﬂl:ﬁ stand for ordered and un-ordered disjoint unions
respectively. The latter notation makes sense because for non-split extensions it is
important which of the two class@s, 8; appear first (flipping the order of a non-split
extension would mean obtaining a different stratum), where as for split extensions
flipping the order of appearance gf, 5; will not make any change.

We introduce a new notation. F andp; such thay + ; = B. Let©Bx-A:2)(3)
be the parametrizing stack of objedis =~ E; ® E; such tha( £, E3) € e

Bp,Ss
91(%3]’7’;; and E; =~ E;. It is obvious from the definition that i, # pB; then
DBP2(7) = @ and forfy = B = B/2, DB (7) = mP? (7). Using
this new notation,
m%@)(%) — Ll @(5/(:51’2)(%)
Bi+B1=8B
and by @6) we obtain

~ 0 - ~ ~
mg’i,szs) (%) = |_| (m(llgk,ﬂl’z) (f)u mgﬂk,ﬂlsz) (‘L’))
Bk +B1=B
_ 27)
L |—|u 0 (mgﬂ_lxﬂlaz) (‘E) Ll @(ﬂk:ﬁl:z) (-Z—))

Br+B1=8B

6 The element of the Hall algebra ot 2 ()

Definition 21 Define functionss:2 (7), §Pe-P1-2)(z), 5c-Pi2) (z) §bi-br2) ()
ands P2 (7) to be the characteristic stack functionsnt?:? (7) =~ m¥-2 (7),

Bp,Ss

PP 7y, PP z), PP (1) andD Bx-A12) (7) respectively.

4 The notationA and OA stand for diagonal and off-diagonal respectively.
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Then, by Definitior21 and @7) the following identity is true:
< ~ O = (Bx,Bi1,2) /=~ < (Br.B1,2) /~
SS(Sﬂ,Z)(r) — Z (Sl(ﬁk Bi )(T)+82(Bk B )(T))
Bk +B1=8B
u-o ,— - —_ -
+ Z (Séﬂk,lglaz)(.[) + 82‘3](”31’2)(‘[)),
Bk+B1=8B
where} g .5 _5 and ZE,;°+,s,zg denote the oEdered and un-ordered sums respec-
tively. However by constructior,*< P2 () = §Pc-P1-2)(7) = & whenever #
B, hence we obtain
- - 0 — _ - - ~
55(5,2)(1.) — Z Sl(ﬂkaﬂlaz)(.[) + 82(ﬂ/2’ﬂ/2’2)(1)
Bi+B1=B
uo - — (28)
+ Z 5§ﬂk’ﬂl’2)(%) + 84(/3/2’3/2’2)(%).
Bi+Bi=B

On the other hand, by applying Definitidr3 to Sﬁgflﬁs(%), we obtain the following
description of the element of the Hall algebra:

_ - = - o 1 T -
2@ =38P0 - ESS(‘Bk’l)(‘C)*SS(ﬂ”I)(I). (29)
Bi+Bi=B
Now, by 28) and @9), we obtain

eB2(3) = ZO gl(ﬁk,ﬂz,z)(%)+gz(ﬂ/z,f3/2,2)(%) + Z“‘O 33(/31(,/3;,2)(%)

Br+Bi1=8B Br+B1=8B
+ giﬂ/zﬂ/zﬂ) (%) (30)
o 1- = B
— Z E‘ss(ﬁk’l)(f)*Ss(ﬂl’l)(f)'
Br+Bi1=8B

It is easily seen that

u-0 — 5 — 5 1 o — ~
Z 8§ﬂk’ﬂl°2)(f) — 8§5/2,ﬁ/2,2)(.’:) + E Z S?Elgkaﬂlyz)(.[)_

Br+B1=8 Bk +B1=8
Br#Bi

Hence, we rewrite the right-hand side 80f as

g(ﬁﬁ)(-’f) — Zo gl(ﬁkaﬂlaz)(%) +<§2(ﬂ/2"3/2’2)(%)+§§ﬂ/2’ﬂ/2’2)(%)
Bi+B1=8

1 = -
+ E ZO S?Elgkaﬁl,z) (1’)
Bi+B1=B (31)

Br#Bi

+ giﬁ/%ﬁ/%z)(%)

1- _
— Zo §5§ﬂk’l)(f)*5éﬂ”1)(f).
Br+Bi=B



32 A. Sheshmani

Next we compute the ordered prodﬁé{”"l)(%) *35('3”1)(%) for a fixed choice off

andg;.

7 Computation of 386D (7) x §#1°0 (7)

In this section we describe the computation of the Ringel-Hall product of the stack
functionsSs(ﬂ"’l)(%) *89”’”(%) for B, and g; satisfying the condition in Assump-
tion 1. Similar to discussions in Se@, let 7;: Cractg, — My, (7), fori =1,2,3,

be the projection map that sends an exact sequence
0—>FE - FE,—> Ez;—0

to its first, second and third objects respectively over moduli stack of objedig.in
We also have the ma x 73: €racty, — M3, (7) x M3, (7). By the Joyce and
Song definition in 10, Definition 3.3],

5PV () 188D (7)) = myx (mxma)* (58D (D) @88V (D). (32)

Suppose that

§BiD) _ I:M(ﬁk,l)(%)i| . SBD _ [M(ﬂk,l)(f)]’
’ Gm, p1 ° Gm. p3

whereM ®-D (7) andM P« () denote some underlying parameter schemes and

MEBD (7)

MBe-D (7)
e[ 2 -

— }»zmg,,(f), p3:[

] — M3, (7).
Let us denote by’ the fibered product

M1 (7) MBD ()
x X 01 %3, , (V) XM, (7)1 x5 LAty .
Gm Gm p D

The identity in 82) is described by, o @), Z’ in the following diagram:

®
2/ Cractp,

| o

Br.D) (7 B0 (7 x 7 7
Ty e e <m0,

2

M3, (7)

We compute the product of stack functions 2) by computing it over th€-points
of &PV (7) and 58V (#) (these are induced frorB-points of M®«D (%) and
M®:-D (%)) and then integrating over all points M®«-D (7) x MBD (7).
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7.0.1 Pointwise products

Consider the stack function

Br>D (7
81 = ([Sp(;q((:)},plotl), with lr: [Sp(gq(:)} — [MT(T)}

Moreover let

B, 1) (3
03 = ([Spéqc)},mog), with  ¢3: [Spé((@)] — [MTI(T)}

Note thats; c 8¢V (7) ands; c 8V (%) are the substack functions, induced
by taking the stacky quotients @-points of M@V (7), M©®:-D (%) respectively.
Let E; € Dﬁgfl’j’l)(%), E; € 93?%31’)’1)(%) andE, € imgf;z)(%). Consider the exact
sequence it€racty,

0—E; — E, — Ez— 0. (33)

The automorphism group of the extensi@3)(is given by Hom(E3, E1) x G2,. The
element(g;, g2) € G2, acts on Ext(Es, E;) by multiplication byg;'g; and the
action of Hom(E3, E;) on Ext (E3, E,) is trivial. If extensions in$3) are non-split,
then the parametrizing scheme of such extensions is obtain@mExt! (E3, E;))
and for split extensions, it is obtained by SpEg. In case of non-split extensions,
the stabilizer group of the action 6f2, is given byG,, and for split extensions, the
stabilizer group of the action @2, is G2, itself, hence

B SpeqC) P(Ext' (Es, E))
Sixds = ([Hom(E3,E1)><an]m) * ([Hom(Es,El)xGm]m)' 59

7.0.2 Motivic integration over points

Now we can integrate the right-hand side 8 over C-points of M#x-1 (%) and
M- (1) respectively. Let us define/recall such notion of integration.

Definition 22 Let R be aC-stack given by

- [2]

Let BG denote the quotient stack

SpeqC)
)

Now definemotivic integration ovefR as an identity in the motivic ring of stack

functions
L1755 o= 5]
TG Pm = & |-
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Moreover assume th& — R is a vector bundle oveR. Then define

P SpedC) R
[M[E} A = fo(P>-[ . }dum _ X(P)-[E],

where y(P) denotes the topological Euler characteristid®®oHere, themeasureu,,
is the map sending constructible setsino the their corresponding elements in the
Grothendieck group of stacks.

Now we use Definitior22 to motivicallyintegrate 84) over the points oM ®+- (1)
x MB:D (%):

5O 500 @) = [ 185 djim
(E1,E3)eMB-D(@)xmBi-D(7)

_ / |: SpeqC)
(E1,E3)eMBrD @) xMBr-D (7) Hom(E3, Ep) % Grzn
P(Ext' (E3, E1))
+ dilm-
(E1,E3)eMBk-D @xn B0 (@) LHOM(E3, E1) X Gy,

] dpm (35)

By the result of Lemma, if 1; = 13, i.e. if E; = Es, then Hom(E3, E;) =~ Al and
if ©; # 13, then Hom(E3, E;) = SpedC), hence we can evaluate the first summand
on the right-hand side3f) as follows:

/ )
(E1,E3)eMBrD @FxMBr:D (7) Hom(E3,E1)><1G3n Hom

SpedC) / SpeqC)
/A [Al x G2, ] Hom MBeD@xmBro@nal G, #m (30)

M®B/2:D () MBeD (7) x MEBLD(5)\ A
P e

HereA is the diagonal in the produdt®c-D (7) x M®:-D (7). Similarly for the sec-
ond summand on the right-hand side 85)we obtain

/ [ P(Ext'(E3, E1)) ] p
(E1,E3)eMBrD (@) xMB1-D (7) Hom(E3,E1)>4(Gm "

P(Ext'(Ey, E
=/ [M] djim (37)
MB/2.D)(F) A NGm

P(Ext'(E3, E
Ny [FEEED,,
MBED FxMBL-D (F)\ A Gm
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From 35), (36) and 37) we obtain

gsfﬂk,l)(%) *gs(ﬂul)(f)
MB/2D (7) MBD (7) x MBLD(7)\ A
N |: Alx G2, ] [ G, }

[ P(Ext' (Ey, E1)) (38)
+ — " |dum
MB/2.1) Al x G,y

P(Ext' (Es, E1))
+ —g. |9
MBx-D F)xMB1-D @)\ A Gm

Equation 88) was obtained by fixing the classgg, 8; and adding motivically over

the points of the underlying parameterizing schemes, i.e. adding the contribution of
all sheaves with the same fixed numerical classes. Now, the final step to complete the
calculation is to vary the class@g, 8; as long a®;, + 8; = B,

> 5@ 500 ()
Bk+Bi=8
o P(Ext' (E3, E1))
MBr-D () xMBr-D )\ A Gm

Br+B1=B
P(Ext'(E,, E
+/ [( 1(1 1)):|de
MB/2.D(F) Al x Gy,

MBD () x MEBHD () \ Ai| |:jy[(ﬁ/2,1)(f):|
+

0
£ 2
Al 2
Br+Bi1=8B G G

It is easily seen that

o [M®BD(F)x MB-D(F)\ A MB/2D (7)) x MB/2D(7)\ A
Z G2 - G2
ﬂ m m

Bi+Bi=

o [M®BD(F)x MEB-D(F)
I e
/3 m

Bi+Bi=
Bk #Bi
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Hence
ZO 5Bk (7) £ 581D (7)
Bi+B1=B
: / [P(Extl(lzg,,El))} J
= 1
Bi+B1 =B MBr-D @) xmBr-D (7)\ A Gm "
P(Eth(ElaEl))]
+ ———|d
/M(E/z.l)(;)[ Al X Gm Hom
MB/2.D (7)) 5 MB/2:D(7)\ A
gl —
Gm
o [MBr:D 7y MBHD (7 MB/2:1) (7
> (3) @7, ®7
G2, Al x G2,
Bi+B1=B
Bk #Bi
By (31) and the above equation, we obtain
g(ﬁl)(f)

_ ZO (S(ﬁk,ﬁll)(%) _ l [ [—P(Eth(E3’ El))i| d/Lm)
1 2 JoBr-D @M Br-D @\ A Gm

Bi+Bi=B
K o] P(Ext' (E1, E1))
58/2.8/22) = _ 1 / J
+ 2 (T) 2 M(B/ll)(f) AIXIGm /’Lm
— ~ 1 TMB/2.D () x MB/2:D )\ A
1 3PI2BI22) () E[ (7) 2 (D)\ } (39)
o (1 —(Be.B2), = 1 M(ﬁk’l)(%)XM(ﬂlal)(%)
+ 2 (30— &
Bi+Bi=B m
Bk #Bi
L5680 _ L[MP2DE)
4 2 A'xGZ |

We introduce a new notation which simplifies the right-hand sid89. (et

- 1 P(Ext'(E3, E
Dz :51(ﬂk,ﬂ1,2)(%)_§/ |: (Ext'(E3 1)):|dljvm,
M(ﬁkJ)(f)xM(ﬂl’”(f)\A Gm
1
(1/21/2) =\ _ 5(8/2.8/2.2) (= _l/ PEXU(E1, E))]
62 (f) 2 (T) 2 B2 [ Al « Gm Mm s
_ 1 TMB/2:D () x MB/2:D(F)\ A
211D (z) _ 58281205y _ L @) x ! @O\A] (40)
2 G2,
&)~ 1 (8i.B12) = 1 [ MBeD (7) x MBD (7)
€ (7)) = 5 83 (7) — B G2 )
m Bk #Bi

_ 1 TMB/2.D) z
64(‘1/2,1/2)(%) _ 8513/2,13/2’2)(%) _ |:—(T):|

2] A'%G2,
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Using the notation in40), (39) is rewritten as

€@ = YT kD (@) 4 {2 (5) 4 2D )
Br+Bi=8

o - - 41
n Z Egk,l)(r)+€‘(t1/z,1/z)(T)‘ (41)

Br+B1=8B
Bi#B:

Next we show that each summand on the right-hand sidéXfi¢ given by a stack
function supported over virtual indecomposables. Note that by construction and The-
orem1, the first summands on the right-hand side of equatid@sdre each char-
acteristic stack functions which are given as (stacky) quotients of some associated
parameterizing scheme by the action of £8L), together with the corresponding
embedding map, in other words,

g(ﬂk,ﬁz,Z)(.L:) — ([M] pi
! - GL,(C) |'"™)

For more detail on how to obtain the scherﬁéy’“ﬂ”z)(%) look at Appendix10,
Definition 23. Joyce in P, Section 6.2] has shown that given

[([GL?(C)]V)}

one has the following identity of stack functions:

([smw)e)] - remeen(|z ] wn)]
F(GL»(C),GZ,, Gm) [([G%],uoiz)]

3
> F(GLy(C),G;,.Gp) = -

anduoi; anduoi, are the obvious embeddings. Now apply the result of Jo9ce [
Section 6.2] and obtain a decompositiorgﬁgf‘“ﬂ”z) (%) of the following form:

Bk »B1,2)
BB = _ | (M @1
& (’)_[([ GLy(C) ]")}
(B »B1,2)
%[([—M = (’)] Mz)] (42)
(P52 o]
[T o) |

wherey}oi; andu;oi, are the obvious embeddings.

where

F(GLy(C).G2.G2) =
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7.1 Computation oft 27 (¢ (7))

By definition, for any fixed choice of, [, the objectsE, € Jv[(lﬂk’ﬂl’z)(%) fit into
non-split exact sequences

O—>E1—>E2—>E3—>0, (43)

where E; 2 Ej. In this case, the automorphism group of extensi®) (s given
by G,,. Since oveﬂvtﬁﬂk’ﬂ”z)(%) there exists an action of GKC) and the stabilizer
group of each point iriv[(lﬂk’ﬁ”z)(%) is G, then the GL(C) action reduces to a

free action of PGL(C) on Mﬁﬂk’ﬂ”z) (7). Hence it is easy to see that there exists a
map

i MPPED (3 /PGL, (C) — MEBD (7) x MBD (7)) \ A
which send<t, to (E1, E3).

Consider(Ey, E3) € MPeD(7) x M#1:D(7)\ A. Consider the fibet | g, £5) which
is given by the set of pointg, € 6(1’3’“'3”2) (7) which fit in the exact sequencé3).
Dividing by the automorphism group of extensiat8), G,,, would provide a bijec-
tive correspondence between the set of isomorphism classes oFEsugrhich still
undergo a free action of PGLC)) and the set of tupleéE, E3). Therefore there
exists a bijective map between the closed points of the fiber afver (£, E3) €
M®BeD(7) x MBD(7)\ A and the closed points oft#c#1-2) () /PGL, (C) which
fitinto (43), i.e. the closed points & (Ext! (E3, E1)) overMBe-D (7) x MB-D (7)\
A. Now rewrite§ Pe-F2) a5

s _ [MPP2 @) D @) /PeLa©)
! GL2(C) Gm
SpedC)
= | s diim
M2 @ pe, L Gm

(44)

P(Ext'(E3, E1))
= - - d/JLn'h
(E1,E3)eMBr D (@)xMB1D (#)\A Gm

by (44) and B9) the equation fOEY"l)(f) is obtained as

P(Ext'(E3, E
D) 7y — / [M] dim
MBi-D FxM BV )\ A Gm

1 P(Ext' (E3, E1))

_ — = dum

2 JoeBr-D (@)= Br-D F)\A Gm
]P’(EXtI(E3,E1))i|
7 dﬂm-

2 /M(Bk’l)(f)xM(Bl‘l)(f)\A|: Gm



Weighted Euler characteristic of the moduli space of higher rank Joyce—Song pairs 39

Now apply the Lie algebra morphisﬁﬂﬂ to egk’”(%) and obtain

— ~ 1 P(Ext'(Es, E . ~
P (D (7)) = E'Xna(/[%] diim. | sz(lﬁ.z)) AB2)
m

% / x(P(Ext! (E3, E1)))- [S%fc)} dy - 2B (45)

By By -2)

(=D (=)™ “H-% / 1 (P(EXt! (E3, Ev))) dy - 242,

where integrals are taken over the pointS\6¥-D (7) x M®-D (%) \ A. The factor
; (B,2)
of (—1)¥MPsss2,~ s due to the fact that a stacky point given as

SpedC)
5]

has relative dimension diim(lﬂ’“ﬁ”z) (7) — 1 with respect to the ambient stack. More-
over, the factor of—1)! is due the fact that Behrend's function over

SpedC)
5]

detects a singular point of multipliciti.

7.2 Computation oft B (e{1/>1/2) (7))

By (42),

3(ﬂ/2,ﬂ/2,2) ) = M(ﬂ/l B/2,2) (‘C)

’ GLZ((C)
1
2

|:(|:M(ﬁ/2ﬁ/22)( )i| ) )i|
= |meein
M(B/Zaﬂ/zﬂ)(%)
(e )|

The stabilizer group of points tt{?/>#/22) (7) is given by the automorphism group
of extensions associated to those points. Since a poiat M#/2#/22(7)(C) is
represented by an objegt which fits into a non-split exact sequence

0—>E1—>E2—>E1—>0, (46)

then the automorphism group of extensietg)(is given by Al xG,,. The stabi-
lizer group (at pointp) of the action of GL(C) on M¥/2#/22(7) is obtained by
A'% G,,. SinceE, = E; then for diagonal matrices (given Ify2, = 7¢-2©) we
have that

G2, N Stal, (GL»(C)) = G, C G2,
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hence the action d&2, descends to a free action@f, /G, =~ G,,. Hence

MNP MP2A2D (3 /(G2 /G,
()= 1( G Jen)}

Hence

(B/2.8/2.) (21 /(32
5822 () % [([Mz (T)/(Gm/Gm):|’M/ oil)}

Gm 2
31 ME/2B122) ()
(e en)|
By (39) and @7),

(B/2.8/2.2) =
/212 7y % [([Mz (éf)/(an/Gm)]’ ,201.1)]

B/2,8/2,2) =~
_%[([W}M;oiz)} (48)

1 / [P(Eth(ElsEl))]
2 MB/2.D (%) Gm ’

(47)

1
7.2.1 Calculation of w}

MB/2.1)(F) [ Gm

Note that there exists a mapM¥/2#/2:2 _, A ~ M(B/2:1)(7) which sends an ob-
ject E, fitting in the exact sequencd®) to E,. Moreover, givent; € M®/2:D(7),
the fiber of p over E, is the set of pointsy € MP/2#/22 (%) represented by
the exact sequencd®). Now for any pointE; € M®#/2:D (%) there exists a map
mex: p~ 1 (A) — Ext!(Eq, E1) which projects the pointg € p~!(E;) to their exten-
sion classes. Now consider an element of the extension elasg&xt! (E;, E1) \ 0.
The pre-imagerg,}(«) consists of pointy € p~!(£;) which fall into the classr.
There exists a surjective morphism

GL2(C) — g (a)

which is induced by the GY(C)-action onM{*/2#/2-? (7). The stabilizer group of
the action of GL(C) at the pointp € MP/2#/22(7) represented by, sitting
inside the exact sequencéd] is given byA! x G,, hence StatGL,(C)), for p €
p~Y(E1) is given by Al x G,,, then the fibers of the map GIC) — ngki(a) are
given byA! x G,,. Now it is easy to relate the virtual Poinégsolynomial ofrz} (o)
to the virtual Poinca polynomial of G (C).

In general, given two algebraic spacEsandY and a fibrationX — Y with fibers
Z, one has the following identity for their corresponding virtual Poiaqaslynomi-
als:

Pr(X) =P (Y)-P(Z).



Weighted Euler characteristic of the moduli space of higher rank Joyce—Song pairs 41

Therefore, we obtain
P (GL2(C)) = P(A' % Gp) - Pr (g (). (49)

On the other hand, for eaehthe free action 062, /G,, =~ G,, on MP/2#/22) (3)
induces a freeG,,-action onxg} (). Passing to the quotients via this action, we
obtain a map

7 (@) = 15 (@)/ (G, /Gm),

whose fibers are given b§2,/G,, =~ G,,. Hence we obtain the following relation
for the virtual Poinca polynomials:

P (150 (@) = P (G}, /Gm) - Pr (e (@) / (G, / Gm)).. (50)
By (49) and 60) and according to calculations if,[p. 4], we obtain

P (GL2(C))
P (A % Gm) - P (G, /Gm)
=12 =1)-1?

= =1+ 1.
2-(2-1)-(2-1) +

P (m54(@)/ (G2 /Gm)) =
(51)

The computation in§1) means that for eaclt; € M®/2:1)(%) by passing to the
quotients via the action @2, /G,,, the maprey induces a map

T2 /6B P (EN/(GL,/Gm) — P(EXY (E1, E1))

whose fibers have virtual Poinéapolynomial as obtained irb{). Moreover, the
Euler characteristic of the fibers is computed by evaluating their virtual P&ncar
polynomial att = 1, hence for every such the fiber of the mapf(@,%,/@,nﬂEl has

the Euler characteristic equal 20We will use this factor of in (53) below.

Now go back to 48). Sincee§'/>'/? (%) is supported over virtual indecomposables,
we can apply the Lie algebra homomorphigfi»:

TBr (651/231/2) (%))

e MP/2BI2D () (G2, /G )
G

3 na Mgﬂ/z’ﬂ/z’z)(f) Ik 5(8,2)
Z‘X ([T s (Up0i2) Von(p:2) A

1

2

P(Ext'(Ey. E ~
.Xna(/ [M} dii. M*vmw,z)) 362
MB/2.D(F) Gm 2

(uhoin)* R
i| (p0i1) Vm;ﬂ,z))

N =

(52)



42 A. Sheshmani

Now we compute each term on the right-hand side5@) Eeparately. For the first
term we obtain

Gm
-1

(B/2.812.2) 2y /(G2

1 M 1)/(G;, /G, Fy

5.Xna(|: 2 @)/ G/ m):|, (M/ZOil)*vm(zﬁiz)) A
/ SpeqC)

2 M(ZB/Z’B/2'2)(?)/(G1211/G’") Gm

By .B1.2)

— (_1)1.(_1)dim9ﬂ2 (f)—l‘%

'2/ )((IP’(Extl(El, El))) dy . (B.2)
MB/2.1)(F)

— (_l)dimméfési)Bp ] dy J1B.2) (53)

For the second term on the right-hand side5#) (we use property (b) of the stack
functions in @)

Méﬂ/z’ﬂ/z’”(%) _ (/28122 3 SpeqC)
Gom =20 @) | =g~ |

The action ofG,, = G2,/G,,, is free oM#/2#/2-2 (7) and since thé,, -fixed locus
via this action is empty we have that

X(Mgﬂ/z’ﬂ/z’z) (%)) = 0.

Therefore, the second term on the right-hand sid&af yanishes

3 na([Méﬂ/z,ﬂ/z’Z)(%)

—_Z. e

! oin)* 6 —
1 } (nz012) vmgﬂm)

Finally, by (63) and 62), we obtain

G (/2P (7)) = - / x(P(EXC' (E, Ev))) dy - X6
MB/2.D ()

1

! / 2(BEX (Ey. Ev))) dy - 162
2 Jow8/2.0(3)

= =2 cyama T @
2

| Y (PEXE(Ey, Ey)) dy - 7O
MB/2.D(F)

(54)
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7.3 Computation ot ({!/>1/? (7))

By (39) and @2), we rewriteegl/z’l/z)(%) as follows:

MB/28/2:2
o <[P0 )

3 Mgﬁ/zgﬁ/zl)(%) o
3\ @G, [

M®B/2:D (7) x MB/2:D (7)\ A
S

The set off¢2(© /G,,,-fixed points is given by the image of the mgpM©#/2:1 (1)
x MB/20(3)\ A > MP/2P122 (7) such that for evenf, % E; it sendS(E;. E3)
to E£1® E3. Rewrite

[J\/[g,fs/z,ﬁ/z,z)(%):| B [Im(f):| N [Mgﬁ/z’ﬁ/z’”(%)\lm(f)
G2 - G,Zn Grzn

m

] (55)

where B5) is obtained by property (a) of stack functions ).(Now by injectivity of
the mapf,

[Im(f)} B [M(ﬂ/z’l)(%)xM(ﬂ/z’”(%)\A}
Gy 1 G, ’

hence

_ 1 MB/2:D) 7y x MB/2:D (:)\ A
112112) (7 — : [([ () M\ } wyoir ]

GZ

)
[( My’ ﬂ/“)m\lm(f)]’ﬂ o )]
)

+

|:( M(ﬁ/zﬁ/zz)( )i| i|
G, e

1[( MB/2D (7)) x MB/2, U(r)\A} /)]
[

2 G2,

I e
=5 [([(F )

3 Mgﬂ/zaﬂ/zaz)(%) o
_4_1 T y 3012 ) |.

There exists a free action &2, on M{/%#/22) (7). Moreover, there exists a trivial
action ofG,, C G2, onMgﬁ/z’ﬂ/z’z) (7) whereG,, is given by the corresponding sub-
group of diagonal matrices. Hence the fgg action onMgﬂ/z’ﬂ/z’z)(%) is reduced
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to a free action ofs2, /G, =~ G,,. Therefore,

[([M?"””’”’”(a\lm(f)] , )}
G?, s U3 011

B [([(Mgﬂ”’ﬂ/z%)\Im(f))/(@f,,/Gm)} , >]
- Gm » 3011 .

Denoté
A = (MPI2BI2D @)\ im(£))/(GZ,/Cm).

With this notation

OATAT 322Dz
o ()] o)
m m

Sincee{!/>"/?(7) is supported over the virtual indecomposables, one can apply the
Lie algebra morphisng®»

~ _ A . _
yBr (651/2,1/2)(1)) = Xna([(@f}’ (Méoll)*vmgﬂs)) . B.2)
m 3

L s
G

1
2

_3. (yoiz)*v 362
1 » (U3012 mgﬁﬁ)

S (VB/28122) (%))) 362

(56)

X

Alw

S GO

7.3.1 Calculation ofy(A) andx(Mgﬂ/z’ﬂ/z’z) (1))

There exists a map;3: MP/2#/22 (7) - MB/2:D(7) x MB/2:D(7)\ A which
sends a point, =~ E;® E3 to (Eq, E3). Fix such(Ey, E3). The set of points in
711_31 (E1, E3) consists of thos&, which can be written ag, =~ E,® E5. Moreover,
every point innl‘31(E1,E3)|.m(f) can be determined b, =~ E;® FE; or E, =~
E3&® E,, i.e. by a permutation and an isomorphism, hence there exists an induced
map

75t Mgﬂ/Zaﬂ/ZJZ)(%) N Sym(M(‘S/Z’l)(f) xjv[(ﬂ/2>1)(f))_

The action of Gl (C) onM¥/%#/2:2)(3) s restricted to an action on the fiber-of,
over(Eq, E3).

The stabilizer group of the points ifx|;)~!(E1, E3) is given byG2,. Hence, one
concludes that for everyE;, E3) € Sym(M®B/2:D(7) x MB/2:D (%)) there exists a

5 The schemed is an analog 05(22’2’") in [18, Lemma 5.6] when the sheavéscomposing the ob-
jectsE = (F,V, ¢) have zero dimensional support with len@t. In that situation, roughly speaking,

the schemévtg‘g’z) (7) is replaced by a subscheme of a product of Quot-schemes. Here we are following
an almost identical strategy.
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map Gl (C) — =3 (E1, E3) whose fiber over each point € (]5)"'(Ey, E3)

is given byG?2,. Hence, ovelr},) 1 (E1, E3)\Im(f) the action of Gk(C) is re-
stricted to GL(C) \ (G2, U (G2)*), whereG?2, is given by the diagonal matrices of
the form

0 *
G, = {(gol gz) :81,82€C },

and(G?2)* is given by the anti-diagonal matrices of the form

2Nk Ogl . *
(G) _{(gz O)-gl,gze(c }

Therefore, there exists a map GIC) \ (G2, U (G2)*) — (7}3) " (E1, E3) \Im(f)
whose fiber over each point € (w1;)"'(E1, E3)\Im(f) is given byG2,. Now
compute the virtual Poincampolynomial of(zr|;) ™' (E1, E3) \Im(f):

P (GL2(C)\ (G2 U (G2)"))
P (GZ,)
=12 =112 - (> —1)?

4 2
= =t t“—1.
(2= 1)2 !

P ((}3) 7 (E1. E3)\Im(f)) =

The occurrence of the tera> — 1)? in the numerator is due to the free action of
G2, U (G2)* on Im(f). Note that(r;;) "' (E1, E3)\Im(f) is aG,, bundle over
(1)~ (E1, E3)\IM(f)/Gpm, hence

P ((r13) " (E1, E3)\Im(f))
P (Gm)

12 -1
Al ey

P ((}3) " (E1, E3)\IM(f)/Gp) =
(57)

Therefore, for every(Ey, E5) € Sym(M®B/2:D(z)x M¥B/2:D (%)), by evaluating
(57) at: = 1, the fibers(x};) "' (E1, E3)\Im(f) have the Euler characteristic
equal to3. On the other hand, there exists a bijective map between the set of points

in the G2, /G,,-fixed locus of MY¥/?#/>?(z) and the set of points in IGyY) =
MB/2:D(7) x MB/2:D(7)\ A. Denote byds = dim9n<#2) (z) — 1. Now rewrite
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(56):
( (1/2, 1/2)( ))
=( nl—ﬂm—<nl—(M@”“”m0«4ﬂ%W”
( [ g+ i [M(ﬂ/z,ﬂ/z.m(f) 1dXMg,3/2_,3/2.2)(%)) (C1)d TG
=2 f Ldga-(~1)% 362 (58)
3

1d By .1 (3 By.1) (= (=1 d3 I(ﬂ@)
4/M(ﬁki)(;)xm(ﬁpn(;)m A B @< Br-D (@\A (=1

31 ~
_z.Z 1d e (=191 B2
2 2 /M(Bk.l)(;)XM(Blyl)(f)\A oD @D @na N
3 )da 762
4

+

Ld X 5850 3y B D na (-1
fM(Bksl)(f)xM(Blv1>(f)\A XM k@XM @\A

=0,

wherex stands for Synv(8/2:1) () x MB/2:1)(7)).

7.4 Computation oft 7 (¢ (7))

Throughout this subsection by earlier construcigernZ 8; andg, +8; = . The ac-
tion of GL,(C) restricts to an action ¢2, on Méﬂk”g“z)(%) hence we obtain

(Bic»B1,2) (=~
§ BB (7) = M@
3 Grzn .
On the other hand, itis easily seen that there exists a bijectivefnﬁﬁgﬂk’ﬂ”z)(%) —
M BV (7) x MB-D () which takesE, =~ E @ E3 to (E;, E3) whereE; % Es.
Hence, we obtain

Mgﬂk,ﬂlﬂ)(%) B M B (7) x MBr» 1)(-()
G2, B GZ,

Therefore, for every paif, 5;) by definition ofegk’l)(%) one obtains

(D L ([MEP2 @] D@ x MA@ _
3 2 G2, G2, ’

hence

Y (@) =0
Bk +B1=B
BB,
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7.5 Computation ot (e{'/>1/? (7))

By construction, there exists a bijective map betw&fi/ >#/%?) (7) andm /2D (7),
hence one rewrites'/%"'/? (%) directly as follows:

) 1 M(ﬂ/2>ﬂ/2,2)(%) .
20 =3[y fen)
rn(B/2.8/2,2) (~
_ E u ,,udﬁtoiz
4 i Gm
1 FOVB/2.1 () ,
- 5[(W]“)}
LT IMe2n@T 3 (M@
=3 —c s g0l e G, 14012
1 'M(ﬂ/Z,l)(f) .
- 5'[(_T]’“ Oll)]

1 MB/2D(3) ,
=[]
which simplifies to

1T (TMB/2D
()

Now apply the Lie algebra homomorphism and obtain

(B/2.1) (3
B, (1/2,1/2) ;=\ _ L[ M (7) )Nk T(B.,2)
7 l’(64 (‘L’)) = —Z-X ([—Gm , (Iu 012) vimftﬁ'z) A

— (_1)1 . (_l)dimmiﬁksﬁzﬁ)(a_l . (_ i) . X(M(ﬂ/z’l)(%)) 3[(;9,2)_

(59)

8 Computation of U7 (¢ 6:2) (%))

Finally in order to computa» (€#2(%)) in (41), we add the contributions coming
from ¢ (for all possible choices g8; andf;) to U2~ (52 (7)), i.e.
T B @) = Y7 U (R (D)
Bi+B:=8
+ '\ij'Bp (651/2’1/2) (%)) + E'Bp (651/2,1/2) (%))

+ 37 T (D (@) + TP (2D ().

Br+B1=8B
Br#Bi

47
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Letd; = dimm¥PP3 (@) —1fori = 1,...,4. By (45), (54), (58), (59 we ob-
tain

B ) Dz _
T2 (€42)(3) = Xna(|: GSL : é))}’vméﬂ’”) TB.2)
2

+}s %_ﬂ (;-(_l)dl/;X(P(Eth (Es, E1)))dy .3[(;3,2))

3 —_
VAT / H(PEX(Er, E))) dy - TE?
2 MB/2.1)(F)

1 s
+ Z.(_1)d4 -)((Mgﬂ/z’l)(r)) AB2)
(60)
wherex stands foM 8«1 () x MB-D (1) \ A.

9 Final computation of invariants

By the wall crossing computation of Joyce and Sond .l Equation (13.31)],

O@P0@) = Y G002, 610
PRy

Lo (61)
JT(OT# (0T, ((Br + -+ + Biz1.2). (81, 0)

i=1
(1R ODBL Ol T Bt thimr DB,

By Definition 16, (61) and 60), we obtain

0 1
BN(X.8.2.7) = 30 (-t ] f (P(EX (Es, Ev))) dy

P ﬂk%%:ﬂ 2 M(Bksl)(f)xM(BlJ)(?)\A ( )
3
F3eenEH[ (P B E) dy
MB/2.1) ()

1
rrens Y Q.60 (62)

4
1<!
Bi+-+Bi=B/2

I
TT(OT# @) T, (B1 + -+ + Biz1.2). (6:.0))
i=1
(= 1) P2 (0D BN+ Xy Xenp(Br++Bi—1,2),(8 i’o)))

where the first and second summands on the right-hand sié@)afdn be calculated
easily based on the geometry given and using Grothendieck—Riemann—Roch along
the fibers.
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Remark 61t is easy to see that by substitutigdP!], 2) in (62) one immediately ob-
tains the result obtained ir2%). As another example one may try to compute the
right-hand side of §2) by substituting(8.2) = (2[P'],2), for instance when the
base varietyX is given by the total space c(ﬁﬂ?f(—l) — PL Assumey(F) = k.
Now, if & = 2¢ + 1 then semistability implies stability and f = 2¢ then F is
given as a strictly semistable sheaf. Based on computatiosslifi| ffor k = 2¢ + 1
there exist no stable sheaves with= 2[P!]. Now assumeé = 2g4. In this case
the semistable sheaves are givenBy= Opi (¢ —1) ® Op1 (¢ — 1).° Therefore by
substituting(2[P!], 2) in (62) we see that

BS(X.2[P'].2,7) = —% (n+q)?*—(n+q.

The computations in this case involve arguments similar to the ones given irBSect.
hence we have omitted the explicit calculations here.

Remark 7In [18], Toda has exploited similar stratification strategy for the mod-
uli stack of objects composed of a zero dimensional sliegfven as the quotient

0% — F, where the objects are assumed to be semistable with respect to a stability
condition in the sense of Bridgelan®]] Moreover the author has given an evidence

of the integrality conjecturelp, Conjecture 6] for the corresponding partition func-
tions associated to the moduli stack of these objects. The identiti&8,i(88), (99)

and (100)] play an important role in the auhtor’s proof of ihtegrality conjecture

Our stratification strategy and calculation of the invariants share many similarities
with those in [L8]. Equations 45) and 64) are analogs of equations (88) and (99)

in [18] respectively, and we suspect that in some cases they can be used to prove the
integrality property of the corresponding partition functions for the invariants of the
moduli stack of objects ifB,. Note that the stability condition used in our approach

is the weak stability condition (Definitiof) used by Joyce—Song id{] which, de-

spite having a much simpler definition than the Bridgeland stability conditions used
by Toda in [L8], shares many strong properties with them.

10 Appendix: Locally closedness of the strata

In this appendix we discuss the reason behind the assumption on locally closedness
property of the strata obtained on the right-hand side26f. (As was mentioned in
Theoreml, the moduli stack of semistable objectsBip is obtained as a two-fold
(stacky) quotient (by GL(C) x GL(V)) of the bundleP®”, parameterizing the maps

O?}’ (—n) — F, defined over the Quot-scheme, parameterizingOur strategy in

this section is to investigate the locally closedness property of the strata appearing
on the right-hand side o£g), via analyzing the stabilizer groups of objects in their
corresponding parameterizing schemes, given as subschef®&s of

6 Note that by obvious reasons, a sh&f= Op1 (a) @ Op1 (b) wherea # b is unstable.
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Lemma 6 Fix (B, B;) such thatB, + B; = B, then the(k, [)-th summand on the
right-hand side of(27) is composed of locally closed strata.

Proof By Theoreml, there exists a projection map
T@Z L) m(ﬁyz)
Bp °
Let us use the notation for the underlying parametrizing scheme
6L (@) = 7' ML @) c P

By construction in SecfL..2and Remarlb, there exists an action of GLC) x GL(V)
on 68?_;? (7). This action induces an action of the corresponding Lie algebra on the

tangent space cﬁg’f_’s?(%) given by the map

06%3)(;) ® (g (C) xgl(V)) — Tgégég)(;)- (63)

The dimension of the automorphism group of objects representing the elements of
Gg’f’s?(%) is given by the dimension of their stabilizer group (in £6C) x GL(V)),

which is given by the dimension of the kernel of the map 68)( which itself is

an upper-semicontinious function. Now let us denote(thé)-th summand on the
right-hand side ofZ7) by

R = m(lﬂksﬂlsz) (‘E) Ll mgﬁk ,Bi1,2) (:L:) L mgg_lxﬁl ,2) (.‘L:) L @(ﬂk;ﬂlsz) (-E) (64)
Then take the pre-image & underz and denote
7 IR = Ggﬂk’ﬂ/’z) (F) U 6;‘3/\ ,B1,2) (%)

(65)
LS @) v B @) c 682 @)

and observe that the dimension of the stabilizer group of points in each summand of
7~ 1R remains constant as we vary over points inside that stratum.

Now we would like to re-package the data on the right-hand sidé%)fgnd write

7~ 'R as a sum of three summands, based on the dimension of stabilizer groups in-
volved. First note that the stabilizer group of pointﬁﬁfﬁk’ﬁ”z) (7) is given by the
automorphism group of their corresponding objects (i.e. given by extensions of sta-
ble non-isomorphic objects with classg, 1) and(8;, 1)) which is given byG,,
(Lemmab). So let us denote this stratum (with one dimensional stabilizer group) as
R} = G(Iﬁ’“ﬁ”z)(%). Now for the second and third summands, notice that the stabi-
lizer groups of elements i #-? (7) ands%#? (7) are given by x G,, and

G2, respectively. Therefore, let us denote the union of these two strata (both of which
have2-dimensional stabilizer groups) as

B152) (~ Br,2) ~

Finally by construction, the stabilizer group of element®it¥«-£1-2) (%) is given by
Ay x G2, and so let
R’3 - @/(ﬂk,ﬂzﬁ)(.;)'
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Hence, the right-hand side d34) is written as
7 'R=R,UR,URj,

where the points oveR’, R, and R} havel-, 2- and3-dimensional stabilizer groups
respectively. It is true thaR’, R}, and R} are locally closed irs$-? (defined in
Lemmas3).

Now let us discuss the locally closedness property of these strata. First, consider
R),. Let 6%5PD (7) denote the closure a6 %72 (7) in 642, Recall that by
definition, the objects parametrized by elementﬁé‘f_’xﬁ”z)(%) are given by split
extensions, i.eE, =~ E|;® E; whereE{ % E3. The automorphism group of these
objects is given by2,. Taking the closure o(Bgka’ﬁ”z) (), we immediately see that

the objects parametrized lﬁygg_kA’ﬁ”z) (7) are given by all split extensions df; by

E5, i.e. one has

6(05_13513]52)(:[,) C 6(019_25131,2)(%) U Rg

Now take the closure o2 (%) and obtaine{?<-#? (7). By definition, the
objects representing elementﬁfk’ﬁl’z) (7) are given by non-split exact sequences

0—>FE —> Ey, > E;3 -0,

where £, =~ Ej3. So it is seen that taking the closure, the objects representing the
elements in the boundary (ﬁgﬁk’ﬁl’z) (7) are given byE, ~ E, ® E; whereE; =~
E;, i.e.

Ggﬂk,ﬂlaz)(:f) c Ggﬂksﬂhz)(%) U Rg

Since Ry N 6% (7) = @ and R, N 6P+PP(7) = o, then it is seen that
6§‘3k”3”2) () andG(Oﬂ_"A’ﬁ’ 2) (7) have empty intersections iR}, but non-empty inter-
sections inkj, in other words, their boundary is given by a subseRffwhich itself
is locally closed in&%2. Hencesx#? (7) and &+ #-? (7) are locally closed
in %2, O

Remark 8Here, for completeness, we discuss a second approach to the proof of the
fact thate Pc#1-2) (7) ands P 2 () are locally closed irR).

Proof First we state a theorem from SGABY Expo€ X, Theorem 8.8]):

Let T be a commutative flat group scheme, separated of finite type over a
noetherian schemd, with connected affine fibers. Lete S andsbe a
geometric point oves and suppose:

o the reduced subschen&s)q Of the geometric fibels is a torus, and

o there exists a generalizatiarof s (i.e. the closure ofz} containss) such
that 7, is smooth ovek(z), the residue field of.
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Then there exists an open neighborhdbdf s such thatT|y is a torus over
U.

Note that, by constructior®), is given as a stratum @&%? over which the stabilizer
groups of associated points are two dimensional. As we vary Bygethe stabilizer
groups of points ik, make a group schengeoverC. According to the above theo-
rem, for every poinp € R/, such that(G,)reqd is given by the two dimensional torus
(G2), there exists an open neighborhdoguch that|y is given byG2, overlU. Let

X denote the union of all sucth. It is easily seen that every geometric poing X

is given as a two dimensional tor@}, which corresponds to the stabilizer group

of a pointp € Gg"A’B”Z)(%) and there exists a bijective correspondence between
suchk and p. Hence according to the above theorem, the locus of pginés R,

with torus stabilizers, i. e(S(ﬂk Br. 2)(f) is open inR),. SinceRy), is locally closed in
$2 thensPx?) (7) is locally closed in&%-?). On the other hand, the comple-

ment(Gg’Z’ﬁl 2)(r)) is closed inR,. Since& %12 (7) N &¥FP12)(7) = & then
Bi»B1,2) (=~ Bre>B152) (=\\C \ihirh i ey Br»B1>2) =y i

G2 (7) C (60_A (r)) which is closed iR}, henceS, (%) is locally

closed in6$-?. O

Now consider thgk, [)-th summand on the right-hand side @f7). The action of
GL(V)on 6&5’2) induces an action on each stratum. Take the quotient of each stratum
by GL(V) and obtain locally closed quotient stacks (disjoint from one another) as
follows.

Definition 23 Define

(Bk»B152) (= (B »Bi52) (=
M (7) — [61 o (f)] MPA2) (7 [62 kol (r)]

GL(V) GL(V)
(B »B1,2) (=~ ) ~
M(ﬂkaﬂlsz)(%) — 6O—kA ! (‘E) D(ﬂk,ﬂ/,z)(%) — Q/('Bk’ﬂl’m(r)
0-A GL(V) | GL(V) |

Definition 24 Define

(ﬂ 2)( ) = st ss ( )

SI SS GL(V)
By Definitions23and24 and 7), one obtains

0 ~ ~
Mgfs? (1’) — |_| (Mgﬁk,ﬁlﬂ) (‘L’) L M;ﬁk,ﬁl,m (‘L’))
Bi+B1=B
L Ll“'° (Méﬂ_/xﬂz ,2) (%) U DB ,ﬂ/,Z)(;))_
Bi+Bi=B

Now by our construction taking the quotientﬂw‘fszs) (7) one more time by the action

of GL,(C) will naturally produce back the quotient staﬁkgifs)s(%) and the right-
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hand side of27), in other words, we can easily see that

(B »B152) (= (B »B1,2) (=
P 7 = [Ml cB1 (r)] (B2 (7 — [Mz B (r)]

GL,(C) GL2(C)
M(ﬁk,ﬁz ,2) (%) D(ﬂkﬁ/l)(”)
;Jﬁ(ﬂk,ﬂz,Z) (7) = O-A 9 Br,B1,2) (%) = R L2
0-A GLy(C) |’ GL2(C)
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