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Abstract

Motivated by problems arising in queueing networks, manufacturing systems and
communication networks, we propose a new subclass of continuous linear program-
ming problems, called state constrainted separated continuous linear programming
problems (or SCSCLP in short). These problems describe time-dependent averages
in such systems and can be used for the control of these systems in a nonstationary
environment. We demonstrate in this thesis that these problems can be efficiently
solved using mathematical programming techniques.

As in finite dimensional linear programming, we investigate the SCSCLP with the
help of its dual problem. In addition to the usual continuous linear programming dual,
we propose an alteraative dual problem for SCSCLP. We develop a new algorithm
called the Successive Quadratic Programming method for the SCSCLP.

The new algorithm discretizes the problem over time. But unlike other algorithms
proposed in the literature, it varies the discretization and the control simultaneously.
Based on the number of constant pieces allowed in the control, we develop a quadratic
program with polyhedral constraints. Even though the quadratic program is gener-
ally not convex, we apply nonlinear programming techniques such as the Frank-Wolfe
method and the Matrix Splitting algorithm to get a KKT point for the quadratic
program. By gradually increasing (and occasionally decreasing) the number of pieces
aliowed in the control, we can get better and better approximations thus improving
any feasible solution that is not globally optimal for the SCSCLP. By bounding the
size of the quadratic programming problems we encounter, we prove the finite con-
vergence of the new algorithm. We also derive the optimal solution structure and
prove absence of a duality gap as byproducts of the new algorithm. These type of
results (i.e., finite convergence, optimal solution structure and absence of a duality
gap) were known only under much more restrictive assumptions.

We then apply the theory we developed to specific multiclass fluid queueing net-
works, such as scheduling a) a multiclass queueing system with feedback (Klimov’s
problem), b) a multiclass queue under separable quadratic costs and c) a single class



tandem queueing network. For the first problem, we show the optimality of an index
rule, which shows that the problem is solvable in polynomial time. For the second
problem, we propose a dynamic index rule that solves the fluid control problem. For
the third preblem, we prove the existence of a polynomial size optimal solution for
the problem, which shows the problem is in NPNCO-NP, a strong indication of the
existence of a polynomial time algorithm for the problem. For the fluid multiclass
queueing networks with routing, we give simple necessary and sufficient condition for
the network to be stabilizable.

We also apply the theory we developed to fluid telephone loss networks. For this
special class of linear optimal control problem with state feedback and constraints,
we show that the problem admits a piecewise constant optimal control solution when
the service rates are independent of the origin and destination of the calls. This new
structural result gives a heuristic algorithm for the problem. We give a ciosed form
optimal solution for a two class single-link fluid loss network, which provides insights
to both the optimal solution structure for general fluid telephone loss networks and
the corresponding stochastic control problem.

We have implemented our algorithms using the C programming language. We test
our new algorithms using standard test problems and problems from manufacturing
systems, communication networks and telephone loss networks. Our computational
results show that the new algorithms can solve large scale problems efficiently.

Thesis Supervisor: Dimitris Bertsimas
Title: Professor of Operations Research
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Chapter 1
Introduction

In this information superhighway era, it is very important to understand and control
congestion while maintaining throughput in many production, service, communica-
tion and transportation systems. The goal of a manager of such systems is to evaluate,
optimize and ultimately design these systems with the help of computers. Real sys-
tems can be complicated and sometimes even intractable. Assumptions on the arrival
and service processes are usually made to simplify their analysis, without sacrificing
accuracy. Among various techniques developed to represent, evaluate and optimize
real systems, we are particularly interested in this thesis in the dynamic flow theory
(or fluid models). Fluid models describe a system using time-dependent averages. We
will show in this thesis that fluid models often accurately reflect a system’s behavior
and can be used to control queueing networks, manufacturing systems and communi-
cation systems. We will also demonstrate that fluid models can be efficiently solved

using mathematical programming techniques.

1.1 Motivating Applications

Many applications naturally lend themselves to the use of fluid models. We next
examine some of these applications.

11



CHAPTER i. INTRODUCTION 12

1.1.1 A Fluid Queueing Network

Consider a tandem queueing network. As shown in Figure 1-1, we have from left to
right two machines in tandem. The boxes represent machines. Jobs arrive at machine
1 at rate of A. After a job completes service at machine 1, it moves to machine 2.
After a job completes service at machine 2, it exits the system. Machine 7 can operate
at any rate in [0, 4], for i = 1,2. The network has z;(0) jobs at machine ¢ at time
0. Before it starts its service at machine ¢, a job waits in a queue associated with the
machine. Jobs at machine ¢ cost w; per unit time. Our objective is to control the
service rates of the two machines such that the total cost of the jobs waiting in the

network is minimized over a time horizon [0, TJ.

x(t) xz( t)

W Wa

Figure 1-1: Two machines in tandem

We let z;(t) denote the number of jobs at machine 7 at time ¢. Obviously, we should
have z;(t) > 0 for all . We let u;(t) denote the rate under which we operate machine
i at time t. Obviously, they must satisfy the capacity constraints 0 < u;(t) < y; for
all t. The problem can now be focrmulated as follows:

(TAND) min /OT[wlml(t) + wezy(t)] dt
such that ;(t) = A — u(t)
Z2(t) = wi(t) — ua(t)
0<w(t) <m
0 <wuat) < o
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zl(t), J,'Q(t) Z O,

where z(0) is a given vector.

By disregarding the randomness and focusing only on the dynamics of a stochastic
queueing system, a fluid model often models the asymptotic behavior of the system
under appropriate scaling. The use of the fluid model as an approximation for queue-
ing systems is richly documented; see for example, Kleinrock [53], Newell [68], Hajek
and Ogier [42], and numerous references therein. Chen and Mandelbaum [19], Chen
[21], Dai [27] and Chen [22] showed that a wide range of queueing networks would
converge (under appropriate time and space scaling) to fluid networks. In this sense,
progress on optimizing fluid networks provides insights into queueing networks.

1.1.2 A Manufacturing System

We examine hierarchical production planning in a manufacturing system consisting
of a network of machines (see Bai and Gershwin [8] and Sethi and Zhou [88]). The

following example was introduced in [88].

M, 1= ug
” @
U 1 WY di
_u.l___)‘ M i M3 4 Xy
! x; Yy
us
. d
u v, 2
X5

Figure 1-2: A typical manufacturing system
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In Figure 1-2, we have four machines M, - - -, My, two distinct products, and five
buffers. The boxes in Figure 1-2 represent the machines and the circles represent
the buffers. Each product j = 1,2 has demand d;. As indicated in the figure, z;(t),
t=1,2,---,5, is the state variable associated with buffer 7. More specifically, z,(t)
denotes the inventory/backlog of part type i at time t, i = 1,2,---,5. Buffer 1
provides parts for machines 3 and 4, buffer 2 provides parts for machine 2, buffer 3
provides parts for machine 3, buffer 4 holds product 1 (i.e., part type 4) and buffer
5 hoids product 2 (i.e., part type 5). Control variables u;(t),7 = 1,2,---, 6, represent
the production rates. More specifically, u,(t) and uy(t) are the rates at which raw
parts coming from the outside world are converted to part types 1 and 5, respectively,
and u3(t), ua(t), us(t) and ug(t) are the rates of conversion from part types 3,1, 1, and
2 to part types 4, 2,4 and 3, respectively. Therefore, the system dynamics associated

with Figure 1-2 are

21(t) = wi(t) —ua(t) —us(t), 3(t) =us(t) —us(t),  5(t) = ua(t) — da(t),
To(t) = ua(t) —us(t),  Z4(t) = ua(t) + us(t) — di(t). (1.1)

As should be obvious from Figure 1-2 and the description above, part types 1,2
and 3 are intermediate items to be further processed in the system. For i = 1,2, 3,
buffer 7 is between two machines and is considered an internal buffer. Internal buffers
provide inputs to machines, and therefore must not have shortages, i.e., we must have

z(0) =z, x(t) >0, i=1,2,3. (1.2)

The remaining buffers 4 and 5 are called external buffers, since it is from these
buffers that we must meet the demands of the final products facing the system.
Since we permit backlogging of demand, the inventories in the external buffers can be
negative. Indeed, z4(t) ard x5(t) are called surpluses with positive values representing
inventories and negative values representing backlogs. We denote X as the set of all
feasible states z(t) that satisfy both (1.1) and (1.2).

Each machine M;, i = 1,2, 3,4 has capacity k;(¢) at time ¢. The control u(t) =
(u1(t),- - -, ue(t)) must satisfy the following capacity constraints

u(t) < ki(t),  wa(t) + us(t) < ka(t),
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'U.3(t) + ll.4(t) < k3(t), us(t) < kg(f)
uy(t), ua(t), us(t), ug(t), us(t), us(t) > 0. (1.3)

A control u(t) is admissible if it satisfies (1.3) for all ¢ > 0. We use U to denote
the set of all admissible controls.
We consider the discounted cost function J(z(t), u(t)) defined by

T 5
Tt ult)) = [ I3 hila(0) +elult)] d,

where p > 0 is the discount rate, T is the time horizon and h;(-), representing the
cost of surplus, is a piecewise linear function of the following form

h,’ X T, if T; > O;
hi(x,-) =
—-h; X Ij, if T; < 0.
Furthermore, c(-), which represents the cost of production, is a linear function. The

problem is to find an admissible control u(t) that minimizes J(z(t), u(t)). The prob-
lem can be written as follows:

minimize J(z(t),u(t)) = _/OT e_’"[}s: hi(zi(t)) + c(u(t))] dt
subject to z(t) € X,u(t) e U =

which is equivalent to

(MANU) minimize /OT e PRzt (t) + h'z™(t) + c(u(t))] dt
subject to (z(t) — z7(t)) € X,u(t) €U,
zt(t),z~(t) > 0.

In [88], Sethi and Zhou considered situations with four unreliable and failure prone
machines. They assumed that the capacity k;(t) of machine i was governed by a finite
state Markov process. They showed that as the rate at which the machines change
states tends to infinity, the stochastic system is well approximated by (MANU)
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with k;(t) being the average capacity for machine i. From any optimal solution to
(MANU), an asymptotically optimal control can be constructed for the stochastic
system. The convergence rate as well as some computable error estimates of the value
function of (M ANU) to the stochastic control problem can also be obtained.

1.1.3 Telephone Loss Networks

Fluid models are also useful for systems that process continuous flows, such as those
in chemical and petroleum industries and in problems that have very small variability,
such as telephone loss networks.

To demonstrate this, consider a telephone network defined on a complete digraph
G =WE), withV = {1,2,---,n} and € = {(3,5),t # j} (see Figure 1-3). The
telephone network consists of n different locations i = 1,---,n and n x (n — 1)
different links (2, j), for 7 # j. At time 0, there are some initial calls in the network.
From each location i, calls to location j arise at a rate of A;j, while the duration of the
calls is t Calls will either be accepted or rejected. If a call from ¢ to j is accepted, it
generates reward w;; and can either be routed directly to location j through the link
(¢,7) that connects ¢ and j, or be routed through (7, k) to a third location & and then
from k to j through (k, j). If a call from i to j is rejected, a penalty of w;; is incurred.
We assume there are no other alternative routes and once a call is accepted, it cannot
be interrupted. Every link (i, j) has a capacity of C;; switching circuits. Every call
consumes one switching circuit on every link it uses. Our goal is to decide whether
to accept a call, and if we accept it, how we are going to route it, such that the sum
of the weighted rewards of accepted calls less the penalty for lost calls is maximized
over a period of time [0, T).

To model this problem, we treat the number of calls as a function of time that
takes on real values (i.e., as continuous flows) and formulate it in the following way.
For any 7 # j and k # j, we let z4;(t) be the number of calls at time ¢ in the
network that are routed from location i to location j through location k. We use the
convention that z;;;(t) is the number of calls at time ¢ that are routed directly from
location i to location j. For any i # j and k # j, we let u;j(¢) be the control variable
that represents the rate at which calls made at time ¢ from location i to location j
are routed through location k. We use the convention that u;;;(t) is the rate at which
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Figure 1-3: A five node telephone loss network

calls made at time ¢ are routed directly from location i to location j. In this way,
the variables z;(t) represent the state variables, while u;;(¢) represent the control
variables. The problem can be formulated in a maximization form as follows:

(TLNa) mazimize /OT (Z 'lf),‘j Z :l),'kj(t) - Z w,-j(/\,-j - Z u,-kj(t))) dt
1] k i,j k

subject to  Ty;(t) = wix;(0) + /:(uikj(t) — pijTik;(t)) dt, i£g k#]
Youii{t) S Ay, i# (1.4)

k#5
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Z Trij(t) + Z zik(t) < Cij, i#] (1.5)
Py ik
z(t), u(t) >0, telo, T,

where w and w are two nonnegative vectors.

If we assume p;; = p for all ¢ and j, with a slight abuse of notation, we introduce
new variables yix;(t) = zik;(t) e and define uy;(t) = e uy;(t). We now have the
following equivalent problem:

T
(TLNb) mazimize /0 (e""' w'u(t) + e 1D'y(t)> dt

t
subject to  yirj(t) = yix;(0) +/0 ui;(t) dt, i#FJ, k#]

D uii(t) <etthy, i#] (1.6)
k#j

Dyt + D wi(t) < e Cyj, i#j (1.7)
k#j J#ki#k

y(t), u(t) >0, telo, T).

Note that we can similarly formulated problems on undirected graphs.

1.2 Fluid Models and Continuous Linear Programs

A common characteristic for all the problems discussed in the previous section is that
they all can be posed as linear fluid models defined as follows. A linear fluid model
is a fluid model that can be formulated as the following optimization problem, first
considered by Bellman [10]:

T
(CLP) minimize /0 e(t)'z(t) dt
t
subject to  A(t)z(t) + fo B(s, t)z(s) ds < b(#)
z(t) >0, telo, T,
where A(t) and B(s,t) are matrices depending on time (their entries are bounded

measurable functions) and b(t) and c(t) are bounded measurable functions. (CLP)
is an instance of a continuous linear program.
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The problem that attracted most attention (see Chapter 2) is the separated con-
tinuous linear programming problem, a subclass of the continuous linear programming
problem:

T
(SCLP) minimize fo e(t)'u(t) dt

subject to [ *Gu(t) dt + y(t) = a(t) (1.8)
Hu(t) < b(2)
y(t), u(t) >0, tel0, T),

where y(t) and a(t) are absolutely continuous functions. Note that the variables
u(t) and y(t) are linked only through equation (1.8) where u(t) appears only under
the integration operator and y(t) does not appear under the integration operator.
The problem (SCLP) was first introduced by Anderson in order to model job-shop
scheduling problems [4]. It is easy to see that (TAND) is an (SCLP) if we change
the constraints from differentiation to integration form.

In this thesis, we examine a larger subclass of continuous linear programs which
contain the separated continuous linesr programming problems and can be used to
model a wider variety of problems that zrise in communications, manufacturing and
urban traffic control (e.g., (MANU), (TLNb)). The problem we consider is the
following:

(SCSCLP) minimize /OT (c(t)'ult) + 9(t)'y(2)) dt

subject to. [ “Gult) dt + Ey(t) = a(t) (1.9)
Hu(t) < b(t) (1.10)
Fy(t) < h(t) (1.11)

u(t) 20, telo, T),

where b(t), c(t), g(t) and h(t) are bounded measurable functions and a(t) is an abso-
lutely continuous function. The dimensions of b(t), a(t), u(t), y(t) and h(t) are n,
n2, n3, n4 and ng, respectively. We call (SCSCLP) the state constrained separated
continuous linear programs (or SCSCLP in short). We call y(t) the state variable and
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u(t) the control variable. We call (1.9) the state equation (or sometimes we use the
term system dynamics) and call (1.11) the state constraint. We call (1.10) the control
constraint.

Notice that there are three differences between (SCLP) and (SCSCLP). The
first difference is in the objective function: (SCLP) does not have a term containing
the state variable while (SCSCLP) does. The second difference is that the state
equation of (SCSCLP) contains a possibly nonsquare matrix E (the matrix is the
identity matrix in (SCLP)). The third difference is that the state constraint of
(SCSCLP) contains a possibly nonsquare matrix F, while (SCLP) only has non-
negativity constraint imposed upon the state variable y(t). (SCLP) is obviously a
special case of (SCSCLP), obtained by setting F to the identity matrix, F' to the
negative indentity matrix, and g(¢) and A(t) to zero vectors.

Some important applications cannot be modeled as (SCLP) while they can be
easily modeled as an (SCSCLP). The problem (MANU) is an (SCSCLP), but not
an (SCLP). (TLNb) is an (SCSCLP), but not an (SCLP). On the other hand, if
the duration of a call t depends on the origin and destination, then (T'LNa) is not
equivalent to (TLNb) and (T'LNe) cannot be modeled as an (SCSCLP).

When p;; depends on the origin and destination of the call, (T'LNa) is an instance
of the linear optimal control problem, a fundamental problem in modern control

theory. The linear optimal control problem is the following:

(LCONT) minimize /OT[c(t)'u(t) + g(t)'y(t)] dt
subject to y(t) = a(t) — Gu(t) + Dy(t) (1.12)
y(0) = a(0)
u(t) €U(E) = {ult) : u(t) 2 0, Hu(t) < b(®)}
y(t) € Y(t) = {y(t) : Fy(t) <h()}, telo, T),

where a(t), b(t), c(t), g(t), h(t) have the same restrictions as in (SCSCLP). The
term Dy(t) in (1.12) is called the state feedback for the problem.

When D = 0, the problem (LCONT) can be transformed into an equivalent
(SCSCLP) by formally integrating (1.12) over [0, t] for all t. By differentiating
the state constraint (1.6), (SCLP) can be transformed into an equivalent (LCONT).
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(CLP)

(SCSCLP)

(SCLP)

(LCONT)

Figure 1-4: Hierarchy of different formulations

Integrating (1.12) over [0, ] for all t shows that (LCONT) is also a subclass of (CLP).
The relation among (SCLP), (SCSCLP), (LCONT) and (CLP) is illustrated in

Figure 1-4.

1.3 Contribution and Structure of this Thesis

Motivated by the application areas reviewed in Section 1.1, our goal in this thesis
is to develop and study a new algorithm for SCSCLP as well as for its special case
SCLP. In particular, our contribution is to:

1) propose an efficient algorithm for solving large scale SCSCLP problems,

2) introduce a new dual problem for (SCSC LP) and by using quadratic program-
ming techniques, prove algorithmically the absence of a duality gap for SCSCLP
without assuming that the primal solution set is bounded,

3) provide conditions for the existence of an optimal solution,
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4) provide new optimal solution structural results for SCSCLP, and

5) apply the new algorithm to a variety of queueing control problems and problems
arising from communication and manufacturing systems.

The rest of the thesis is structured as follows.

In Chapter 2, we review the general theory of continuous linear programs and the
related literature, in order to make the thesis self-contained.

In Chapter 3, we propose a new numerical algorithm for SCSCLD, prove its con-
vergence, and show the absence of a duality gap for the problem.

In Chapter 4, we use the theory developed in Chapters 2 and 3 to analyze several
queueing control problems with particular structure. We also examine the controlla-
bility of multiclass queueing networks with routing.

In Chapter 5, we provide new structural results for problems arising from tele-
phone loss networks and propose an algorithm for solving it. We also give a closed
form solution to a single-link loss network problem that provides insights to both the
optimal solution structure for general fluid telephone loss networks and the corre-
sponding stochastic control problem.

In Chapter 6, we examine the computational behavior of the new algorithm and
provide some numerical examples.

In Chapter 7, we give conclusions and pose some open questions.



Chapter 2

General Theory of CLP

In Chapter 1, we introduced fluid models and various continuous linear programs. In
this chapter, we provide a historical review and some general results on continuous
linear programming. We refer the reader to the book by Anderson and Nash [2] and
the papers by Pullan (77, 78, 79] for more detailed results and analysis.

2.1 A Brief Historical Review

Bellman (10, 11j was the first person to introduce problem (CLP). Work on CLP
is divided into three broad areas: the establishment of strong duality theorems, the
development of algorithms, and the characterization of the optimal solution structure.

After problem (CLP) was introduced, a lot of papers dealing with duality theory
appeared. Tyndall [92] gave conditions under which (C L P) and its dual have the same
value, when they are both posed in Lo, spaces. Levinson [58] extended Tyndall's
work by considering time dependent matrices. So did Tyndall in [93]. In all this
work, the strong duality theorem was proved using a sequence of successively finer
discretizations. Grinold [38] used the abstract mathematical programming approach.
Yamasaki [99] also used this approach and considered the problems posed over other
functional spaces. Rockafellar [81] considered a class of state constrained convex
optimal control problems. Hager and Mitter [40] and Hager [41] extended his work by
considering a larger class of problems, which included (LCONT). They established
a general duality theory under certain Slater conditions. Duality theory was also

23



CHAPTER 2. GENERAL THEORY OF CLP 24

addressed by Papageorgiou [70] from a different perspective. In order to obtain a
more satisfactory duality theory, he modified the objective functions and posed both
the primal and the dual problems in the space of functions of bounded variation. Sethi
et. al. [86] investigated the problem as an optimal control problem with inequality
constraints on the state variables. They related the optimal dual variables to the
adjoint variables in the optimal control problem.

The computational study of CLP was initiated by Lehman [57] who attempted to
develop simplex-like algorithm for CLP. Drews [29], Hartberger [45] and Segers [84]
later followed him. Perold [72] developed the first simplex-like algorithm for CLP.
Anstreicher [7] continued Perold’s work in his Ph.D. thesis, even though both of their
algorithms were still incomplete and rather complicated. In the meantime, Russian
authors such as Ilyutovich [46, 47] treated the problem using Pontryagin’s Maximum
Principle. In addition, Ito et. al. [48] has developed a primal-dual path following
interior point method for CLP.

Perold [73] studied the extreme point structure for (CLP), under some mild as-
sumptions that guarantee their existence. Along the same line, Anderson, Nash and
Perold [1] derived extreme point structure for (SCLP). Based on the optimal solu-
tion structure, Anderson and Nash in [2] proposed a convex quadratic programming
procedure for (SCLP).

Only recently, work on CLP that combined all of the above areas has appeared.
The series of papers on SCLP by Pullan [77, 78, 79], deal with solution structure,
duality theory and numerical algorithms. Philpott later specialized Pullan’s work to
a nevwork version of SCLP [74] and presented encouraging numerical results.

2.2 Extreme Points and BFS

Throughout this thesis, unless otherwise specified, we always assume the primal prob-
lems (CLP), (SCLP) and (SCSCLP) are feasible. In this section, we review the
notion of a basic feasible solution for these linear programs.

We call a feasible solution to problem (CLP) a basic feasible solution (or BFS
in short) if it cannot be written as a convex combination of two distinct feasible
solutions (different on a set of positive measure) to (CLP). As in finite dimensional
linear programming, we also call a basic feasible solution an extreme point of the
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feasible region.
In finite dimensiona' linear programming, there always exists a basic feasible so-

lution that is optimal for a linear program, given its feasible region is bounded. A
similar result holds for (SCLP). The following proposition comes from Anderson [5].

Proposition 2.1 For the problem (SCLP), if
a) a(t) is continuous and piecewise differentiable with a bounded derivative,
b) u(t) is bounded by the constraints,

then there exists a basic feasible solution that is optimal to the problem (SCLP).

For this reason, it is important to characterize the structure of the extreme points.
In fact, the extreme points of (SCLP) have a simple characterization. Some more
notation is needed before giving this characterization. We define the matrix K as

K= G 10 .
H 0 I
For any feasible solution z(t) = (u(t), y(t)) to problem (SCLP), let z(t) = b(t) —
Hu(t) and Z = (u(t), y(t), z(t)) and define S, (t) as the set valued function such that

Sz(t) ={ k| z:(t) #0 }.

We call S;(t) the support function of z(t). The following proposition also comes from
Anderson [5)].

Proposition 2.2 A feasible solution z(t) = (u(t), y(t)) to problem (SCLP) is a
basic feasible solution if and only if the columns of K indexed by S,(t) are linearly
independent almost everywhere in [0, T).

For general (CLP), Perold [73] characterized the extreme points that are right
analytic. We call a function f : [0, T)] — R right analytic if for each t € [0, T),
there is an € and an analytic function g : (t — ¢, t + €) — R such that f(s) = g(s)
for all s € [t, t +€). Not all the extreme points for (CLP) are right analytic. It is
not known whether the optimal objective value is always attained at such an extreme
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point even if we assume there is an optimal basic feasible solution and the problem
data are well behaved. Since Perold’s characterization is not directly related to the
thesis, we did not include it in the thesis.

A better characterization can be obtained if we insist that the basic feasible solu-
tion is also optimal. The following proposition is due to Anderson and Nash [2].

Proposition 2.3 If the two conditions in Proposition 2.1 hold and a(t), c(t) are
piecewise linear and b(t) is piecewise constant, then there ezists an optimal basic
feasible solution to (SCLP) whose u(t) is piecewise constant.

The above result was recently extended by Pullan [78] for the cases where a(t),
b(t) and c(t) are piecewise analytic. He showed that there exists an optimal feasible
solution for (SC LP) whose u(t) is piecewise analytic assuming that the two conditions

in Proposition 2.1 hold.

2.3 Duality Theory

As in finite dimensional linear programming, both theoretical and algorithmic devel-
opments rely heavily on the study of the dual problem. In this section, we introduce
dual problems for (CLP), (SCLP) and (SCSCLP). We also provide several useful
duality results for (CLP).

2.3.1 The Dual Problems

We take an abstract mathematical programming approach. Again, the theory de-
veloped here is not meant to be the most general possible. We refer the reader to
Luenberger {60], Rockafellar [81] and Anderson and Nash [2] for more material on
this subject.

Intentionally, when we introduced (CLP) and (SCSCLP) in Chapter 1, we did
not specify the functional spaces to which z(t), y(t) and u(t) should belong. The
specification of these spaces is very important, however, since the duality results that
hold in one space might not hold in another. One contribution of the thesis is that
we identify the spaces we need in order to establish strong duality results. First, we
introduce the dual problem for the following problem, posed abstractly in functional



CHAPTER 2. GENERAL THEORY OF CLP 27

spaces. Let (X,Y) and (Z, W) be two dual pairs of vector spaces.

(MP) minimize (z,c)
subject to (Az —b) € P,
x € Py,

where A is a linear operator that maps an element of X to an element in Z, b and ¢
are given elements of Z and Y respectively. P; and P, are convex positive cones in
X and Z respectively.

We introduce the dual problem of (M P):

(MP*) mazimize (b, w)
subject to —(A*'w—c) € Py
w€E P

where P} is the dual cone for P; and A* is the adjoint operator of A defined by
(z, A'y) = (Az,y).

Let X be L3:[0, T}, Y be L{'[0, T}, Z be L?[0, T] and W be L?2[0, T]. We
define the bilinear forms and the linear operator A as

T
elt)2(®) = [ e(tat) dt
o, w@) = [ bty w(t) dt
As(t) =A@+ [  B(s, t)z(s)ds

where c(t) and z(t) are in Y and X respectively, b(t) and w(t) are in Z and W respec-
tively. P, and P; consist of vector functions with dimensions n; and n, respectively
that are nonnegative a.e. on [0, T]. We can use the Fubini theorem to find the adjoint
operator of A. It is also easy to characterize P; and P; from their definitions. With
the above abstract setting in mind, we can now introduce the dual of (CLP), which
Bellman [11] devised when he introduced the (CLP).
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T
(CLP*) mezimize - /0 b(t)w(t) dt

T
subject to c(t) + A(t) w(t) +/ B(s,t)w(s) ds >0
t
w(t) >0, for t € {0, T,

where w(t) is a bounded measurable function.
Restricted to (SCLP) (see also [2]), we can pose the following dual problem for

(SCLP):
- .- T ! T ’
(SCLP1*) mazimize —/; m(t)'a(t) dt _/o b(t)'n(t) dt
subject to c(t) + /tT G'n(t)dt+ H'n(t) >0

w(t) > 0,n(t) > 0, for t € [0, T,

with 7(t) and 7(¢) in the space of bounded measurable functions.
When restricted to (SCSCLP), (M P*) gives the following dual problem to (SCSCLP):

(SCSCLP1*) mazimize —/[;T a(t)'w(t) dt — /{;T b(t)'n(t) dt — /O-T h(t)'&(t) dt

subject to c(t) + /tT G'n(t) dt + H'n(t) > 0
E'n(t) + F'§(t) = —g(t)
n(t) > 0,&(t) > 0, for t € [0, T].

Again, the dual variables are bounded measurables functions.

2.3.2 Duality Results and Alternative Dual Problems

Duality theory is at the heart of the simplex method and many other recently de-
veloped barrier type methods for finite dimensional linear programming. To extend
these algorithms to CLP (or SCLP and SCSCLP), it would be necessary to establish
a similar duality theory for CLP (or SCLP and SCSCLP). This idea appeared in the
early development of partial algorithms in Lehman |57], Drews [29], Hartberger [45],
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Segers [84], Perold [72] and Anstreicher {7]. Because of the importance of the duality
results, many papers dealt solely with duality for CLP.

In introducing the problem, Bellman readily established the weak duality resuit
between (CLP) and (CLP*), i.e., the objective value of (CLP) is always no iess
than that of (CLP*). This result is a special case of general weak duality results
between (MP) and (M P*) {ree Anderson and Nash [2]). The first strong duality
results for (CLP) and (CLP*) wcie given by Tyndall [92]. Among other things,
the strong duality result in [92] required that A(t), B(s,t) and 5(t) be nonnagative.
Consequently, this result is not very useful as many practical problen:s (&.g. network
problems in Anderson and Philpott [3]) give rise to negative entries in G aud »(t) in
(SCLP), and hence also in B(s,t) and b(¢) in the corresponding (CLP).

Tyndall’s work was extended by Levinson 58], Tyndall [93] and Grinold [37, 38, 39
(see also Anderson and Nash [2]). The problem of establishing strong duality results
was not fully solved because many simple CLPs, such as the network version of SCLP,
were not covered by their results. More general results have not been obtained,
because it is not difficult to construct counter-examples that exhibit duality gaps for
general (M P) and (M P*). For example, in semidefinite programming, a finite duality
gap can be present, even if both the primal and the dual problem attain their optimal
solution values. Counter-examples were also constructed for (CLP), using the dual
problem (CLP*) (see, for example, Grinold [37]). We note that Grinold’s example
does not show the existence of a duality gap between (CLP) and (CLP*). This
means that to establish more general strong duality results (i.e., both the existence
of the optimal solutions and the absence of a duality gap) for (CLP) (or (SCLP)
and (SCSCLP)), it is necessary to consider a dual problem in some sense different
from (CLP*). This was noted by Lehman [57], who tried to develop algorithms for
(CLP). Rockafellar [81] noted that strong duality theorems could be cbtained by
allowing dual variables to be of bounded variation for a class of control problems.
The establishment of a strong duality result was also addressed by Papageorgiou [70]
from a different perspective. He modified the objective functions and posed both the
primal probiem and the dual problem in the space of functions of bounded variation.
However, the new problem he studied generally had a different objective value than
(CLP). His proof technique was not constructive and the connection between the
optimal solution of his problem and the original problem (CLP) has not yet been
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established.

The idea of finding an alternative dual was most recently rediscovered by Pullan
[77], who expanded the feasible solutions to the dual prcblem by allowing Dirac 4
functions. However, the existence of an optimal solution does not follow from the
boundedness of the objactive value for (SCLP), in contrast to finite dimensional
linear programming. Assumptions that guarantee the existence of an optimal solution
for the primal problem have been a common characteristic in the literature on duality
theory fur (CLP).

Puilan [77] introduced the following dual problem for {SCLP):

(SCLP*) mazimize — /0 "oty dn(t) - /0 " b(t)n(t) dt
subject to c(t) — G'n(t)+ H'n(t) > 0
n(t) >0, for t € [0, T,
7(t) monotonic increasing and right continuous
on [0, T] with n(T) = 0.

The basic idea is to expand the feasible region of 7(t) in (SCLP1*) to include the

unbounded Dirac § functions. To see this, we let (m(t), 7:1(t)) be a feasible solution
for (SCLP1*). If we define

T
) == [ m@d ) =m),

we see that (w(t), n(t)) is a feasible solution for (SCLP*) with the same objective
value. However, unless 7(t) is absolutely continuous, the above process cannot be
reversed due to Proposition A.1l in the Appendix. As we will see later in Chapter 3,
there always exists an optimal solution to (SCLP*) with w(t) piecewise absolutely
continuous (cf. Theorem 3.9). By the definition of the § function in the Appendix,
this means that the only “useful” extensions made on (SCLP1*) is the inclusion of
the § functions at the points where 7(¢) has jumps in the dual solution for (SCLP*).
It is this type of extension that makes the proof of the absence of a duality gap in
the subsequent chapters work.
The following proposition comes from Pullan [77].
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Proposition 2.4 Weak duality holds hetween (SCLP) and (SCLP1*) and the opti-
mal value of (SCLP*) lies between that of (SCLP) and (SCLP1*).

It is not known whether a duality gap exists between (SCLP) and (SCLP1*).

By utilizing Proposition 2.3, Pullan [77, Corollary 4.5] algorithmically showed the
following:

Proposition 2.5 Under the same assumption as in Proposition 2.3, there ezist piece-

wise linear optimal solutions for both (SCLP) and (SCLP*); furthermore, strong
duality holds between (SCLP) and (SCLP*).

The above result has been recently strengtiened by Pullan [79] who assumed that
a(t), b(t) and c(t) are piecewise analytic instead of piecewise linear or piecewise con-
stant. However, the boundedness assumption on the feasible solution set for (SCLP)
is still imposed (cf. Assumption b in Proposition 2.1).

Throughout the remainder of this chapter and in Chapter 3, we make the following
assumptions for problem (SCSCLP):

Assumption 2.1
a) a(t) and h(t) are continuous,
k) a(t), c(t) and h(t) are piecewise linear,
c) b(t) and g(t) are piecewise constant,

d) problem (SCSCLP) is feasible and its objective value is bounded from below.

We prove our new duality results by introducing d-functions in the dual prob-
lem and by using quadratic programming techniques to express possibly unbounded
primal feasible solutions. However, we only explicitly write the dual problem in a dif-

ferent form. Similar to (SCLP*), we propose the following alternative dual problem
for (SCSCLP):

T T T
(SCSCLP*) mazimize — /0 a(t) dn(t) — /0 b(t)'n(t) dt — /0 h(t)' dé(t)
subject to c(t) — G'n(t) dt + H'n(t) > 0
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E'n(t) + F'E(t) = /t T o(t) dt

w(t) is a bounded measurable VF function

£(t) monotonic increasing and right continuous
on [0, T| with §(T) =0, =(T)=0

n(t) > 0, for t € [0, T).

Similar to Proposition 2.4, we have the following weak duality results for (SCSCLP).

For completeness, we give its proof.

Proposition 2.6 Weak duality holds between (SCSCLP) and (SCSCLP1°) and the
optimal value of (SCSCLP*) lies between that of (SCSCLP) and (SCSCLP1*).

Proof It is clear that every feasible solution to (SCSCLP1*) corresponds to a feasi-
ble solution to (SCSCLP*) which has the same solution value. Therefore, the objec-
tive value of (SCSCLP*) is always greater than or equal to that of (SCSCLP1*). So,
we only need to show that weak duality holds between (SCSCLP) and (SCSCLP*).

Consider any two solutions (u(t), y(t)) and (= (t), n(t), £(t)) which are feasible
to (SCSCLP) and (SCSCLP*) respectively. Let z(t) = b(t) — Hu(t). We have

T T T T
| (erutt) + g(eyu(®) dt—(— | ey antt) - [ vieyne) de - [ hey de(t))
T ’ ’ T ’ T / T ’
= [ tcttyu®) +o®y(®) dt+ [ atey dn(e)+ [ b(eynie) di+ [ hie)' de(e)
T T t
= [ tctyu® +9@yue) de+ [ ([ Guls) ds+ Ey(®)) an(®)+
T T
| Hu@) + 20)n@) di+ [ (Fy(0) + 20)de(2)
- / " (Y ult) + g(t)y(t)) dt - / (Y Gu(t) dt + / " Ey(t) dn(t) +
OT TO 0
b (Hu() + 20)n(e) de + [ (Fy(e) + 26))de(t)
/0 " (elt) = G'n(t) + H'n(e)) u(t) dt +

T T
/0 y(t)' d (E'7r(t) + F'E(t) — /t g(t) dt) +

il
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T T
[ =teyn) de+ [ =eydeco

OT T T
= /0 (c(t) = G'n(t) + H'n(t)) u(t) dt + /O 2(t)n(t) dt + [0 2(2)'de(t)
> 0,

where 2(t) = h(t) — Fy(t). m]

The requirement of 7(t) being a bounded measurable VF function in (SCSCLP*)
is important, it makes the integration by parts valid in the proof of the above propo-
sition (cf. Proposition A.2 in the Appendix). As a consequence of the proof, we have
the following corollary:

Corollary 2.1 Strong duality holds between (SCSCLP) and (SCSCLP*) if and
only if there exist (u(t), y(t)) and (w(t), n(t), £(t)) which are feasible to (SCSCLP)
and (SCSCLP*) respectively, and satisfy the following conditions.

/oT (c(t) = G'n(t) + H'n(t)) u(t) dt = O;
/OT(b(t)-Hu(t))’n(t) it = 0;
/GT(h(t)—Fy(t))’dé(t) = 0. (2.1)

We call (2.1) the complementary slackness condition for (SCSCLP) and (SCSCLP*).

2.4 Algorithms for SCLP

There are several known algorithms for (SCLP).

The first type of algorithm discretizes time and transforms the problem into a very
large linear programming problem. The algorithm then solves the linear programming
problem by using state of the art linear programming solvers (see Buie and Abraham
(17]). This approach was recently strengthened by Pullan [77] and developed further
by Philpott and Craddock [74] for the network version of (SCLP). Their algorithms
iteratively add new breakpoints into the partition.

The second is a “simplex” type algorithm that involves the extension of concepts
such as “basic solutions,” “dual variables,” and “pivots,” see Lehman [57], Drews [29],
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Hartberger [45], Segers [84], Perold [72] and Anstreicher 7).

The third type of algorithm develops the primal-dual path following interior point
methods in Hilbert spaces, see Ito et. al. [48].

By utilizing Proposition 2.3, Anderson [2] developed a convex quadratic program
for (SCLP) that enumerates all the extreme points of a set of linear programs.

However, all these algorithms have difficulty in solving large problems. For the
first type of algorithm, the time horizon has to be disccetized into so many small
intervals that it takes a very long time to solve the linear program. The optimal
solution usually turns out to be constant or linear on the majority of these intervals.
For the second type of algorithm, to the best of our knowledge, there is no theoretical
convergence guarantee and for the third type of algorithm, we need to have an initial
feasible starting point that is also in the interior of the feasible region. Also, very fine
discretizations are used in order to solve the inverse of some abstract operator and
thus create the same difficulty as the first type of algorithm. Finally, for the fourth
type of algorithm, the quadratic program proposed is of exponential size and requires
all the extreme points of a set of linear programs known a priori.

As a result of this discussion, we wish to develop a new efficient algorithm for
(SCSCLP). We note that the computational complexity of problems (SCLP) and
(SCSCLP) is still an open question.



Chapter 3

An Algorithm for SCSCLP

In Chapters 1 and 2, we introduced fluid models and reviewed the general results
of continuous linear programming. In this chapter, we will develop a new algorithm
for solving SCSCLP problems under Assumption 2.1. The new algorithm also uses
discretization. Unlike other algorithms (cf. Section 2.4), it varies the discretization
and control simultaneously. Based on the number of constant pieces allowed in the
control, we develop a quadratic program with polyhedral constraints. The quadratic
program is generally nonconvex. However, we do not need to solve the quadratic pro-
gram to optimality. We only need to obtain a KKT point. We use the Frank-Wolfe
method (see Martos [64] and Murty [67]) or general matrix splitting algorithms (see
Lin and Pang [59], Eckstein [30], Bertsekas and Tsitsiklis {13}, Luo and Tseng [62]) to
find a KKT point for the quadratic program. By gradually increasing (and occasion-
ally decreasing) the number of pieces allowed in the control, we can improve upon
any nonopiimal KKT solution. We call this the Successive Quadratic Programming
method. By a KKT solution structural result of Luo and Tseng [62], we show that
the iterates of the algorithm move from one polyhedral set to another, with improved
cost. By bounding the size of the quadratic programs we encounter, we bound the
number of all such polyhedral sets. We show that the new algorithm converges in
finite time. The absence of a duality gap and the existence of certain highly struc-
tured optimal solutions for (SCSCLP) and (SCSCLP*) follow as byproducts. We
will give some computational results of the new algorithm later in Chapter 6.

The remainder of this chapter is structured as follows. In Section 3.1, we reit-
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erate problem (SCSCLP) and our assumptions, we then introduce some standard
definitions and notations. In Section 3.2, we develop a quadratic program with poly-
hedral constraints. In Section 3.3, we review some nonlinear programming techniques
for calculating a KKT noint of a quadratic program with polyhedral constraints. In
Section 3.4, we develop a procedure for removing redundant intervals in a feasible
solution for (SCSCLP). In Section 3.5, we introduce a new discrete approximation
for (SCSCLP) which is closely related to the dual problem. From this discrete ap-
proximation, we derive a criterion to detect whether a feasible solution is optimal for
(SCSCLP). If the criterion is not satisfied, we point out a desceut direction for the
feasible solution to (SCSCLP). In Section 3.6, we formally state the new algorithm.
In Section 3.7, we prove the finite convergence result for the new algorithm and in
Section 3.8, we use the new algorithm to prove new duality results and new optimal
solution structural results for (SCSCLP). The reader is advised to first read Sections
3.1 and 3.6, to have a general idea on the problem we are solving, the assumptions
and the new algorithm, and then come back to Sections 3.1, 3.2 and so on.

3.1 Some Definitions and Notations

First, we reiterate problem (SCSCLP) and our assumptions. We consider the prob-
lem

(SCSCLP) minimize /OT(c(t)'u(t)+ a(tYy(t)) dt

subject to /; Gu(t) dt + Ey(t) = a(t)
Hu(t) < b(t)
Fy(t) < h(t)
u(t) > 0, te [0, T]

and its dual

T
(SCSCLP*) mazimize /0 a(t) dr(t) /0 b(t)'n(t) dt — / h(t) dE(t)
subject to ¢(t) — G'n(t) dt + H'n{t) > 0
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E'n(t) + F'€(t) = f " o(t) dt

m(t) is a bounded ntleasurable VF function

£(t) monotonic increasing and right continuous
on [0, T) with §(T)=0, w(T)=0

n(t) >0, for t € [0, T},

under the following assumptions:
Assumption 3.1
a) a(t) and h(t) are continuous,
b) a(t), c(t) and h(t) are piecewise linear,
c) b(t) and g(t) are piecewise constant,
d) problem (SCSCLP) is feasible and its objective value is bounded from below.

We require that u(t), y(t) and 7(t) are bounded measurable on [0, 7.

The following are standard definitions and notations which we will use throughout
the remainder of this chapter.

We call a sequence of time epochs P = {to,---,t,} a partition of [0, T7] if

O=to<t; < --<t,=T.

We use |P| to denote the cardinality of P. Note, since our development sometiimes
treats t; as a variable, we allow t; = t;_; for some 7 > 1 and always treat ¢; and ¢,
as two different variables.

We say that a function f(t) is piecewise constant (linear) with a partition P =
{to,---,tp}, if f(t) is constant (linear) on [¢;—y, t;) for i = 1,---,p. We say f(t) is
piecewise constant (linear) on [0, T if f(t) is piecewise constant (linear) with some
partition of [0, T.

Let P = {to,---,tp} be a partition of [0, T']. Throughout this chapter, we assume
Assumption 2.1 holds. We also assume a(t), h(t) and c(t) are piecewise linear and
b(t) and g(t) are piecewise constant with partition P. Let B be the set of breakpoints
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of a(t), b(t), c(t), g(t) and h(t). For each breakpoint in B, we select one element
t; in P, such that its value denotes the same time in [0, T] as the breakpoint. We
always select ¢ for 0 and ¢, for T. We denote D¥ as the set of selected elements of
P excluding ty and t,. Let Df = DP {J {to,t,}. We sometimes omit the superscripts
P when the context is clear.

We say an interval [t;_;, ;] is a subinterval of [t;, tn], where ¢, and t,, are two
consecutive breakpoints in Df, if /| < i —1 < i < m. In this case, we also say that
ti—1, t; and [t;_;, t;] reside on [t, tp).

For a function f(t), we will use notations

ft=)=lim f(s) and  f(t+) = lim f(s)

s—t—

when the above limits exist and ¢ is not equal to any breakpoint in Df. If [t;_y, t;] is
a zero length subinterval of [t;, ¢;,], where ¢; and t,, are two consecutive breakpoints

in Df. By convention, we let

lim, ¢, f(s), ifti=tn
lim,_,tH. f(S), if ly= th

flti—) = {

and let f(t;-1+) = f(t) = f(t;—). We note that the value of f(t;) is sensitive to both
the value of ¢; and its index ¢.

If t; # t;_; for all 7, for a set of 2p variables f(to+),f(t1—), flti+), -, f(tp_1+),f(tp—

the function f(¢) defined by

f(t3+)’ ift = thtl)"') tp—la
£ty =140, ift=T
—"if(t;_l'i') + : tt‘_ll f(t )’ fort € (ti—l-p ti)’ 1= 1’ D

is called the piecewise linear extension of these 2p variables; for a set of variables
f(to+), ft1+), -+, fltp_1+), the function f(t) defined by

ft) = {f:(tp-“f)’ t=T,
f(ti—1+), for t € [ti_l, ti)) for 1 = 1’ “ae ,p’

is called the piecewise constant extension of these p variables.

)1
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For two functions f(t) and g(t), we denote [’ f(t) dg(t) as the Lebesgue-Stieltjes
integral of f(t) with respect to g(t) from a to b, given that the integral exists, in-
cluding both a and b. For any mathematical program (LP) we shall write V(LP) for
the optimal value of the objective function, which may not be attained. For any n
dimensional vector z, we denote by z; the i-th coordinate of z, and, for any nonempty
subset @ C {1,---,n}, we use zgq, [z]g or (z)g to denote the the vector with com-
ponents z;, i € @ (with z; arranged in the same ~rder as in z). For a matrix A, we
denote by A;; the j-th element of the i-th row of matrix A and denote by A;, the
i-th row of A.

3.2 A Quadratic Programming Sub-problem

By Proposition 2.3, there exists an optimal basic feasible solution to (SCLP) whose
u(t) is piecewise constant (see Figure 3-1) when Assumption 3.1 holds and the solution
set to (SCLP) is bounded. We will prove later in the chapter that this remains true
for (SCSCLP). For any feasible control u(t) that is piecewise constant with respect
to partition P, we have the following standard linear approximation problem (see
Pullan [77] and the references therein).

DP(P) min i(ti - ti—l)ﬁ(ti—r*')'c(ti +2ti—l) + i a _2ti-l (9(t:) + §(ti-1)) 9(ti1+)

i=1

st. Ej(te) = a(to),
(t: — tic1)Gi(tio+) + Ey(t:) — Eg(tii) = a(t;) — a(ti-y),
i=1,--,p,
Hi(ti+) < b(tis+), i=1,---,p,
Fj(t;) < h(t), i=0,---,p,
w(ti+) >0  i=1,---,p,

where we have the convention that c(t—‘iz%‘—') = c(t;—), whenever t; = t;_;. Note
that even though it is possible that ¢; = t;_;, for some i > 1, we still treat @(t;+)
and i(t;1+) as separate variables. If (@, §) is a feasible solution to DP(P), where
partition P satisfies ¢; # t;_; for all ¢, the piecewise constant extension of i together
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\

vt} |

u(t) A

time

Figure 3-1: A piecewise constant optimal control for (SCLP)

with the piecewise linear extension of §, defines a feasible solution to (SCSCLP)
with the same cost, due to Assumption 2.1. If we fix the partition, DP(P) is a linear
programming problem. So, once an optimal partition P is known, an optimal solution
can be computed by solving the linear program DP(P).

However, we do not know the optimal partition in advance. The algorithms pro-
posed by Pullan [77] and by Philpott and Craddock [74] alternatively do the following
two steps:

1) Improve the control for the current partition.

2) Improve the partition.

In contrast, the algorithm we propose improves both the control and partition at the
same time. By introducing new variables

‘l)(t,-) = (t,' - t,'_l)ﬁ(t.'_l-i-), (31)



CHAPTER 3. AN ALGORITHM FOR SCSCLP 41

we can eliminate variables @ and obtain the following simpler mathematical program-
ming problem in variables #, § and £, with ¢ being the vector of ¢;s such that ¢ & Df.

p . . P 4. _¢.
QP(P) min 3 o(te(" 5y + 5 B0 + g(tin)o(tir)
i=1 i=1
s.t.  Eg(to) = a(to),
Gi(t;) + Eg(t:) — EY(ti1) = a(ts) — a(ti-1), (3:2)
1= 1, ARy /2

H(t;) < (ti — tim1)b(tioa+), i=1,---,p,
Fy(t:) < h(t:) t=0,---,p,
0=t <t <

s <ty =T,
o(t) 20 i=1,-

tP
D
where r(‘—'+;'—“) = c(t;—) whenever t; = t;_;. Note that the breakpoints in D are
fixed and are not variables. We treat both #(¢;) and §(t;) as variables. Let ¢, and ¢,,
be two consecutive breakpoints in Df. For any i € (I, m], c(t‘f%), a(t;) — a(ti—y)
and h(t;) are the following linear functions of ¢; and t;_;:

ti+ti- t;+t,_ — 2t .

c(= 5 l) = c(t) + -l-———zl————lc(tz-i-)
a(t;) —a(ti-1) = (ti —tiz))a(ti+)
h(t:) = h(t) + (t — t)h(ti+),

and g(ti_1+) = g(t;) and b(t;-;+) = b(t;) are constant vectors. So, QP(|P]) is a
quadratic programming problem with polyhedral constraints.

Given a feasible solution (4, §, ) to QP(|P|) such that t; # t;_, for all i, we can
obtain a feasible solution (%, ) to problem DP(P) with P defined from vector ¢ and
the breakpoints in Df and @ defined from

ft(ti_1+) = Zﬁ_itt'—:):: (33)

Equation (3.1) defines an injective mapping from the solution set to DP(P) to the
solution set to QP(|P|). The two related solutions have the same solution value.
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However, if t; = t;; but 9(¢;) # 0 for some i, the right hand side of (3.3) is not
properly defired, i.e., there may be a solution to @ P(|P|) for which the corresponding
solution to D P(P) can not be constructed. We overcome this difficulty by constantly
removing redundant zero length intervals in a feasible solution and by using only the
solution (9, §, ) to QP(|P]) that satisfies

t; 75 ti—l for all ¢ Z 1 (34)

to construct a feasible solution for DP(P) (and so for (SCSCLP)). When soine zero
length intervals can not be removed, we show there is a series of feasible solutions
to QP(|P]) that satisfies (3.4) whose sclution value becomes arbitrarily close to that
of the feasible solution to QP(|P|). This is key to understanding the absence of a
duality gap result between (SCSCLP) and (SCSCLP*), as we will see later on.

Lemma 3.1 Suppose u(t) in the feasible solutions to (SCSCLP) is bounded. Let
(D, 7, t) be a feasible solution to QP(|P|), the following result holds.

o(t;) =0 whenever t; =t;_;. (3.5)

Proof Suppose t; = t;_; for some i, but 9(¢;) # 0. Let [t;, t,] be the interval ¢;
resides on, where ¢, and {,, are two consecutive breakpoints in Df. Without loss of
generality, we may assume there exists a positive length subinterval of [t;, t,,] that is
adjacent to {t;_, t;] (since we can switch the values of 9(¢;) and §(t;) with adjacent
zero length subintervals on (¢, | and maintain the feasibility of the solution). We
assume the adjacent positive length subinterval on [t;, ¢,) is [ti-2, ti-1). When the
adjacent positive length subinterval of [t;, t] is [t;, ti+1], a similar analysis applies.

For any 7 € (0, 1), it is easy to verify the following solution is feasible for Q P(| P|):

th; ifj#i—1and j#3i,
i;r = Tti—2 + (1 - T)t,'_l; lf] =1 1,

\ti; if]:-:z,

[ 3(t;); if j #i—1and j # 1,

vT(t;) = {(1-7)u(ti-1); Hj=i-1,
| TO(ti-1) +0(t:); if j =14,
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3(t;); if j#i—1and j#1,
g () = qriti2) + (1 —7)g(mr); Hj=i-1,
(t:); if j = 1.

The basic idea is to split interval [t;_5, t;_;] into two intervals [t;—g, Tti—a+(1—7)ti-1]
and [rt;_2 + (1 — 7)t;—1, ti—1], and combine the second interval with [t;_;, t;]. It is
easy to check that (&7, §7, t7) is feasible for QP(|P|) and has one less zero length
interval than (9, 9, £). Applying the same process repeatedly, we can eliminate all
the zero length intervals in solution (4, §, f).

Let (¥", ", ") be the resulting solution and let @ be the resulting partition.
Hence (77, 7, t7) is feasible for QP(|@|). From this solution, we can construct a
feasible solution for DP(Q) (and thus for (SCSCLP)) by using (3.3). However, as 7
tends to zero, the corresponding feasible solution to D P(P) is unbounded from above
(since the denominator in (3.3) goes to zero but the numerator is bounded away from
zero). Thus u(t) in (SCSCLP) is unbounded and this creates a contradiction.

O

We remark that Lemma 3.1 implies that if u(t) is bounded and E is an identity
matrix (e.g., a bounded and feasible (SCLP)), then §(t;—1) = §(t;) whenever ¢;_; = ;.
In general, when (3.5) holds, it is possible that §(¢;_;) # 9(%;) even if t;_; = ¢;. If in
addition to (3.5), §(ti—1) = y(t;) for some 7 such that ¢;_; = t;, then we can eliminate
the zero length interval [t;_;, #;] from (#, §, f) while maintaining the feasibility and
solution value of the sclution. This fact will be used later in Section 3.4 to remove
redundant intervals.

In general, u(t) may not be bounded in a feasible solution to (SCSCLP). It is pos-
sible that there is no feasible solution to (SCSCLP) that is optimal for (SCSCLP).
This perhaps is the key difficulty in establishing the absence of a duality gap between
(SCSCLP) and (SCSCLP*) by conventional methods. Hence, we have the following
relationship between (SCSCLP) and QP(|P|).

Lemma 3.2 Given any feasible solution (9, i, t) to QP(|P|), there exists a series
of feasible solutions (i*, §*, t*) to QP(|P|) that satisfies (3.4) and whose solution
value becomes arbitrarily close to that of (0, §, t) as k tends to infinity.

Proof By using the same procedure used to prove Lemma 3.1, we can construct a
solution (47, §", ) which is feasible to QP(|Q|) for some partition @ and satisfies
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(3.4). It is easily verified that the solution value of (¢", 7", t7) to QP(|Q|) becomes
arbitrarily close to that of (#, 7, f) as T goes to zero. a

In fact, we can have t; # t;,., and t;_; # t;_» whenever t; = t;_; in a local optimum
for QP(IP]). The existence of o(t;) # 0 but t; = t;_; indicates the presence of the
Dirac  function in u(t) at time ;.

A direct consequence of Lemma 3.2 is V((SCSCLP)) < V(QP(|P])) for all P.
This fact enables us to solve (SCSCLP) through solving QP(|P|) for a series of
partitions. We note that V(QP(|P|)) = V(SCSCLP) does not imply there is a
feasible solution for (SCSCLP), whose solution value is equal to V(QP|P|), due to
the possible presence of zero length intervals in P.

3.3 Finding a KKT Point for QP(|P|)

We do not need to solve the nonconvex quadratic program QP(|P|) to optimality,
as we will see in Section 3.6. We only need to compute a series of KKT points
(or equivalently, stationary points) of a set of quadratic programs. In this section,
we examine several nonlinear programming techniques for finding a KKT point of a
quadratic program.

3.3.1 The Frank-Wolfe Method

There is a well developed algorithm called the Frank-Wolfe method (otherwise known
as the conditional gradient method) for solving quadratic programming problems with

polyhedral constraints. It is often used to calculate a KKT point for the following
problem:

(NLP) minimize 6(z)
subject to € X,

where X is the following polyhedral set

X={z|Awz=0b fori=1tom;Aiz>b; fori=m+1ltom+p} (3.6)
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and 6(-) is the following quadratic function:
0(z) = %m’M:c +q'z,

and M is a symmetric matrix.

Given a feasible solution z € X, the first order necessary conditions for z to be
locally optimal for problem (NLP) are that there exists 7 = (my, ---, Tm4p) such
that

m+p
Vo(z) = Y mdi
i=1

m > 0 fori=m+1tom+p
Ti(Aiez —b;)) = 0 fori=m+1tom+p.

We call z € X a KKT point of the system (NLP) if it satisfies the above ccnditions.

The Frank-Wolfe method starts with an initial feasible solution z° and generates
a sequence of feasible points { zF : k =1,2,---, } satisfying 6(z*+!) < 8(z*) for all
k.

The Frank-Wolfe Method
At the k—th iteration we are given an zF € X (z° € X is given). Solve the following

linear program in the variable y*:

(SUBLP*) minimize (V6(z*))'y*
subject to =¥ +yF € X.

If (VO(z*))'y* = 0, the algorithm terminates; otherwise the algorithm does a line
search to find the minimum of 8(z* 4+ ay*) subject to 0 < o < 1. Let o* be the
minimum of this line search problem. Let z*¥*! = z* + ofy* and the algorithm
continues to the next iteration.

Note that 0 is a trivial feasible solution for (SUBLP*). Let y* be the optimal
solution of (SUBLP*) and so (VO(z¥))'y* < 0. If (V8(z*))'y* = 0, 0 is optimal for
(SUBLP*). Let 7 be the dual optimal solution for (SUBLP*). The complementary
slackness condition between (SUBLP*) and its dual translates exactly to the first
order necessary optimality condition of ¥ and we terminate the algorithm. Other-
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wise, we have (V8(z*))'y* < 0 and y* is a descent direction at z*. The line search
guarantees 0(z**!) < 6(z*) for all k.

The following convergence result for this method can be found in Murty [67] (see
also Martos [64]).

Theorem 3.1 Suppose X # (. If the method does not terminate after a finite number
of steps and the sequence { z* : k =1,2,---, } generated by the above method has
at least one limit point, then every limit point of this sequence is a KKT point of
(NLP).

We note that in order to solve (SUBLPF), we can use either the simplex method or
an interior point algorithm to compute y*. Our computational experiments indicate
that the convergence rate for the Frank-Wolfe method might be sublinear and thus
slow. Another drawback of directly applying the Frank-Wolfe method is that the
iterates it generates may have no limit point. For this reason, we can use another
more general and more sophisticated method called the matrix splitting algorithm
(see Luo and Tseng [62] and the references therein).

3.3.2 The Matrix Splitting Algorithin

The following is a matrix splitting algorithm for symmetric affine variational inequal-
ity (or AVI in short) problems. A symmetric AVI nroblem is to find an z* € X
satisfying

(Mz*+¢q)(z—-2*)>0 VzelX.

By replacing £ — z* in the above problem by y and following the arguments after the
problem (SUBLP*), we see that z* is a solution to the AVI problem if and only if it
is a KKT point for (NLP).

Let (B, C) be a splitting of M, i.e.,

M=B+C. (3.7)

The Matrix Splitting Algorithm for solving the AVI problem, based on splitting
(B, C) is the following:
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The Matrix Splitting Algcerithm
At the k-th iteration we are given an zF € X (z® € X is given), and we compute a

new iterate z¥*! in X satisfying
! = [g**! — BzF! — CzF — ], (3.8)

where [-]* is the projecticn mapping onto X.

Under the assumption that B and B — C are positive definite and 9(z) is bounded
from below on X, the following holds (see also Theorem 3.1 of Luo and Tseng [62]).

Theorem 3.2 If B and B — C are positive definite and 0(z) is bounded from below
on X, then the iterates generated by the Matriz Splitting Algorithm would converge
at least linearly to a KKT point to (NLP).

Note that when B is symmetric positive semidefinite, (3.8) can be solved as a
convex quadratic programming problem, see Bertsekas and Tsitsiklis [13]. The same
as in the Frank-Wolfe method, the solution value in (N LP) for the iterates generated
by the Matrix Splitting Algorithm decreases monotonically. Indeed, other methods
for obtaining a KKT point for (NLP) exist, such as those proposed by Ye [100]
and Kojima et. al. [55]. The solution values for the iterates of these two methods,
however, do not decrease monotonically.

3.4 Removing Redundant Intervals

After finding a KKT point of QP(|P|), it is possible that some zero length intervals
can be removed, as we noted following Lemma 3.1. It is also possible that some
adjacent intervals can be merged while maintaining the solution value. The reduction
of unnecessary control pieces in the solution is a key feature of the new algorithm.
This enables us to prove the convergence of the new algorithm without requiring the
norm of the maximal length interval in the discretization to tend to zero (cf. Pullan
[77] and Philpott and Craddock [74]).

To do this, let (9, g, f) be a feasible solution to QP(|P]) and, let [t;_;, ¢;] and
[ti, ti+1] be two adjacent intervals that reside on [t;, t.,], where ¢; and t,, are two
consecutive breakpoints in Df. We eliminate ¢; from P (or equivalently, combine
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[ti—1, t:] and [t;, tiy1]) and define a new feasible solution (3, 7, t) for QP(|P\ {t;}|)
as follows. Let ¥ be the vector formed by removing ©(t;+;) from ¥ and then replacing
9(t;) with 0(¢;) + 9(ti4+1); let § be the vector formed by removing g(¢;) from ¢ and let
t be the vector formed by removing ¢; from ¢.

Lemma 3.3 Let [t;-1, & and [ti, tiy1] be two adjacent intervals that reside on
[, tm], where t; and t,, are two consecutive breakpoints in DF. If

(tiv1 — 8)O(t:) e(tima+) + (g1 — t3)(tim1)'g(tica+) + (& — tic))G(it1) g(tica+)
< (8 = tic)0(tipr) é(ica+) + (Lip — tiz1)7(t:) 9(Eims +), (3.9)

then we can combine [t;_;, t;] and [t;, tis1] while maintaining the feasibility and the
solution value of a feasible solution to QP(|P)).

Proof Consider the difference between the solution value of (9, §, t) and that of

the solution with ¢; removed from the partition P. After some simplification, we see

that the new solution has a smaller solution value if and only if (3.9) holds. a
A direct corollary to Lemma 3.3 is the following.

Corollary 3.1 Lett; and t,, be two consecutive breakpoints in Df. We can combine
adjacent zero length intervals in [t,, t,,] and maintain the feasibility and the solution
value of a feasible solution to QP(|P|).

Proof Let [t;_y, t;] and [t;, ti11] be two adjacent zero length intervals that reside
on [t;, tm]. Since t;_; = t; = ti41, (3.9) is trivially satisfied. By Lemma 3.3, we can
combine [t;_;, t;] and [t;, t;41] and maintain the feasibility and solution value of the
feasible solution to QP(|P}). a

By Corollary 3.1, we can combine adjacent zero length intervals. The following
lemma implies that all the zero length intervals except those at the breakpoints in
Df can be eliminated.

Lemma 3.4 Let [t;_;, t;] be a zero length interval that resides on [t;, t.], where t;
and t,, are two consecutive breakpoints in Df. Suppose [t;_2, ti_1] and [t;, tiy1] are
two positive length intervals that also reside on [t;, t,,]. We can either

1. combine [t;_2, ti_y] and [ti_y, t;] or
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2. combine [t;_1, t;] and [t;, tiyi]

while maintaining the feasibility and the solution value of the feasible solution to

QP(|P]).

Proof Since t;_; = t;, by Lemma 3.3, we can combine {¢;—2, t;—;] and [t;_;, t,] if
the following relation holds:

(tim1 — tic2)P(t:) 9(ti2+) < (tim1 — tic2)(0(t:) etica+) + G(tiz1) g(tic2+)).  (3.10)

By Lemma 3.3 again, we can combine [t;_;, ¢;] and [t;, t;41] if the following relation
holds:

(tirr — t)P(t:) g(ti+) > (tipr — ) (0(8:) e(ti+) + §(tiz1) g(ti+))- (3.11)

By assumption, we have t;;; —t; > 0 and ¢;_; — t;_2 > 0. By the linearity of c(¢) and
the constancy of g(t) on [t;, ], we have

g(ti_2+) = g(t,-+), and ¢(ti—o+) = é(tH—).

So either (3.10) or (3.11) is true. This proves the lemma. o
Now we propose the following procedure for removing redundant intervals on
[, tm], where t; and t,, are two consecutive breakpoints in Df .

Procedure PURIFY

1. Repeatedly combine two adjacent intervals [t;—;,t;] and [t;,ti41] in [t;, tn] if
(3.9) is satisfied.

When more than one pair of adjacent intervals satisfy (3.9), we can combine them
in an arbitrary order, one pair at a time. Let P be the resulting partition of [0, 7T
after we apply the above procedure to P for ali consecutive breakpoints in Df. We
call P a purified partition of [0, T]. Note that the remaining zero length intervals are
located at the breakpoints in Df and there are at most 2|Df| zero length intervals
in P.
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3.5 Improving a Nonoptimal Solution

One major step of the new algorithm is to calculate a KKT point of the system
QP(|Pj) for some partition P of [0, T)]. However, the problem QP(|P|) is usually
nonconvex. To obtain a global optimal solution for (SCSCLP), we must be able to
improve a solution that is not globally optimal for (SCSCLP). In this section, we
give descent directions for the solution that is not globally optimal for (SCSCLP).
To do so, we first introduce a new discrete approximation for (SCSCLP) which is
closely related to the dual problem (SCSCLP*). From this new approximation, we
derive a criterion thai detects whether a solution is globally optimal for (SCSCLP).
If this criterion is not satistied, we give a descent direction for the current solution
and thus improve the solution value. We show that instead of using the direction
constructed in Section 3.5.3, an algorithm for (SCSCLP) can also use the Frank-
Wolfe method or the Matrix Splitting Algorithm to find a descent direction. We also
show the first iterate of the Frank-Wolfe method provides an upper bound on the
current duality gap.

3.5.1 A New Discrete Approximation

For partition P = {tg,---,tp}, we let P' = {to, foth 4y, -, 'Jl%!ﬁ,tp} be a refined
partition of P. Consider the following new discrete approximation to (SCSCLP), a
close variation of the second discretization in Pullan [77):

Lid t,—t'.— 7 A ) A ~ ti-— ti !
AP1(P) min 5 l(c(t.-_1+) u(t.._1+)+c(t,--)u(t,-—)+2y( ‘2+ ) g(t.-_1+))
i=1

s.t. Eij(to) = a(to),

t; — i " . . fti+tio i+
(-—-‘) Gilti=) + Ei(t:) — Ej (____-t +t 1) —a(t) —a (t + ‘) ,
2 2 2
1=1,--- Py
t; —t;i- . NATE T . t; +t;_
(——2 l) Ga(ti-1+) + Ey ( +2 l) —Ej(ti-1) =a ( +2 l) —a(ti-1),
t= 1" Dy

Hi(ti_1+) < b(ti_1+), i=1,---,p,
Hﬁ(ti—) S b(ti—'), 7 = ]_’ e P,
F!}(ti) < h(t,'), 7 :0,...,1)’
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ti +t;_ t: +t;- .
Fﬂ( +2 l)sh(t+2 l)’ z=1a"'7p,

a(ti=), @(tia+) 20, i=1,---,p.

Problem AP1(P) is closely related to the dual problem. The linear programming dual
of AP1(P) gives rise to feasible solutions for the dual problem (SCSCLP*). Thus
an optimal solution to AP1(P) contains the dual information. We will construct
a descent solution for (SCSCLP) based on a solution for AP(P), a closely related
linear program, to be defined shortly.

It is clear that the set of feasible solutions to AP1(P) is the same as the set of
feasible solutions to DP(P') if we identify 4(t;—) in AP1(P) with 12(("'—‘;5)-}-) in
DP(P'). There are two differences between DP(P') and AP1(P), both of which
reside in the objective function. First, instead of averaging the cost coefficients of
u(t) over each subinterval, the instantaneous values of the cost coefficients at the
original breakpoints of P are used. Second, instead of using the average values of
the state variable y(t) in each subinterval, the values of y(t) at the midpoint of each
subinterval of P are used. It is a fact that any feasible solution for DP(P) defines a
feasible solution for DP(P') and thus for AP1(P), and these two solutions have the
same solution value.

Similar to QP(|P|), we introduce ¢ to eliminate %, where

i —t ti —ti

Zatig+) and  B(ti—) = La(ti—). (3.12)

f)(t,’_1+) =

Now AP1(P) is transformed into the following linear program in ¢ and :

AP(P) min i (c(tg_1+)'1‘1(ti_1+) +c(t;i=)D(ti=) + (ti — tic1)y ( t*“; t‘)' g(t.-_1+))

i=1
s.t. Ej(te) = a(to),

Gilti=) + Bi(t) — E (t +ti (t.' +2t:'—l),
=1i,-
Giltir+) + By (L25) — By(ti) -a(t‘ ) —atti),

t=1,---,p,

t; —t;— .
- l)b(ti—l+)1 t=1,---,p,

Hi(ti1+) < (
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Hi(-) < (F) bm), i=1,0,
Fﬁ(tl) 5 h(tl)’ i=0a"'$pa
. [t +ti—l) (ti +ti—l) .
ATl o -1 ...
Fy( 2 > h 2 ) [ 11 » Dy

i,(ti_)a ﬁ(t:_l“l‘) 2 O' i = 1’ P ’p.

Similar to AP1(P) and DP(P’), AP(P) and QP(|P'|) have the same feasible solution
set if the partition in QP(|P']) is fixed to P’. We note that the actual value of
¥(to) does not affect the objective value of AP(P) as long as Ej(ts) = a(to) and
Fj(to) < h(tp) (which is indeed feasible by assumption). The dual problem for
AP(P) (after eliminating §(to)) can be written as

AP*(P) max 7“r(t0+)'a(t0)
b 0 ()0 (2512

-3 ( 1) (iti-1) + (t))'b(ti)
_*_; (E(t Yh(t:) + € ( -1+ ) h (ti—l2+ ti))
st c(ti=) - G'(ti—) + H'ﬂ(ti—) >0 i=1,---,p,

c(tioat) = Gt +) + H'ﬁ(ti-l"f') 20 z=1,---,p,
BY(=(ti-) + ltio4) + FE (SEEE) = (b = ti)g(ti1+)
7 = ]_’ <o, D,
E'(=#(ti+) + #(ti=)) + F'€(t;) =0 i=1,---,p—1,
E'(#(t,—)) + F'E(ty) =

i(ti=), At +) 20 i=1,---,p,

£(ty), g(t"‘” ) <0 i=1,---,p.

Similar to the second discretization in Pullan [77], the importance of AP(P) lies
in the fact that feasible solutions for its dual problem AP*(P) can be used either to
define a feasible solution for (SCSCLP*) with the same solution value or to define a
sequence of feasible solutions for (SCSCLP*) whose solution value converges to that
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of the original solution to AP*(P), as shown in the following theorem.

Theorem 3.3 Suppose that P is a purified partition of [0, T| (as defined at the end
of Section 3.4). Given any feasible solution (%, 7, €) to AP*(P), if (3.4) holds for P,
then there erists a feasible solution (w(t), n(t), £(¢)) to (SCSCLP*) whose solution
value equals that of (%, 7, é) Otherwise, there exists a series of feasible solutions
(7% (t), n*(t), €(t)) to (SCSCLP*) that is piecewise linear with partition P*, whose
solution value converges to that of (7, 7, £) and P* satisfies (3.4).

Proof When there are no zero length intervals in P (i.e., (3.4) holds), we let

ﬂﬂz{ZLuJEC“”)+ﬂ)),“t=%i=QL~nP*L
0, ift="T.

For t € (t;-1, t;), we let

éahn+— ‘@u»+ém»-

§(t)—t s .

We note that £(t) is monotonically increasing and right continuous (albeit discontin-
uous). Let m(¢) and n(t) be the piecewise linear extensions of # and 7 respectively.
(w(t), n(t), &(t)) is a feasible solution for (SCSCLP*) by virtue of the piecewise
linearity of the problem data. Now, let us check the relationship between the solution
value of the newly constructed solution of (SCSCLP*) and the original solution of
AP*(P). By Proposition A.2 in the Appendix, we have

T
- /0 a(t) dn(t)
= —a(t)n(t) |T + /th)' da(t)
= #(to+)'a(to) +Z( — alte- ‘)) /t m(t) dt

tt—l

= iltot)alte) + (i) + () (at) —a () (319)
=1

Since 7)(t) is piecewise linear and b(t) is piecewise constant with partition P, we
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have

/. t b(e)n(e) dt = (L) (itioa) + A blE) =1

So

~ [ bteyn(e) de = g(t‘ L) (iti-1H) + ()Y b(6-) (3.14)

Direct calculation gives
T !
- [ ey d(o)
T
= —h(tYE®) 1§+ [ €Y dn(®

= h(to)' (t)+2( z(tl" )) /:.E(t) dt

i=1

= hy s (£ (2 ‘) +ét)) +

=1
g ( (t:) —2h(ti-l)) (2]':2?:1 (é (tj +2tj—l) N é(tj)) +€“(ti +2ti—l) n 25(&'))
o)

So,

~ [ hey detey = 2‘1 (éft yhie) +£ (BEE) (t‘;;”t—)) S @)
Combining (3.13), (3.14) and (3.15), we see that (m(t), n(t), &(t)) has the same
solution value as (#, 7, é ). This proves the first half of the theorem.

Now, suppose (3.4) does not hold for P. Since P is a purified partition, by
Corollary 3.1 and Lemma 3.4, the zero length intervals in P can be located only at
the breakpoints in Df. So for any zero length interval [¢;_;, ;] that resides on [t;, tm],
where t; and t,, are two consecutive breakpoints in DY, either t;_; = t, or t; = t,.
Let 7 € (0, 1). We define a new solution (7", 7", £7) in the following way.
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Ift;_; =¢, welet

3T
by

-i

£
(i)
7t +)
7" (t )
(i +)

£ t-;r+t~;r—l
«(52)

€ ()

tr 417
E ( 5 +l)

If t; =t,,, welet

7 (E_y+)

i i
“(%52)

£ ()

- [tT_ +tT_2
Er( 1—1 1 )
2

55

ti—y
(1-7)ti + Ttina

= tipg

(1 = 7)a(ti=) + T (ti+)
(1 - 7)7w(t;+) + 77 (tiy1—)
(1 = 7)i(ti=) + miti+)
(1 = 7)A(ti+) + ritis1—)

(1 - ) (15E1) + rée)
(1 - ) + ré (EE)
(1-n)é (A,

ti2

= (1 — T)t,'_l + 7tia

t;
(1 - T)ff(t,’-l—) + Tfr(t,'_g-*-)

= (1 - T)ﬁ'(t,’_l-!‘) + Tﬁ'(t,'_l-‘)
= (1 —-7)f(ti-1—) + Ti(ti—z+)

(1 = 7)i(ti-1+) + 79(ti-1—)

(1-7)¢ (t La ) + 7€(ti-1)
(1 = 7)é(tics) + 7€ (—ti_l ; ti_z)
= (1-7)f (——————ti_l ; ti'z) )

For all the other quantities not defined in the above cases, we let £} = t;, 7" (£;—) =
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7‘i-(tj'")’ 7?1(_{;"') = 7‘i-(t.r"*')’ ﬁT(E;—) = ﬁ(tj_)9 ﬁf({;’*') = ﬁ(tj+)) ET(E;—I) = é(tj--l)
and & (i) = § (p=2).

Let P7 be the partition defined from 7. It is easy to check the feauibility of
(7, 7, £7) to AP*(P7). Since (7", 7", £7) converges to (7, 7, é) and £” converges
to £ as T tends to zero, we see that the solution value of (77, 77, €7) in AP*(PT)
converges to the solution value of (&, 7, £) in AP*(P). Furthermore, (3.4) holds for
P7. Applying the first half of the theorem to P7, we conclude that the theorem is
true for P. )

We may now summarize the relationship among the values of various discrete

approximations in the following theorem (see also Theorem 3.5 in Pullan [77]).

Theorem 3.4 For any partitions P and Q,
V(AP(P)) = V(AP*(P)) < V((SCSCLP*)) < V((SCSCLP)) < V(DP(Q)).

Proof By strong duality result for finite dimensional linear programming, the
value of the optimal solution to AP(P) is the value of the optimal solution to its
dual AP*(P). By Theorem 3.3, the solution value of this solution can be closely
approximated by a sequence of feasible solutions to (SCSCLP*). It then follows
that this value is a lower bound on V((SCSCLP*)), and thus a lower bound on
V((SCSCLP)) by Proposition 2.6. The final inequality follows from the definition
of DP(Q). 0

Corollary 3.2 For any partitions P and Q, if

V(AP(P)) = V(QP(|Q)),

then the optimal solution value of QP(|Q|) gives the optimal solution value to (SCSCLP).
In particular, if a solution (9, §, t) is feasible for QP(|Q|) and has the same cost

as the optimal value of AP(P), then (, 4, t) gives the optimal solution value for
(SCSCLP) which can be closely approzimated by a sequence of feasible solutions to
(SCSCLP).

Proof By Lemma 3.2, the solution value of any feasible solution to QP(|@|) is an
upper bound on V((SCSCLP)), the result follows directly from Theorem 3.4. O
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3.5.2 The Doubling of Breakpoints

Based on a new discrete approximation of (SCLP) similar to AP1(P), Pullan [77]
found a descent solution for (SCLP) (consequently, a descent direction can be con-
structed) by patching together the current solution and a solution that has a better
solution value in AP1(P) than the current solution. The new solution has a strictly
improved solution value in (SCLP), but usually has three times as many constant
control pieces as the original solution. In the following, we give a construction for a
feasible solution to (SCSCLP) that produces, at most, approximately twice as many
breakpoints as the original feasible solution.
Let P be a partition of [0, T}, and define a new partition as follows:

P: {tO)tﬂatlath...1ti’tivti7"'1tp)tp}1

where each breakpoint in D? has two duplicates and all the other breakpoints have
only one duplicate. Intuitively, we have placed a zero length interval at the beginning
of every breakpoint of P and put a zero length interval at the end of each breakpoint
in DP. Under this configuration, the set of intervals in P is the union of the intervals
in P and a set of zero length intervals. We let £; denote the i+ 1st elements in P. DP
is the set of breakpoints in P that correspond to the breakpoints in D¥. For the i-th
interval (i.e., [t;-1, t;]) in P, we have a corresponding interval [{;_;, ;] in P, where
tj—1 = t;-y and t; = t;. We call this interval in P an old interval. For all the other
intervals in P, we call them new intervals. Note that all the new intervals have zero
length but not vice versa.

Given a solution (4, §, ) to QP(|P|), we first construct a feasible solution (3, §, f)
to QP(|P|) and then show a descent direction for this solution in QP(|P]), although
we need not use the same direction in the new algorithm as the one constructed
in the proof. This solution has the same solution value in QP(|P|) as the current
solution in QP(|P|) and has approximately twice as many intervals, fewer than the
one constructed by Pullan [77].

Let (9, §, £) be a feasible solution for QP(|P|). For the i-th interval in P, if it is
an old interval, we let interval j be the corresponding interval in P and set

o(t:) =9(t;), (&) = §(t;). (3.16)
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We let 4(f;) = 0 if interval i in P is a new interval and let §(£;) = §(¢;), where j is the
interval in P that corresponds to the closest old interval in P to the left of [t;_;, t]
(with the convention that §(t;) = y(to) and (o) = y(to))-

It is easy to verify that (9, 7, f) is feasible to QP(|P|) and has the same solution
value in QP(|P|) as (9, 9, t) in QP(|P]).

3.5.3 A Descent Direction

Let ®(v, y,t) be the solution value in AP(P) for a feasible solution (v, y, t) to AP(P)
and let ¥(v,y,t) be the solution value in QP(|P|) for a feasible solution (v, y, t) for
QP(|P]). According to Corollary 3.2, a feasible solution (9, #, t) to QP(|P|) gives
the optimal solution value of (SCSCLP) if the optimal solution to AP(P) has an
equal or larger solution vaiue. If so, we can stop the algorithm. Otherwise, there
exists (7, §, t) feasible for AP(P) and has a strictly smaller solution value in AP(P),
i.e., we have

5% ®(5,5,1) - ¥(s, 3, £) <0. (3.17)

Note that |4] is an upper bound on the duality gap between (SCSCLP) and (SCSCLP*).

Let € € [0, 1]. For every interval [t;_;, t], we define

ti —ti_1)€
¢ = %

We define a new partition P¢ of [0, T as follows.
def
P {to,to+ €1,ty — €1, + €2, b — €y biy i + ity ot — €y}

where the breakpoint ¢; in P\ Df is replaced by two elements ¢; —¢; and t; + €41, for
breakpoint ¢; in DP, we add two elements t; —¢; and t; + €;+1 and we add g + €; and
t, — €p for ¢y and t, respectively. We define the vector t¢ from P¢ by mapping t¢ to
the 7 + 1st element in P<. We construct a descent solution (v¢, y¢, t¢) with partition
P< as follows.

When P does not have any zero length intervals, let u(t), 4(¢) and @(t) be the
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piecewise constant extension of %, & and % respectively, where # is defined from ¥ by

B(ti1+)
ti—ticy’

u(ti—)

u(ti—) = 2t- ~ i1
1 -

'ﬁ(ti_r") =2

i is defined from 9 by (3.3) and 1 is defined as

1.'3(t,'_1+) + ﬁ(ti—')
t; —tia .

u(tio+) =

We construct the new control by patching together (t), @(t) and %(t) as follows

u(t), t€fticy, tici+e&) Ulti—e, ), ti € DP
ut), tE€[tp-1, tp-1+€) Uty — €, Lol

u(t), t€ [timy +e€, ti—€),

u(t), otherwise.

ut(t) = (3.18)

Having constructed the control, the construction of the states for (SCLP) is straight
forward. We will see how this generalize to (SCSCLP) shortly. Our construction of
a descent solution (v¢, ¥, t¢) for (9, §, £) is illustrated in Figure 3-2.

However, if t;_; = t; for some %, the u variables in the previous paragraph are not
properiy defined. Fortunately, we can bypass this difficulty by working on v variables.
We define v¢ as follows. Let t; and t,, be two consecutive breakpoints in Df. Let
[t: + €1, tiy1 — €i1] and [tip1 — €41, tiz1 + €i42] be two intervals that reside on
[ti, tw]. If t§ is the breakpoint in P¢ that is mapped to t;4; — €41, We let

v(t5) = (1 —€)d(tivs)
V(t54) = €(B(tir1—) + 0(tipat)). (3.19)

If ¢5 is the breakpoint in P¢ that is mapped to ¢, we let
v¥(t541) = ev(ti+). (3.20)
If ¢ is the breakpoint in P¢ that is mapped to ¢, we let

V() = €B(tm—). (3.21)
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= b
i‘(t) Ly +ey, time
u(t
A( ) LR ]
u(t) Lias
T Lier = €142
— bir =&y
u(t) ti
1.y tE
() e
; 1 "€
A 'm-'l-em-l
ﬁ(t) 'nvol
‘m_l+Em
u(t)
~ Im—Ep
u(t) ,

Figure 3-2: The construction of a descent solution
where ¢t; and t,, are two consecutive breakpoints in D;.

We define y° in three different cases as follows. For the breakpoint ¢; in P* that
is mapped to t;_; + ¢;, we let

y(t5) = (1= iti-s) + e (2. (3.22)

For the breakpoint t; in P¢ that is mapped to ¢; — ¢;, we let

€/ a6 . =t +ti-
vt = (1 - it) + € (A1) (3.23)
For the breakpoint t§ in P¢ that is mapped to t;, we let
Y (t5) = (1 — €)g(t:) + ey (ts). (3.24)

When e is small, (v¢, 3¢, t¢) is a descent solution as shown in the following theorem.
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Theorem 3.5 If (3.17) holds, then (v¢, y, i) is a feasible solution to QP(|P|) and
‘I’('Uc: ye’ te) - \I’(ﬂv Y, f) =€ — 0(6)’

where § is defined in (3.17). For € small enough, (v, y¢, t¢) has a strictly smaller
solution value than (o, ¥, t).

Proof The feasibility of (v¢, 3¢, t¢) easily follows.
By definition, we have

p

Vs, 5D =¥, 3, ) = 3 ot () + z

i=1

“L(G(t:) + (tio1)) g (tia+),

|Pe-1 1Pel-1 €

Vo, 1) = Y (SR () + z B b ye(e) + (1)) gty 4.

i=l1
Let t; and ¢, be two consecutive breakpoints in Df and let tf and t5, be the
corresponding breakpoints in Df*. We have

S anye(ithty - 5~ oty

i=l+1 i=l+1 2
= Y oo EE) - 3 (1 - gyt
i=i+1 i=l+1
m-—1
> €@tk + (1) elts + ) -
i=l+1
{trtYelti + ) = Bl(tn—Yeltm — )
- il"j e(d(t:) (% +t*‘ L) — (5(ti1+) cltir+) + 5(ti=Ye(ti=))) + ole). (3.25)
i=l+1
and
> B0 + it attt) - 5 EEER ) + )0t
i=l+ i=l+1

= 3 EEE ) + (teen) o(tir) -
s=l+1
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m

> (1= 25 (- @) + itir)

i=l+1

+
i € +2€i+l (2(1 Oilt:) +€( (t +2t,_ )+17(£%+ti)))’g(ti_l+) ~

v
1 (201 - gtu) + e (30 + 7 (251)) ) gtert) -
- % (20 - itm) + ¢ (7em) + 7 (=552 ) gltm-)

- 5"; B (0) + 9t gt ) -
z;l(t —tiy)e y(t t+ bt ) I(tir ) + o(e). (3.26)

Summing up (3.25) and (3.26) over all pairs of consecutive breakpoints in D,, we
have
\I’(vc’ yc, te) - ‘I’(l—’) gi i)
= \Il(vc’ ye, te) —‘I’(ﬁ, 3}1 E)

= i e(D(tim1+) c(tioi+) + o(ti—)ce(ti—) — ﬁ(ti)'c(t + bt )) +

3= (6= o0 ("1 ater) - B0 + i ol + o)
= (®6,5.0) - V05, 4, B) + (0
= €+ o(e) (3.27)

So, when e is small enough, (v¢, y¢, t¢) is a strictly improved feasible solution to

QP(|P|).
O

Interestingly, the new solution (v¢, y¢, t¢) gives a descent direction for (¥, 7, t) in
QP(|P|). This solution can also be used to show that the first Frank-Wolfe iterate for
(9, ¥, t) provides an upper bound on the current duality gap, as we now illustrate.

Let [t;, t,,] be two consecutive breakpoints in Df. We define a new partition P as
follows. The set of breakpoints of P that resides on [ty tm)is {t, “—’L—;‘—*— M"—- ooy tmby

i.e., the union of {t;, t,,} with the set of midpoints of the intervals in P, and each mid-
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point appears exactly twice. We construct (7, 7, t) as follows. The set of breakpoints
of (3, 7, t) is P. Let

U(tig1—) + U(tip1+); if the j-th interval of 1:3 is [t;+;a+1’ t-’+1-§t.’+2]
5 = v(ti+); if the j-th interval of P is [t, -—t-"+;‘ 1]
’ U(tm—); if the j-th interval of P is [‘—""‘zﬁ, tm]
0; otherwise,

#(t0) = y(to), and

37(—*—*—-" 1t ’) if the j-th interval of P is [fthia "“;"“]

- = (tittis i -th i P is [t, ttin
3(E) = i,( ) if the j-th interval of I__J is [il, 2 ]
(tm) if the j-th interval of P is [f==tttm ¢ ]
(t' Lielthi ), if the j-th interval of P is [———*——“*’;‘ L -—"’—t"'";‘ L].

Theorem 3.6 Fore € [0, 1], let t¢ be defined by P¢. Let (v, y¢, t€) be the solution
to QP(|P|) defined by (3.19)-(3.24), we have

v = ev+(1—€)v

€

¥ = eg+(1-67F
t¢ = et+(1—¢)i

and (9, §, t) is feasible for QP(|P|).

Proof This is the direct consequence of the definition of (v¢, y¢, t¢) and (3, 7, ?).
O

If we pick (3,7, ), introduced in (3.17), an optimal solution for AP(P), by The-
orem 3.4, |4] is an upper bound on the current duality gap. By (3.27) and Theorem
3.6, the negative objective value of the first Frank-Wolfe iterate (cf. (SUBLP¥)) for
(2, g, t) gives an upper bound on the current duality gap.
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3.6 A New Algorithm for (SCSCLP)

In this section, we give a generic Successive Quadratic Programming algorithm for
problem (SCSCLP).
Algorithm A (E, F, G, H, a(t), b(t), c(t), g(t), h(t), T, B).

k = 0. Let d be the current duality gap initially set to infinity.

Let (v*, y*, t*) be a feasible solution to QP(|P°|). Let P° be a partition on [0, T such
that a(t), c(t) and h(t) are piecewise linear with P® and b(t) and g(t) are piecewise
constant with P°,

while d > 3 do

1. Calculate a KKT point of QP(|P¥|) which has an equal or better solution value
than (v, y*, t*).

2. Recursively remove redundant intervals in P* as follows.
Apply Procedure PURIFY to all pairs of consecutive breakpoints in DY *. Let
(7%, #*, t*) be the resulting solution and let Q be the resulting partition. If
(%, §*, t*) is not a KKT point of QP(|Q]), let (vF, y*, t*) = (&*, 7*, #*) and
Pk = Q and go to step 1. Otherwise, we denote the resulting purified partition
as Pk = {tg, t1,---,1,}.

3. Double the number of intervals. Define P*¥+! as

Pk+l = {th t0$ tls tl’ Y ti'p ti! ti’ STy tp1 tp} )

where each breakpoint in D has two duplicates and all the other breakpoints
have only one duplicate. Construct a feasible solution (#%*!, g**+!, t*+1) for
QP(|P**1|) as in (3.16).

4. Calculate the current duality gap d. If the solution value of (7%, j*, t*) is the
same as the optimal value of AP(P¥), stop the algorithm. Otherwise

5. Get a strictly improved solution (v*+!, yk+1  ¢k+1) from (o%*1, gk+1, §*+1) for
QP(|P*1)).

6. Let k =k +1.

end while
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Remarks:

1. In step 1 of Algorithm A, we can use the Frank-Wolfe method or general matrix
splitting algorithms to compute a KKT point of QP(|P¥|).

2. Algorithm A will not loop between step 1 and step 2 forever, because every
time Algorithm A goes from step 2 to step 1, the cardinality of P is reduced

at least by 1.

3. In step 4 of Algorithm A, we can let d = V(QP(|P*|)) — V(AP(P*)). We can
also let d be the negative objective value of the first Frank-Wolfe iterate for
(9, g, t) and so, instead of checking whether the solution value of (3%, i, t*) is
the same as the optimal value of 4P(P* ), we can check whether the objective
value of the first Frank-Wolfe iterate for (o, §, £) is zero.

4. In step 5 of Algorithm A, we can use the direction constructed in Section
3.5.3 (cf. (v, ¥, t¢)). We can also use the Frank-Wolfe method or general
matrix splitting algorithms to find a descent direction for (o5*1, yk+? gk+1),
By Theorem 3.5, we are guaranteed find a descent direction.

3.7 Convergence of the New Algorithm

The theory behind the new algorithm is the following. We can use the Frank-Wolfe
method or general matrix splitting algorithms to compute a series of KKT poiats
to a series of generally nonconvex quadratic programs. These KKT points have
nondecreasing solution values. By Corollary 3.2, we can detect whether a KKT point
gives an optimal solution to (SCSCLP). If it does, we terminate the algorithm. If
not, by Theorem 3.5, we can find a new solution with approximately twice as many
constant control pieces as the current solution but with a strictly improved cost.
Since there are only a finite number of different solution values for the KKT points of
every quadratic program constructed, and there is an upper bound on the size of the
quadratic programs we encounter (see more elaboration later), a finite convergence
result readily follows. Based on the primal solution, we can compute an optimal dual
solution for (SCSCLP*).
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Contrary to the convergence analysis of a variety of algorithms for (SCLP), we do
not need to let the norm of the maximal length interval in the discretization tend to
zero (as in Pullan [77]), we do not need the explicit knowledge of all the extreme points
of certain set of finite dimensional linear programs either (as in Anderson and Nash
[2]). Most importantly, we prove the absence of a duality gap result as a byproduct
of the new algcrithm, even when there is no optimal solution for (SCSCLP).

In the following, we give upper bounds on the cardinality of P*, the purified
partition in step 2 of Algorithm A. Since by Lemma 3.4 and Corollary 3.1, we know
the total number of zero length intervals in P* is at most 2|DP*|, we only need to
bound the number of positive length intervals in P*. We map each positive length
interval of P* to an extreme point of certain set of linear programs and then show
that the mapping is injective. Before doing so, we give some more notations and
several useful lemmas.

Let ¢, and ¢,, be two consecutive breakpoints in D{3 *. By definition, a(t), c(t) and
h(t) are linear and b(t) and g(t) are constant on [t;, ¢,). Let [t;_1, &:] and [f;, i1] be
two adjacent positive length intervals in partition P*, such that [£;_;, £;41] C [ti, tm)-
Let At; = t; — t;_; and At;y; = ti;; —t;. We have At; > 0 and At;,; > 0 by
assumption. Let (7%, 7*,#*) be the resulting solution in step 2 of Algorithm A. Let
J; be the set of indices of the constraints in F§*(¢;) < h(t;) that are binding. Let

..k g

k(T A

and (Eors)
~k(T . v ti+l

wt(ti+) = At

It is obvious that (@*(f;+), Qﬂﬁt_&)i%?"(ﬁl) is a feasible solution to the following linear

system:

ikt ) — 35 (¢t -
(SYSs)  Gik(it) + B (t'z)t,ﬂy 9~ ag

Hi*(t+) < b(t:)

§* (1) — 75 ()" P
(F Ati+l ) = h(t')
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a*(t+) > 0.

By introducing new variables, we can eliminate ﬂ‘-—&)‘%’k(ﬂ in (SY'S;,) and transform
(SYS;,) into a linear program in standard form as follows:

(SYS1,)  Gi*(t+) + E(wiy — w;) = a(k;)
Ha*(t+) + 25(84) = b(E:)
(F(wis1 —w)),, +z = h(t:)
£ >0, wiyy > 0,w; > 0,5 (E4) > 0, 25(t+) > 0.

Every extreme point of the new linear program (SY S1,,) defines a unique feasible
solution to (SY'S;,), which is called a generalized extreme point for (SYS;,). Every
extreme ray of the new linear program (SY S1,,) defines a unique ray to (SY'S;,),
which is called a generalized extreme ray for (SY'S,,). Since (SY S1,,) is a feasible
finite dimensional linear program in standard form, the resolution theorem applies.
After translating the result into variables in (SYS,,), we have the following analog
of the resolution theorem for (SY'S;,).

Lemma 3.5 Every feasible solution of (SY S;,) can be written as the sum of a convez
combination of the generalized extreme points of (SY'S;,) and a linear combination
(with nonnegative coefficients) of generalized extreme rays to (SY Sy,).

By Lemma 3.5, we have

k(3)
ﬁk(fi-i-) — Z/\(t) (1 _*_Zu(:) (:)’

k(-) (')

k(7 kT
§ (ti) —9°(t:) ) (;) () (:)
A = Y s +Z# (3.28)

j=1

for some positive k) > 1, where /\g-i) > 0, 2"2)1 A(') = 1 ,u(') > 0, (5), 3('))
are generalized extreme points to system (SY'S;,) and ( T; ), ())s are generahzed
extreme rays to system (SYS;). WLOG, assume that we have sorted (sJ , S')) in
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the following order
JAY () _ ¢ 15(9) > o(F.Y W _ 14(9) f 1 i 3.99
C( l) SJ g( l+) SJ = C(t,) 3_1+1 g(tl+) s]+l or all j. ( ‘ )

We have the following result on (%, 7*, t*).

Lemma 3.6
(T, i, ) < Uk, oF, tF).

Proof Since Procedure A does not increase the solution value of the current solution,
the result immediately follows. a

Lemma 3.7 Suppose (3.28) and (3.29) hold for i*(t;_y+) and @*(t;+). Furthermore,
suppose [t;_y1, 1;] is not the first positive length interval that resides on [t;, t,,), and
we have

&(E:)'st ™V — glte)s ) > ef:)'s) ~ g(ti+)'se)
for the two adjacent positive length intervals [t;_,, ;] and [t;, £11] that reside on
[th tm]-

Proof We first show that
é(E)r — g(t+)7D <0 (3.30)

for every i < ¢( without assuming that [f;_;, #;] is not the first positive length
interval that resides on [t;, t,].
Let 7 € (0, 1). Suppose

#*(G4) = Tus + (1 — T)uy

and -
§ (k1) — 75 ()
Aty
where (u1, y1) and (u2, y2) are two feasible solutions for (SY Sj,). Let + be the largest
scalar in (0, 7At;] such that F(§*(%) + vy1) < h(f;). Such « exists by virtue of
the feasibility of (u1, 1) and (us, y2) to system (SY'S;,). For any At € (0, 7), we
consider the following perturbation of (i*, 3*, t*), as shown in Figure 3-3.

=19 + (1 - T)yz,
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Figure 3-3: Perturbation of the solution

o L+ At, ifj=i,

i t;, otherwise

) ok (E) + AL, ifj =1,
7)) = ) -uA, =i+,

o (¢;), otherwise

) = {"(t)+y At, ifj =i,
\J gk(tJ)r

We can easily check the feasibility of (7*

otherwise

i*, t*) to QP(|P|). So

Zﬁ'(t)( +t‘) Z“"(t)( 1+t)

ij=1

_ (C(ti—1)+c(t$)) 5(E) + (C(te)+c( i+1)) (E,,) -

2 2

(Ll el ) - (ALt i) e
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= (C({;—);@)’ﬁ"(t}) + (E@)—g—c@),ﬁk(ﬁﬂ) -

Lt + At )ity
A R A O
At“‘*‘( (Bt k) - efEul?) (3.31)
Also,

S BBt (6 4 4 (60) o ) -

ft' (G4 (E) + 7 ) e t)

j=1
= Bty 4 g ) o) + B ) 5 @) 0l -

LG E) + ) 0B 4) — I ) + 7 ) 9(6t) -
- &4 +At( (&) + 75 (fior) + Atwn) g (i) +

AtH—l

Blist = B (g4 (Fopn) + (6 + Aty Vg Eit)

~ ~k/T ! (7 At: ~krT ~k( T\ (T
—2—(11 (@) + 7" (im1)) g(fia+) — 2“ (7 Eirr) + 75 () 9(ti+)
A, oo - T
= T(yk(ti—l) =~ G (fir1) + (Fir1 — Git)pn) 9 (tit). (3.32)
Combiniag (3.31) and (3.32), we derive

w(@*, §*, t*) - (", i, )

_ AtAt (C(t )ﬁk(t ) _ g(t +)1y ({;) ;Zk(ti—l) (C(t )l (1) yig(tri'))) +
~k(f. k(. _ .
AtAtH.l (c( ) -k({i_i_) _ g(f,'+)'y (t:+A)t:+ly (tz) _ (C.(t.')lugl) _ y{g(t1+)))

(3.33)

By the definition of a KKT point and the discussion following it in Section 3.3, a
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feasible solution to QP(|P|) is a KKT point if and only if there is no feasible descent
direction for this solution. Hence

v(s*, §*, i*) — Wk, 7, t*) > 0. (3.34)

Thus, (3.33) implies that é(f,-)’ug") — y19(t+) is uniformly bounded from above.
For any j < q(¢) and any € € (0,1), we have

] O
iE+) = PP + AJ(,) )+
LU\ A1=¢ o W
i My RO
1-ex? G T Ty ——’—
‘ )(Z oTY T ap T T ap
and
G (Bi41) — T*(E)
At
(1) ( (9 ”(i) )
_ i),-(i —(4
= €)' (5] +/\(.)J)+
L[R50 Al (1 —€) q® M(')
l_eA(') J -(‘)_*_ 1 (l)+ J —(') .
( 1 )(12_22 T e/\(') Sj 1"' A(') j=§¢1 6)‘(.) Tj

. ()
By letting u; = s(') + f’n Y Y= s( D4 —J;-y‘(' and letting € tend to zero, the above

boundedness result on c(t )uy @ ylg(t,+) implies (3.30). Since [t;—1, t;] is not the
first positive length interval that resides on [t;, t,,), we can similarly have

é(fi)'rf-i'l) - g(t1+)'1"§~i_l) <0, forallj.
These together with (3.28) and (3.29) give

t— 1 =(i— TN~k T ~ ,~kt~,'—~k{,'_
Y — glerbYSE 2 i oo t) — gliry LTG5
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Similarly,

5 (1) — §5() .

e(di)'sy? — gltrt)'s 2 eB) T Eik) — g(Bit) =5 —
1

(3.36)

Since P is a purified partition, by Procedure A, the opposite of (3.9) holds which
is equivalent to

) — oty T T)  ayang) — gy V) — )
(3.37)

Now, suppose
e(E:)st " — g(ti+YsiT < el)'st? - glti+)'sy.
By (3.35) and (3.37), we have

VT (Ei41) — 75 ()
Aty

é(t;) a* (8+) — g(ti+) < &E)s — gti+) s

and

k(T - T () — (- e (i .
o) @ (Frt) — 9ty T T oy g 4ysf)

Let u; = s(li) and y; = 5V, and the above relationship together with (3.33) gives
(o*, g, £7) — ¥, §7F, i) <0,

which contradicts the fact that (7%, §*, t*) is a KKT point for QP(|P¥]) (cf. (3.34)).
O

Since ¢(t;) is a constant vector over [ti, tm], as a consequence of Lemma 3.7,
every nonzero length interval that resides on [¢;, t,,] (except the first nonzero length
interval) corresponds to a different generalized extreme point of some system (SY Sy,).
Since only a finite number of different systems (SY'Sj,) exist, and for each (SYS;,)
there are a finite number of generalized extreme points, we see there are only a finite
number of nonzero length intervals that reside on [t;, ¢;,]. Since the number of zero
length intervals that reside on [t;, t,,] is at most 2 (one on each end of [t;, t,]),
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there are also a finite numoer of breakpoints in (¢, ¢,,]. Thus we have the following
corollary.

Corollary 3.3 There are a finite number of breakpoints in P*.

There are only a finite number of different solution values for all the KKT points
of QP(|P]), as shown in the following lemma.

Lemma 3.8 The KKT points for QP(|P|) is the union of a finite number of con-
nected sets. Quver each connected component of KKT points of @QP(|P|), the objective
value is a constant. Furthermore, the number of connected sets is bounded from above
by a number that depends on |P| only.

Proof It is easily seen that a solution to @P(|P|) is a KKT point of QP(|P|) if and

only if it is a solution to a feasible symmetric affine variational inequality problem

whose dimension depends only on [P| (cf. Section 3.3). The lemma now follows

directly from Lemma 3.1 of Luo and Tseng [62]. O
We now present the main convergence result of this chapter.

Theorem 3.7 Algorithm A will terminate after a finite number of iterations.

Proof Suppose Algorithm A does not terminate after finite number of iterations.
It is guaranteed by Theorem 3.5 that step 4 of Algorithm A would produce a strictly
improved solution, and thus every iteration of Algorithm A would give a KKT point
of certain QP(|P|) that has strictly betier solution value. By Lemma 3.8, the KKT
points generated by QP(|P|) should lie on a different connected KKT points compo-
nent of QP(|P|) for every |P|. This means that the cardinality of P is unbounded
and contradicts Corollary 3.3. ]

3.8 New Structural and Duality Results

As a result of Algorithm 4 and Theorem 3.7, we have the following new structural
result for (SCSCLP).

Theorem 3.8 Algorithin A terminates with a solution to QP(|P|) for some P that
gives the optimal objective value of (SCSCLP) and can be closely approzimated by
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a series of piecewise constant controls for (SCSCLP). When the solution set for
(SCSCLP) is bounded and E is an identity matriz, Algorithm A terminates with
a piecewise constant optimal control with partition P such that t; # t;_; for all i.
Furthermore, over each interval [t;_y, ¢;), (u(ti+), ﬂ‘—tf:‘l)%‘(‘—‘l) is a conver combination
of the generalized extreme points of linear system (SY S;,), where J; is a subset of

{1,---,12,2}.

Proof The first part of the theorem is a direct consequence of Theorem 3.7. The
second part of the theorem follows from Lemma 3.5 and the remark following the

proof of Lemma 3.1. a
We also derive the following new duality result for (SCSCLP).

Theorem 3.9 There is no duality gap between (SCSCLP) and (SCSCLP*). There
always exists an optimal solution for (SCSCLP*) that is piecewise linear. Further-
more, there exists a bounded measurable optimel solution for (SCSCLP) if and only
if Algorithm A terminates with such a solution.

Proof The first part of the theorem is a direct consequence of Theorem 3.7.

Denote P* as the final purified partition when Algorithm A terminates. To prove
the second part of the theorem, we first show that the zero length interval in P* can
be eliminated in the dual problem AP*(P). Let [¢t;_;, t:] be a zero length interval
that resides on [t;, tm] where t; and t,, are two consecutive breakpoints in D", By
Lemma 3.4, the zero length intervals can be located only at the breakpoints in D{’ k
We assume t; = t,, (the case t;_; = t; can be treated similarly).

Let (7, 7, é) be an optimal solution for AP*(P*) and we construct a new solution
(#, 7, £) for AP*(P*) in the following way. Let (7, 7, £) equal (#, 7, £) except

’;"l'(ti_l'l') - 'fl‘(t,'_l—), fl’(t,'—) = ﬁ'(t,‘_.l—)
Aticit) = Ati-i=),  A(ti—) = #(ti-1—)
E’(ti—l + ti) ) E(tiy) =0

2
£t = é(ti_l; ti) + E(tict) + E(ts)

It is easy to check the feasibility of (7, 7, £). It is a fact that (7, 7, £) and (%, 7, £)
have the same solution value in AP*(P*). Let P be P*\ {t;_;}. By eliminating the
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elements 7 (t;—y —), A(ti_1+), (tic1—), A(tioy+), E(ti—1) and € (“;‘zﬁl) from (7, 7, £),
we can get a feasible solution (7, 7, £) for AP(P). Also, (#, 7, £) has the same
solution value as (%, 7, ).

By repeating this process, we can eliminate all the zero length intervals in P* and
define a feasible solution for AP*(P) from the resulting partition P. From this feasible
solution we can construct an optimal solution for (SCSCLP*) that is piecewise
linear. This proves the second part of the theorem.

One direction of the third part of the theorem is quite obvious. The other direc-
tion (i.e., if there exists a bounded ineasurable optimal solution for (SCSCLP), then
Algorithm A will find such a solution) can be shown as follows. Let the bounded mea-
surable solution (u(t), y(t)) be optimal for (SCSCLP). By the second part of the the-
orem, there always exists an optimal solution (7 (t), 7(t), &€(¢)) for (SCSCLP*) that
is piecewise linear with partition P (defined by removing all the zero length intervals
from PK). By Corollary 2.1, the complementary slackness condition (2.1) is satisfied.
Let u(t) be the piecewise constant extensions of u(to+), u(ti+), ---, u(tp_1+). Let
§(t) be the piecewise linear extension of y(to+), y(t1—) y(t1+), -+, y(tp-1+), y(tp—)-
The solution (#(t), §(t)) is a feasible solution for (SCSCLP) which together with
(m(t), n(t), &£(t)) satisfies (2.1). By Corollary 2.1 again, (#(t), g(t)) is optimal for
(SCSCLP). O



Chapter 4

Applications of Fluid Networks

Stochastic optimal control of queueing networks has many important applications in
communication and manufacturing. These problems are however, very difficult to
solve. Following the approach by Anderson [6], Hajek and Ogier [42], Chen and Yao
[20], this chapter analyzes the fluid flow approximation of several queueing control
problems, which include the single multiclass queueing control problem and the single
class tandem queueing control problem. We apply the theory of continuous linear
programming to these queueing control problems. We either give polynomial time
algorithms to solve the problem or indicate strong evidence about the existence of
such algorithms for the problem. We demonstrate strong ties between the solution of
fluid flow approximation and the optimal solution to the stochastic queueing control
models. We also investigate conditions under which a general class of fluid networks
is stabilizable. The chapter is structured as follows. In Section 4.1, we introduce the
concept of fluid networks. In Section 4.2, we analyze the fluid approximation of a
single multiclass queue first introduced by Klimov [54]. In Section 4.3, we consider
a single multiclass queue with convex separable quadratic cost. In Section 4.4, we
analyze the fluid approximation of the tandem queueing network and its variations.
In Section 4.5, we give simple necessary and sufficient conditions for the fluid networks
to be stabilizable.

76
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4.1 The Linear Fluid Networks

A Linear fluid network consists of a network of m stations connected by n nonempty
finite sets of links (routes), which we denote by L;, fori =1, ---, n. Welet L = U; L;
and assume L;NL; = @ for all i # j. There are n classes of customers (fluids, inventory
or traffic), one for every set L;. Customers of class i can use only the links in set L;
and can be served only at 2 specified station, which we denote by S(i). We denote the
set of all customer classes that are served at station j as C(j). We let b; be the rate at
which class i customers arrive at or depart from station S(i) depending on whether
b; is nonnegative. Among the customers going through link r € L;, a fraction pjr of
them become class j customers and go to station S(j), and the remaining fraction
1 — 3, pjr exit the network. A station can work on an arbitrary number of links
in L; simultaneously. For r € L;, we let variable u,(t) be the rate at which class i
customers go through link r. We require these rates satisfy 7 capacity constraints
Du(t) < ¢, where D is a o X n nonnegative matrix with no zero columns and ¢
is a 72 x 1 vector. Our objective is to find an optimal control policy (involving both
routing and sequencing decisions) that minimizes the cumulated cost of queueing over
a fixed time horizon [0, T]. We will also investigate the existence of controls that
can eventually drive all the queues in the network to zero or make the total queue
length stay bounded for bounded initial conditions. We require that the queue length
for each class of customers stay nonnegative. We will also discuss extensions of our
results for the situations permitting backloging.

Let variables z;(t), 7 = 1,---,n be the queue length of class i customers at time
t. We can formulate the problem as follows:

T
(FNET) minimize / w'z(t) dt
0

subject to z(t) = z(0) + /;(Bu(t) +b) dt (4.1)
Du(t) <c (4.2)
z(t) 20, u(t) 20 te€lo, T),

where z(0) > 0, & is a given vector, w is a given weight vector and B is an n x |L|
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matrix with

Pir, ifréglL;
B, =
{pir— 1, ifrel;

Note that (FNET) includes as a special case the fluid approximation of a Gen-
eralized Jackson Network (see Jackson [49]) when |L;] = 1 for all ¢ and D is an
identity matrix. It includes as a special case the continuous traffic control problem
in a communication network considered by Hajek and Ogier [42] when p;, are either
0 or 1 and D is an identity matrix. We can also show that the fluid networks in-
clude the fluid approximation for multiclass queueing networks considered in Chen
and Yao [20], when |L;| = 1, b is the arrival rate, c is the vector of all ones and D is
a block diagonal matrix, with each block a row vector of mean service times of the
customers served at the same workstation. The re-entrant line considered in Kumar
[56] is a multiclass queueing network with fixed routing, so (FNET) includes as a
special case the re-entrant lines as well. Chen and Mandelbaum [19], Chen [21], Dai
[27] and Chen [22] showed that a wide range of queueing networks would converge
(under appropriate time and space scaling) to fluid networks, providing theoretical
justifications for using fluid model as approximations for queueing networks. We note
that (FNET) is an SCLP.

4.2 The Klimov’s Problem

Consider the optimal control for the fluid flow approximation to the multiclass queue-
ing scheduling problem first introduced by Klimov [54]. As a queueing control prob-
lem, this problem can be modeled as a multi-armed bandit problem, and the optimal
control is known to be a priority index rule. The indices can be calculated through a
dual algorithm (see Bertsimas and Nino-Mora [15]). Chen and Yao in [20] considered
a myopic solution procedure for the fluid network. They showed that their algorithm
will produce the priority index rule that solves the Klimov’s problem (under the long
term average cost objective). However. to establish the optimality of their indices for
the fluid network, additional conditions had to be imposed (see [20] [Theorem. 4.1]).
In this section, we propose a control policy for the fluid Klimov’s problem. We show
that the policy is optimal for the fluid network and in addition, the policy produces
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the optimal index rule for the Klimov’s problem as well.

4.2.1 The Fluid Klimov’s Problem

The problem we consider is the following. There are n classes of customers arriving
at a single queue. After finishing service, a fraction p;; of class i customers change to
class j customers and the remaining fraction 1 — 3°; p;; exit the system. The arrival
rate of class ¢ customers is b; and the service rate of class 7 customers is al, The cost
per unit time for a class ¢ customer waiting in the queue is w;. The service facility
has to dynamically decide which job class, if any, to serve next in order to minimize
the average cost incurred per unit of time over the interval [0, T'), where the costs
are the waiting costs for the customers stuck in the queue. The probiem is shown in

Figure 4-1.

Pij
b — N 1
a;
]

3 az M

: 1—X Pij

b, |1
all

Figure 4-1: The Klimov’s problem

The problem can be formulated as follows:

T
(MBLP) minimize ‘[) w'z(t) dt
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subject to. a(t) = 2(0) + | *(Bu(t) + b) dt (4.3)
a'u(t) <1 (4.4)
z(t) >0, u(t) >0,

wherea > 0,b > 0, z(0) and T > 0 are given and fixed, B = A—1I, A is a substochastic
matrix, i.e., a square matrix with nonnegative entries and whose column sums are
less than or equal to ones. Here, I is an identity matrix.

By introducing dual variables m(t), n(t) for constraints (4.3) and (4.4) respectively,
we have the following dual problem

(MBLP*) mazimize /[;T(x(O) + bt)'m(t) dt — /OT n(t) dt

subject to _/;T B'n(t) dt +an(t) >0 (4.5)
m(t) < w (4.6)
n(t) > 0.

As a consequence of Proposition 2.4, we have

Corollary 4.1 Weak duality holds between (M BLP) and (M BLP*). Moreover, if

z(t)(w—m(t)) = 0 (4.7)
u(t) (an(t) + /tT B'n(t)dt) = 0 for all ¢ (4.8)
n(t)(a'u(t)—-1) = 0 for all ¢t (4.9)

hold, then strong duality holds between (M BLP) and (M BLP*).

Relations (4.7)-(4.9) are the complementary slackness conditions for (M BLP)
and (M BLP*).

4.2.2 Properties of Matrix B

Before proposing a control policy, we first give some properties of the matrix B. Some
of the results in this section can be found in standard linear algebra textbooks, such
as Seneta [85]. For completeness of the thesis, we include their proof.
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For any n dimensional vector z, we denote by z; the i-th coordinate of z, and, for
any nonempty subset @ C {1,---.n}, we use g and [z]g to denote the the vector
with components r;, i € Q (with z; arranged in the same order as in ).

Lemma 4.1 Let M be an n x m matriz, 1 < m < n. Assume that all the off-
diagonal elements of M are nonnegative, M is columnwise diagonally dominant in
the following sense:
~M;; > Y M; Vi<m.
i#]

We have
1) If M is of full column-rank, then the submatriz formed by eliminating rows from
m+ 1 ton is a full rank square matriz.
2) If M is not of full column-rank then there exists R # 0, R C {1,2,---,m} such
that

Z M,'j =0 Vj€EeR,

i€R
and

Z M;;=0 VjeR.

igR
Proof We prove the first part of the lemma by induction on the dimension m. If
m = 1, the result trivially holds. Suppose the result holds for m = k < n —1. We
will show the result holds for m = k + 1. If ¥;5400 Mij = 0 for all j < m, we are
all set. Suppose 3 ;5¢42 Mij > 0 for some j < m, we let My = My — AA%M,-]- for all
i <nand!#jandlet M;; = M;; for all i < n. The submatrix A of M formed
by eliminating from M column j and row J satisfies the induction hypothesis, so the
submatrix by eliminating from M rows from k+1 to n—1 is a full rank square matrix,
so is the matrix by eliminating from M rows from k + 2 to n. Thus the submatrix
by eliminating from M the rows from k + 2 to n is a full rank square matrix. This
completes the induction for the first part of the lemma.

We now prove the second part of the lemma. Since M is not of full column-rank,

the first m rows of M must be linearly dependent. So there exist a;, ag, -+, am
which are not identically zero such that

Y aM;;=0 Vj (4.10)

i<m



CHAPTER 4. APPLICATIONS OF FLUID NETWORKS 82

Let R={i| & = maxyox} and S = { i | ; = minga,}. If mingax > 0 then
max ax > 0. From (4.10) we see 3 ;,cp Mi; = 0, for all j € R and M;; = 0 for all
i€ Rand j € R. If ming o < 0, from (4.10) we see Y ;5 M;; =0, for all j € S and
Mi; =0foralli ¢ S and j €S. Obviously, R# 0, S #0, RC {1,2,---,m} and
S C {1,2,---,m} and therefore the result follows. a

Lemma 4.2 a) The determinant of B is nonpositive.
b) The adjoint matriz of B has non-positive entries.

¢) Furthermore, if the system Bz = b has a solution then it must have a nonpositive

solution given that b is a nonnegative vector.
The same results hold for B'.

Proof The nonpositiveness of the determinant of B and B’ can be proven by apply-
ing standard Gaussian eliminating procedure to the matrix B’, since the procedure
does not change the diagonal dominance and the nonnegativeness of the off-diagonal
elements of the matrix. The B matrix is invertible if it is strictly dominated by the
diagonal elements.

We first prove that the following system has a solution for every € > 0:

Bz <ex, z > e, (4.11)

where e is the vector of all ones. Consider the linear program

max e'z
such that B'y —ey+2z=0 (4.12)
y<0,2z2>0

which is the dual problem to
min 0 s.t. Br<er,z>e¢

The dual problem is feasible (y = 0, z = 0 is feasible). For any feasible solution
(y, z) to the dual problem, let y; be the smallest element of 3. Since the column
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sums of B are less than or equal to zero, the j-th equality of (4.12) implies y; = 0,
otherwise the left hand side of the j—th equality would be strictly positive. So y =0
and z = 0 is the only feasible solution to the dual problem. So the dual problem
has a finite optimal solution value. By linear programming duality theory, we see the
primal problem is feasible.

Let B. = B —e€l. Suppose . is a feasible solution to (4.11). Let X = diag(z,). It
is easy to see the columns of B.X are strictly dominated by the diagonal elements.
By (4.11), its rows are dominated by the diagonal elements. So B.X is a negative
definite matrix. In order to prove the adjoint matrix of B has non-positive entries,
it suffices to prove the adjoint matrix of B, has non-positive entries for all ¢ > 0 due
to continuity. So it suffices to prove B;1b < 0 for all b > 9 (since in particular it is
true when b is chosen as a unit vector, which means the corresponding column of B,
is non-positive). Suppose B 'b, < 0 is infeasible for some b, > 0. The dual of

min 0 s.t. Bazx=b, z2<0
is

max  bly
such that Bly >0 (4.13)

The dual is obviously feasible. By linear programming duality, there is a dual solution
y with b,y > 0. Let yp be the maximal subvector of y such that yp > 0. We denote
the remaining of y as yg. It is easy to see yg < 0. Multiplying the i-th constraint in
(4.13) by X;y; and summing up those corresponding to positive y;s, we have

YpBrpXppyp — €yp Xppyp + Yo Bop Xppyp > 0,

which is impossible in view of the negative definiteness of BppXpp — €Xpp, the
positivity of yp and the nonnegativeness of Bgop and —yg. So the adjoint matrix of
B has non-positive entries. The adjoint matrix of B’ is the transpose of the adjoint
matrix of B and thus also has nonpositive entries.

Now we prove the final property of the lemma. We prove it constructively. Let P
be the index set to a set of maximal independent columns of B. From linear algebra,
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the assumption Bz = b is feasible implies B,pzp = b is feasible, where B,p is the
submatrix of B by removing all the columns not indexed by P. From Lemma 4.1, we
see B,pzp = b if and only if

Bpprp =bp (4.14)

By the same arguments as in the previous paragraph, we see the matrix By} has non-

positive entries, which implies that the solution to (4.14) satisfies zp < 0. By setting

the remaining elements of z to zero, we have a feasible solution to Bx = b, = < 0.
Next, we prove this property for B’. Since the problem

min 0 s.t. B'z=¢%

is feasible, we see the dual problem

max by s.t. By=0
is feasible and has finite optimal solution value. Suppose

min 0 s.t. B'z=b <0

is infeasible, by linear programming duality, there exists y; such that

b'yy >0 and By, >0.
By the property of B proved in the previous paragraph, there exists y» < 0 such that

By, = By,. So
b(y1 —y2) >0 and  B(y, —y2) =0,

contradicting the fact that the problem
max by s.t. By=0

is feasibie and has finite optimal solution value. a
We let N = {1,---,nr}, the set of all customer classes.
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Lemma 4.3 For any two subsets P and Q = N \P of N, the following system always
has a solution
{B'.’L‘Jp = 0, I = wq. (4.15)

Proof We prove the lemma by using induction on the cardinality of the set P. The
lemma trivially bolds if P is either empty or a singleton. Suppose the lemma holds
for [P| <k <n—1. We will show the lemma holds for [P| = k + 1. Let Bep be
the submatrix of B by removing all the columns not indexed by P. If B,p is of full
colurnn-rank, the result follows easily. Suppose B,p is not of full column-rank. By
the second property of Lemma 4.1, there exists R#0, RC P such that

ZB,']' =0 Vje R,
i€ER

and
2. Bj=0 Vjer
iEN\R
It is easy to see that [B'z]p = 0 for all z such that ZTr = 0. Consider the following
problem,
[B'.'L‘]p\R = 0, Ig= Wy, Ip = 0 (4.16)

By induction hypothesis, we know (4.16) is feasible. The same z would be feasible
for (4.15). Q

Lemma 4.4 Let R C N,r, €N and r2 € N such that r, #r2. 11 € R and o & R.
Let P=RU{r} and Q = RU {r1} U {r2}. Suppose there erists u* such that

[Bu® + bp =0
[Bu + ],
dut =1
u;’ Z 01 ul‘V\P = 01 (4'17)
then there ezist i and i such that
[B‘& + b]p =0

ai=1
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g >0, iUng=0 (4.18)
and
[Ba+blp=0
du<1
ip 2 0, un\p = 0. (419)

Proof If [Bu*+b],, =0, we may choose & = u* and @ = u*. Suppose [Bu* +b},, =
d < 0. For any € > 0, we denote B, = B — ¢I. From system (4.17), we see

[Beu" +blg = —euy
[Beu® +b],, = —eu; +9
dut =1
up 20, up\p = 0. (4.20)

We first prove the following system has a solution:

. 0
[Bezlp = (_5) (4.21)
dz = 0 (4.22)
z,, 20, vy = 0

We use the following argument. Let M; = Bpp — €l and let [; be the subvector of
the ro—th column of B indexed by P. By Lemma 4.2, M ! is nonpositive. Civen any
z such that zy\g = 0, (4.21) implies

0

o = M ( —6

) - IIIrle-llg.

0

adz = adpM{}
I =api (—6

) — z,ap M + ay, . (4.23)
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If z,, =0, a’z < 0. For z,, large enough, a’z > 0. Since the mapping in the right
hand side of (4.23) is continuous, there exists a zj, > 0, together with z},, = 0 and
0
-6

and yy\p = 0. It is easy to see that y* is a feasible solution to the following system:

[ch]P = (—?6)

ady < 0

the unique z} specified by (4.21) is feasible for the system. Let yp = M

yr, <0, ymp = 0.

Now, let @, = u* + z*. It is certainly feasible for the following system:

[Beu+blg = —eup (4.24)
[Bu+b,, = —eu; (4.25)
du = 1

U, 20, unmg = 0.

Since @, > 0, by Lemma 4.2, (4.24) and (4.25) ensure the unique vector #.p is
nonnegative. Thus i, is also feasible for the following system:

[Bau+blg = —eup
[Beu+b], = —eu
av =

UQZO, un\Q = 0.

Given any sequence {¢;}, {@,} belongs to a compact set, since a'ttg, < 1. So there
always exists a cluster point for {i,}. If in addition

lim € = 0
k—oo

and u is a cluster point of {i}, we see @ is a feasible solution for system (4.18).
Similarly, we can prove & = u* + y* is a feasible solution for system (4.19). O
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If we let R be a set of customer classes and let 7, and r; be two different customer
classes that do not belong to R, assuming that we have a control that uses the full
capacity, it only works on R U {r;} classes of customers, the customers in R are
maintained at zero level, and class r; has just been decreased to zero level, then
Lemma 4.3 implies that we can have two new controls that both keep classes RU {r;}
customers at zero level. The first control uses full capacity and only works on R U
{r1} U {r2} classes of customers while the second control works under capacity and

only works on RU {7} classes of customers.

4.2.3 An Optimal Control Policy

In this section, we propose a control policy based on a sequence of linear programs.
The solutions to these linear programs are can be used to define an optimal solution
for the dual problem (M BLP*).

Consider the following control algorithm:
Algorithm B (B, a, b, w, z(0), N).

1. N° = N. Solve the optimization problem

0

min 7
s.t. Br°4+an®>0
7T0 =w

If n° <0, let u(t) =0, and n° = 0 and stop the algorithm

Otherwise let s® = arg min;eno[B'n? -+ an®]; and let u® be

0 {0, if i #s°
u =

L, otherwise.
]

If s° never becomes zero, let u(t) = u° for all ¢t and stop the algorithm.

Otherwise let to be the first time in [0, 7] such that the queue length of
class s® customers becomes zero, let u(t) = u® for all 0 < t < tp and
set

R = {s")
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N% = N\ {s°}.
2. Fork=12,---,n—1do
Solve the optimization problem
min n*
such that [B'7* + an®]ge-1 =0 (4.26)
[B'm* + an*|ye-1 >0 (4.27)
W,L;,k-x = WpNk-1 (4.28)
Thios < Thily (4.29)
n* > 0. (4.30)

If none of the inequalities in (4.27) becomes equality in the optimal solution,
let R be R¥-!\ {s*~1}, r; be s*~! and 7, be any element in .V such that
ro #1 and 7, € R, by Lemma 4.3, there exists u* (cf. @) such that

[Buk + b]Rk-l =0
aduf <1

'U.f{k_l 2 0, 'llka_l = O.

We let u(t) = uf for all t > t,_,, i.e., we do not work on any additional
class, maintain the classes in R*~'! at zero level. Stop the algorithm.

Otherwise
Let s* = arg min;cys-1[B'7* + an®);. Let R be R*~1\ {s*'}, r| be s¥~!
and r, be s* by Lemma 4.3, there exists u* (cf. i) such that
[Bulc + b]Rk—l =0
duf =1
ulfzk_lu{,.z} >0, uka-n‘{rz} =0,

i.e., we distribute the whole effori in such a way that customers in
classes R¥~! are maintained at zero level and we only work on classes
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in RF-1 U {s*}.

If s* never becomes zero, let u(t) = u* for all t > t,_; and stop the
algorithm.

Otherwise let ¢ be the first time in [0, T such that the queue length of
class s customers becomes zero, let u(t) = u* for all t,_; <t < t;

and set

Rlc = Rk—l U {sk}
NE = NE1\ {55},

There are two stages in Algorithm B. At both stages of Algorithm B, whenever
we have kept some classes of customers at zero level, we will pick another class of cus-
tomers with the highest index —12 Ia’:k (we break ties arbitrarily) to serve depending
on whether it is locally profitable to do so. The old classes of customers will be kept
at the zero level and the newly picked customers receive all the remaining effort.

Theorem 4.1 The proposed policy is optimal for (M BLP). If the algorithm exits
with no inequalities in (4.27) at equality in the optimal solution during the second
stage of the algorithm, then the objective value of linear program is zero. For the case
w > 0, the aigorithm will not ezit with n® < 0 and the constraint (4.30) is redundant.

Proof We first prove that if there are no inequalities in (4.27) at equality in the
optimal solution during the second stage of the algorithm, then n* = 0. Suppose
n* > 0. By Lemma 4.3, there exists Z, such that

[B'Z]gx-1 = 0, TNk-1 = Wyk-1.

So
[B’I]Rk—l = ARk-1, I Nk-1 = 0

is feasible (for example, f—;;}_kf—l is a feasible solution). By Lemma 4.2, there exists £

such that
[B'€)gr-1 = apge-1, Epp-1 <0, Enk-1 = 0.

So, a small perturbation to 7* along the direction ¢ (adjusting 7* accordingly) can
be both feasible and lead to a strict decrease in the objective value. This is a contra-
diction.
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We prove the optimality of the proposed policy by exhibiting a dual feasible so-
lution, which together with the primal solution satisfies the complementary slackness
conditions (4.7)-(4.9).

Let K be the largest & such that s* is well defined in the proposed algorithm. We
see ty < T is the first time in [0, 7] the queue length of class s* customers becomes
zero (if no such time exists, tx = T). By Lemmas 4.2 and 4.4, both optimization
problems in stage 1 and stage 2 are feasible and have finite optimal solutions and the
choice of u* therein is also valid. The primal variables can be specified according to
Algorithm B. Let t_; =0, for any t € [t;—, t;),7 =0, 1, ---, K, we define the dual
variables in the following way:

mt) = o
K

2t) = D (G —tio)n + (t—tig)y'.
=i+l

For t € [tk, T], we let m(t) = n(t) = 0. It is easy to check that (m(t),7(t)) is feasible
for the dual problem and for all t € [0, T, relations (4.7)-(4.9) hold.

Thus we have exhibited a dual feasible solution {m(t),n(t)) that together with the
primal solution satisfies the complementary slackness condition. By Corollary 4.1,
the primal solution is optimal.

Let j be the index such that w; is maximized, from the j-th inequality of the
linear program in the first stage, we see n° > 0. Consider the linear program in the
second stage. Let j be the index such that 7} is maximized. 7% > 0 since N*~! is
not empty until s"~! is defined. By the j-th relation among (4.26) and (4.27), the
constraint n* > 0 is redundant. O

4.2.4 Ties with Queueing Control Problem

Algorithm B does not depend on T. The optimization in both stages does not depend
on b. If we are only interested in calculating the optimal indices, we can set b = 0, so
the algorithm will not terminate solely due to not having enough work capacity. The
calculation of the indices does not depends on the total capacity of the machine either.
The order of the sequence {s*} will be the same if we scale a; by the same factor.
We remark that the indices produced by Algorithm B are closely connected to the
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dual algorithm in Bertsimas and Nino-Mora [15]. As shown in tke following theorem,
Algorithm B produces the same indices and can be considered as a generalization.
Although Algorithm B applies to the deterministic problem, it can be applied to
any finite horizon problem and the system need not have a steady state solution.
Furthermore, no work conserving conditions are imposed. Before stating the theorem,
we first describe the algorithm in Bertsimas and Nino-Mora [15].

Algorithm C (B, a,w, N).

Assume B is invertible, a > 0 and w > 0.

1. N°=N,
NO _ ' -1
i = —DRogo Qpo
70 . w,
y¥ = min =
iEN® g
7" = argmin .
ieno g°
2. Fork =1, 2, , n—1do
N =N\ {r"}
k .
(]N = B;;,ka ank
k-1 N7 Ni
Nk Wi — 2504 Y
y = min G
iENK q;
k-1 _NJ NI
n—k . w }:j=o 4y
T = argmin —
- N
eN* g
3. Serve the customers according to the order 7!, 72, ... 7"

Theorem 4.2 If matriz B is invertible, a > 0 and w > 0, then Algorithms B and C
produce the same optimal policy.

Proof Since B is invertible and w > 0, by Lemma 4.2 and Theorem 4.1, constraints
(4.29) and (4.30) are redundant. By Lemma 4.2, 7* and ¥ are always nonnegative.
n* will be strictly positive unless w = 0 and so all the constraints in (4.27) are
binding. So Algorithm B (the index calculation part) can be carried out without
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exiting prematurely from the loop. At every iteration in the second stage, there is
a unique 7* associated with every n* so that n* and 7% are feasible for the linear
program. So there is a unique optimal solution.

Given the output {#*} and {s*} of Algorithm B, we will show that the sequence
{s*} is a valid output of Algorithm C and yN* = grk-1l _pgn=k (We let 5" = 0 and
n® = 0 for notational convenience). In other werds, {n*} is exactly the Generalized
Gittin's index defined in Bertsimas and Nino-Mora {15]. We prove this by induction
on the iteration of Algorithm C.

At the first iteration of Algorithm C, we consider the n—th iteration of Algorithm
B. We have

B'r" ' 4an™! = 0
7r;‘,.__ll = Wyn-1
< w.
So
w > ,n,n-—l — "T]n_lB;voﬁo—la — 7’ﬂ—lql\_lo.
Obviously, 7 = s"~! = arg min;¢go q—‘,"v*g and "~! = y"°. Now, assume that s"~1, ... gn*
coincide with 77, - 7"+ and y""'.‘ =gt —pnifori =0,---,k — 1. At the

k + 1st iteration of Algorithm C, we consider the n — k-th iteration of Algorithm B,

[B'm"* ' fan" e = 0

n—k-1
ﬂN‘U{S"_k_l} = wﬁlu{sn—k—l}

ﬂ.u—k—l < w.
By the induction hypothesis, we have

[B”Tl'n_i-l'*-ann_i_l]ﬁi — 0

n—i—1 . ~
ﬂNiU{s,,_,_,} - leu{sn—l-l}

Tl <w for i < k.
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So

n—k—1 n— n—k—-1 _

B;vkﬁk(ﬂ'ﬁk - Trﬁkk) = —agx(n n""k)- (4.31)

Similarly we have

B (mhim = nf) = —agi(n* ™ = ") = —agy™ fori<k,  (4.32)

where the last equality is because of induction hypothesis. By (4.31) and (4.32), we

have

k-1
n—k n—k— _ Tk b N
Wk > 1r,\-,,‘" =@ = )gme + S afyY

i=0
and w:‘,f_ﬁ_, = Wyn-x-1. SO
k-1 _N1_Ni
n—k=1 _ _n—k Wi =04 Y
n =1 = min NE
iEN* g
k-1 _Ni, N
n—k—1 L Wi— 20 di Y
] = argmin T
iENK q;

So y™* = k=1 _yn=* and we can pick 7"~* = s"~*~!. This completes tke induction.

None of the conditions a > 0 and b > 0 can be removed. We make our decisions
based on the information of the dual problem. This theorem shows, if we always
use the locally optimal control law for the fluid problem, global optimality can be
achieved for both the fluid problem and the corresponding stochastic problem. This
shows great promise of the fluid model.

4.3 A Single Multiclass Queue with Separable Con-

vex Quadratic Costs

In this section, we consider the optimal control for the following fluid flow approxima-
tion to a make-to-stock multiclass queue scheduling problem. The facilities produce
according to customer demand, and completed jobs enter a finished goods inventory,
which, in turn, services actual customer demand. The arrival rate of class ¢ jobs is b;
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and the service rate of class : jobs is EIT The goal is to dynamically decide which job
class, if any, to serve next in order to minimize the average cost incurred per unit of
time over the interval [0, T, which includes separable convex quadratic backordering
costs and holding costs for finished good inventory.

More specifically, we consider the problem

(MBQP) minimize /oric,.(z,-(z)) dt
i=1

subject to z(t) = 2(0) + [ ‘(ult) — b) dt
a'u(t) < 1
u(t) >0

where Ci(zi(t)) = wizi(t)?, w; > 0, for i = 1,---,n. We assume a > 0, b > 0 and
a’'b < 1. z(0) and T > 0 are given and fixed. (M BQP) is not a linear fluid model,
since the cost function is quadratic in the state variables which demonstrates that
fluid models are quite powerful.

Unlike the linear cost case, we are not going to use duality theory for continuous
linear programs to solve the problem. Instead, we first propose an index type policy,
and then use a Lagrangian function to prove the optimality of the policy. We remark,
however, that the essence of the approach (duality theory) is indeed the same.

Consider the following policy.

Policy P (a, b, w, z(0)).
At any given time t,

Let

. : 2
QIl(t)wl) } and a(t) — Z 21_.
i ier(ty Wi

I'(t) = { 1] i=argmin(

If z;(t) > 0 for some i € I*(t), let w;(t) = 0 for all ¢.
Otherwise if z;(t) = 0 for some i € I*(t), let

w(t) = {b,-, for all i € I*(t),

0, otherwise.
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Qtherwise let
(4.33)

w, a(t)?

{b,.J,‘;EM)‘L"‘._aL for all i € I*(2),
{

otherwise.

)

In other words, we never work on any class that has positive inventory. Among
the nonpositive inventory classes, we only work on those classes that have the smallest
index %ﬂ?i If there are no negative inventory classes, we work only to keep the
zero inventory level classes at the zero inventory level. If there are negative inventory
classes, we distribute the effort in the way specified by (4.33). Notice in (4.33),
S a;u(t) =1 and for i € I*(t), u;(t) — b; is proportional to o The intuition behind
this is to keep I*(t) as stable as possible, if 1 € I*(t) and there exist jobs that have
backlogging, then i € I*(#) for all £ > ¢.

Let (u*(t),z*(t)) be the feasible solution given by Policy P. We define

8(6) = min_{0, 0%

i€[l, a;

and

V(t) = — /, " o(t) dt.

From the definition, it is obvious that

V() >0 Vte[0,T]
V(T) =0

It is a fact that if ¢(t) = O for some t, the ¢(f) = O for all £ > ¢t. Consider the
Lagrangian problem (OLP):

(OLP) minimize /(;Tic.-(x,-(t)) dt + /: V(t)(a'ult) — 1) dt

subject to z(t) = z(0) + /:(u(t) —b) dt
u(t) >0

Here, we used V(t) to dualize the control constraint and the variable V(t) serves
as a Lagrange multiplier for the (M BQP). (OLP) is equivalent to the following n
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separate subproblems, fori = 1,---,n:

T
(OLP;) minimize /0

subject to z;(t) = z;(0) + At(U{(t) —b;) dt
u(t) >0

Lemma 4.1 The solution (u:(t), z!(t)) given by Policy P is an optimal solution for

(OLF)).

Proof Through integration by parts, we have

T T
/C’,-(:z:,-(t))dt-i—/ as(ui(t) = bV (t) dt
0 0
T T
= /0 Ci(zi()) dt + /0 a;V (t) dzi(t)
= /TC-(z'(t)) dt+a'V(t)x'(t)|T—/Ta-:z:-(t)V(t) dt
= OT ildd i i 0 79 ily
= /0 Ci(zi(t)) dt — a;V (0)z:(0) — /0 az(t)V () dt

So (OLPF,) 1s the same es:

minimize /0 " Cizi(t)) dt - /0 "otV (2) dt

subject to z;(t) = z;(0) + /ot(u,-(t) —b;) dt
u(t) 2 0,

which leads by adding and subtracting T’:E;V(t)z to:

.. . T a" . 2 a? . 2
minimize /0 [wi(z(t) — é;v—'V(t)) + Zw—?v(t) ] dt
t
subject to z;(t) = z;(0) +/0 (u(t) — b;) dt

u(t) 20,

T
Cilzi(t)) dt + /0 ai(ui(t) — b))V (2) dt
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which is the same as
minimize /T wi(zi(t) — —-V(t))? dt
0 B 2w,~

subject to z;(t) = z;(0) + ‘/:(ui(t) —b;) dt
u(t) > 0.

We will show that solution (u!(t), z(t)) given by Policy P satisfies for all ¢ € [0, T

() = o min, ((t) = 5V (D) (434)
This is because if V(0) = 0, then V(t) = 0 for all ¢t > 0. Policy P lets class i jobs
decrease at full speed b; before it hits zero and maintain class ¢ jobs at the zero level
afterwards, so (4.34) is satisfied. If V(t) < 0, let ¢; be the smallest time ¢ such that
i € I*(t) (if no such ¢ exists, let t; = T'). For t < ¢;, Policy P lets class i jobs decrease
at full speed b;, so z;(t) > z}(t) > a%u':V(t) for any feasible z;(t) and (4.34) is satisfied
fort <¢;. Fort>t;, i € I'(t) and so zj(t) = -V (t) and (4.34) is trivially satisfied.
Since (u}(t), z}(t)) is also feasible for the last non-linear program. So it solves it. O

Theorem 4.3 The proposed policy is optimal for (M BQP).

Proof @ We prove this by showing the multiplier V(t) together with the primal
solution satisfies the complementary slackness condition V' (t)(a’u(t) — 1) = 0 for all
t. It is easily seen that the optimal solution value for problem (M BQP) is always
greater than that of (OLP). By Lemma 4.1, the primal solution (u*(t), z*(t)) solves
the problem (OLP). So if we can show V(t)(a’u*(t) — 1) = 0 for all ¢, this primal
solution (u*(t), z*(t)) actually attains the minimum solution value of (M BQP) and
thus is optimal for (M BQP). We now verify the complementary slackness condition.
By definition, V(t) > 0. If V(¢) = 0, the condition obviously holds. V(t) > 0 only
when ¢(t) < 0. In this case (4.33) holds which implies a'u*(t) = 1. a

The policy distributes the service effort among the classes that have the best
index (the smallest nonpositive —zl—(ﬂ) The indices depend on the states and thus
are dynamic.
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4.4 Single-Class Queueing Network, the Tandem

Case

In this section, we analyze the optimal solution structure for tandem queues and
its close extensions. These problems have important applications in manufacturing,
such as production of automobiles (see Buzacott and Shanthikumar [18]). Perkins and
Kumar [71] considered pull manufacturing systems, where the objective is to minimize
the sum of buffer holding costs and system shortfall/inventory costs, subject to an
exogenous demand of constant rate. The fluid flow shop they considered is a special

case of cne of the problems we consider in this section.

4.4.1 Tandem Queues with Simple Feedback

The first problem we consider is the following. We have from left to right a series
of workstations 1, ---, n in tandem as shown in Figure 4-2. Each workstation has
its own unlimited buffer. Workstation ¢ can produce at a rate up to ¢; > 0 for
i =1,---,n. The output of station i goes into the station i + 1’s buffer and serves as
the material for station i+ 1 for : < n. A fraction p of the output of station n goes to
station 1 and 1 — p exits the system. Initially, there are z;(0) material (or inventory)
at station i. There are no external arrivals to the system. There is a cost of w; > 0
per uuit of time incurred for the inventory in workstation 7. No negative inventory is
allowed at any workstation. Our goal is to dynamically decide for each workstation,
when to idle and how to work so as to minimize the average cost per unit of time
over a time interval [0, T']. We can formulate our problem as the following continuous
linear program.

T
(LCLP) minimize /0- w'z(t) dt

t
subject to z(t) = 2(0) + /0 Bu(t) dt
0<u(t)<c
z(t) 2 0,




CHAPTER 4. APPLICATIONS OF FLUID NETWORKS 100

wy W, We

—a c, M —> c; M, 2 00 Ca M

Figure 4-2: A series of queues in tandem with simple feedback
where £(0) > 0,¢ >0, w >0,T > 0 and

(-1 p )

1 -1
B = 1
-1

\ Ry

We can easily transform the problem (LCLP) into an equivalent separated con-
tinuous linear program. Just substitute z(¢) in the objective function by the right
hand side of the first constraint and use integration by parts. A direct consequence
of Propositions 2.1, 2.2 and 2.3 is

Corollary 4.2 There always ezists an optimal basic feasible solution to problem
(LCLP) whose control is piecewise constant. Let (u(t),z(t)) be a basic feasible solu-

tion to (LCLP) whose control is piecewise constant, then for almost ell t € [0, T),
the following holds:

1. Ifi < j, z;(t) > 0 and z;(t) > 0 but z(t) = 0 for alli < k < j, then either
u;(t) = 0 or ui(t) = minge(s j-1j Ck-

2. Ifi > j, zi(t) > 0 and z(t) > 0 but z(t) = 0 for alli < k and k < j, then
either u;(t) = 0 or u;(t) = min{mingenj cx, Minges j-1)Pck}-
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For the two stations ¢ and j in the corollary, we call j the next positive inventory
station with respect to station :. Obviously, a unique feasibiz solution z(t) is deter-
mined by any feasible u(t). By Proposition 2.3, there exists an optimal control u(t)
which is piecewise constant and has finite (albeit potentially exponential) number of
breakpoints. Exploiting the particular structure of the problem, we will show there
exists an optimal solution for (LC LP) that has the following property:

Structural Property 1
There ezist t;, i = 1,---,n, such that workstation i idles before t;. At any time
t > t; but before z;(t) = 0, let j be the next positive inventory station with respect to
station i, ui(t) = mingepij—1) ¢k if j > 1 and u;(t) = min{minke(in) Ck, Minge(,j—1) Pcr}
otherwise. After the inventory at workstation i hits zero, the incoming flow to the
workstation will always equal to the out going flow, and the inventory level of the
workstation will remain at zero.
In other words, workstation i starts working at time ¢;. It works at the largest
possible rate such that no other workstations that already have zero inventory level
will become positive again. These n times {t;} specify a unique control policy u(t)
that has at most 2n constant control pieces, i.e., u(t) will only change when either
there is a workstation that starts working or there is a workstation whose inventory
level becomes zero.

The dual of (LCLP) can be written as

(LCLP*) marimize /OT(:E(O)’W(t) —'n(t)) dt

T

subject to n(t) +/ B'n(t) dt >0
¢
7(t) < w
n(t) > 0.

Arguing as in Chapter 3, weak duality holds between the primal and dual programs.
Moreover, strong duality holds if a primal-dual optimal solution pair satisfies the
following complementary slackness condition:

z(t) (n(t) —w) =0
(u(t) ~c)'n(t) =0
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T
u(t)’ [/t B'n(t) dt + n(t)} =0 forallt. (4.35)

In order to prove Structural Property 1, we make for convenience the following
assumptions. We will remove them later in the section (cf. Corollary 4.3).

Assumption 4.1
1.0<p<1
2. wi Fwjifi#j
3. w; # pw;
4. z(0) > 0.
First, we prove the following property:

Lemma 4.5 Let (u(t),z(t)) be a basic optimal solution to (LCLP) with u(t) piece-
wise constant. Under Assumption 4.1, if z;(t) > 0 and station j is the next positive
inventory station with respect to station i for some t, then

1. Ifi < j and w; > minge; jywy then u;(t) > 0.
2. If i 2 j and w; > min{minge(; ) wg, mingep ;) pwe} then u;(t) > 0.

Proof  We first prove the first part of the lemma. Suppose the contrary. By
assumption, i > j, w; > mingey;,j) W, there exists 0 < ¢; < t; < T such that z;(t;) > 0
but u;(t) =0 for t € [ty, t,]. Let j = arg mine; jj wx. Consider the following feasible
solution (a(t), Z(t)) for (LCLP). i(t) equals to u.(t) for all k & [1,7 — 1]. We let

zi(t), for t < ty;
i,‘(t) = a:,-(tl) - (t — tl)é, fort e (tl,tg);
max{:z:,-(t) - (5,0}, for t > ta,

where § < min{z;(t,), (t2 — ¢;) minge;j-1) ¢k }. We see that Z;(¢) uniquely specifies a
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control 0 < #;(t) and ;(t) < u,(t) for t > to. For k € [i + 1,5 — 1], we recursively let

uk(_t), for ¢ < ti;
) : .
ﬁk(t) _ Ez_—zl_’ lft € (tl, tg),
uk(t), if t >ty and Zx(2) > 0;

max{O, ﬂ,k_l(t) + uk(t) - uk_l(t)}, if t >ty and .f)k(t) = 0.

We see that 0 < i, (t) < ug(t) for all t > t,. It can be shown by induction on & that
Zi(t) < zk(t) for all k € [¢,j — 1] and for all ¢. Since Zkefi, 71 Tk(t) = Cepi, 7 Te(t), it
is easy to see that (@(t), Z(t)) has strictly smaller cost than (u(t),z(t)) and we have
a contradiction. This proves the first part of the lemma.

We now prove the second part of the lemma. If i = j, z;(t;) > 0 but u;(¢) = 0 for
all t € (t1,t2), we have a contradiction, since the new policy that sends some flow §
from station i to station ¢ through station n during (¢, ;) and uses ﬂ(flz)%ll—)"-ﬂﬁu(t -
ta + t1) after ¢, would have a smaller cost. So, we assume i > j. When there exists
a station j > i such that j = arg Mingefin] Wk, exactly the same proof as the one
for the first part of the lemma applies. So we can assume w; = arg MiNge(in) W-
Let j = arg minge(y,;j wk. Suppose the second part of the lemma is not true, by
assumption w; > pwj, there exists 0 < t; < tp < T such that z;(¢;) > 0 but u;(t) =0
for t € [t1, t2]. Consider the following feasible solution (@(t), #(t)) for (LCLP). i(t)
equals to u(t) for all k € [j,i — 1]. We let

zi(t), for t < ty;
j,(t) = Il?i(tl) bt (t - t1)5, fOI‘ t e (tl,tg);
max{z;(t) — 6,0}, fort > t,,

where § < min{z;(t), (t2 — t,) minke;;5_1) ck}. We see that Z;(t) uniquely specifies a
control 0 < #;(t) and #%;(t) < w;(t) for ¢ > to. For k € [i + 1,n], we recursively let

uk(t)’ for t < ty;
) : .
ﬂk(t) _ ) oo ifte (tl,tg),
uk(t), if t > t; and Zx(t) > 0;

max{0, ik_1(t) + ue(t) — ue_1(t)}, if t >ty and F4(t) = 0.
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We let
ul(t), for t S tl;
ﬁ](t) — ta—ty if t € (tlatQ);
ul(t), ift >ty and jl(t) > 0;

max{0, pin(t) + u1(t) — pua(t)}, ift >ty and Z,(t) =0,

and for k € [2,j — 1], we recursively let

ur(t), for t < ty;
Ga(t) = B e e (b, ta);
uk(t), ift >ty and .’ik(t) > 0;

max{O, ﬂk_l(t) + Uk(t) - ‘U.k_l(t)}, if ¢ >ty and fi)k(t) =0.

We see that 0 < @, (t) < ug(t) for all t > ¢,. It can be shown by induction on % that
Zk(t) < zx(t) for all k & [4,% — 1] and Srefiriog Th(t) = Tkefer, i—1) Ex(t) for all t.
It is easy to see that (@(t), Z(t)) has strictly smaller cost than (u(t), z(t)) and we have
a contradiction. This proves the second part of the lemma. a

Lemma 4.6 Let Assumption 4.1 holds. Let (u(t),z(t)) be an optimal solution to
(LCLP) with u(t) piecewise constant. If for 0 < &; <& < T, ui(t) =0 fort € (&;, 1)
and z;(t;) > 0, then u(t) =0 for all ¢t < {;.

Proof Suppose the contrary, let station j be the next positive inventory station
with respect to station i at time #;. By Lemma 4.5, we see w; = mingei j we if 2 < j
and w; = min{p minge;) Wk, Mingep; o) Wi} otherwise. Since station ¢ has been busy
before t;, there are some flows going from i to j (these flows may stay between i + 1
and j — 1 or between [i + 1,n] U1, j — 1] for some time) before #;. Since there is only
a single class of customers, we can always assume every workstation adopts a FCFS
type of policy. Under this policy, it is easy to see that there exists § > 0 inventory in
station j at epoch #; came from station i, otherwise station j would not have positive
inventory at epoch ¢;.

If ¢ < j consider a new policy that withholds d unit (so it can be sent to station
J within time interval [£;, £;]) of flow at station i before f; and sends this amount of
flow to station j during [£;, #;]. The only change in the state variable is the flows
among the stations from i to j. More precisely, this small amount of flow will change
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from staying among the stations from i + 1 to j for some positive amount of time to
spending this time at station ¢ instead. Obviously, this new policy is strictly better
than the original policy and this leads to a contradiction.

If 2 > j, consider a new policy that withholds ﬁ urit (so it can be sent to station
j through station n within time interval [f;, £;]) of flow at station i before #; and
send this amount of flow to station j via station n during [¢;, £;]. The only change
in the state variable is the flows among the stations from i to n and from 1 to j.
More precisely, this f; unit of flow will change from staying among the stations in
[i +1,n]U[1,j] (and possibly staying outside the systems) for some positive amount
of time to spending this time at station 7 instead. This new policy is strictly better
than the original policy and this also leads to a contradiction. a

Let 7 and j be two workstations. We say station j is a bottleneck with respect
to station i if there exists a station {, such that one of the following three conditions
holds:

w; = ker[glu‘rl . W, c; > kerbnllrl 1 Ct, i<j<l
1
i = m ) i > - b4 l S L < J
w min{ e[:n]wk P (1 in ' we}, ¢ > min{ ng’lrh]ck pke[! in 1] e} 1<
1
w; = min{ min wg,p min w >— min ¢, j<I<i 4.36
! {El,n] pke[l -1 eh e pkebl T T=r=t (4:36)

Lemma 4.7 Suppose Assumption 4.1 holds. If station j is a bottleneck with respect
to station i, then in an optimal solution (u(t),z(t)) to the problem (LC LP), we have

ui(t) < min ¢, if i<j<l

kelj, 1-1)
1
(1) < min o}, if [<i<j
ui(t) < mln{kérLljl’nn]ck pke[l in l]CL} if [<i<j
1
g < Lo el
w(t) < pkeg'nln_”ck, if j<I1<4

where station | is a station that satisfies one of the conditions in (4.36).

Proof We only give the proof for the case i < j < [, the other two cases can be
proven similarly. Suppose station i works at rate ¢ > minge(j, 1-1) ¢ during [t1, to),
where t; < t,. Let k = argmingg;, —1cx. Obviously 7 < k. Denote ug(t) as the
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control for station k in the old policy. We know ui(¢) is no greater than ck. Same as
in the proof of Lemma 4.6, we assume each workstation adopts a FCFS type of policy.
Denote t3 as the first time in the policy station k& output material sent from station i
after t,. Consider a new control policy such that workstation i idles during [t;, t3] and
works at rate ug(t) starting from ¢3. We let the control of all the other workstations
be the same as the old control, except for the workstations in [i+1, k- 1]. During
[t1, t3], these workstations use the same control as the old centrol policy whenever
possible. After t3, we let all these workstations working at rate uz(t). By FCFS
discipline, we know workstations in [i + 1, E] are all occupied at t3 by materials that
are sent from station i after time t,. Since workstation i idles during [, ts] in the
new control, the workstations in [i + 1, k£ — 1] are empty after ¢3 in the new control
policy. For the workstations in [i + 1, k] during [t;, T, the changes in control can
be viewed as taking all the extra material sent from workstation i after ¢, away from
these workstations and put them back at station i. The inventory level at any other
workstation will not change. The new policy is strictly better than the old control
policy. This leads to a contradiction. a

We are now ready to prove the following key lemma, which will lead to the struc-
tural property we need.

Lemma 4.8 Suppose Assumption 4.1 holds. There is an optimal solution, such that
after the inventory of a workstation hits zero, it will remain at zero level.

Proof By Corollary 4.2, there is an optimal basic feasible (Z(t), @(t)) such that @(t)
is piecewise constant. Suppose the lemma does not hold, let ¢; be a smallest time
such that there are stations that become positive inventory again. Let station j be
a station that has positive inventory at time #,. This workstation certainly exists,
otherwise there wont be any workstation that becomes positive inventory again at
time ¢;. Let station i be the first workstation in the downstream of j that becomes
positive inventory again at time t;. Let [ be the nearest station in the downstream
of station 7 that either becomes positive again at time ¢, or whose inventory level is
positive at time ¢;. There are three possibilities, namely j < i < [, i < [ < j and
I > j > i. Here we only give the proof for the case j < i < [, the other two cases are
similar.

Let t7 < t; and tf > t; be two times such that @(t) is constant over [t7,#;) and
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[t1,tF]. Since station ¢ becomes positive inventory again at ¢;, by Corollary 4.2, we
have @;_,(t}) = Mingej, i-1) Ck. Since station i becomes positive inventory again at
t1, by Lemma 4.6, it must be busy immediately after time ¢;. Corollary 4.2 again

implies:
. + — . .
a;(t}) wpin o (4.37)
So, we have
ir > i . 4.38
ey % > i, e (4.38)

We consider three cases.
Case 1. There exists a station m € [f, i — 1] such that w,, = mingef;, § we. By
(4.38), station i is a bottleneck with respect to station m. By Lemma 4.7,

) S0 < i
for all t € [t;,tf]. In view of (4.37), we have a contradiction.

Case 2. w; = mingg;,  we. Since all the stations in [j,7 — 1] will always send
as much flow as possible to station i, we see the incoming flow to station i wili
not increase from time ¢ to tf. So the out going flow of station ¢ has strictly
decreased immediately after ¢, otherwise the inventory of station i will not become
positive again. By (4.37), the service rate of station 7 in [t],¢;] must be greater than
minge(;, 1—1j ck. However, since the inventory of all the workstations in [i+1,1-1]
has either just dropped to zero at t; or has stayed at zero during [t7, ], we have

4(t) < cpin | c
for t € [t,t1]. This is a contradiction.

Case 3. There exists a station m € [i4+1, !] such that w,, = mingej, j wg. If there
is a workstation h € [j, ] such that w, < w;. We see, the output of workstation
j will be no less than miNge(;, h—1) Cx before t;. So the incoming flow of station 7 at
t; will be no less than MiNge(j, h—1j ¢k Which is in turn no less than mMinge(j, i1 Ck-
So the incoming flow of station i will not increase from time t7 to tf. By the same
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argument as Case 2, we can exhibit a contradiction. So,

wj = min w, (4.39)

Let station g be the first workstation in [i + 1, m] such that w, < w;. Now consider
the segment [j, ¢g]. We have from (4.39) that

w; = kex[}?lgl_l] W. (4.40)

It is easy to see that @(t{) > mingep;, g1 ck. In view of (4.37), we have

kef}.n(?—u Ck = keI[Eltxil] C.
By (4.38) we have
i i . 4.41
kel o * 7 kel gy (4.41)

(4.40) and (4.41) imply that station i is a bottleneck with respect to station j. By
Lemma 4.7, we have @;(t]) < minggy;, ¢-1]Ck- So the inventory of station i will not
become positive again at time ¢, and we have a contradiction. a

By using Lemmas 4.6 and 4.8, we can now prove the following structural property
for problem (LCLP).

Theorem 4.4 For the tandem queues with simple feedback described by (LCLP),
if Assumption 4.1 holds, there exists an optimal solution u(t) that has at most 2n

constant pieces and Structural Property 1 holds.

Proof Consider a basic optimal solution (u(t),z(t)) to (LCLP). Denote the first
time workstation 7 starts working as ¢;. Obviously, workstation n never works. By
Lemma 4.6, workstation i will work whenever possible after t;. By Lemma 4.8, once
the inventory level at station i hits zero, it will stay at zero. After ¢; but before
the inventory of station 7 hits zero, let j be the next positive inventory station with
respect to station i at time ¢, by Corollary 4.2, u;(t) = mingepj-1jck if 7 > ¢ and
u;(t) = min{minggfn) ck, Mingeq,j—1) pcx} otherwise. After the inventory of station
i hits zero, by Lemma 4.8, the working rate of workstation i is modulated by the
incoming flow rate, i.e., the incoming flow to the workstation will always equal to
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the out going flow, so that the inventory level will remain at the zero level. By this
argument, we see the working rate of a workstation changes only when there is either
a workstation starts working or there is a workstation whose inventory level hits zero.
Once t;, ---, t, are given, a unique optimal basic feasible solution is determined.
Thus the theorem is proved. O

Corollary 4.3 Theorem 4.4 holds without Assumption 4.1.

Proof Any problem that violates Assumption 4.1 can be approximated by a series
of problems that satisfies these assumptions, due to the compactness of both the
proposed optimal solution (i.e., the finiteness of the number of control pieces) and
the feasible control set, we can prove the property for the original problem using
limiting arguments. a

The second problem is a fluid tandem queueing control problem. It is a special
case of the first problem with p = 0 and station n being a dummy station which
never works and only serves as an unlimited buffer. The problem can be formulated
as follows

T
(LCLP1) minimize / w'z(t) dt
0

t
subject to z(t) = z(0) + /0 Bu(t) dt
0<u(t)<ec
z(t) > 0,

where z(0) > 0,¢> 0, w > 0, T > 0 and B is the negative node-arc incidence matrix
for the following line digraph: Node i of the graph corresponds to machine i and the
edges are (i, 1+ 1) fori = 1,---,n — 1. The system is shown in Figure 4-3. The
next theorem concerns the structural property of an optimal solution to this tandem
queueing network.

Theorem 4.5 For the fluid tandem queueing control problem described by (LCLP1),
Structural Property 1 holds.

Ezample 4.1. Consider problem (TAN D) given in Section 1.1.1. Let T = 6, A = 0,
1 = -g—, Mo = g, 21(6) = z2(0) = 2, w; = 1 and wp = 2. This is a problem (LCLP)
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Wi W, Wit w,=0

c; M —> c: M, oo Cag My > M,

Figure 4-3: A series of queues in tandem

inventory level

time

Figure 4-4: An optimal solution for Example 4.1

with p = 0. An optimal solution is shown in Figure 4-4. The station 1 idles during
[0,1). It works at rate 2 during [1,6]. The station 2 works at rate 2 during [0, 3.5)
and works at rate  during [3.5,6]. In Figure 4-4, the horizontal axis represents time
and the vertical axis represents the inventory level for the two stations. The vertical
distance between line segments CDBF and EF represents the inventory level for
station 1. The vertical distance between line segments ABF and CDBF represents
the inventory level for station 2.
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Given the above results, a natural question would be: does Structural Property 1
for the tandem queueing network (i.e., (LCLP)) generalize to fluid approximation for
Generalized Jackson networks? In the following, we give a four workstation General-
ized Jackson network. In the optimal control of its fluid approximation, the inventory
level at certain workstation can drop to zero, stay at zero for a while and then become
positive again.

Ezample 4.2. Consider the network shown in Figure 4-5. Fraction 0.7 of the flow from

w;=3
c,“
11(0)86

w,=0
x,(0)=0

x,(0)=1

Figure 4-5: A four workstation queueing network

workstation 1 is sent to station 2 while 0.3 is sent to workstation 3. The flows can
also be sent from workstations 2 and 3 to workstation 4. No other routes are allowed.
The capacity for these workstations are: ¢; = 4, c; = 4, ¢3 = 0.2. The holding cost
per unit time at these workstations are: w; = 3, wy = 5, wz = 0.5, wy = 0. Initial
inventories at these workstations are: z,(0) = 6, z2(0) = 22, z3(0) = 0.1, 4(0) = 0.
T = 39. No backordering is allowed.
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The transition matrix B in (LCLP) for this prcblem is:

-1 0 0
B= 7 -1 0
3 0 -1
0 1 1

A pair of optimal primal and dual solutions are given as follows. Denote

349 349 419 419
I, = [0, 05), I,=][0.5 3910) T =B34 5555 T+ = 5575 64
43 349 349
I = [64, 670) [6—— 1255), T = (12555, 39)

There are 7 pieces of constant control in the optimal primal solution, one for each
interval defined above. During interval Z;, we apply control u*, where

u' = (0402, w*=(040), «¥=(2/3 402), u'=(4 4 02),
v = (4 28 02), «*=(0 0 02), u" =(0 0 0).

There are also 7 pieces of constant m(t) in the dual optimal solution, one for each
interval defined above. At interval Z;, 7(¢) = 7, where

2
™ = (015 0 05, 7#*=(3 005, =35 05, =35 —15)',
™ = (350), #°=(3 5 05), 7#7=(0 0 0),

and 7)(t) is defined from n(t) by

7(t) = max { 0, —/f B'rn(t) dt }.

It is easy to check that the proposed primal and dual solutions together satisfy com-
plementary slackness condition (4.35) and thus they are optimal for the primal and
dual problem respectively. The primal solution is indeed the unique (unique almost
everywhere in [0, T']) optimal solution for the problem. However, in this solution, the
inventory level for workstation 3 drops to zero at time 0.5, it stays at zero for a while
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419

sio» thus Structural Property 1 is violated.

and becomes positive again at time 5

Wy w; W,y () Wy<=Wi s
c M > c, M, e Cat My —> M,
Inventory/
Shortfall

Figure 4-6: A series of queues in tandem with back ordering

4.4.2 Tandem Queues with Back Ordering

Now we consider the third problem, a generalization of problem (LCLP1). Negative
inventory is not allowed at any workstation except workstation n —1. The capacity of
workstation n — 1 satisfies ¢,_; = ming cx. The cost for the inventory at workstation
i < n—2isw; > 0 per unit of time, while the cost at workstation n—1is w;}_, > 0 per
unit time for positive inventory and w,_; > 0 per unit time for negative inventory.
We assume w, < —w,_;. Our goal is to dynamically decide for each workstation,
when to idle and how to work so as to minimize the average cost per unit time over
a time interval [0, T). We can formulate this problem as the following SCSCLP
problem:

T
(LCLP2) minimize /0 (S wizmi(t) +wi_jzf_ (t) + wi_ x5, (t) di
i#En—1

subject to z(t) = z(0) + /Ot Bu(t) dt
0<u(t)<c
Tn1(t) = 231 () — 254 ()
zi(t) > 0, fori<n-—2
i ()20 z;,(t)>0

n—1



CHAPTER 4. APPLICATIONS OF FLUID NETWORKS 114

This formulation and related assumptions are made in order to model the following
mechanism in manufacturing systems. Imagine workstations from 2 ton —1 as n — 3
machines and the first workstation as an infinite reservoir of raw material for these
machines. If w; < ws, the first workstation always wants to work at the maximal
allowable rate ¢;. When there is sufficient flow in the first workstation, the first
workstation acts like a constant rate material supplier for the following machines. As
shown in the following lemma, it is always profitable for workstation n — 1 to work
at its maximal allowable rate c,_;. The workstation n — 1 acts like a “virtual” buffer
and workstation n acts like a customer demand that depletes this buffer at a constant
rate c,_;, while the buffer is replenished by the output of workstation n — 2.

Lemma 4.9 In any optimal solution to problem (LC LP2), workstation n — 1 always
works at the maximal allowable rate c,,_;.

Proof The existence of a piecewise constant optimal solution to (LC LP2) is obvious,
since the feasible control region of the problem is bounded. For any such solution to
(LCLP2), denote t; as the largest time in [0, T such that the service of station n— 1
is below rate ¢,_;. However, a new control under which station n — 1 works at rate
Ca—1 during [t], t1] has a better solution value in (LC LP2). We have a contradiction.
a

Theorem 4.6 For problem (LC LP2), the following structural property holds. There
exist two times 0 < t] < &5 < T. Fort € [0, t}), zn—i(t) < O; for t € [t], t3),
zi(t) 2 0Vi < n—1; fort € [t5, T), z;(t) = 0, Vi < n —2. During each of
the above three time intervals, once u workstation starts working, it will continue to
wors whenever possible. Once the inventory level of a workstation reaches zero, it will
remain at zero level throughout the same interval. There are at most 4n — 8 number
of constant pieces in the control.

Proof Let (u(t), z(t)) be a basic feasible solution to problem (LCLP2). If z,_,(0) >
0, we let t] = 0. Otherwise, we let ¢} be the first time such that z,_,(¢) reaches zero
(we let t7 = T if z,_,(t) never reaches zero before T). We let t} be the first time
Tn-1{t) drops from nonnegative to negative again (we let ¢t} = T if z,_;(t) never drops
below zero again before T').
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We let
I, = [O, t;)a I, = [tI’ t§)7 Iy = [t;’ T)'

Obviously, Z; = @ if and only if t} = 0; Z, = 0 if and only if t] = t3; T3 = 0 if and
only if t5 = T.

During 7,, exactly the same argument as for the problem (LCLP) carries through
and we arrive at the result that once a workstation starts working, it will continue
to work whenever possible. Once the inventory level of a workstation reaches zero, it
will remain at zero level throughout the interval Z;.

During I, all the workstations have nonnegative inventory. Exactly the same
argument as for the problem (LC LP) carries through and we also arrive at the result
that once a workstation starts working, it will continue to work whenever possible.
Once the inventory level of a workstation reaches zero, it will remain at zero level
throughout the interval Z,.

During 73, the only possible control for workstation i < n — 2 is u(t) = 0. By
Lemma 4.9, workstation n — 1 will always be busy. Thus the theorem is proved. O
The above theorem is an extension to the results in Perkins and Kumar [71], where
it is further assumed that 0 = w; < wy < -+ < wp—2 < wi_; and z;(0) is sufficiently
large.

4.4.3 Complexity Issues

We have shown in previous sections that there exist piecewise constant optimal con-
trols to (LCLP), (LCLP1) and (LCLP2) that have polynomial number breakpoints.
For general (FNET) problems, we have following computational complexity result.

Theorem 4.7 Let (P) be a class of (FNET) problems. If there exists a piecewise
constant optimal control that has polynomial number breakpoints for every instance
of (P), then (P) is in NPNCO-NP.

Proof As we have seen in Chapter 3, any piecewise constant optimal control can
be obtained by solving some quadratic program whose data are bounded by some
polynomial of the input data of (P). By assumption, the dimension of the quadratic
program can also be chosen to be bounded by some polynomial of the input data
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size for (P), this proves that the problem is in NP. Let P be an optimal partition for
(P). By Theorem 3.5, we see AP*(P) gives the optimal solution value for the dual
problem. When |P| is bounded by some polynomial of the input data size for (P),
the input data size for AP*(P) is also bounded by seme polynomial of the input data
size for (P). This proves that (P) is also in CO-NP. O

Theorem 4.7 suggests that it is very likely there exist polynomial algorithms for
problems (LCLP), (LCLP1) and (LCLP2).

4.5 Controllability of the Fluid Networks

In this section, we are going to give necessary and sufficient conditions for the linear
fluid networks (FNET) to be stabilizable. More specifically, we attack the problem
from system theory point of view, i.e., we study the controllability of the linear
fluid models. We will investigate the ties in the stability conditions between the
stochastic queueing control medels and their fluid approximation counterparts. Our
result generalizes a result by Moss [66] who only gave conditions for communication
networks.
Now, let us give some definitions.

Definition 4.1 We say a network is controllable if there exist control u(t) and some
finite time T, such that z(t) = 0 for allt > T. We say a network is totally controllable
if it is controllable for all (0) such that max(z;(0)) < 1.

Definition 4.2 We say a network is weakly controllable if there exist control u(t),
some finite time T and some finite number M, such that x(t) < M for allt > T.

We remark that total controllability implies weak controllability. From now on,
we let w = e, where e is the vector of all ones. We also assume max(z;(0)) < 1 in
(FNET).

Lemma 4.10 The fluid network (FNET) is totally controllable if there exists ¢ € R"
such that the following system

Bu+b
Du

I
|
[,

IN
o
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E >
u 2>

is feasible.

Proof Let (i,¢) be a feasible solution to the above linear system. It is a fact that
€ is bounded from below by some positive number that depends on B, b, D, ¢ only.
Without loss of generality, we assume z(0) # 0. Let

1}.

0 = min{ min “
- zi(0)>0 z;(G) > 0’
So ¢ is bounded from below by some positive number that depends on B, b, D, c only.
Consider the following linear program

(LP1) minimize e'u
subject to Bu+ b < —4z(0) (4.42)
Du<e
u>0

where e is the vector of all ones. It is feasible, since # is a feasible solution. It also
has bounded objective value, so there exists an optimal solution u* to (LP1). We
claim Bu* +b = —dz(0). Suppose the contrary, there exists i such that (Bu* + b); =
~0z;(0) — 7 for some 7 > 0. We construct a new feasible solution # to (LP1). Since
(Bu® +b)i < ), there exists r € L; such that u} > 0. Let @, = u} — v and let i = u}
for all [ € L such that ! # r, where 0 < v < min{n, u’}. We only need to show that
i satisfies (4.42) since all the other constraints of (LP1) are trivially satisfied by .

Consider class j customers. If j # i, we have
(B +b); < (Bu* + b); < —dz;(0).
If j =i, we also have

(Bii+b); < (Bu® +b)i +7 < —6x;(0) — 7+ < —0z:(0).
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*

So i is feasible for (LP1). However, €t = e'u* — v < e'u*, this contradicts the
optimality of u*. So u* is feasible for the following linear system.

Bu+b
Du

u

—0z(0)

VvV IA

By same argument (just set § to 0 in the above argument), we can show there
exists #* that is feasible for the linear system

Bu+b = 0
Du < ¢
u > 0

Let to = 5%91. Consider the following control for (FNET).

u*, ift <t
o]

u*, ift>tg.
We see u(t) is a feasible control and z(t) = 0 for all t > t,. a

Lemma 4.11 The fluid network (FNET) is not weakly controllable if the following
system

(WC) minimize 0
subject to Bu+b<0
Du<c
u>0
is infeasible.

Proof Consider the dual of (WC),

(DWC) mazimize by—c'z
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subject to B'y+D'2>0
¥,220

(DWC) is obviously feasible. By linear programming duality theory, there exists
y 2 0 and z > 0 such that B’y + D’2 > 0 and b’y — ¢’z > 0. Multiply (4.1) by y we

have
y'z(t) = y'z(0) +/0 (y' Bu(t) + y'b) dt (4.43)

Multiply (4.2) by z we have
ZDu< ¢ (4.44)

Substitute (4.44) into (4.43) we get
t
yz(t) > y'z(0) + /o (¥'Bu(t) + y'b + 2’ Du(t) — 2'c) dt

= YO+ [[(By+D2u®) + (s~ o) dt

t
> y'z(0) + _/0‘ (y'b— 2'c) dt
= y'z(0) + (y'b - Z'c)t. (4.45)
Clearly, this implies that the network is not weakly controllable. a

Lemma 4.12 The fluid network (FNET) is not totally controllable if the following
system

Bu+b= —¢
(TC) Du<c

e>0

u>0

15 infeasible.

Proof Consider the linear program (WC) and its dual (DWC) used in the proof
of Lemma 4.11. If (WC) is infeasible, by Lemma 4.11, the network is not weakly
controllable, so the network is not totally controllable either. If (WC) is feasible,
there exists ¢, such that (Bu + b); = 0 for all u that is feasible for (WC) (Otherwise
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let u* be a feasible solution to (WC) such that (Bu + b); > 0, we see -};Z,- utis a
feasible solution to (T'C), contradicts the assumption of the lemma). Since (DWC)
is always feasible, by linear programming theory, there exist u* and (y, z) that are
optimal solutions to (WC) and (DWC) respectively, such that together they satisfy
strict complementary slackness condition. So, y # 0. (4.45) is still valid, so we have

yz(t) > y'z(0) + (y'b — 2'e)t > 3'z(0).

Clearly, this implies that the network can never be emptied if £(0) = e and thus it is

not totally controllable. 0
Combining Lemmas 4.10, 4.11 and 4.12, we have the following theorem.

Theorem 4.8 The fluid network (FNET) is weakly controllable if and only if the

following system is feasible

Bu+b < 0
Du < ¢
u > 0
it is totally controllable if and only if
Bu+b = —e¢
Du < ¢
e > 0
u > 0
is feasible.
Proof We only need to point out that if
Bu+b < 0
Du < ¢
u > 0

is feasible, then u(t) = @* for all t > 0 is a feasible control that will keep the system
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inventory bounded (i.e., weakly controllable), where #* is defined in the proof of
Lemma 4.10. The other three directions are direct consequences of Lemmas 4.10,
4.11 and 4.12 respectively. a

When (FNET) is specialized to a multiclass queueing network, we can define the
following traffic intensity p for the network, as in Chen [22].

p —DB .

Since for a multiclass queueing network, c is a vector of all ones and B~! is a square
nonpositive matrix, cendition (T'C) is essentially the same as requiring the traffic
intensity at each workstation strictly less than one.



Chapter 5

Fluid Telephone Loss Networks

In this chapter, we analyze the solution structure for the problems arising in tele-
phone loss networks. For this special class of linear optimal control problems with
state feedback and constraints, we show that the problem admits piecewise constant
optimal control solution when the service rates are independent of the origin and
destination of the calls. Under the same assumption, we give a heuristic algorithm
for the stochastic problem. We provide a closed form optimal solution for a two class
single-link fluid loss network, which provides insights to both the optimal solution
structure for general fluid telephone loss networks and the cerresponding stochastic
control problems.

5.1 Telephone Loss Networks

In this section, we examine the fluid telephone loss network that is slightly more
general than the one discussed in Section 1.1.3. We are interested in the optimal
solution structure for the problem.

5.1.1 Problem Formulation

As in Section 1.1.3, we have a network of locations z, fori = 1,---,n,and n x (n — 1)
different links (7,7), for ¢ # j, that connects location i to location j. Calls from
location 7 to location j arise at rate A;; with a duration of . The capacity of link

(¢,5) is Cij. For any ¢ # j and k # j, let zy;(t) be the state varla.ble that represents

122
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the number of calls at time ¢ that are routed from location ¢ to location j through
location k. We use the convention that z;;(t) is the number of calls at time ¢ that
are routed directly from location ¢ to location j. For any i # j and k # 3, let Uik (t)
be the control variable that represents the rate at which calls made at time ¢ from
location i to location j are routed through location k. We use the convention that
u;;(t) is the rate at which calls made at time ¢ are routed directly from location i to
location j. Let w and w be two nonpositive vectors.

Let A be the vector of \;; with \;, j1 appearing on top of \;,;, if and only if i; < i,
or iy = i but j; < jo. Let C be the vector of Ci; with Cj,;, appearing on top of
Ci,j, if and only if 4, < i3 or i; = i but j, < j,. Let H and F be some nonnegative
matrices. Let z(t) be a column vector of z:;(t) with z;,4,; (t) appearing on top of
Tizkajo(t) if and only if i) < 4 or iy = 5 but j; < jp or iy = i and J1 = j2 but k; < ks.
Let u(t) be a column vector of u;(t) with u;,,;, (t) appearing on top of Wigkyjp (t) if
and only if iy < i3 or ¢y = i3 but j; < 7, or i; = i, and J1 = jo but k; < ks. Consider
the following problem (cf. (TLNa) in Chapter 1):

(TLNa) minimize /OT(w'u(t)+1D':1:(t)) dt

subject to  zy;j(t) = z;(0) + /0 t(uikj(t) — wiiTii(t)) dt,  iF G, k#
Hu(t) < A, (5.1)
Fz(t) < C, (5.2)
z(t), u(t) >0, t €0, 7).

This formulation is more general than the one discussed in Section 1.1.3, since H and
F' are arbitrary nonnegative matrices (cf. (1.4) and (1.5)). In the remainder of this
section, we assume that p;; = p for all ¢ and j. With a slight abuse of notation, we
introduce new variables yi;(t) = zij(t) e#* and define uyj(t) = et uy;(t). Let y(t)
be a column vector of y;;(t) defined in the same way as z(t) is defined from Yik; (t)
and let u(t) be a column vector of u;(t) defined in the same way as u(t) is defined
from u;(t) in (TLNa). We now have

T
(TLNb) minimize /0 (e""‘w'u(t)-i—e"“w'y(t)) dt (5.3)
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subject to  yir;j(t) = yir;(0) + /0: ui;(t) dt, it k#7
Hu(t) < e, (5.4)
Fy(t) < e*'C, (5.5)
y(t), u(t) >0, te(o, T).

Let us first transform the objective function of the problem into a function of the
control alone. From (5.3), we havs

T
/0 e M Wik Yiki {8) ds
1._ —uT T 1 /T _ —us d
= —;w,-kje A u,'kj(s) ds + ;[} Wik j€ u,-kj(s) S
1 /T
= -‘;‘/0 (e““’ - e““T)tD,-kju.;kj(s) ds
So, (TLNYb) is equivalent to

T
(TLN) minimize /0 B(t)u(t) dt

subject to yixi(t) = yir; (0) + /0 Cuki(6) dt, i kA
Hu(t) < et
Fy(t) < e*C,
y(t), u(t) 20, telo, T},

where

1
w(t) = e " (w + ;u‘)) - —l—e""Tu‘).

We remark that (TLN) is an (SCSCLP). We also remark that the right hand side
in the constraints of (T'LN) is an exponential as opposed to piecewise linear function
and Algorithm A in Chapter 3 does not directly apply.
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5.1.2 Approximate Fluid Loss Network Problems

Let R = {to,---,t,} be a partition of [0, T}. Let a(t) be the piecewise linear extension
of {a(tO)’ a(tl)‘) T ’a(tr)}) where

a(t;) = w(to) - g(tj ~ tj_1)e ™5 (pw + ).

We let c(t) be the piecewise linear extension of {c(t),c(t1), -, ¢(t,)}, where

c(t:) =C+ ) (t; — tj—1)uet1C.

=1

Consider the following approximation of (TLN):

=1 et
(TLNg) minimize Y / a(t)'u(t) dt
t.

i=0 /ti
subject to  yir;(t) = yu;(0) + /Of ui;(t) dt, i#5 k#]

Hu(t) < ettm )\, i #J, t € [tmy tm1)

Fy(t) < c(t),

y(t), u(t) >0, telo, 7).

By the concavity of @ and the convexity of e#*), a(t) is an overestimate of ii(t)
and c(t) is an underestimate of e#!A. Furthermore, a(t) and c(t) converge uniformly
to w(t) and e**) as the size of the maximal length interval in partition R tends to
zero. Due to these reasons, we also call (T'LNg) an approximate fluid loss network
problem. (T'LNp) is also an (SCSCLP). Consider the dual problem for (T LNg) (cf.
(SCSCLP1*) in Chapter 2):

N1: . T ’ r tm+1 ptem \/ T ,
(TLN1g) mazimize —/0 y(0)' = (¢) clt-mz=1 /tm e’ ™ A'n(t) dt —--/0 c(t)’é(t) dt

subject to a(t) — /tT m(t) dt + H'n(t) > 0,
n(t) + F'E(t) > 0,
n(t) >0, &(t) > 0,
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By allowing ¢ functions in the (TLN1%), we have the following alternative dual
problem for (TLNpy) (cf. {5CSCLP*) in Chapter 2):

(TLN},) mazimize — /Ty(O)’ dr(t) — 2; / T gntm A8 dt — / Tc(t)' dé(t)
R 0 sy Jtm - 0

subject to a(t) + w(t) + H'n(t) > 0,
m(t) + F'§(t) <0,
m(t) is a bounded measurable VF function
£(t) monotonic increasing and right continuous
on [0, T) with &(T) =0, =(T)=0
n(t) > 0, for t € [0, T).

5.1.3 Structural Results for (T'LNg)

In this section, we analyze the solution structure for (T'"LNg). Let
b(tioa+) = b(t;—) = e,

and let P be a partition such that R C P. Rearrange the indices in R and let
b(ti—1+) = b(t;—) = b(ti-1+) when t;_, € [t;, tn), where t; and t,,, are two consecutive
breakpoints in R. We can obtain the following discrete approximation of (T'LNg) (cf.
DP(P) in Chapter 3 and the DP(P) in Pullan [77]).

(ti—l +1;

!
i) it )

P
DPg(P) minimize Y (t —ti-1)a
i=1

subject to  (to) = y(to),
—(ti — tim1)@(tica+) + §(t:) — §(tiza) =0, i=1,---,p,
Ha(tioi+) < b(ti-1+), i=1,---,p,
Fjt;) <c(t:), i=1,---,p,
@(tio+) 20, §(t:) =0, i=1,---,p.

(TLNpg) is an (SCSCLP) with E being an identity matrix and the assumption
on the problem data (cf. Assumption 2.1 in Chapter 2) is satisfied. By Theorem 3.8,
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we obtain the following structural result for the optimal solution for (T LNg).

Theorem 5.1 There erists an optimal solution (u(t),y(t)) to (TLNg) where u(t) is
piecewise constant and y(t) is piecewise linear with respect to a partition P such that
RC P andt;_) # t; for alli. There is no duality gap between (TLNR) and (TLN},).
Let (&, g) be defined from (u(t),y(t)) at the breakpoints in P. Cuver cach interval
[ty tis1), (@(ti+), 82280y 45 6 conver combination of the extreme points of the

tir1—ti

following linear system (SY S,,)

(SYS;)  a(ti+) - gltivr) — (k) _ 0
tt+l ti

Ha(ti+) < b(t +)
(Fy(tﬁ-l l)) < C(t,)
Ji -

tiv1 —
u(t;+) > 0,

where J; is the set of inequalities in Fj(t;) < c(t;) that are binding.

Our objective is to analyze the solution structure for (@, §), and thus characterize
the optimal solution structure for (TLNa). We will show that there exists an optimal
control for (TLNa) that is piecewise constant.

5.1.4 The Ordering of the Control Pieces

Here, we first give several structural properties for (SY'S;,). Cbviously, there are a
finite number of systems (SY'S;,) and for each such system, there are a finite number
of extreme points. The total number of different extreme points for these systems
are uniformly bounded by some number that is independent of R. The following
lemma shows that for each extreme point (u(t;+), !(‘—‘fff%%('—'l) of (SY'S,,), the scalar
a(ti+)"u(t;+) is also independent of R. The scalar a(t;+)"@(t;+) will be used later to
show that there exists a piecewise constant optimal control for the original problem
(TLNa).

Lemma 5.1 For every extreme point (u(t;+), w—;ﬁf—:{f@—‘)) of system (SY' Sy,), a(ti+) u(t;+)
is independent of R.
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Proof Assume ¢; € [t;, t,), where t; and t,, are two consecutive breakpoints in R.

By Theorem 5.1 (e ““'u(t;+), e—m‘yu;:’:? ::—ml”(t") ) is an extreme point of the following

system

e Py (tina) — e Py(t:)
tiv1 — L

(SYS1y) e Mhu(ti+) - =0

He My(t4) < A

—pby, (4, — ot .
Fe ‘y(tt+l) e y(tt)\ < [.l.C
tiy1 — L g

e *u(ti+) > 0.

(SY S1,,) is obviously independent of R. The lemma now follows from the following
equation:
a(ti+) u(ti+) = —(pw + ®) (e u(ti+))
a

The following lemma gives an order on the value a(¢;+) u(i;+) between adjacent
intervals.

Lemma 5.2 Let (u(t),y(t)) be an optimal solution to (TLNR), where u(t) is piece-
wise constant and y(t) is piecewise linear with respect to a partition P such that
RC P andt;_, #t; for alli. Let (@, ) be defined from (u(t),y(t)) at the breakpoints
in P. For all i > 0, we have

d(tg_1+)'u(ti_1+) > d(t,'+)'u(t,~+)
Proef Suppose the contrary. Assume
c'z(t,-_1+)'u(t,~_1+) < d(t,'+)'u(t,~+),

and we will show a contradiction. We distinguish two cases, the first case being i & R
and the second case being i € R.

If i ¢ R, assume ¢; € [t;, t,,), where t; and {,, are two consecutive breakpoints in
R. We see that t;_; € [t;, t,). Define a new solution (z, ) in the following way:

{Tz(t,-+) = a(tj+) forallj#i—1, j#1
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y(t;) = ;) forallj#i
2 N ti—ticy tiyn —ti .
Utit) = B(tiog4) = ———— ity +) + ——d(ti+)
tiv1 — iz tiv1 — i

y(t:) = G(tior) + (8 — tic))(tizr+)

Let @(t) and (t) be the piecewise constant exiension and piecewise linear extension
of % and § respectively. It is easy to see that in [t;1, t:41), @(t) takes on a constant
conirol that moves the state §(¢) from y(t;_;) to y(t:+:). Hence we can easily show
that (i(t), §(t)) is still a feasible solution for (T'LNNg). As for the objective function,
we have

V((ﬁ(t), §(1))) — V((u(?), y(t)))
— f ' (a(t)a(t) - alt)u(t)) de

i-1

= (i~ tia) (f(tet) — altir b)) (altiat) + 0

5 a(ti+)) +

(tiv1 — t)(@(ti+) — a(ti+)) (a(tizy +) + tiy1 b — 2ty

2
= Gl s e - Bl _gti_'l)"zﬁ(ti—1+)'d(ti+) -

2
. tiv1 + 1t — 2t .
(tig1 — t)u(ti+) L 5 Sa(ti+)

= %(t,- = tio1)(tir — ti)a(ti+) (@(tio+) — a(ti+))
<0 (5.6)

a(ti+))

where V((u(t), #(t))) and V((u(t), y(t))) denote the objective value of solutions
(@(t), g(t)) and (u(t), y(t)) in (TLNRg) respectively. But (5.6) contradicts the opti-
mality of (u(t), y(t)).

If i € R, assume t;_; € [t;, t;), where t; and t; are two consecutive breakpoints in

a
-~

R. Now, define a new solution (&, ) in the following way:

u(ti+) = a(tj+) forall j#i—1, j#i

ﬁ(tj) §(t;) forall j#14
el‘tl

u(tio+) = et (tipy — ;) + ePh(t; — tiy) ((t: = tic)a(tioa4) + (i — ti)a(tit))
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el“i
esti(tipr — t:) + erte(t; — i)
ﬁ(ti) = §(ti-1) + (¢ - ti-x){l(ti-1+).

(8 = t-n)altizi+) + (tira — ti)a(ti+))

(ti+)

Let i(t) and §(¢) be the piecewise constant extension and piecewise linear extension
of % and § respectively. It is easy to see that in [ti-1,tis1), U(t) takes on a piecewise
constant control that moves the state () from y(t;_) to y(ti11) while keeping the
slope of §(t) in propurtion to that of the c(t). We can again show that (@(t), §(t)) is
a feasible solution for (T'LNpg). As for the objective function, we have

V(.(ﬁ(t), §(t))) — V(u(t), y(t)))
- /: :‘ (a(t)'d(t) — alt)u(t)) dt

= (= i) @4 — At ) (b ) + i) +
(41 — t) (R(tit) — A(te4)) (@ltist) + (& — tio))a(tiost) + " Ba0r 1)
= (—ti-%ﬁi‘l(t;_1+)'d(t;_l+) - E%—l)2i‘l(ti—l"')’d(ti—l‘i') +
(tig1 — t;)?

—2_({1(ti+) — a(ti+)) a(ti+) + (tipr — t:)(@(tit+) —
a(tit+)) (6 — ticr)a(tio+)
= —;—(t,- —tia)(tivr — t)(a(tioa+) a(tisy+) — a(ti+)'a(ti+))

< 0

This also contradicts the optimality of (u(t), y(t)). a
An important consequence of the above proof is the following corollary.

Corollary 5.1 Let (u(t), y(t)) be the optimal solution for (TLNg) as in Lemma 5.2.

If
a(ti-1+) u(ti—1+) = a(ti+) ulti+)

for the control on two adjacent intervals in (u(t), y(t)), then we can construct a new
optimal solution (u(t), §(t)) for (TLNR). Furthermore, @(t;-1+) = ii(t;+) if t; € R
and e~P4i(t;,_1+) = e7P5i(ti+) if t; € R, where t;_y € [ty, tn) and t;, t,. are two
consecutive breakpoints in R.
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Let (i, §) be defined as in Theorem 5.1. By Theorem 5.1, (@{t;+), l"%‘f—_—%’-“—‘l) is
a convex combination of the extreme points of the system (SYS;), i.e.,

k(1)

ﬁ(i;-{-) = ZO'(') ('

N R (!)
§(tis1) — 9(t:) & 0] (t)
= 0; 5.7
tigr — ¢ Z (57)

for some k% > 1, where a() > 0, Lk(') ) =1, and (uJ , JJ( )) are extreme points of
(8YS,,). The following lemma gives a nice property that all the extreme points in

(5.7) should satisfy.

Lemma 5.3 We have
a(t +)I (K) _a(t +)I J+l
forall j < k® —1.

Proof Suppose the contrary. WLOG, we may assume
a(ti+)ul) = = max a(ti+) )

Hence we have
a(tit)ul” > ati+) ),

for some 1 < j < k@. Otherwise the lemma would be true. Now, consider the

following new solution (#(t), §(t)) for (TLNR). (@(t), §(t)) equals (u(t), y(t)) except
on [t;, tiy1). We let

i(t) = uf) fort€lt;, t; + (tiss — t:)),

X0
- 1 ;
ut) = T+ ((ag') mud) + Z at? (’)) for t € [t; + T(tig1 — ), tiv1)

and define %(t) from #(t) by the system dynamics, where 7 is the largest scalar in
(0, ali)] such that Fy(t;+7(tiy1—ti)) < c(ti+7(tir1—t;)). It is easily seen that such a
7 exists and (&(t), §(t)) is feasible for (T LNRg). However, an analysis similar to (5.6)
gives that V((a(t), §(t))) — V((u(t), y(t))) = 37(1 = 7)(tix1 — t:)*(a(ti+) (@(tigr—) —
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i(ti+)) < 0. This contradicts the optimality of (u(t), y(t)). O

5.1.5 Structural Result for (TLNa)

We can now prove the main optimal solution structural result for (TLNa).
Theorem 5.2 There exists a piecewise constant optimal control for (TLNa).

Proof Let (ugr(t), yr(t)) be an optimal solution to (TLNg) as in Lemma 5.2.
Assume that (9g(t), Jr(t)) is piecewise constant with respect to partition Pg, where
t; < tity for all i. Consider the following solution (#g(t), §r(t)) for (TLNa):

ip(t) = e™*up(t) and gr(t) = e up(t), forte [ty tm) (5.8)

where ¢, and t,, are two consecutive breakpoints in R. It is easy to see that ((t), 7(t))
is feasible for (T'LNa). Since, as the maximal distance of all adjacent breakpoints
in R tends to zero, the objective value of (T'LNg) tends to that of (TLN), which is
exactly equal to the objective value of (TLNa). So every limit point of a sequence
{(2rx(t), Frr(t))} would be optimal for (TLNa), where R is a partition of [0, T
such that the maximal distance of all adjacent breakpoints in R* tends to zero as k
tends to infinity. It suffices to show that for any R*, we can pick (u%(t), y%(t)) so that
ipx(t) and gge(t)) constructed for (TLNa) according to (5.8) are piecewise constant
and piecewise linear respectively, and the total number of pieces for both g« (t) and
Yrx(t)) are uniformly bounded (We count the number of pieces in the following way.
For any two adjacent intervals [t;_;, ¢;) and [t;, t;,1), we count them in the same piece
for gk (t) if and only if g« (t) is constant over [t;_;, t;41). We define the number of
pieces in Fpx(t) as the number of pieces in g« (t)). In the remainder of the proof, we
do just that.

Gbviously, @px(t) and g (t)) are piecewise constant and piecewise linear respec-
tively. Suppose we pick (u§(t), y%(t)) in such a way that the total number of
pieces in gk (t) and Fge(t)) is minimum. Over any piece of @gk(t), by Lemma 5.3,
a(ti+)"ups(t) is constant and equals to d(ti+)’u§-‘) , where (ugi) , yJ(-‘)) is an extreme
point of (SY'S;,) as in (5.7). By Lemma 5.2, a(t;+)uge(t) can only decrease over
any two adjacent pieces in @gx(t). By Corollary 5.1, we know that a(t;+)"ug«(t) can
only strictly decrease over two adjacent pieces in igx(t); otherwise we can obtain
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another (@j(t), 7k(t)) that is optimal for (TLNg+) and construct (if(t), 75(t))
according to (5.8), with fewer pieces than #g«(t), which contradicts the way we
picked (uf(t), yk(t)). Hence every piece for #ige(t) corresponds to a different value
d(ti+)’u§i). Since according to Lemma 5.1, there are a finite number of d(tg+)’u§-‘)
regardless of the choice of R, there 1s also a uniform upper bound on the number of
pieces in (uf(t), y5(t)). This completes the proof. O

5.1.6 Algorithmic Implications

Let P be a partition of [0, T] and (i(t), Z(t)) be a feasible solution for (TLNa) with
u(t) piecewise constant with P. We have the following nonlinear program

NL.P(P) min zp:(t, - t,-_l)(w + %‘-'U—l)"&(t,'_l-*-) +
i=1
Zp: lw'(a‘:(t-_l) - lﬁ(t. 14)) (1 — e Hti—ti-1))
I i 2 —

i=1
ti s tio1 s 1, ti ti-
s.t. e ':B(t,') — et ‘:z:(t,-_l) = ;u(ti_1+)(e“ - et l),
Ha(ti—1+) < A,
it) >0, Vi

In iight of Theorem 5.2, we propose the following heuristic algorithm for solving
(TLNa), assuming p;j = p.
Algorithm D (H, F,w,w, ), ).

1. Get a KKT point for NLP(P).
2. Remove zero length intervals.

3. Double the number of breakpoints as in Algorithm .A. Let P be the new parti-
tion and go to step 1.

We remark that in order to get a KKT point for NLP(P), we can iteratively
linearize both the constraints and the objective function and solve the resulting linear
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program for a new search direction (cf. (SUBLP*)). Algorithm D cau be used to
periodically calculate a heuristic policy for the stochastic loss network.

5.2 A Single-Link Problem

In this section, we give a closed form optimal solution for a single-link fluid telephone
loss network. The reason why we are interested in this problem is the following. First,
the problem itself is nontrivial and has important applications in communications (see
Kelly [52]) and inventory control. Second, it provides insights to the corresponding
stochastic control problem. Third, we want to illustrate the structural difference
between an (SCSCLP) and a (CLP) that is not an (SCSCLP).

5.2.1 A Single Link Telephone Loss Network

We consider an example of the problem discussed in Section 5.1. We have two types
of arrivals to a single link, from node 1 to node 2, with capacity C. For class i calls,
t = 1,2, we have the following problem data:

" Arrival rate | Service rate | Reward rate

[ Class 1 " A1 M1 Wy
Class2 | ) 2 wy

All the rates are positive. We assume that wy > w; > 0, and the initial number of
calls for each class z;(0) satisfies: z;(0) > 0, z2(0) > 0 and z,(0) + z2(0) < C. We
also assume that T is sufficiently large, in a sense to be specified later. We want to
maximize the total reward over [0, T, i.e.,

[1%]
—xo(T
K2 2( )

(STLN) minimize —/OT (wiz1(t) + woza(t)) dt — %z,(T) -
subject to. z(t) = z,(0) + | () - i (t)) dt

2a(t) = 22(0) + [ (walt) = paza(t)) dt
uy(t) < A
ug(t) < A2
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Ti(t) + 22(t) < C
z(t), u(t) >0, t €0, TJ.

We remark that (STLN) is a special class of (T'LNa), however, we do not require that
M1 = p2 in this section. By transforming the objective function into a function of the
control alone and by introducing new variables y;(t) = e#* z,(t) and @;(t) = e** u;(t),
we have following equivalent problem

(P) minimize —/ ( e M1t (t) + E—e““"ﬁz(t)) dt

t
subject to y,(t) = z,(0) +/0 wy(t) dt

t
y2(t) = z2(0) + /0 iz (t) dt
iy (t) < ettt
ta(t) < Aget?*
e~Mty (t) + ety (t) < C
y(t), u(t) >0, telo, T)

A1

). We have the
2

We let U = ’;l 0 and w(t) = ~U~'e V*w and A = (
K2
following dual problem for (P)

(D) mazimize -—/OTx(O)’ﬂ'(t) dt —-/0 NeVn(t) dt / CE(t) dt

subject to  w(t) — /tT m(t) dt +n(t) >0
Uta(t) + H'E(t) > 0 (5.9)
n(t) = 0, £(t) >0,

where H = (1 1).
In the following, we propose a policy for (STLN) and thus for (P). We construct
dual solution for (D) that together with the primal solution satisfy the following
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complementary slackness conditions

]

() =) = 0
EO)(@(0) + 22() =€) = 0
w)@t) ~ [ m(0) de+mle) = o
zi(t) (et mi(t) + £(t)) = 0, i=1,2.

-

Therefore this primal dual feasible solution pair is optimal by weak duality. We
remark that we can replace (5.9) by eV'n(t) + H'€(t) = 0. This is because that
y(0) > 0, the complementary slackness condition ensures eV*=(t) + H'€(t) = 0. In
this section, we do not introduce an alternative dual problem. Instead, we allow the
dual variables 7(t) in (D) to take on Dirac § functions.

5.2.2 The Proposed Policy

Let A be defined as follows: Given that we are at time tg, define t > t; as the solution

for
(wg — wy)e ™™ = wy (e"“““ - e‘““) i

Such a solution obviously exists. We let A =t — to. It is clear that
un (e"‘A—-l) =Wy — W

and so A > 0 and it is independent of ¢ty and T. The interpretation for A is the
following: if we accepted Class 1 calls for A extra time, we would have got the same
reward as accepting Class 2 calls.

We propose the following control policy for (STLN).

1. We accept Class 2 calls whenever possible.

2. We accept all Class 1 calls at time t; if

.’Bl(to) + $2(to) <C
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and
z1(to)e ™"t + z5(to)e #2t + ?(1 —emh < C (5.10)
2

for all f € (0,A].

3. We accept Class 1 calls at time ¢; if
T1(to) + z2(to) = C,

at the largest possible rate to keep z,{ty) + z2(to) below C.

We remark that the left hand side of (5.10) is the number of calls in the link at time
to + ¢ if we let u;(t) = 0 and ua(t) = A, for all t € [to, to + £] (of course, by ignoring
the capacity constraint). Depending on u; = p, 1 > g2 or gy > py, we have three
different cases.

1. If py = pa, the policy is a threshold type policy (trunk reservation). Let B =
max{0, ( 5#2 —C)(e*® —1)}. We accept class 1 customers if and only if there are
more than B free circuits.

2. If g1 > po, we accept class 1 customers if and only if the state (z;(t), zo(t)) is
below the following line

A
T1(t)e ™8 4 zy(t)e 22 + ”—2(1 —eH8) = C,
2

3. If ua > py, the control is more complicated. If ‘% > C, the policy is the same to
B1 > p2, i.e., we accept class 1 customers if and only if the state (z,(t), zo(t))
is below the line

z1(t)e B 4 1y(t)e M2 + l—);g(l —e M8 =,
2

Otherwise, the control is characterized by a switching curve (see Figure 5-1, we
accept class 1 customers only if the system state is in the shaded area). The
switching curve is defined by the following three curves:

1+ z,=C,
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- _ A2
T1eTMA f peA L Z2(1 — 8 = O

H2
and 2=y
A 1 K2 — s
2 5 —
— =Iy+—z z
%) K2 (Cﬂ'z — A2 l)

In the remaining of this section, we give detailed analysis for the proposed policy
according to the above three cases.

X2

X+x,=C

x; e 1B 4 xy 28 +%§(1-e’"2A )=C

Ap_, , B it
iZ=xar Ln (GhLa) B

Figure 5-1: The switching curve policy

5.2.3 The Case pu; = uy = p

First we consider the case y; = p2 = u. The policy reduces to: always accept Class
2, accept Class 1 at time ¢ at rate Ay if z;(t) + z5(t) < C and

T (t)e ™ 2 + 1y(t)e 2 + %2(1 —-e " < C
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ie.,
—)ete + —, 5.11
. " (5.11)
accept Class 1 at time ¢ at a rate to keep z,(t) + z2(t) = C if z,(t) + z2(t) = C.

We construct dual optimal solutions for the following situations.

Case 1: If C > %‘1, (5.11) is always satisfied. We let

z1(t) + z2(t) < (C —

/\1, if .’Bl(t) + .’L'z(t) <C
pC — Ay, otherwise

u(e - {
and let
ug(t) = Ag.

Let t* be the first time such that z,(t*) + z2(t*) = C If no such t* exists, we let
t* =T. It is easy to see that our policy is optimal and the dual optimal solution can

be constructed as follows:
For t € [t*, T,

mi(t) = m(t) = —wie™, £(t)=w, mt) =0, m(t)= (w2~ wx)/t e M dt.
Fort € [0, t*),

m(t) = m(t)=0,
£t) = 0,
¢ t* 00
= —nut , = —Ht - ‘ Bl
m(t) w1/t e dt, mt) w2/¢ ™" dt + (w; wl)/¢. e dt

Cases 2 and 3: If C < %f-, it is easy to see

A2 Az

def _ AL PNV
B = C; ((C ﬂ)e" +u)
= (22 _ ) (etD —
= (u C)( 1)
> 0

Our policy gives a trunk reservation type of policy, i.e., we accept Class 1 only when
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there are more than B free circuits in the link. In order to construct dual variables,
we further consider the following two situations.

Case 2: 2,(0) + z2(0) < C — B < C. Let u(t) = A, and uy(t) = As. Smce > C,
we see that z(t) + z(t) will be monotonically increasing, let ¢t* be the tlme that
z1(t*) + z2(t*) = C — B. After t*, we let u;(t) = 0 and uy(t) = Ap. By (5.11), we
have z(t* + A) + z2(t* + A) = C. After t* + A, we let u;(t) =0, ug(t) = uC.

Case 3: z,(0) + z2(0) > C — B. Let u;(t) = 0, and uy(t) = As. Slnce > C, by
(5.11), there exists t* < A such that z,(t*) + zo(t*) = C. After t*, we let u(t) =0,
uy(t) = puC.

For Case 2, the dual variables are:

7T1(T)

&T) = 7}6(7‘), m(T) = n(T) = 0.

=2 TH(T), m(T) = ~=2e M TH(T),

Forte [t*+ A, T),
m(t) = ma(t) = —wee™, £(t) =wz, Mm(t)=m(t) =
For t € [t*,t* + A),
t*-+A ¢
m) =m(t) =0, £B)=0 mH=0, me)=w [ e at
For t € [0, t*),

m(t) = m(t)=0, &)=
mt) = w /tt eHt dt, m(t) = wz_/t e e M dt

For Case 3, the dual variables are:

m(T) = —%e“"TtS(T), m(T) = — 'fj e™HTH(T),
€T) = “2(T), m(T)=m()=0
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Fort € [t*, T),
m(t) = m(t) = —wee™", £(t) =wy, Mm(t) = m(t) =0.

For t € [0, t*),

Wl(t) = Wg(t) = 0'» £(t) = 0: T’l(t) = 0» "72(t) = W ‘/tt. e7H dt

For both Case 2 and Case 3, we require T' > t* + A.

5.2.4 The Case y; > uo

Next, we ccnsider the case p; > po. Our policy reduces to: always accept Class 2,
accept Class 1 at time ¢ at rate A, if zy(t) + z2(t) < C and

z1(t)e D 4 y(t)e et + 23(1 _emdy < C (5.12)
2

accept Class 1 at time ¢ at the maximal allowable rate (i.e., ;(t) < A and u;(¢) +
u(t) < pyza(t) + paza(t)) if z1(t) + z2{t) = C.
We construct dual optimal solutions for the following three situations.
Case 4: If for some t*, ;(t*) + z2(2*) = C but (5.12) is not violated, u,(¢) = A;, and
ug(t) = A for t < t*. At t*, we see the derivative of the left hand side of (5.12) with
respect to A is
o H28 - pmzy (tt)e H8 — ugzg(t‘)e""’A. (5.13)

If Ao > pyxi(*) + pozo(t*), we have that Age™#2t > pyx;(2*)e 1t + pozo(t*)e#2* for
all t € [0,A] and so z;(t*)e "t + z,(t*)e~#2t + %(1 — e#2t) is strictly increasing
function of t. So,

3
z1(t*)e ™A + zo(t)e A + #—2(1 —e 85 O
2
and we have a contradiction. So Ay < p1z1(¢*) + poza(t*).

After t*, we let u1 () = p1z1(t) + poz2(t) — A2 and uy(t) = Ag, until for some {,
u1(t) = A (we let £ = T if no such # exists). This can happen only when z;(t) is
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strictly increasing and z,(t) is strictly decreasing for t > t*. After ¢, z,(¢) continues
to increase and z(t) continues to decrease and we let u;(t) = A\; and ua(t) = Xp. It is
easy to see that z,(t) + z,(t) < C for all t > . We construct a dual feasible solution
as follows:

For t € [t, T),

m(t) =m(t) =&(t) =0, m(t)= _/t we™Mt dt,  m(t) = /; wpe 2t dt.
For t € [t

m(t) = —wie™®t =5 (D), m(t) = —wie ™t — §(Hm (Fewr—rt
£t) = w+o6(Em(De,

- - - i
m(t) = 0, m(t) =na(f) — m(H)elrrr2) _,_/t (wy — wy)e 2t dt.

For t € [0, t*),

t* t*
m(t) =m(t) =0, £()=0, m(t)= wx-/; e Mtdt, m(t) = wz[ et dt+my(t*)

Case 5. For some t* > 0, (5.12) is violated, for t € [t*, t* + A), we let u;(t) = 0 and
uz(t) = Ag. It is easy to see that z,(t* + A) + zo(t* + A) = C. After t* + A, we let
u1(t) = 0 and ua(t) = p1z1(t) + pozo(t). Obviously, uy(t) is decreasing after t* 4+ A
and this control can be carried out until 7. We construct a dual solution as follows:
Forte [t*+ A, T,

m(t) = —wae Mt 4 §(T)wp(T)eW2=#IT | y(t) = —wye 2t + 6(T)wo(T'),
£(t) wy + 6(T)w2(T)e*T, m(t) = m(t) = 0.

il

For t € [t*,t* + A),

t*+A
m(t) =ma(t) =0, €(t)=0, m(t)=0, ma(t)=ws /t e~hat d.
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For t € [0, t*),
¢ t"+A
m(t) =m(t) =0, £(t)=0, m(t)= wl/t e7tdt, m(t) = wz_/t e Ht gt

Case 6: At t* = 0, (5.12) is violated. We see there exists A € [0, A}, such that (5.12)
holds with equality. For t € [t*, t* + A), we let u;(t) = 0 and uy(t) = Xp. It is
easy to see that z,(t* + A) 4 z,(t* + A) = C. After t* + A, we let u,(t) = 0 and
us(t) = pa1z1(t) + pox2(t). Obviously, us(t) is decreasing after t* + A and this control
can be carried out till . We construct dual solution as follows:

Fort € [t*+ A, T),

mi(t) = —wpe ™™ + §(T)iap(T)el* T, my(t) = —wpe 2 + §(T)y(T),
£t) = wyr+8(T)wa(T)e"T, m(t) =ma(t) =0.

For t € [t*,t* + A),

+A
m(t) =m(t) =0, £()=0, m(t)=0, nt)=w: /: et dt

For Case 4, we require T >t if u;(f) = A;. For Cases 5 and 6, we require that
T >t +A.

5.2.5 The Case u; > u,

In this case, our policy reduces to: always accept Class 2, accept Class 1 at time ¢ at
rate A; if z,(t) + z2(t) < C and

z1(t)e ™% + zo(t)e™H2* + ﬁl(l —e M) < C (5.14)
2

forall s € [0, A], accept Class 1 at time ¢ at the maximal allowable rate (i.e., u; () < A
and ul(t) + UQ(t) S ulzl(t) + [tgxg(t)) if .’L‘l(t) + .'L‘g(t) =C.

We construct dual optimal solutions for the following four situations.
Cases 7and 8: For some t*, z(t)+z2(t) = C and (5.14) is not violated before t*. We
see u1(t) = Ay and uy(t) = Ap for t < t*. Obviously, at t*, Ay < p1z1(*) + paza(t*).
For t > t*, let uy(t) = pyzy(t) + paza(t) — A2 and pa(t) = As.
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Case T:Ag > pazo(t*). There exists £ such that u;(f) = A;. u,(t) is monotonically
increasing during [t*, f]. After ¢, i.e., for t € (£, T), we let u;(t) = A; and ug(t) = .
It is easy to see that z,(t) + z2(¢) < C for all t > .

Case 8 XAy < paz2(t*). In this case uy(t) is monotonically decreasing in [t*, T, z,(t)
is increasing and z(t) is decreasing. u,(t) will always be nonnegative, since z,(t) will
always be no less than ;% Dual variables for both cases that are complementary to
primal solutions can be specified as follows:

For Case 7, the dual variables are:
For t € [t, T},

(o o] o0
m(t) = m(t) =6t) =0, m(®)= [ wetdt, mt)= [ we ™ dt.
t t
For t € [t*, 1),

7r]_(t) = —wle’l‘xt _ 6({)771(5), ﬂz(t) — _wle-“2t _ J(t-)nl(i')e(p.l—pg)t-,
£ty = wi +8@E)m (e,
- - - t
nl(t) = Oa 772(t) = 772(t) - ﬂl(t)e(”‘_"’)‘ +/¢ ('Ul2 - wl)e-l‘ﬁ dt.

For ¢t € [0, t*),
t* t*
m(t) =m(t) =0, £(1)=0, m(t)= wl/t e~Mtdt, ma(t) = wz-/t e™H2! dim(t*).

For Case 7, we require T > {.
For Case 8, the dual variables are:
Fort € [t*, T),

m(t) = —wie™ + 8(T)wo(T), ma(t) = —wie ™ 4 §(T)y(T)elr —#2)T,
§(t) = wp+o(T)e"T, m(t)=0, 7no(t) = _/tT(wz — wy)e 2 dt.

For t € [0, t*),

MO =mt)=0, €)=0, mO)=w [ dy, me)=w, [ e ditm(t)
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Suppose for some ¢*, (5.14) is violated, we distinguish two cases,
Case 9 t* =0, i.e.,

21(0)e™E 4 z5(0)e 2 4 22 (1 — g=) > C
H2

for some t € (0, A] (we pick the smallest such £). Let u;{(t) = 0 and uy(t) = A,
for all t < £. Obviously, z;(2) + z2(f) = C, x1(t) + z2(t) < C for all t < £ and
Az 2 171 (2) + paza(t), z1(t) decreases and z,(t) increases during [0, Z]. Let u;(t) = 0
and uy(t) = pyzi(t) + pazo(t) after Z, till uy(f) = Ap. After £, let uy(t) = pyz(t) +
paza(t) — Mg and up(t) = Ag, till uy(2) = A;. After £, we let u1(t) = A1 and wa(t) = As.
It is a fact that z,(t) + z2(t) < C for ¢ € (£, T) and z,(t) + z,(t) decreases even
though z5(t) increases. If no £ or £ exist, we let £ = T and { = T respectively.

For Case 9, the dual variables are:

For t € [t, T),

m(t) = m(t) =£(t) =0, m(t) = ‘/; ue Mt dt, m(t) = /z wye 2t dt.
For t € [f, %),

m(t) = —we™ —§Bm(E), m(t) = ~we - 5(5)771(273("1_"2)?,
£t) = wi+oBme,

. - .
m(t) = 0, mat) =n2(t) — m(E)elr " + /t (wy — wy)e ™ dt.

For t € [t, 1),

m(t) = —wpe™Mt — §(E)pp(@)e T my(t) = —wpe 2t — §(Dma(d),
£ty = wa+6(E)m(E)er,
m(t) = 0, na(t)=0.

For t € [0, 1),

7!'1(t) = 7I'2(t) =0, f(t) =0, 1]1(t) =0, 7]2(t) = Wy /t‘t—e—w"t dt + 772(6
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Case 10: t* > 0. We pick the smallest ¢ € (0, A] such that
oy o—mi ol | A2 —paf
Il(t )e o +$2(t )e K2 +-u—(1—€ “2)=C
2

It is easy to see that
A2 >z (7 + 1) + poza(t™ + 1)

and if £ < A, we have
A2 = iz (8 + 1) + poza(t” + ).

Let u;(t) = Ay and ua(t) = Ay, for all t < t* and let u;(¢) = 0 and uy(t) = Ag, for all
te (t*, t*+1]. Fort >t +1, let u1(t) = paz1(t) + paza(t) — A2 and uy(t) = Xp. We
let £ and % be defined the same as in Case 9. We remark that if £ < A, then t* +1 = £.

For Case 10, the dual variables are:
For t € [t, T},

mi(t) = ma(t) = €(t) =0, m(t) = /t Twe it dt, m(t) = /t = wee 2t .
For t € [t 1),

m(t) = —wye Mt — 6(?)771(;), mo(t) = —wye #2t — 5(§)nl(ae(u1—#2)5,
£t) = wi+6@m@Be,

. N . 1
mt) = 0, mnyt) = m(t) — m(g)elrr—+2* +_/ (wg — wy)e™** dt.
t
Fort € [t* +1¢, ©),

mt) = —wpe ™ — §(EmE)er M, my(t) = —wpe ! — 6(E)na(d),
Et) = wo+o(Dm(E)e,
m(t) 0, m(t)=0.
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Fort € [t*, t* +1),

m(t) =m(t) =0, &(t)=0, m(t)=0, m(t)=uw /:‘H e~ dt + mu(t* +1).
For t € [0, t*),
mO)=mt) =0, &)=0, mW)=w [ M, mO)=uw [ et
For Cases 9 and 10, we require that T > £ if ul(f) = A1 and T > t* +t otherwise.

Remarks

There are two differences between the case where p;;s are identical and the case
where they are not. The first difference is in the primal. There always exists a primal
optimal solution for (T'LNa), whose control is piecewise linear when p;; are equal,
as shown in Theorem 5.2. The control could be piecewise exponential when p;; are
not equal, as in the single-link example (e.g. Case 4). The second difference is in the
dual, as illustrated by example (STLN), the dual solution for y; = us can be chosen
to be bounded (without §-functions) in [0, T'), while there are cases that d-functions
must be used in [0, T) if py # po.



Chapter 6
Computational Results

In this chapter, we examine the computational behavior of the new algorithm. We will
give several numerical examples. These examples are either standard test problems
or problems arising in queueing network scheduling, communication networks and
manufacturing systems. In Section 6.1, we explain the implementation details of
Algorithms A and D. In Section 6.2, we give several numerical examples and in
Section 6.3, we give some insights to the behavior of the algorithms.

6.1 Implementations of Algorithms A and D

~ Algorithm A and Algorithm D have been implemented and tested on a Sparc 10/41.
Algorithm A is for solving (SCSCLP) and Algorithm D is for solving real time
scheduling of telephone loss networks. The program are written in C. We used the
academic version of LOQO Version 1.08 by Vanderbei [94]. We call its subroutines
to solve intermediate linear programming and quadratic programming subproblems.

The implementation of Algorithm A consists of four modules. The input data
processing module, the output module, the successive quadratic programming mod-
ule and the lower bound module. The successive quadratic prcgramming module
uses Frank-Wolfe method to iteratively solve a sequence of quadratic programs, as
outlined in Algorithm A. The lower bound module uses the partition generated by
the successive quadratic programming module to calculate a dual feasible solution for
the problem.

148
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The implementation of Algorithm D consists of two major modules. In its inner
loop, the first module discretizes time, assumes the control is piecewise constant with
respect to the partition and iteratively solves for better and better primal feasible
solutions. It uses a gradient type method to calculate the stationary point of the
intermediate nonlinear programs. In its outer loop, the first module also iteratively
doubles the number of breakpoints, as outlined in Algorithm D. The second module
simulates a stochastic telephone loss network, it periodically uses the heuristic policy
produced by the first module to control routing in the telephone loss network.

6.2 Numerical Examples

In this section, we give eight numerical examples. The first three examples are
continuous-time network examples, as in Philpott and Craddock [74]. The fourth
example is a tandem queue example. The fifth example is a re-entrant line, as in
Kumar [56]. The sixth example is a communication network, as in Hajek and Ogier
[42]. The seventh example is a randomly generated fully dense problem and the last
example is a fluid telephone loss network example. We report computational results
for all the examples, while for the eighth example, we also provide simulation results.
The examples are either standard test problems or problems arising from queueing
scheduling, communication networks and manufacturing systems.

6.2.1 Dynamic Network Flows

The first three examples are continuous-time network examples, as in Philpott and
Craddock [74].

Example 1

The first example is a continuous-time network programming problem (a special type
of SCLP) solved in Anderson and Philpott [3]. The network is shown in Figure 6-1,
G is the node arc incidence matrix of the network and H is an identity matrix. The
functions describing the arc costs and flow bounds are as follows:

ca2)(t) =10 - 0.6t, cua(t) =7, cpza3(t)=6—0.6t,
cea)(t) =2+1¢, c3a)(t) =4



CHAPTER 6. COMPUTATIONAL RESULTS 150

Figure 6-1: Example 1

ba.2)(t) = b,3)(t) = b(2,4)(t) = bzay(t) = 2,
b(2,3)(t) = ]..

and a(0) = 0 with its derivatives defined by:

. 47 te 0a5a . la te 0151
2, te(5,10], 2, te(510],

) -1, te€|0,5], .
t) = t)= -3, te(0,10].
a(?) -2, te (5,10, 24t el

For this problem the optimal partition is {0, 3.75, 5, 8.75, 10}, and the optimal value is
396.25. Algorithm A gives the partition {0, 3.74996, 3.75015, 5, 8.749958, 8.75022, 10}
(after removing redundant intervais) and an objective value of 396.25000007. The
computational sequence is shown in Table 6.1.

Example 2

The second example is posed in the network shown in Figure 6-2. Here an initial
storage of 8 units must be routed from node 1 into node 4 over the interval [0, 10],
so y(0) = (8,0,0,0)’, and y(10) = (0,0,0,8)". This problem can be formulated as an
instance of SCLP problem by putting a constant demand of 1.6 per unit time at node
4 during (5, 10]. The arc costs and flow bounds are as follows:
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| # iter. | Obj. Value | # Pieces| Dual obj. [ Time in sec. |
0 410.00001 2
397.50009581 2 392.49989357 0.450000
396.25000010 6 396.24996426 1.783333
396.25000007 10 396.24999701 3.683333
396.25000007 14 396.24999780 4.466667
396.25000007 14 396.24999819 5.40000

QY x| QO DO =

Table 6.1: Test results for Example 1.

WA

Figure 6-2: Example 2

ca2)(t) =1+0.6t, cpoa(t) =1+ 1.4t
cag(t) =12—t,  cpa(t) =6—0.2t,

ba,2)(t) = 0.6, bz (t) = 0.8,
b(l'g)(t) == 08, b(3'4)(t) = 1.6.

The demand rate of each node are all zero except node 4, i.e.,

[ t €[0,5],
a4(t) -{ -1.6, t € (5,10].

The optimal solution has the partition {0,2%,37%,5,10}, and has value of 81 Algo-
rithm A gives the partition {0,2.727274, 3.636365, 5, 10} (after removing redundant
intervals) and an objective value of 81.09090909. The computational sequence is
shown in Table 6.2.
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| # iter. | Obj. Value | # Pieces | Dual obj. | Time in sec. |
0 115.4959844 6
1 81 79166783 6 80.52341659 1.133333
2 81.09090909 8 81.09091390 2.8
3

81.09090909 10 81.09090904 | 5.666667

Table 6.2: Test results for Example 2.

Example 3
The third problem is posed in the network shown in Figure 6-3. The arc costs and

~@- —®
® Co;
® ®
O &

Figure 6-3: Example 3

flow bounds are as follows:

cen(t) =7, c23)(t) = 14 1.4t, cpa(t) =5+ 0.6¢
c@ae)(t) =10 - ¢, cs,0)(t) =12, cse)(t) =9,
can(t) =12 — 0.6, ceo)(t) =540.6t, cen(t) =29,
c(8.9)(t) = 6, C(’I,IO)(t) =t, C(g'lz)(t) =4,

cao)(t) =1, cazan(t) = 1.
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| # iter. | Obj. Value | # Pieces| Dual obj. | Time in sec. |
0 728.49096903 5
1 594.44773882 ) 592.09438253 3.466667
2 593.24193904 12 593.24192962 13.65
3 593.24193557 18 593.24193392 | 40.633333

Table 6.3: Test results for Example 3.

ba,1)(t) = bia3)(t) = 1.0,
bis.a)(t) = bse)(t) = 1.0,
b7y(t) = bs)(t) = 1.0,

bao,11y(t) = buz)(t) = 4.0

The demands are as follows:

an(t) = 0.4, t€]0,9)],
0, te(5,10],
. 0.4, tel0,5),
0, te (5,10,
. 1.6, te€|0,5],
0, te(5,10],

ar(t) = 0, te|o,10],

as(t) = 0, te 0,10,

inlt) = 0, tel0,9],
. —6.8, te (5,10,

b(1.4)(t) = be)(t) = 2.0,
bz (t) = beg)(t) = 2.0,
b(7,10)(t) = b(e,12)(t) = 3.0,

. 1.6, t€|(0,5],
0, te(5,10],
. 04, te|0,5],
as(t) = (0,5
0, te(5,10],
_ 0.4, te€o0,5],
0, te(5,10],
] 2.0, tel0,5],
0, te(5,10],

dm(t) =0, te [O, 10],

a2(t) = 0, t€[0,10].

The exact optimal solution for this problem is not known. Algorithm A gives the par-

tition {0.5376,0.5377, 1, 3.1180, 3.1183, 3.6556, 3.656, 5, 6.1290, 6.1294, 7.6774, 7.6776, 10}

(after removing redundant intervals) and an objective value of 593.24193557. The

computational sequence is shown in Table 6.3.

The above results are comparable to the results by Philpott and Craddock [74],

who used the specialized optimization code for solving network subproblems. Our
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| # iter. | Obj. Value | # Pieces [ Dual obj. | Time in sec. |
0 14284.5109 6
1440.6090 6 1438.8233 6.133
1439.5643 13 1439.5022 26.18
1439.5219 27 1439.5192 121.93
1439.52051 39 1439.52036 295.71

W OO DO

Table 6.4: Test results for Example 4.

results also show that the implementation provides accurate results.

6.2.2 Multiclass Fluid Queueing Networks

Examples 4 and 5 arise from manufacturing systems.

Example 4

The fourth example is a tandem queue example as discussed in Chapter 4 (see Figure
4-3). The exogenous arrivals arrive at the first work station at rate 1. There are 25
stations. We generate all the other data randomly. The computational sequence is
shown in Table 6.4.

Example 5

The fifth example is a re-entrant line, a class of fluid networks (cf. the (FNET)
in Chapter 4) considered in Kumar [56]. A re-entrant line is a multiclass queueing
network with fixed routing. The B matrix in (FNET) is the same as the node-arc
incidence matrix as the for the case of tandem queues. The matrix D is a block
diagonal matrix, with each block a row vector of mean service times of the customers
served at the same work station. The re-entrant line we consider is shown in Figure
6-4.

We have from left to right n stations (in Figure 6-4, we have 20 stations), each
station services 5 different classes of customers. There are 5n classes of customers
in total. Class i customers will be served at Machine [(i — 1)/n + 1]. After Class i
customer finishes service, it will become Class i + 1 customer if i < 5n and exit the
system otherwise. For this system, we assume the exogenous arrival rate for Class 1
customer is 1 and zero for all other classes. We generate randomly the mean service
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Figure 6-4: The re-entrant line for Example 5

| # iter. | Obj. Value | # Pieces | Dual obj. | Time in sec. |

0 20987.1355 7

1 9986.7656 7 5956.7923 134.05
2 5965.1006 15 5962.7291 1738.2
3 5963.6674 29 5963.2700 2436.61

Table 6.5: Test results for Example 5.

time, the cost per unit time and the initial number of customers for each class of

customers. The computational sequences is shown in Table 6.5.

This problem demonstrates that our algorithm can solve rather large problems.

6.2.3 Communication Networks

Example 6

The sixth problem is a communication network considered by Hajek and Qgier [42]. It

is a linear fluid network problem (cf. Section 4.1). We randomly generate a graph and
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L 4 : '
| # iter. | Obj. Value | # Pieces | Dual obj. [ Time in sec. |
0 | 630.4504 7
1 2.07684 7 1.98537 428.1000
2 2.065465 15 2.061209 | 1738.2167
3 2.063400 27 2.062859 | 4754.5000
4 2.063257 43 2.063017 | 9165.6833

Table 6.6: Test results for Example 6.

let the coefficient matrix B in (FNET) be the negative node-arc incidence matrix
of the graph. The problem has 20 nodes and 100 arcs connecting the nodes. We
also randomly generate the arc (link) capacities, the rate of exogenous arrivals, the
initial traffic and the cost per unit time of the traffic at each node. We note that
the problem is a sparse problem since the matrices B and D in (FNET) are sparse
matrices. The dimension of the problem is (ny,ns, n3, n4,n5) = (100, 20, 100, 20, 20).
The computational sequence is shown in Table 6.6.

This problem also demonstrates that our algorithm can solve rather large prob-
lems.

6.2.4 Randomly Generated Dense SCLP Problem

Example 7

The seventh example is a randomly generated (SCLP) problem. We generate all the
data randomly and the coefficient matrices are fully dense matrices. The dimension
of the problem is (ni, ns, n3, n4, ns) = (5, 10, 12, 10, 10). The computational sequence
is shown in Table 6.7.

6.2.5 Telephone Loss Networks

Example 8
Example 8 is a telephone loss network introduced in Section 1.1.3. The underlying
directed graph is shown in Figure 6-5.

The problem can be formulated as a (TLNa) (by setting Cys, Csa, C35, Cs3, Caq
and Cy, to zero). The service rate for all the customers are 1. The arrival rate Aij is
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| # iter. | Obj. Value | # Pieces | Dual obj. | Time in sec. |

0 85.71203 5

1 18.85987 ) 18.84785 7.2666
2 18.85617 11 18.85561 24.3833
3 18.85603 21 18.85586 63.6833
4 18.85601 29 18.85593 121.6333
) 18.85600 35 18.85594 198.9667

Table 6.7: Test results for Example 7.

50 if (¢,7) is an arc in Figure 6-5. The link capacity for an arc in Figure 6-5 is 42.
The reward rate for each customer served is 1 (i.e., w; = 0 and w; = 1). We start
the system with 8 customers in each class. For the stochastic system simulated, we
assume all the arrival and service are exponentially distributed. We use Algorithm
D to pericdically get a heuristic control policy. We simulate the system for 20 unit
time twenty times. We get an average reward of 542.23 per unit time. We found the
reward we get is within 7 percent of an upper bound to the system®.

6.3 Insights Gained

The above computational results show that Algorithm A is fairly efficient and Algo-
rithm D is a very good heuristic for the stochastic system. In this section, we give
some insights on why these algorithms work well.

If we fix the problem dimension, we find that the computational time grows ap-
proximately linearly with the number of control pieces allowed in the control. Fig-
ure 6-6 indicates such a relation for Example 7.

For Example 7, we plot the logarithm of the current solution value minus the
best known lower bound of the objective value versus the number of breakpoints, see
Figure 6-7. We find that the improvement in the objective value is sublinear. We
suspect that if we had used the true objective value instead of the best know lower

'We thank Efthalia Chryssikou for providing a code that calculates an upper bound for the
stochastic problem.
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Figure 6-5: The telephone loss network for Example 8

bound, we would have get the linear rate on the improvement.

When we fix the precision requirement and vary the number of stations in Example
5, we find that the computational time grows almost quadratically with the probiem
dimension, as shown in Figure 6-8. This is due to the fact that the number of control
pieces grows almost linearly with the problem dimension and the total number of
nonzero elements in the intermediate problems grows almost quadratically with the
nrumber of stations.

It is our experience that (SCSCLP) is easier to be approximated than to be
exactly solved. In Figure 6-9, we plot the computational time versus the number
of significant digits for Example 7. The data for Figure 6-9 is shown in Table 6.8.

As shown in Figure 6-9, the computational time grows exponentially with the ac-
curacy requirement (when we fixed the problem dimension at (5,10,12,10,10)). A
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Figure 6-6: Computation time versus number of control pieces

key feature of Algorithm A is that it keeps the number of breakpoints as small as
possible. This keeps the size of intermediate quadratic programming subproblems
small. It plays a much more significant role than the nonlinearity introduced. We
believe that Algorithm A can be made even more efficient if the special structure of
the intermediate quadratic programs is exploited.

In Example 8, our heuristic behaves better when the capacity of the the links is
increased. This agrees with the intuition that the larger the capacity, the smaller the
influence of the randomness, and the closer the system is to a fluid model.
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Figure 6-7: Logarithm of the current duality gap versus number of control pieces



CHAPTER 6. COMPUTATIONAL RESULTS

4500 [ /
4000 |

3500 [
3000
2500
2000
1500 [~
1000

500 |- /

5 10 15 20 25

time in seconds

close to quadratic

number of stations

Figure 6-8: Computation time versus the number of stations
(with precision fixed at .0001)

161



CHAPTER 6. COMPUTATIONAL RESULTS

| # iter. | Inner loop | Obj. Value | # Pieces | Dual obj.

Time in sec. |

1 1 85.57861839 6 1.000000
2 33.84362951 6 1.400000
3 18.92708484 6 1.833333
4 18.91192386 6 2.266667
5 18.88555273 6 2.716667
6 18.87046051 6 3.166667
7 18.86643960 6 3.616667
8 18.86445830 6 4.066667
9 18.86345834 6 4.516667

10 18.86270212 6 4.950000
11 18.86216700 6 5.416667
12 18.86173743 6 5.833333
13 18.86140729 6 6.316667
14 18.86113686 6 18.85388267 | 6.733333

2 1 18.86113686 13 8.683333
2 18.86074122 13 9.950000
3 18.85947549 13 11.116667
4 18.85791165 13 12.266667
S 18.85747837 13 13.383333
6 18.85730409 13 14.533333
7 18.85717199 13 15.683333
8 18.85706754 13 16.833333
9 18.85698251 13 18.000000

10 18.85691135 13 19.200000
11 18.85685226 13 20.366667
12 18.85680156 13 21.566667
13 18.85675868 13 22.733333
14 18.85672113 13 18.85528458 | 23.933333

3 1 18.85672113 27 28.333333
2 18.85666975 27 31.166667
3 18.85661344 27 34.066667
4 18.85656814 27 36.766667
5 18.85653049 27 39.733333
6 18.85649836 27 42.416667
7 18.85647057 27 45.383333
8 18.85644651 27 48.083333
9 18.85642533 27 51.166667

Table 6.8: Data for Figure 6-9.
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| # iter. | Inner loop | Obj. Value | # Pieces | Dual obj. | Time in sec. |

10 18.85640677 27 53.866667
11 18.85639021 27 96.833333
12 18.85637555 27 59.433333
13 18.85636232 27 62.416667
14 18.85635051 27 18.85569451 | 65.016667
4 1 18.85635735 37 73.283333
2 18.85634586 37 78.033333
3 18.85633585 37 82.000000
4 18.85632565 37 86.250000
) 18.85631110 37 90.106000
6 18.85630164 37 94.466667
7 18.85629322 37 98.333333
8 18.85628550 37 102.566667
9 18.85627840 37 106.433333
10 18.85627177 37 110.666667
11 18.85626587 37 114.516667
12 18.85626042 37 118.883333
13 18.85625559 37 122.733333
14 18.85625112 37 18.85584232 | 126.966667
5 1 18.85625429 41 137.933333
2 18.85625043 41 142.366667
3 18.85624607 41 147.516667
4 18.85624242 41 151.783333
) 18.85623675 41 156.650000
6 18.85623209 41 161.066667
7 18.85622788 41 165.933333
8 18.85622409 41 170.533333
9 18.85622060 41 175.266667
10 18.85621746 41 179.850000
11 18.85621456 41 184.733333
12 18.85621182 41 189.150000
13 18.85620923 41 194.150000
14 18.85620674 41 18.85587999 | 198.416667

Table 6.9: Data for Figure 6-9 (cont.).
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Chapter 7

Conclusions and Open Questions

In this chapter, we summarize the main results of this thesis and point out some open

questions for future study.

7.1 Summary of the Thesis

Motivated by the problems arising in queueing networks, manufacturing systems and
communication networks, we proposed a larger subclass of continuous linear program-
ming problems, i.e., SCSCLP. These problems describe time-dependent averages in
the system and can be used for the control of such system in a nonstationary environ-
ment. Most importantly, these problems can be efficiently solved using mathematical
programming techniques, in contrast to the traditional diffusion control approach.

As in finite dimensional linear programming, we investigated the SCSCLP problem
with the help of its dual problem. We gave an alternative dnal problem for SCSCLP.
We developed a new algorithm called the Successive Quadratic Programming method
for general SCSCLP problems under Assumption 2.1.

The new algorithm discretizes the problem over time. But unlike the other al-
gorithms, it varies the discretization and the controi simultaneously. Based on the
number of constant pieces allowed in the control, we developed a quadratic program
with polyhedral constraints. Even though the quadratic program is generally not con-
vex, we applied nonlinear programming techniques such as the Frank-Wolfe method
and the Matrix Splitting algorithm to get a KKT point for the quadratic program.
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By gradually increasing (and occasionally decreasing) the number of pieces allowed
in the control, we can get better and better approximnations. We can improve any
feasible solution that is not globally optimal for the SCSCLP. By bounding the size of
the quadratic programming problems we encounter, we proved the finite convergence
of the new algorithm. We also derived the optimal solution structure and the absence
of a duality gap results as the byproducts of the new algorithm. These type of results
(i.e., finite convergence, optimal solution structure and absence of a duality gap) were
only known under much more restrictive assumptions.

We then developed a general framework for the fluid approximation of the mul-
ticlass queueing networks with routing. We formulated them as SCLP, a subclass of
SCSCLP. We applied continuous linear programming theory to some simple queueing
control problems, which includes the Klimov’s problem, the single multiclass queue-
irg control problem with separable quadratic cost, the single class tandem queueing
control problem. For the first problem, we gave an index rule policy (which shows
the problem is solvable in polynomial time) that solves both the fluid problem and
the stochastic problem. For the second problem, we proposed a dynamic index rule
that solves the fluid control problem. For the third problem, we proved the existerce
of a polynnmial size optimal solution for the problem, which shows the problem is in
NPNCO-NP, a strong indication of the existence of a polynomial time algorithm for
the problem. For the fluid multiclass queueing networks with routing, we gave simple
necessary and sufficient condition for the network to be stabilizable.

We also applied continuous linear programming theory to the fluid telephone loss
uetwork problems. For this special class of linear optimal control problem with state
feedback and constraints, we showed that the problem admits piecewise constant
optimal control solution, when the service rates are independent of the origin and
destination of the calls. This new structural result gives a heuristic for the stochastic
problem. We gave a closed form optimal solution for a two class single-link fluid loss
network, which provides insights to both the optimal solution structure for general
fluid telephone loss networks and the corresponding stochastic control problem.

We have implemented our algorithms using programming language C. We tested
our new algorithms using standard test problems and problems froin manufacturing
systems, communication networks and telephone loss networks. Our computational
results show that our new algorithms are quite promising.
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7.2 Some Open Questions

In this section, we pose two open questions.

The first open question is to characterize the optimal solution structure of the
linear optimal control problem with state feedback and constraints.

The second open question is to find out the computational complexity for SCSCLF,

SCLP or (FNET).




Appendix A

Mathematical Background

In this appendix, we develop some mathematical background that is needed for the
thesis. We give some basics on real and functional analysis. More material could be
found in standard textbooks such as Rudin [83], Royden [82], Reed and Simon {80,
Anderson and Nash [2] and Harrison [44].

We say that a function f : [a, b] — R is measurable if f~![(a;,b;)] is a Borel
set (a set generated by a countable union of intervals) for all a < a; < b; < b. Let
f : [a, b] — R be any given measurable function. The function f is said to be
absolutely continuous on [a, b] if, given ¢ > 0, there is a § > 0 such that

_)f:llf(b.-) — fag)l <

for every finite collection of nonoverlapping intervals {(a;,;) : i = 1,---,n} with
a<a; <b <band

i(b, — a.-) < 0.

i=1

The following proposition is proved in Royden [82):

Proposition A.1 f : [a, b] — R is absolutely continuous if and only if there is
a measurable function g : [a, b] — R such that f(t) = f(a) + [  g(t) dt (Lebesgue
integral) for all t € [a, b].

The function g(t) appearing in the above proposition is called a density of f(t);
it is not unique, but any two densities must be equal except on a set of Lebesgue
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measure zero. Any absolutely continuous function is differentiable almost everywhere
and the derivative is a density.

We say a function f : [a, b] — R is a bounded measurable function if and only if it
is measurable and there exists a constant M, such that |f(t)| < M a.e. on [a, b]. We
denote by L? [a, b] the space of n dimensional vectors whose elements are bounded
measurable functions over [a, b]. We denote by L7[a, b] the space of n dimensional
vectors whose elements are Lebesgue integrable functions over [a, b].

Again, given f : [a, b] —» R. We say f(t) is a function of bounded variation (or
equivalent, a VF function) if the following holds:

V(f) ¥ sup {z If(t:) - f(t,--l)l} < 0,

where the supremum is taken over all finite partitions a = ¢ty < t; < --- < t, = b.
We call V(f) the total variation of f(t) over [a, b]. An important fact about a VF
function is the following, see also Harrison [44]

Proposition A.2 If f : [a, b] = R and g : [a, b] = R are continvous and VF
functions respectively, then the Lebesgue-Stieltjes integrals [ f(t) dg(t) and [ g(t) df(t)
both exist. Furthermore, integration by parts holds, i.e.,

[ 0 doto) = [50)a(®) - f(@ota)] ~ [ gte) a0

We denote BV™"[a, b] as the space of n dimensional vectors whose components are
VF functions over [a, b].

We say a function f : [a, b] — R is analytic over a neighborhood of [a, b] (or
[a, b)) if there exists an € > 0 and an analytic function g : (a — ¢, b+ €) = R such
that f(t) = g(t) for all ¢ € [a, b] (respectively [a, b)).

In the thesis, we need to use one particular generalized function, namely, the
0-functions. There are many ways to define such a function. Here, we take an
engineering approach, for ease of understanding. Let H(t) be a step function (or
equivaiently, a Heaviside function) defined to be equal to zero for negative value t



APPENDIX A. MATHEMATICAL BACKGROUND 170

and to unity for positive value t, i.e.,

0, ift<0O

H(t)={1, ift >0

H(t) is not a continuous function, but it is a VF function. If the jump at the step
function is at a instead of 0, it is written as (¢t — a). We define the Dirac é function
d(t) to be the density of H(t) in the following sense

b
5(t) =0 for t#0, /6(t)dt=1 only if a<0<b

We remark that the §(¢) defined above is meaningful only when it appears under inte-
grals. This way, we need not formally (and tediously) introduce generalized functions
in the thesis. We also remark, even though that 4(¢) is not an ordinary function, it
can be regarded as the limit of a sequence of functions, as we can see in Chapter 3.

Let X be a linear vector space. We call a subset P of X a convex cone in X if
it is closed under additicn and multiplication by positive scalars. Let X be partially
ordered by the relation <, defined by

z<y ify—z€P and z,y€ X.

We write y > z if z < y. In any vector space, we still write the null vector as 0.
Clearly, z € P if and only if £ > 0, so we call such an z positive. P is called the
positive cone in X.

Let X and Y be any two linear vector spaces. A bilinear form defined on X x Y
is a function from X x Y to R, which we write as (-,-), such that (z,y) is a linear
function of z for each fixed y in Y, and a linear function of y for each fixed z in X.
We call (X,Y) a dual pair of spaces if X and Y have a bilinear form defined on them.
Let P be a positive cone in X, we can define the dual positive cone of P in Y by the
following

pr {yeY: (z,y) >0, forallze X}
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