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by
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Abstract

The vehicle routing and inventory problem (VRIP) is concerned with the joint deci-
sion, relevant to many distribution systems, of how much inventory to keep at each
retail site and how to route the deliveries to these locations. This thesis presents
the analysis of two types of dynamic control for a VRIP system subject to stochastic
demand and travel times. The system consists of a central depot where an infinite
supply of a standard product is kept at no cost. A single finite-capacity truck is used
to deliver the product to m geographically dispersed retailers. Demand is served from
these sites in a make-to-stock fashion. Costs are incurred for holding/backordering
inventory and for operating the truck. The objective is to minimize the long-run
average cost per unit time.

For the first problem, we choose to concentrate on the inventory aspect of the
VRIP and consider the case where the truck travels along a predefined sequence of
trips. We analyze two such sequences:(1) a tour of all retailers (TSP); (2) a fixed
sequence of full-load direct shipments (DS). The second problem incorporates the
routing aspects of the VRIP by allowing for the dynamic choice among the TSP and
DS routing schemes. In each case we assume that the system operates under specific
heavy traffic conditions, and obtain a decomposition of the problem into a non-linear
program for the delivery allocation and a diffusion control problem.

For the fixed route cases, our results fully characterize a dynamic control policy
that is asymptotically optimal. The limiting diffusion control problem for the dynamic
routing case is considerably more difficult and does not lend itself to a general solution.
We solve this latter problem for a specific double threshold policy. For all cases,
numerical results show that the heavy traffic approximation is quite accurate over a
broad range of system parameters. In addition, considerable insight is gained into
the nature of the VRIP. In particular, our results indicate a high sensitivity of the
system performance to the dynamic-stochastic behavior of the system.

Thesis Supervisor: Lawrence M. Wein
Title: Professor of Management Science
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Chapter 1

Introduction

1.1 Motivation and Objectives

On any given day, millions of customers buy a myriad different mass-produced goods
from their local retailers. Whether it be individuals looking for their favorite snack,
or industrial enterprises shopping for the raw materials required for their endeavor,
they all take it as a given fact of today’s modern life that they will find the item they
seek in the required quantity and at the right price. Consequently, in an economic
environment of fierce global competition, no company can afford the aggravation
caused to the customer by frequent stock-outs nor the carrying cost of consistently
high_ levels of inventory. Neither can the required availability be achieved at the
expense of an inefficient transportation of the goods to the retail sites. Rather, to
adequately address these requirements, corporations must jointly decide how to route
their vehicles to reach the sites from which the customers are served, and how much
inventory to keep at each of these places. The tradeoff between these competing
inventory and transportation costs in the distribution chain is the essence of the
vehicle routing and inventory problem (VRIP). '
Operations Research practitioners have long been interested in gaining insight into
the proper design and operation of distribution systems. Most of the approaches to
date have concentrated on the routing aspects of the problem. The basic problem in

this area is the standard vehicle routing problem (VRP) which consists of finding a
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set of vehicle routes that start and end at a centrai "epot in order to minimize the
travel cost while satisfying capacity constraints and meeting customer demands. The
customer requirements and travel costs are assumed to be exogenous deterministic
quantities. Since it includes the TSP as a subproblem, the VRP is NP-hard. It also
possesses a very particular structure and many heuristic optimization approaches
have been devised to exploit this. There is a huge literature on the VRP (and several
extensions) and, from an applications point of view, it is one of the big success stories
in the field. For an excellent sample of the results in this area, see Golden and Assad
(1988). |
However, in the meke-to-stock context of the VRIP, customer demand will often be
subject to considerable stochastic variation. Correspondingly, a direct extension of the
deterministic models in the VRP literature would provide the wrong answer in terms
of the inventory level required at each retailer (since it would fail to prevent backorders
due to surges in demand). Though at a lesser extent than the demand, the vehicle
travel times are also subject to random variation, thus adding to the stochasticity of
the system and reducing the accuracy of an answer found by a deterministic model.
The importance of this discrepancy depends, of course, on the relative magnitude of
the inventory and transportation costs. In this thesis we take the philosophical stand
that, in many instances, the inventory cost component will be very important and
will in fact dominate the transportation costs. Therefore a dynamic stochastic model

is not only appropriate but necessary for the VRIP.

Accordingly, in this thesis we will formulate a dynamic stochastic: VRIP, and then
use heavy traffic results to solve it with the following objectives: (1) to gain insights
into the solution to the general VRIP, and (2) to develop effective policies for the
operation of these systems.

Tte particular instance of the VRIP that we shall consider could represent the
challenge faced by & regional branck of a large oil company as it distributes gasoline
to its various gas stations. In'general, we shall have a system which operates in a
make-to-stock fashion as follows: a single central warehouse, which holds an infinite

amount of inventory of a particular item (gasoline) at no cost, serves a set of retailers
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(stations); randomly arriving customers (cars) consume the product at these retail
sites, a fleet of finite capacity vehicles (tanker trucks) is used to transport the product
from the warehouse to the various retailers; traveling times along the route being

random.

The management decisions involved in the set-up and operation of such a system
are many-fold and complex. Traditionally, a hierarchical decomposition of the prob-
lem is used to allow for a solvable model at each of the levels (see e.g. Simchi-Levi
(1992)). At the top strategic level, the managers of this system face decisions such
as how many warehouses and retailers to have and where to locate them, as well
as how to assign retailers to warehouses. At a tactical level, the managers face the
decision of how many trucks to operate, and possibly of how to assign retailers to
a particular truck or subset of trucks serving a certain district. At the operational
level the decisions are: when to send each truck out (as opposed to keeping it idle at
the warehouse), how much of the capacity of the truck to use (i.e. should the trucks
always leave the warehouse full?), which of the retailers should each truck visit, and
how much of its load should a truck deliver to each of the retailers on its route. The
objective is to identify the set of decisions that will maximize the profitability of the
operation. Our treatment of the VRIP will be concerned with the operational aspects

of this general problem in a dynamic-stochastic setting.

We shall hence assume that somewhere higher up in the hierarchy, the decision has
been taken to assign a single truck (with fixed capacity and operating cost) to serve
all retailers in a particular region. This is an assumption often made in the literature
(e.g. Kumar, et al. (1994) and Anily and Federgruen (1990)) and is often the case in
practice. For this case we model the demand as arbitrary stochastic processes (that
satisfy a functional central limit theorem), and the travel times as arbitrary random
variables (independent of the demand). We shall be concerned with the minimization
of the total steady-state operating cost per unit time. The main operating costs are
inventory holding and backordering costs at the retailers, and travel costs for the

trucks (including driver and fuel costs).

In our initial analysis we shall take a further step down the hierarchy an assume
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that a fixed routing policy has been selected for the system. Such a model will allow
us to concentrate on the inventory component of the steady state cost. Also, this is a
necessary step towards the analysis of the full VRIP (i.e. tactical and strategic levels),
since if we are to select the best routing scheme we must be able to characterize the

performance of the system under an arbitrary fixed route.

1.2 Literature Review

While extensions of the deterministic VRP literature have been developed to consider
the inventory aspects of the problem (see Federgruen and Simchi-Levi (1992) for a
detailed literature review), little attention has been given to the VRIP with random
demand. In the first such effort of which we are aware, Federgruen and Zipkin (1984)
consider the single-period problem with stochastic demand. Since the expected in-
ventory holding and backordering cost are calculable for this problem instance, they
construct a (non-linear) mathematical programming formulation for the problem, and
observe that, once a fixed assignment of delivery points (retailers) to routes (trucks)
is made, the problem decomposes into an inventory allccation problem and one TSP
problem per truck. Based on this decomposition approach, they apply some interex-
change optimization heuristics from the traditional VRP (such as 2-opt) to find near
optimal solutions to their case. Our approach differs from theirs (and those in the
traditional VRP literature) in several ways: (1) We are concerned with a steady state
analysis and so model the stochastic variation of the demand over an infinite hori-
zon and not just over one period; (2) we allow for the travel times between sites in
the system to vary randomly, and correspondingly model the transportation cost as
an expense incurred per unit time the truck is busy; (3) we formally constraint the
system capacity by having only one truck available. This contrasts with the model
in Federgruen and Zipkin (1984), which assumes that trucks will cover their assigned
routes with certainty. While the authors mention that their decomposition approach
still works if one adds a total travel time constraint to the truck routing subprob-

lem, this is still fundamentally different from the approach in this thesis due to the
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different planning horizons considered. As readers familiar with queueing theory will
doubtlessly expect (and as our results will show), the system steady state performance
is highly sensitive to the relative congestion in the system (i.e. the long run fraction
of time that the truck must remain busy to satisfy the average requirements at its
assigned retailers). This is not necessarily the case in the single period model where
even a heavily congested system will only seem to experience high levels of backorders

once (and not as an ordinary phenomenon that calls for a high base stock level).

More recently Chan, et al. (1994) have done a probabilistic analysis of the VRIP:
that is, they consider particular policies for the deterministic problem, and then an-
alyze their average behavior when instances of the deterministic problem are gener-
ated by sampling from probability distributions for the retailer location and demand.
This work does not explicitly consider the stochastic nature of the demand since,
once each instance is generated the model makes a delivery plan based on the future
orders. Also, their model assumes that there is no limit on the total distance that
any truck can travel, and therefore ignores the congestion effects in the system. As a
consequence, the possibility of unfilled demand (that is either lost or backordered at

a penalty) is not considered.

Perhaps the most closely related paper in the literature to the work presented
here is Kumar et al. (1994). Their work is concerned with the comparison of fixed
versus dynamic inventory allocations along a fixed delivery route: They assume that
per-beriod demand at each retailer is given by iid normal random variables, that iden-
tical linear holding and backordering costs are incurred at all the retailers, and that
travel times along the route are deterministic. A central depot acts as a tranship-
ment point where no inventory is kept but where system-wide replenishment orders
are placed periodically and received after a fixed lead time (for immediate shipment
to the retailers). The authors observe that the optimal system-wide replenishment
policy will depend on the rule used to allocate the truck cargo to the retailers. They
solve both the static (allocation fixed at the depot) and dynamic (allocation for the
remaining sites in the route reviewed at every retailer) cases under specific allocation

assumptions (i.e. they solve the problem when the requirement that the allocation be
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positive and less than the current load is relaxed), and find that optimal replenish-
ment policies are base stock policies, that the optimal base stock level can be found
from a normalized composite retailer, and that the dynamic allocation policy will al-
ways perform better than its static counterpart. Like these authors, we shall initially
consider instances of the VRIP where the truck is restricted to a predetermined rout-
ing scheme, thereby concentrating on the inventory aspects of the problem. However,
unlike them we shall explicitly consider that a finite capacity single truck provides
the required transportation service (they implicitly take both the number of trucks
available and their capacities to be infinite, since neither appears as a constraint in
their problem formulations). The vehicle characteristics (capacity and speed) are a
key component of the system utilization level which, as mentioned before, plays an
important role in determining the inventory cost. Furthermore, explicit considera-
tion of the truck size is required to obtain a steady state transportation cost, which
is necessary for us in order to later incorporate the routing aspects of the problem.
Also, our assumptions in terms of the stochastic nature of the system shall be much
less onerous; both their demand distribution and allocation assumptions do not seem

realistic for systems with more than just moderate demand coefficients of variation.

1.3 Organization of the Thesis

The remainder of this thesis is organized as follows. Chapters 2 and 3 present the
analyses of two fixed route instances of the VRIP: one where, on all trips, the truck
visits every retailer assigned to it in a fixed sequence; and another where direct full-
load shipments are made to the retailers. In both cases, we present a general dynamic-
stochastic formulation for the particular instance of the VRIP. As these problems
appear to be intractable, we use the machinery of heavy traffic analysis to solve a
limiting control problem. The problem is made tractable by the decomposition and
state-space collapse allowed by the heavy traffic averaging principle, as established
in Coffman, Puhalskii and Reiman (1993). Under the heavy traffic regime, we find

explicit state-dependent solutions for the optimal inventory allocation among the
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retailers and the system-wide base stock level. A proof of the optimality of base

stock control for system-wide replenishment is included as an appendix.

Chapter 4 presents the main results for the fixed-route problems. The first part
of the chapter is concerned with interpreting the heavy traffic solutions in terms of
the original system, an interesting and often quite challenging task. These results
are then used to compare the steady state performance of the system under the two
routing schemes considered. One outcome of these analyses is that direct shipping
is expected to dominate system-wide tours in many instances. This is an interesting
revelation, since most of the literature so far has been concerned with the difficult task
of finding optimal (or near optimal) tours. Finally, a simulation study is performed to
analyze the performance of the proposed control policy over a range of values for the
system utilization. The results are very good dver a broad range of system parameter
values, even those that are far from the heavy traffic regime assumed in the analytical

work underlying the proposed policy.

Chapter 5 extends the model to allow for dynamic choice among the two routing
schemes analyzed before. Again, we present a dynamic-stochastic general formulation
for this problem which appears to be intractable. Suitable extensions of the heavy
traffic analyses performed for the fixed route cases allow us to obtain a limiting control
problem formulation. While easily solved numerically, this problem does not allow for
a closed form solution for the routing control decision. Numerical experimentation
and a simulation study are used to gage the performance of the proposed policy.
As in the static cases, the policy obtained from the heavy traffic analysis performs
quite well, even when the system parameters have values that do not correspond to
the heavy traffic regime. Also, as one would expect, overall system performance is
improved when dynamic routing is allowed (compared to the fixed route systems), but
in most cases the improvement is of moderate size. In fact, there seems to be a rather
narrow band (in system parameter space) over which the dynamic policy is different
from either of the two static policies. Over most of the space of parameter values,
the selected dynamic policy is to repeatedly use the best fixed routing scheme. These

results support our position that finding the appropriate dynamic inventory control
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is probably more important than finding the best dynamic route selection policy.
Finally, Chapter 6 presents a summary of the main results obtained in this thesis
and a discussion of some direct extensions. We place special emphasis on the insights

gained into the VRIP and propose an agenda for further research on this area.
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Chapter 2

Heavy Traffic Analysis of a Fixed
Route VRIP: The Traveling

Salesman Tour Case

2.1 Problem Formulation

Consider a system where a single vehicle with capacity V is used to distribute a
standard product to m geographically dispersed retailers. An infinite supply of the
product is kept at the central depot at no cost. Customers are served from the
reta.ilers in a make-to-stock fashion, and demand that cannot be served immediately
due to lack of inventory at the corresponding retailer is backordered. When the
truck is operating the following policy is used: the truck leaves the warehouse (which
we shall index as station 0) with a full load and then visits all the retailers in a
predefined sequence before returning empty. Alternatively, the truck may idle at the
depot. Though the order in which retailers are visited could be arbitrary, we will
assume that it is the solution to the implied Traveling Salesman Problem, and refer
henceforth to this service scheme as the fixed-route TSP policy. In this same order,
it will prove advantageous in the forthcoming analyses to index the retailers from 1

through m according to their position in the TSP tour. The system just described is
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infinite
supply

Warehouse

Retailers Demand

Figure 2-1: The Fixed-Route TSP VRIP.

schematically represented in Figure 2-1.

We shall consider two sources of uncertainty in this problem: demand arrivals and
travel times. The arrival of customer demand at retailerz, i =1,...,m is assumed to
be an independent renewal process with rate A; and squared coefficient of variation c2;
(variance divided by the square of the mean). The sequence of travel times between
facilities ¢ and j is is assumed to be given by iid samples of the random variable T;;,
which has mean 6;; and squared coefficient of variation ¢ (the indexes i, j run from
0 to m). These travel times are independent of the demand arrival streams and of
each other. Keeping with the convention in the literature, we will assume that all
load (at the warehouse) and unload (at the retailers) times are zero; in practice, these
times tend to be dwarfed by the travel times. Hence, we can obtain fr and c2., the
mean and squared coefficient of variation respectively of the total time required to
complete the TSP tour by

m~—1

Or = Z 0j.j+1 + Omo
=0

.
2 _ 0Ts 23_0 5.j+1€ ]+1 + 02,0cty
02 02

As illustrated by these calculations, the assumption of uncorrelated demand and

22



travel times clearly simplifies the process of obtaining moments for sums of the basic
random variables, and thus is useful in keeping the exposition simple. The assumption
however is not necessary and our results generalize to cases with correlated compound

renewal processes; see §6 of Reiman (1984) for details.

At the operational level we shall be concerned with two types of costs for this sys-
tem: transportation costs, and inventory holding and backordering costs. The travel
cost rate per unit time, which includes vehicle depreciation, fuel and driver cost, is f.
Note that these costs can be combined because we are ignoring the load/unload times
(only the driver, but not the truck is busy while loading and unloading). Inventory
costs are assumed to be piece-wise linear, with the holding cost rate (per unit in

inventory per unit time) at retailer i being denoted by h; and the backorder cost rate

by bi.

Following the approach in Harrison (1988), we characterize the state of the system
as the vector process @;(t), the number of units in inventory (or backordered if this
quantity is negative) at retailer ¢, so that the total inventory at the retailers is Q(t) =
3 Qi(t) (note: in this and all summations of this thesis the index runs over the set
of retailers {1,2,...,m}, except when explicitly indicated otherwise). Also, we take
as primitives for the system the following stochastic processes: D;(t), which denotes
the cumulative demand at retailer i, so that D(t) = ¥; D;(t) Tepresents the total
cumﬁlative demand in [0, ¢]; and S(¢), the counting process for TSP tour completions

up to time ¢ assuming the truck is continuously active in [0, t].

Once the route is fixed, two control decisions remain for the operation of the
system: (1) when the truck is back at the warehduse, we must decide whether to
send it out immediately with a new load or to let it idle; (2) as the truck visits each
retailer, we have to determine how much of the load to leave there. In this order,
express the busy/idle control in terms of the cumulative process T'(t), which represents
the amount of time the delivery truck is active in [0,¢]. The sequence 7, k=1,2,...

of tour completion epochs (i.e. the times at which the truck returns to the warehouse
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after visiting the retailers) will therefore depend on this control, and will be given by
. = inf{t|S(T(t)) > k}.

In terms of the delivery size control, let the m-dimensional vector of processes L;(t)
represent the cumulative amount delivered to retailer i up to time t. In anticipation of
future developments, let us express this control in terms of a nominal delivery size for
retailer 4, denoted by V; and a dynamic allocation process ¢;(t). We set the nominal
deliveries to the amount necessary to maintain material flow balance over the long
run. That is, we let

V= %V for all 1, (2.1)

where A = ¥°; )\;, the total demand arrival rate. So that the nominal allocation is
to split the vehicle capacity V among the retailers according to their demand share.

The load allocation process is then defined as
ei(t) = L;(t) — Vi:S(T(¢t)). (2.2)

Notice that, since we can observe the tour completion history, we need only specify the
process €;(t) to determine the total deliveries to the retailer up to time t. As illustrated
in Figure 2-2, the size of the upward jump of process €;(t) at the epoch when retailer
is visited determines the size of the delivery to make. The value of process €;(t) is then
always reduced by the nominal load allocation V; at every tour completion epoch 7.
The m delivery controls ¢;(t) may equivalently be taken to represent the cumulative
deviations from the nominal delivery size over past tours, plus the amount delivered
during the current cycle for retailer i. In the proposed problem set-up, this control
cannot be exercised without limit. Recall that, by assumption, the truck leaves the
warehouse with a full load and returns empty to the depot, having delivered all of its

cargo at the retailers. To guarantee this, the delivery control must satisfy
> Li(n) = kVS(T(2))
i
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Figure 2-2: Joint Evolution of Inventory and Load Allocation Control at Retailer i.

Li(t)

which, in terms of the vector of dynamic load allocations, implies that

&(0)
Ei(t) >

> i)
Z&(Tk)

is non-decreasing with L;(0) =0

0, for all
€i(Tk—1), for t € (74—1,7x) and all ¢
v,

0,

(2.3)
(2.4)
(2.5)

(2.6)

where 7}, is the time of the k-th tour completion, and 7;; is the epoch an infinitesimal

amount of time before this completion. Therefore, deviations from the nominal allo-

cation will cancel out across the retailers and the process €(t) = ¥; &;(t) represents

the total amount delivered during the current cycle.

We are finally in a position to state the equations that govern the dynamic behav-

ior of the system in terms of the primitive processes and the controls. By the above
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definitions, assuming that Q;(0) = 0, we have that (see Figure 2-2)
Qi(t) = ViS(T(t)) — Di(t) + &(t) for i=1,...,m, t>0. (2.7
Define the cumMative idle time process I(t) by
It)=t—-T(t) for t >0 (2.8)

so that the control policy T'(t), &;(t) must satisfy

T,e;  are nonanticipating with respect to Q (2.9)
T  is nondecreasing and continuous with T'(0) = 0 (2.10)
I is nondecreasing with I(0) = 0. (2.11)

The constraint i1 (2.9) formalizes the stochastic nature of the system by precluding
the development of controls that require knowledge of the future state of the system.

For their part, constraints (2.10) and (2.11) formalize the truck capacity constraint.

Recall that travel costs are incurred whenever the truck is busy. Equivalently, we
can consider the travel cost rate as a reward for exerting idleness (i.e., as a reward
for exerting the control I(t), as opposed to a cost for the use of control T(t)). Hence

the problem reduces to finding a control policy (T'(t), &;(t)) to
i 1 T + -
minlimsup 7 | [* S (h{Qu(0)}* +b4@Q:(0)) ") dt - FI(T) (2.12)

subject to (2.3) - (2.11).

The dynamic-stochastic VRIP, as formulated in (2.3) - (2.12), does not seem to be
tractable. Even under memoryless (i.e. exponential) assumptions for the underlying
random processes the state space becomes unmanageably large. One reason for this
is that we need to consider m + 1 dimensions: the inventory /backorder level at each
retailer plus the position of the truck along the tour. Furthermore, the inventory levels

at each retailer are not independent, they are inter-related by the load allocation
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policy since the amount delivered over the nominal allocation at one retailer must
represent a reduction with respect to the nominal delivery for at least one other site.
In cases like this, one naturally resorts to some approximate method in order to
gain further understanding of the problem. In this thesis we shall solve a control for
a limiting system obtained under the regime of heavy traffic. The solution to this

approximation will provide insight for the control of the actual system.

2.2 Heavy Traffic Normalizations and Averaging

Principle

2.2.1 Normalizations and Diffusion Limit for the System Net-

put

A tractable and coherent formulation for the VRIP may be found as the limit of a
sequence of systems, which we index by n. We shall obtain a limiting control problem
by letting n — oo and making the appropriate normalizations for the parameters and
processes of each system in the sequence. Readers familiar with the heavy traffic
literature should be warned that, in order to adequately model the VRIP, we shall
require a scaling which is ditferent from most of the traditional work in the area.
Having issued this warning, we shall initially proceed with the normalizations without
a detailed justification of the particular scaling chosen. This is done in the interest of
brevity, since the motivation of our choice will be much easier once we have obtained

the desired limit.

To this order, take V(™ (notation note: the superscript (n) denotes the index
for the sequence of systems, and is not an exponent), the vehicle capacity, and
(0,_(;' ), o;g‘)), the mean and variance of the tour completion time in the n-th system,

and make the following definitions:

v

(n)
C ik

(2.13)
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oW = I 2.14
2(n)
g

a8 = " (2.15)

Also, consider the sequence of iid random variables 3,(") , Which have mean z9¥' ) and

variance C;fgﬂ) with its corresponding counting process

k+1
S™(t) = min{k | 3 s™ > 1}

=0

Notice that, in terms of these definitions, we can generate the service completion
process for the n-th VRIP system, S™)(t), by considering a tour completion to occur
for every [\/n] arrivals to S™(t). The tour completion times thus generated would
have mean and variance 65”[\/n]/\/n and o2 [/7]/\/n respectively, which are
asymptotically (as n — o0) indistinguishable from 0;1‘ ) and a%g‘). To highlight this
relationship, we shall henceforth refer to S (¢) as the partial tour completion process.

The next step towards the limiting VRIP system is to define centered versions of
the partial service completion and demand arrival processes. This is done by sub-
tracting the interarrival rate times the elapsed time from the corresponding counting

process, which leads to the following definitions:

S t) = S (t) —

t
o5

and
D®™(t) = D™ (1) — Xmy.

With these constructs in hand, we now define the n-th system’s netput process as

follows

(n) - _
x™(¢) = (% - ,\(")) t + CMS(TM) (t)) — D™(¢). (2.16)
T

This process represents the total virtual input to the systera minus the demand. We
can now obtain an expression for the dynamics of the total inventory at the retailers

in terms of the system netput by summing the inventory evolution equations in (2.7)
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over all retailers and substituting the relevant definitions. The expression is:

(n) |
Q) = x(t) = Z 1) +€00), (217)
T
where
EM(t) = eM(t) + VP SE(TM) (1)) — CMSE) (T (3)). (2.18)

The process £ (t) captures the inventory evolution over the current cycle and makes
the necessary adjustment from virtual deliveries to true ones. To see this, let us
consider the (t) term first. This is quite straightforward since, as a consequence of
our assumption that every tour delivers a full load to the retailers, the load allocation
control £(t) does not affect the evolution of the total inventory beyond the current

tour. Now, by construction,

n n n) Q(n n n 1
VST (£My) = otm St T (™)) + 0 (%)

at all service completion epochs 7',5"). The o(1/+/n) error is due to the non-integrality

of v/n and may be ignored in the limit. The difference
v gln) (T(n) (t)) — cm) S(n)(T(n) ()

in (2.18) makes the necessary adjustment from the virtual deliveries during the current

tour implied by the C™&(T(™(t)) term in the netput process.

We next normalize the processes in each system in the sequence according to the

following expressions:

(n)
w(t) = ——fl@ for all i,

T

W = S wi = L0




vn

A(n) _ D(n)(nt)

g £ (nt)

€0(t) = 7=,

am) gy _ S(nt)

and ”

w) ey L (nt)
7'( )(t) = T

The processes (W, Y, X) represent the normalized inventory, idleness and netput. We
use different notation for them than for their unscaled counterparts (Q, I, x) so that,
in the interest of brevity, we may sometimes refer to them simply as inventory, idleness

and netput without confusion.

The dynamics for the normalized n-th system are then found by applying these
scalings into equations (2.16) and (2.17). With this procedure we obtain an expression

for the normalized netput process X (t) as
cm R .
X™(t) = vn (W - ,\(">) t+ CSE (M) (1)) — HM)(4), (2.19)
T

while the normalized inventory can be expressed as

v

oy

WM (t) = XM (t) — Y™ (1) + £ (), (2.20)

The limit may now be found by letting the index n go to infinity, under the
assumption that the parameters of the sequence of systems satisfy the following heavy

traffic conditions:

lim ¢ = C=0(1) (2.21)
lim 9% = 9r=0(1) (2.22)



lim 20 = Zg=0(1) (2.23)

Jim 2™ = ) (2.24)

Xp = C (2.25)
(n)

vn 4 -2 = ur=0(1), forall n. (2.26)
o5

If we denote the traffic intensity of the n-th system by p{® = A /v the
previous conditions require that this parameter approach unity at the right rate. As
a consequence, we expect our model to be a reasonable approximation for systems
where the truck must be busy the great majority of the time in order to meet the

expected demand.

One aspect of our scaling which differs from that used in most heavy traffic ap-
plications is the way in which the original system parameters (V, 0z, 02¢) are being
normalized according to the heavy traffic conditions (2.21) to (2.23). In the traditional
heavy traffic literature, these quantities are left unscaled in the system sequence, so
that as n — oo the vehicle size and the tour travel times vanish in scaled inventory
and time units. This is the case since, under the scalings used to define (W,Y, X),
the state space is reduced by y/n and time is sped up by n. For this normalization,
the size of the n-th system truck in terms of scaled inventory units is V(™ /,/n. Hence
if V were left unscaled it would vanish in the limit. Under such an assumption our
system would reduce to the multi-class single server queue case of Wein (1992). While
we would thus be able to obtain a tractable limiting control problem for the VRIP,
this would come at a considerable loss in the ability of the model to capture the be-
havior of the original system. In particular, a limit that obtains instantaneous cycles
and infinitesimal truck sizes will not be able to model the inventory evolution during
the course of a tour. Since in practice truck sizes and travel times are usually quite

significant, this shortcoming would very likely reduce the applicability of our results.

Our scaling tries to overcome this problem in the simplest possible way. Namely,
we have scaled the vehicle size by the minimum amount necessary to obtain a positive
limit for it in terms of scaled inventory umits (ie. V(®//n = C™ = O(1)). We
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cannot, however scale only the vehicle size. If we do not scale the arrival rate of
the demand process, we must make sure that the ratio V™ /6{") remains O(1). This
explains the scaling of the tour completion times. Finally, we also need to normalize
the travel time variance. The proper scaling to use is of the same order of magnitude
as for the truck size (i.e. O(y/n)). At first glance it might seem that this scaling
reduces the variability in the system, since the the squared coefficient of variation
for the tour completion times 02/6% will be reduced by /n. Notice however that,
in terms of the total inventory, increasing the truck size also increases the variability
of the service process (i.e. deliveries are equal to tour completions times the vehicle
size). Increasing the truck size and preserving the travel time coefficient of variation

would yield a limiting system with infinite service variance.

Use of this scaling allows us to preserve the same ievel of variability in the system
and obtain a positive truck size (in terms of normalized inventory units) in the limit,
which corresponds to the actual behavior of the VRIP system. However, this scaling
also preserves the discontinuous jumps in the inventory evolution at the delivery
epochs. The introduction of the partial service completion process and its related
netput process (another non-standard aspect of our scaling), allow us to work around
these discontinuities. In particular, we can still invoke the Functional Central Limit
Theorem (FCLT) and the Random Time Change Theorem (as in the standard heavy
traffic analysis in Wein (1992) and Harrison (1988)) for equation (2.19) to obtain the

following:

Proposition 1. X™(t) = X (t), where = denotes weak convergence and X (t) is a

Browmian motion process with drift ur > 0 and variance

C2
0% = A (c§+cﬁ) :
T

Notice that, both these quantities are O(1) by assumption.

In terms of our original system, Proposition 1 is not enough to characterize the
limiting behavior of the total inventory at the retailers. By equation (2.20) we still

need to characterize the limiting control processes Y (t) and £(t). Furthermore, in
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order to solve the problem at hand, we need to determine the behavior of the m indi-
vidual inventory levels since the holding and backordering costs are driven by them.
As it turns out, it is not possible to obtain a limit process for (W, Wa, ..., W,,) in the
usual sense because in the heavy traffic limit these levels move infinitely fast along a
path that depends on the load allocation control. Similarly, the adjustment term £ (t)
does not converge to a limit in the usual sense, since it captures the discontinuous
jumps from the actual deliveries over the tour. In order to overcome these difficulties
we shall exploit a recent result in heavy traffic theory, the heavy traffic averaging
principle (HTAP).

2.2.2 Limiting Behavior of The Inventory Processes: The

Heavy Traffic Averaging Principle

The main aspect of the HTAP is a time scale decomposition. Recall that in the nor-
malization used to obtain the Brownian motion (BM) limit for the total netput process
time is sped up by a factor of n. We will henceforth refer to this as the diffusion time
scale. According to the HTAP, at the diffusion time scale the m-dimensional retailer
inventory process moves (asymptotically) infinitely fast. If instead of the diffusion
scale one speeds up time only by y/n the m-dimensional inventory process moves at
a positive and finite rate, while the netput remains fixed for an (asymptotically) in-
finite amount of time. Under this normalization the movement of the m-dimensional
process is deterministic. Notice that this normalization essentially slows down time
by a factor of /n with respect to the diffusion time scale. We will henceforth refer
to this case as the deterministic time scale. In both cases the state space is scaled
down by /n, so that we may refer to normalized inventory levels without specifying
whether the diffusion or the deterministic scaling is being used.

The HTAP was first established in Coffman, Puhalskii and Reiman (1993) (CPR)
for polling systems with no switch-over times. Its far reaching implications for the
control of systems in heavy traffic have been exploited in Reiman and Wein (1994)

for the control of a polling system and in Markowitz, Reiman and Wein (1994) for
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the economic lot-sizing problem (ELSP). Our use of the HTAP in the VRIP follows
the spirit of their work.

Providing a rigorous proof of the HTAP for our problem would be extremely
demanding and take us far afield from our purpose of gaining insights into the VRIP.
We will thus present only a heuristic argument of why an averaging principle should
hold for the VRIP, and establish how it can be used for a remarkable simplification

of our control problem.

Consider what happens in the unscaled VRIP system while the truck does a tour.
The amount of time spent traveling along the route is O(,/n) — by condition (2.22)
— and the total amount delivered to the sites over the tour is O(y/n) — by con-
dition (2.21). From Proposition 1 of § 2.2.1, the total normalized netput behaves
asymptotically like X(t), a (ur,0%) Brownian motion. All three of these system
characteristics are the same as in the polling system of the CPR ;;aper. and hence we
expect a similar time scale decomposition to apply to the VRIP.

The time scale decomposition alluded to in the previous paragraph becomes clearer
if one considers the behavior of the normalized system over one tour in the diffusion
time scale (i.e. speed up time by a factor of n and compress the inventory state space
by \/n). In terms of these normalized units, the amount of time spent doing a tour
is O(1/+/n) and the total amount delivered to the sites is O(1). Meanwhile, the total
normalized netput under this scaling behaves asymptotically like X (t), a (ur, 02)
Brownian motion. It is well known that the net change of a (ur, %) Brownian mo-
tion over a time interval of length ¢ is a normal random variable with mean p7t and
variance 04 t. Therefore, over an interval of (normalized) time of length O(1 /v/1), the
net change in the total netput will be O(1/,/n) (in normalized inventory units). Fur-
thermore, by definition, the remainder term E (t) vanishes at tour completion epochs,
and so the change in total inventory itself (over successive completion epochs) will be
O(1/ /7).

This order-of-magnitude difference in the rate at which the total inventory and
the individual inventories vary lies at the heart of the HTAP. By exercising the load

allocation control, we can effectively make an O(1) change in the individual inventories
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(by delivering more than the nominal allocation to one and less to the others), in an
interval of normalized time that is infinitely small in the diffusion time scale. While
this is accomplished, the total netput level will effectively remain the same (and so

will the total inventory at tour completion epochs).

We may now characterize the limiting behavior of the irventory processes in the
VRIP system. Recall from equation (2.20) that the total inventory in the system
is equal to a Brownian motion (the netput process) regulated by an idleness control
and superimposed with the tour delivery process é (t). As mentioned before, this last
term is equal to zero at tour completion epochs and makes O(1) jumps (in terms
of scaled inventory units) as deliveries are made. Therefore, if we consider what
happens in terms of normalizea inventory units at tour completion epochs, total
retailer inventory is (asymptotically) unchanged over successive cycles. However, we
have seen that over this same time period we may produce an O(1) change in the
distribution of inventory among the retailers. It stands to reason that, since the total
inventory is the same, the increase in the level of inventory at one of the retailers must
(deterministically) correspond to a decrease in the level at some other retailer. This
deterministic behavior of the individual inventory levels is one of the consequences of
the HTAP for the VRIP. If the individual inventories behave deterministically over
a tour, then the delivery process £(t) will also behave deterministically, the exact

evolution being determined by the allocation control exercised over the tour.

In order to understand the implications of these consequencés of HTAP for our
control problem let us consider an example. To allow for a graphical representation of
the inventory vector, consider the case when we have only two retailers (i.e. m = 2).
To further simplify the discussion, let the load allocation control take the simple form
where, on each particular tour, the manager of the system has only three options: give
priority to retailer 1, give priority to retailer 2, or give them both equal importance.
In this simplified scenario, retailer ¢ is given preference during a tour by setting its
delivery size to V; + kV/, for

K€ (O, 1- -}{max{)\l, /\2})
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Figure 2-3: Normalized Inventory Evolution at Tour Completion Epochs under the
HTAP.

a fixed parameter. Since a full load is delivered on every tour, the amount left at
the other site (whose index, in this 2-retailer world, will be given by 3 — ¢) must be
Vs-i — kV. Alternatively, when no retailer is given priority the manager simply sends

amounts equal to the nominal allocation to both retailers.

In terms of units in the scaled state space, the additional amount delivered per
cycle at the retailer with high priority will equal kV//n = kC, which is O(1). Con-
sidering the total inventory level at tour completion epochs, the HTAP implies that
the rate at which the inventory at this retailer increases is infinite compared to the
rate of change for the total inventory. Figure 2-3 illustrates the behavior of the
normalized inventory level vector implied by this time scale decomposition at the
diffusion time scale. As shown in the graph, at toi;r completion epochs this vector
‘lives’ in the constant total inventory line W = w, and it moves back and forth across
this diagonal at an infinite rate, the direction being determined by which retailer is
given preference (i.e. which site is getting xC units above its nominal allocation per
cycle). Meanwhile, the total inventory line makes up and down parallel movements

as a Brownian motion at a finite rate.
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Consider now the evolution of the inventory levels at the deterministic time scale
during the time the truck takes to complete one tour. Recall that, at this scale, time
evolves y/n times slower than at the diffusion time scale, which makes the total netput
appear to be fixed. The inventory at both retailers decreases deterministically (at the
demand rate for each retailer) while the truck is traveling. At the epoch at which the
retailer 1 is visited, its inventory level increases instantaneously by an amount equal
to the normalized delivery size. Figure 2-4 plots the inventory evolution for a cycle
in which retailer 2 is given preference in our 2-retailer example system. Notice that
average travel times in this slower time scale are given by ¥;; = 6;;/1/n, and not by
6;j/n as in the scaling giving rise to the BM limit for X. If we thus let ¢ = 0 represent
the time when the truck leaves the depot, then the inventory level at retailer 1 will
instantaneously increase at time Y; (by an amount «C units smaller than its nominal
allocation), and the inventory at retailer 2 will increase instantaneously at the epoch
Yo1 + Y12 (by an amount equal to C, + kC). These are the only two epochs at which
the inventories increase, since the truck spends the rest of the time traveling around
the cycle. Notice that, since the HTAP holds under the assumption that pg? ) 1, we
must take the traffic intensity to be one at the deterministic time scale to obtain an
adequate trade-off between the inventory and transportation costs. Therefore, when
the truck comes back to the depot (at time 91) the total normalized inventory in the
system is unchanged but xC units have been ‘transferred’ from the low priority to
the high priority retailer.

If a series of cycles giving preference to some retailers is implemented, then inven-
tory is shifted from the least favored to the preferred sites. If, on the other hand, the
nominal allocation sizes are used then, at the deterministic time scale, the inventory
evolves in a fixed cycle in R™. Figure 2-5 illustrates the corresponding inventory
evolution over a series of tours for the three possible allocation policies in our m = 2

example.

The implications for our problem in terms of the load allocation control are clear:
no retailer subset should be gfven priority permanently, as this would immediately

lead to ever increasing backorders at the rest of the sites; rather, for any given total
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Figure 2-4: Inventory Evolution over a Cycle in the Slow Time Scale: Retailer 2
Given Preference.

inventory level at tour completion epochs, we should find the nominal-allocation cycle
(i.e. the fixed cycle) that minimizes the inventory cost per unit time, and use load
allocation policies that deviate from the nominal delivery size only as much as neces-
sary to move there. Since movements along the constant total iuventory hyperplane
happen instantaneously at the diffusion time scale, the transient effects of shifting
towards the desired fixed cycle and other temporary adjustments will not affect the

long-run average inventory cost.

The HTAP also characterizes the evolution of the process & (t) that represents the
adjustment for deliveries and partial tour completions necessary to relate the total
inventory to the netput in (2.20). As we have argued, the HTAP implies that £(t)
converges to a deterministic function of the time elapsed in the current tour. If we
again consider the deterministic time scale and take ¢ = 0 to represent the time at
which the truck leaves the warehouse to start a new tour then, for the nominal al-
location cycle, the behavior of £(t) in a two-retailer model corresponds to the path
illustrated in Figure 2-6. While the truck is traveling, the value of £(t) decreases

deterministically at the total demand rate X\. This process then increases instanta-
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Figure 2-6: Evolution of & (t) Over a Nominal Allocation Cycle at the Deterministic
Time Scale

neously by the nominal load allocation C; (in terms of scaled inventory units) at the
epoch where that retailer is visited. At the end of the cycle, é (1) = 0. Recall that
the system will use the nominal allocation most of the time, and hence we need only

consider the evolution of £(t) under this delivery policy.

We will next use these implications to obtair: a limiting control version for our
problem. Again, we do this even though we have not rigorously proved that the HTAP
holds for the VRIP. While we have chosen not to undertake this, we can exploit our
understanding of the VRIP and the heuristic time scaling arguments of this section
to provide an outline of such a proof. The analysis in Coffman, Puhalskii and Reiman
(1993) is done under a specific queueing discipline: that of exhaustive service. The
proof (for the 2 queues case) is based on the use of upper and lower bounds derived
from a threshold queue. As we have argued heuristically, the VRIP seems to exhibit
the same time scale decomposition as the polling system. The main difference between
the systems is the inventory paths at the individual retailers. In the polling problem,
the sample paths (on the deterministic time scale) look like those for the economic
production quantity (EMQ): they go up and down at a finite rate. In the VRIP, the
sample paths look like those from the economic order quantity model (EOQ): they go
down at finite rate but go up at infinite rate (a vertical line). Whereas the HTAP for
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the polling system is derived with the aid of a threshold queue, it would appear that
an averaging principle for the make-to-order version of the VRIP could be derived
with the help of a threshold queue with instantaneous batch service, like a clearing

system.

2.2.3 The Limiting Control Problem

Before we formally state the limiting control problem we need to exercise some care
to make sure that we account for any distortions in the relative magnitudes of the
transportation and inventory costs that may result from the scaling used to obtain
the diffusion limit. This is necessary since, as implied by equation (2.12), our purpose
is to find the control that minimizes the total system cost: that is, the one that best
balances the inventory and transportation expenses. However, the time and space
scaling involved in the limiting process essentially reduce the inventory holding and
backordering costs by a factor of n%2. This is the case since one normalized unit of
inventory held over one normalized time unit at the diffusion time scale corresponds
to v/n items held over n time units in the original system. On the other hand, these
same scalings only reduce the idling cost by \/n. This follows from the observation
that; in terms of the original system, an increase of 1 normalized time unit in the idling
process Y™ (t) corresponds at the diffusion time scale to v/n units of original system
time. Since, by leaving b;, h; unscaled, we obtain holding costs that are incurred at
a rate O(n*?) and idleness accrues at a rate O(,/n), the travel cost f must be
increased by O(n) for both cost rates to be of the same order. Consequently, let
f™ = f® /n denote the normalized travel cost. This implies that, in order to get a
non-trivial problem, the heavy traffic approach requires the transportation cost rate
[ to be quite large relative to the inventory cost (roughly two orders of magnitude

larger).
Substituting the limiting processes into the total inventory evolution in equa-
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tion (2.20), we have that the limiting total inventory evolves as

W(t) = X(0) - 7Y () + 0

where X is a BM, Y is the idleness control (which we still need to optimize) and £ is
a deterministic function of the truck position along the tour. In this context, define

the intrins’ - total inventory process for the system as
Z(t) = W(t) — £(2).

This is the process that would be obtained if one were to observe the total inventory
only at tour completion epochs. Notice that, since the evolution of £ is independent
of the inventory level, W(t) can be recovered from Z(t) and the current position along
the tour. Also, recall from §2.2.2 that the system will almost always use the nominal
allocation (other allocations are used only over infinitesimal amounts of time) so that
the m-dimensional inventory process evolves around a fixed cycle for any given value
of inventory at the beginning of a tour. Hence, knowing Z(t) is sufficient to obtain
the average inventory cost over a tour for a given nominal allocation cycle placement.
Furthermore, the idling decision may also be based only on Z(t) since it is related to
W (t) by a deterministic function. So that, if it is optimal for the system to idle when

| Z(t) = z it is also optimal to idle when W(t) = z + £(¢).

We can hence state the limiting stochastic control problem for the rn-retailer TSP
VRIP as follows: Find the optimal cycle placement under the nominal allocation for
a given total intrinsic inventory level Z(t) = z, and its corresponding inventory cost

rate g(x); then, choose the nondecreasing RCLL process Y to minimize

T—o00

lim sup %E [ /0 " 9(Z@)dt - Fr(T) (2.27)

subject to
2(8) = X(t) G%Y(t) (2.28)

42



W A

x+Ci 1

Figure 2-7: Inventory Evolution at Retailer ¢ during a Nominal Allocation Cycle.

We now trn our attention to the solution of these two problems.

2.3 Optimal Cycle Placement

We address this problem in a similar fashion to the one Reiman and Wein (1994)
use for the cycle placement in the polling problem and Markowitz, Reiman and Wein
(1994) in the ELSP. Since backordering is allowed, the VRIP is closer to the ELSP
than to the polling problem, in that there is no natural boundary at the origin; and
hence, we can take the liberty of optimally placing the limit cycles in R™. Define
the cycle placement by the vector (z,,zo,...,Zm), Where z; represents the lowest
point during the cycle of W;(t) (i.e. the amount of scaled inventory at retailer ¢ just
before delivery). Again, we assume that pr = 1 (i.e., Ay¥r = C;) on the deterministic
time scale to obtain an adequate trade-off among the different cost components. In
this case, under a policy of nominal allocation delivery sizes, W; will oscillate in
deterministic fashion between z; and z; + C; at an infinite rate. Figure 2-7 illustrates
the inventory level evolution at cne retailer over a nominal load delivery cycle.

Of course, there are many alternative and equivalent characterizations of the cycle
placement besides our proposed z; — fixing any point along the deterministic path

would do. However, this one seems to be as amenable to analysis as any other. In fact
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all one needs is to establish the relationship between the cycle placement variables
z; and the total intrinsic inventory level Z(t) = z. In order to do this we need
some new notation. Recall that the warehouse index is 0 and that the retailer indices
correspond to the order in which they are visited in the TSP tour. Denote the average
scaled travel time between any two sites 7,7 € 0,1,...,m along the TSP path in the
deterministic time scale by 9,°F. In terms of the original data, these quantities are
defined as follows
1

j-1
ﬁTSP = 0s k+1 for 71>

and

STP =,

Notice that, while the notation is similar, the travel times 975 and 9;; are different.
The latter are parameters of the original system corresponding to the mean travel
time at the deterministic time scale from site i to site j over the route with minimum
expected delay, while the former corresponds to the travel time through all the legs

of the TSP tour that lie between i and j at that same scale.

Again, measure time over a cycle so that the truck leaves the warehouse at t =
0. The state of the system is given by the scaled inventory level at the retailers,
(W1(0), W5(0), ..., Wn(0)). Recall that we take pr = 1 for the deterministic inventory
evolution cycle and that this implies \jdr = C;. Hence each component of the
inventory level vector W;(0) is related to its corresponding cycle placement value z;

by (see Figure 2-7):
VV,(O) =z;+ Aiﬁasp for i = 1, A U

Summing these inventory levels over all retailers, we obtain the required relationship
between the cycle placement vector (z,...,Zn,) and the intrinsic system inventory
Z(0) =W(0) = z as:
dSoxi=z -y MNIE (2.29)
i i

Recall that, by the HTAP, the movement towards a particular cycle is instan-
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taneous, and so we can ignore the inventory cost incurred while shifting in the cal-
culations for the cost that corresponds to this particular placement. The average
inventory cost per unit time while this stable cycle is used (i.e. while the total in-
trinsic inventory Z(t) = z) is therefore equal to the average cost over a cycle divided
by the cycle length. The cost at retailer i may be obtained by simple geometric ar-
guments for any cycle placement z;. When the cycle placement is sufficiently high
(low) so that the inventory remains positive (negative) for the duration of the cycle,
the cost is simply the holding (backordering) rate times the (absolute value of) the
average inventory. As illustrated in Figure 2-7, at retailer ¢ the inventory jumps from
z; to z; + C; once per cycle and decreases at a constant rate the rest of the time.
Therefore the average inventory level over a cycle is simply z; + C;/2. When the
inventory changes sign during the cycle the total holding (backordering) cost over a
cycle equals the area of one of the triangles above (below) the time axis times h; (b;).
To obtain the time average inventory cost we sum the areas of these triangles and
divide by the cycle length 97 = Ci/);. In summary, we have the following expression

for retailer i:

¢

hi(zi + §) ifz; >0
gi(zi) = { kel + bz + B3 i 0> 1 > -C (2.30)
{ -—bi(lli + %‘) if —C,; Z z;.

Notice that g;(z;) is a convex function of x;. With equation (2.30) in hand, the

optimal cycle placement problem can be expressed as

g(z) = Min 3 gi(z:) (2.31)
subject to (2.29).

This mathematical programming problem may be solved by standard optimization

procedures since the objective is a convex function. However, in order to make precise
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statements about the solution, we need to make some assumptions with regard to the

cost structure. In particular, we shall assume that:

b,‘ > h,', for all ¢
hg = h= nlin h.'
bp = b=mink (2.32)

The first assumption in (2.32) is made since backerders are in general considered
something to be avoided. The second and third assumptions are just a labeling
convention and so can be made without further loss of generality. Notice in particular
that we are not assuming that the minimum inventory holding and backordering cost
rates (h and b) occur at the same retailer (though ¢ = p is certainly allowed). A

straightforward modification of the results allows one to handle other cost structures.

Under the assumptions in (2.32), we can find a closed-form solution to the optimal
cycle placement problem. The basic idea is to use constraint (2.29), to turn the prob-
lem into one of unconstrained optimization over m — 1 variables. After that, getting
the optimal solution involves little else than standard non-linear optimization and
cumbersome algebraic manipulations, and so we shall not go into the details. Inter-
ested readers are referred to the discussion of an analogous optimization in Markowitz,
Reiman and Wein (1994) with regard to their analysis of the set-up cost ELSP. The
solution to problem (2.29)-(2.32) yields the vector of optimal placements z} and g(z),
the inventory cost as a function of the total total inventory at the warehouse epochs.
Not surprisingly, g(z) turns out to be quadratic with linear edges in the inventory

~ level z. The solution is as follows:

b+ h;

. TSP .
Region 1. w<aT—Z/\t9 zi:bi"‘hiCt
. b+ h;
z; = b —OC; for i#p
T, = z—ZAﬂTSP Zb+h
t#p
g(z) = —b:z:+a1
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b+ hi)?
i = bZ)\,-z?E,-SP+-1-Zh,-C,- Z(b-:-h)

Region 2. aT<a:<ﬂT Z/\ﬂTSP Zb+l?

. 28G TSP (hi — hie)Ci
= h,"i‘bg( Z/\ﬂ Z by + hg

g(z) = @ao1® + Gaz + G4

. 1 C; -
2 = _(Zb~+h-)
B = %, (z -3 anSP)

b;hiC;
. 9TSP
“ a2(2b+h ;A‘ﬂ"') Zb+h
Region 3. ,BT<:1:
. h; —
T, = b+hC for i #¢

5 = == AT+ th

g(z) = hz+a5
—h)?

as = —thTSP %zijh,-c.- Z (b s C;
As can be seen from the equations above, the optimal cycle placement also has dif-
ferent functional representation in terms of the total intrinsic inventory z, along the
same three regions that characterize the cost function g(z). In the region where the
total inventory is much greater (smaller) than zero, the optimal. cycle holds (backo-
rders) most of the inventory at retailer £ (p), where it is cheaper to do so, while the
cycle for the rest of the retailers remains close to zero. The exact level for each site
depends upon two factors: the difference between its holding (backordering) cost and
h (b), and its nominal delivery size (or equivalently the proportion of demand that
the particular retailer represents). In the region where the total inventory is close to
zero, the cycle placement at each retailer varies linearly with the intrinsic inventory

in the system.

It is worth noting that, for the symmetric cost case (i.e. when h; = h, b; =b for
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all i = 1,...,m), the more natural solution of

( ==Y, MITSP . R
— if z<ér
. __ A o A 5
T} = { —)\l(z—zk)\kﬂg',fp) if ar<z<Pr
- TSP ~
) DL il if fr<z
\ m

is also optimal. This is so since the total inventory cost for this alternate cycle
placement is the same as g(z) given before.

We thus have a closed-form expression for the optimal nominal allocation cycle
placement z; and its corresponding average inventory cost g(z) for any given total
intrinsic inventory level Z(t) = z. This was the first part of the limiting control
problem for the VRIP. We will next use g(z) to find an optimal idling policy.

2.4 Optimal Base Stock Level

Once g(z) is known, we can proceed with the solution to the one-dimensional stochas-
tic control problem. However, we will not solve the general problem in (2.27) and (2.28),
but the special case of base stock policies. The reason to specialize our analysis to
this class of policies is threefold. First of all, by the problem decomposition obtained
from the HTAP, the busy/idle decision will be based solely on the one-dimensional
total intrinsic inventory process. A single parameter policy is the most natural in
this context. Second, this assumption makes the problem quite easy to solve, since
we can draw on well established results for its analysis. Specifically, under this kind
of policy, the limiting idleness process corresponds to a single-sided regulator for the
Brownian motion X (t), and hence Z(t) is a regulated brownian motion (RBM) on
(—00, 2] (see §2.2 of Harrison (1985) for a definition). Thus, we can use known results
for the steady state behavior of RBM to solve the control problem. Thirdly, single
barrier policies often turn out to be asymptotically optimal under the heavy tr ffic

regime (see e.g. Wein (1992)). This is in fact the case for our problem, and interested
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readers are referred to Appendix A of this thesis for a proof of this claim.

To find the optimal base stock level we must establish the steady state distribution
for the total inventory level and the expected idleness rate. These are both well
studied values, and both are characterized in Chapter 5 of Harrison (1985). For the
expected idleness rate, a simple translation and sign change from his steady state

analysis of the single barrier RBM (see formula 5.6.14, op. cit.) gives
lim lE Y(t) = br for >0 (2.33)
t—00 t x V "I’T - ’J’T = Y .

Substitution of the definition for the drift of X(t) into (2.33) gives

lim %E,[Y(t)] - (1 - 5%) . (2.34)

From this result, it is evident that the local time at the barrier depends only on
the drift of the RBM, and is therefore independent of the base stock level. For our
problem, this means that the transportation cost will not be affected by the selection

of 2z, and so the optimal base stock level can be found by solving the equivalent

problem:
1 T
minimize lirTn jgp -1—,E [ fa 9(Z (t))dt] (2.35)
subject to
Z(t)=X(t) - %/;Y(t) (2.36)

independently of the transportation cost f. Notice that this is a direct consequence
of the fact that we have constrained the operation of the truck to a single fixed route,

so that the control has no effect on the drift of the diffusion approximation.

Turning now to the steady state density for Z(t), it is a well known fact (see
equation 5.6.11, op.cit.) that it is given by

, pre’TE=2) ifr < 2z
pz(z) = (2.37)
0 ifz >z

49



where ¥ = 2ur /02, and Oy > 0 by assumption. Using (2.37), the singular control

problem becomes equivalent to finding z to optimize Fir(2), where, for z > fr

" ar . Br . o
Fr(z) = / (=bz + &) e’ dx + / (6222 + Gax + d4)07e’TEDdz
—o0 s

* ie NPT (@—2)
+ /ﬁr(hz+a5)we dz (2.38)

and for ér < z < Br

~ o . z N
Fr(z) = /_ o:(—bx + 6y)ore’TEdg 4 /a (@02 + a5z + 8)ire™ "z (2.39)

The constants in (2.38) and (2.39) have the same definitions as in §2.3. Note that we
are defining Fr(z) differently depending on whether z > fr or not. This is necessary
since, while the optimal base stock level 2} will always satisfy 2} > 4!, it need not
be larger than (r.

Using integration by parts on (2.38) and(2.39), and then taking the first two
derivatives of Fip(z) with respect to z we obtain the following:

Proposition 2. The value that minimizes Fr(2) is 2}, where

a=—tiy [(bih) ( or(Br — br) )] +ar (2.40)

r ebr(Br-ar) _ 1

if zp 2> BT, otherwise 21 is the solution to the following equation

282 -or(e3-61) 1 9y 4 Gy — 222 = 0, (2.41)
vr vr

Furthermore, the optimal cost is given by
Fr(zp) = hay + s

if 21 > Br, and by

FT(Z;) = &2(21‘-)2 + &3&; + ay

This is easily seen by the fact that g(z) is linear and has a negative slope for = < ér.
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otherwise.

The proof is simple and is omitted. Optimality comes from the fact that, under
the assumptions in (2.32) F%(z) > 0 for both (2.38) and (2.39), and hence Fr(z) is
convex. One can also show (from the fact that Fr(2) is convex and, hence continuously
differentiable) that there is a unique optimum base stock level. That is, either there
exists a solution z} to (2.40) that satisfies z3. > Br or a solution 23 to (2.41) that
satisfies 23 < Bz, but not both.

The base stock level z} thus obtained, together with the cycle placement results
of §2.3, completely characterize the optimal dynamic control for the fixed route VRIP
under the heavy traffic regime. We are still left with the task of obtaining a control
policy for the original (unscaled) system based on these results. This is a very in-
teresting (and often quite challenging) issue which will be deferred until Chapter 4,
where the implementation of results for alternative fixed-route schemes will also be

discussed.
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Chapter 3

Heavy Traffic Analysis of a Fixed
Route VRIP: The Full-Load Direct
Shipping Case

3.1 Problem Formulation

Since the setting for the full-load direct shipping (DS) VRIP is quite similar to the
TSP case developed in Chapter 2, we will rely heavily in the material there, avoiding
many details of the analysis except for those occasions where an important difference
exists between the two cases. In terms of the problem set-up the 'DS case differs from
the TSP in two main areas: the routing scheme used when the truck is operating,
and the form taken by the delivery allocation control. All other characteristics of the
problem (sources of uncertainty, operating costs, truck capacity, etc.) remain exactly

as described in §2.1.

In terms of the routing scheme for this case (see Figure 3-1), the truck makes
direct trips from the depot to each retailer. As before, the truck always leaves the
warehouse with a full load and returns empty, so that every time a retail site is visited
its inventory level increases by a full vehicle capacity V. Note that, in order to satisfy

the expected demand in the long run, the system must, on the average, make a full
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Figure 3-1: The Fixed-Route Full-Load DS VRIP.

load delivery to retailer i every AV time units. In fact we take the nominal delivery
allocation to correspond to a fixed sequence of visits to all the retailers (i.e. a polling
table) which would meet this requirement exactly if travel times were deterministically
equal to their means. It should be noted that, even for the deterministic travel time
setting, it is not trivial (and in fact it may not be possible) to construct such a
sequence. Nevertheless, we proceed as if such a polling table were available, since we
shall again be invoking the machinery of heavy traffic approximations and, under the
heavy traffic scaling, the diffusion limit for the total inventory is the same for any

policy having the same average delivery rate under the nominal allocation.

Before we proceed any further, we must define the cycle completions for our pro-
posed policy in order to identify the primitive service completion process. To this
order, define the nominal relative visit frequency for retailer i as w; = \;/)\;, where
A¢ = min; A;. Note that, while it is convenient to use ¢ to denote the index of the
retailer with smallest demand and of the retailer with smallest holding cost, in re-
ality these need not be the same. By the definition of w;, retailer i must receive w;
deliveries for every time retailer £ (the one with the smallest demand rate) is visited.
Besides this condition, in any feasible cycle each retailer must be visited an integer

number of times. Within any desired accuracy, one can find a constant K such that
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Kuw; is integer for all i. We therefore define a service cycle for the DS system as a
sequence of K 3°; w; = AK/), visits to the retailers. Notice that, with this definition,
service completions need not correspord to the nominal allocation described in the
previous paragraph (i.e. the truck might not visit retailer ¢ exactly Kw; times evenly
spread over the course of the cycle). In fact the ability of the manager to deviate from
the predeﬁned polling table constitutes the dynamic load allocation control in the DS
context. However, anticipating the use of the HTAP, delivery schemes that differ from
the nominal allocation are only used for an infinitesimal instant. We therefore char-
acterize the service completions based solely on the nominal polling table. Keeping
the assumption that travel times over different tour legs are mutually independent,

we have that the average cycle completion time is given by
2K —
bp = N 21: Aibloi,

and that the cycle completion variance is

These moments characterize the interarrival times for the process Sp(t), which repre-
sents the cumulative service completions assuming the truck is continuously active in
[0,t]. The manager affects the service completion process by deciding to let the truck
idle. Correspondingly, denote the time allocation control by Tp(t), the cumulative
amount of the time that the truck is busy over [0,¢]. We may hence define the service

completion epochs in terms of these basic processes as:

Tk = 1nf {t I SD(TD(t)) 2 k} .

As mentioned before, the manager may also affect the system through a dynamic
delivery control that allows for deviations from the nominal allocation. Denote this
control by the vector process £”(t). The i-th compor=nt of this vector represents

the allocation control in the following manner (see Figure 3-2): P(t) increases by a
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full load V' every time a delivery at retailer i is made; the nominal delivery per cycle

for retailer ¢ (which equals Kw;V')) is then subtracted at every sequence completion
epoch 7, k = 1,2,.... In this way, as in the fixed route TSP case, the control is
expressed in terms of cumulative deviations from the nominal allocation over prior
services, plus the amount delivered during the current cycle. Notice that, since a cycle
completion occurs every time K'A/), shipments are made and a full load is delivered

on every visit, the allocation control process must satisfy

€i(0) = 0, forall ¢ (3.1)
€i(t) > ei(mg-1), for t € (741, 7) and all i (3.2)
Teli) = KV (33)
= 0, (3.4)

ZE,'(Tk)

where 7 is the time of the k-th polling cycle completion, and 7 is the epoch an
infinitesimal amount of time before this completion. As a consequence of (3.4), indi-
vidual deviations from the nomiral delivery allocation cancel out across the retailers,

and ep(t) = ¥; €P(t) equals the amount delivered over the current cycle.

Finally, denote the demand arrival process by D(t}, and the state of the system
by the inventory vector Q;(t), with its corresponding total inventory Q(t) = ¥; Q:(¢).
The dynamics for the evolution of the state of the DS system, assuming that Q;(2) =

0, for all i, are given by
Qi(t) = Kw;VSp(Tp(t)) — Di(t) +€P(t) for i=1,...,m and t > 0. (3.5)
Express the cumulative idle time process I(t) as

I(t)=t -Tp(t) for t >0 (3.6)
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Figure 3-2: Joint Evolution of Inventory and Load Allocation Control: DS Case.

so that the control policy (Tp(t),eP(t)) must satisfy
1

Tp is nondecreasing and continuous with Tp(0) =0 (3.7)
Ty,eP  are nonanticipating with respect to @ (3.8)
I  isnondecreasing with I(0) =0 (3.9)

The DS version ¢f the fixed-route VRIP may thus be posed as finding a control
policy (T(t),e,-D (t)) to

mintimow 15| [ S4QU0) +W@OP) - D] @10

T—o0

subject to (3.4) - (3.9). Again, the problem in its exact formulation does not appear

to be tractable, and hence we resort to a heavy traffic approximation.
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3.2 Heavy Traffic Normalizations and Averaging

Principle

Since we follow the same procedure as that used in Chapter 2 for the TSP case,
many details are omitted. Define the centered demand and partial service processes
Sp(t), D(t) in the same fashion that was used for the TSP case. The netput process
for the n-th DS system is the given by

n An)C(n) . K®)\®)om) _ . _
x™(t) = (W — Al >) t+ _,\_‘7‘7_—8(”) (TEN(t)) - D™(@).  (3.11)
1Y 0i

Summing the inventory dynamics equations (3.5) over all retailers, and substituting
the suitable definitions gives the following expression for the dynamics of the total

inventory in the n-th system:

Ay (n)

QM(t) = x™(¢) - 23 g ™) +€5(t), (3.12)
where
(n) \(n) (n) \(n) (n)
¢ ¢

Starting from (3.11)-(3.12), we can follow exactly the same path as for the TSP
teur to obtain a diffusion limit for the system netput process. Again, we generate a
sequence of normalized systen.s, and the corresponding normalized inventory, idleness,

)™, using the same scaling as in §2.2.1 to obtain:

and netput processes (W)Y, X
Proposition 3. X™(t) = X(t), where = denotes weak convergence and X(t) is a
Brownian motion process with drift

AC
up = V/n (22i Aoi /\)

and variance

X2
= (44 S

2(3; Mivpi)?

58



where ¢ represents the squared coefficient of variation of the demand interarrival

times.

Notice that the parameters of the Brownian motion are independent of the mul-
tiplicative factor K which was used to guarantee that each retailer was visited an
integer number of times during a cycle. This limiting result holds subject to the

heavy traffic condition that

( A o)
n

A ™) =y, =
2% APyl A )—ﬂD—O(l), for all n.

In other words, the result holds subject to the traffic intensity, given by

m _ 25NV

Pp V(n) )
approaching unity at the right rate. As in the TSP case, we also make the param-
eter scalings necessary for the delivery size to remain O(1) in terms of normalized
inventory units without affecting the load level nor the variability of the system. The

appropriate definitions for the DS case are

o = yn)
9" = 9_(1272
D \/'I—l’
and
02 (n)
DS’ =~
n
The parameters are scaled in order to satisfy the conditions (analogous to the TSP
case) that
lim ¢™ = C=0(1) (3.13)
: (n) _ —
711_1_{&19,3 = J9p=0(1) (3.14)
lim 3 = cjs=0(1) (3.15)



The only difference between the limiting process for the system netput of Propo-
sition 3 and the analogous result for the TSP case (c.f. Proposition 1 of §2.2.1) are
the formulae for the parameters of the Brownian motion in terms of the data of the
original system. This does not affect the behavior of the system with regard to the
time scale decomposition that gives rise to the HTAP. In fact, the same argument
put forth in §2.2.2 for the TSP case goes through for the DS policy. Hence, we have
that the HTAP should hold for this case as well. As a consequence, the delivery allo-
cation control may be used to alter individual inventories at a rate that is an order of
magnitude faster than the one at which the netput varies. Define the total intrinsic
inventory process as

Z(t) = W(t) - ép(t).

By the HTAP, the retailer inventory levels W;(t) will move deterministically along a
fixed path for any given value of Z(t) = z; as long as the nominal delivery allocation
is used. This leads to the following decomposition for the limiting stochastic control
problem for the DS VRIP: first solve for the optimal cycle placement given Z(t) = z,
and obtain the corresponding optimal inventory cost rate gp(z); then choose the

nondecreasing RCLL process Y to minimize

. 1 (T :
limsup - [ | aoz@yat - fy (@) (3.16)
subject to
Z(t) = X(t) - %Y(t). (3.17)

3.3 Optimal Cycle Placement

Again we face the problem of optimally placing the limit cycles for the deterministic
evolution of the retailer inventories in R™. We shall still define the cycle placement
by the vector (zi,z2,...,Zm), Where z; represents the lowest point during the cycle
of W;(t) (i.e. the amount of scaled inventory at retailer i just before a delivery).

The HTAP implies that, while the nominal delivery allocation is used, W; varies
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Figure 3-3: Inventory at Retailer  for the DS Case with Nominal Allocation.

deterministically in [z;, z;+C]. The evolution of the normalized inventory at retailer i
over time is illustrated in Figure 3-3. The only differences with the TSP case are the
delivery size (in this case we deliver full loads on each visit to a retailer) and the visit
frequency. Agsin, since the HTAP is obtained under the assumption vhat pp = 1,

the inter-visit time at retailer i for the nominal load allocation must equal A;'C .

The next step is to establish the relationship between the cycle placement variables
z; and the total intrinsic inventory level Z(t) = z. Here we encounter a difference
with the TSP case in that we would need to specify the polling table for the DS policy
in order to establish this relationship precisely. However, the optimal cycle placement
may be found besed on an arbitrary epoch along the deterministic inventory evolution.
To this order, and seeking to avoid the otherwise unnecessary task of defining the
polling table, we shall assume that the total intrinsic inventory equals the average
inventory over the cycle. This assumption will simplify the exposition significantly
and will not reduce the applicability of our results. We shall revisit this issue in
Chapter 4 when the solutions from our heavy traffic analysis are interpreted in terms
of the original system. There we will develop a simple rule to recover the true intrinsic

inventory level from the system evolution.

Based on the evolution of the inventory at each retailer (remember, it is the same
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as in the TSP case except that the (scaled) delivery size is always C'), we obtain the

following expression for Z; the average scaied inventory level, at retailer i over a cycle:

=z + ¢

1 1 2
Now, we can sum these average inventories at the retailers to obtain the average total
inventory level over a cycle. We now make use of the assumption that the intrinsic
inventory equals the average total inventory over a cycle to obtain the following

relationship between the cycle placement parameters z; and Z(t) = z:

ZIE,' =TI T (318)

Since we have already observed that the inventory evolution for the DS case differs
from the TSP case only in the delivery size, we obtain the inventory cost at retailer

i as a function of the cycle placement parameter z; as

(
hi(zi + 5) if z; > 0
gpi(z:) = { htbiz? 4 h+ BC 0> 1, > —C (3.19)
{ —bi(.'lti + %) if —C > z;

and the optimal cycle placement problem for the DS case can be expressed as

go(z) = Min Z:gDi(xi) (3.20)
subject to (3.18).

As in the TSP case, we are left with a convex-objective mathematical program,
and hence the cycle placement problem is easy to solve. We still make the assumptions
on the cost structure specified in equation (2.32) of §2.3 and apply standard optimiza-

tion techniques to obtain the optimal cycle placements and their corresponding cost
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function gp(z). Not surprisingly, this function will again have three different func-

tional forms, according to the value of the total scaled inventory z. The results are

as follows:
) b+h; mC
Beglonl. T<dbp= Czb+h 5
. b+h
z; = bi_*_thor i#D
mC b+hi
= z——+C)
p 2 i¢pbi+hi
gp(x) = --br+ag
. mC C C — (b+h;)?
Qg = b"“'—+2 'hl—EZ:b-f-hz
. h—h; mC
Region 2. aD<x<ﬁD—CZb+h+ 5
o = 24,C (:II—E)
YT i+ b 2
gD(:L') = &7.‘1:2 + &327 + &g
1 1\
ar = 2—Cl-<;b;+h)
&3 = 20&7( m——
A oA i mC C b;h;
G = a7(C;b,~+h,- 2 ) MR e
Region 3. Bp <z
. hi—h )
z; = —mc for Z?éf
mC hi—h
T, = :C—T-Q‘C'Xt:m
g(z) = hz+ap
A mC C C  (hi — h)?
by = ~h o+ k-3 LG

Observe that the overall qualitative behavior of the cycle placement is the same
as in the TSP case: when the total inventory is far away from the origin use the
cheapest site to accumulate the excess inventory or backorders; if the total inventory

level is close to the origin, then the cycle placement varies linearly with the intrinsic
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inventory level.

3.4 Optimal Base Stock Level

We now proceed with the solution to the stochastic control problem in (3.16) and (3.17),
again specialized to the case of base stock policies. The reasoning behind this decision
is the same as for the TSP case: not only is this a natural policy to consider, but it is
also asymptotically optimal. A proof of the optimality of base stock policies for the
TSP case is included in Appendix A. While no proof is provided for the DS case, the
argument would proceed in essentially the same manner.

As in the TSP case, the total intrinsic inventory process Z(t) is a regulated Brow-
nian motion on (—o0, 2] when a base stock policy is used. Therefore, in order to
establish the optimal base stock level for the DS-VRIP ail we need are standard re-
sults in the theory of diffusion processes. By arguments identical to those in §2.4

the optimal base stock level will be the value of z that minimizes F'D(z), where, for

z> fp

N ap - Bp N .
Fp(z) = / (—bz + a6)0pe’Edz + | (a72% + a5z + d5)Ppe”?="Adz
oo s

z -~
+ -/B: (hﬂ? + &10)171_)6”')(:_2)(11' (321)
D
and for &p < z < BD

FD(Z) = _/_:: (_b.’l? + &6)191)60'3(3:_2) dz

Z -
+ [ (a72® + dsz + 89)0pe” " dz (3.22)
xp

where Up = 2up/o? is the parameter for the exponential distribution that charac-
terizes the steady state of Z(t). The rest of the constants in (3.21) and (3.22) have
the same definitions as in §3.3. As in the TSP case, the optimal value of the base
stock level need not be larger than BD, and hence the two definitions for ﬁD(z) given

above.
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We now proceed with the minimization. As before, we use integration by parts,
and then take the first two derivatives of Fp(z) with respect to z to obtain:

Proposition 4. The value of 2 that minimizes Fp(2) is given by

.1 h op(Bp — é&p) .
=g, [(b+ h) (ef'D(ﬁD-&D) —1)| e (3.23)

if zp 2 [i‘D, otherwise z}, is the solution to the following equation

2}, where

1 _ﬂD(z. _dD) * 1 mC hg B
- = 0. 2
€ D + zp > > +C§i s 0 (3.24)

Furthermore, the optimal cost Fp(zh) is given by

~

FD(ZB) = hZI) + a0

if 25 > Bp, and by

~

EFp(zt) = ar(2h)” + aszh +éo

otherwise.

The proof is simple and is omitted. The analysis follows essentially the same
outline described after Proposition 2.

The results in Proposition 4, together with the optimal cycle placement equations
of §3.3 provide a complete characterization for the optimal dynamic control of the
fixed route DS-VRIP under a heavy traffic regime. Notice that, since we have used the
cycle placement formulae of §3.3 to obtain z},, we have implicitly use the assumption
that Z(t) equals the average inventory over a cycle. In Chapter 4 we will consider
the implications of these results for the control of the original system, and show that

this assumption is really innocuous.
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Chapter 4

Fixed Route VRIP Results

4.1 Interpretation of Limiting Optimal Control

4.1.1 The Fixed Route TSP Case

The analysis in Chapter 2 allowed us to characterize the control policy that is optimal
for the fixed-route TSP VRIP under heavy traffic. We will now interpret those results
to extract a policy that may be implemented in the original system. Again, there
are two main control decisions available for this system: whether the truck should be
busy or idle, and how to assign the load among the retailers during a particular tour.
We will address the load allocation decision first, and then consider the busy/idle
control.

Since the state of the system evolves dynamically in time, the decision of how
much of the load to leave &t each retailer i is best delayed until the truck arrives at
the site. To this end, let ¢ corresponds to the epoch at which the truck leaves the
warehouse with a full load, and consider then ¢; > ¢, the point in time just before
the truck arrives at retailer i. Using the unscaled version for the travel times along
the TSP tour that we defined in §2.3, the average travel time between any two sites
i,j € 0,1,...,m is 6%5F = \/nd]°F. Under the deterministic inventory evolution,

if the truck leaves the depot at time t it would be arriving at retailer i at time

t; =t+ 05" =limeot+ 6T5P — ¢, for € > 0. At time ¢, the state of the system
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is given by the vector of inventory levels at the retailers, (Ql(t,-' )s-ens @ty )), and
the amount of goods left in the truck, L(¢;). Given this informatior, how many units
should the truck deliver at retailer i? The answer, according to the results in Chapter
2, is to set the delivery size d; so as to shift the vector of retailer inventories towards

the optimal cycle placement.

Recall that the optimal cycle placement problem of Chapter 2 (In particular,
equation (2.29)) was obtained by means of a relationship between the (scaled) cycle
placement vector z; and the total (scaled) intrinsic inventory Z(t). Since it seems
advantageous to delay the load allocation decision until each retailer is reached, the
first necessary step to establish the delivery size is to find a relation between the total
system inventory at the epochs where the truck is at retailer ¢ and the corresponding

intrinsic inventory level.

To this order, consider the value of Q;(t;), the inventory level at retailer j, at the
epoch t; when the truck arrives at retailer i. In keeping with the behavior predicted
by the CPR results we characterize these values under a deterministic evolution for
the retailer inventories over the course of a cycle. The relationship between Q;(t:) and
the unscaled cycle placement g; = \/nz; at the time where the truck visits retailer ¢
depends on whether site j lies after or before i in the TSP tour (see Figure 4-1). Again
under the deterministic evolution, assuming the truck leaves the warehouse at time
t, it arrives at retailer 4 at time t; =t + 02,°F~. Therefore, the retailer inventories

relate to the cycle placement parameters by:
Qi(t7) = g; + X6;°F for j i

and
Q;(t7) = g; + V; — \6%5F for j <.

Also, the total inventory at time t; = t + 637, relates to the cycle placement

parameters through

Q) =Y Qi) =m+ X e (41)
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where

n= XV~ SN+ TN

ji<i i<i j>i

is an epoch locator constant for each retailer :.

According to the unscaled version of constraint (2.29) the cycle placement vector

¢; must satisfy
Z gGi=4q— Z /\iggisp (4-2)

when Q(t) = g (i.e. when the intrinsic inventory equals q). Equation (4.2) is ohtained
by substituting ¢i/\/7 = Zi, ¢/vn = z, and 0557/ \/n = 97°F into (2.29). Readers
may verify that, with these substitutions, the scaling factor n cancels out. Using
equations (4.1) and (4.2), we can express the total inveutory at time ¢ (i.e. when
the truck was at the warehouse) as a translation of the inventory vector at time ¢;.

Namely,
Q)= q(t7) = 2 Qi(tT) —m+ X Aib; -
j J

The value g(t;) thus defined is the intrinsic inventory that we need to use to find
the optimal cycle placement. Notice that we have essentially used the deterministic
inventory evolution to define a constant (for each retailer) which we should use to
translate the total inventory at the tirne when the retailer is visited into the total

intrinsic inventory for the cycle.

To reduce the notational burden, and to make the connection with the heavy
traffic results of Chapter 2, we will henceforth denote the intrinsic inventory level
simply as gq. The reader should note, however, that this quantity will change in a
dynamic fashion as the total inventory changes. It plays the role of the system state
in the load allocation part of the VRIP. This being said, for a given value of ¢ we can
find g = /nz, the corresponding optimal (unscaled) cycle placement parameters
from the unscaled version of the formulae in §2.3. As before, this is done by replacing
the parameters of the original system with their appropriate scalings. Namely we let
¢/ = i, ¢/v/n = z, Vi/\/n = C;, and 0,-7]75” v =975 to obtain the following
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expressions for ¢} in terms of the state g:

. b+ h;
Region 1. q<aT—Z/\0TSP Zb+h
* b+ i
g = 5 +hV for i#p
b+ h;
* TSP Yy
=47 Z/\o ;b,-}-hin
i#p
Region 2. ar < q< Br= Zz\ﬂTSP E:';:V,
. _ 20 gISP (hi — he)Vie
R - A (RS B L
1/~ V -
- i Y
? 2\"{‘bi+hi)
Region 3. Br <gq
. _h,-—h .
“ = b; + hy '

¢ = q- ZMTSP

which again are independent of the scaling parameter n.
We may now use these results to decide the delivery size at retailer i. Observe
that, under the deterministic inventory evolution for the optimal cycle placement,

Q;(tF) (i.e. the inventory level at retailer 7 just after the delivery is made) satisfies
Qitf) =g + Vi (4.3)

Therefore, we set d}, the ideal delivery size for this cycle, so as to come as close as
possible to this state. The actual inventory in the system after the delivery is made
will be Qi(t;) + d;, and equating this to (4.3), its equivalent point in the optimal
cycle, we obtain

di = gf + Vi — Qu(t)).

for the ideal dynamic load allocation. Note that these delivery sizes are adjusted
dynamically to the state of the system, through the dependence of g} on g.

We may not use this delivery size directly since we cannot allocate more than the
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available load L(t;), nor desire to make negative deliveries. We shall therefore deliver
an amount that is as close as possible to the ideal value df, but does not violate either

constraint. Denoting the delivery size by d;, this amount is given by
d; = max[d;, 0] + min[0, L(t]) — d;] for i=1,2,...,m —1. (4.4)

The delivery size at the last ~etailer will simply equal the load on the truck at that

time, so that V units are always delivered on a cycle. That is we set
dm = L(t,,). (4.5)

Notice that we could in principle allow negative deliveries, as long as there is
inventory available at the retailer ¢ and the total amou:xt of load the truck carries as
it leaves this retailer is kept under its total capacity. However, this is not necessarily
an improvement over the delivery sizes found above since under our policy the truck
returns empty, and so the items picked in a negative delivery would more likely end up
being shifted to the last few retailers of the tour. This will not necessarily bring the
state of the system closer to the optimal cycle. Hence, we disallow negative deliveries
and will use the delivery sizes as defined in {4.4)-(4.5).

We have thus obtained a dynamic load allocation rule for the VRIP from the
solution to the optimal cycle placement for the heavy traffic limit problem. The rule
was developed based on a recalculation of the optimal cycle placement as the truck
visits every retailer. We expect this to do better than the case wherevthe optimal
cycle placement (and the corresponding delivery sizes) is found only once per cycle; for
instance when the truck is ready to leave the depot. Noticz however that, according
to the HTAP, the evolution of the retailer inventories should behave increasingly in
a deterministic fashion as pr — 1. Therefore we expect that, in systems where the
utilization is high, the advantage obtained by recalculation of the cycle placement at
the retailers should be quite small (and asymptotically disappear).

We now turn our attention to second aspect of the dynamic control policy for

the TSP-VRIP: the busy/idle decision. In this case, the interpretation of the heavy
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traffic results is quite straightforward. For this aspect of the control we consider
the decision epochs to occur when the truck is at the warehouse, so that the truck
always completes its tour and returns to the warehouse empty. At these points in
time, the truck idles if the total inventory level is above wy = /n 2%, otherwise it
starts a new tour. Notice that if we substitute wp* as just defined, and replace the
parameters of the scaled system by their appropriately normalized counterparts from
the original system (as done above for the cycle placement formulae) into the formulae

of Proposition 2, we obtain that the optimal unscaled base stock level equals

sl )

if wy > Br, otherwise w}. is the solution to the following equation

2 . 2
282 -vrlwp-or) 4 20wy + a3 — 22 _o. (4.7)
vr vr

Furthermore, the optimal cost is given by
Fr(w}) = hwy + as
if wy > Pr, and by
Fr(w}) = ay(wh)? + aswy + a4

otherwise. The constants in these formulae are the unscaled counterparts of the ones

in Chapter 2. Their values are given in terms of the original system parameters as

2(1 - pr)V
AGT(CS + VC%—-) !

vr =

a3 = 2a; (Z ZAGTSP),

b;h;V;

az(z———Z/\HTSP) Eb+h
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and, .
= —hZ/\ 057 + §;h,-v,- 5_: (b +h‘
Hence, the optimal base stock level is also independent of the scaling factor n.

We have thus completely characterized a dynamic control policy for the fixed
Route TSP that depends exclusively on the original system parameters. The policy
specifies the two controllable aspects of the system: (1) the allocation of load to
retailers, through the delivery sizes d; defined in (4.4)-(4.5); (2) the busy idle control
for the truck, through the system-wide base stock level defined in (4.6)-(4.7).

As mentioned before, due to the underlying heavy traffic assumptions, we expect
this policy to perform quite well for systems with high utilizations. We shall shortly
use some computational experiments to gage how robust these results are when the
system is not the heavily loaded. For now we turn our attention to the extraction of

an operating policy for the DS system from the analytic results in Chapter 3.

4.1.2 The Fixed Route DS Case

Again we need to address the two aspects of the control separatcly. In this case
the two decisions invelve: deciding whether the truck should depart immediately or
remain in the warehouse and idle; and — if the truck is to remain busy — choosing
the next retailer to visit (to deliver a full load to). As for the TSP case, we address
the aelivery allocation among the retailers first.

The interpretation of the heavy traffic results with regard to the retailer selection
follows the same principle as in the TSP case: the next delivery should be made in
order to bring the inventory vector as close as possible to the optimal cycle. We shall
therefore attempt to obtain an unscaled optimal cycle placement based on the state
of the system. Recall from §3.3 that the heavy traffic cycle placement results were
obtained assuming that the intrinsic inventory in the system was equal to the average
inventory over a cycle. The first step toward the dynamic delivery allocation control
will therefore be to establish a relationship between the total inventory in the system

at the decision epoch and the cycle placement parameters.

74



Unlike the TSP case, in the DS model assuming that the decision epochs are
when the truck is at the depot is not enough to obtain a single such relationship since
retailers are visited with different frequency. Therefore the relationship between the
inventory at the retailers and the cycle placement value z; when the truck is at the
warehouse evolves dynamically as the truck follows the polling table. This is not a
major problem since, according to the HTAP, we may use a deterministic model for
the inventory evolution over a cycle. Under this deterministic model, there are several
possible ways in which one can define a dynamic epoch location function to relate the
inventory at the current epoch to the cycle placement parameters. One way to do it
is to keep a vector process (11(t), r2(t), . .., m(t)) of the time epoch for the latest visit
to each retailer. If we then denote the current time by ¢, the value ¢ — r;(t) represents
the time elapsed since the truck last visited retailer i. Using these definitions and the
deterministic evolution over a cycle of the inventory at retailer i (see Figure 3-3), we

obtain the following expression for the inventory at retailer i and decision epoch ¢:
Q,(t) =q; + V- /\,(t - 'I’i(t)) =gq; + Uio(t).

where q; = y/nz; are the unscaled cycle placement parameters. Summing these
expressions over all retailers we obtain a candidate relationship between the total

inventory at the decision epoch ¢ and the cycle placement parameters as:
30 = Q1) —mV + 3 Milt — (1)) = Qt) — wo(t)

While in the deterministic evolution model each retailer would always be visited
every V/; time units, it is certainly possible for the inter-visit times in the actual
system to exceed this nominal value (since demand and travel times are stochastic).
We need to account for this possibility in the definition of u(¢). If the current inter-
visit period is extremely long, we 1nay have V — A\;(t — r;(t)) < 0. So that u,,(t) as
defined above would make the cycle placement of the retailer higher than the current
inventory level — contradicting the definition of g; as the lowest level reached by the

inventory at retailer i over a cycle. In particular, by this definition, ¢; > Q;(t) — Aifo
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if the truck is at the warehouse at time t. Therefore, define the epoch locator function

as

u(t) = >_wi(t) = 3 max [V — Ai(t ~ ri(t)), Aiboi]- (4.8)

Using (4.8) (and the appropriate scalings) in equation (3.18) we find that g(t),
the intrinsic inventory level as defined for our heavy traffic analysis relates to the

inventory vector at time ¢ by

mV
q(t) = Qi(t) —u(t) + -5 (4.9)
i
Again, though we shall henceforth drop its functional dependency on time, notice
that ¢ is a dynamic system state which depends on the current total inventory and
the cycle evolution. We next use this value to find the corresponding optimal cycle

placement.

Recall that for the heavy traffic analysis we assumed that the intrinsic inventory
was equal to the average inventory over a cycle. Observe that, by using (3.18) to
find g, we have related the total current inventory to the average inventory over a
cycle, so that the we can use the unscaled formulae form the heavy traffic analysis to
find the cycle placeient directly. Therefore, at least in terms of the load allocation
control, the assumption that Z(t) = mC/2 was innocuous. To this order, we use the
appropriate scaling relations for the system parameters to obtain the formulae for the

unscaled optimal cycle placement vector ¢} =: \/nz} given g, as

Region 1. q<aD=_Vzb+hi +mV

b+ hi 2
. b+ h; .
g = bi+hiV for i#p
G = q-—+V
P 2 %bi-i-hi
Region 2. .aDSQSﬁD=VZ:;Zi'+n;V
. 2a;V ( _TK)
% = hyw )
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1 1 \7!
@ = W(;b,'l"h,)

Region 3. Bp <q
. hi—h _
g = —brl-hiv for i # ¢
. mV hi—h
@ = 93-'2—+Vz:ﬁ,

which are independent of the scaling factor n.

As mentioned before, we will use this cycle placement as a reference or ‘ideal’
m-dimensional inventory state for a given total inventory level and epoch locator (i.e.
for a give g), and choose the retailer to visit so as to bring the current inventory
vector as close as possible to this reference cycle. To state this precisely, let the
epoch at which the truck is ready to depart from the warehouse be t and consider
the deterministic inventory evolution over the next delivery trip. In the deterministic
inventory evolution, the truck will reach retailer ¢ (if it chooses to go there next) at
time t; = t + 6p;. In the deterministic nominal allocation tour corresponding to the
optimal cyclc placement, Q;(t{), the inventory at retailer j right after a delivery is

made to retailer ¢, is given by:
Q;(tF) = max [g] + V = Xi(t + 60 — 5(t), @} + Xi(Boi +65)] , for j#i
and
Qi) =g +V,

where the maximization used for the case when j # 7 makes the necessary adjustment
for long inter-visit times as discussed above. If we now take the actual inventory levels
Q;(t) as a starting point, under the deterministic inventory evolution the inventory

vector after a delivery to retailer 7 is given by

Q;t) = Q;(t) — \jbos, for j#1
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and
Qi(tT) = Qi(t) + V — \ibui.

Therefore, the resulting euclidecan distance between the ideal and actual inventory

level vectors after a delivery to retailer i is

A(G) = \ ¥ (Qitth) - ;) (4.10)

J

The proposed control is to send the truck to deliver at retailer k, where k = arg min; A(3).

Finally, as in the TSP case, the busy/idle control is a direct unscaling of the heavy
traffic results. The only added complexity is that for the DS case the truck visits the
warehouse several times during the course of a cycle, and so has many possible idling
decision epochs. Exploiting again the deterministic inventory evolution we may allow
this possibility by letting the truck idle whenever Q(t) — u(t) + &Y > w},, where
wh = \/n 2} is the unscaled idling threshold. Notice that, using the deterministic
evolution model to relate the total inventory at time ¢ to the implied average inventory
over a cycle, we have again found a solution that cancels the effects of the assumption
that Z(t) = mC/2, which we made on Chapter 3. Making the suitable scaling

substitutions into the formulae of Proposition 4, we have that

h —
w} = ——1 [(b+h) (ﬁ%%)]+ap (4.11)

if wp > Bp, otherwise w}, is the solution to the following equation

1 L p(wh—ap) 1 mV
—_ D~&D —_—— 4V
UDe + w 7o 5 Z

E " h =0. (4.12)

Furthermore, the predicted optimal cost F(w},) is given by

mV 1% (hi — h)?
R

i
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Fp(wp) = ar(wh)? + agwh + ag

otherwise. The constants in these equations are the unscaled counterparts of the ones

defined in Chépter 4. Namely,

Un = (1 - pD)AV
P U% > Aifoi ’

h,‘ m
a8=2Va7 (E-b—:_—h——-i) N

h  mV) V. bl
“9"“7(Vzi:b,.+h,-’ 2') +§_;b¢+hi

and (ap, Bp, ar) are as defined in the unscaled cycle placement formulae above.

We have thus obtained a dynamic control policy that determines the delivery
allocation and the busy/idle decisions for the DS VRIP system in terms of the original
system parameters. As in the TSP case, we expect this policy te perform quite well
for systems with relatively high values of pp, since the limiting control problem solved

corresponds to the heavy traffic regime.

4.2 Performance Analysis of Fixed-Route VRIP

Mocdels

Besides an asymptotically optimal control policy for the fixed route VRIP, the results
of §4.1 also provide a prediction for the system cost when this policy is used. This
will in general be only an approximation for the true cost performance since-it was
obtained under a regime where individual inventories behave deterministically. Our
results predict that this estimate will approach the true value as the traffic intensity
approaches 1 (i.e. as the proposed policy becomes optimal). While we have not yet

established how accurate these results are when the system experiences lower utiliza-
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tion rates, we rhall nevertheless use these cost predictions to compare the performance
of the two routing modes considered. Based on previous uses of heavy traffic approxi-
mations for the stochastic control of queueing systems we expect these predictions to
be fairly accurate in terms of the relative costs of the two policies. In a later section
of this chapter we shall use some numerical experiments to confirm that this is also

true in our case.

We will analyze the operating cost predictions obtained from the heavy traffic
analysis in order to address two issues: firstly, to underscore the importance of tak-
ing into account the stochastic nature of the VRIP when choosing a control policy;
and secondly to investigate the relative performance of the two fixed route schemes

considered in this thesis (TSP and DS).

Recall from the problem formulations in (2.6)-(2.12) and (3.4)-(3.10), for the TSP
and DS case respectively, that the total cost for the VRIP system has two components:
an inventory holding/backordering component, and a transportation component. The
analysis of each of the *wo fixed route cases later revealed that the control could
not affect the transportation cost (since it could not affect the rate at which the
product could be shipped to the retailers). As a consequence, the predicted cost
functions Fr, Fp in §4.1 represent only the inventory component of the total system
cost. Denote a generic fixed routing scheme by R, and by C(R) the total cost for the
syster under this scheme. To obtain this cost we need to add the transportation cost
(or équivalently subtract the idleness reward) to the corresponding inventory cost

expressions in §4.1. That is, we set

C(R) = Fa(wg) — f(1 - px)- (4.13)

Note that this is true for a general fixed route system ard not just for the ® = TSP

and R = DS cases which we have considered in this thesis.

Careful examination of (4.13) and of the inventory cost functions in §4.1 helps
illustrate why stochastic modeling is of great importance for the analysis of the VRIP,

and why the deterministic models which have been so successful in pure routing
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problems may fail in this context. Notice in particular that the second term in the
RHS of equation (4.13), which represents the transportation cost, does not depend
at all on the stochastic nature of the system. The steady state transportation cost
depends only on the utilization rate pg for the given rcute, which in turn is a function
only of the first moments of the tour completion and demand arrival processes. Hence,
if transportation costs are all important, a deterministic model is indeed the right

approach to the problem.

The situation is quite different for the first term in the RHS of (4.13), which rep-
resents the inventory related cost. As should be clear form the analyses in Chapters 2
and 3, the optimal base stock level depends on the variance of both the demand arrival
processes (which we assumed are independent of the route) and the tour completion
times. Therefore, for any instance of the VRIP in which the inventory costs are
at least of the same order of magnitude as the transportation costs, a deterministic
model will fail to set the correct inventory levels and might give a solution far away

from the true optimal.

Concentrate for now on the transportation cost for the TSP and DS cases. It is
interesting to observe that the DS policy will have an advantage over TSP in terms
of this cost component. In particular, if we denote by Rg the steady state expected
idleness reward per unit time for routing scheme ®, the additional transportation cost

incurred by the TSP over the DS policy is
Rr — Rp=—f[(1-pr) — (1 = pp)j = —f(pp — p1).

We have the following
Proposition 5. As long as 6;; = 0;;, Rr — Rp > 0.
Proof: We need to show that pp < pr. By definition of the traffic intensities this is
equivalent to showing that
m-—1
2 E Aifoi < /\( Z 0]',_7'4.1 + emo). (414)
i

=0
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It is well known that the length of the shortest tour that starts at node 0, visits all
other sites and returns there is bounded from bellow by the distance of the longest

direct route to the retailers, that is

m—1
Z 6jj+1+ 0o > 2mkax Box (4.15)
3=0

(this is a direct consequence of the triangle inequality, which requires 6;; = 6;;).

Relaxing the maximization on the RHS of (4.15), it is seen that

m—1
Z 0,-,,-+1 4+ Omo > 260g;, forall i=1,...,m. (4.16)
=0

Multiplying both sides of (4.16) by ); and then adding up over all the retailers
proves (4.14). ]

The result in Proposition 5 is quite interesting since, at first glance, one might expect
the TSP route to provide the best transportation cost. However, as the previous
analysis reveals, minimization of the route length is not equivalent to minimization
of the steady state transportation cost in the VRIP context. Rather, what one needs
to do is increase the distribution efficiency of the system ( i.e. maximize the amount
of items delivered per unit time traveled). In this context, full load direct shipping

provides the higliest transportation efficiency of any fixed route scheme.

One consequence of the transportation dominance of the DS policy is that as the
demand rate increases the DS policy will also dominate the TSP tours in terms of the
inventory cost. This is the case since, for any system where the retailers are not all in
the same geographic location, pp < 1 when pr = 1. That is, there exist some levels
of traffic intensity where the DS would be stable while the TSP would not. Based on
this observation, note that as pr — 1, v — 0. This has two implications: first in
the limit as pr — 1, w} as given by the closed form expression (4.6) grows without
bound, and so it is the correct value to use as a base stock; second, #r(w}) also grows
without bound as utilization approaches 1, and hence will eventually become higher

than the Fp(w}) which is finite when pr = 1.
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We should note that pp < 1 is a necessary condition for stability of any fixed
route scheme R but that it is not sufficient. In particular, having pr < 1 will keep
the total inventory stable but, in the absence of adequate dynamic load allocation, it
is possible to accumulate inventory at one retail site while backorders grow without
bound at another. Hence our statement about DS trips dominating TSP tours as
pr — oc holds as long as some form of stable dynamic allocation is used in the DS

case.

Another consequence of the higher transportation efficiency of the DS scheme is
that it will be preferred to the TSP policy if the transporiation cost is high enough.

In particular if we let
Fr(wt) — Fp(wp)

T — PD

fe=

then for any f > f. the DS policy provides the best overall cost. While the value
of f. may be found numerically for any particular problem instance, a more precise
characterization of f. requires a better understanding of the relationship between the

inventory costs in both systems.

Unfortunately, it is hard to make simple inventory cost performance comparisons
for the different routing schemes. Part of the reason is that the base stock levels,
and hence the predicted inventory costs in §4.1.1 and 4.1.2 are not in closed form (see
equations (4.6)-(4.7) and (4.11)-(4.12) respectively). Besides, even if one assumes that
wy > Br holds, the closed form expression for Fy will still depend on ¢ the variance
of the BM, which in turn depends on the variance of the cycle time under routing
scheme R. While the expected travel times will observe the triangle inequality and
so the drift of the DS system will always be higher than the TSP case, any ordering
is possible between the variance of these systems. Nevertheless, soinething ce be
said about the relative performance of the TSP and DS policies as the inventory cost

parameters are taken to their limits.

In order to study the relative inventory cost performance of the TSP and DS
" schemes, let us consider the case where the inventory costs at the retailers are sym-

metric. Namely we assume that h; = h and b; = b for all = 1,...,m. We shall
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analyze the behavior of the inventory cost for the TSP and DS cases as b becomes

large. First observe that the value of w} and w}, in (4.6) and (4.11) is increasing in
b/h. One therefore expects that there exist some critical values by, bp such that if
b is increased above them (while leaving h fixed) the optimal base stock is given in
closed form. These critical values indeed exist and, for the case of symmetric costs,

they thcmselves have closed form expressions. Namely,

_ UTVGUTV
bT—h[euT—v—_—l—l], (4.17)
and
vpmVe'p™

Consider now the difference between tne closed-form inventory costs for the TSP and

DS policies which, for the symmetric cost case, can be expressed as

— vrV
Fr(wp) - Fp(wp) = h(”” T 1o [1+-”-] +im [e____l]

vpur h vr vV
1 er™V — 11 (m-1V
- —1 - . 4.
Vp n[ vpmV ] + 2 ) (4.19)

Clearly, when Fr(w$) — Fp(wp) > 0 tke DS policy provides a better inventory cost
than the TSP, and vice versa. Notice that as b — oo the value of (4.19) is dominated

by the term

- "y, [1+£]
VpUT h

whose sign will b_ the same as the sign of vp — vr. Define tie critical value b, as

- h(eVTV -1 ;‘3-:33 evomV _ _z,D"_uT ox VDVT(m — l)V- _
¢ \ VTV LDmV P 2(VT - VD) J !

whare exp|z] = e®. Then, Jor b > max{br,bp, b.}, the DS policy provides the best
inveatory cosi when vp — vg > 0, while the TSP routing will dominate the inventory
cost for vhis range of b in th cases where v, —1vp < 0. Recall that vy is the attenuation

constant for the exponentisl steady ste:e distribution of the RBM limit for the total
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intrinsic inventory under the routing scheme ®. Hence, in the limit, the policy that

concentrates more of its density close to the idling threshold dominates. Notice that
vp — vp < 0 requires 0% > a2, since the TSP policy always has a slower drift than
DS.

This is a rather unexpected result that again highlights the influence of the
stochastic nature of the system in the inventory costs. Note in particular that, since
it makes smaller and more frequent deliveries to each retailer, the TSP policy might
be expected to outperform the DS scheme in terms of the inventory cost at low uti-
lization levels. Yet, as the preceding analysis showed, the policy that provides the
best inventory cost for large backorder penalties is determined by the effect of the
routing schemes cn the variance of the system. We should note that, for the case of

deterministic travel times 0% = 0%, and so DS dominates in the limit.

4.3 Simulation Experiments

In order to validate the solutions obtained for the VRIP by our heavy traffic analyses,
we resort to a Monte Carlo simulation. Several experiments were performed in order
to test the results under a variety of conditions. The main purpose of the experiments
reported here will thus be to confirm that the policies obtained from the analyses in
Chapters 2 and 3 perform well over a reasonable range of utilization levels (and not
only when the traffic intensity is very close to 1).

The following assumptions were used in all the simulation experiments:

1. There are 5 retailers in the system.

2. Demand arrivals follow a Poisson process. Different values of the total arrival
rate ) are used in the experiments to .btain higher utilization rates. However,

the fraction of demand represented by retailer ¢ is fixed. In particular, we set

and /\5 = 2—)"

A
A1""5'1 A2' 5

]

|
>

|

|
L ox
Il

U:I >

The travel time random variables T;; are distributed like second order Eriang,

o
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independent of each other and of past travel times. The travel times are adjusted
in order to consider severai truck sizes without affecting the delivery rate of the

system. To achieve this, the mean TSP tour time 67 is set so that 1067 = V.

4. Since for a fixed route scheme the control does not affect the transportation cost,
we leave the iransportation cost rate unspecified (equivalently, we set f = 0)

and concentrate on the inventory cost component.

The first set of simulation runs was performed in order to test the cost improve-
ment obtained under the TSP policy from recalculation of the cycle placement at the
retailers as opposed to determining these values only once per cycle; when the ﬁ uck
is at the warehouse. Recall from §2.3 that we expect this improvement to be small for
systems that have high utilization rates (since the higher the utilization, the closer
we are to the time scale decomposition implied by the HTAP). One might also ex-
pect this improvement to be more dramatic for big truck sizes and long inter-retailer
travel times. With this in mind, we consider the following travel time structure (which

corresponds to the pentagon topology illustrated in Figure 4-2):

Oor = Bs0 = 5, O = Oy = Oy = g = L.

To complete the characterization of the system, we take the cost structure to be
symmetric over the retailers. Namely, weletb; =b=5 h;=h=1foralli=1,...,5.
We cousidered a total of nine cases under this setup, corresponding to three dif-
ferent vehicle sizes (100, 10,5) and three demand arrival rates (5,7,9). For the cases
with A < 8, we simulated three replications of 36,000 time units each with cycle
placement recalculacion at the retailers and three more with calculation only at the
warehouse. For those instances where A > 8, the length of each replication was in-
creased to 240,000 time units in order to reduce the variance of the results. This
allowed us to keep the standard deviation of the cost estimate under 1% of its mean.
Hence, roughly speaking, differences of 2% or more may be taken as significant. In

all cases we used the base stock level and cycle placement formulae from §4.1.1.

Table 4.1 summarizes the results of the experiment. The entries in the table
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retailer 2

retailer 1 .
retailer 3
warehouse
retailer 5 retailer 4

Figure 4-2: TSP Tour on Pentagon Topology For Simulation Experiments.

A=501] A=70| A=90
pr=05|pr=0.7|pr =09
V =100 4.0% 5.0% 1.1%
V=10 7 4% 18.6% 0.7%
V=5 7.3% 18.1% 1.1%

Table 4.1: Experiment 1. Increase in Cost for Placement Calculation only at Depot

represent the increase in the long-rmn average inventory cost when calculation of the
deli{/ery sizes is done only at the warehouse, and not adjusted over the course of
the tour. Notice that, as expected, the advantage obtained by recalculation at the
retailers becomes quite small when the system is subject to a high traffic intensity
(on the order of 1% when pr = 0.9). On the cther hand, this effect does not appear
to be sensitive to the truck size. These results certainly support our conjecture that
the HTAP applies for the VRIP. Even though the advantage from cycle placement
recalculation at the retailers is small at high values of pr, we shall still use this policy
in all subsequent TSP simulations.

For the second simulation experiment we keep the same set-up as in the first with

the exception that we shall also consider the case of asymmetric costs. In particular,
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we consider the following inventory cost rates:

and
b1=5, b2=10, b3=5, b4=10, b5=5

For each of these eighteen cases (3 Truck sizes, 3 arrival rates and 2 cost structures)
we performed an exhaustive search in a series of simulations (each consisting of three
replications with the length described in Experiment 1) in order to find the base stock

level that provides the best cost for the system.

Table 4.2 summarizes the results of the second simulation experiment. The entries
in the table represent the suboptimality (within the class of base stock policies)
incurred by using the base stock level obtained from the formulae in §4.1.1 instead
of the optimal base stock level found by exhaustive search. Notice that the base
stock level found by the heavy traffic analysis performs remarkably well even at low
traffic intensities, and that, as expected, the suboptimality of the results decreases
dramatically as pr — 1. This holds true for both the symmetric and asymmetric
cost cases. The average suboptimality is 5.1% for the symmetric cost cases, and it is
3.8% for th' :uns with asymmetric cost. Even more telling is the fact that, out of the
eighteen combinations considered, only four cases have a suboptimality that exceeds
5%. Furthermore, though it is not evident from the data as reported here, in those
cases where the suboptimality does exceed 5%, the error in absolute terms is not so

substantial (since the inventory cost of systems with small utilizations is quite smal).

In the third simulation experiment we study the performance of the control policies
of §4.1.2 for the DS case, and compare it to the performance of the TSP policy on the
same system. As before, this is done by comparing the long run average cost obtained
when using the base stock levels given by (4.11)-(4.12) with that of the optimal base
stock level found by exhaustive search. As it turns out, the DS policy has a huge
drift advantage over TSP in the pentagon topology used for experiments 1 and 2.

Therefore, in order to obtain a meaningful cost comparison, the third experiment was
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X=501] A=70] A=90 |
pr=05|pr=07|pr=0.9
V =100 | Symm. 0.0% 0.9% 2.6%

Asym. 0.6% 2.2% 0.0%
V=10 | Symm. 19.1% 4.3% 1.7%
Asym. 6.7% 2.2% 1.8%

V=5 | Symm. 14.6% 1.1% 1.5%
| Asym. 11.6% 1.1% 0.6%

Table 4.2: Suboptimality of H.T. Base Stock for Pentagon Topology TSP VRIP

done over a different topology. Specifically, we assume that the travel times satisfy

90’1‘ 0’1"
fp; = —, for 1=1,...,5, and 6y =03 =033 =04 = .
0i 20 or 12 23 34 %= 70
These travel times correspond to the wedge structure illustrated in Figure 4-3. Notice
that the traffic intensity advantage of the DS policy is proportional to the ratio of the

inter-retailer to the warenouse-retailer travel times which, for the simulation data, is

given by:
o _ 2601 =0.9.
pr 2001 + (m —1)612

The rest of the simulation parameters are left as in the symmetric cost case in Ex-
periment 2, except for the fact that we also simulate the DS policy for the case when
X\ = 10. The TSP policy is not simulated for this case since it cofresponds to pr =1,
and so the system is not stable under this scheme. Hence we consider a dozen cases

(4 traffic intensities and 3 vehicle sizes) for the DS policy and 9 cases for the TSP.

Tables 4.3 and 4.4 summarize the results of this experiment. The entries of Ta-
ble 4.3 represent the cost degradation incurred by using the base stock level obtained
from the formulae in §4.1.1 instead of the optimal base stock level found by exhaustive
search for the same routing scheme. In other words, the data in this table compare
the cost obtained under the best base stock level for each policy (found by exhaustive
search) with the performance of the proposed base stock level of the same policy.

For the TSP case the figures show an average suboptimality (within the class of base
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warehouse

retailer 1

retailer 2
retailer 3

retailer 4
retailer 5

Figure 4-3: TSP Tour on Wedge Topology For Simulation Experiments.

A=5.0 A=170 A=9.0 | A=10.0

pr =0.50 | pr =0.70 | pr = 0.90 | pr = 1.00

PD = 0.45 PD = 0.63 PD = 0.81 PD = 0.90

V =100 | TSP 2.41% 5.31% 6.10% N.A.
DS 4.13% 2.42% 1.74% 0.52%

V=10 | TSP 11.04% 0.00% 3.67% N.A.
DS 4.30% 3.01% 2.43% 0.08%

V=5 |TSP 17.48% 0.00% 1.19% N.A.
DS 3.710% 1.75% 1.40% 0.00%

Table 4.3: Seme-class Suboptimality of Proposed DS and TSP Policies on Wedge
Topology

stock-controlled TSP policies) for the proposed base stock level of 5.2%, and only
three of the nine cases have a suboptimality of more than 6%. The average sub-
optimality for the proposed DS policy (within the class of base stock-controlled DS
policies) is 2.1%; and it is never higher than 5%. These results confirm again that
the heavy traffic results are quite accurate over a broad range of parameters, for both

the DS and TSP policies.

Table 4.4 presents a comparison of the inventory cost for the DS and TSP policies.
All entries in the table represent the percentage difference between the TSP cost and

the DS cost. That is,

TSP cost — DS cost

0
DS cost 100%.

entry =
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A=35.0 A=T10 A=90 A=10.0

pr =050 | pr=0.70 | pr=0.90 | pr = 1.00

pp=045| pp=0.63 | pp = 0.81 | pp =0.90

V =100 | Sim. -80.2% -72.5% -29.1% N.A.

Pred. -78.4% -71.8% -22.1% 00

V=10 | Sim. -66.5% -58.6% -3.0% N.A.

Pred. -76.7% -65.0% 2.5% 00
V=5 Sim. -56.7% -64.5% 12.6% NA. |
Pred. -74.3% -57.8% 25.2% oo |i

Table 4.4: Inventory Cost Comparison I-S—%gp—gz Wedge Topology

The entries labeled ‘Sim.’ represent the percentage difference between the best TSP
inventory cost and the corresponding DS case from the simulation experiment (found
by exhaustive search over base stock levels in both cases). Notice that for low utiliza-
tion levels and large truck sizes the TSP policy enjoys a considerable advantage over
the DS scheme in terms of the inventory cost. This advantage erodes as the traffic in-
tensity increases. Of course, for the cases where pr = 1 (see last column of Table 4.4),
the TSP cost becomes unbounded and the DS policy is obviously preferred. For their
part, the entries labeled ‘Pred.” represent the difference between the inventory costs
predicted by the optimal base stock formulae in §4.1.1 and §4.1.2 for the TSP and DS
cases respectively. These values are quite good estimates for the relative inventory
cost performance found by simulation. In all but one case the heavy traffic model
would identify the policy that dominates the inventory cost correctly. In the case
where the prediction errs in the sign of the percentage difference (when A = 9 and

V = 10), it still correctly predicts that the costs for both policies are very close.

Finally, we address the question of whether the performance of the system is much
improved by using the proposed control, as opposed to some direct extension of the
deterministic models. Since the proposed policy has two components: the delivery
allocation control and the busy/idle threshold control; we shall consider the system’s
sensitivity to each of this aspects separately.

In terms of the Celiverv allocation control, a deterministic model for the TSP-
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VRIP would provide a fixed delivery size for each site while the solution for the de-
livery allocation control in the DS-VRIP case would take the form of a fixed polling
table. However, fixe ! delivery allocations perform very badly in a stochastic environ-
ment. In fact, if deliveries are set without regard to the system state then, as time
goes on, some sites will experience high backordering levels while other sites will be
holding large inventories. This is so because, even though the time average demand
at retailer ¢ over a period of n time units will converge to A; as n — oo by the law of
large numbers, the deviation from the mean D;(n) — n); grows as /n by the FCLT.
To verify that these policies will do poorly we simulated a few instances of the TSP
and DS VRIP with fixed delivery allocations. Again, we searched over different values
of the base stock to find the one that provided the best cost performance. In all cases,
the best cost for the fixed allocation was at least 10 times higher than the cost for the
proposed dynamic allocation policy. Hence we conclude that a closed loop (i.e. state
dependent) delivery allocation control is essential to achieve a good performance in

the stochastic VRIP.

We next address the question of the sensitivity uf the system performance to the
busy/idle control, by looking at the increase in cost incurred by using a base stock
level different from the one proposed in the formulae of §4.1.1 and §4.1.2. We already
have the required data for this analysis from the exhaustive search performed in the

simulation experiments above.

Figure 4-4 plots three examples of the increase in cost with respect to the proposed
policy, as a function of the base stock level (expressed in vehicle sizes). These three
cases correspond to the DS system on the wedge topology for V = 100 and A €
{5,7,9}. The behavior illustrated here is typical of all other instances analyzed in our
simulation experiments. Three characteristics worth noting are: (1) the inventory cost
is convex in the base stock level; (2) the cost performance remains relatively constant
over a range of approximately one vehicle size around the optimal base stock level;
(3) once the base stock level moves beyond this range in either direction the cost

performance deteriorates rapidly.

These results illustrate the relevance of our model for the VRIP and should help
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Figure 4-4: Example of Sensitivity of Inventory Cost To Base Stock Level.
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justify the rather impressive machinery invoked to solve it. In particular, the system
performance is much deteriorated in the absence of an adequate dynamic delivery
allocation or base stock level. As mentioned before, stochastic modeling is necessary
to obtain an adequate base stock level for the system. Also, the optimal base stock
level will depeud on the load allocation rule. The heavy traffic analyses of Chapters 2
and 3 allowed us to obtain a tractable approximation for the stochastic VRIP which

yields a complete characterization of these two controls.

94



Chapter 5

Heavy Traffic Analysis of the
VRIP with Dynamic Routing

5.1 Problem Formulation

Consider now a situation where the manager of the distribution system has the option
to select, at every point in time when the vehicle is about to leave the warehouse,
among the two routing schemes analyzed in Chapters 2 and 3. That is, once the truck
is loaded at the depot, it can either be sent to do a full load TSP tour, or one direct
shipment of a complete vehicle capacity (V') to some retailer. All other aspects of the
problem (e.g. scurces of uncertainty, cost structure) remain the same as in the fixed
route cases. We shall take advantage of this and retain many of the definitions and
notation from the corresponding static cases.

The service to the retailers in this system will be characterized by two counting
processes (Sr(t), Sp(t)). The process Sr(t) represents the cumulative number of TSP
tours completed by the truck, assuming it has been continuously active and using the
TSP route over the period [0,¢]. Similarly, Sp(t) counts the DS cycle completions,
assuming the truck has been performing direct deliveries without idling in [0, t]. Recall
from §3.1 that a D3 service completion occurs after K -, w; visits to the retailers.
Here, as in the fixed route cése, w; = Ai/A¢ is the relative frequency of visits to

retailer 4, A, = min; \;, and K is a scaling parameter chosen so that all Kw; are
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integer.

The routing countrol will be expressed as the cumulative time-allocation processes
(Tr(t), Tp(t)), which respectively represent the amount of time over the interval [0, t]
that the delivery truck has spent operating under the TSP and DS policy. The cycle
completion epochs for the TSP and DS routing scheme wili depend on these controls,

and ere given by

7 =inf {t | Sr(Tr(t)) > k},

and
7P =inf {t | Sp(Tn(t)) > k}

respectively.

As before, the manager of this system is also allowed to exercise a delivery allo-
cation control. This control takes different forms depending on the routing scheme
being used. Let £7(t) represent the load allocation control for the TSP policy. This
process is defined in the same way as in the corresponding fixed route model. Namely,
€T (t) increases by the delivery amount when retailer ¢ is visited during the course of
a TSP tour, and the decreases by the nominal delivery amount V; at the TSP tour
completion epochs 77. We continue to assume that the truck always delivers a full

load over the course of a tour, and therefore €7 must satisfy

ef(0) = 0, forall i (5.1)
eT(t) > el (rl,), for te (rf_,,7{) and all i (5.2)
SeE) =V, (53)
SE) = o 65.4)

where 7T is the time of the k-th TSP tour completion, and 7 ~ is the epoch an
infinitesimal amount of time before this completion.

With regard to the DS policy, the delivery allocation control is denoted by eP(t).
As in the fixed route DS model, £P(t) increases by V every time a direct shipping is

made to retailer 7, and decreases by Kw;V whenever a DS cycle is completed. Hence,
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by definition of the DS cycle, the delivery allocations must satisfy

e2(0) = 0, forall i (5.5)
eP(t) > e(m2y), for te (r2..70) and all i (5.6)
Ze,('rk = K%V, (5.7)
>_,5t(7'k = 0, (5.8)

where 7P is the time of the k-th polling cycle completion, and 72 is the epoch an in-
finitesimal amount of time before this completion. Notice that, with these deﬁni.tions
for the delivery allocation controls, &7 (t) + £P(t) represents the cumulative deviation
from the nominal allocation over past service cycles plus the amount delivered over

the current cycle at retailer 4.

Under this set-up, and assuming that @;(0) = 0, the dynamics of individnal

inventory levels in this system are given by
Qi(t) = ViSr(Tr(t)) + VSp(To(t)) — Di(t) +€”(t) + &l (t) for t>0.  (5.9)
Define the cumulative idle time process I(t) by
I(t)=t—Tr(t) — Tp(t) for t > 0. (5.10)
We then have that the control (Tr(t), Tn(t), &7 (t),eP(t)) must satisfy

Tr,Tp are nondecreasing continuous with Tr(0) = Tp(0) =0 (5.11)
Tr,Tp, €T, ‘_? are nonanticipating with respect to @ (5.12)

I is nondecreasing with 7(0) =0 (5.13)

The dynamic routing VRIP mey thus be formulated as finding the routing control
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(Tr(t), Tp(t)) and its accompanying delivery allocation process (e (t),€/(t)) to

1 T
min lim sup TE [./() Z (hi{Qi(t)}+ + bi{Qi(t)}_) dt — fI(T)l (514)

T—o00

subject to (5.1) - (5.13). As each of the fixed route cases analyzed before corresponds
to a special case of this dynamic routing formulation, it should come as no surprise
that the resulting control problem (5.1) - (5.14) does not seem to be tractable in its
exact form. And so, we shall use the same heavy traffic machinery called upon for
the fixed route cases to solve a limiting problem and gain insight into this instance

of the VRIP.

5.2 Heavy Traffic Normalizations and an Averag-

ing Principle

5.2.1 Normalizations and Diffusion Limit for the System Net-

put

The first step in our development of a heavy traffic limit version for the dynamic
VRIP is to define a sequence of systems indexed by n. We make the same definitions
as in the static cases for the n-th system parameters that we use to define the partial

service completion process. Namely, we let

y®

m - Y

c 7 (5.15)
(n)

m _ Or

o = i (5.16)
(n)

m _ 9

51 Y (5.17)
0_2(n)

G = i (5.18)

2(n) ‘7123(.;“)

s’ = ~n (5.19)
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As in the fixed route cases, we next define the centered partial service and demand

processes for the n-th system as

G(n) (n)
ST ( ) (t) '0(")1

85) = S5°(1) - 19(,,),

and

D™ (t) = D™ (t) — XM,

In order to characterize the influence of the routing control on the total netput, define

the cumulative fraction of busy time that the DS service has been used as

540
T () +T5 (1)

§M(t) =

We are now in a position to define the netput for the n-th dynamic routing VRIP
system as
c A om)
X ( ) 19(7,‘1) ( ( )) 25", )\(n)ﬂ(n) ( )
- (n)
+Ccm [S;n)(T}n)(t)) + K)\(':\) (n)( (n) (t))] (")(t). (5.20)
¢

Suxﬁming the equations in (5.9) over the retailers, and substituting the relevant defi-
nitions into (5.20) we obtain the following expression for the total inventory in terms

of the netput and controls:

Ao
2T A0

Q"0 =0~ 590 190+ €70, (521

where

M@ = eM(t)+€(2)
EN() = eP(t)+ VINSM(TM(t)) - S (T (1))
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K )\(m)y/(n)
A

K\ o(n) )

) = P+ e

S5(T5°(t)) -

We next define the normalized processes for the n-th system according to the

following expressions:

w(t) = Q(j(_"‘t) for all i,
W) = S = L0,
voy = 200,

X = X0,
by = 2200,

o) = 200,

() = % 85(t) = 8’(’\)/(,_:“),
= 00 oy 0

and.

The expressions for the dynamic behavior of the n-th normalized system are found
by applying these scalings into equations (5.20) and (5.21). From this procedure we

obtain an expression for the normalized system netput process X((t) as

Ccm) An)om)
™)(4) = S (0 PPAL AN 1 VAN )
XMt = ﬁ(ﬂgv“ 6™ (1)) + 22i/\,(~")19$)6n(t) A )t

. () ,
+awF#m¥m»+KM3 wn“mﬂ-lwmx<mm
¢
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while the normalized inventory can be expressed as

ORI (m) o)
W™ () = XM(t) - (%(1—6(’0(::))4- AT

_‘_"'—"8(") t ) Y(n) t) + F(n) ).
I LR () (t) +&™(2)

(5.23)

We find the required limit by letting the scaling index n — oo, subject to the

following heavy traffic conditions on the parameters of the system:

lim C™ = C=0(1) (5.24)
n—00
lim 8% = ¥r=0(1) (5.25)
e _ g

Jim 95" = Jp = O(1) (5.26)
lim o = s =0(1) (5.27)
lim ¢f3 = <ps=0(1) (5.28)
lim AW = (5.29)
Mr = C (5.30)

cm
\/ﬁ(ﬂ(n) - A ) = pr=0(1), forall n. (5.31)

T
A ) -

Taken together, conditions (5.31) and (5.32) require the traffic intensity under both
the TSP and DS policies to approach 1 in the limit. In terms of the problem data,
this requires the retailers to be located fairly close together relative to their distance

to the warehouse. More precisely, the average travel times should satisfy

Ir — 200 1 .
. _0(\/5)’ forall i=1,...,m.

As a canonical example consider the case where pp = 0.9, and the average direct
travel time to all retailers is the same and 6p; = 1. In this case the average demand

requires the truck to be busy 90% of the time under the DS policy. If we now take
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n = 100, the heavy traffic conditions are satisfied when

m-—1 1

; Biir1 < 10

This requirement is not too surprising given the performance analysis results in §4.2.
There we saw- was that as pp — 1 the DS policy dominates both cost components in
systems where the distance between the retailers is not zero.

As in the fixed route cases, the next step towards the limiting control problem

consists in characterizing
= i (n)
X(t) Jim X (t).

The mein difference between this undertaking and its fixed route counterpart is that
the diffusion limit for the netput process depends on the routing control. Let us there-
fore consider the behavior of the systems during an interval of scaled time [¢,, t;] where
the TSP routing scheme is used exclusively. Let X*(t) = X (t, +t) — X(t,) for t €
[0,¢; — t,] be the limiting in-period netput process, and define 4*™(t), the relative

routing allocation over this time interval as

Tg )(to +t) — T,(J")(to)
Tt +t) = 75 (to) + i (8o + 1) — T (,)

51: (n) (t) =

By assumption, we use only the TSP routing during this interval, hence T,(J")(to +t)—
Tg' )(to) =0, and 6* ™ (t) = 0 must hold for any ¢ € [0,tf — to).

With these observations, it is a matter of simple algebra to obtain the following;:

. C(n) S(n n 3 n
X)) = lim { v (3(—)- - M")) t+ 0[St +1)) = S(r7 (1))
T
— D™(t, +t) + D™(t,) } for t € [0,t; —t,) (5.33)

for the in-period netput process.
In order to characterize the RHS of (5.33), we need the limiting in-period demand

and partial service completion processes. Consider the partial service completions
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first. The corresponding definitions for the scaled processes give

SRt +)) = 87 (7 (t0)) =

1
\/_

T (nt, + nt) — T (nt,)

(n)(T(n) (nt, + nt)) — SW(TM(nt,)) — 5
T

Consider now the in-period control TS (t), given by
T (nt) = T (nt, + nt) - TE (nt,) for t € [0,t5 — to).

Notice that, by construction, TS (t) is an increasing, continuous process with T T (0) =
0, that is nonanticipating with respect to the inventory process. It therefore consti-
tutes a feasible control for the dynamic routing VRIP system. According to the
relevant definitions, the scaled and centered partial service completion process that

corresponds to this control is

S (TEM* (nt)) — ﬂ:(__)

S (o
(1)) = \/— PR

for te [0ty —1t,), (5.34)

where

T (nt)

T}")*(t) for t € [0, ty — to]'

In general, the process defined in (5.34) will be different from the desired in-period
partial service completion process. This is the case since the sequence of partial
service completions in [t,,ts] could include the residual partial tour at time ¢ = ¢,
followed by the subsequent iid partial tour times. Also, there is the elapsed time of
the (possibly unfinished) partial tour at t = t;. Therefore, the two boundary partial
service completion times do not have the same distributions as the rest of the service
times. However, Iglehart and Witt (1970) have shown that, under heavy traffic, this

boundary times vanish and the same heavy traffic limit is obtained in both cases. We
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thus have that:
Jim 817 (717 (8 + 1)) = S5 (7 (£)) ~ lim S (™" (1)),

where ~ denotes equality in distribution. The treatment for the in-period demand
process follows the same line of argument in simpler terms since no control is involved.
This leads to
im D™ — D) ~ lim D)=
Jim D'™(t, +¢t) — D™(t,) Jim D™*(¢).

Since demand arrivals are independent of service completions, these previous two

equalities in distribution give

X*(t) ~ lim f( )t+c<">s<"’*(r‘">*(z)) D™ (). (5.35)

The diffusion limit for X*(¢), t € [0,t; —t,] may now be found by the same basic
results used in the fixed route cases. We thus obtain that, under the heavy traffic
conditions (5.24)-(5.32), X*(t) is a (11, 02) Brownian motion, the same diffusion that
characterizes the system netput in the fixed route TSP VRIP.

Consider now the case when during the period [t,,¢s] the system uses exclusively
the DS policy. Following similar lines of argument as for the TSP case, we obtain

X*(t) ~ lim v/n

n—oo

( A o) A(")) - K(n)(;('(n) () ,(n)‘

- (m)* (1)) — Pl
BYX 2 (b (8)) = D™ (2).

(5.36)
Therefore, under the heavy traffic conditions (5.24)-(5.32), X*(¢) is a (up, 03 ) Brow-

nian motion, the same diffusion that characterizes the netput in the DS case.

Notice that neither of these results require that [t,,t;] be large in any sense. We

have thus established the following

Proposition 6. X™(t) = X(t,R(t)), where = denotes weak convergence and

X(t,R(t)) is a diffusion processes with control-dependent drift and variance given
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pp if R(t)=DS ok if R(t)=DS
u(R(t)) = and  o*(R(t)) =
pr if ®(t)= TSP o if R(t)= TSP

respectively.
In other words, the routing control switches the netput of the system from one Brow-
nian motion to another. Furthermore, these two Brownian motions have the same

parameters as the diffusion limits of the corresponding fixed route cases.

5.2.2 Time Scale Décomposition and Limiting Control Prob-

lem

We must now establish the behavior of the (scaled) retailer inventory processes
(W1,...,Wn) to obtain a limiting control problem. To this order, we shall again
invoke the HTAP. Notice that the individual inventories will still vary an order of
magnitude faster than X (t) since, by Proposition 6, the system netput still changes
like a Brownian motion and the ability to quickly shift inventory among the retailers
is retained (by means of delivery size changes in the TSP mode, and by retailer se-
lection in the DS mode). Hence, a HTAP should also hold for this dynamic routing
system.

As in the fixed route cases, we will use the implications of the HTAP to obtain
a dramatic simplification for the limiting control problem. First, let us define the

intrinsic total inventory level for the system as
Z(t) = W(t) — €(t).

According to the HTAP, over the course of a cycle Z(t) varies like a diffusion with
control-dependent drift and variance, while the individual inventories move deter-

ministically at a rate that is an order of magnitude faster. The exact evolution of
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(WA(2),. .., Wn(t)) over a service completion will be determined by the intrinsic in-
ventory level, and the cycle placement and routing scheme being used at time t.
Hence, the total inventory in the system W (t) will, in the limit, look like the intrinsic

inventory diffusion superimposed with a deterministic process & (t).

These results will again allow for a decomposition of the dynamic routing VRIP:
(1) for any given total intrinsic inventory level Z(t) = z and routing mode R(t) €
{TSP,DS} use the results in Chapters 2 and 3 to determine the optimal cycle
placement and the corresponding inventory cost function gg(z); (2) choose the non-

anticipating control (Y (), R(¢)) to minimize

1 T A
limsup = E [ / g=(Z(t, R(2)))dt — fY(T)] . (5.37)
T—00 T 0
Subject to
Z(t,R(t) = X(t. R(@¢)) - (-19%(1 —8(t)) + ?i?%z%:g(t)) Y(t) (5.38)
Y(t) a nonr-decreasing RCLL process (5.39)

If we define the control-dependent infinitesimal generator of the diffusion Z(¢, R(¢))
as

o o} R) &
R _ o o
% = u(®) oz + 2 0z%

we can use Ito’s Lemma (see e.g. Kushner (1971) and Taksar (1985)) to obtain the

optimality conditions for this problem as:

min { f-V'(z), min {F*V(a:) + gn(z) — 7}} =0 (5.40)
V() = o. (5.41)

So, if one can find a constant +y, which is referred to as the gain, and a potential func-
tion V(z) (not to be confused with the vehicle capacity V') that solve (5.40) and (5.41),
then the controls (R(¢), Y (¢t)) which minimize the expression in (5.40) are optimal and
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7 is the minimal average cost per unit time.

5.3 Optimization of a Double Threshold Policy

As it turns out, a direct analytic approach to the solution of the partial differential
equations (PDE) in (5.40) and (5.41) is a rather formidable task. This is caused by
the complicated nature of the control-dependent inventory cost gr(z). In fact, the
PDE system (5.40) and (5.41) could be solved if gg(z) were linear. Therefore, in
order to gain some insight into the optimal control of the VRIP, we specialize our
analysis to a certain class of policies. In particular, we shall consider a two-parameter
policy that can be described as follows: the truck is busy whenever the total intrinsic
inventory Z(t) < z, and correspondingly it idles when Z(t) > z; while busy, the truck
uses the TSP routing scheme whenever Z(t) € (s, 2), and it switches to DS mode
whenever Z(t) < s. We will attempt to find the optimal values for the parameters
(s, 2).

We choose to analyze this class of policies for similar reasons than we used to
select the base stock policy in the fixed route cases. First of all, since in heavy
traffic the busy/idle control depends only on the total amount of inventory at the
retailers, it makes sense to consider policies in which the idling decision is based only
on a single threshold. In this context, it is natural to consider a second threshold
at which the server should turn to the fast drift DS policy, and avoid running more
costly backorders. Secondly, it is often the case in this sort of problem that double
threshold policies are asymptotically optimal (see e.g. Taksar (1985), and Harrison
and Taksar (1983)). In particular, if the drift for the DS policy were infinite (i.e. if
the inter-retailer travel times are relatively big) then a double threshold policy would
be optimal as long as gr(z) is convex. Finally, this assumption makes the problem
tractable.

As in the fixed route cases, to obtain the optimal parameters (s,z) we must
establish the steady state distribution for the total inventory level and the expected

idleness rate. Let us begin by considering the steady state distribution of Z(t) under
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this type of policy.

We established in the previous section that, at the arbitrary epochs t, Z(t) is a
diffusion process with control-dependent drift and variance parameters. Under the
proposed double-threshold policy, Z(t) will be reflected at the idling threshold z and
the parameters for the brownian motion component X (t) will depend only on the
total inventory level. Fortunately, the subject of steady state distributions of single
dimensional diffusion processes is old and well understood (see e.g. Karlin and Taylor,
1981). For our particular case, the steady state density function of the total inventory
7(z) must satisfy the following system of differential equations

1
2 dz?

[o*(z)n(z)] - - u(e)m()] =0 o< (5.42)

S @) - (@) =0 z=z (5.43)

where, according to our characterization of Z(t) and the shape of the proposed policy,

the diffusion parameters are given by

pr if z>s o2 ifz>s
pu(z) = and  o%(z) =

pup if z<s o ifr<s

Any regular diffusion with smooth infinitesimal coefficients has a continuous tran-
sitory density function, and hence, if it exists, its steady state density will be contin-
uous. The diffusion limit for the total inventory in our case is not regular because of
the jump at s in the infinitesimal coefficients of the diffusion process Z(t). However,
it is possible to approximate this process by a regular diffusion using a suitable in-
terpolation for u(z) and o?(z) for = € [s — €,5 + €], a small interval. By letting € | 0
the inaccuracy of the approximation can be reduced to arbitrarily small levels. Hence
we proceed as if the process Z(t) were regular in (—oo, 2], and will attempt to find a
continuous density function 7(z) that satisfies (5.42) and (5.43).

The solution to these differential equations has a rather intuitive form. Recall
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from the analyses of the fixed route cases in Chapters 2 and 3, that an RBM on
(—00, 2] will be exponentially distributed in steady state, iff the drift is positive. Also
recall that the requirement that the drift be positive is equivalent to the requiring
the utilization of the system to be less than 1. In this dynamic routing setting we
have a diffusion that behaves like an RBM inside the interval (s, 2|, and then takes a
different drift and variance over the interval (—oco,s]. We therefore expect that the
steady state distribution for this process will be given by suitably scaled exponential
distributions; the parameter of the density in each interval being vr = 2ur /o2 and
vp = 2up/od (i.e. the parameters of the corresponding fixed route cases). In other

words, we expect 7(z) to have the form:

kvrertE2)  if s<z <2
(z) = (5.44)

kovperp®=8) if 1 <s

where the scaling constants k, ko should satisfy
/ m(z)dzr =1
—00

l:grsl n(z) = 7m(s).

That is, the total probability over the relevant interval should be equal to one, and
the density should be continuous at s. These conditions uniquely determine the
value of the scaling factors k;, ko for the candidate density in (5.44). Straightforward

calculations give:

v euT(z—s) _ .
[l’r-i'llg(e"?'("‘)—l)] VTeuT(I ?) if s<r<z

7(z) = (5.45)

[W+Up(et¥‘(z—a)_1)] VDeuD(z_s) if S S

The reader may verify that the density in (5.45) satisfies the system (5.42) and (5.43).
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Furthermore, it is the only continuous density that satisfies this set of equations and

hence it is the required steady state density for the total inventory process Z(t).

In order to fully characterize the steady state cost expression in (5.37) we need
only further determine the expected idleness rate. Taking expectations on both sides
of (5.38), rearranging terms, dividing through by ¢ and taking the limit as ¢ — co we
have that

.1 ~C AC

Jim 7 BIX (8 R()) - Jim $EI2( R() (5.46)

The first term on the RHS of (5.46) corresponds to the asymptotic growth rate of the
netput process under the proposed policy. Let 6 = lz'm,_.wS(t) denote the long run
fraction of time that the truck uses the DS routing policy, so that (1—6) represent the
fraction of time that corresponds te the TSP policy. Then, using standard results for
diffusion processes, and the characteristics of X (¢, R(t)), the desired long-run growth
rate is given by,

lim -}E[X(t, R()] = (1— 6)ur + 6o, (5.47)

Since the DS control will be exercised whenever the inventory process falls below the
switching threshold s, it is a straightforward matter to obtain é form. the steady state

distribution for Z(t). Specifically,

6= ./—oow(m)dx - vr + VD(C"T(Z"’) - 1).

Notice that the limit for 4(t) as t — oo exists in the strong law of large numbers

sense. We can thus rewrite the LHS of (5.46) as
.1 = C . AC _
tll.l'ono ZE [((1 - 6(t))5; + 5(t)m) Y(t):' =
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lim LE V(1)) (5.48,

t—oo ¢

C \C
(‘1‘5>5;+5z—z,- A,-ﬁoi)

Finally, according to the steady state distribution for Z(t) in (5.45), Z = lim;_.cc E[Z(t)]
exists and is finite. Hence, the second term on the RHS of (5.46) will vanish in the
limit. Canceling this term and substituting (5.47) and (5.48) into (5.46) we obtain

the following

(5.49)

g = lim %—E[Y(t)] =Vn (1 _ pr(1 = 6)25% Ao + pDes,wT)

(1—6)2%; NVoi + 6ADT

We may now write an expression for the steady state cost of the VRIP under
the double threshold dynamic routing policy as a function of the control parameters

(s, z). The problem is hence reduced to finding (s*, z*) that satisfy

(s*,2%) = arg r§1<1£1 F(s,2) (5.50)
where
F(s,2) = /_sm gp(z)m(z)dz + /: gr(z)m(z)dz — fy (5.57)

Unfortunately, F(s, z) is rather complicated and a closed form solution for the
optiinal control parameters does not seem possible. Furthermore, an expansion for
F (s, z) is not possible in general since its exact form will depend on the relationship
between (ar, [iT) and (&D,BD) the parameters that define the three characteristic
regions for the cycle placement and inventory cost solutions. By considering different
problem parameters, one may get either ﬁp > BT or BD < BT This is most unfor-
tunate since without a general explicit characterization of (2*,s*) and F(z*,s*) we
cannot follow an approach analogous to Appendix A to verify that the double thresh-
old solution satisfies the optimality conditions (5.40) and (5.41). Still, in an attempt
to gain further insight into the VRIP we shall turn our attention to the numerical

solution of specific instances.
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5.4 Numerical Experiments

5.4.1 Proposed Double Threshold Policy

In order to keep our exposition simple we specialize our numerical results to the wedge

topology cases with balanced costs described in Chapter 4. Other cases are handled

in exactly the same fashion, the only difference being that the constants in the cycle

placement formulae are generally more complicated expressions of the original system

parameters. For this particular family of cases, the inventory cost for a given intrinsic

inventory level Z(t) = z is given by

Region 1 TSP.

gr(z) =

Region 2 TSP.

Region 3 TSP.

g9r(z)
or by

Region 1 DS.

9p(z)
Region 2 DS.

9p(z)

< ar=z,\,-z93‘f'°—c.

bC
2

OtT<:L‘<ﬂT Z/\'ﬂTSP

—bz + bz ASTSP —

0,11.'13 + 012.'17 + (1.13

b+ h
2C
h_é_ﬂz)‘gTSP
C .
2(b+ h) (a12+bh)
Br<z
hz — thTSP h2C
mC
< Gp = ——
rsap )
= —bz
mC

dD<xSBD="2_

" 2 ~ "
= Q14T + a15 + a6
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(5.53)

(5.54)

(5.55)

(5.56)




W = gmC
o . h=b
5 = 5
A (b+ h)mC
aie =
8
Region 3 DS. Bp <z
gp(z) = hz (5.57)

depending on which routing scheme is being used at time 2. Making the observation
that 3, A9TSP < C is true as long as pr < 1, we have that for m > 2, the following
relationship holds among the parameters that characterize the regions along which

the inventory cost behavior changes:
Gp < ar < BT < BD-

Also, as long as b > h it is clear that 2* > 0. With the cost expressions in (5.52)-
(5.57) and the previous observations we may write an explicit expansion for the
cost of the double threshold policy given in (5.51). As it turns out, F(s, 2) has a
different functional form along eight regions of the intersection of the half-spaces
{s < 2} and {z > 0}. While the qualitative nature of the cost function is similar
for all regions, the detailed expressions are unfortunately rather long. Thus, in the
interest of brevity, we present here only two of these regions as examples and refer the
interested reader to Appendix B for the complete details. The & terms are constants
for any given problem instance. Their detailed definitions in terms of the primitive
system parameters are also included in Appendix B. The long-run average cost for

the double threshold policy (s, 2) is given by

Case 1. s < &p, ‘and z>BT

F(s,z) = /sco gp(z)w(z)dz + /: gr(z)m(z)dz
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6 [&203 + a2 + (G2 + Go3)e” T + (G2az + &25)e"T(Z")]

&276

T T )0 + 607 (5.58)
Case 2. s < ap, and z € [0, fr)
F(s,2) = 6 [&ms + g1 + Goze T + (Gge2® + ooz + &ao)e"T("’)]
o do70
+ax% + 2 (5.59)

(1= 8)0; + 607

and similar expressions for the other six possible cases. As mentioned before, even
if we ignore the constraint s < z, there is no closed form expression for the values
(s*,2*) that minimize F\(s,2) as given by these formulae. We should note that, if
we define the unscaled idling and switching thresholds as w = \/nz and ¢ = \/ns
respectively, and we make the parameter scaling substitutions as in the fixed route
cases, the scaling factor n cancels out of these expressions for F(c,w), and what
remains is a function only of the original system parameters. Hence we can proceed
to find the optimal control values numerically without having to specify a scaling

factor.

We used a simple steepest descent method to find the optimal control (c*, w*), for
several different values of the system parameters. In the course of these numerical
experiments we found that F'(c, w) will frequently have two local minima (one of which
is a global minimum). When there are two local minima, each of them corresponds
to a perturbation of the optimal value of the fixed route extremes. In all cases we
found the global minimum by starting the steepest descent algorithm first at the
point (wp, wp) that corresponds to the optimal DS base stock level, and then from
the point (—10mV,w}), which approximates the optimal fixed route TSP case. In
the cases when the algorithm converged to a different answer for each starting point,
we selected the one with the smallest cost. We later verified that this was indeed the

global minimum by a search over the whole (¢, w) plane.

The results for a sample of the case considered are presented in Table 5.1. These

represent 36 different cases (3 vehicle sizes, 4 traffic intensities and 3 transportation
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cost values) of the wedge topology as described in Chapter 4. The entries in the
table give the idling (w*) and switching (c*) thresholds proposed by the heavy traffic
analysis, as well as the limiting fraction of the active time that the truck is expected to
use the DS mode (6*) when operating this policy. As can be seen, in many instances
&* is either 100.0% or zero. Hence, the dynamic policy reverts to one of the fixed route
modes in many instances of the problem. While results are not reported here, we found
this to still be the case for different values of the backordering to holding cost ratio
b/h, as well as for wider or narrower wedges (i.e. for cases where 6o1/6:2 was bigger or
smaller than the value of 18 used here and in Chapter 4). Since the implementation
of a dynamic routing policy is more complex, this suggests that in many instances the
manager of a distribution system may be better off by just choosing the right fixed

route policy.

5.4.2 An Algorithmic Solution

An alternative numerical approach to the solution of (5.40) and (5.41) is to approxi-
mate the limiting diffusion by a discrete time and space Markov chain, and then solve
the control problem by dynamic programming. The main advantage to this approach
is that we may use it to consider general switching policies, and not just the proposed
double threshold case. Weak convergence methods have been developed to verify that
the controlled Markov chain and its optimal cost approximate arbitrarily closely (at
an increased computational expense) the controlled diffusion process and its optimal
cost. Interested readers are referred to Kushner and Dupuis (1992) for an up-to-date
account of this research area.

Based on our heavy traffic analysis, we consider the total intrinsic inventory as
the state of the system and allow for the arbitrary choice of either the TSP or DS
routing scheme for any give value of the state. In this context, it is natural to assume a
control that idles whenever the intrinsic inventory reaches a base stock level 2. Notice
that the numerical complexity of this approach is independent of m, the number of
retailers in the system, due tob the state space collapse allowed by the HTAP. Even

so, it remains more computationally intensive than the steepest descent minimization
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A=50]|A=70]|A=80]| =90
V=100] f = 500 | w* 20 45 75 138
- 312 -161| -100 51
& 00% | 0.0%| 13%| 85%
F=100 [ 20 45 76| 141 |
- 385 | -168| -111 58
& 0.0% | 0.0%| 1.0%| 7.7%
F=50 |w 20 45 76 142
- 04| 171|112 59
& 00% | 0.0%| 1.0%| 7.5%
V=50 | f=0500]w 10 23 39 112
c ~10° 64 43 112
& 00% | 00%| 2.0% | 100.0%
F=100 | w' 10 24 39 73
c 202 -80 53 28
& 00% | 0.0%| 1.3%| 82%
F=50 |w 10 24 39 73
c 202 82 54 29
& 00% | 0.0%| 12%| 80%
V=10 | f =500 | w* 18 20 21 24
- 18 20 21 24
& || 100.0% | 100.0% | 100.0% | 100.0%
F=100 | w' 2 6 10 24
c 24 11 8 24
& 00% | 0.0%| 3.9% | 100.0%
F=50 |w 2 6 10 18
c 31 13 9 )
& 0.0% 33% | 11.9%

Table 5.1: Proposed Double Threshold Control
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done for the double threshold policy.

Let € > 0 denote the finite difference interval, which dictates how finely time and
space are discretized. One can think of a sequence of discrete time and space Markov

chains that become better approximations for the diffusion problem at hand as € — 0.

A computer implementation requires that, besides discretizing the state space, we
confine the evolution of the Markov chain to a bounded region. Since, under a base
stock idling policy, the total intrinsic inventory process resides on a halfline, we set
the state space of the controlled Markov chain to be {=N,—N +¢,...,N—¢N }
for N a positive integer multiple of e. Fix, for the time being, the idling threshold
at z, an integer multiple of ¢, that satisfies z < N (this parameter will be optimized
later on). Then, the state space for the Markov chain approximation is {-N,-N+
€ ...,2—¢€,z}. Assuming that the the two diffusion drifts ur, up are positive (i.e. that
pr < 1and pp < 1), the approximating Markov chain has non-zero control-dependent

transition probabilities given by

E _ 2(R(z)) + 2ep(R(z))
Pi(z,z+¢€) = 202(R(z)) + 2ep(R(x))’
d
an o B o%(R(x))
(z,z—¢€)= 202(R(z)) + 2ep(R(z))

for states in the interior of [N, 2], and time intervals of length

€2

o?(R(z)) + en(R(z))’

Até(z) =

In order to obtain a controlled Markov chain approximation to the VRIP two issues
must be addressed: (1) for an ergodic cost problem the interpolation interval At(z)
must be independent of the state z; (2) we need to characterize the probabilistic
behavior of the chain at the boundary states z = —N and z = 2. To obtain a state-

independent discretization interval, define n® = maTge(rsp,ps}{0% + eun}. We next
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use 7° to define modified interior transition probabilities for the Markov chain as

P+ - 2B+ TR (5.60)
Pi(z,z—¢€) = 0—2(2?;)(::—)), (5.61)
o) =1 - OO (5:62
as well as the new (state-independent) interpolation interval
Ate = e—i (5.63)
U

We next turn our attention to the definition of appropriate transition probabilities
for the boundary states. Our choice of idling control specifies a reflecting barrier at
z = 2. However, the Markov chain approximation method assumes that the reflection
at the boundary is instantaneous. Since this would require an interpolation interval
at this state that is different from 7¢ (the chain would not spend any time there), we
eliminate the transitions into this state. We thus adjust the transition probabilities

at the state z = 2 — € to
Piz—ez—€ =1—P(2—¢€2—2), (5.64)

and

Pz —¢z)=0. (5.65)

In order to keep the Markov chain inside the state space (i.e. in order to remain
within the memory allocation in the computer) we also impose a reflecting barrier at

x = —N. That is, we adjust the transition probabilities at state z = —N + € to

P(—N+¢—N+¢)=1—P(—N+¢,—N + 2), (5.66)
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and
P¢(—N +¢,—N) =0. (5.67)

This barrier is artificial in the sense that P¢(—N + ¢, —N) is positive in the real
system. However, if the value of N is sufficiently large, this probability becomes very
small and the effect of this artifice on the control problem should be negligible. In
the implementation of this algorithm, we adjust the size of the Markov chain until a
further increase in N produces no change in the optimal solution (®*(z), 2*).

In summary the Markov chain approximation to the diffusion control problem
(5.40) and (5.41) has state space {—N +¢,—N +2¢,...,z2—2¢,2 — €}, interpolation
interval At¢ defined by (5.63), and nonzero transition probabilities P¢(z,y) defined
by (5.64)-(5.67) and P¢(z,y) = P¢(z,y) otherwise, where P*(z,y) are defined in
equations (5.60)-(5.62).

The dynamic programming optimality equation for the controlled Markov chain

is given by

€ — : D€ € — A€ € - < 5 —
V() M{TQEEDS} {;P (z,9)Ve(y) + (gn(z) — ¥*)At } for —N<z<z-—c¢
Viz) = 0 (5.68)

where gn(z) is the inventory cost function given by the fixed route optimal cycle
placement results for the corresponding routing scheme R.

We can now solve the Markov chain control problem by means of a policy im-
provement algorithm. We start by choosing an arbitrary initial routing policy Ro(z)
and idling threshold z;. The algorithm next iterates over two steps: (1) an evalua-
tion step where the potential function and gain (Vi¢(z),¥f) are found recursively from
the given controls (R (z), 2¢); (2) an improvement stage where Ry.1(z) is found by
minimization of (5.68) for the given (V(z),7f), and zx41 is found by choosing the
gain minimizing value given (R+1(z), V). The iteration is stopped when there are
no gain improvements.

At the evaluation stage the main tasks are to compute the gain and the potential

function for the current control. In order to compute the gain, which corresponds to
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the long-run time average cost, we need to characterize the steady state distribution
for the system. For this purpose, we take advantage of the birth-death structure of
the Markov chain approximation. In particular, for a Markov chain with this kind of

structure, we may obtain the steady state distribution 7¢(z) by

¢

0 for z>2z—¢
m(z) = § 7(z —€) [[i=5 e -;;%Ef% for z<z—c¢ (5.69)

5 -1
z—¢ z—€  P(kk—¢) _
\ (1 + 252 Ne ksite P,(k_c,k)) for z=2z—¢

where the summations and products are done over the appropriately discretized space
(i.e. the step size is €). The time average cost for the VRIP may now be found as the
sum of the time average transportation cost (or idleness reward) and the time average
inventory cost. The transportation cost compouent depends on 7, the steady state
fraction of time that the system idles, which in turn depends on &, the steady state
fraction of its busy time that the truck uses the DS routing scheme. The fraction of

time DS is used in the Markov approximation may be found by

5 = z ﬂ‘(x)l{ge(z)=ps}
z€(N,z)

where
1 if A
Ly =
0 otherwise
is the indicator function. Once §° is available, we can get the steady state fraction of

time that the system idles by

—_— (1 _pr(1=692%; Adoi + ppb wT) (5.70)

(1 =692 Mo + 6 A
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In terms of these definitions, the gain is given by

v=—fF+ 3 n(z)gr(z). (5.71)
z€(N,z)

Using (5.68) and V-(z) = 0 for > 2, V(z) can be calculated recursively by

[v¢ — gn(z)]At + (1 — Pe(z,z)Ve(z) — Pi(z,z + e)Ve(z + e).

Vie=a= Pe(z,z —¢)

(5.72)

In the policy improvement step, we first solve for the routing policy R(z) and then
for the idling threshold z. The routing decision is straightforward: for each state z we
choose the scheme R that minimizes the RHS of (5.68). Then, keeping () constant,
we determine an improved idling threshold z by evaluating (via equation (5.71)) the
gain ~¢ for all values of z € (—N, N) and selecting the gain minimizing value.

These two steps are repeated until the improvement in gain becomes sufficiently
small. The output of the algorithm includes an idling threshold z and a state-
dependent routing policy R(z) for z € (—N, z). However, the mapping from this
numerical solution to a proposed policy is not as straightforward as in our analytical
results. Specifically, there is no way to develop a proposed scheduling policy that
is independent of the heavy traffic scaling factor n. For instance, the drifts of the

underlying Brownian motions are

%4 AV
P'T—\/"_l(l"pT)%, and #D—ﬁ(l—PD)m

and the expression for 7 in (5.70) also depends on /n. Therefore, a value of n must be
chosen in order to compute a numerical solution to the Markov chain control problem.
We deal with this quandary in the most natural way: we set /n(1—pr) = 1 and hence
take n = (1 — pr)~2. This value is used to scale the parameters for the computation
and to unscale the solution. Because of this, it is possible for the (unscaled) solution
to be quite insensitive to the choice of n.

We implemented this algorithm and have so far tested it on the V' = 100 and
V = 50 cases of Table (5.1) when f = 500. Though results are still preliminary at the
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point of this writing, it is interesting to point out that the routing policy we obtained
from this algorithm was a double threshold policy for all these cases. Furthermore,
the unscaled thresholds (c,w) obtained with this approach were very close to the
corresponding ones in Table (5.1). This suggests that a double threshold policy is
likely to do reasonably well in most instances. However, more work will be necessary

before we can strengthen this conclusion.

5.4.3 Simulation Experiment

We performed a series of simulation experiments in order to gage the accuracy of our
heavy traffic approximations over a range of values for the problem parameters. To
this order, we compared the average total cost obtained by the use of our proposed
policy with that of the best values of the control parameters found by an exhaustive
search over the (c, w) plane. The addition of a second control parameter will of course
have the undesirable effect of making the number of runs required to find a reasonable
approximation for the optimal threshold levels roughly equal to the square of those
needed in the static cases. We therefore set f = 500 and considered a total of six cases
(3 traffic intensities and 2 vehicle sizes). The basic test case is the same 5-retailer
wedge system presented in Chapter 4.

Table 5.2 summarizes the results of these simulation experiments. The entries in
the table represent the cost increase incurred by using the proposed dynamic policy,
the 'best fixed-route TSP system or the best fixed-route DS system instead of the
best double threshold policy found by exhaustive search. In all cases, the delivery
allocation uses the dynamic rule derived from the heavy traffic optimal cycle place-
ment. The average suboptimality (within the class of double threshold policies) for
the double threshold policy found by the heavy traffic analysis is 2.1%, and in only
one case it is higher than 3%. Once again the proposed policy, which was obtained
from heavy traffic results, performs very well. Furthermore, its performance does not
seem to deteriorate much at lower traffic intensities or smaller truck sizes.

A glance at the appropriate entries in Table 5.1, shows that in 5 out of the 6 simula-

tion cases the value of 8 is close to either 0 or 1. The exception is the (A = 9,V = 100)
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| X=70]A=80]A=90

V =100 | Prop. 2.3% 2.2% 2.2%
TSp* 1.4% 2.0% 6.1%
DS* 425% | 276% | 10.6%
V =50 | Prop. 0.8% 1.3% 3.8%
TSP* 0.3% 0.8% 0.9%
DS* 18.4% | 11.8% 3.3%

Table 5.2: Suboptimality of Proposed Double Threshold and Fixed Route Policies

case with a § = 8.5%. In this case we expected the optimal dynamic policy to outper-
form either of the static routing schemes. The results in Table 5.2 confirm this. We
made an attempt to find a case where the advantage for the dynamic policy would
be even more dramatic by searching over different values for A (leaving everything
else fixed). As it turns out, the (A =9,V = 100) case turned out to be the best one.
Further increasing the traffic intensity (A > 9) improves the DS performance, while
reducing the traffic intensity will favor TSP. In the end, the dynamic policy found
from our heavy traffic analysis was at most 5% better than the best fixed-route policy.
Furthermore in the cases where the proposed double threshold policy coincides with
either of the fixed route schemes, the cost increase incurred by choosing the wrong
fixed route scheme is quite significant (higher than 10% in all 5 cases, and up to 43%
for A = 7,V = 100). This suggests that, while finding the best fixed route scheme is
very important, the advantage obtained from dynamic routing selection is quite small
in most problem instances. Note that this is true even when the transportation cost
f is several orders of magnitude higher than the holding rate.

The dynamic routing model is quite accurate in its characterization of the best
routing policy for the system. In fact only in the (A = 9,V = 50) case the best policy
found by exhaustive search is different from the one obtained from the minimization
of F(c, w). Our model predicts that DS will dominate in this problem instance but
TSP turns out to be better. The predicted cost advantage for DS in this case was
slightly higher than 10%, but this relative measure might be misleading since at this

(relatively) moderate truck size the total cost itself is small,and that the predicted
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absoiute cost difference is also small. Therefore, our heavy traffic model was still

correct in predicting that both policies would have similar total costs.
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Chapter 6

Conclusions

6.1 Main Results and Extensions

We believe one of the main contributions in this thesis is that we have formally
modeled the dynamic-stochastic nature of the VRIP. In most practical cases demand
arrivals are subject to considerable stochastic variation. In this context, the stochastic
nature of the system must be taken into account if one is to properly address the
inventory component of the problem.

This modeling approach, and the use of some powerful heavy traffic results, al-
lowed us to fully characterize an asymptotically optimal operating policy for VRIP
systems under two fixed routes. We should note that the approach used in Chapters 2
and 3 for the TSP and DS schemes respectively can easily be extended to any other
case where a single truck cycles through a fixed sequence of trips.

In our treatment of the fixed route cases we ignored loading and unloading times
(as is common in the vehicle routing literature) and concentrated on the travel time
component of the service. It should be noted that this assumption is not critical. In
fact, a straightforward extension of our results would allow us to handle load/unload
times. The diffusion limit for the system netput and HTAP are not affected (as
long as these times are appropriately scaled). The inclusion of the unload times at
the retailers would change the deterministic inventory evolution over a cycle, so that

inventories do not grow instantaneously but increase at a finite rate while the truck is
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being unloaded. We can still solve the optimal cycle placement for this case. Finally
the steady state average driver and truck cost components are simply found from
the average fraction of the cycle time that the truck is running (as opposed to being
loaded /unloaded).

The results obtained from our analysis of the fixed-route cases provided valuable
insights about the VRIP. In particular

e The heavy traffic analysis is quite accurate and provides a control policy that is

close to optimal even in systems operating far away from the assumed regime.

o The allocation of load among the retailers is dictated by the desire to concentrate
most of the total inventory (backorders) at the site where it is cheaper to hold
(backorder).

e Closed-loop delivery allocations greatly outperform their open-loop counter-

parts in a stochastic environment.

e As utilization increases the relative advantage of recalculating the load alloca-
tion within the cycle as opposed to setting it at the beginning of each cycle

decreases, as predicted by the HTAP.

e The inventory component of the total long-run average cost depends on the
" stochastic characteristics of the system, while the long-run average transporta-
tion cost for a fixed routing scheme is determined from first moments of the

processes involved.

e The performance of the system is rather sensitive to the base stock level, so
that the ability of the proposed policy to yield a near-optimal value for this

parameter is very important.

e The policy that provides the best transportation cost in this context is not the
one with the shortest cyclic route, but the one with largest amount delivered

per unit time traveled. Therefore, if one ignores the inventory cost, DS is
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always more efficient than any other fixed route scheme (as long as the triangle

inequality holds for the travel times).

e Since DS has a higher transportation efficiency, it is stable over a bigger range
of arrival rates than the TSP (as long as individual retailers sites have different
locations). This implies that, at higher utilization rates, DS will also domi-
nate the inventory cost component, since the TSP policy would yield very high

inventory levels.

We also applied our modeling approach to the case where a some dynamic route
selection is allowed. While we are able to obtain a proposed policy for the system
on the basis of our heavy traffic analysis, we do not do this with the same level of
precision as in the fixed-route cases. Still, we gain some valuable additional insights.

Namely

e The range over which the best dynamic routing policy differs from the static
route cases (at least in this limited 2-choice version) is rather narrow (in system
parameter space) even at high transportation cost rates. This range cerresponds
to systems in which the best TSP and DS policies have fairly similar perfor-
mance. Therefore, it appears that finding the best fixed route policy is very
important while allowing for dynamic routing provides a much less substantial

benefit.

e The heavy traffic analysis is also quite accurate for this setting, and will be able

to identify good control policies even when system utilization is moderate.

6.2 Further Research

As we hope the results in this thesis have illustrated, the dynamic/stochastic modeling
of distribution systems, aided by the tools of heavy traffic analysis, allows for the
development of simple good solutions for, as well as furthers our insight into very
complex problems. We are confident that this area of research will continue to attract

attention ead provide valuable results.
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There are several areas of the problem considered in this thesis that merit future
development. First to come to mind is the extension of the dynamic routing case to
allow for more general route choices. In particular, one might allow for the choice
among K different cyclic routes. Assuming (without loss of generality) that these K
schemes are indexed in increasing order for the corresponding drift parameters (i.e.
assuming y; < pg < --- < k), one might then try to find the optimal K-threshold
policy that switches among these schemes. The slowest drift policy to be used when
the total cost is small, and then increasingly faster drift schemes as inventory levels
fall and the risk of backorders increases.

Another area for future research would be to further develop the necessary steps for
a hierarchical approach to the general (multi-truck, multi-depot) VRIP. The results
in this thesis provide estimates for the operating cost for any such system given a
particular assignment of retailers and trucks to depots and a fixed sequence of trips
among the assigned retailers for each truck. Motivated by our insight that the best
fixed route policy is close to the best dynamic policy over a broad range of parameters,
the first level up in the hierarchy could implement some interexchange optimization
algorithm (similar to those used in the deterministic vehicle routing literature) to find
the best such route. Higher levels in the hierarchy could then be used to select the
best possible assignment or the total number of truck to have in the system. At an
even higher level, these results could be used to decide on the number and location

of depots.
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Appendix A

Proof of the Optimality of The
Proposed Idling Policy for the
Fixed-Route TSP VRIP

We want to prove that a reflective barrier at 27, or equivalently
Y*(t) = sup {X(s) - 27}",
0<s<t

is the optimal solution for the diffusion control problem:

(P1) Choose the nondecreasing RCLL process Y to minimize

Fy(z) = hmgup =B [ / " o(2(8)) dt - fY(T)]

subject to

2 = X(t)—%Y(t)

X0) =z

(A.1)

(A.2)

(A.3)
(A.4)

We proceed in three steps: (1) show that the transportation cost component may

be ignored for this case; (2) find a lower bound for the long-run expected cost in (A.2);
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(3) show that a base stock policy achieves this lower bound.

Step 1. Take expectations on both sides of (A.3), divide by ¢, take lim,_,, and

rearrange terms to obtain:

lim —Y(t)— hm X(t)— hm Z(t) (A.5)

t—oo ¢
Since X(t) is a (ur,02) BM the first term in the RHS of (A.5) equals

Or
7 am -X(t) = —ItT

In order to characterize the second term in the RHS of (A.5) we need the following
Claim A.1: For any policy Y that satisfies Fy(z) < 00, lim;_.oo Ez[Z(t)] < 00
Proof of Claim A.1 We will show that if lim, . E.[Z(t)] = oo then Fy(z) =

Since g(z) > 0 for all z, we can use Tonelli’s Theorem to get
([ szed| = [ Elozw) dt
Also, since g(z) is convex, Jensen’s Inequality gives
E:[9(Z(t))] > g(E: [Z(¢)]), for all t.

Therefore, if E, [Z(t)] becomes unbounded as t — oo the integral term in Fy(z) has
an unbounded growth rate, and hence Fy(z) = oo. [ |

Since Z(t) has a finite steady state expected value,
lim —Z t)=0

holds for any policy Y with finite long-run average cost. As we are interested in the

policy that minimizes Fy(z), we may consider only the class of policies for which this
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value is finite. Within this class of policies the time average idleness rate is

.1 _Or
lim —Y(t) = % MUT,

t—oo t

a constant. Therefore the idleness reward for all finite cost policies is the same and
(P1) is equivalent to:

(P2) Choose the nondecreasing RCLL process Y to minimize

Fy(s) = lmsup 1 F. [ [ stz dt] (A.6)

subject to (A.3)-(A.4)
Step 2. Let,

1, 02 0
F= §UT8x2 +uT55

denote the infinitesimal generator for the BM X(t), let ~ represent the minimal
average cost of problem (P2), and let V(z) represent the cost incurred under the
optimal policy when the initial state of the BM is z minus the cost incurred under

the optimal policy when the initial state is a reference state z.

Proposition A.2 Suppose (v, V(x)) satisfy
min {T V(z) + g(z) — 7, -V'(z)} =0 (A7)

and there exist constants Ko, K1, K2 such that

0 < V(z) < Ko + K1z + Kz* for all z. (A.8)
Then
v < Fy(z) forall Y.
Proof: This result follows from Ito’s formula applied on V(Z(t)). [ ]

We now propose a particular solution to (A.7) from which we obtain the de-
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sired lower bound on the optimal cost for problem (P2). The proposed solution
(v*,V*(z), z*) takes two forms, depending on the values of the system parameters. It

is given by:

Case 1

L 1 h D(Br — ér) C oz
Condition: . In [(b-l— h) (effr(fir—dr) = 1)] +ar 2 fr

e o1 h '7(37‘ — Gr) )
= P ln [(b+ h) (effr(ﬂ-r—dr) — 1)] +ar (A.9)
')" = hz*+a; | (A]O)
( 0 ifz > 2*
V== (A.11)

—[ZV'(ydy ifz<z*

”%[7‘+bz—%—&1] ifz < ér

[ - z—aT) R " " . R ~
V@)= { L |y + &I o2 4y + alg] if ¢ € (&1, Br)(A.12)

o2 (Br—ar)

1 [oe _ (htb)(eTPT —ePToT)e~T= sl -
ur |7 pT—— hz + 7+ as] if z € [Br, 2*

Case 2

e 1 h o(Br — ar) ..
Condition: . In [(b+ h) (e%(m_ér) 1 + ar < fOr

z* is the solution to

200 _; (e s 2a

0= TaZe—w(z =6T) 4 23,2* + G5 — _g?. (A.13)
vr vr

v = &2(2")2 +a32" + a4 (A.14)
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(A.15)

0 ifzx > 2*
V*(z)= \
- V@)dy <z
ul1-[7‘+bm—_'lfr——&1] ifr <aér
V“(x)= ﬁ (A‘16)
. - (z—aT) " ~ -~ . Y *
R

26, asz
05 T a4
vr

where, in both cases
&3, and &18 =
vr

. 24,
ay = —-——
2%
Proposition A.3 (v*,V*,2*) satisfy (A.8) and
'V(z)+g(z)—y =2 0 forz2>2 (A.17)
IV(z)+g(z)—y = 0 for z<z (A.18)
Vi(z) € 0 forz<z (A.19)
Vi(z) = 0 for x>z (A.20)

Proof:
Case 1: We start by substituting 4* and z* into (A.18) and solving
Lo2V"(@) + urV'(z) + g(z) = 7" = 0 (A21)
for V'(z) which yields '
il 26—?1 /:o g(y)e’™dy forz < z* (A.22)

V'(z) = Ke 7" + — —
KT or
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where K is a constant. Setting V'*(2*) = 0 in (A.22) and integrating by parts gives

her* K(h + b)(ePrBr — fréT)

0= - =
Hrvr flr}ﬂr(ﬂr - dT)

From the definition of 2* in the candidate solution we have that

he’T™"  (b+h) [€Prhr — ePrér
prir prii Br — ar

and hence K = 0. Using K = 0 and the definition of g(z) from the optimal cycle
placement solution in §2.3 into (A.22) gives (A.12) for z < 2*. Defining V*(z) as
in (A.11) gives V"*(z) = 0 for z > 2z* und hence the proposed solution satisfies
conditions (A.18) and (A.20)

From (A.11) it follows that I'V*(z) = 0 for z > 2*, so that

'v*(z)+g(z) -y =h(zr—2*) 20 for z > 2*

and condition (A.17) is verified for the proposed solution.

We next verify that the proposed solution satisfies (A.19). To this order we
proceed in two steps: (1) show that V"*(z) is increasing when z < z*; (2) show that
V'*(z) = 0. These two results together imply the required condition.

To show that V'*(z) is increasing for z € (—00, 2*], notice first that (A.22) and

the fact that g(z) is continuous in z imply that V*(z) is continuous. Now, for z < ér:

wm——ibwm-%_q
b

— > Orule0.0cm1.0cm
KT

T ( .’E)

and hence V'*(x) is increasing over z < &r. Consider now the range z € [ar, BT]

‘ h+b NP
Vln(l’) = I—l,]-.- [—2&222 + a7 — __.+__ew(z—ar)]
T

ir(Br — ar)
V™(z) = —(—gT+—()A—)(e'DT("&T) —1) < Orule0.0cm1.0cm
Ur —ar
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and hence V"*(z) is decreasing in z € [Gr, Br]. Now, for z € (Br, 2*]

V™) = ;tl_ [_h + (_A_TgTiéT_S) (ef'rf?r - ef'ré'r)e—t"*rt
T vr —ar

V"™ (z) = — ’f'*'b
pr(Br — ér)

(e’rPr — £P18T)="T% < Orule0.0cm1.0cm

so that V”*(z) is still decreasing in = € [Br, z*]. Also, by definition of the proposed

2*, we have that

v = L [_h N ((h + b)(erPr — ef’fﬁr)) ( hor(Br — ér) ))] o

r(Br — ar) (h + b)(ePTPr — e'ror

Therefore, V"*(z) > 0 for z < z*, which implies that V'*(z) increases over this range.

Since,
h
V*(2") = _1_ [hz" +d5—hz*+ — —as — '.i] =0
KT vr vr|]

the condition (A.19) is verified.

All that remains for Case 1 is to show that the proposed solution satisfies (A.8).
The non-negativity requirement is easily verified since, by definition, V* (z) = 0 for
£ > z*, and by condition (A.19) V*(z) is decreasing in z < 2*. Now, since V*(z)
is decreasing for z € (—00, 2*] it follows that V*(z) < V*(ar) for z € (ér, 2*]. By

definition of the proposed solution

& b
V*(z) = V*(Gr) - / i (by +7 g al) dy forz < ér. (A.23)
Let
K; = —’)" + -17— +a
Ki = —b,

then equation (A.23) yields that

V*(z) = V*(ér) + Kaz + Kyz? for z < ar.
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Finally, defining

Ks=V*(ar)+ sup |V*(s)—V*(ar) — K3s — K48

s€|ar,2°]

we have that

V(z) < Ks + K3z + K,z

and the proof of Proposition A.3 is complete for Case 1.

Case 2: Note that, as mentioned in Chapter 2 after Proposition 2, 2* < Br for
this case. We start by substituting v* and 2* into (A.18) and then solving for V'(z)

to obtain

1 —brx 7‘ 26_%1 * vTy ' *
V'(z) = Ke +——-— g(y)e"™ dy for z < 2°. (A.24)
“r 01 J-o

Setting V'*(z*) = 0 and integrating (A.24) by parts (using the fact that 2* < Br)
yields
o 2 24,e~Pr(z"—ar)

Ke™ ™ T% 4 — — — 3 [&22‘2 - &172‘ —_ 6'18] + )
KT Vror HrVr

—0.  (A.25)

Using the definition of 4*, z* and the fact that #r0%/2 = pr in (A.25) gives

» A . 1 ~ ~ A * A
Ke™ % 4 ——— [2892" — 17 — 2G22" + d17) = 0.
Drpr

Therefore, as in Case 1, we have K = 0. Using this and g(z) in (A.24) gives (A.16).
Defining V*(z) as in (A.15) implies V'*(z) = 0 for £ > z*, and hence conditions (A.18)
and (A.20) are verified for this case.

In order to verify (A.17), we start from the fact that, by definition of the proposed
solution, I'V*(z) = 0 for z > 2*. Now, for z € [[?T, 2*)

TV*(z)+g(z) -7 = ao|(z®—2"%)+ %(x - 2%) (A.26)
2
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where, as defined in the cycle placement solution of §2.3,

o h+b

Qg = m’)‘ > 0. (A27)

We need to show that the RHS of (A.26) is non-negative. In view of (A.27), all we
need is to establish the non-negativity of the term inside the brackets. This will be
done by showing that
‘s 5 as
> g = ——.
zZ 2 Q9 2&2

Notice that this would imply

(% — 2% + ?(x —2) > (x-2")%>0.
2 .

According to the definition of the proposed solution for Case 2, z* solves

1 (s d 1
T 2 T

and, as discussed after Proposition 2 of §2.4, this solution satisfies z* > &r. Now,

2* > Gr implies

1 s 1
L emirleeer) 5, = (A.29)
Ur vr

Using (A.29) in (A.28) we obtain 2* > @9, which was the desired condition. Consider
now the case where z > fBr. Again, using the definition of V*(z) we have that

I'V*(z) = 0 for z in this range. We thus obtain
ITV*(z) + g(z) —7* = hz+é5—boz™® — G32" — G4 forz > 8.
From the characterization of g(z) in §2.3, we have that g'(z) = h for z > fBr and that

hBr + &5 = 8262 + dafr + da.
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Therefore,

2

hz + G5 — @92*% — G32° — G4 > &2[3% + @301 — G92*° — az2* forz > g

= g(B)-9(2").
The equation @,z*? + a32* + a4 = g(2*) follows from the fact (as discussed after
Proposition 2 of §2.4) that 2* € (&T,ﬁr) when the system parameters catisfy the
condition stated for Case 2. For z € (&, Br) we have that g"(z) = 2a; > 0. Also,

by substitution of the relevant definitions, it is a simple matter to establish that

d19 € (Gr, Br) and 9'(d;0) = 0. Therefore, g(z) is increasing in [d;o, Br], and hence
9(Br) = g(2").

Which completes the verification of condition (A.17) for Case 2.

In order to verify that the proposed solution satisfies condition (A.19) we again
proceed in two steps: (1) show that V’(z) is increasing in z < z*; (2) show that

V'(z*) = 0.

As in Case 1, we get started by noticing that the continuity of g(z) and (A.24)

imply that V**(z), V"*(z) are continuous in z. Now, for z < ér
" b
Vi(z)=—>0 (A.30)
KT

so that V'(z) increases in this range. Considering now the range z € (ar,2*], we

have that

] —br(z—ar)
V”‘(.’E) = —1— - (h:'- bze — - 2&22 + &17] (A31)
pr | br(Br— ér)
[ —ip(z—ar)
Vllh(x) —_ _1_ (h +P)e - — 2&.2]
ur | BT - ar
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(h+0)

e [e7irEmen) 1] <0 (A.32)
pr(Br — ér)

Therefore, V"*(z) is decreasing for z € (r,2%]. Also, by (A.16) V"*(2*) = 0, and
hence V"*(z*) > 0 for z € (&r, z*]. We have then that V"*(2*) 2 0 for z € (—o0, 2*]
which implies that V"*(z) increases over this range. Using (A.13) in (A.16) gives
V" (2*) = 0, and therefore condition (A.19) is verified.

Finally, that the proposed solution for this case satisfies (A.8) follows from the

same argument as in Case 1. - N

Step 3. Ve now prove the optimality of the candidate policy.

Proposition A.4 The policy Y (t) defined in (A.1) is an optimal solution to problem
(A.2)-(A.4).

Proof. Conditions (A.17)-(A.20) imply the variational inequality (A.7). Thus, by
Propositions A.1 and A.3, the value of v* is a lower bound on the optimal long run
average cost for any arbitrary policy in problem (P2). Comparing ~* with Fr(z2)
of Proposition 2, we have that the cost of base stock policy proposed in Chapter 2
achieves this lower bound. Hence this policy is an optimal solution to (P2). Further-

more, (P2) and (A.2)-(A.4) are equivalent problems and so the proof is complete. W

139



140




Appendix B

Complete Cost Expression for the
Double Threshold Policy: Dynamic
Routing VRIP

This appendix contains the detailed steady state cost function that corresponds to
the double threshold policy proposed for the dynamic routing VRIP. This particular
instance of the function is obtained from (5.51) under the assumptions that all retailers
have the same holding and backordering costs (i.e. h; = handb; =bfori=1,..., m),
and that the system has the wedge topology described in the fixed-route simulations
of Chapter 4 (i.e. 0y = 0o for all i and 034y =2 fori=1,...,m— 1).

The cost takes a different functional form over eight sections of the region in the

(s, z) plane over which it is defined. Namely:

Case 1. s < ap, and z> fBr
F(s,z) = 6|ags+ da + (422 + dg3)e”"T® + (G242 + G5 )e’T (‘")]
R dg76
+ ag6 + B.1
2T (1-6)90 + 697 (B.1)
Case 2. s < ép, and z € [0, By
F(s,z) = 6|Gs+an+ Go3e™"T® + (Gs2® + G20z + &30)e’77‘("’)]
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Case 3.
F(s,z2)

Case 4.
F(s,z)

Case 5.
F(s,z2)

Case 6.
F(s,2)

Case 7.
F(s,2)

Case 8.
F(s,2)

where

I

G970
(1 —8)do1 + 697
EXS (&D,&T]a and 2z > 3T

+ a6 +

6 [&3132 + G398 + a3z + &348_008 + (&22 + &23)6_073
ao76
(1= 6)d01 + 6V

+ (Gogz + &25)61.”(2_8)] + 96 +

s € (&p,ér], and z € [0, )
J [63132 + @328 + a3 + Gzae”"P° + dgze T
as70
(1 - 6)1-901 + 6197'

+ (&2822 + Qo992 + &30)60T(z—3)] + Qo6 +

s € (Gr, ﬁr], and z > fr

6 [(@31 + digs)s? + A3eS + Gar + dase” P + dgpe” T
ag7b
(1 — (5)1901 + 6Vt

+ (Go4z + C“l'zs)e')T(z—s)] + Gog +

S € (dT,BT]’ and z € [S’BT]

6 [(&31 + &35)82 + a3gs + as7 + &348—"’33

&276

dos2? + @ i or(z—s) i
+ (Gog2” + Go9z + dso)e ] + a9 + = 5)'1901 T 50,

s € (Br, Bp), and z € [s, 00)

6 [ﬁals2 + G388 + G0 + azaeP° + (@42 + &25)eﬁr(z—s)]
o760

(1- 6)Vo1 + 691

s> fp, and z € [s,00)

+ dge +

6 [&403 + g1 + (Bas + Gaz)e™"P° + (@22 + &25)6,;,.(:—3)]
&276
(1 - 6)’001 + 5197*

+ ags +

"~ ur+vp(evrz-e) — 1)

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)

(B.8)

The parameters in equations (B.1)-(B.1) are defined as follows: (ar, Br,br) and

{ép, BD, Up) have the same definitions as in the fixed route cases of Chapters 2 and 3
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respectively; the @ constants are given by

G0 = (ﬂ’- - 1) b
vr

&21 = (Al __1{2 ——Z/\ﬂTSP)b

bp U
o = -2 (55)
Gay = :—:h
a5 = Z—‘T’ (g—V—T-Xi:)\ﬂT“’)h
e = —%(1 - pr)
ayr = —%ﬂr(m‘ - pp)

A op (b+h
A

Gg = UT (h_gj—_’lz,\,ﬂTSP £+_]3)

VTC
_ bpbth rsp bhC b+h R
azgy = D (20 (b+h ZAﬂ +2(b+h)+f/72~C b
b+h TSP
MY )
. b+h
%1 = 9nC :
. bp,  h=b_ b+h
a2 = I7Tb+ 2 17’171)0
i = oEt ot g +uT 2 A =5 )b
- _ b+h —ume/2
@34 = mVDC
) (b+ h)op
= G
, _ h=b b+h (b+h)lfp Up b+h TSP
%6 = T mﬁDC+ 02C by h Z)‘Q’

143




respectively; the @, constants are given by

bao = ('f—D - 1) b
2

. 1 D C
az = (:— - lf—? + 5~ Z/\iﬁoT,-sp) b
i

UD VT
bgy = -2 (b+(?) orBr
" _ b+h brér
w = -2 (%)
i = 2h
vr
- vp (C TSP
= (2 _ 1 _v
o 2y (2 Zy z,: o )
ap = j—(l—ﬂr)
do7 = —%ﬂT(PT — pD)

o — Pp(bth
B = e\ 2C

. bp b+h rsp_ bth
a9 = l/T (h ZA’¢9 TC

. bp[b+h TSP bhC  b+h A
%0 = 3o (20 (b+h z,\ﬂ 2(b+h)+D%C 7
VTCEM

e = b+ h

.7 omC :

b = op +h—b_ b+h

27 i 2 mipC

) b+h b-—h (b+h)mC ip (C rsp 1
= Y (X _ S \0TSP - —

G = ore T S, T 8 +0T( 20— g | b

~ _ b+h —VDmC/2

@34 = mVDC

P _ _(b'l-h)llp

B = 2&Tc

@6 = 2 vau + C VT (h Z)\ﬂ
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