
Efficient Secure Computation Enabled by Blockchain
Technology

by

Guy Zyskind

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Program in Media Arts and Sciences

May 6, 2016

Certified by. .
Alex ’Sandy’ Pentland

Toshiba Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by .
Pattie Maes

Academic Head
Program in Media Arts and Sciences

2

Efficient Secure Computation Enabled by Blockchain

Technology

by

Guy Zyskind

Submitted to the Program in Media Arts and Sciences
on May 6, 2016, in partial fulfillment of the

requirements for the degree of
Master of Science in Media Arts and Sciences

Abstract

For several decades, secure multiparty computation has been the topic of extensive
research, as it enables computing any functionality in a privacy-preserving manner,
while ensuring correctness of the outputs. In recent years, the field has seen tremen-
dous progress in terms of efficiency, although most results remained impractical for
real applications concerning complex functionalities or significant data.

When privacy is not a concern and we are only interested in achieving consensus
in a distributed computing environment, the rise of cryptocurrencies, specifically Bit-
coin, has presented an efficient and robust solution that exceeds the limits imposed
by prior theoretical results. Primarily, Bitcoin’s relative efficiency and superiority in
achieving consensus is due to its inclusion of incentives. By doing so, it extends the
standard cryptographic model to one that reasons about security through rationality
of the different players.

Inspired by this idea, this thesis focuses on the development of an efficient, general-
purpose secure computation platform that relies on blockchain and cryptocurrencies
(e.g., Bitcoin) for efficiency and scalability. Similar to how Bitcoin transformed the
idea of distributed consensus, the goal in this work is to take secure multi-party
computation from the realm of theory to practice. To that end, a formal model of
secure computation in an environment of rational players is developed and is used
to show how in this framework, efficiency is improved compared to the standard
cryptographic model.

The second part of this thesis deals with improving secure computation protocols
over the integers and fixed-point numbers. The protocols and tools developed are a
significant improvement over the current state-of-the-art, with an optimally efficient
secure comparison protocol (for up to 64-bit integers) and better asymptotic bounds
for fixed-point division.

Thesis Supervisor: Alex ’Sandy’ Pentland
Title: Toshiba Professor of Media Arts and Sciences

3

4

Acknowledgments

I would like to thank my advisor, Alex ’Sandy’ Pentland, for his continuous guidance

and support. I will always be grateful for his kind mentorship, stretching beyond his

role as an advisor. Without his counsel, this thesis would not have been possible, and

I am fortunate to have had the opportunity to learn from his experience. I would also

like to thank my thesis readers – Srini Devadas and Andrew W. Lo, for their helpful

comments, reviews and discussions, allowing me to improve this work. Their support

has enabled me to successfully navigate through the complex realms of distributed

systems, economics and finance.

To my family, who has selflessly helped me through countless of challenges, words

cannot describe my debt of gratitude to you. None of this would have happened

without the love, wisdom and support you have unconditionally bestowed upon me

throughout my life.

To my wife Rinat, I am thankful for the courage to take this wonderful adventure

with me, and for enduring all the hardships we encountered along the way. For

believing in my abilities even when my own confidence wavered, and for being my

beacon of hope in these past (challenging) years. To my parents, Yossi and Orna,

my brother Nir and my sister Einat - I would like to thank for shaping me into the

person I am today. For always making sure I stay on course, and for guiding me to

my own De’rech Ha’melech. Last but not least, I thank my dear beagle Newton, who

has taught me that the best solutions come to you when you walk your dog.

5

6

Efficient Secure Computation Enabled by Blockchain Technology
by

Guy Zyskind

Thesis Advisor .
Alex ’Sandy’ Pentland

Toshiba Professor of Media Arts and Sciences
MIT Program in Media Arts and Sciences

Thesis Reader .
Andrew W. Lo

Charles E. and Susan T. Harris Professor of Finance
MIT Sloan School of Management

Thesis Reader .
Srini Devadas

Edwin Sibley Webster Professor of Electrical Engineering and Computer
Science

MIT Computer Science and Artificial Intelligence Laboratory

8

Contents

1 Introduction . 12

1.1 Contributions . 13

1.2 Structure . 18

2 Preliminaries . 18

2.1 Secret Sharing . 18

2.2 Secure Multi-Party Computation 22

2.3 Blockchain and Cryptocurrencies 27

2.4 Game Theory . 29

2.5 Security Model of This Work 31

3 Overview and Design . 34

3.1 Under the Hood . 37

4 Generic Protocols . 40

4.1 Interface . 40

4.2 Registering . 40

4.3 Access Control on the Blockchain 42

4.4 Quorum selection . 43

4.5 MPC Protocol . 44

4.6 Security Analysis . 49

5 Online MPSS . 52

6 Incentive-compatible MPC . 54

6.1 Definitions . 55

6.2 Mechanism and Utilities . 56

6.3 Results . 57

9

6.4 Asynchronous Communication and Repeated Games 59

7 Background: MPC over the Integers and Reals 60

7.1 Data Representation . 61

7.2 Existing and Elementary Building Blocks 63

8 Efficient Secure Comparison . 70

8.1 Comparison of Small Inputs (𝑘 ≤ 64) 73

8.2 Comparison of Medium Inputs (𝑘 ≤ 512) 76

8.3 Comparison of Large Inputs (𝑘 ≤ 4096) 77

8.4 Asymptotic Complexity . 79

8.5 Summary of Comparison Protocols 81

9 Improved Building Blocks . 81

9.1 Trunc and Mod . 82

9.2 Bit Decomposition . 87

9.3 Naive BitDec . 88

9.4 BitDec from small comparisons 88

10 Constant Rounds, Sub-linear Secure Division 91

10.1 Multiplicative (Iterative) Division 92

10.2 Norm . 94

10.3 NormS . 98

10.4 Division (Reciprocal) . 99

10.5 Other Applications . 103

11 Implementation . 105

11.1 The Network . 105

11.2 Clients . 106

11.3 Distributed VM (DVM) . 107

11.4 Integration with the Bitcoin Blockchain 109

11.5 Refined Security Analysis . 115

12 Evaluation . 116

12.1 Empirical Analysis of Quorums 116

12.2 Scaling . 117

10

12.3 Benchmarks . 118

13 Conclusions . 119

11

1 Introduction

The field of secure computation explores solutions for analyzing data while keeping

the inputs private at all times. Although in appearance, this sounds contradictory

in nature, completeness theorems have shown that solutions exist not only for spe-

cific functions of interest, but to all of them [6]. Secure computation was originally

formulated for the two-party case by Yao [2], who has presented a solution in the

form of decentralization. The original formulation asked the question – how can two

mutually distrusting parties collectively compute an answer to a question, without

each party having to disclose their private information? Generalized solutions for

the 𝑛-party case quickly followed. An interesting model that was developed later is

that of separating the clients from the servers. In this model, clients can store their

data with a group of parties (a peer-to-peer cloud), and then query their data by

outsourcing computations to this network. The secure multi-party computation (or

MPC) protocols ensure that the servers can never observe any of the plain-text data,

and also guarantee that the results they send back are correct. In its essence, MPC

ensures that a network of untrusted servers is all that is needed to obtain a secure

cloud that preserves privacy.

The literature surrounding MPC is vast, spanning several decades and hundreds

of papers, proving what great potential this sub-field of cryptography holds [65]. And

yet, practical implementations are few and far between. First and foremost, MPC

has poor scaling properties and its performance in the malicious setting is far worse

than the semi-honest case, where we assume all nodes follow the protocol.

Second, many impossibility results exist, making the deployment non-trivial. If

we are confident that the majority of parties are always honest, then we can ensure

privacy, correctness and output delivery, but if this assumption is wrong – security

is immediately broken. Conversely, if we would like to protect against a dishonest

majority, and specifically – ensure that even if all parties are corrupted, privacy and

correctness are guaranteed, then we have to settle for a weaker notion of security with

abort, where even a single party could disrupt the protocol. In other words, it only

12

takes a single corrupted party to deny service from everyone else (Denial-of-Service

attack).

The goal of this thesis is to bridge the gap between the theory of secure com-

putation and its practice. This work focuses not only on implementing a practical

system, but also on the applied theoretical aspects that are currently lacking. The

ideas brought here are designed to take the first major step towards a scalable MPC

platform that can be deployed in practice. This should pave the way for creating a

secure cloud platform that could be used to analyze sensitive information.

1.1 Contributions

Secure MPC based on linear secret sharing schemes (LSSS) tends to enjoy significantly

better performance compared with other techniques of privacy-preserving computa-

tion such as fully homomorphic encryption (FHE). One of the main influencing factors

is the information-theoretic nature of homomorphic secret sharing schemes, which do

not require expensive public-key cryptography to operate.

However, as it currently stands, MPC has major limitations, which this thesis

addresses. It is the main hypothesis of this work that by overcoming these barriers,

MPC could eventually take a prolific role in securing systems. This thesis focuses on

solving (or significantly improving) four major barriers for scaling MPC:

∙ Communication scalability. As LSSS are only additively homomorphic, each

non-linear operation requires a round of communication, which makes the total

rounds of communication proportional to the circuit depth. A round requires

that all parties synchronize and talk to each other, making scaling the number

of nodes in the network intractable. For this reason, all previous work on

implementing MPC has focused on the case of 2-3 parties (or a handful of

parties at most), which still requires significant amount of trust in each node.

As it is reasonable to assume that finding more untrusted parties is easier than

mostly-trusted ones, finding a solution that enables scaling the network without

adversely affecting performance is crucial. Unfortunately, since we have good

13

reason to believe that an all-to-all communication is required [53], an alternative

approximation is required. Such a solution could be obtained by not having the

entire network active in each computation. If done correctly, the security could

approximate that of the general case. Several theoretical solutions have emerged

in recent years [14] [15], but these were highly in-efficient and their long term

security was not analyzed. This work is the first to offer a practical approach,

implement it, and offer an (empirical) analysis of long-term security. Long term

means that the security applies not only by looking at a single computation,

but over a (large) series of computations as well.

∙ Active security. The distributed and untrusted nature of each party makes

achieving security against an active adversary more difficult. Actively secure

protocols tend to employ more complex building blocks such as zero-knowledge

(ZK) proofs and byzantine agreement (BA) protocols. These do not only com-

plicate the protocols and the security analysis, but also significantly impact

performance in an adverse manner.

∙ Unreasonable assumptions. In MPC and distributed systems in general,

the security model is generally limited to an adversary that corrupts (actively

or passively) some portion of the parties. Such classification assumes (almost)

nothing else about the adversary in order to derive general results. However,

these tend to be weaker in practice, as impossibility results force system de-

signers to assume a global limit on the number of corruptions the system can

withstand (𝑡 = 𝑛
3

or 𝑡 = 𝑛
2

– i.e., an honest super-majority or majority). The

security of MPC (and similarly – of BA) is completely broken if this assumed

threshold is not met. A more realistic solution is to model a system that discour-

ages adversarial behavior and provably ensures that the only stable situation is

that less than a required threshold of corruption occurs. Other unrealistic as-

sumptions are that of synchronous communication and free reliable broadcast.

The first potentially sets an impractically large lower bound on the run-time of

even the simplest of computations, while the latter assumes BA is free.

14

∙ Inefficient protocols for integers/reals. The early days of MPC focused

on (im)possibility results in the general sense. With the emergence of Big

Data, and given that the seminal results have been well established, in the

past decade significant research was dedicated to scalable and practical MPC.

This has led to the development of the first MPC protocols over the integers

[25] [54] and reals [28] [33]. As it turns out, while simple operations such

as addition and multiplication gracefully carry over to integral and fractional

domains, most other operations are more complex and therefore less efficient.

Even when it comes to a simple protocol of securely comparing two integers,

which served as Yao’s original motivating example (The Millionaires’ Problem),

the secure protocol is at least one or two orders of magnitude less efficient than

multiplication.

Motivated by these shortcomings of MPC, this thesis presents new tools to over-

come scaling and deploying MPC in practice. Perhaps the most novel aspect of this

work is the presentation of an MPC model that unifies cryptographic and economic

models. While this has been attempted before (e.g., [20]), the results were strictly

negative. With the modeling of incentives we are able to show positive results that can

also provide a clear rationale to deploying MPC in practice without assuming that

some threshold of the parties are incorruptible. A second contribution deals with

modeling secure computation together with a blockchain, in order to provide a single

more efficient system that could pave the road for scalable MPC. The blockchain

assists with defining the economic model, as well as with implementing (nearly) cost-

less BA and decoupling it from MPC. Third, we significantly improve most of the

inefficient low-level protocols over the integers and fixed-point numbers. This creates

a more optimized framework for MPC over the integers/reals. The main tools to

address these barriers that will be developed in this work are described below.

Incentive-Compatible MPC

Incentive-compatibility is a well-studied property of game-theory, formalizing a steady-

state of a multi-party system, in which each party only stands to lose by deviating

15

from the honest protocol. While in cryptography the most basic assumption is that

some parties are simply honest (or not), in economics the assumption is that the par-

ties are rational and their utilities can be quantified, such that with a proper incentive

mechanism all (or at least most) of them can be discouraged from doing any harm.

Empirically, this assumption seems to hold better in practice than the constrained

cryptographic model. Very much like MPC, Byzantine Agreement protocols have tra-

ditionally made similar assumptions and were equally absent from practical systems.

This has changed with the invention of Bitcoin [1], which is the first seemingly sta-

ble large-scale deployment of a BA protocol (or at least some approximate version

of it). Despite literally being a decentralized bank that has the ability to mint new

currency, and having a collective liquid market-cap worth billions of dollars in the

time of writing this thesis, Bitcoin has been highly resilient to attacks and has been

able to faithfully maintain a distributed consensus over the correct state of the ledger

for over seven years.

Bitcoin is an instance of incentive compatible BA (IC-BA). In practice, some

minor attacks have been found to show that this only holds in some weaker form [40]

[56], but the general resiliency is so remarkable that many researchers have begun

studying this idea [42]. The striking similarities between the security model of MPC

and traditional BA has led to the development of a similar framework in this thesis

– incentive compatible MPC (IC-MPC). As will be illustrated later, IC-MPC heavily

depends on black-box functionalities providing BA over some public state and the

ability to transfer payments between parties in a fair and honest manner. Since these

are already present in any public blockchain-based system, blockchain technology has

an important role in implementing IC-MPC in practice. In that sense, the blockchain

plays two roles – it is both the motivation for IC-MPC and also an integral part of it.

A final note on the importance of incentive-compatibility is adoption. In order to

encourage growth, a system has to provide some fungible value (and as few barriers

as possible) for participants, encouraging them to join. Bitcoin, and this work in the

context of MPC, offers such value in the form of monetary incentives. This leads to

parties who are a priori interested in this form of return to join the system, enhancing

16

its security and longevity.

Integrating MPC and Blockchain technology

The usage of blockchain technology in scalable MPC and in privacy-enhancing tech-

nologies (PETs) in general extends beyond the economical model of IC-MPC. In MPC

in particular, agreeing on some shared public state and verifying who are the hon-

est parties plays a major role in constructing actively secure protocols. The main

idea is to use the blockchain as a settlement layer that can be trusted for consen-

sus, which serves as a deterrent that discourages malicious behavior. The blockchain

stores commitments to the inputs and can verify transcripts of computations. Parties

who deviate can therefore be identified and penalized (or eliminated).

More importantly, the basis of scaling MPC to large networks is based on the

notion of quorums. A quorum operates like an elected committee that is trusted

with carrying out a computation. Several recent theoretical works have dealt with

realizing such protocols [14] [16], but they require an expensive network-wide BA

step for agreeing on some public randomness that is used as a seed for the quorum

selection protocol. Using the blockchain instead allows us to perform this selection

(almost) for free. At the time of writing this thesis, this is the first work to utilize

the quorum approach in an efficient manner in order to allow scaling the number of

parties in an MPC network.

Optimizing secure computation over integers/fixed-point numbers

Even the most elementary secure computation protocols over the integers and the

reals (fixed-point or floating-point representations) are significantly less efficient than

addition and multiplication. Secure comparison, which is used as a building block

in most of these protocols has been the subject of significant research [55]. And

yet, the state-of-the-art currently requires 2 rounds and communication proportional

to the bit-length of the inputs. As this is then composed in other protocols, the

communication complexity is prohibitive. The base protocol presented in this thesis

is optimal, as it requires only 1 round and 1 invocation of the multiplication protocol

17

for inputs up to 64-bit, which is the most common case. This allows for 1-2 orders

of magnitude improvement for comparison directly and more importantly – for all

protocols inheriting it. Similarly, a hybrid protocol for larger bit-lengths is presented

which significantly improves (almost) arbitrary precision arithmetic.

For many of the common (but inefficient) protocols that are found in any computer

program, this thesis shows significant improvements in practice compared to the state

of the art. With the exception of secure division/reciprocal and normalization of

inputs, for which the first asymptotically sub-linear protocol is presented, all other

protocols are focused on practical complexity compared to asymptotic one.

1.2 Structure

The structure of this thesis is comprised of three, mostly independent parts. The

common theme across all parts is finding solutions to the problems of scaling MPC

described earlier and making the technology more efficient in practice.

∙ Sections 3-6 describe a generic MPC framework that combines MPC with a

blockchain in order to achieve a more efficient system. The last section crosses

the border from the domain of cryptography to that of economics, formalizing

the IC-MPC model.

∙ Sections 7-10 go deeper into improving many of the inefficiencies in integer/fixed-

point secure protocols, leading to significant improvements over the best cur-

rently known protocols.

∙ Sections 11-12 describe the implementation and an evaluation.

2 Preliminaries

2.1 Secret Sharing

For MPC we are usually interested in linear secret sharing schemes (LSSS), as these

are additively homomorphic. A secret-sharing scheme provides two functionalities,

18

share and reconstruct (or open). Share takes a secret as an input along with the

number of shares to split, as well as an optional parameter 𝑡 in the threshold case

(explained in detail below), while open takes a list of shares and reconstructs the

secret. The underlying goal is to hide a secret by splitting it into shares, such that

only a linear combination of 𝑡+ 1 of them can reconstruct the secret.

The additively homomorphic property is formally defined as –

𝑎+ 𝑏 = 𝑂𝑝𝑒𝑛([𝑎] + [𝑏]), (1)

for two secrets 𝑎, 𝑏 ∈ Z𝑝, where [·] marks a sharing. In addition –

𝑐 · 𝑎 = 𝑂𝑝𝑒𝑛(𝑐 · [𝑎]), (2)

for a secret 𝑎 ∈ Z𝑝 and a public constant 𝑐 ∈ Z𝑝.

Shamir [48] and Blakley [57] were the first to independently introduce the concept

of secret sharing. In the context of a polynomial secret sharing scheme (SSS), we

focus on Shamir’s scheme below.

Shamir’s Secret Sharing

Shamir’s secret sharing is a (𝑛, 𝑡)-threshold secret sharing scheme, where 𝑛 is the

number of shares derived from the secret, such that a combination of any subset

𝑡+ 1 shares allows reconstruction of the original data, but any 𝑡 or less shares reveal

no information at all. Shamir’s scheme, like many other secret-sharing schemes, is

information-theoretically secure.

The scheme works by creating a 𝑡-degree polynomial with random coefficients in

the field Z𝑝, where the constant coefficient is set to be the secret. Specifically, to

share a secret 𝑠, first generate the random polynomial as follows:

𝑃𝑡(𝑥) = 𝑠+
𝑡∑︁

𝑖=1

𝑟𝑖𝑥
𝑖, (3)

where 𝑟𝑖 are random coefficients and by construction 𝑃𝑡(0) = 𝑠. Then, to create 𝑛

19

shares, simply evaluate the generated polynomial on 𝑛 different non-zero points (most

commonly the series 1, ..., 𝑛 are used). There are several accepted forms of notation

for a share – 𝑠𝑖 ≡ 𝑃𝑡(𝑖) ≡ [𝑠𝑖]. We will use these different notations interchangeably

depending on the context, as each form proves to be more convenient in different

cases.

Note that to open a secret, any 𝑡+1 are enough. Simply use lagrange interpolation

over the field to obtain the polynomial 𝑃 ′
𝑡(𝑥) and then evaluate the reconstructed

polynomial in 𝑠 = 𝑃 ′
𝑡(0). If only 𝑡 or less points are provided then there is at least

one or more degrees of freedom, so no information is revealed (even when facing a

computationally unbounded adversary).

Additive Secret Sharing

Shamir’s secret sharing scheme is sometimes referred to as a threshold scheme or a

polynomial sharing. An even simpler, yet related scheme, is that of additive sharing.

An additive sharing is strictly an (𝑛, 𝑛 − 1) scheme, as all shares are needed to

reconstruct the secret. An additive scheme, as the name implies, splits a secret 𝑠 into

𝑛 shares 𝑠𝑖, such that their sum is the secret itself. Namely –

𝑠 =
𝑛∑︁

𝑖=1

𝑠𝑖 (4)

To share a secret in this form, the first 𝑛 − 1 shares are set to be random values

in Z𝑝 (i.e., 𝑠𝑖 = 𝑟𝑖) where the last share is set to be:

𝑠𝑛 = 𝑠−
𝑛−1∑︁
𝑖=1

𝑟𝑖. (5)

It is easy to see that Equation 4 holds. Security stems from the fact that the first

𝑛 − 1 shares are random values that are not correlated with the secret, and the last

share acts like a one-time-pad, giving the scheme its perfect secrecy trait.

One of the benefits of using an additive scheme is that it works well over the

ring of integers and not just in a finite field. In this case, the coefficients 𝑟𝑖 should be

sampled from a large enough domain that is a factor 2𝐾 larger than the domain of the

20

secret 𝑠. This ensures statistical security (compared to perfect), but allows working

directly in the ring of integers.

Replicated Secret Sharing

Cramer et al. [38] suggested a threshold secret sharing scheme built from an additive

secret sharing scheme. The idea is to split all 𝑛 parties into all possible maximally

unqualified subsets. In other words, given (𝑛, 𝑡), we compute all |𝐴| =
(︀
𝑛
𝑡

)︀
subsets of

size 𝑡 from the set {1, ..., 𝑛} and number them from 1, ..., |𝐴|. We then split the secret

to |𝐴| shares ([𝑠](𝑅𝑆𝑆) = {𝑟𝑗}|𝐴|
𝑗=1) using the additive scheme from above, and for each

party 𝑖, we construct the following share vector:

[𝑠𝑖] = {𝑟𝑗|∀𝑗, 𝑠.𝑡. 𝑖 ∈ 𝐴𝑗}. (6)

Therefore, each party receives all shares belonging to the subsets it is part of.

This is why this scheme is replicated, as each 𝑟𝑗 is replicated across several parties.

By construction, this scheme turns an additive sharing scheme into a threshold one,

like Shamir’s secret sharing. To reconstruct the secret, any 𝑡 + 1 parties can pool

their shares in order to obtain all |𝐴| 𝑟𝑗’s, from which they can reconstruct the secret.

Any subset smaller than that would be missing at least one share.

Clearly, this variant is more wasteful in terms of space and computation needed,

so it is not used in practice directly. Instead, [38] provides an efficient protocol to

locally convert a replicated sharing to Shamir’s sharing. The reason RSS is so useful

is that it allows generating sharings of (pseudo)-random values without interaction,

as described below. Together with the local conversion, this implies that we can

generate distributed random shares as needed non-interactively.

Pseudo-Random Secret Sharing (PRSS)

Pseudo-random secret sharing (PRSS) is based on the idea that RSS allows us to

generate sharings of random and independent values, which are then converted to

Shamir’s scheme without interaction as well. This provides a distributed random

21

generator for MPC applications without any interaction.

To achieve this, observe that when performing a RSS, if the secret 𝑠 is itself a

random field element, then all 𝑟𝑗’s are independent and random. Therefore, each 𝑟𝑗

could be observed as a shared random key for all parties in subset 𝐴𝑗. If the 𝑟𝑗’s are

added directly, then they conform to a replicated sharing of a single random value.

However, if each 𝑟𝑗 is used as group key to a PRF 𝜑𝑟𝑗(𝑥), then the parties can generate

non-interactively any number of random sharings (first RSS and then converting to

Shamir). Since a PRF generates pseudo-randomness the scheme is defined as PRSS.

Pseudo-Random Integer Sharing (PRIS).

A variant of RSS called Replicated Integer Secret Sharing (RISS) is given in [58].

Essentially, it is the equivalent of RSS that works in the ring of integers. The ran-

domness is chosen from a larger domain with a security parameter 𝐾, thus providing

statistical security. Conversion to Shamir is done in the same manner (modulo 𝑝).

This variant allows generating random integers in a specified domain [0, 2𝑘 − 1].

To sum up, PRSS and PRIS enable generating (pseudo)-random field elements and

integers for free (except for computational cost), and are used extensively through-

out this thesis. Together with a variant of generating pseudo-random zero sharings

(PRZS), they enable an efficient way to generate random triplets offline as in [5].

2.2 Secure Multi-Party Computation

There is an immense body of work around secure multi-party computation. Yao [2]

presented the first two-party scheme using garbled circuits, which was later extended

to the multi-party case by Goldreich, Micali and Wigderson [9]. An alternative scheme

for the arithmetic circuits case, using LSSS was proposed in [6]. A third option that is

increasingly becoming more popular is to model secure computation programs using

oblivious RAM (ORAM) [7], [8] instead of circuits. ORAM also enables the creation

of more efficient oblivious data structures and oblivious sorting algorithms.

Given their information-theoretic nature, as well as their clear fit to the client-

server and multi-party settings, MPC using LSSS is generally chosen to implement

general-purpose, efficient MPC frameworks. For this reason, this is also the focus of

22

this thesis. The main idea presented in [6] is that secret data can be shared across

𝑛 parties using secret sharing. Then, the additively homomorphic nature of LSSS

allows computing linear operations (addition, multiplication by a public constant) by

asking each party to locally compute these operations on their shares. In addition, [6]

provides a secure multiplication protocol that allows the parties to obtain shares of the

multiplication of two secrets. Since any circuit could be constructed from addition and

multiplication, these protocols are sufficient to show that MPC is complete – namely,

every function can be securely evaluated until all parties have shares of the result.

At that point, the shares can be combined to reconstruct the result by interpolation,

without revealing anything else about the inputs or any intermediate values.

The seminal works around MPC have established feasibility results regarding the

allowed number of (passive or active) corruptions. In the perfect and statistical

security cases, [6] and [10] proved tight bounds of tolerating at most 𝑡 < 𝑛
2

passive

corruptions and 𝑡 < 𝑛
3

active ones, assuming only secure point-to-point channels.

Assuming in addition a broadcast channel, [11] has shown that any functionality can

be computed privately and correctly with an honest majority. Similarly, [9] proved

similar results of full security against an dishonest minority for the computational

security case. If parties cannot abort, the authors have also shown security against

any number of corrupted parties.

In the case of a dishonest majority, full security is impossible, as we cannot guar-

antee output or fairness. Instead, we have to consider the weaker case of security

with abort. Recent advancements in MPC against a dishonest majority include [12].

Their scheme incorporates other important improvements to the efficiency of MPC,

including the use of randomization triplets [13] that are created in an offline phase,

allowing the online (i.e., the actual real-time computation) to run faster. The offline-

online model is also known as the preprocessing-model, which has become prolific in

any application trying to improve the efficiency of MPC.

In the area of practical implementations, MPC has seen deployments that are

limited to a small number of parties, most commonly only protecting against semi-

honest corruptions [3], [4]. Active security against an honest minority (𝑡 < 𝑛
3
) was

23

developed in [5]. As most of these systems predate recent improvements in efficiency,

they are not geared towards large-scale MPC. Furthermore, these implementations

provide little to no support of secure computation over the integers and reals. The

only implementations of MPC in these domains are [4] [59].

Security Model

The security model of MPC focuses on the 𝑛 parties involved in sharing the inputs and

then running secure computation over them. The adversary in this model is assumed

to be a centralized entity that can corrupt up to 𝑡 parties. Different variations of this

model equip the adversary with different traits. These are usually selected in a way

that makes it easier to prove security or to provide a more efficient construct. The

goal of this work is to take a different approach – make some assumptions about the

real world and protect against the worst-case adversary given these assumptions. It

is important to note that while this would seem like a weaker statement, in practice

the opposite holds. For example, arbitrarily weakening an adversary (e.g., assuming

that it will always follow the protocol, as in the semi-honest case) often results in less

realistic assumptions. A summary of the main properties of the adversary are given

below:

1. Passive/Active. A passive (or semi-honest/honest-but-curious) adversary is

one that attempts to learn as much information as possible, without ever at-

tempting to break protocol. Therefore, a passive adversary only attempts to

compromise privacy, but not correctness. Conversely, an active (or malicious)

adversary can act in a byzantine manner and attempt to break protocol in ad-

dition to attempting to gather information. An active adversary is considered

more difficult to protect against, as it could, for an instance, choose to abort,

send corrupted version of its shares or even send inconsistent shares to different

parties throughout the computation.

2. Static/Adaptive. A static adversary is one that selects which 𝑡 parties to

corrupt before the protocol starts (and cannot change its mind). An adaptive

24

adversary can corrupt up to 𝑡 parties at any given time throughout the execution

of the protocol. Specifically, the adversary can be selective and corrupt those

parties that are more significant in a given execution. This is of particular

interest in committee and leader election protocols.

3. Rushing. In the synchronous model (see below), a rushing adversary is one

that can see all messages of the honest parties in a given round, and then decide

on the messages the corrupted parties send in that round.

4. Covert. More aligned with this work, Aumann et al. [61] presented the idea

of covert adversaries. These are potentially malicious parties that do not wish

to get caught cheating. This definition creates a spectrum between the classic

passively/actively corrupt model, and provides security against cheating with

some high (but not overwhelming) probability 𝜖. The rational behind covert

adversaries is that protecting against active adversaries leads to unnecessarily

complicated and inefficient protocols, while protocols protecting against semi-

honest adversaries are too weak. Instead, covert adversaries tend to emulate

some more realistic assumption on real-world adversaries.

5. Rational. The covert trait defines a purely cryptographic model and as such,

does not tell us anything about what a good choice of 𝜖 is. Furthermore, like the

conventional passive/active definition, it does not capture the idea of rational

parties, who would attempt to increase their utility by out-smarting the system.

The idea of rational parties is to connect a cryptographic model to the economic

one that tries to model real-world players. In other words, it reasons about why

parties would act in a certain way, but does not assume that the adversary

would automatically fall within a certain classification.

In addition, the adversary may be of bounded or unbounded computational power.

In most cases, MPC protocols are proven secure against an unbounded adversary

(either with perfect or statistical security), by assuming some ideal functionalities

(ideal secure point-to-point channels, broadcast, random oracle model and occasion-

25

ally CRS). The implementation of these ideal constructs normally leads to systems

with computational security.

Proving security of MPC protocols is often achieved using the universal compos-

ability (UC) framework [60]. The UC model formalizes a system of parties engaging

in interactive protocols (formally, interactive turing-machines (ITM)). Security of a

protocol is then proven by showing that these interactive parties can simulate this

protocol execution in a way that is indistinguishable (to any observing environment)

from a similar ideal functionality executed by a trusted-third party. This notion of

security is considered strong, as it ensures that the distributed protocol is at least

as secure as the ideal functionality. For this reason, protocols secure in this frame-

work can be composed with other protocols to construct more complex functionalities

without compromising security.

Communication Model

Another important aspect of the security of any distributed system is the communi-

cation model of the network. The seminal results mentioned earlier are tightly related

not only to the type of adversary, but also to the communication model and ideal

communication devices that are assumed. Specifically, the completeness results of

MPC (e.g., [6]) are defined in a model with assumed secure point-to-point channels

and a synchronous model with a global synchronized clock. The latter is a specifically

strong assumption, as real-life networks such as the internet are asynchronous in na-

ture. It also makes proving security of MPC protocols easier for the active adversary

case, as the adversary has to act in each round or it is easily identified. This ensures

that all messages are delivered and an adversary cannot simply abort or delay the

protocol.

Work on asynchronous MPC often leads to significantly less efficient protocols and

requires making other assumptions, such as having consensus broadcast for free and

an eventual delivery of all messages. In this model, there is a tight bound of 𝑡 < 𝑛
3

corruptions [64] and we have to settle for the possibility of input deprivation – some

honest inputs could be ignored. The reason is that if we assume 𝑡 corruptions, then

26

an asynchronous protocol should proceed to the next round immediately after 𝑛 − 𝑡

inputs are received. Otherwise, if there are 𝑡 corruptions, the 𝑛− 𝑡+ 1-th input may

never be received, as the adversary could delay the protocol indefinitely.

Whether the network is synchronous or not, there are two communication methods

to consider: point-to-point and broadcast. The latter is commonly used to achieve

more efficient secure protocols defined in the pre-processing model [13]. However,

this efficiency is only obtained if consensus is assumed to be cost-less (through some

ideal broadcast functionality 𝐹𝐵𝐶), or at least the broadcast channel is assumed to

be reliable (the adversary cannot prevent honest parties from broadcasting messages)

and 𝑡 < 𝑛
3
. In the latter case, secret sharing with error-correction can be used to

remove any active faults.

2.3 Blockchain and Cryptocurrencies

In general, a blockchain can be seen as an ideal party (in practice – decentralized)

that is trusted with correctness over some public state. This state is stored in the

form of blocks, where each block encapsulates all the valid transactions that occurred

in single round. In that sense, the blockchain is synchronous and the parties main-

taining it reach an (approximate) byzantine agreement in each time-step. The time

to generate one block is considered the time of the round, and therefore the block

number represents a synchronized global clock.

The name blockchain, first described in the Bitcoin whitepaper [1], refers to the

fact that there is a single, global list (or chain) of blocks. The blockchain is therefore

an append only data structure, where all transactions in block 𝑖+1 occurred after the

transactions in block 𝑖, but all transactions in a single block are considered simulta-

neous. In practice, the blockchain provides a form of eventual consensus, namely – at

any point in time the parties agree on some prefix of the chain, which is immutable

with high probability, but the most recent blocks are subject to change due to small

forks that occur at the tail. The probability of a fork decreases exponentially (a fork

of depth 𝑑 has probability 𝑂(2−𝑑)) [42]. Correctness is ensured by consensus rules,

the most important of which is that the longest valid chain is the correct one. This

27

ensures the long-term agreement of the state, preventing malicious parties from al-

tering history, as in order to change block at depth 𝑑, an adversary would need to

spend an effort proportional to that of mining 𝑑+1 valid blocks, which is considered

enormous. Other than the chain, each block’s validity is checked by ensuring the

block header is valid and that the transactions contained in it are valid. The latter

is especially interesting, as validity of transactions is defined by the nodes executing

a function (also known as a script or a (smart) contract) and accepting if it returns

true and rejecting otherwise. In other words, the blockchain can be seen as reaching

a byzantine agreement over functionalities that can be programmed. With this, we

can summarize the main properties and functionalities blockchains expose.

1. BA and correctness. As mentioned above, a form of eventual agreement over

the state is reached in every round (a single block). The blockchain can be seen

as an ideal functionality run by a trusted-third-party (TTP) that all parties

have black-box access to. This functionality also provides consensus broadcast

for free, although one that might be slow, so in reality it is only used as a last

resort (we refer back to this in the implementation).

2. No privacy. Since all information on the blockchain is public (this is needed

to reach agreement), we conclude that it provides no privacy guarantees over

the inputs.

3. Incentives. In public blockchains such as Bitcoin, incentives are key to ensur-

ing nodes’ honesty. This is the form of IC-BA alluded to earlier, and also the

motivation for extending this idea to MPC in this work. As such, a blockchain

provides us with an additional ideal functionality for transferring value between

parties, including locking a deposit on-chain.

4. Global synchronized clock. Since in every round the nodes reach consensus

over a new block, this implies that they also reach an agreement on a global

(discrete) time.

28

It is important to note that these properties are exposed through ideal function-

alities the parties in our MPC network use. In other words, when we formalize our

mixed MPC-blockchain model, we treat the latter as a centralized ideal party. In

practice, the MPC nodes may also be blockchain nodes, but this does not affect the

model.

Notation. Formally, we will use the model of Kosba et al. [43], which provides

us with wrapper functionalities for contracts and protocols. A contract is simply a

function that is run by the blockchain, whereas a protocol is run locally by each of

the parties. Parties’ use protocols to interact with contracts on the blockchain and

vice versa. It is interesting to note that their framework is UC-compatible, which is

important for composing UC-secure MPC protocols.

We will also use the same notation. 𝑇 marks the current round (i.e., global time);

ledger[𝑝] the current account balance of 𝑝; and access[𝑜] the list of services owner 𝑜

has approved. We will use 𝑥𝑟𝑒𝑓 for the on-chain object referencing a secret that is

secret shared among computing parties in 𝑃 . These will include the current quorum,

when the secret was last updated, and history of commitments – starting from the

dealer. Essentially, the blockchain holds all public information that it needs to use in

order to maintain the system and identify cheaters.

2.4 Game Theory

Game theory explores the science behind the interaction of rational agents trying to

maximize their utility (i.e., their expected return). This is in contrast to cryptography

and distributed systems which put stringent (but fixed) constraints on the parties.

Cryptography has the advantage that no assumptions on the preference (utility) of the

agents is assumed, but at the cost of general assumptions about the adversary which

may not hold in practice. Game theory on the other hand assumes something about

the parties’ preferences, but does not make any additional assumptions about their

behavior; that is determined mathematically by the model, where the nodes (may)

converge to some equilibrium in which no party can gain anything by deviating. In

that sense, rational parties are harder to handle, as they do not follow the universal

29

assumptions set forth by the cryptographic model. If a system is poorly designed,

the equilibrium might lead to a bad social outcome.

One simple example could be of two criminals accused of a crime. If even one

of them pleads guilty, both criminals would end up in prison for a long period of

time. Alternatively, if both claim they are innocent they walk free. This is a modified

version of the prisoner’s dilemma in which there is no incentive for either party

to turn on each-other, so both parties would end with the best outcome for them

(no punishment). However, from a social perspective, the outcome is bad and the

system is clearly broken. It is fairly easy to design a game-theoretical mechanism that

protects against that. However, if we force a cryptographic model that assumes that

at least one of the two criminals is always honest, then that would appear secure in

theory where in practice, this assumption would not hold, as parties are rational in

reality.

In terms of notation and tools needed, we use the standard definition of finite

extensive form games, as well as a mediator as a communication device (see [49] for

details). Essentially, players do not interact directly with each other, but rather they

simultaneously send a message to the mediator in every round, who in turn computes

a (possibly probabilistic) function and sends the output back. Formally, in every

round 𝑡 of the game Γ, player 𝑖 sends input 𝐼 𝑡𝑖 to the mediator 𝑚, who computes

𝑃 𝑡 : 𝐼 𝑡1 × ...× 𝐼 𝑡𝑛 × 𝑟 → 𝑂𝑡
1 × ...×𝑂𝑡

𝑛 over all the inputs in this round and optionally

some random bits 𝑟, then sends each player 𝑖 its output 𝑂𝑡
𝑖 . Note that we will assume

that the full output 𝑂𝑡 is always common knowledge.

As usual, we use 𝜎𝑖 to denote the strategy of player 𝑖, 𝜎−𝑖 to define the strategy

of all players other than 𝑖, and 𝜎⃗ := (𝜎𝑖, 𝜎−𝑖) to denote the strategy profile of all

players. Let 𝑢𝑖(𝜎⃗) mark 𝑖’s utility if the strategy profile 𝜎⃗ is played. We say that

𝜎𝑖 is a dominant strategy for player 𝑖 if for all 𝜎𝑖 ̸= 𝜎𝑖′ and for every 𝜎−𝑖, we have:

𝑢𝑖(𝜎𝑖, 𝜎−𝑖) > 𝑢𝑖(𝜎𝑖′ , 𝜎−𝑖). Intuitively, this implies that a player has unique best strat-

egy that she will always play, regardless of how other players behave. If all players

have a strictly dominant strategy, then it means that they will always play it in every

run of the game. We call this a (strictly) dominant strategy equilibrium, which is

30

the strongest type of equilibrium a game can have. A mechanism is informally the

design of a system that attempts to achieve some social objective through the use of

incentives. In our case, this is an MPC network and the goal is to maintain privacy

of the inputs and correctness of the outputs. If a mechanism is designed in a way

that being truthful (i.e., acting honestly) is the dominant strategy equilibrium, we

say that it is incentive compatible.

2.5 Security Model of This Work

As hypothesized in the introduction, one of the major barriers for deploying MPC

solutions is the unrealistic security model. It is in some senses too strong and in others

too weak. These lead to protocols that will either not be secure in the real-world,

or will be too impractical to deploy. Based on the definitions above, we make the

following (qualitative) axioms:

1. The passive/active adversary model is insufficient. Passive security assumes

that no system in the network is operated by a malicious party and that no

system can be hacked or even encounter a power-failure. Conversely, active

security requires limiting the number of failures, requiring a super-majority of

honest nodes, or otherwise it leads to too inefficient protocols in practice. In

the case of dishonest majority [12], a single party can put the entire network in

a state of a dead-lock.

2. Byzantine Agreement is not free. Assuming that a reliable broadcast is given is

a strong assumption. In practice, a corrupted party may send different messages

to different nodes, so a byzantine agreement protocol should be implemented to

reach consensus on every message that is broadcast in the network. Even for a

solution with authenticated channels using PKI (i.e., a computationally secure

solution), protecting against 𝑡 < 𝑛 corruptions requires 𝑡 + 1 rounds, even if

there are no corruptions in practice at all. This by itself is too expensive to

allow for any real-life computation to run in practice. Furthermore, corrupted

31

parties may try to eclipse honest parties, preventing them from being able to

send messages using the broadcast channel.

3. Synchronous MPC imposes major delays. Since most MPC protocols are de-

scribed under a synchronous network assumption with a global shared and syn-

chronized clock and an upper bound on the time of each round, this implies that

the constant time of the round would potentially dominate the entire compu-

tation. Assume for example that the time-per-round is set to 10 minutes. This

is done in order to allow honest parties who are delayed by network problems

(or denial-of-service attacks) to resume operation. In reality, even 10 minutes

is not likely to be sufficient, but for this example we assume it is all that is

required. Note that evaluating a circuit 𝐶 (optimized for low-depth of multi-

plication gates), would still require at least 10 × 𝑑𝑒𝑝𝑡ℎ(𝐶) minutes to execute.

Alternatively, using asynchronous MPC requires other strong assumptions and

inefficiencies.

The main idea brought in this thesis is to find computational solutions to these

ideal functionalities that are not free in practice (BA and synchronicity) and make

more realistic assumptions on the adversary. Generally-speaking, we prefer to allow

more corruptions (including a dishonest majority), but we assume that parties care

about incentives, and that being caught incurs a penalty. With these assumptions,

we are able to provide efficient results in practice, and also protect against situations

such as aborting and input deprivation that prevents liveness.

The two constructs that provide these abilities are rationality and the blockchain.

In terms of security, it implies that the security assumptions of the system are re-

liant on the computational security of the blockchain. In that sense we take the

approach of [43] and assume that the hosting blockchain is secure, and that it pro-

vides ideal functionalities such as a global synchronized clock and incentives transfer.

The blockchain itself is a synchronized construct with a large round-time (an orders

of seconds or minutes, depending on the actual implementation). However, by de-

coupling the blockchain from the MPC parties, the underlying MPC protocols can

32

run asynchronously without incurring the penalty of a synchronized system. We solve

the input deprivation problem by assuming that inputs are secret-shared a priori and

then live in the network (with a mobile proactive secret sharing scheme (MPSS) [22]).

Furthermore, we use the blockchain to provide a broadcast with guaranteed eventual

delivery (this is true to some close approximation [56] [40]). Parties can then execute

secure computations in the network in a fast, asynchronous manner, while having the

blockchain provide synchronization and time-outs on the rounds as a form of addi-

tional security. This enables us to obtain the best of both models, given assumptions

on the security on the blockchain.

In addition to the blockchain, another less conventional assumption is that of

rationality. We later define and prove the IC-MPC model and show that rational

parties would not be actively malicious if they can be penalized, while honest parties

are rewarded. We do not require all parties to be rational, but if that is the case then

the system would converge to the semi-honest model.

To summarize, our model is comprised of an asynchronous network with a global

synced clock, with an upper bound on the time-per-round, as well as a reliable broad-

cast with eventual delivery and consensus. We also work with mostly rational parties

with a utility function that discourages them from being caught cheating. Further-

more, it is assumed that they are incentivized when they follow the protocol, so

delaying execution decreases their utility, thus normally the network would work in

an asynchronous manner and not wait for the actual round to complete.

The security model of rational parties that are incentivized introduces a new school

of thought as we explain in Section 6. In a nutshell, in almost all previous work on

MPC the assumption on the adversary is that if it is actively corrupted (correctness),

it also attempts to learn sensitive information (privacy). In general, treating active

corruptions is more difficult and requires to reduce the threshold 𝑡. In our case,

rationality ensures that active corruptions are sparse (since they are detectable), but

cannot assume that rationality can prevent honest-but-curious parties to collude (as

this is undetectable). So in contrast to most previous research, the security model of

this thesis discourages the adversary from being active but not passive. Therefore, it

33

is reasonable to assume that if the adversary is rational (for the most part), then in

practice it is more passively than actively corrupt.

3 Overview and Design

In this section, we give high-level overview of the MPC framework. This is a func-

tional explanation that describes the different actors and components. These are later

formalized into a series of generic protocols that define how these come together into a

single system (Section 4) and finally implemented (Section 11) with all the additional

optimizations done on MPC in Sections 7-10.

At a high level, our framework serves as a distributed cloud system that ensures

both privacy and integrity of the data it holds. The system also allows any type of

computation to be outsourced to the cloud while preserving the privacy of underlying

data and correctness of the result of the computation. A core feature in the system

is that it allows the owners of the data to define who can query it. This ensures that

the owners themselves control who can query their data, in which case the approved

parties, which we call services, only learn the output, without ever seeing the raw

data. Since all computations are done using secure MPC protocols, no other party

learns anything else.

There are three types of entities in the system where in practice, each entity can

have multiple roles. Owners are those sharing their data into the cloud and the

ones that control who can query it; services, if approved, can query the data without

learning anything other than the result ; and parties (or computing parties) are those

nodes who provide computational and storage resources in exchange for monetary

rewards. Note that traditionally, owners are defined as input parties and services as

output parties (collectively – the clients), while the computing parties are sometimes

denoted as the servers. Our definitions simply provide contextual meaning.2

Conceptually, owners and services are users of the system who see the parties as

a remote cloud they interact with. Parties are the nodes that actually construct the

cloud and can be likened to physical servers. However, unlike a normal cloud where

34

the servers are centrally owned, the system is decentralized. Another way to think

of computing parties is as general-purpose miners (as in Bitcoin), who are willing

to do computational work in return for rewards. An additional special (ideal) party

is the blockchain. The blockchain is also part of the internal cloud and has a key

role in it. While in practice, the blockchain is a decentralized party of its own, it is

convenient to formally model it as a single (ideal) party that provides the following

properties: correctness, incentives and synchronized global clock. This comes at the

cost of leaking all information publicly (i.e., no privacy).

To illustrate our system at a high level, Figure 1a shows what interacting with

the system looks like for each of the three types of entities. In the first sub-figure,

computing parties register on the blockchain and connect to other registered parties

to form the distributed cloud. Each party is required to have sufficient funds that

the blockchain can lock away in a security deposit account, to be used in the event

of dishonest behavior. In general, the blockchain is entrusted with doing all the book

keeping, as well as identifying cheaters and handling disputes (i.e., functionalities that

relate to achieving consensus over a public state). In addition, it is trusted to act

according to the protocol and facilitate transactions that pay (or penalize) for good

(or bad) behavior.

Once the network is formed, owners can share data into the system. While the

underlying process, which we will describe shortly, is quite different than traditional

systems, this is easily abstracted away by a software library that runs on the client

(owner or service). From the owner’s perspective, sharing data requires issuing a

single store call with the data to the network, as seen in Figure 1b. No further

interaction from the owner is needed. Also in the purview of the owner is informing

the parties who can query (i.e., compute over) the data (see Figure 1c), in a privacy-

preserving way. The owner can always change the set of permissions, adding new

services or revoking access from previously approved ones.

Finally, most of the action occurs in the computation itself. As seen in Figure 1d, a

service sends a computation (i.e., a program) to be evaluated in the same way it would

do with a normal cloud. The computation itself includes payment for the resources

35

parties provide. Subject to the model assumptions, the service is guaranteed to either

get the correct output, or to have its payment refunded. Similarly, the owners are

guaranteed privacy.

(a) New party registers to the cloud; Deposits
money.

(b) An owner secret-shares data to the cloud.

(c) An owner approves a service to query her data.(d) A service sends code to be computed securely.
Only obtains the result.

Figure 1: High-level overview of how different players interact with the cloud.

Figure 2: A look inside the cloud-storage. What happens after an owner secret shares
data.

36

Figure 3: A look inside a computation. What happens when a service sends code to
the cloud.

3.1 Under the Hood

So far we have described the different players in the system and have shown how from

their perspective, the system appears like a standard cloud, but with better security

and privacy properties. An overview of how the network internally provides these

guarantees is given, with the focus on storage and computation.

First, we assume that owners, services and the computing parties themselves are

all connected to a blockchain and use its broadcast channel. To simulate pair-wise

secure communication, a party sends a message encrypted with the corresponding

public encryption key of the other party. By design, the blockchain itself is a network

with broadcast that has strong eventual delivery guarantees. Therefore, when we

formalize our protocols, we will treat every party that is interacting with a contract

on the blockchain as if it broadcasted a message with guaranteed delivery. Note that

this provides consensus broadcast in a synchronous communication model – messages

cannot be delayed for more than a round (in practice, for a constant number of

rounds, until consensus is guaranteed with very high probability). The extension

to the asynchronous case will be argued through rationality. The network has an

(unreliable, or weakly reliable) broadcast channel that is asynchronous (which is free

37

as it requires no consensus). Theoretically, an adversary can delay messages, either its

own or even those of honest parties (by attacking the unreliable broadcast channel),

until the end of the current round. However, as is later explained, a rational adversary

could only decrease its utility by delaying the protocol, as that would require more

time spent on the current computation, whereas the reward per computation is fixed.

Storage. Figure 2 shows the low-level process that is invoked when an owner

shares data. The owner starts by sending a store request to the blockchain. The

blockchain invokes a contract (i.e., a function) that selects a set of registered parties at

random to store the data, from hereon referred to as a quorum (or a storage quorum),

and sends back to the owner this set. The owner then verifiably secret shares the data

locally, and encrypts each share with the corresponding party’s public encryption

key (these are kept on-chain). The set of encrypted shares and their commitments

are sent to the blockchain. Once in every some time period (potentially variable

and random), the blockchain will trigger a re-sharing protocol. The protocol is an

adaptation of the mobile proactive secret-sharing scheme (MPSS) described in [22]

and explained in Section 5. Essentially, in the re-sharing protocol, the blockchain

selects a replacement quorum to store the data. Then, through a secure protocol, the

shares are transferred from the old quorum to the new. If any share has been lost

in this time period, the parties in the old quorum can collaborate to securely restore

it. This process is periodically done for every piece of data shared into the system,

and ensures that data never stays too long in a single quorum, which could be slowly

corrupted. Recovering lost shares also ensures the integrity of the data.

Computation. To request a computation, the service begins by sending a com-

pute request to the blockchain, providing the function, a reference to the data, which

could originate from multiple owners, and a payment. As illustrated in Figure 3, the

blockchain executes a contract that verifies that all owners of the data have approved

this service. In practice, the parties themselves execute this process off-chain asyn-

chronously, and the blockchain only executes this at some point in the future (e.g.,

in the next round), in order to determine whether a request was valid. Parties will

not honor the request if it is an invalid one, for the same reason the blockchain would

38

not, as that implies the payment to them would not be accepted as well. Our scheme

is based on [24] and improves on it, as we describe later. Once the service is verified,

the contract selects a one-time computation quorum at random and asks all storage

quorums holding the relevant data for this computation to do a re-sharing to the new

computation quorum (in parallel), namely – supply the new quorum with the secret

shared inputs for the computation.

Once the computation quorum has all the inputs, it engages in a secure multiparty

computation of the function. Then, there are two possible outcomes. Either the

computation succeeds, in which case the service can reconstruct the result and its

payment is split between the honest computing parties; or, the computation fails

and the payment is refunded to the service. In any case, the blockchain will identify

cheaters (after the fact) who will not be paid, but instead – penalized. Honest parties

are always paid, either by the service or by the corrupt parties.

The overall computation/storage process can be seen as occurring in three distinct

parts:

1. Pre-processing. Both sharing of the inputs and pre-processing of data-independent

randomness happen in this step. This is the only step the owner is involved in

(non-interactive later on).

2. Online phase. The actual online MPC is invoked. The overhead is that

of concurrent re-sharing. This is negligible in the depth of the circuit to be

computed.

3. Post-processing. The blockchain reaches consensus on the identity of hon-

est/malicious parties (including the service) and splits the payment/penalties

accordingly.

The first two phases (offline and online) comprise the standard pre-processing

model of MPC. The only difference is that the sharing of inputs has been pushed to the

offline phase (since that has to occur synchronously). Given that, input deprivation

is not a concern and the online phase can occur asynchronously. The post-processing

39

step also occurs synchronously by the blockchain, but it is decoupled from the online

phase. This of course implies that correctness of the output could be overturned

sometime in the future, but due to the dominant strategy equilibrium, this is unlikely

to occur frequently (or at all).

4 Generic Protocols

The protocols in this section define the overall framework. They formalize the de-

tails of the previous section. Using the same terminology of [43], protocols that are

executed by the blockchain are referred to as contracts, whereas a protocol executed

locally by each party is called a protocol. The description in this section follows the

synchronous model for simplicity. The extension to the asynchronous case through

rationality is explained in the next section.

4.1 Interface

The interface contract described in Contract 1, serves as an entry point to the system.

It exposes the main functionalities illustrated in section 3: register for the computing

parties providing resources to the network; share and access, allowing owners to store

data and set permissions; and compute, allowing services to send arbitrary functions

to be evaluated securely (through MPC protocols) on data that lives in the network,

provided they have the appropriate permissions. In the rest of this section, we will

model the different components of the framework in detail and explain how they

connect.

4.2 Registering

Only parties that have at least $𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿 in their account can register to become

a computing party, in which case this amount is held by the contract. This becomes

the security deposit account used by the contract to penalize a party for cheating and

40

Contract 1: InterfaceContract

Init. Set 𝑎𝑐𝑐𝑒𝑠𝑠, 𝑃 := {}, global timing and payment parameters (Δ𝑇𝑟𝑜𝑢𝑛𝑑,
Δ𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒, ..., $𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿, $𝑑𝑒𝑝𝑜𝑠𝑖𝑡, $𝑎𝑚𝑜𝑢𝑛𝑡)
Register. Upon receiving (register) from some party 𝑝𝑖:

∙ assert 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖] > $𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿

∙ if 𝑝𝑖 ̸∈ 𝑃 , add 𝑝𝑖 to 𝑃 and lock $𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿 amount in 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖]

Share. Upon receiving (share, ⃗𝐶𝑂𝑀𝑀𝑥, {𝐶𝑂𝑀𝑀
(0)
[𝑥]𝑖
}𝑖) from some owner 𝑜:

∙ Select a random quorum 𝑄 ⊂ 𝑃 ; store an 𝑥𝑟𝑒𝑓 object containing meta
information (𝑜, 𝑄, 𝑥’s commitment, and current time)

Access. Upon receiving (access, {𝑠𝑖}𝑖) from some owner 𝑜, set access[𝑜] :=
{𝑠𝑖}𝑖.
Compute. Upon receiving (compute, 𝑓, ⃗𝑥𝑟𝑒𝑓) from some service 𝑠:

∙ Assert that 𝑠 can query all ⃗𝑥𝑟𝑒𝑓 .

∙ Select a random computation quorum 𝑄 ⊂ 𝑃 . Then, for each input
reference 𝑥𝑟𝑒𝑓,𝑖 ∈ ⃗𝑥𝑟𝑒𝑓 , call Re-Share(𝑥𝑟𝑒𝑓,𝑖.𝑄→ 𝑄)

∙ After all inputs were transferred, instruct each 𝑝𝑖 ∈ 𝑄 to initialize
ComputeProtocol(𝑓 , 𝑥𝑟𝑒𝑓,𝑖 ∈ ⃗𝑥𝑟𝑒𝑓 , 𝑠).

Timer. For each 𝑥𝑟𝑒𝑓 stored in the system, if the secret requires updating,
then:

∙ Select a new random quorum 𝑄 ⊂ 𝑃 .

∙ Call Re-Share(𝑥𝑟𝑒𝑓 .𝑄→ 𝑄)

∙ Instruct 𝑥𝑟𝑒𝑓 .𝑄 to delete the underlying secret and set 𝑥𝑟𝑒𝑓 .𝑄 := 𝑄.

41

will be a key component in the security and efficiency of this system. Note that a

deposit also provides some protection against sybil attacks, since participating has

an associated cost.

For practical considerations, the sum $𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿 serves as an upper bound that

is higher than the expected penalty for cheating in a single protocol execution. This

prevents the need for parties to constantly refill their deposit account whenever they

pay a penalty. Only when the account drops below a certain threshold, then will the

contract decide to unregister the party. For brevity, we do not include the unregister

activation in the interface contract, and only mention that it can be triggered either

by the contract or by the party itself. Before releasing the remaining funds in the

security deposit account of a party, the contract will initiate an ordered removal

protocol which ensures a party is not presently participating in any executions and

that all of its shares are transferred to a random replacement.

4.3 Access Control on the Blockchain

In a work published by the author of this thesis [24], it is described how a blockchain

could be used to store and enforce access-policies to data that are stored off-chain.

The definition of owners and services matches the one presented earlier. The protocol

starts with an owner sending a signed transaction to the blockchain with a list of

public keys of services she wishes to approve. Then, when a service asks an off-chain

storage for this owner’s data, the storage server, be it centralized or distributed, can

check if it has permission on the blockchain. In short, the scheme uses the integrity

of the blockchain to log access-control policies.

The following is an extension of this idea. At any time, an owner can change

the list of approved services on the blockchain, as is formalized in the access call of

the interface contract. Unlike the cited paper, only the owner can ask for the raw

data back, so we do not trust the service with the data. An approved service can

only send a function to be evaluated securely, and obtain its output. Also, we do not

need to trust an off-chain storage. Much like Bitcoin, our network is decentralized

and incentivized, so parties will only get paid for doing work that is according to

42

the protocol. If a service is not approved to query an owner’s data, then the parties

should drop the request.

4.4 Quorum selection

Earlier it was illustrated how quorums play a key component in the system. Each

time a new secret is shared, a storage quorum is selected to hold it and this quorum

is refreshed every period. Similarly, every time a computation is requested, a new

computation quorum is selected to execute it. The rationale behind quorums is to

allow scaling MPC to large networks, since non-linear operations require an all-to-all

communication between parties (𝑂(𝑛2)). In contrast to all previous MPC systems,

in our design, fast quorum selection implies that scaling the network could increase

(instead of decrease) performance, by leveraging parallelism and load-balancing tech-

niques. The idea of quorums has been heavily researched in recent years (e.g., [16]

and [14]). The cited papers rely on [50] BA protocol to reach consensus on a valid set

of quorums. This protocol is expensive and it cannot be efficiently used in a highly

dynamic network like ours. In practice, the theoretical solution is only practical if

the BA protocol’s cost can be amortized across many computations. However, since

in the real-world the adversary is adaptive and this protocol only protects against

a static adversary, quorums should be selected frequently, making this solution im-

practical. It also protects against 𝑡 < 𝑛
3
− 𝜖 faults, but given an (eventual) consensus

functionality provided by the blockchain, we do not incur a similar constraint.

The solution proposed in this work is to replace the (relatively) expensive BA

protocol, which is used in order to agree on a seed for selecting random quorums, with

one that uses the blockchain directly as a source of agreed-upon public randomness

(beacon) for selecting quorums. This has been previously and concurrently explored

in [70] [69] (for other applications). Now we can achieve consensus everywhere on the

identity of the quorums without cost. Furthermore, our quorum size is independent

of 𝑛, achieving better overall scalability and flexibility.

Note that in practice, we do not select a single quorum for storage or computation.

Instead, a quorum is selected for each share, namely – we use 2-level secret sharing to

43

better protect the privacy of the data. The intuition is that we need to ensure with

high probability that a bad quorum will not be selected. This will be revisited and

analyzed in Section 12. However, for the sake of simplicity describing the protocols

assuming a single (flat) quorum would suffice.

4.5 MPC Protocol

This section describes the generic protocol for MPC computation in a setting where

the parties can access a blockchain and are incentivized to act honestly. In later

sections many of the particularly important MPC elementary protocols will be op-

timized, in order to make any complex function (which is a composition of these

building blocks) run faster. For now the focus is on evaluating (any) generic function

in a MPC, so the focus is on a circuit with addition, multiplication and output gates

only. The given protocol achieves efficiency that is comparable to a semi-honest exe-

cution (for any function), assuming a blockchain and the IC-MPC model that assumes

rationality. In other words, evaluating a function securely is expected to run as fast

as the optimistic case where the adversary is passive, without explicitly assuming it.

This also provides guaranteed output delivery against a dishonest majority, assuming

enough parties that the adversary controls are rational.

The key is to design an optimistic protocol that runs (almost) like a semi-honest

execution in the online phase, without resorting to expensive validations. Instead,

parties collaboratively construct a transcript on the blockchain as computation pro-

gresses. The goal is to provide the blockchain with enough information to identify

cheaters even if the computation fails (i.e., too many corrupted parties). In fact, even

if all parties are corrupt, the blockchain can detect it. As we will show when we

formalize IC-MPC, an external mediator, which we call an observer, who can detect

cheating regardless of the number of corruptions, is the key property for ensuring that

following the protocol is the dominant strategy and that it is incentive-compatible.

This observer is a formalization of the blockchain in the game-theoretic sense, which

can detect and subsequently reward/penalize parties.

As mentioned earlier, the verification work is done eventually in a post-processing

44

phase, since in practice the parties are allowed to interact off-chain through asyn-

chronous communication without waiting to synchronize with the blockchain. This

is significantly faster than protocols that rely on expensive cryptographic primitives

such as zero-knowledge proofs (e.g, [6]), or protocols that could run indefinitely in

the presence of malicious nodes (e.g, [12]), since malicious nodes are never detected

and cannot be removed.

The full details of our protocol are given in the on-chain Contract 2 and the local

Protocol 3, so we only provide an intuitive description here of its workings. We have

already described how a computation request initiated by a service is routed to a new

computation quorum who holds shares of all inputs. The analysis here focuses on the

part that follows, namely – the MPC computation itself, which starts by the parties

initializing Protocol 3 with the function, their shares, and the requesting service.

The computation then proceeds in rounds. The parties execute the computation

locally, which they can do until a multiplication (or output) gate is reached. If it is

a multiplication gate, then they randomize their shares as in [13] and send it to the

blockchain. When sufficient parties have provided their masked shares, the parties

call sync again to proceed with the computation. This process repeats until an output

gate is reached. In which case, the parties use the service’s public encryption key to

encrypt the share of the randomness masking the output, and broadcast it alongside

the masked shares. This ends a normal computation and is done asynchronously from

the blockchain. If for some reason the computation failed (i.e., there were too many

corrupted shares in some round), then the parties simply abort. The blockchain will

figure out after the fact who cheated and who was honest.

Similarly, from the blockchain’s perspective, each round has a time limit, after

which endround is called, where the blockchain runs a quick verification to see if the

computation can proceed or not (adding cheaters to a corrupted parties list along

the way). Depending on the secret-sharing threshold, a quick verification could be

45

Contract 2: ComputeContract(Q, 𝑓 , 𝑠)

Init.

∙ set state := NORMAL, 𝑐𝑜𝑟𝑟𝑢𝑝𝑡, 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡 := {}, the time lock
parameters and payment constants Δ𝑇𝑟𝑜𝑢𝑛𝑑,Δ𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒, $𝑎𝑚𝑜𝑢𝑛𝑡, $𝑑𝑒𝑝𝑜𝑠𝑖𝑡,
and set cround := 1, 𝑇𝑟𝑜𝑢𝑛𝑑 := 𝑇 +Δ𝑇𝑟𝑜𝑢𝑛𝑑.

Sync. Upon receiving (sync, round, 𝑣𝑖, 𝑒𝑖) from 𝑝𝑖 ∈ 𝑄

∙ if 𝑇 < 𝑇𝑟𝑜𝑢𝑛𝑑, set 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑟𝑜𝑢𝑛𝑑[𝑝𝑖] := 𝑣𝑖 (if it does not exist).

∙ store 𝑒𝑖 if 𝑒𝑖 ̸=⊥ and 𝑝𝑖 has not shared output yet.

EndRound. Called on input (endround) from the contract.

∙ add all missing inputs to the set corrupt.

∙ reconstruct 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑟𝑜𝑢𝑛𝑑. If succeeded:

– add any parties who aborted or (clearly) sent bad shares to corrupt.

– if cround = last round → call (finish, true)

∙ else (computation ended early) → call (finish, false).

∙ cround := cround + 1; 𝑇𝑟𝑜𝑢𝑛𝑑 := 𝑇 +Δ𝑇𝑟𝑜𝑢𝑛𝑑.

Finish. Called on input (finish, result) from the contract.

∙ if result = true

– select 𝑝𝑡𝑒𝑠𝑡 ∈ 𝑄\corrupt at random

– result ← call (verify, 𝑝𝑡𝑒𝑠𝑡)

– if result = true // i.e., still checks out

* Set state := DISPUTE, 𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒 = 𝑇 +Δ𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒 and return.

– else // all seemingly honest parties cheated

* remove from corrupt all existing parties except aborters
* add to corrupt all previously considered honest players
* call (pay)

∙ else // computation failed

– for every party ̸∈ corrupt, call (verify, 𝑝𝑖)

– call (pay)

Verify. Called on input (verify, 𝑝𝑖) from the contract.

∙ execute 𝑓 using the computation transcript and commitments to 𝑝𝑖’s
shares of the inputs.

∙ let 𝑠𝑖𝑚𝑟 be the result of simulating round 𝑟 on behalf of 𝑝𝑖.

∙ if 𝑠𝑖𝑚𝑟 ̸= 𝑔𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑟[𝑝𝑖] → corrupt.add(𝑝𝑖); return false.

∙ return true.

Dispute. Upon receiving (dispute, {𝑝𝑖}𝑖∈𝐵⊆𝑄, 𝑠.𝑒𝑠𝑘) from 𝑠.

∙ check that 𝑇 < 𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒 and 𝑠.𝑒𝑠𝑘 matches 𝑠.𝑒𝑝𝑘.

∙ for every accused 𝑝𝑖 ̸∈ 𝑐𝑜𝑟𝑟𝑢𝑝𝑡:

– 𝑟𝑖 := 𝐷𝐸𝐶(𝑒𝑖, 𝑠.𝑒𝑠𝑘)

– if 𝑔𝑟𝑖 ̸= 𝐶𝑂𝑀𝑀(𝑟𝑖)→ corrupt.add(𝑝𝑖) // 𝑟𝑖, 𝐶𝑂𝑀𝑀(𝑟𝑖) are the
mask and commitment 𝑖 used for the output gate

∙ if in any of these tests we find that 𝑠 falsely accused → set
𝑙𝑒𝑑𝑔𝑒𝑟[𝑠] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑠]− $𝑑𝑒𝑝𝑜𝑠𝑖𝑡.

46

Pay. Called on input (pay) from the contract.

∙ if |𝑄| − |𝑐𝑜𝑟𝑟𝑢𝑝𝑡| > 𝑚 // 𝑚 is the SS threshold.

– 𝑙𝑒𝑑𝑔𝑒𝑟[𝑠] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑠]− |𝑄| × $𝑎𝑚𝑜𝑢𝑛𝑡;

– 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖] + $𝑎𝑚𝑜𝑢𝑛𝑡 for every honest 𝑝𝑖 paid from 𝑠

– 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑗] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑗]− $𝑑𝑒𝑝𝑜𝑠𝑖𝑡 for every corrupt 𝑝𝑗.

∙ else // computation failed

– 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑗] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑗]− $𝑑𝑒𝑝𝑜𝑠𝑖𝑡 for every corrupt 𝑝𝑗

– 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖] := 𝑙𝑒𝑑𝑔𝑒𝑟[𝑝𝑖] + $𝑎𝑚𝑜𝑢𝑛𝑡 for every honest 𝑝𝑖 paid from the
corrupted parties

∙ Set state := COMPLETE

Timer.

∙ if state := NORMAL and 𝑇 > 𝑇𝑟𝑜𝑢𝑛𝑑 → call (endround).

∙ if state := DISPUTE and 𝑇 > 𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒 → call (pay).

attained based on the threshold value of the SSS. For 𝑡 < 𝑛
3
, simple error correction

is sufficient, and for 𝑡 < 𝑛
2
, a more clever scheme with larger shares can be used

[62] [63]. For the general 𝑡 < 𝑛 (which is of interest in this work), only certain

faults like aborting can be identified between rounds, and the actual validation is

checked after the computation has completed. This occurs in the last round, or if the

computation failed prematurely. The contract moves to a post-computation procedure

of verifying the computation and classifying all nodes as either honest or corrupt (see

finish activation). In reality, the parties themselves operate asynchronously from the

blockchain, so after every MPC round they should perform some quick verification

(that is cost-less and non-interactive). This can be done with error-correction as

above.

The final verification works by simulating an execution of a single party from start

to end, using commitments to the inputs and the transcript. This, in combination

with reconstructing the masked polynomials the parties share in each round, would

reveal all the corrupted parties. The only private information left at the end of a

47

Protocol 3: ComputeProtocol

ComputeProtocol(𝑓, 𝑥𝑖, 𝑠) for a party 𝑝𝑖 ∈ 𝑄:

∙ Init. Maintain a state for the computation, i.e., Let
𝑟𝑜𝑢𝑛𝑑 := 1, 𝑓𝑝𝑡𝑟 := 𝑓, 𝑦𝑐𝑢𝑟𝑟 := 𝑥𝑖.

∙ Sync. On input (sync)

– if 𝑟𝑜𝑢𝑛𝑑 > 1→ query the contract’s transcript and update the
interim 𝑦𝑐𝑢𝑟𝑟 values.

– execute 𝑓𝑝𝑡𝑟(𝑦𝑐𝑢𝑟𝑟) locally until interaction is required (𝑓𝑝𝑡𝑟 points to
current op.)

– let 𝑣𝑐𝑢𝑟𝑟 be the masked shares for this gate.

– set 𝑒𝑐𝑢𝑟𝑟 := 𝐸𝑁𝐶(𝑟𝑖, 𝑠.𝑒𝑝𝑘) if this is the output gate, or 𝑒𝑐𝑢𝑟𝑟 =⊥
otherwise.

– send (sync, round, 𝑣𝑐𝑢𝑟𝑟, 𝑒𝑐𝑢𝑟𝑟) to the contract

– 𝑟𝑜𝑢𝑛𝑑 := 𝑟𝑜𝑢𝑛𝑑+ 1

∙ Discard. On input (discard)

– assert state := COMPLETE on the blockchain

– erase 𝑥𝑖 and interim 𝑦𝑐𝑢𝑟𝑟.

ComputeProtocol for the service 𝑠:

∙ Compute. Send input (compute, 𝑓 , ⃗𝑥𝑟𝑒𝑓 = {𝑥𝑟𝑒𝑓,𝑗}𝑚𝑗=0) to the
InterfaceContract.

∙ Result. On input (result)

– for each 𝑝𝑖

* query 𝑣𝑖, 𝑒𝑖 from the contract;
* 𝑟𝑖 := 𝐷𝐸𝐶(𝑒𝑖, 𝑠.𝑒𝑠𝑘)

– reconstruct 𝑣, 𝑟; 𝑦 := 𝑣 − 𝑟 is the output

– (Optional) if state := DISPUTE and 𝑇 < 𝑇𝑑𝑖𝑠𝑝𝑢𝑡𝑒:

* let accused := list of parties who did not encrypt correct shares.
* send (dispute, accused, 𝑠.𝑒𝑠𝑘) to the contract.

48

seemingly successful execution are the encrypted shares of the masks of the output.

It may be the case that parties did not encrypt the correct share. For this reason, the

contract allows the service to dispute before the blockchain marks this computation

as successful. After the dispute period has passed, the blockchain settles the score

with all parties (see pay activation). If the computation succeeded, honest parties

are paid using the payment the service provided. Corrupted parties are not paid and

penalized (their funds are burned). If the computation fails, the service does not have

to pay and the penalties are used to pay the honest parties.

Note that for all parties, the outcome is binary: honest behavior is paid the same

amount, while bad behavior is penalized. For the service, an output requires payment,

but a failed computation does not. This is crucial, since otherwise some parties may

employ malicious strategies to maximize their profits. For example, if an honest

party was able to both collect the payment and a penalty, then it may attempt to

attack its peer directly so that the blockchain would believe it cheated, thus paying

the supposedly honest node twice. In addition, the reason why corrupt nodes are

penalized, instead of just not receiving payment, is to have an alternative source of

income for the honest nodes in case the computation fails1.

Finally, at the end of the computation, all honest parties call their local dis-

card activation and delete their shares of the inputs as well as other interim values.

Since before a computation starts, the inputs are re-shared to the selected computing

quorum using a new one time sharing, there is no point, even for the adversary, to

continue holding them.

4.6 Security Analysis

Intuitively, the framework preserves (computational) privacy of the inputs regardless

of the function executed on them. The only allowed leakage are the outputs, but even

these are limited to the querying service that the owner(s) approved. We therefore

assume that services will not submit malicious code. Handling these are beyond the

scope of this work (and more generally – the topic of secure computation), but a
1It is also a bigger deterrent, as parties have real money at stake.

49

trivial improvement is to allow owners to specify more complex permissions, such as

including hashes of approved functions, or to examine the amount of leakage using a

privacy budget and if needed, add noise to the output using differential privacy [51].

Similarly, it is assumed that owners store valid data. Note that this does not mean

we expect the owner to follow the sharing protocol, as this is easily discernible from

the commitment scheme.

All other assumptions about the adversary stem from using the blockchain for

consensus and broadcast. We assume a full-information model with a static (for

short periods), rushing adversary. Namely, the adversary can see all messages and

decide on its message in a round after seeing all the messages sent by the good players

in that round. The adversary can also permute the ordering of the messages in each

round. Parties interact using the blockchain’s broadcast channel, and rely on it for

consensus. Their communication normally occurs asynchronously in order to speed-

up execution, but the upper bound is defined synchronously by the block time. To

simulate private channels, we use PKI and assume the public encryption keys for each

party are stored on-chain. Given the rationality assumptions of Section 6, we also

assume that all messages are transmitted instantly through the off-chain broadcast

(except for some negligible network propagation time), but are delayed by one round

before they appear on the blockchain.

Guarantees. Given these assumptions, we can state the security and privacy

properties the system provides, and under what conditions:

1. Privacy and Correctness. Owners are guaranteed w.h.p the long-term pri-

vacy of their data (see Section 12 for an analysis of data leakage over time).

This is due to the security of secret sharing (with MPSS), MPC protocols and

the assumption that on-chain contracts, such as randomly selecting quorums,

are executed correctly. Similarly, services are guaranteed to obtain the correct

outputs.

2. Publicly Verifiable and Identifiable. Since all commitments to inputs and

transcripts of computations are public on the blockchain, any external party

50

can verify a computation and identify all cheaters without learning anything

else.

3. Financial Fairness2. (1) Services are guaranteed (correct) output, or their

payment is returned. (2) Every honest party is rewarded3, and each malicious

party is penalized.

4. Guaranteed Output. If sufficient rational parties exist to complete the pro-

tocol, then output is guaranteed 4. This was proven in Theorem 1b.

5. (Nearly) Asynchronous MPC. Rationality assumption of IC-MPC (see Sec-

tion 6) also ensures that the execution is nearly asynchronous, since rational

parties will not delay the protocol. The only delay that is cost-less for the ad-

versary is to wait until just before the end of the current round before sending

the output. The reason is that a party cannot participate in more than one

computation per block, so it gains nothing by sending the output early in a

round. So the delay is upper-bounded by a single round (compared to an 𝑂(𝑑)

delay in fully synchronous MPC, where 𝑑 is the depth of the circuit). However,

since in practice the block-time is non-deterministic, even this delay becomes

unlikely. Also note that by design there is no input-deprivation as data are

shared in the pre-processing phase by owners.

Other security considerations and traces. Currently, the following traces of

meta data and system-usage leak: the total amount of secrets stored; which owner

(pseudonym) owns what data, though a different pseudonym could be used for each

secret; what permissions an owner sets; pseudonyms of the computing parties; the

functions to be evaluated; each computation request sent to the system; and which

quorums store the secret (pseudonyms only). We note that our system could use its

2This is in contrast to previous work (e.g., [39]), where only traditional MPC protocols revealing
the result to all parties were considered.

3Either by the service or by a malicious party. Either way, honest work is rewarded by the same
amount.

4Contrast this with the standard infeasibility results of a dishonest majority. In this case, being
malicious is not free, so even rational malicious parties would follow the protocol

51

own MPC capabilities to hide many of these traces, as well as other means such as

[52] [7].

5 Online MPSS

Earlier, we intentionally omitted the implementation details of the re-sharing pro-

tocols. As mentioned before, for both security and integrity of the data stored in

the system, secrets should not live forever in a single quorum, as an adversary could

slowly corrupt these parties. The same logic applies to selecting the computation quo-

rums, where a new quorum is selected for each computation. In this cases, we need a

mechanism to re-share a secret securely from one quorum to the next. The basis for

this re-sharing protocol is found in MPSS [22], and the presented protocol improves

upon it. Intuitively, MPSS takes a secret 𝑥 that lives in shares of a polynomial 𝑈

in one quorum, and transfers it to another quorum, while atomically updating the

polynomial to 𝑈 ′. The end result is that the original quorum 𝑄 only knows 𝑈 and

the new quorum 𝑄′ only learns 𝑈 ′. The old quorum then securely erases 𝑈 , which

succeeds assuming there are sufficiently many honest parties at the time of re-sharing.

For a full discussion of this protocol, we refer the reader to the cited paper, as only

the necessary details to explain our improvements are provided. To create 𝑈 ′ from 𝑈 ,

parties in the old quorum collaborate to generate a distinct polynomial 𝑈 + 𝑉 +𝑊𝑘

for each 𝑝𝑘 ∈ 𝑄′. Other than being random, 𝑉 has the property that 𝑉 (0) = 0 and

for each 𝑊𝑘 we have 𝑊𝑘(𝑘) = 0. This provides the following relation:

∀𝑘 ∈ 𝑄′ : 𝑈(𝑘) + 𝑉 (𝑘) +𝑊𝑘(𝑘) = 𝑈(𝑘) + 𝑉 (𝑘) = 𝑈 ′(𝑘), (7)

meaning that each party in the new quorum has a valid share of the secret, and that

this share has been refreshed (due to 𝑉), invalidating the shares of the parties of the

old quorum. The underlying protocol is quite expensive for real-time computations

(recall that we do a re-sharing to a new computation quorum before each request),

as it requires both a BA execution and several rounds to complete. We improve both

of these significantly, by splitting the procedure into an online and an offline phase.

52

Without loss of generality, we show the process of a single re-sharing from 𝑄 to 𝑄′.

Offline phase.

1. 𝑄 collectively generates (in batches) sets of {𝑉 +𝑊𝑘}𝑘∈𝑄′ .

∙ Note that 𝑄′ is not known at this point and this is just a placeholder. We

address it below.

2. The parties commit on-chain to these polynomials, where it is publicly verifiable

that 𝑉 (0) = 0 and ∀𝑘 𝑊𝑘(𝑘) = 0 hold.

3. Each 𝑝𝑖 ∈ 𝑄 locally stores its shares – {𝑉 (𝑖)+𝑊𝑘(𝑖)}𝑘∈𝑄′ and commits to them

on-chain.

Online phase. Starts with the blockchain requiring 𝑄 to re-share some 𝑈 with

𝑄′.

1. Each 𝑝𝑖 ∈ 𝑄 loads a pre-processed set and sets: ∀𝑘 𝑈 ′
𝑘(𝑖) = 𝑈(𝑖)+𝑉 (𝑖)+𝑊𝑘(𝑖).

2. ∀𝑝𝑖 ∈ 𝑄, 𝑝𝑘 ∈ 𝑄′, 𝑝𝑖 broadcasts 𝐸𝑁𝐶(𝑈 ′
𝑘(𝑖), 𝑝𝑘.𝑒𝑝𝑘).

3. Each 𝑝𝑘 ∈ 𝑄′ collects 𝑚+1 shares and reconstructs the polynomial to get 𝑈 ′(𝑘).

4. It then verifies its share using the on-chain commitments and disputes if some-

thing is wrong. A contract then checks this claim and penalizes the corrupted

parties in 𝑄 (unless 𝑝𝑘 lied, in which case it is penalized).

Notice that the online phase takes a single round. If enough parties are honest,

there will be no reason to dispute. If they are not, they are discovered and penalized.

An important thing to notice is that MPSS is not secure if parties in 𝑄 and 𝑄′

share the same identifiers. The authors in [22] used the public key of each party

as their unique id. However, notice that this completely undermines our decoupled

protocol, since in the offline phase, 𝑄′ is not known – i.e., the parties 𝑘’s identifying

the parties are not known. We address it by reserving the first 1, ..., |𝑄′| indices for

the computation quorum.

53

6 Incentive-compatible MPC

The general-purpose MPC protocol defined earlier differs from previous work by

adding a blockchain to the mix. The blockchain off-loads expensive consensus related

parts of the protocol, publicly identifies corrupted parties, and handles incentives ac-

cordingly. So far, we have only explained how the protocol works, while providing

some intuition into why it performs better than MPC in the standard cryptographic

model, deferring dealing with rational agents to this section. Now, these assumptions

and related results are formalized into the incentive compatible multi-party compu-

tation (or IC-MPC) model. We provide some initial results that are surprisingly

strong (i.e., following the MPC protocol honestly is a strictly dominant strategy),

showing that this model could extend beyond MPC to other variants of distributed

and verifiable computing. We leave exploring this further for future work.

In a nutshell, IC-MPC extends MPC to the case of rational parties and incentives.

It is inspired by how Nakomoto consensus works in Bitcoin [1] and is able to obtain

a form of incentive-compatible BA (IC-BA) by incentivizing the miners to only agree

on valid transactions. Note that IC-BA has never been formalized, but given the

sheer amount of research around blockchain technology, there is an assumption that

it works reasonably well. The IC-MPC model is in fact a generalization of this

scheme. Currently, only cryptographic frameworks [67] [43] have been developed

around blockchain and cryptocurrencies, so this work is the first to formalize an

economic model as it relates to the security of a distributed system.

The main importance of IC-MPC is that it shows how rationality leads to bet-

ter performance than MPC in the standard cryptographic model, if incentives exist.

This is in contrast to previous work on rational MPC (e.g., [20], [21]), which yielded

negative results on efficiency, namely – their protocols with rational parties were

more restrictive and less efficient compared to the standard classification of parties

as purely honest or malicious.

54

6.1 Definitions

Informally, IC-MPC requires three properties to work: (1) public identifiability of (ac-

tively) corrupt parties. (2) incentives distributed according to behavior. (3) Enough

parties care about their rewards more than breaking the protocol. The first two prop-

erties are handled by the blockchain in practice, which we define formally below as an

observer. The third property is an assumption on the utilities and that parties are ra-

tional. Notice that the definitions are general and not limited to MPC based on LSSS

or implementing an observer using a blockchain (although we do assume a threshold

adversary structure and leave general structures for future work). Formally, we define

IC-MPC (with an observer) and RAND-IC-MPC (with a p-observer), a weaker notion

that holds only on average, as follows:

Definition 1 (IC-MPC). A multi-party computation protocol with 𝑛 parties, 𝑟 of

which are rational, is incentive compatible (or IC-MPC), if the dominant strategy for

all rational players is to follow the protocol.

Definition 2 (RAND-IC-MPC). If the dominant strategy for rational players is to

follow the protocol in the expected case only, then we say the protocol is RAND-IC-

MPC.

Definition 3 (observer). An observer is a special mediator, that in each round (except

the last) receives an input 𝐼 𝑡𝑖 , computes in 𝑂(1) time 𝑂𝑡
𝑖 := 𝐼 𝑡𝑖 if a party never deviated

or 𝑂𝑡
𝑖 := 0 otherwise. In the last round 𝑇 , 𝑂𝑇

𝑖 = 1 for honest parties and 0 otherwise.

Definition 4 (p-observer). A p-observer is an observer who does not perfectly de-

tect corruptions. Specifically, it correctly identifies honesty with probability 𝑃𝑟[𝑂𝑇
𝑖 =

1|𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙] = 𝑝1 and similarly corruptions with probability 𝑃𝑟[𝑂𝑇
𝑖 = 0|𝑖 𝑑𝑒𝑣𝑖𝑎𝑡𝑒𝑠] =

𝑝2

The assumption on an observer running in 𝑂(1) is used to model the fact that

any meaningful cheater-detection is done in the post-processing phase, independent

of the running time of the actual (online) computation.

55

6.2 Mechanism and Utilities

Equipped with these definitions, we ought to show that IC-MPC is a sensible concept.

In other words, we need to construct a mechanism (Γ, 𝜎⃗) for IC-MPC that satisfies the

strong definition of having a 𝜎𝑖 := follow the protocol as a strictly dominant strategy

(for all 𝑖). A mechanism boils down to developing a recommended protocol (𝜎⃗) that

achieves some good outcome. The game Γ is defined by all possible ways parties

execute the protocol – they can either follow it or arbitrarily deviate. Note that we

have already defined the protocol in Section 4.5. Protocol 3 is the recommended 𝜎𝑖

for each party, whereas Contract 2 defines how the game is mediated by the observer.

For completeness, we re-state the essence of these protocols as an extensive-form

game. In this game, every party 𝑖 sends some input to the observer in every round 𝑡

and the observer checks which players cheated. Except in the last round, the observer

shares with all players the inputs of the parties who did not cheat, as they need it

to continue the computation. The honest parties use this information to generate

the inputs for the next round. In the final round (𝑡 = 𝑇), the observer runs a final

verification, and normalizes all outputs to be either 0 (malicious) or 1 (honest). The

utilities of the players are defined solely by this boolean output vector, which marks

whether a player should be rewarded or not. We assume that (rational) players prefer

to be rewarded. Formally, these assumptions about the utilities are defined as follows:

∙ U1. If 𝑂𝑇 (𝑟) = 𝑂𝑇 (𝑟′) then 𝑢𝑖(𝑟) = 𝑢𝑖(𝑟
′).

∙ U2. If 𝑂𝑇
𝑖 (𝑟) = 1 and 𝑂𝑇

𝑖 (𝑟
′) = 0 then 𝑢𝑖(𝑟) > 𝑢𝑖(𝑟

′).

Note that these utilities are equivalent to [20] [21], but both our model and results

differ greatly as mentioned earlier in this section. We can now prove two helpful

lemmas.

Lemma 1. Given a single game run 𝑟 mediated by an observer and assuming U1,

U2, the default strategy profile 𝜎⃗ is the dominant strategy.

56

Proof. Assume that this is not the case, i.e., wlog for some party 𝑖 there are two game

runs 𝑟, 𝑟′, where 𝑖 used the default strategy in 𝑟, but deviated and used a different

strategy 𝜎′
𝑖 in 𝑟′, and this deviation was at least as profitable, namely – 𝑢𝑖(𝑟

′) > 𝑢𝑖(𝑟).

Since an observer perfectly identifies when a party deviates, we have that 𝑂𝑇
𝑖 (𝑟) = 1

and 𝑂𝑇
𝑖 (𝑟

′) = 0. This contradicts U2, and since U1 states that there are no other

influences on 𝑖’s utility, this is a contradiction.

For the non-deterministic case, we have a slightly different result:

Lemma 2. Given a game run 𝑟 mediated by a p-observer and assuming U1, U2,

the default strategy profile 𝜎⃗ is the dominant strategy in expectation, if in addition

𝑝1 > 𝑝2 holds, where 𝑝1 and 𝑝2 are the probabilities of successfully classifying an

honest or malicious party respectively.

Proof. Obviously, the statement in the deterministic case does not hold, since a p-

observer can mis-classify. However, here it is sufficient to show that U2 holds in

expectation (𝐸𝑢𝑖(𝑟) > 𝐸𝑢𝑖(𝑟
′)).

To show this, first observe that 𝑝1 = 𝑃𝑟[𝑂𝑇
𝑖 (𝑟) = 1| 𝑖 𝑓𝑜𝑙𝑙𝑜𝑤𝑠 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙] and

𝑝2 = 𝑃𝑟[𝑂𝑇
𝑖 (𝑟) = 0| 𝑖 𝑑𝑒𝑣𝑖𝑎𝑡𝑒𝑠] are two random variables sampled from a Bernoulli

distribution. Now assume as before that 𝑟, 𝑟′ are games played using the default and

a non-default strategies respectively. So the expected utility in 𝑟 is 𝐸𝑢𝑖(𝑟) = 𝑝1, and

similarly, the expected utility in 𝑟′ is 𝐸𝑢𝑖(𝑟
′) = 𝑝2. Since we assumed 𝑝1 > 𝑝2, we

have 𝐸𝑢𝑖(𝑟) > 𝐸𝑢𝑖(𝑟
′) as required.

6.3 Results

We are finally ready to prove the main results behind IC-MPC. These are simply the

beneficial implications of having rational parties follow the default (honest) protocol.

Theorem 1. Assume IC-MPC based on (𝑛, 𝑡) secret-sharing, with 𝑛 total parties, up

to 𝑡 of which are (actively) corrupted, 𝑟 rational, and ℎ are both honest and rational.

Then,

57

1. Efficiency. Assuming an observer for validation and incentivization, if the un-

derlying MPC protocol terminates successfully, it will run (nearly) as efficiently

as a semi-honest execution.

2. Correctness & Guaranteed output. If 𝑟 > 𝑡, the protocol will always termi-

nate successfully.

3. Privacy. If ℎ ≥ 𝑛− 𝑡, privacy is guaranteed.

Before we provide a sketch of a proof, we emphasize how these results improve

upon MPC in the standard cryptographic model. Theorems (1a) and (1b) essentially

mean that if enough parties are rational, namely – they care about earning (or at least

not losing) money, all protocols will be optimally efficient with guaranteed correct

output. So our model is able to capture the intuition of why cryptocurrencies are

successful in achieving consensus at scale and replicate that in secure computation.

In contrast, notice that theorem (1c) is not an improvement over the standard model.

Since passive corruptions by definition are undetectable, we cannot penalize them.

However, since we can assume overall less active corruptions (these are penalized), we

can increase the secret sharing threshold to obtain overall better privacy guarantees.

Theoretically, if all parties are rational, we could use (𝑛, 𝑛 − 1) secret sharing as no

party will attempt to break protocol. In this case, it will be sufficient for a single

party to be completely honest in order to preserve privacy. In practice, we still want

to account for parties with unexpected utilities, as well as random byzantine faults,

so we will use a slightly lower threshold.

Proof (Sketch). Theorem (1c) simply re-iterates the already known results, which our

model cannot improve. The remaining results focus on active faults in the presence

of rational parties. Theorem (1b) is trivially true from the assumptions on IC-MPC

and the constraint on 𝑟. Since IC-MPC requires that following the protocol is the

dominant strategy, which lemmas 1 and 2 satisfy, then at least 𝑟 of the parties will

execute the protocol correctly. Because 𝑟 > 𝑡, there are sufficient parties to complete

the protocol, regardless of what the other parties do. Theorem (1a) is also easy to

58

prove with the additional assumption of an observer. Recall that an observer mediates

the protocol in 𝑂(1) time per-round and verifies the execution. In other words, it does

not affect the running time of the protocol, while still taking on the responsibility of

a (potentially) expensive validation. The rational parties are therefore only required

to execute an efficient semi-honest protocol (potentially with minor error-corrections

and checks).

6.4 Asynchronous Communication and Repeated Games

As in cryptography, modeling an asynchronous game is not trivial, but as it turns

out, the model of asynchronous secure computation [64] can be adapted to our model.

This (cryptographic) model assumes up to 𝑡 faults, and together with an assumption

of eventual delivery and input deprivation, i.e., parties only wait for the first 𝑛 − 𝑡

messages – whether they come from honest or malicious parties, the asynchronous

computation can proceed in rounds similarly to the synchronous version.

In purely cryptographic models, active corruptions generally limit the threshold 𝑡

more than passive corruptions. In other words, it is easier to protect against a passive

adversary. Since the results of Theorem 1 intuitively specify that passive corruptions

are harder in this model (after the correction below), it makes more sense to look

separately at a rational adversary and an irrational one. For both adversaries, it

is our goal to keep 𝑡, the secret-sharing threshold (or, privacy threshold), high as

stated above (denote this as 𝑡𝑝). Only for the irrational adversary, should we protect

against active corruptions (this threshold is marked 𝑡𝑟). To work in an asynchronous

communication model, the protocol instructs honest nodes to wait in each round for

𝑛 − 𝑡𝑟 messages. Note that we expect 𝑡𝑟 < 𝑡𝑝 (less active corruptions), and this gap

should increase as the number of rational parties the adversary controls grows. If all

(corrupted) parties are rational then 𝑡𝑟 = 0 and IC-MPC converges to the semi-honest

model.

Theorem 1 is proven in a synchronous game-theoretical framework. Without mod-

ification, this implies that there is no penalty for the adversary if it waits to send the

59

corrupted parties messages until the very last minute (of the current round). In the

context of the blockchain, the adversary can delay the evaluation of each layer of the

circuit for minutes at a time. To overcome this, we can specify that the observer can

get inputs in batches. Namely, an observer can get in each round (in the game) an

input corresponding to several (MPC) rounds.

However, this does not incentivize adversarial parties to voluntarily process MPC

rounds faster than the global clock of the game (and the observer). To enforce this,

we need to look at the IC-MPC game as being played repeatedly. If we add an

additional constraint that each party cannot play the game again before completing

a previous execution, then rational parties (including corrupted ones) would attempt

to complete the game run in as few rounds as possible, by sending the largest possible

batch in each round. This constraint is easily enforced by the blockchain (in practice),

or the observer, who will only select inactive parties for the quorum executing each

instance of the game. This ensures that all rational parties attempt to complete the

secure function evaluation in less than one round, which is also the maximum delay

any rational (corrupted) party would impose. This leads to the following corollary.

Corollary 1. In asynchronous IC-MPC, given that 𝑛−𝑡𝑟 > 𝑡𝑝 the maximum delay the

adversary can impose is one round compared to a semi-honest asynchronous execution,

while a synchronous MPC execution (even for the semi-honest case) has an Ω(𝑑)

lower-bound, where 𝑑 is the depth of the circuit.

7 Background: MPC over the Integers and Reals

This section marks the beginning of the second part of this thesis. We move away from

the generic framework proposed earlier and consider the more interesting (but specific)

case of secure computation over the integers and reals (in fixed-point representation).

As will be discussed later, these are currently the main bottlenecks when trying to

construct efficient secure protocols, for which support of integers/reals is required.

This section focuses on introducing notation and previously known results. In

addition, the data representation of secret-shared values that encompass integers and

60

fixed-point numbers is explained in detail. These will be used as the basis for the

optimized protocols that follow. The next two sections (Section 8 and 9) present

improved solutions for fundamental protocols over the integers, while Section 10.4

focuses on improving performance over fixed-point numbers, through the example of

optimizing division and normalization. Note that secure comparison is described in its

own section, as it is arguably the most important building block after multiplication.

Also, the ideas presented in that chapter are used later on as well.

7.1 Data Representation

As all secure protocols operate on elements of a finite field, it is required to find a

suitable mapping of field elements to integers and reals.

Integers

Representing integers can be done directly. For a finite field of characteristic 𝑝,

we represent 1, ..., 𝑝−1
2

directly as their corresponding field elements. For the negative

integers, we represent −1,−2, ... as the sequence 𝑝−1, 𝑝−2, ..., 𝑝+1
2

. The zero element

is the same in the integers and over the field. Addition, subtraction and multiplication

occurs over the integers in the same manner as it occurs over the field elements.

For other protocols such as comparison, we need to have a bit-wise representation

of an integer. For a 𝑘-bit integer, this is done by keeping 𝑘 shares – one for each bit.

Each bit sharing holds an underlying secret in {0, 1}. Technically, any field larger

than the number of parties is sufficient and a common choice is to use the extended

field F28 , as XOR can be done locally. For our applications we prefer representing the

bits in the same field as the integers, as it requires less rounds of communication for

converting back and forth between fields.

Fixed-point representation

Approximating real numbers is commonly achieved in one of two ways – floating point

representation and fixed point. While the latter is less common in modern computing

61

architectures, after evaluating both options in the secure computation context [28],

[33], it was clear that the better performing option is a fixed point representation.

In Section 10.5, after presenting optimized building blocks, we revisit the notion of

converting between representations to achieve the best of both.

Secure computation over fixed point numbers was first described in [28]. The data

representation follows the idea that a fixed point number is an integer in disguise.

It is simply an integer 𝑥̂ accompanied by a scaling factor 𝑓 , such that 𝑥 = 𝑥̂2−𝑓 .

Therefore, to secret share a real number 𝑥, we first set 𝑓𝑙𝑑(𝑥, 𝑓) = 𝑡𝑟𝑢𝑛𝑐(𝑥2𝑓) and

share the result, which is an integer represented as a single field element. The inverse

occurs when reconstructing, in order to obtain the result. With this defined, we

can operate on real numbers by operating over field elements directly. The only

remaining difference is that we need to ensure that the resolution 𝑓 (which is public)

is an invariant that is kept at the end of each secure protocol. We can use TruncPR

(see below) to achieve that. We will use 𝑘 = 𝑒+ 𝑓 to describe the overall bit-length,

where 𝑒 is the range and 𝑓 is the resolution. This representation allows us to represent

numbers in the range [−2𝑒−1 + 2−𝑓 , 2𝑒−1 − 2−𝑓], in 2−𝑓 intervals.

Notation

For clarity of the secure protocols presented in this and the next sections, we use the

following notation:

∙ 𝑥 represents a public integer/fixed-point number.

∙ [𝑥] or [𝑥]𝑝 represents the set of shares collectively held by the parties. An

operation on [𝑥] implies that each party performs that protocol on its own

share. For example, [𝑐] ← [𝑎][𝑏] implies that all parties run the multiplication

protocol to obtain shares of the result 𝑐. In general, the field Z𝑝 will remain

implicit, unless the protocol requires working in multiple fields, in which case

the explicit notation [𝑥]𝑝 is used.

∙ [𝑥]𝐵 := ([𝑥𝑘−1], ..., [𝑥0]) represents a bit-wise sharing. The short-hand notation

[𝑥]𝐵 will be frequently used to describe the entire set, while [𝑥𝑖] refers to a single

62

bit in the set.

∙ [𝑥]𝑖 := ([𝑥𝑚−1], ..., [𝑥0]) represents a single block of bits. In some cases, a 𝑘-bit

integer is split to several 𝑚-bit blocks. The outer subscript marks the block

index, while the inner subscript marks the bit index within that block. For

example, the 𝑗-th bit in the 𝑖-th block is written as [𝑥𝑗]𝑖 (or 𝑥𝑗𝑖 if 𝑥 is public).

∙ [𝑥(𝑖)] (or 𝑥(𝑖) if public) – a superscript is used to distinguish different variables

that have some shared contextual meaning. For example, if we need to generate

several random values, then a superscript will be used to index them.

7.2 Existing and Elementary Building Blocks

Beyond addition, multiplication and open (or reveal), there are several well known

elementary operations that we use. Below is a list of protocols that we use inter-

nally. For completeness, we also include protocols which are already very efficient

and therefore were not our focus.

Simple Functions

The following are a list of elementary MPC protocols and a list of utility functions.

∙ Addition. [𝑐]← [𝑎] + [𝑏].

∙ Multiplication. [𝑐]← [𝑎][𝑏] (1 rnd, 1 inv).

∙ Open. 𝑎← 𝑂𝑝𝑒𝑛([𝑎]) (1 rnd, 1 inv).

∙ Multiply and Open. [𝑐]←𝑀𝑢𝑙𝑃𝑢𝑏([𝑎], [𝑏]) (1 rnd, 1 inv).

∙ Bits. 𝑎𝐵 ← 𝐵𝑖𝑡𝑠(𝑎, 𝑘). Returns the first 𝑘-bits of a public value 𝑎.

∙ Blocks. (𝑎⌈ 𝑘
𝑚
⌉−1, ..., 𝑎0)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑎,𝑚). Returns ⌈ 𝑘

𝑚
⌉ blocks of 𝑚 bits each of

the decomposed public 𝑎.

∙ Next Prime. Getting the next prime after an integer 𝑛 is done via 𝑝 ←

𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(𝑛).

63

∙ Field Mapping. As shown above, 𝑎̂ ← 𝑓𝑙𝑑(𝑎, 𝑓) maps an integer/real to a

field element with resolution 𝑓 .

Pre-processed Randomness Protocols

Generating random field elements and integers can be achieved in multiple ways. For

this work we make use of the protocols in [25], in addition to pseudo-random secret

sharing (PRSS) and pseudo-random integer sharing (PRIS) [38] [58].

∙ RandF(). Returns a random field element.

∙ RandB(). Returns a random bit using the protocol from [25]

∙ RandN(𝑘). Returns a random integer in the range [0, 2𝑘).

∙ RandInv(). Based on [73], we can generate a random invertible element and

its inverse. This is later used to create RandExpInv, which is used internally in

the pre-processing of Protocol 30.

Composing these protocols, we obtain other helpful functionalities –

∙ RandNB(𝑘,𝑚). Returns a random integer in the range [0, 2𝑘) and a sharing

of the first 𝑚 bits. This is trivially achieved by generating 𝑘 random bits and

setting [𝑟]←
∑︀𝑘−1

𝑖=0 2
𝑖[𝑟𝑖].

∙ RandDF(𝑝, 𝑞). This protocol returns the same random field element in two

different fields. It works by creating a random field element in Z𝑝, then invoking

the share conversion protocol below to create a sharing in Z𝑞.

Unbounded Fan-in Multiplication and Prefix Multiplication

Using the method of Bar-Ilan and Beaver [73] with the improvement by [30], one

can compute in one round and linear communication the multiplication of 𝑘 shared

non-zero secrets. Moreover, we can compute the prefix product of these 𝑘 inputs.

Formally, given [𝑎1], ..., [𝑎𝑘] ∈ Z𝑝, the prefix product is defined as:

64

[𝑝𝑗] =

𝑗∏︁
𝑖=1

[𝑎𝑖],∀𝑗 ∈ [1..𝑘] (8)

The main idea behind this protocol is to generate random, invertible shared field

elements and their inverses [𝑟𝑖], [𝑟
−1
𝑖]. Then, set [𝑠𝑖] = [𝑟−1

𝑖−1][𝑟𝑖]. Note that up to

this point there are no dependencies on the data so these random elements can be

efficiently pre-processed.

In the online phase, we multiply and reveal each 𝑚𝑖 := [𝑠𝑖][𝑎𝑖], taking 1 round and

𝑘 invocations. To obtain the prefixes, we locally compute:

[𝑝𝑗] = [𝑟−1
𝑗](

𝑗∏︁
𝑖=1

𝑚𝑖),∀𝑗 ∈ [1..𝑘], (9)

which evaluates to the formula above.

Share conversion

Based on [37], Protocol 4 illustrates how to convert polynomial shares from one finite

field to another. The protocol is statistically secure and takes a single round and a

single invocation.
Algorithm 4: ConvertZp2Zq([𝑥]𝑝, 𝑞)

([𝑟]𝑝, [𝑟]𝑞)← 𝑅𝑎𝑛𝑑𝐷𝐹 (𝑝, 𝑞);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥]𝑝 + [𝑟]𝑝) ; // 1 rnd, m inv

𝑐′ ← 𝑐− 2𝑘;

[𝑥]𝑞 = 𝑐′ − [𝑟]𝑞;

return ([𝑥]𝑞)

Mod2

Mod2 (based on [29]) shown in Protocol 5 is used to extract the LSB of a secret shared

integer. The protocol is statistically secure and costs 1 round and 1 invocation (a

single opening). This protocol is optimally efficient, which is only possible since it is

statistically private.

65

Algorithm 5: Mod2([𝑥], 𝑘)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1, 𝑘);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟]);

[𝑥0]← 𝑐+ [𝑟0]− 2𝑐0[𝑟0];

return [𝑥0]

TruncPR

TruncPR is a statistically accurate protocol for truncating a secret integer where the

last truncated bit is probabilistically rounded up or down. This protocol, shown in

[29], introduces a small potential error, while avoiding an expensive secure compar-

ison. Our secure comparison protocol based on 8 presents similar online efficiency,

but for applications that do not require a deterministic result, using this variant is

still preferable.

Algorithm 6: TruncPR([𝑥], 𝑘,𝑚)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1,𝑚);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟]);

𝑐← 𝑐 𝑚𝑜𝑑 2𝑚;

[𝑟′]←
∑︀𝑚−1

𝑖=0 2𝑖[𝑟𝑖]𝐵;

[𝑥′]← ([𝑥]− 𝑐+ [𝑟′])(2−𝑚 𝑚𝑜𝑑 𝑝);

return [𝑥′]

Note that this protocol truncates 𝑚 bits like the accurate protocol, namely –

returns [𝑥′] = ⌊ [𝑥]
2𝑚
⌋ + 𝑢 (𝑢 is the rounding bit). The rounding bit in this case is

determined statistically due to the relation 𝑃𝑟[𝑢 = 1] = 𝑃𝑟(𝑟′ + 𝑎′ ≥ 2𝑚).

FPMul

Fixed-point multiplication [28] is an extension for the regular integer multiplication

protocol. It uses the fixed-point share representation and then truncates the added

𝑓 bits to scale the result back to a fixed-point representation with 𝑓 precision. The

protocol uses TruncPR for efficiency, since the result is inherently an approximation.

66

Algorithm 7: FPmul([𝑎], [𝑏], 𝑘, 𝑓)

[𝑐]← [𝑎][𝑏];

[𝑑]← 𝑇𝑟𝑢𝑛𝑐𝑃𝑅([𝑐], 2𝑘, 𝑓);

return [𝑑]

Sign Modules and 𝐶𝑀𝑃𝑘

Recently, Yu [66] presented the idea of sign modules. Intuitively, a sign module is

defined over a finite field Z𝑝 that maintains that for every (𝑥 𝑚𝑜𝑑 𝑝) ∈ {1, ..., 𝑘} is

a quadratic residue in the field, and equivalently every (𝑥 𝑚𝑜𝑑 𝑝) ∈ {−1, ...,−𝑘} is

a quadratic non-residue. The authors present a randomized algorithm for finding a

prime 𝑝 ∼ 2𝑙 with a Ω(𝑘) sign module. With this idea of a sign module, the authors

construct a protocol for comparison of small integers (up to |𝑘| > log 𝑝), which is

then used to create an improved version of equality tests and elementary boolean

gates and functions. Note that these results can be achieved with the same online

complexity (and at times - better) using our approach of generating look-up tables,

as shown in Section 8. The pre-computed tables have the benefit of not restricting

the finite field, but require more pre-processing. They also have an additional benefit

of being able to handle comparison of small (yet still larger) numbers. Most of our

protocols make use of both of these in a way that leverages the best of both. However,

if sign modules cannot be used (for example, if we are using a specific finite field

or require a composite), then any call to 𝐶𝑀𝑃𝑘 can be assumed to be implemented

using look-up tables. Then, any protocol that is composed using 𝐶𝑀𝑃𝑘, i.e., BitsEQ,

OR/AND, Prefix OR/ Prefix AND and bit-wise comparison, would have the same

online complexity with slightly larger pre-processing.

The main result sign modules gives us is 𝐶𝑀𝑃𝑘 shown in Protocol 8.

67

Algorithm 8: 𝐶𝑀𝑃𝑘([𝑥], [𝑦])

[𝑎]← 𝑅𝑎𝑛𝑑𝐹 (); [𝑏]← 𝑅𝑎𝑛𝑑𝐹 ();

[𝑐]← [𝑎][𝑎];

[𝑑]← [𝑎][𝑏];

[𝑒]← [𝑐][𝑑];

𝑓 ← 𝑂𝑝𝑒𝑛([𝑑][𝑑]) ; // Abort if 𝑓 = 0

[𝑟]← (
√
𝑓)−1[𝑒];

[𝑠]← (
√
𝑓)−1[𝑑];

[𝑧]← [𝑥]− [𝑦];

𝑧′ ← 𝑂𝑝𝑒𝑛((2[𝑧] + 1)[𝑟]) ; // 1 rnd, 1 inv

[𝑢]← 𝐿𝑒𝑔𝑒𝑛𝑑𝑟𝑒𝑆𝑦𝑚𝑏𝑜𝑙(𝑧′)[𝑠];

[𝑣]← ([𝑢] + 1)(2−1 𝑚𝑜𝑑 𝑝);

return [𝑣]

This protocol pre-processes a random [𝑟] and its sign [𝑠], where the sign (in a sign

module) is simply defined as the Legendre symbol. Using this, in the online phase a

single value is revealed. This is secure since the inputs are masked by a multiplicative

mask [𝑟], which does not leak any information as long as the input is non-zero. This is

ensured by using 2[𝑧] + 1 instead of [𝑧] directly. The next step is to compute the sign

of [𝑧] by multiplying the sign of 𝑧′ (i.e., its Legendre symbol) by the pre-computed

sign of 𝑟. The final step simply maps the result to {0, 1}. The cost is therefore a

single round with a single invocation (one opening).

Equality Test

Note that 𝐶𝑀𝑃𝑘 preserves the sign of at least all integers up to | log(𝑝)|. With this in

mind, we can efficiently solve equality and some other symmetric boolean functions

by counting the numbers of bits that are equal to one in a field element. By definition

these are guaranteed not to exceed log(𝑝).

For equality, this translates to Protocol 9 (for the bitwise case) and to Protocol

10 for the integer case. The latter is as efficient (online) as the protocol in [27], but

more efficient offline as it requires constant work in that phase as well. However, it

68

adds a constraint on the value of 𝑝. In addition, the bitwise case is not easily reduced

from [27], and proves to be more widely applicable in sub-protocols.

Algorithm 9: BitsEQ(𝑐, [𝑟]𝐵, 𝑘)

[𝑑]←
∑︀𝑘−1

𝑖=0 𝑐𝑖 + [𝑟𝑖]− 2𝑐𝑖[𝑟𝑖];

[𝑏]← 𝐶𝑀𝑃𝑘(0, [𝑑]) ; // 1 rnd, 1 inv

return [𝑏]

Algorithm 10: EQ([𝑥], [𝑦], 𝑘)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1, 𝑘);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥]− [𝑦] + [𝑟]) ; // 1 rnd, 1 inv

[𝑏]← 𝐵𝑖𝑡𝑠𝐸𝑄(𝑐, [𝑟]𝐵, 𝑘) ; // 1 rnd, 1 inv

return [𝑏]

OR, AND

OR and AND gates are similar to bit-wise equality, but instead of counting the number

of ones and comparing them to zero, we do a comparison against one (for OR) or 𝑘

(for AND).

Algorithm 11: OR([𝑥]𝐵, 𝑘)

[𝑏]← 𝐶𝑀𝑃𝑘(
∑︀𝑘−1

𝑖=0 [𝑥𝑖], 1) ; // 1 rnd, 1 inv

return [𝑏]

Algorithm 12: AND([𝑥]𝐵, 𝑘)

[𝑏]← 𝐶𝑀𝑃𝑘(
∑︀𝑘−1

𝑖=0 [𝑥𝑖], 𝑘) ; // 1 rnd, 1 inv

return [𝑏]

Prefix OR, Prefix AND

To do prefix operations, we can invoke OR and AND in parallel for each bit. This

improves upon the best known results to date used in [29], as it requires only a single

round.

69

8 Efficient Secure Comparison

While addition and multiplication are sufficient for completeness theorems [6], many

of the most basic protocols cannot be constructed simply by direct arithmetic of secret

values in a finite field. These require working with a bit-representation of the values,

which ultimately boils down to executing one or more secure comparison protocol

of shared bits. Therefore, constructing a more efficient secure comparison protocol

would have widespread implications for a large portion of other secure protocols that

use it as a sub-protocol. Essentially all operations that work over the integers or

reals, but cannot be likened to field operations, rely on comparisons.

Compared to previous research, the concern of this work is practical efficiency

rather than asymptotic. In this section we present a series of efficient secure com-

parison protocols, each is specialized for a specific range of 𝑘 (the bit-size of the

inputs). Our main observation is that most applications of interest are focused on

the 32-bit/64-bit case, and therefore we start by optimizing this scenario and obtain

an optimally efficient protocol that only has 1 round and 1 multiplication (online) for

bit-wise comparison. Using the ideas developed for this the case of ’small’ (i.e., up

to 64-bit) integers, we develop solutions for larger inputs that are up to thousands of

bits. These solutions are bundled together in a hybrid bit-wise comparison protocol

(Protocol 13), that selects the best approach depending on the size of 𝑘. Also, while

it is not likely to see applications that require larger inputs than that (as the inputs

are exponential in the bit-length), we also provide an asymptotically efficient solution

with the same asymptotic complexity as the current state-of-the-art [27], but with

improved constants.

For well over a decade, a significant body of work has been dedicated to im-

proving secure comparison. Until recently, all secure comparison protocols required

bit-decomposition or bit-wise protocols. The first such solution was proposed in [25]

and later improved by [26], but were highly in-efficient in practice. In [26], the au-

thors were able to reduce the comparison problem to that of bit-wise comparison of

a public and secret value. This was later used to create more efficient solutions, and

70

most protocols today utilize this reduction (including ours). Therefore, our evalua-

tion through-out this section focuses on the bit-wise comparison of a public and secret

value.

Although these solutions required constant rounds in theory, in practice the ac-

tual constants were large and the communication (linear in 𝑘 with high constants)

was prohibitive. As a result, some alternatives (e.g., [54], [28]) considered log-depth

circuits with less communication and rounds in practice. One of the most compet-

itive (practical) solutions to date was developed by [30] and later improved in [29],

while settling for statistical security. This solution requires only 2 rounds and 𝑘 + 1

communication. While the constants are nearly optimal, the linear communication is

still prohibitive, and a recent survey of these different techniques [55] has shown that

in practice, the best protocol depends on the use-case. For the asymptotic case, the

only constant-round solution with sub-linear communication complexity to date was

presented by Toft. et al [27], but for practical applications it is likely less efficient.

As we show in this section, all of these results can be significantly improved. When

considering actual values of 𝑘 that are used in reality, we show that much better

solutions exist that allow for both low round complexity and low communication,

presuming some additional pre-processing is done and statistical security is sufficient.

The results are summarized in Tables 1 and 1. Protocol 13 shows the hybrid protocol,

which simply points to the appropriate underlying algorithm optimized for the given

inputs. The parameter 𝑚 will be explained below, but in practice is globally set

to 𝑚 = 8, which would call BitGTS if 𝑘 ≤ 64, BitGTM for 𝑘 ≤ 512 and BitGTL

otherwise.

Source Rounds Communication Security
[25], [26] 6 9k Perfect

[29] 2 k+1 Statistical
[27] 14 20

√
𝑘 Statistical

This work 1 1 Statistical

Table 1: Online complexity of secure bitwise comparison protocols (up to 64-bit
integers and for 𝑚 = 8)

71

Source 𝑘 ≤ 512 𝑘 ≤ 4096 Asymptotic SecurityRounds Comm Rounds Comm Rounds Comm
[25], [26] 6 rounds, 9k invocations Perfect

[29] 2 rounds, k+1 invocations Statistical
[27] 14 rounds, 20

√
𝑘 invocations Statistical

This work 2 9 3 73 4 to 8 𝑂(1) to 2
√
𝑘 + 67 Statistical

5
√
𝑘 + 18

Table 2: Online complexity of secure bitwise comparison protocols (larger values and
for 𝑚 = 8)

Algorithm 13: HybridBitGT(𝑐, [𝑟]𝐵, 𝑘,𝑚)

if 𝑘 ≤ 𝑚2 then

{𝑟𝑖}𝑚𝑖=1 ← load look-up tables for [𝑟]𝐵 ;

[𝑏]← 𝐵𝑖𝑡𝐺𝑇𝑆(𝑐, {𝑟𝑖}𝑚𝑖=1,𝑚) ; // See Protocol 16

if 𝑚2 < 𝑘 ≤ 𝑚3 then

{𝑟𝑖𝑗}
⌈ 𝑘
𝑚2 ⌉,𝑚

𝑖𝑗=(1,1) ← load look-up tables for [𝑟]𝐵 ;

[𝑏]← 𝐵𝑖𝑡𝐺𝑇𝑀(𝑐, {𝑟𝑖𝑗}
⌈ 𝑘
𝑚2 ⌉,𝑚

𝑖𝑗=(1,1),𝑚, ⌈ 𝑘
𝑚2 ⌉) ; // See Protocol 17

if 𝑘 > 𝑚3 then

[𝑏]← 𝐵𝑖𝑡𝐺𝑇𝐿(𝑐, [𝑟]𝐵, 𝑘,𝑚) ; // See Protocol 18

return [𝑏]

In this section, as well as the next two sections that deal with specific secure

protocols over the integers/reals, each protocol will include a correctness, security

and complexity analysis. All protocols exhibit either perfect or statistical security.

We will focus on the semi-honest case for clarity and ease of comparison to previous

protocols. Adjusting for the active (more accurately – rational) case can be done using

the general framework presented earlier in this thesis, where owners first commit to

their inputs on the blockchain and parties provide their computation transcript as

proof of correctness, and are penalized or paid based on their behavior.

72

8.1 Comparison of Small Inputs (𝑘 ≤ 64)

The most common case in modern computing systems is the use of 32/64-bit rep-

resentations. With the exception of cryptographic and a small number of arbitrary

precision applications, both hardware and software have been optimized to utilize

exactly these cases. Therefore, a good first step is to construct an optimized protocol

for this case specifically, where the bit-length 𝑘 ≤ 64. Note that this protocol does

not have to be asymptotically optimal, and in fact – it would have a 𝑑 = 𝑂(𝑙𝑜𝑔𝑚𝑘)

round complexity in some parameter 𝑚 described below if it is applied recursively.

However, as it will not be used directly for larger input sizes, we will only consider

the case where 𝑑 = 1 in this subsection, or 𝑑 = 2 in the next. Our requirement is

therefore that this protocol is optimal for integers with bounded bit-length that in

practice cover most applications of interest.

Recall that computing a comparison of two shared integers could be reduced to a

bit-wise comparison of a public value (𝑐) and a pre-computed shared [𝑟]𝐵. With this

in mind, it is possible to pre-process a look-up table mapping from each 𝑐 directly

to the secret solution [𝑐 < 𝑟]𝐵. While secret indexing is generally expensive, public

indexing and the pre-processing of [𝑐 < 𝑟]𝐵 is free in the online phase. For the offline

phase, we pre-process the lookup tables based on Protocol 14. This naturally leads

to an unfavorable asymptotic complexity of 𝑂(2𝑘), so instead we pre-compute small

look-up tables by constraining the exponent 𝑚 to satisfy – 2𝑚 ∼ 𝑘. This relation

should hold except for some small constant factor.

In practice, for 𝑘 ≤ 64 we have that 𝑚 = 8 satisfies this constraint, as we obtain

28 = 4 · 64. This is also the parameter used to achieve optimal results of 1 round and

1 multiplication, but the protocols presented are parametrized by 𝑚 for generality.

73

Algorithm 14: GenTable([𝑟], [𝑟𝑚], ..., [𝑟1],𝑚)

𝑟 ← 𝐸𝑚𝑝𝑡𝑦𝐷𝑖𝑐𝑡();

for c:=1,...,2𝑚 do

[𝑏′𝑐]← 𝐵𝑖𝑡𝐺𝑇 ′(𝑐, ([𝑟𝑚], ..., [𝑟1])) ; // 1 rnd, m+1 inv

[𝑑𝑐]← 𝐵𝑖𝑡𝑠𝐸𝑄(𝑐, ([𝑟𝑚], ..., [𝑟1])) ; // 1 rnd, 1 inv

[𝑏𝑐]← [𝑏′𝑐]− (1− [𝑏′𝑐])(1− [𝑑𝑐]) ; // 1 rnd, 1 inv

𝑟.𝑠𝑒𝑡(𝑐, [𝑏𝑐]);

return 𝑟

Algorithm 15: GenAllTables(𝑘,𝑚)

([𝑟], [𝑟𝑘], ..., [𝑟1])← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘, 𝑘);

for i:=1,...,⌈ 𝑘
𝑚
⌉ do

𝑟𝑖 ← 𝐺𝑒𝑛𝑇𝑎𝑏𝑙𝑒(
∑︀𝑚+(𝑖−1)𝑚

𝑗=1+(𝑖−1)𝑚[𝑟𝑗], [𝑟𝑚+(𝑖−1)𝑚], ..., [𝑟1+(𝑖−1)𝑚],𝑚);

return 𝑟⌈ 𝑘
𝑚
⌉, ..., 𝑟1

To complete the offline phase, Protocol 15 accepts the bit-lengths 𝑘,𝑚 as an input

and generates the shared randomness and the derived look-up tables for each 𝑘
𝑚

block.

Generating the tables amounts to splitting a given [𝑟]𝐵 into 𝑚-bit blocks, and then

enumerating for each block all 2𝑚 possibilities for 𝑐, and using 𝐶𝑀𝑃𝑘 or a similar

bit-wise comparison protocol (e.g., the one in [29]), with one difference. Instead of

returning for each 𝑐 shares of the bit [𝑐 > 𝑟], the result is in {−1, 0, 1}, where 1 is

set when 𝑐 > 𝑟, 0 denotes equality and -1 marks that 𝑐 < 𝑟. Furthermore, note that

the original [𝑟]𝐵 can be discarded and only a local pointer 𝑟𝑖’s (one for each block)

needs to be retained in its place. There are additional optimizations to this naive

brute-force approach that would reduce the amount of pre-computation and storage.

Most notably, instead of enumerating every single possibility for 𝑐, we could sample

each 𝑙 − 𝑡ℎ value. For the case of 𝑚 = 8, we could set 𝑙 ∈ {4, 8}, which would

reduce the amount of pre-processing (and storage) required for each table from 256

values to (64, 32) respectively. For reasons that will soon become clear, the resulting

secret entry in the table should be multiplied by the sampling rate 𝑙. Namely, each

entry is in {−𝑙, 0, 𝑙} (for simplicity we would maintain that 𝑙 = 1 from here-on).

Other optimizations such as generating the look-up values in an order that minimizes

74

repetitions could further boost performance.

Algorithm 16: BitGTS(𝑐, {𝑟𝑖}𝑚𝑖=1,𝑚)

(𝑐𝑚, ..., 𝑐1)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐,𝑚);

for i:=1,...,𝑚 do

[𝑑𝑖]← 𝑟𝑖.𝑔𝑒𝑡(𝑐𝑖);

[𝑑]←
∑︀𝑚

𝑖=1 2
𝑖−1[𝑑𝑖];

[𝑏]← 1− 𝐶𝑀𝑃𝑘([𝑑]) ; // 1 rnd, 1 inv

return [𝑏]

We can now turn our attention to the online BitGTS protocol. Shown in Protocol

16, the algorithm accepts as an input a public 𝑐 and the set of look-up tables {𝑟𝑖}
⌈ 𝑘
𝑚
⌉

𝑖=1 .

An additional constraint introduced for this protocol is that 𝑘 ≤ 𝑚2. Taking the

worst-case into consideration, we simplify the expression ⌈ 𝑘
𝑚
⌉ = 𝑚. An analysis of

the protocol is brought below.

Correctness. The protocol begins with each party locally splitting 𝑐 into (at

most) 𝑚 blocks of size 𝑚-bits (due to the constraint above). Then, using each 𝑐𝑖 as

an index to the associated 𝑟𝑖, we obtain [𝑑𝑖] ∈ {−1, 0, 1} as described above. In the

next step, all of the [𝑑𝑖]’s are locally added together to construct an 𝑚-bit shared

integer, between −2𝑚−1 ≤ 𝑑 ≤ 2𝑚−1. For the more general case of 𝑙 > 1, the result is

an (𝑚+ log2 𝑙)-bit integer instead.

Note that if 𝑑 is negative, then 𝑐 < 𝑟 and vice versa. Also, 𝑑 = 0 when 𝑐 = 𝑟.

Thus, the problem is reduced to checking the sign (i.e., comparison to zero) of a

small number. Since we constrained 𝑘 ∼ 2𝑚, This could be done in a single round

and in one multiplication using 𝐶𝑀𝑃𝑘. Another alternative is to use an additional

pre-processed look-up table, this time with entries in {0, 1}, to do the comparison.

However, as this would also require to reveal one value (which has the same cost), as

well additional pre-processing, calling 𝐶𝑀𝑃𝑘 is preferred. Only in situations where

the sampling rate 𝑙 is chosen to be large enough, we would favor selecting a smaller

prime for the field and use an additional and slightly larger look-up table instead.

Security. Security follows from the fact that the protocol includes only local

operations over secret shares and public values, which by definition does not reveal

75

anything new, and well-defined sub protocols that are secure. The pre-processing

step is also composed by calls to secure sub-protocols and generates results that are

oblivious to the actual data which is not yet known in this stage.

Complexity. For the case of 𝑘 ≤ 64 covered here, which covers most applica-

tions, the complexity of the protocol in the online phase is optimal – 1 round and

1 multiplication. This holds since all interactions have been completely eliminated

using pre-processing and local operations in the online phase. The only interaction is

required for computing a comparison of a small integer which can be done in a single

round and one invocation of the multiplication protocol. For the general case where

we compare two secret shared values in the field, [𝑥]𝑝, [𝑦]𝑝, an additional 1 round and

1 multiplication is required.

8.2 Comparison of Medium Inputs (𝑘 ≤ 512)

For medium-sized integers, Protocol 17 is given. Note that it is functionally equivalent

to the previous protocol, but instead of relying on look-up tables as its base-case

protocol, it calls BitGTS5. In other words, BitGTM splits its inputs into blocks that

BitGTS can handle and calls it recursively exactly once. Then, BitGTS splits its

inputs to blocks the look-up tables can process and returns the result. Blocks are

combined in the same way and tested efficiently using the small comparison protocol

𝐶𝑀𝑃𝑘.

Adding an additional constraint that 1 < 𝛽 ≤ 𝑚, we obtain that this protocol is

efficient for 𝑚2 < 𝑘 ≤ 𝑚3. The case of 𝑘 ≤ 𝑚2 (i.e., 𝛽 ≤ 1) is already covered by

BitGTS directly.

5We use a slightly different version here that returns a value in {−1, 0, 1}

76

Algorithm 17: BitGTM(𝑐, {𝑟𝑖𝑗}𝛽,𝑚𝑖𝑗=(1,1),𝑚, 𝛽)

(𝑐𝛽, ..., 𝑐1)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐,𝑚2);

for i:=1,...,𝛽 (in parallel) do

[𝑑𝑖]← 𝐵𝑖𝑡𝐺𝑇𝑆(𝑐𝑖, {𝑟𝑖𝑗}𝑚𝑗=1) ; // 1 rnd, 𝛽 inv

[𝑑]←
∑︀𝛽

𝑖=1 2
𝑖−1[𝑑𝑖];

[𝑏]← 1− 𝐶𝑀𝑃𝑘([𝑑]) ; // 1 rnd, 1 inv

return [𝑏]

Correctness and security follow from the same arguments of BitGTS and the fact

that this protocol calls BitGTS as a sub-protocol.

Complexity. The offline storage and communication complexity is proportional

to 𝛽 times that of BitGTS (same round complexity). Online complexity involves one

round with 𝛽 multiplications and an additional round with one multiplication for the

last comparison (a total of 2 rounds, 𝛽 +1 multiplications). For our choice of 𝑚 = 8,

this implies 2 rounds and 9 multiplications for comparison of the maximum 512-bit

integers.

8.3 Comparison of Large Inputs (𝑘 ≤ 4096)

Note that BitGTS and BitGTM are instances of a 𝑑 = 𝑂(𝑙𝑜𝑔𝑚𝑘) rounds protocol with

𝑑 ∈ {1, 2}. Both gain considerable efficiency boost as a result of the pre-processing

of look-up tables and the idea that 𝑘 cannot be too large in practice, since inputs are

exponential in the bit-length. While we could use the same idea for larger 𝑘’s, we

note that the amount of pre-processed tables increases linearly in 𝑘 asymptotically.

To observe this, note that ⌈ 𝑘
𝑚
⌉ tables are needed and for 𝑘 >> 𝑚, this implies 𝑂(𝑘)

work.

Although this is reasonable asymptotically, for practical applications when 𝑑 > 2,

but when 𝑑 is still small, the number of pre-computed tables becomes large enough

that an alternative protocol should be considered – one that trades-off having an

additional (constant) number of rounds but does not increase the pre-processing cost

beyond that of a single BitGTM call. This variation (BitGTL) is shown in Protocol

77

18.

Assuming as before 𝑚 = 8, then the question whether BitGTL (more rounds) is

preferable to recursively calling the previous protocols (more pre-processing) seems to

depend on other externalities for very large integers (e.g., 𝑘 = 𝑚4 = 4096→ 𝑑 = 3).

For the framework in this thesis the choice was to transition to the more rounds

solution when 𝑘 > 𝑚3.
Algorithm 18: BitGTL(𝑐, [𝑟]𝐵, 𝑘,𝑚)

(𝑐𝛽, ..., 𝑐1)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐,𝑚3) ; // 𝛽 = ⌈ 𝑘
𝑚3 ⌉

([𝑟]𝛽, ..., [𝑟]1)← 𝐵𝑙𝑜𝑐𝑘𝑠([𝑟]𝐵,𝑚
3);

for i:=1,...,𝛽 (in parallel) do

[𝑑𝑖]← 1−𝐵𝑖𝑡𝑠𝐸𝑄(
∑︀𝑚3

𝑗=1 2
𝑗−1𝑐𝑗𝑖, {[𝑟𝑗]𝑖}𝑚

3

𝑗=1) ; // 1 rnd, 𝛽 inv

[𝑒]𝐵 ← 𝑃𝑟𝑒𝑓𝑖𝑥𝑂𝑅([𝑑𝛽], ..., [𝑑1]) ; // 1 rnd, 𝛽 inv

for i:=1,...,𝛽 − 1 do

[𝑓𝑖]← [𝑒𝑖]− [𝑒𝑖+1];

[𝑓𝛽]← [𝑒𝛽]− 1;

[𝑐]←
∑︀𝛽

𝑖=1[𝑓𝑖]𝑐𝑖;

[𝑟]←
∑︀𝛽

𝑖=1[𝑓𝑖][𝑟𝑖] ; // 1 rnd, 𝛽 inv

[𝑏]← 𝐺𝑇𝑀(
∑︀𝑚3

𝑗=1 2
𝑗−1[𝑐𝑗],

∑︀𝑚3

𝑗=1 2
𝑗−1[𝑟𝑗],𝑚) ; // 3 rnd, 𝑚2 + 2 inv

return [𝑏]

Correctness. BitGTL takes a somewhat different approach from BitGTM/BitGTS.

Both are designed to first reduce the problem of comparing 𝑘-bit integers to that of

𝑘′-bit ones, where 𝑘′ < 𝑘. However, the process that leads to achieving that varies. In

this protocol, the idea is to first split 𝑐 and [𝑟]𝐵 to 𝑘′ ≤ 𝑚3-bit blocks. Then, unlike

the previous protocols, which solve each block independently and then compose the

solutions, we first find the most significant block where 𝑐 and 𝑟 differ (since that is

where the comparison relation is determined). This is achieved by a series of equality

tests of each block in parallel as suggested in [27]. The (negation) of each equality

result is stored in [𝑑𝑖], 𝑖 ∈ {1, ..., 𝛽} where 𝛽 = ⌈ 𝑘
𝑚3 ⌉. In other words, the first 𝑖, such

that [𝑑𝑖] = 1 points to the location of the (only) block we need to compare in practice.

The next step involves a Prefix OR operation (stored in [𝑒]𝐵), then by locally

78

setting each [𝑓𝑖] ← [𝑒𝑖] − [𝑒𝑖+1], we obtain an all zeroes vector except for 1 in the

correct block. Using this, we can obliviously select the correct block for 𝑐 and [𝑟]𝐵

by point-wise multiplying each block and summing the results up in [𝑐] and [𝑟]. The

result is that both of these would include 𝑚3-bit numbers taken from the single

(correct) block. The final step is therefore to call GTM once and obtain the result,

where GTM is the non-bitwise version of BitGTM (implies an additional 1 round and

1 multiplication).

Security. All non-local operations are either multiplications (including one prefix

multiplication) or calls to BitsEQ and GTM protocols which have been proven to be

secure. Since the protocol does not publicly open any element, except through the

usage of these secure sub-protocols, then no new information can be learned.

Complexity. Using 𝛽 = ⌈ 𝑘
𝑚3 ⌉ and 𝑚 as parameters, the runtime complexity is 5

rounds and 𝑚2+2𝛽+2, where 𝛽 is a small constant for any practical application and 𝑚

is small by definition. For the choice of 𝑚 = 8 as before, we can observe that even for

very large integers (e.g., 𝑘 = 4096), BitGTL requires an order of
√
𝑘 communication,

but unlike the sub-linear protocol of [27], the constants are significantly lower.

For the asymptotic case, the communication complexity becomes linear in 𝑘, since

𝑘 >> 𝑚3, which is not an improvement over known results. However, it is unrea-

sonable to assume that such applications for computing over encrypted data exist

in practice, as for a choice of 𝑚 = 8 an asymptotically better algorithm would only

perform better on bit-lengths of at least 105.

8.4 Asymptotic Complexity

As mentioned, for virtually all applications and assuming we set 𝑚 = 8 (or some

similar value), we can solve the secure comparison problem significantly more effi-

ciently than any existing asymptotically optimal solution, with one of the protocols

– BitGTS, BitGTM or BitGTL. These protocols are efficient for bit-lengths of up to

𝑚2, 𝑚3 and ∼ 𝑚4. Given 𝑚 = 8, BitGTL only becomes less efficient in a situation

where 𝑘 >> 4096, which is unlikely. Nevertheless, we illustrate for completeness

how protocol BitGTL could be adjusted to support a constant round solution for

79

the asymptotic case with sub-linear communication complexity. While the changes

are small we differentiate the two by describing the asymptotic protocol as BitGTA

(Protocol 19). Note that the asymptotic protocol is not part of the hybrid protocol,

as for practical applications BitGTL is better equipped to handle any sized integer.

These adjustments make the protocol a high-level equivalent of the constant round

comparison protocol of [27], so the two share the same asymptotic complexity, but

with lower constants due to the efficient constructions presented earlier. We present

a sketch of the required changes below.
Algorithm 19: BitGTA(𝑐, [𝑟]𝐵, 𝑘,𝑚)

(𝑐√𝑘, ..., 𝑐1)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐,
√
𝑘);

([𝑟]√𝑘, ..., [𝑟]1)← 𝐵𝑙𝑜𝑐𝑘𝑠([𝑟]𝐵,
√
𝑘);

for i:=1,...,
√
𝑘 (in parallel) do

[𝑑𝑖]← 1−𝐵𝑖𝑡𝑠𝐸𝑄(
∑︀√

𝑘
𝑗=1 2

𝑗−1𝑐𝑗𝑖, {[𝑟𝑗]𝑖}
√
𝑘

𝑗=1) ; // 1 rnd,
√
𝑘 inv

[𝑒]𝐵 ← 𝑃𝑟𝑒𝑓𝑖𝑥𝑂𝑅([𝑑√𝑘], ..., [𝑑1]) ; // 1 rnd,
√
𝑘 inv

for i:=1,...,
√
𝑘 − 1 do

[𝑓𝑖]← [𝑒𝑖]− [𝑒𝑖+1];

[𝑓√𝑘]← [𝑒√𝑘]− 1;

[𝑐]←
∑︀√

𝑘
𝑖=1[𝑓𝑖]𝑐𝑖;

[𝑟]←
∑︀√

𝑘
𝑖=1[𝑓𝑖][𝑟𝑖] ; // 1 rnd,

√
𝑘 inv

[𝑏]← 𝐻𝑦𝑏𝑟𝑖𝑑𝐺𝑇 (
∑︀√

𝑘
𝑗=1 2

𝑗−1[𝑐𝑗],
∑︀√

𝑘
𝑗=1 2

𝑗−1[𝑟𝑗],𝑚) ; // 2-6 rnd,

𝑂(1)−𝑂(
√
𝑘) inv

return [𝑏]

The main idea is to split 𝑐 and [𝑟]𝐵 into
√
𝑘-bit blocks (see [27] for details) instead

of 𝑚3-bit. This ensures that the number of blocks is sub-linear, as they are dependent

on 𝑘 and not on some exponent of a constant parameter. This leads to reducing the

problem from a comparison of 𝑘-bit integers to that of
√
𝑘-bit ones, which we can

solve with a single call to to the HybridGT protocol. Depending on how large
√
𝑘 is,

HybridGT solves the problem in a constant number of rounds (between 2 - 6) and

at most 𝑂(
√
𝑘) multiplications (but likely 𝑂(1)). In any case, the run-time of the

last HybridGT call would be significantly better. In addition, the other sub-protocols

80

in BitGTA, namely – BitsEQ and Prefix OR – use more efficient building blocks

that further improve efficiency. A more comprehensive comparison of the results was

shown earlier in Table 2.

8.5 Summary of Comparison Protocols

The protocols presented in this section are all versions of bit-wise comparison of a

public value 𝑐 and some bit-wise shared [𝑟] (which is pre-processed). The general

case of comparing two secret-shared values is easily reduced to this problem. The

general technique is presented in Protocol 20, and costs only one additional round

and invocation. Note that BitGT could be replaced by any of the protocols above. In

practice, we use HybridBitGT here in order to do the selection based on the bit-length.
Algorithm 20: GT([𝑥], [𝑦], 𝑘)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1, 𝑘);

[𝑎]← [𝑥]− [𝑦];

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑎] + [𝑟]);

𝑐← 𝑐 𝑚𝑜𝑑 2𝑘;

[𝑢]← 1−𝐵𝑖𝑡𝐺𝑇 (𝑐, [𝑟]𝐵, 𝑘);

[𝑟′]←
∑︀𝑘

𝑖=1 2
𝑖[𝑟𝑖]𝐵;

[𝑎′]← 𝑐− [𝑟′] + 2𝑘[𝑢];

[𝑏]← ([𝑎]− [𝑎′])(2−𝑘 𝑚𝑜𝑑 𝑝);

return [𝑏]

Finally, note that the greater-than building block can be locally transformed to any

inequality relation. For example, to compute lower-than we simply need to compute

1−𝐺𝑇 .

9 Improved Building Blocks

As mentioned earlier, the most important protocol to optimize over the integers is

secure comparison, as many other protocols use it internally. With this understanding

in mind, Section 8 was dedicated for this task specifically. In this section we introduce

81

generic building blocks that are derived from secure comparison and are used in more

complicated arithmetic and math functions over the integers.

As before, each of our protocols will be accompanied by a correctness, security

and complexity analysis, and all protocols are at least statistically-secure.

Table 3 summarizes the complexity of protocols in this section compared to pre-

vious results, which were best (in practice) for 32/64-bit integers

Protocol This work Previous results [29] [30]
Rounds Communication Rounds Communication

Trunc 2 2 3 𝑘 + 2
Mod2m 2 2 3 𝑘 + 2

Mod/Int Division 3 6 6 2𝑘 + 4
BitDec 2 𝑘 + 1 4 4𝑘 + 1

Table 3: Online complexity of secure integer computation protocols (assuming 32/64-
bit integers)

9.1 Trunc and Mod

Shifting a secret shared integer to the left can be done locally by multiplying by 2𝑚,

where 𝑚 is the number of bits to shift. Right shift is equivalent to truncating 𝑚 bits

(i.e., multiplying by 2−𝑚). We have already shown a statistically accurate protocol

in 1 round and 1 invocation. In fact, we have also presented the exact truncation

protocol as well, as it is exactly the same as the secure comparison algorithm (Protocol

20), except that it allows specifying the value 𝑚, whereas secure comparison truncates

all bits except the last. To show this, we specify here two protocols, one is Trunc

(Protocol 22) and the other is Mod2m (Protocol 21). With these two in place, we

can rewrite the secure comparison protocol as shown in Protocol 23. This should

illustrate that all three problems are essentially the same (and all reduce to bit-wise

comparison as discussed earlier). For these reasons, the correctness, security and

complexity analysis are equivalent.

82

Algorithm 21: Mod2m([𝑥], 𝑘,𝑚)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1,𝑚);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟]);

𝑐← 𝑐 𝑚𝑜𝑑 2𝑚;

[𝑢]← 1−𝐵𝑖𝑡𝐺𝑇 (𝑐, [𝑟]𝐵, 𝑘);

[𝑟′]←
∑︀𝑚−1

𝑖=0 2𝑖[𝑟𝑖]𝐵;

[𝑥′]← 𝑐− [𝑟′] + 2𝑚[𝑢];

return [𝑥′]

Algorithm 22: Trunc([𝑥], 𝑘,𝑚)

[𝑥′]←𝑀𝑜𝑑2𝑚([𝑥], 𝑘,𝑚);

[𝑏]← ([𝑥]− [𝑥′])(2−𝑚 𝑚𝑜𝑑 𝑝);

return [𝑏]

Algorithm 23: GT([𝑥], [𝑦], 𝑘)

[𝑎]← [𝑥]− [𝑦];

[𝑏]← 𝑇𝑟𝑢𝑛𝑐([𝑎], 𝑘, 𝑘);

return [𝑏]

General Modulo reduction - V1

For the general case, a slightly different protocol for modulo reduction is presented.

The protocol requires two secure comparison calls (one is bit-wise, the other is over

the integers) and is taken from [29]. However, the main overhead stems from the

comparisons, which are constructed from the more efficient versions presented earlier.

Let 𝑎 be the public modulus. Observe that Mod2m is more efficient for 𝑎 = 2𝑚

because it is easy to generate a sharing of an integer [𝑟], taken from some large

domain, and its shared bits. Then, in the online phase, we use [𝑟] to statistically

mask the input, but only take the first 𝑚 bits in order to do the reduction. This

is equivalent to computing [𝑟 𝑚𝑜𝑑 2𝑚] without cost. For a generic 2𝑚−1 < 𝑎 < 2𝑚,

computing [𝑟 𝑚𝑜𝑑 𝑎] is not cost-less and requires the additional step of determining

[𝑟 𝑚𝑜𝑑 𝑎] = [𝑟 𝑚𝑜𝑑 2𝑚]− 𝑎[𝑣], where [𝑣] = [𝑟 ≥ 𝑎]. We then set [𝑟′] = [𝑟]− 𝑎[𝑣], and

83

continue as Mod2m would with [𝑟′] instead of [𝑟] and 𝑎 instead of 2𝑚. Since [𝑟′] is

only given as an integer, the comparison is also done over the integers. Correctness

and security follows from the same arguments and complexity compared to Mod2m

costs an additional call to an integer comparison protocol.
Algorithm 24: ModV1([𝑥], 𝑘, 𝑎)

𝑚← ⌈log(𝑦)⌉;

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1,𝑚);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟]);

𝑐← 𝑐 𝑚𝑜𝑑 𝑎;

[𝑣]← 𝐵𝑖𝑡𝐺𝑇 ([𝑟]𝐵, 𝑎, 𝑘);

[𝑟′] =
∑︀𝑚−1

𝑖=0 2𝑖[𝑟𝑖]𝐵 − 𝑎[𝑣];

[𝑢]← 1−𝐺𝑇 (𝑐, [𝑟′], 𝑘);

[𝑥′]← 𝑐− [𝑟′] + 𝑎[𝑢];

return [𝑥′]

General Modulo reduction - V2

Given a general modulus 2𝑚−1 < 𝑎 < 2𝑚, notice that the extra step above for deter-

mining [𝑣] = [𝑟 ≥ 𝑎] is trivially zero if the 𝑚-th bit of 𝑟 is also zero. In that case,

we could simply call a variant of Mod2m that works for any 𝑎. Protocol 25 (ModP)

shows this slightly modified version of Mod2m. Note that in the general case, the

probability of ModP being correct is 1
2
< 𝑎

2𝑚
< 1.

Algorithm 25: ModP(𝑐, [𝑟]𝐵, 𝑘, 𝑎)

𝑚← ⌈log(𝑦)⌉;

[𝑢]← 1−𝐵𝑖𝑡𝐺𝑇 (𝑐, [𝑟]𝐵, 𝑘);

[𝑟′]←
∑︀𝑚−1

𝑖=0 2𝑖[𝑟𝑖]𝐵;

[𝑥′]← 𝑐− [𝑟′] + 𝑎[𝑢];

return [𝑥′]

A naive solution is to reveal a masked [𝑥] twice, once with [𝑟(1)] and the second

time with [𝑟(2)], having [𝑟
(2)
𝑚−1] = 1 − [𝑟

(1)
𝑚−1]. In other words, at least one of the

random values is going to lead to a correct result when using ModP. We can then

84

obliviously select the correct outcome by taking the inner product of the two results

with the vector ([𝑟
(1)
𝑚−1], [𝑟

(2)
𝑚−1]). Unfortunately, this solution is insecure and could

potentially leak some information through the 𝑚-th bit of the revealed values, namely

– 𝑐
(1)
𝑚−1 and 𝑐

(2)
𝑚−1. To see why this is true, recall that 𝑐𝑖 = 𝑥𝑖 ⊕ 𝑟𝑖 ⊕ 𝑐𝑎𝑟𝑟𝑦𝑖 = (𝑥𝑖 +

𝑟𝑖 + 𝑐𝑎𝑟𝑟𝑦𝑖) 𝑚𝑜𝑑 2. We then have 𝑐
(1)
𝑚−1 = (𝑥𝑚−1 + 𝑟

(1)
𝑚−1 + 𝑐𝑎𝑟𝑟𝑦

(1)
𝑚−1) 𝑚𝑜𝑑 2 and

𝑐
(2)
𝑚−1 = (𝑥𝑚−1 + 1− 𝑟

(1)
𝑚−1 + 𝑐𝑎𝑟𝑟𝑦

(2)
𝑚−1) 𝑚𝑜𝑑 2. By summing the two together locally,

an adversary can obtain 𝑐
(1)
𝑚−1 + 𝑐

(2)
𝑚−1 = (2𝑥𝑚−1 + 𝑐𝑎𝑟𝑟𝑦

(1)
𝑚−1 + 𝑐𝑎𝑟𝑟𝑦

(2)
𝑚−1 + 1) 𝑚𝑜𝑑 2 =

(𝑐𝑎𝑟𝑟𝑦
(1)
𝑚−1 + 𝑐𝑎𝑟𝑟𝑦

(2)
𝑚−1 + 1) 𝑚𝑜𝑑 2. Unless the carries are equal, some information

may be leaked through these bits.

This can be corrected by first creating two 𝑘-bit random numbers 𝑟(1) and 𝑟(2)

uniformly and independently at random. Then, ’correct’ 𝑟(2) as follows:

∀ 𝑖 ∈ {0, ..., 𝑘} 𝑟(2)𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑟
(1)
𝑖 𝑖 < 𝑚− 1

1− 𝑟
(1)
𝑖 𝑖 = 𝑚− 1

𝑟
(2)
𝑖 𝑖 > 𝑚− 1

(10)

In other words, we set the second generated random integer used to mask the

input to be equal to the first one until the 𝑚-th bit. We then set the 𝑚-th bit of 𝑟(2)

to be the additive inverse of the same bit in 𝑟(1) as before. Then, in order to prevent

leakage in subsequent bits, we ensure that the rest of the bits of the two random

integers are independently generated. Otherwise, the adversary could leak 𝑥𝑚−1 by

XORing (or subtracting) 𝑐
(1)
𝑚 ⊕ 𝑐

(2)
𝑚 . The result would be the XOR of the carries,

which would be 0 if no carry was set in both cases, implying 𝑥𝑚−1 = 0 or 𝑥𝑚−1 = 1

otherwise. By using different bits after the 𝑚-th bit, we ensure that no information

leaks.

This analysis could be seen as using two one-time-pads for each bit. As long as the

bits are the same, it is secure to use the same one-time-pad. After the deterministic

step, the bits could be different, so we use a different pad for each. Protocol 26 shows

the full solution.

85

Algorithm 26: ModV2([𝑥], 𝑘, 𝑎)

𝑚← ⌈log(𝑦)⌉;

([𝑟(1)], [𝑟(1)]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1,𝑚);

([𝑟(2)], [𝑟(2)]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘 + 1,𝑚);

for i:=0,...,𝑚− 2 do

[𝑟
(2)
𝑖]← [𝑟(1)]𝑖;

[𝑟
(2)
𝑚−1]← 1− [𝑟

(1)
𝑚−1];

𝑐(1) ← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟(1)]) ; // 1 rnd, 1 inv

𝑐(2) ← 𝑂𝑝𝑒𝑛(2𝑘 + [𝑥] + [𝑟(2)]) ; // 1 inv

𝑐(1) ← 𝑐(1) 𝑚𝑜𝑑 𝑎; 𝑐(2) ← 𝑐(2) 𝑚𝑜𝑑 𝑎;

[𝑥′(1)]←𝑀𝑜𝑑𝑃 (𝑐(1), [𝑟(1)]𝐵, 𝑘, 𝑎); // See Protocol 13

[𝑥′(2)]←𝑀𝑜𝑑𝑃 (𝑐(2), [𝑟(2)]𝐵, 𝑘, 𝑎); // In parallel

[𝑥′]← (1− [𝑟
(1)
𝑚−1])[𝑥

′(1)] + (1− [𝑟
(2)
𝑚−1])[𝑥

′(2)] ; // 1 rnd, 2 inv

return [𝑥′]

Correctness. In the pre-processing step, two random integers are generated

according to Equation 10. Subsequently, two reveals publicly open 𝑐(1) and 𝑐(2). From

the analysis above, we know that one of these is guaranteed to provide the correct

result when sent to ModP, and that this occurs when [𝑟
(𝑗)
𝑚−1] = 0 (for 𝑗 ∈ {1, 2}).

The last line obliviously selects the correct answer.

Security. Security follows from the security of ModP and the openings with the

pre-determined randomness, which were discussed in depth above.

Complexity. The complexity of this protocol improves upon the previous version,

as it avoids an expensive sequential integer comparison protocol. Instead, the cost

is the same as two Mod2m calls in parallel, with an additional oblivious select that

costs 1 round and 2 invocations. The total complexity depends on the underlying

secure comparison scheme. For up to 64-bit integers, this amounts to 3 rounds and 6

invocations.

86

Integer division with a public divisor

For general-purpose division, the protocols in Section 10 should be used. However, a

more efficient direct approach can be constructed for integer division with a public

divisor. This is defined as [𝑞] = ⌊ [𝑎]
𝑏
⌋ and [𝑠] = [𝑎] 𝑚𝑜𝑑 𝑏, which can be obtained using

the general protocol ModV2 and truncation. The cost is 3 rounds and 6 invocations

for up to 64-bit integers.

9.2 Bit Decomposition

Bit decomposition is an important building block in computation in general. In

secure computation specifically, bit-decomposition was initially introduced in order

to derive the first constant round protocols for secure comparison, as well as several

other elementary operations over the integers [25]. Following the work of [26], the roles

were flipped and secure comparison became the de-facto building block for deriving

protocols over the integers (and later, approximations over the reals). Still, bit-

decomposition is an important protocol for several common instructions, most notably

bit-wise operations (e.g., OR, AND, XOR).

The first bit-decomposition with constant-rounds and 𝑂(𝑘 log 𝑘) communication

was developed in [25], and improved by a constant factor in [26] (both having per-

fect security). While introducing the Postfix Comparison Problem (PFC), Toft in-

troduced a constant-round (non-negligible constant), almost linear communication

solution (𝑂(𝑘 log* 𝑘)) [31], that was later reduced to linear for the statistically-secure

case [30].

The reduction of bit decomposition to PFC has shown how a series (naively,

𝑂(𝑘)) of secure comparisons could bit-decompose an integer. In previously proposed

solutions, each comparison required 𝑂(𝑘) operations, so a naive solution would have

had 𝑂(𝑘2) complexity. Exploiting the prefix nature of PFC, Tord et al. [30] were able

to approximate the solution using a single PrefixMul operation (𝑂(𝑘) cost) along with

𝑂(𝑘) additional multiplications and reveals in parallel.

Below we introduce two protocols with what is believed to be a nearly optimal

87

online complexity, in the sense that the amount of rounds is exactly 2, and the amount

of invocations are exactly 𝑘 + 1. Given that the output has 𝑘 secret elements, it is

likely that achieving sub-linear results are not possible. Regardless, these protocols

improve on the best known results by lowering the hidden constants in the cost of

their protocols.

9.3 Naive BitDec

For 𝑘 ≤ 64, a naive solution presents a tight 2 rounds and 𝑘+1 multiplications which

is better in practice than the previously best solution. The protocol is omitted for

brevity, as it is trivial, and only a short explanation is given: the protocol starts by

revealing a masked value 𝑐 ← 𝑥 + 𝑟. Then, BitGTS is called in parallel to compute

𝑐 𝑚𝑜𝑑 2𝑖 > 𝑟 𝑚𝑜𝑑 2𝑖 for all 𝑘 bits. Then, all that is left is to locally extract the

decomposition from the series of comparisons as is shown in BitDec2 below.

The main shortcoming of this approach is the amount of pre-processing. For

each input, we expand the required pre-processing by a factor of 𝑘. This leads to a

computation of 𝑘 ·𝑚 look-up tables for each bit-decomposition.

9.4 BitDec from small comparisons

As an alternative, we would like to find a solution with similar performance in the

online phase for 𝑘 ≤ 64, but without the associated offline overhead of doing 𝑘

comparisons with look-up tables. We could use the same technique as before for

converting a prefix problem into a comparison of small integers.

This solution is based on the PFC problem, which states that given [𝑥], a secret

to be decomposed, it is sufficient to compute:

[𝑥 𝑚𝑜𝑑 2𝑖]← [𝑐 𝑚𝑜𝑑 2𝑖]− [𝑟 𝑚𝑜𝑑 2𝑖] + 2𝑖([𝑟 𝑚𝑜𝑑 2𝑖 > 𝑐 𝑚𝑜𝑑 2𝑖]𝐵), (11)

where 𝑐 = 𝑥 + 𝑟 for a random 𝑟 that statistically hides 𝑥. From this, it is trivial

to locally compute the bit-decomposition of 𝑥 using –

88

[𝑥𝑖]← ([𝑥 𝑚𝑜𝑑 2𝑖+1]− [𝑥 𝑚𝑜𝑑 2𝑖])2−𝑖. (12)

The full protocol is shown in Protocol 27 below.

Algorithm 27: BitDec2([𝑥], 𝑘,𝑚)

𝛽 ← ⌈ 𝑘
𝑚
⌉;

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘, 𝑘);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘+1 + [𝑥] + [𝑟]) ; // 1 rnd, 1 inv

𝑐← 𝑐 𝑚𝑜𝑑 2𝑘+1;

(𝑐𝛽−1, ..., 𝑐0)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐𝐵,𝑚);

([𝑟]𝛽−1, ..., [𝑟]0)← 𝐵𝑙𝑜𝑐𝑘𝑠([𝑟]𝐵,𝑚);

[𝑑0] = 0;

for i:=1,...,𝛽 do

[𝑑𝑖]← 𝐵𝑖𝑡𝐺𝑇𝑆(𝑐 𝑚𝑜𝑑 2𝑚·𝑖, [𝑟 𝑚𝑜𝑑 2𝑚·𝑖]);

for i:=1,...,𝑘 + 1 (in parallel) do

𝑖𝐵 ← min(⌊ 𝑖
𝑚
⌋, 𝛽 − 1);

𝑐←
∑︀𝑖−𝑖𝐵 ·𝑚

𝑗=0 2𝑗𝑐𝑗,𝑖𝐵 ;

[𝑟]←
∑︀𝑖−𝑖𝐵 ·𝑚

𝑗=0 2𝑗[𝑟𝑗]𝑖𝐵 ;

[𝑒𝑖]← 2(𝑐− [𝑟]) + [𝑑𝑖𝐵];

[𝑢𝑖]← 1− 𝐶𝑀𝑃𝑘([𝑒𝑖]) ; // 1 rnd, 𝑘 inv

[𝑥 𝑚𝑜𝑑 2𝑖]← 𝑐 𝑚𝑜𝑑 2𝑖 − [𝑟 𝑚𝑜𝑑 2𝑖] + 2𝑖[𝑢𝑖];

[𝑥0] = [𝑥 𝑚𝑜𝑑 2];

for i:=1,...,𝑘 − 1 do

[𝑥𝑖]← ([𝑥 𝑚𝑜𝑑 2𝑖]− [𝑥 𝑚𝑜𝑑 2𝑖−1])2−𝑖;

return [𝑥]𝐵

Correctness. The main idea is to reduce the comparison of each [𝑟 𝑚𝑜𝑑 2𝑖 >

𝑐 𝑚𝑜𝑑 2𝑖]𝐵, which is done over 𝑂(𝑘)-bit integers, to that of approximately 𝑚-bit

integers which we can solve efficiently (online and offline) using 𝐶𝑀𝑃𝑘. This only

holds assuming as before that 2𝑚 ∼ 𝑘. After publicly opening 𝑐, the parties split

both 𝑐𝐵 and [𝑟]𝐵 to 𝑚-bit blocks. Note that for simplicity, the bits and blocks are

89

numbered starting from 0. The first interesting part of the protocol is when all the

parties compute the values of [𝑑]. Each [𝑑𝑖] contains the result of 𝑐 𝑚𝑜𝑑 2𝑚·(𝑖−1) ≤

𝑟 𝑚𝑜𝑑 2𝑚·(𝑖−1), namely – the comparison outcomes are sampled in 𝑚 intervals, and

[𝑑𝑖] ∈ {−1, 0, 1} stores for all bits in a block 𝑖, the comparison result up to this block.

The second loop occurs in parallel for each bit separately. 𝑖𝐵 is a pointer to the

current block; 𝑐 and [𝑟] represent 𝑚-bit integers constructed from all bits in this block.

For example, for 𝑖 = 11 and given 𝑚 = 8, 𝑐 is comprised of bits 8, ..., 11 of 𝑐. This is

the same as computing 𝑐← 𝑡𝑟𝑢𝑛𝑐(𝑐 𝑚𝑜𝑑 2𝑖, 𝑖𝐵). The case for [𝑟] is equivalent.

Observe that for every 𝑖, the comparison of 𝑐 𝑚𝑜𝑑 2𝑖 and 𝑟 𝑚𝑜𝑑 2𝑖 is determined

by the boolean circuit:

([𝑟 ̸= 𝑐]𝐵 ∧ [𝑟 ≤ 𝑐]𝐵) ∨ ([𝑟 = 𝑐]𝐵 ∧ [𝑟 𝑚𝑜𝑑 2𝑚·(𝑖𝐵−1) ≤ 𝑐 𝑚𝑜𝑑 2𝑚·(𝑖𝐵−1)]𝐵). (13)

However, this is a boolean of depth 2 with two inequalities and one equality test.

We can reduce it to a single round by shifting 𝑐− [𝑟] by one bit (i.e., multiplying by

two) and adding [𝑑𝑖𝐵] ∈ {−1, 0, 1} to the result. Cached in [𝑒𝑖] for each bit, we then

use the bounded small integers comparison (𝐶𝑀𝑃𝑘) and invert the resulting bit in

order to obtain the needed [𝑢𝑖] ← [𝑟 𝑚𝑜𝑑 2𝑖 > 𝑐 𝑚𝑜𝑑 2𝑖]𝐵. Finally, using Equations

11 and 12, the parties locally compute the bit decomposed [𝑥].

Security. Other than invocation of secure sub-protocols (BitGTS, 𝐶𝑀𝑃𝑘), all

operations are local except for one public reveal. As [𝑟] statistically hides [𝑥], no

information is learned except with negligible probability.

Complexity. The online complexity of this protocol is exactly the same as that

of the naive version – 2 rounds and k+1 invocations. However, there is a factor

𝑚 reduction in the amount of pre-processed tables required. For 32-bit and 64-bit

integers, only 4, 8 (respectively) tables are used. Since we have already established

that it is not likely that a constant-round protocol could be implemented with less

than 𝑂(𝑘) communication (since that is also the size of the output), we conclude that

this protocol has (nearly) optimal complexity in the online phase. Also, this protocol

90

achieves the same online complexity even in the asymptotic case, making it more

efficient than the previously best protocol in [30]. However, in this case the amount

of pre-processed lookup tables are again 𝑂(𝑘).

10 Constant Rounds, Sub-linear Secure Division

Secure division is the most complex of the elementary protocols [28]. Many of the

previously introduced building-blocks are invoked as sub-protocols, most notably Bit

Decomposition and Prefix OR, both of which are believed to have a linear communica-

tion lower bound (for constant rounds protocols). It therefore appears contradictory

to be able to construct a constant-round solution that still has sub-linear communica-

tion complexity, and indeed all current solutions involve a log-rounds and 𝑂(𝑘 log 𝑘)

communication complexity (e.g., [54], [28]).

In this section, we present the first solution for a constant rounds, sub-linear

communication complexity division protocol that works for integers and fixed-point

representations using a LSSS. This solution is only probabilistically correct, but the

probability of failure is negligible (considering 𝑘 is large enough or a parameter 𝑙 is set

accordingly). The solution involves two parts. First, achieving sub-linear complexity

requires improving the algorithm for normalizing a secret integer to the range (0.5, 1].

This operation has notoriously been the largest performance bottle-neck in secure

division and reciprocal operations. We present an asymptotically improved protocol

in section 10.2 and a practically improved one (𝑘 ≤ 64) in 10.3.

Second, multiplicative division requires 𝑂(log2 𝑘) rounds to reach a certain preci-

sion. Since until this work, the initial normalization was overwhelmingly less efficient

than the actual division procedure, there was less need to reduce the number of

rounds. However, given an efficient normalization algorithm, we also provide a con-

stant rounds solution at the cost of two rounds operating in a (significantly) larger

field. This is shown in Section 10.4.

The results of this section are summarized in Table 4 for the 32/64-bit case, and

separately for the asymptotic case. The first settles for linear communication com-

91

plexity but attempts to reduce constants (most notably – the number of rounds),

while the latter achieves sub-linear communication complexity. Note that the proto-

cols for Norm and Division can generalize to other secure computation protocols in

the fixed-point or floating-point representation, as alluded to in Section 10.5.

Source Norm FPDiv/FPReciprocal
Rounds Comm. Rounds Comm.

[29] 2 log 𝑘 + 2 1.5𝑘 log 𝑘 + 2 log 𝑘 + 1.5𝑘 log 𝑘 + 𝑘 +
𝑘 + 2 4𝜃 + 7 4𝜃 + 7

Proposed 4 2𝑘 + 2 11 2𝑘 + 3𝜃 + 7

Proposed (asym.) 𝑂(1) 𝑂(
√
𝑘) 𝑂(1) 𝑂(

√
𝑘 + 𝜃)

Table 4: Online complexity of improved secure fixed-point computation protocols

10.1 Multiplicative (Iterative) Division

Unlike digit recurrence approaches which converge slowly, multiplicative division

schemes have quadratic convergence, enabling a division circuit to take a logarithmic

number of iterations in the required precision (compared to linear in digit recurrence).

The two most common schemes are based on Newton-Raphson method or series ex-

pansion. In particular, the latter is usually based on Goldschmidt’s method, which

we focus on in this work. Both methods are functionally similar, with the exception

that Goldschmidt’s method has two independent multiplications occurring in each

iteration, whereas Newton-Raphson method requires two sequential multiplications,

thus doubling the amount of needed rounds. In addition, as we will later show, it

is possible to collapse the logarithmic circuit into a single (or small constant) round

with higher communication complexity.

Let 𝑎, 𝑏 be the dividend and divisor respectively. Multiplicative division starts

by finding an initial approximation of the reciprocal of the divisor. To ensure fast

convergence, 𝑏 is first normalized to the range 𝑏̂ ∈ (0.5, 1], as shown in sections 10.3

and 10.4. Then, using the normalized result we can find a first order approximation:

𝑦0 ≈ 1

𝑏̂
= 𝑐0−𝑐1𝑏̂. Finding the optimal coefficients [72] and scaling back the estimated

reciprocal yields:

92

𝑦0 = 2.928− 2𝑏, (14)

with error –

𝜖0 = 1− 𝑏𝑦0. (15)

Empirically assigning different values for 𝑏 in Equation 15 (this is easier if we test

values of the normalized 𝑏̂ ∈ (0.5, 1] instead), we can see that the initial approximation

has a bounded error of |𝜖0| ≤ 0.072 providing nearly 4-bits of precision (≈ 3.8).

After the initial approximation, Goldschmidt method operates by multiplying

both 𝑎, 𝑏 by successively better approximations 𝑦𝑖 of the reciprocal, until the denom-

inator converges to 1 and the nominator contains the approximated quotient.

𝑎

𝑏
=

𝑎𝑦0𝑦1...𝑦𝜃−1

𝑏𝑦0𝑦1...𝑦𝜃−1

↔ 𝑎𝑖+1

𝑏𝑖+1

=
𝑎𝑦𝑖
𝑏𝑦𝑖

(16)

At this point, subsequent 𝑦𝑖’s need to be determined (currently, we have only

obtained the initial approximation), with the goal of driving the denominator to 1.

Observe that already after the first iteration, the denominator is equal to 𝑏1 = 𝑏𝑦0 =

1 − 𝜖0 (from Equation 15). Since the absolute value of the initial error 𝜖0 is strictly

lower than 1, then 𝑏1 is close to 1 as well. This is why the initial approximation

is important for fast convergence. In order to obtain quadratic convergence, it is

sufficient to set each 𝑦𝑖 using the following recursive rule:

𝑦𝑖 = 2− 𝑏𝑖 = 2− 𝑏𝑖−1𝑦𝑖−1 = 1 + (1− 𝑏𝑖−1𝑦𝑖−1) = 1 + 𝜖𝑖. (17)

Equation 17 also implies that 𝑏𝑖 = 1 − 𝜖𝑖. Using these relations for 𝑦𝑖 and 𝑏𝑖, we

can show by induction that 𝑏𝑖+1 = 𝑏𝑖𝑦𝑖 = (1− 𝜖2
𝑖
)(1 + 𝜖2

𝑖
) = 1− 𝜖2

𝑖+1 . Therefore, in

each iteration, the approximation’s accuracy is double that of the previous estimate,

as desired. The number of iterations (and the depth of the circuit in the naive

approach) is set to:

93

𝜃 = log⌈𝑘
𝑐
⌉, (18)

where 𝑘 is the desired target precision in bits and 𝑐 is the precision of the initial

approximation.

10.2 Norm

While multiplicative division algorithms have quadratic convergence, they require an

initial normalization step, which scales the divisor to the range (0.5, 1]. Since the

divisor is a secret, doing so securely is not trivial and highly inefficient. In fact,

as mentioned earlier this is the main bottleneck in secure division protocols, taking

significantly more rounds and invocations compared to the actual iterative division

process.

Previous solutions (e.g., [28]) were mainly expensive due to their log-rounds imple-

mentation of Bit Decomposition and Prefix OR operations. We have already shown

how to achieve these in 1-2 rounds and ≈ 𝑘 invocations (without any hidden con-

stants). With these improvements, we can already obtain a very low constant-rounds

solution for normalization. This is the basis of NormS presented below, for practical

applications using common bit-lengths (e.g., up to 64-bits). However, in the asymp-

totic case, this still implies the normalization, and therefore – division, reciprocal,

as well as other protocols such as square root and converting to floating point rep-

resentation, all asymptotically require 𝑂(𝑘) communication. By showing a solution

that is still constant-rounds but requires sub-linear communication complexity, we

immediately improve all of these as well (for the asymptotic case).

We now describe the main developments leading to this protocol. Given a secret

2𝑚−1 ≤ |𝑥| ≤ 2𝑚 (𝑚 ≤ 𝑘), the goal is to find a normalizing [𝑣] ← 2𝑘−𝑚 and use it

to obtain a normalized value [𝑢] ← [𝑥][𝑣] ∈ [0.5, 1), with between 𝑘 − 1 and 𝑘 bits

of precision. In other words, Norm normalizes a secret input such that it is between

0.5 and 1, and returns the normalizing exponent as well. The first step in obtaining

a sub-linear communication protocol is similar to the one used for sub-linear secure

94

comparison [27]. First, the parties publicly open a masked [𝑥] and store it as 𝑐. Both

𝑐 and the pre-processed randomness used as the mask are split to
√
𝑘-bit blocks.

These undergo
√
𝑘 equality tests in parallel, followed by a Prefix OR call that yields

a result marking which blocks of 𝑐 and [𝑟] are equal and which are not.

From this point and on, the sub-linear comparison protocol and the sub-linear

normalization protocol differ significantly. In the secure comparison case, the parties

had enough information at this point to locally compute the first block in which 𝑐

and [𝑟] differ (and for comparison that is all we need). For normalization, things are

more involved, as we are not interested in 𝑐 and [𝑟] directly, but rather the underlying

[𝑥]. Specifically, our goal is to accurately locate and obliviously select the MSB of

[𝑥]. This is trivial to do using calls to BitDec and Prefix OR, but both of these are

believed to have a linear lower bound (for constant rounds protocols).

To solve this, the idea is to identify the last
√
𝑘-bit block where [𝑥] is not all zeros.

Naively, attempting to look at the last bit 𝑐𝑖 that differs from 𝑟𝑖 could prove to be

a false-positive. To see why this is true, first observe that the following relationship

holds for 𝑐:

𝑐 = 𝑥+ 𝑟 = 𝑥⊕ 𝑟 ⊕ 𝑐𝑖𝑛. (19)

The interpretation that follows is that for each bit 𝑖, if 𝑟𝑖 ̸= 𝑐𝑖 it is either because

𝑐𝑖𝑛𝑖 is set or 𝑥𝑖 is set, but we do not know which, and directly computing the carries

is an in-efficient procedure [25]. When 𝑐𝑖 = 𝑟𝑖, then both 𝑥𝑖 = 0 and 𝑐𝑖𝑛𝑖 = 0.

Therefore, if we look at the last differing bit (LDB), we have no way of telling

whether this was due to 𝑥𝑖 being set (true positive) or 𝑐𝑖𝑛𝑖 = 1 (false positive).

Instead, if we look at the LDB 𝑖, and the series of 𝑚 bits preceding it and then ask

a similar question – what is the probability that the LDB has 𝑥𝑖 = 0 and all 𝑚 bits

preceding the LDB have 𝑥𝑗 = 0 as well? Observe that this can only occur if all 𝑟𝑗 = 1.

Otherwise, there exists some 𝑥𝑗 ̸= 0 in contradiction to the requirement. Since each

bit of 𝑟 is selected independently and uniformly at random, we have that –

95

𝑃𝑟[∧𝑗{𝑥𝑗 = 0 | 𝑗 ∈ {𝑖−𝑚, ..., 𝑖− 1} ∧ 𝑖 := 𝐿𝐷𝐵}] =

𝑃𝑟[∧𝑗𝑟𝑗 = 0] =
𝑚∏︁
𝑗=1

𝑃𝑟[𝑟𝑗 = 0] = 2−𝑚

Thus, the probability of this occurring is 2−𝑚, which is negligibly small for large

enough 𝑚. Note that as our protocol selects
√
𝑘 blocks, we need to slightly modify

the above equation. In the case of blocks, we are interested in reducing the problem

of normalizing from a 𝑘-bit number to a
√
𝑘 integer. Using the secure comparison

idea, we already know how to obliviously select the block where the LDB resides. In

the worst-case, the LDB is also the first bit of this block and we do not know if that

is a false positive or not. But using the idea above, we can select the block preceding

it as well and be confident that even if the LDB is indeed a false-positive, then w.h.p

the left-most 𝑥𝑗 = 1 is in the preceding block. Given that this block has
√
𝑘 bits,

we conclude that the probability that we miss the most significant bit where 𝑥 is set

is at most 2−
√
𝑘. If 𝑘 is sufficiently large then the probability of error is negligible.

Otherwise, we could use a parameter 𝑙 to control the amount of blocks we select and

examine, to make the probability arbitrarily small. Specifically, let 𝑙 be the number

of preceding blocks we select, then the probability of error is at most 2−𝑙
√
𝑘.

96

Algorithm 28: Norm([𝑥], 𝑘, 𝑙)

([𝑟], [𝑟]𝐵)← 𝑅𝑎𝑛𝑑𝑁𝐵(𝑘, 𝑘);

𝑐← 𝑂𝑝𝑒𝑛(2𝑘+1 + [𝑥] + [𝑟]) ; // 1 rnd, 1 inv

𝑐← 𝑐 𝑚𝑜𝑑 2𝑘+1;

(𝑐√𝑘−1, ..., 𝑐0)← 𝐵𝑙𝑜𝑐𝑘𝑠(𝑐𝐵,
√
𝑘);

([𝑟]√𝑘−1, ..., [𝑟]0)← 𝐵𝑙𝑜𝑐𝑘𝑠([𝑟]𝐵,
√
𝑘);

for i:=0,...,
√
𝑘 − 1 do

[𝑑𝑖]← 1−𝐵𝑖𝑡𝑠𝐸𝑄(𝑐𝑖, [𝑟]𝑖) ; // 1 rnd,
√
𝑘 inv

[𝑒]𝐵 ← 𝑃𝑟𝑒𝑂𝑅([𝑑]𝐵) ; // 1 rnd,
√
𝑘 inv

for i:=0,...,𝑙 (in parallel) do

[𝑓]𝐵 ← 𝐵𝑖𝑡𝑇𝑟𝑢𝑛𝑐([𝑒]𝐵, 𝑖);

[𝑥 𝑚𝑜𝑑 𝑠𝑖], [𝑠𝑖]← 𝐵𝑖𝑡𝑀𝑜𝑑2𝑠((𝑐√𝑘−1, ..., 𝑐0), ([𝑟]
√
𝑘−1, ..., [𝑟]0), [𝑓]𝐵,

√
𝑘) ;

// 𝑂(1) rnd, 𝑂(
√
𝑘) inv

[𝑥′
𝑖]← ([𝑥]− [𝑥 𝑚𝑜𝑑 𝑠𝑖])[𝑠𝑖]

−1 ; // 𝑙 + 1 rnd, 𝑙 + 1 inv

[𝑔𝑖]← 1− 𝐸𝑄𝑍([𝑥′
𝑖]) ; // 2 rnd, 2 inv

[ℎ′]𝐵 ← 𝑃𝑟𝑒𝑂𝑅([𝑔]𝐵) ; // 1 rnd, 𝑙 + 1 inv

for i:=0,...,𝑙 − 1 do

[ℎ𝑖]← [ℎ′
𝑖]− [ℎ′

𝑖+1];

[ℎ𝑙]← [ℎ′
𝑙];

[𝑥̃]←
∑︀𝑙

𝑖=0[ℎ𝑖][𝑥
′
𝑖] ; // 1 rnd, 𝑙 + 1 inv

[𝑠]←
∑︀𝑙

𝑖=0[ℎ𝑖][𝑠𝑖] ; // 𝑙 + 1 inv

[𝑥̃]𝐵 ← 𝐵𝑖𝑡𝐷𝑒𝑐([𝑥̃],
√
𝑘) ; // 2 rnd,

√
𝑘 + 1 inv

[𝑦′]𝐵 ← 𝑃𝑟𝑒𝑂𝑅([𝑥̃]𝐵) ; // 1 rnd,
√
𝑘 inv

for i:=0,...,
√
𝑘 − 1 do

[𝑦𝑖]← [𝑦′𝑖]− [𝑦′𝑖+1];

[𝑦√𝑘−1]← [𝑦′√
𝑘−1

];

[𝑡]←
∑︀√

𝑘−1
𝑖=0 2𝑖[𝑦𝑖];

[𝑣]← [𝑠][𝑡]−1 ; // 1 rnd, 3 inv

[𝑢]← [𝑥][𝑣] ; // 1 rnd, 1 inv

return ([𝑢], [𝑣])
97

Correctness. Norm describes the procedure explained above and correctness

follows. Note that for simplicity, we assume 𝑘 is square (otherwise, it can be padded

with zeros). We also consider [𝑥] to be unsigned in this protocol and the next. The

sign could be extracted efficiently using the secure comparison protocols produced

earlier, as shown in [28].

Security. Security follows from the fact that only a single value is publicly re-

vealed in the outer protocol. The rest are revealed in sub-protocols which are secure.

The reveal in the beginning is exactly the same as in other protocols and uses a

mask [𝑟] that statistically hides the input [𝑥]. We conclude that Norm is secure and

provides statistical security.

Complexity. All operations have a constant number of rounds and at most

𝑂(
√
𝑘) invocations.

Finally, this protocol proves by construction the following theorem.

Theorem 2. Normalization of a secret input can be computed securely in 𝑂(1) rounds

and 𝑂(
√
𝑘) invocations, with only negligibly small (in

√
𝑘) probability of obtaining an

incorrect result.

10.3 NormS

While we have proved better bounds for both round and communication complexity,

in practice a constant-round with linear communication variation of the log-depth

protocol in [28] would be preferable for most applications. While asymptotically

less efficient, it involves less rounds, which is more important when 𝑘 is small. The

reasoning is similar to that shown in Section 8, where secure comparison in practice

could be significantly optimized when considering practical values of 𝑘.

98

Algorithm 29: NormS([𝑥], 𝑘)

[𝑥]𝐵 ← 𝐵𝑖𝑡𝐷𝑒𝑐2([𝑥], 𝑘) ; // 2 rnd, 𝑘 + 1 inv

[𝑦′]𝐵 ← 𝑃𝑟𝑒𝑂𝑅([𝑥]𝐵) ; // 1 rnd, 𝑘 inv

for i:=0,...,𝑘 − 1 do

[𝑦𝑖]← [𝑦′𝑖]− [𝑦′𝑖+1];

[𝑦𝑘−1]← [𝑦′𝑘−1];

[𝑣]←
∑︀𝑘−1

𝑖=0 2
𝑘−𝑖−1[𝑦𝑖];

[𝑢]← [𝑥][𝑣] ; // 1 rnd, 1 inv

return ([𝑢], [𝑣])

Correctness. Note that NormS is equivalent to Norm, except that it does not

go through the initial process of reducing the location of the most significant bit to

a
√
𝑘-bit block. It also computes [𝑣] = 2𝑘−𝑚 directly, where 𝑚 is the location of the

MSB, whereas the protocol above first computes the location of the block and then

multiplies that by the location inside the block.

Security. In this case, no information is revealed in the outer protocol, which

only invokes sub-protocols (multiplication, BitDec, PreOR) that are known to be

secure. By composition, and the fact that at least one protcol has statistical security,

NormS is also statistically secure.

Complexity. Since unlike the sub-linear protocol, BitDec and PreOR are com-

puted against the entire secret 𝑘-bit value, the asymptotic complexity is linear. How-

ever, the number of rounds is significantly smaller – a total of 4. The exact invocation

count is 2(𝑘 + 1).

10.4 Division (Reciprocal)

All previous secure division protocols (e.g., [54], [28], [33]) used a log-depth circuit

to implement multiplicative division. To achieve a constant-rounds protocol, observe

that Equation 16 could be re-formulated into the following problem of finding the

reciprocal:

99

1

𝑏
= 𝑦0𝑦1...𝑦𝜃−1 = 𝑦0(1 + 𝜖0)(1 + 𝜖20)...(1 + 𝜖2

𝜃−2

0). (20)

Since 𝜖0 can be obtained in a single round from Equation 15, then assuming we

can find a protocol for computing multiple powers of a secret [𝑥] in constant rounds,

then the problem is solved as all that is left is a single round of unbounded fan-in

multiplication of the terms. Such a protocol is presented in Protocol 30 below.

BatchExpFP

The goal of BatchExpFP is to compute several powers of a secret [𝑥] in parallel,

and truncate them to the desired precision of the fixed-point representation. The last

part is needed for our use case of truncating the excess bits resulting in Goldschmidt’s

method, and since our fixed-point representation has a public precision parameter 𝑓 ,

we ensure that all results adhere to this standard. For the same reasons, it is likely

to assume that our field Z𝑝 is too small for computing large enough exponents of 𝑥,

which is the reason a conversion to and from 𝑞 is required, where 𝑞 > max{𝑙𝑖} · 𝑓 . If

𝑝 meets these requirements already then the conversion steps are omitted. Since we

are working with two different fields in this protocol, we explicitly use a subscript for

the shares to denote in which field they are stored in.
Algorithm 30: BatchExpFP([𝑥]𝑝, 𝑙, 𝑝, 𝑞, 𝑓)

([𝑟]𝑞, [𝑟
−𝑙1]𝑞, ..., [𝑟

−𝑙𝑚]𝑞)← 𝑅𝑎𝑛𝑑𝐸𝑥𝑝𝐼𝑛𝑣(𝑞, 𝑙);

[𝑥]𝑞 ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑍𝑝2𝑍𝑞([𝑥]𝑝, 𝑞) ; // 1 rnd, 1 inv

𝑐←𝑀𝑢𝑙𝑃𝑢𝑏([𝑥]𝑞[𝑟]𝑞) ; // 1 rnd, 1 inv

for i:=1,...,𝑚(in parallel) do

[𝑦′𝑙𝑖]𝑞 ← (𝑐𝑙𝑖 𝑚𝑜𝑑 𝑞)[𝑟−𝑙𝑖]𝑞;

[𝑦𝑙𝑖]𝑞 ← 𝑇𝑟𝑢𝑛𝑐𝑃𝑟([𝑦′𝑙𝑖]𝑞, (𝑙𝑖 − 1)𝑓) ; // 1 rnd, m inv

[𝑦𝑙𝑖]𝑝 ← 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝑍𝑝2𝑍𝑞([𝑦𝑙𝑖]𝑞, 𝑝) ; // 1 rnd, m inv

return ([𝑦𝑙1]𝑝, ..., [𝑦𝑙𝑚]𝑝)

Correctness. BatchExpFP receives a secret [𝑥]𝑝, where 𝑥 > 0, a list 𝑙 of public

exponents to compute (the list has size 𝑚 which is implicit), and two primes denoting

the field of origin (𝑝) and the target field (𝑞) to do the computations in. The last input

100

𝑓 marks the desired fixed point precision/scaling factor. The offline phase involves

generating a random secret shared value and the inverse of its powers. This is simply

a batch version of the offline phase described in [25]. We assume that 𝑞 and 𝑙 are

known apriori to enable the randomness generation to be done offline.

After the offline phase, the protocol starts by converting the secret [𝑥]𝑝 into a large

enough field Z𝑞, where 𝑞 > max{𝑙𝑖}·𝑓 as mentioned above. The check that ensures this

is left implicit, particularly since 𝑞 is public and known in advanced. Note that since

the underlying 𝑥 is positive, the conversion will be correct (i.e., 𝑥 𝑚𝑜𝑑 𝑝 = 𝑥 𝑚𝑜𝑑 𝑞).

After converting, the parties publicly reveal the result 𝑐 = (𝑥 · 𝑟) 𝑚𝑜𝑑 𝑞. With this,

they can locally compute each one of the exponents 𝑙𝑖 ∈ 𝑙, since 𝑦′𝑙𝑖 𝑚𝑜𝑑 𝑞 = (𝑐𝑙𝑖𝑟−𝑙𝑖) =

((𝑥𝑙𝑖 ·𝑟𝑙𝑖)𝑟−𝑙𝑖) 𝑚𝑜𝑑 𝑞 = 𝑥𝑙𝑖 𝑚𝑜𝑑 𝑞. Because 𝑞 is large enough to accommodate max{𝑙𝑖},

then no overflow will occur. The last two steps involve truncating each exponent to

𝑓 bits of precision and converting the result back into Z𝑝.

Security. The only potential leakage occurs in the call to MulPub. Since [𝑟]𝑞

is a random field element in Z𝑞 then it perfectly masks [𝑥]𝑞 and no information is

leaked, except if 𝑥 ̸= 0, which we assume is not the case. If we cannot make this

assumption, then we can condition the execution of this protocol based on the result

of the equality test [𝑥 = 0]. This could be done obliviously as in [25]. All other

sub-protocols have either perfect or statistical security and therefore – BatchExpFP

is statistically secure as well.

Complexity. The protocol has a total of 4 rounds and 2𝑚 + 2 invocations (in

the online phase), where 𝑚 is the length of the list 𝑙 (for our use cases 𝑚 = 𝜃 − 1 =

𝑂(log2 𝑘)). This is a result of an initial conversion of one field element, followed

by a public reveal, and then 𝑚 calls to TruncPr and 𝑚 conversions of the outputs.

If no conversions are needed, then the complexity is reduced to 2 rounds and 𝑚 +

1 invocations. Finally, we note that for the integer case where no truncation or

conversion is needed, batch exponentiation only costs a single round and invocation

in the online phase.

101

FPDiv

We are now ready to present the full division protocol, shown in Protocol 31.

Algorithm 31: FPDiv([𝑎], [𝑏], 𝑘, 𝑓)
𝜃 ← ⌈log 𝑘

3.75
⌉; 𝛼← 𝑓𝑙𝑑(2.928𝑘); 𝑙← {2, 4, ..., 2𝜃−1};

𝑞 ← 𝑁𝑒𝑥𝑡𝑃𝑟𝑖𝑚𝑒(22
𝜃−1𝑓 + 1);

([𝑏̂], [𝑣])← 𝑁𝑜𝑟𝑚([𝑏], 𝑘) ; // See Prot. 28 or 29

[𝑦0]← 𝛼− 2[𝑏̂];

[𝑦0]← [𝑦0][𝑣] ; // 1 rnd, 1 inv

[𝑑]← [𝑏][𝑦0] ; // 1 inv

[𝑦0]← 𝑇𝑟𝑢𝑛𝑐𝑃𝑟([𝑦0], 2(𝑘 − 𝑓)) ; // 1 rnd, 1 inv

[𝑑]← 𝑇𝑟𝑢𝑛𝑐𝑃𝑟([𝑑], 𝑓) ; // 1 inv

[𝜖0]← 𝑓𝑙𝑑(1𝑓)− [𝑑];

([𝜖1], ..., [𝜖𝜃−1])← 𝐵𝑎𝑡𝑐ℎ𝐸𝑥𝑝𝐹𝑃 ([𝜖0], 𝑙, 𝑝, 𝑞, 𝑓) ; // 4 rnd, 2𝜃 inv

[𝑦]← [𝑎][𝑦0]
∏︀𝜃−1

𝑖=0 (𝑓𝑙𝑑(1𝑓) + [𝜖𝑖]) ; // 1 rnd, 𝜃 + 2 inv

[𝑦]← 𝑇𝑟𝑢𝑛𝑐𝑃𝑟([𝑦], (𝜃 + 1)𝑓) ; // 1 rnd, 1 inv

return [𝑦]

Correctness. The protocol starts with initializing the needed parameters as

described earlier: 𝜃 is the number of Goldschmidt iterations to compute (in parallel);

𝛼 is used for the initial approximation of the reciprocal; 𝑙 is the list of exponents to

compute; and 𝑞 is a large enough prime to compute the exponents without overflow in

BatchExpFP. The protocol starts by normalizing the secret divisor [𝑏] and computing

the first approximation [𝑦0] (requires multiplying by [𝑣] to undo the normalization).

The parties then compute [𝜖0] from Equation 15, and compute the needed exponents

for Equation 20 (i.e., the reformulation of Goldschmidt’s method we use to flatten the

circuit). This is done by a call to BatchExpFP presented earlier. Finally, Equation

20 is computed with only a single unbounded fan-in multiplication call. This requires

𝑝 > 𝑘 + 𝜃𝑓 , or could be avoided with an additional round or two at most. The last

truncation ensures that the result has 𝑓 bits of precision as required.

Security. As there are no elements revealed in the outer protocol, the protocol

is (statistically) secure by the composition of secure sub-protocols.

102

Complexity. The exact number of rounds depends on which version of Norm is

used. We use the version with less rounds here, as for practical bit-lengths reducing

the number of rounds is likely to yield better performance than reducing communi-

cation. The exact number of rounds then amounts to 11 rounds and 2𝑘 + 3𝜃 + 7

invocations.

Note on reciprocal. Observe that computing the reciprocal of a secret number

[𝑥] can be done by setting a public 𝑎 = 𝑓𝑙𝑑(1𝑓) and calling FPDiv internally, as shown

in Protocol 32.
Algorithm 32: FPReciprocal([𝑥], 𝑘, 𝑓)

𝑎← 𝑓𝑙𝑑(1𝑓);

[𝑦]← 𝐹𝑃𝐷𝑖𝑣(𝑎, [𝑥], 𝑘, 𝑓);

return [𝑦]

Finally, we can summarize the results in the theorem shown below.

Theorem 3. Assuming some operations are computed in a target field with a prime

𝑞 > max{𝑙𝑖} · 𝑓 , division and reciprocal operations can be computed securely in 𝑂(1)

rounds and 𝑂(
√
𝑘) invocations, with only negligibly small (in

√
𝑘) probability of ob-

taining an incorrect result.

10.5 Other Applications

The techniques developed in this section have other important applications. As these

are fairly trivial reductions from either secure normalization or division (or both), we

omit the implementation details and focus on the implications.

Floating-point representation. Representing real numbers using floating-point

representation allows for greater precision and a larger (dynamic) range compared to

fixed-point representation. Essentially, for the same price (i.e., number of bits), we

can represent larger values with higher precision. This works by having a dynamic gap

between values – namely, smaller numbers in the range are closer to each other while

larger numbers are farther apart. This is unlike fixed-point representation which has

a uniform gap.

103

The cost of using floating-point representation is more complex arithmetic. Nowa-

days, modern processors have a built-in floating-point unit (FPU) for dealing with this

efficiently, thus it has become the industry standard except for lower-end processors

that are only equipped with arithmetic logic units (ALUs). In secure computation,

the problem is compounded, and recent attempts to implement floating-point oper-

ations [33, 35, 34, 32] are almost conclusively less-efficient. This is mainly because

floating-point addition, which is free for integers and fixed-point operations, requires

interaction. For the same reason, protocols such as division/reciprocal that requires

normalization, are more efficient.

The link between fixed-point and floating-point representation lies in the normal-

ization. This is also the basis of converting the two schemes [33]. Since this operation

is considered as the main bottleneck, our improvements immediately translate to

more efficient conversion protocols in both directions, allowing hybrid protocols to be

developed. This is the main idea in [35], except that they did not have an efficient

normalization scheme and were therefore forced to start with a normalized floating-

point representation and move to fixed-point representation (and back) as needed.

Another hybrid approach used conversion to garbled circuits (which are more suited

for bit-wise operations), but is still largely less efficient, as the authors reported that

some elementary operations would take minutes to complete [32].

Instead, an approach starting from a fixed-point representation that converts to

floating point when certain operations are called (e.g., division, square root, loga-

rithm and exponent) would lead to better performance and still allow cost-less linear

operations. Such an approach could be employed using our normalization protocols

to replace the inefficient ones used in the conversion protocols of [33].

Square root. Computing the square-root could be done using Goldschmidt’s

method as well, and is largely the same as division [36]. With our efficient normaliza-

tion and a constant-rounds solution (as opposed to a log-depth circuit) for computing

series expansion, the square root version could be similarly adapted and improved.

Series approximations in general. Many other important math primitives

over the reals could be approximated using a Taylor series or Chebyshev polyno-

104

mials. These include trigonometric functions, logarithm, exponent, as well as divi-

sion/reciprocal and square root. For the latter, we have shown a quadratic conver-

gence method which is faster. These approximations often require the inputs to be

normalized to some range (e.g., needed for log), so our Norm protocols apply to these

cases. Also for the series approximation itself, our solution to the iterative method

is easily adapted. BatchExpFP can compute the polynomial terms (for a desired

precision), followed by a summation of all terms (instead of a product).

11 Implementation

Building on the theoretical and practical improvements presented thus far, a refer-

ence implementation of the system was developed. An earlier version of this system

appeared in [71].

11.1 The Network

On a low-level, all players in our system (owners, services and computing parties) are

nodes in our peer-to-peer network. Each player also maintains a connection to the

Bitcoin blockchain network.

The network protocol is implemented in Python using Twisted, which is an asyn-

chronous, event-driven networking library. Contrast this with Bitcoin, which uses a

synchronous model. For peer-discovery, we follow a similar protocol to that of Bitcoin

(a succinct summary can be found in [42]). Our default client contains a configuration

file with seed nodes to connect to. When a new node connects to another node, it

receives a sample of known addresses, which it attempts to connect to. Nodes propa-

gate new connections so that other nodes can update their list of known peers. This

forms a random sparse graph with a small diameter, which is efficient for propagating

information.

We also introduce an additional concept of a federated node, that did not exist in

the theoretical model. The rationale behind this is that we needed to bridge the gap

between the formal model of a blockchain and a specific practical implementation.

105

Specifically, there are two model assumptions that do not yet hold in practice: the

blockchain has infinite storage; and it can run any computation (on public data)
6. The federated node solves this by storing most of the public state, namely –

commitments to inputs, transcripts of computations and some other meta-data such

as information about the quorums. It also executes the parts of the smart contracts

that bitcoin scripting does not support. We explain how this is done in detail and

how it affects the security model in Section 11.4.

We stress that significant community efforts are currently dedicated to solving the

scalability concern (e.g., [68]), so relying on some amount of federation in the system

should be considered a temporary solution. In addition, while the federated node can

disrupt the functionality of the network, it cannot break privacy of the data. Also

note that we only rely on the blockchain for public consensus and incentives, so we

are not required to use Bitcoin specifically 7.

11.2 Clients

The low level network protocol is wrapped into daemon. On top of that, we imple-

mented the following clients, based on their role in the system:

1. Computing Party. This is where most of the interesting logic is. These are

the parties who store secret data and execute computations when requested in

return for rewards. We developed a distributed virtual machine (DVM) that

interprets code in runtime as secure MPC protocols (see Section 11.3).

2. Federated Node. As mentioned, this node holds most of the public state and

executes Contracts (while making the outcome visible on the blockchain). Since

it only exists to assist the blockchain, it never holds any private information.

3. Owner/Service. This is daeamon wrapped into a thin client with a software

library to interact with it. The library supports secret sharing and sending

computations in the low level language of the DVM. The goal of the DVM
6Some blockchains already support this. For example, Ethereum – https://www.ethereum.org.
7Our choice of Bitcoin was due to its relative maturity.

106

is to be a generic intermediate representation (IR) which existing high-level

languages can compile down to.

Computing parties and federated nodes persist their data in a local LevelDB8

database.

11.3 Distributed VM (DVM)

The computing parties in our network collectively form a single decentralized com-

puter. In practice, for each computation only a quorum is sampled, but we omit

this detail here. To implement this idea, we developed a distributed virtual machine

(DVM) for executing low-level code. Our approach is different from previous work

on programming languages for secure computation (see [45], [47] and [46] for some

recent work). Instead of developing a domain-specific language, which requires de-

velopers to learn new tools, we focus on the runtime environment. With a coherent

specification of a DVM, it should be easy to develop thin software libraries that can

compile existing high-level programming languages into bytecode that our network

can execute in a distributed fashion. This is how, for example, JVM 9 can be used

as the underlying runtime engine for languages other than Java, such as Python and

Ruby 10.

Conceptually, a DVM differs from a local VM in two major aspects, that boil

down to the VM being dependent on the collective state of several parties:

1. Network awareness. Since the DVM is a network of machines, we need special

opcodes for network communication.

2. Synchronization. Non-linear operations cannot be computed locally and re-

quire one or more rounds of communication. Specifically, from the view of a

single machine, we need a way to pause the local execution until some needed

information is received from the network.
8http://leveldb.org/
9https://en.wikipedia.org/wiki/Java_virtual_machine

10https://en.wikipedia.org/wiki/List_of_JVM_languages

107

Our DVM implementation is modeled after CPython, the most commonly used

runtime environment for Python. CPython is well documented and understood, so we

will only provide necessary details here for our implementation. In general, any high-

level python code block (e.g., a function, a module or a class) is compiled down to a

code object. Loosely speaking, a code object is a set of instructions (i.e., a bytecode)

coupled with lists of symbols such as variable names and constants (including code

objects for nested code blocks).

To illustrate how the VM works, let us consider the execution of a single code

object (e.g., a function). A code object is essentially an intermediate representation

(IR) of high-level code, so the interpreter first needs to create the runtime equivalent

of it – a frame object. This object includes, among other things, some random-

access memory with different program-scopes (locals, globals and builtins). These

are populated during initialization of the frame, which is determined at runtime.

Nested code blocks, such as nested functions, create new frame objects and add them

to a call-stack. This allows for a recursive evaluation of code and is common in VMs.

Conversely, clauses such as loops do not create a separate frame and are managed

within a single frame using block objects. Block objects are conceptually similar to

frames and provide another level in the hierarchy of execution. As a result, each

frame has its own block-stack. Finally, every frame is evaluated as a stack machine,

with a value stack that interacts with the RAM.

Our additions to python’s VM include several new opcodes for network operations

(see Table 5 for details). To achieve synchronization, we extend the meaning of a block

object to encapsulate at most one round of communication. This means that a single

frame object will create a block object for every round of communication, or in other

words – for every multiplication gate.

As an example, observe the compiled code for an addition gate and a multiplication

gate in Table 6, which illustrates the advantages of having a dynamically typed IR

language. First, while not seen in these examples, not all code is compiled into a

large static circuit, but rather instructions are evaluated one-by-one and only when

needed, a block is constructed for communication on-the-fly. Second, the dynamic

108

Opcode Description
SEND_SHARE 𝑛 Pop id from TOS; Pop 𝑛− 1 elements;

Send them to id
SEND_RESULT_SHARE Send output gate share
BC_SHARE 𝑛 Broadcast top 𝑛 elements in the stack
RECONSTRUCT 𝑡 Pop 𝑡 elements and reconstruct
LOAD_SHARE Load share from RAM to the stack
SHARE Secret-share TOS
HALT Store current instruction on stack and halt
COMMIT Commit to a share on-chain
END_ROUND Finalize this block
WAIT Wait for more shares to arrive

Table 5: New network opcodes for CPython bytecode

typing means that local operations on different object types look the same from the

VM’s perspective, as is the case with the addition gate, which is equivalent to regular

Python, except for the return value that is done over the network. Defining the

semantics of objects (e.g., what does it mean to add a secret value with a public

value) is done on the class-level, which is not shown here. We wrote a separate

implementation for secret-sharing primitives, that leverages numpy 11 heavily for

optimization of vectors and matrices of shares. The DVM only really needs to know

when a communication round is required, as is seen in the example of a multiplication

gate.

11.4 Integration with the Bitcoin Blockchain

We now describe in more detail the integration with the Bitcoin blockchain, and

what part the federated node has in the consensus. For simplicity, we will describe

our system with a single federated node, although a more likely scenario is that several

exist.

Consensus Broadcast. In the model, it was mentioned how the reliable broad-

cast of the blockchain, which is synchronous with eventual delivery and consensus,

can be coupled with an unreliable asynchronous broadcast. In order to reduce the

11http://www.numpy.org

109

Addition Multiplication
LOAD_FAST 0 LOAD_FAST 1
LOAD_FAST 1 LOAD_FAST 3
BINARY_ADD BINARY_SUBTRACT
LOAD_NAME 0 LOAD_FAST 0

SEND_RESULT_SHARE 1 LOAD_FAST 2
RETURN_VALUE BINARY_SUBTRACT

BC_SHARE 2
HALT

LOAD_SHARE
WAIT

RECONSTRUCT 2
DUP_TOPX 2

BINARY_MULTIPLY
ROT_TWO

LOAD_FAST 3
BINARY_MULTIPLY

BINARY_ADD
ROT_TWO

LOAD_FAST 2
BINARY_MULTIPLY

BINARY_ADD
LOAD_FAST 4
BINARY_ADD

RETURN_VALUE

Table 6: Secure DVM protocols for addition and multiplication

load on the blockchain, we combine this idea together with that of a federated node,

creating a broadcast with escalation. Initially, all parties use the (non-resilient) broad-

cast channel of our internal network. Parties also maintain a direct channel to the

federated node, and use that to send a copy of each transaction. The federated node

signs each transaction along with a timestamp and stores it in a local database acces-

sible by anyone. To avoid trusting the federated node, each party can check whether

its message has been posted and if not, broadcast the transaction to the blockchain

before the end of the round, which all parties are also connected to. If later, at

some time in the future but before a commit (described below), the federated node

deletes a message, the affected party can then broadcast to the blockchain the original

time-stamped multi-signed transaction.

110

Access-control. Recall that access control is defined for each owner 𝑜, as a list of

services 𝑎𝑐𝑐𝑒𝑠𝑠[𝑜]. To implement this in Bitcoin, an owner 𝑜 creates a pay-to-public-

key-hash12 with her as the input, the addresses of all approved services as the outputs,

and one additional output back to the input address. Each output has a minuscule

fraction of a bitcoin, so it is negligible. When ever the owner wishes to update the list

of permissions, she sends a new transaction that is chained to the output designated

to her in the old transaction, using the same logic. This invalidates the previous set

of permissions and approves a new set. As an optimization, the owner also sends

the federated node the transaction id for local caching. Then, when a service issues

a computation request referencing some secret data, both the federated node and

the computing parties can validate that it has the appropriate permissions. If a

service asks a computation without proper permissions, its payment is forfeited. This

protects against potential DoS attacks by the service.

Quorum selection. Using the blockchain as a public randomness source, we can

still rely on it to implicitly select the random quorums. The reason we do not trust the

federated node with this, unlike some other tasks, is that it would take an expensive

cryptographic protocol to have it prove that the selection was indeed random.

Incentives and public identifiability. Recall that at the heart of our protocols

lies the incentive scheme. When ever a computing party breaks protocol, it is publicly

observable and the party is penalized. This is the core requirement we needed for

IC-MPC to hold. There are two types of penalties: either a deposit is burned (i.e.,

lost forever), or the penalty is used to compensate an honest party. The latter occurs

when a computation failed, so charging the service would make our scheme unfair

(financially), so instead we force corrupted parties to pay the honest ones.

Contract 2 (shown in Section 4) that validates a computation requires the blockchain

to store the transcript and trace the computation using it. Specifically, we need to

be able to perform arithmetic operations over finite fields. While Bitcoin has the

necessary arithmetic opcodes, in practice several that we require are currently dis-

12This is the most common bitcoin transaction type: https://en.bitcoin.it/wiki/Transaction#Pay-
to-PubkeyHash

111

abled (OP_MUL, OP_DIV, OP_MOD). We therefore require the federated node to

execute the contract on behalf of the blockchain. The contract’s hash is stored in

an OP_RETURN transaction on-chain, and the code is public for all parties in the

system.

After a computation ends, and the federated node runs the (very public) verifica-

tion, it settles payments and penalties, by signing for each party if it was honest or

not, and refunding the payment to the service if it did not receive an output. Han-

dling the service is simpler (but similar), so its details are omitted. Here we focus on

the computing parties. W.l.o.g, we will look at a single computing party Alice (or 𝐴)

and the federated node 𝐹 .

A simplified solution starts with Alice broadcasting a security deposit transac-

tion (SD), paying to a (2,2) multi-sig address owned jointly by her and 𝐹 . Alice

then prepares three redeeming transactions, and signs them: a time-locked refund

transaction (R) paying her back the full deposit after some (long) period of time; a

transaction-puzzle (marked SDa) storing 𝐻(𝑟) that is redeemable by both 𝐹 ’s sig-

nature and anyone who can provide the pre-image 𝑟; and a Null-data transaction

(denoted as SDb) 13 making the funds unspendable. Alice sends transaction (R) to

𝐹 , the random secret 𝑟 to all other parties, and waits until 𝐹 signs (R) before sending

(SDa, SDb).

After the computation, if Alice was honest, she can create another refund trans-

action without the time-lock and ask 𝐹 to sign it, or wait for (R) to become valid.

In any case, 𝐹 should not sign (SDa) or (SDb) unless Alice was malicious. In that

case, if the overall computation succeeded (or it failed but all honest parties were

compensated), 𝐹 signs and broadcasts (SDb) to burn Alice’s deposit. Otherwise, it

signs (SDa) and broadcasts it. It then creates a claim transaction (C) for an honest

party (e.g., Bob), signs it and privately sends it to him. Notice that this procedure

matches exactly the verification and rewarding/penalizing presented in Contract 2.

There are clear inefficiencies in this scheme. For every computation, at least 2𝑛

new transactions will be added to the blockchain (2 for an honest party, 3 for corrupt).

13A Null-data transaction uses OP_RETURN to mark the transaction as invalid.

112

More importantly, to ensure that the parties do not double-spend their original (SD)

transaction, we need to wait until these transactions are confirmed on the blockchain.

If we use the best practice of waiting for six confirmations, then it will be an hour

before we can even begin a computation.

We address these concerns by using an idea similar to payment channels 14. Instead

of having a one-time security deposit as described above, when parties register to the

network they lock a large amount, by creating (SD0) and (R0) transactions in the

same way as above. The zero at the end marks that this is the state of the security

deposit account in the beginning. This is also in line with the register call we described

in Contract 1, where parties register by locking a large 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑂𝑇𝐴𝐿 amount.

Figure 4 illustrates this process with an example. Alice deposits 10 BTC in

SD0, which she will get back at some point in the distant future (1000 blocks from

now). Note that this is the only transaction on-chain and that it is not computation-

dependent. Now, in each computation, Alice does as before – she generates similar

(SD1a, SD1b, R1) transactions (In practice, there should be (R1a) and (R1b), but

we omit this detail for simplicity), but with each having two outputs: the actual

deposit for this computation (1 BTC) and the remaining 9 BTC. If Alice is found to

be cheating, then 𝐹 either signs (SD1a) and sends a signed (C1) to Bob, or it signs

(SD1b). However, 𝐹 did not broadcast any transaction at this point, and the entire

accounting occurred off-chain. In the next computation, Alice will have to build on

top of either (SD1a) or (SD1b), which now has 9 BTC left. Otherwise, 𝐹 should ig-

nore Alice. If Alice was honest, then these transactions are ignored and Alice should

use (SD0) as before (i.e., she did not lose her deposit).

The example given in the figure shows two executions in which Alice participated

after originally depositing 10 BTC. In the first, Alice cheated and Bob was com-

pensated. In the second, Alice was honest and therefore these transactions are void.

When Alice asked 𝐹 to unregister, she used the output from the first execution to cre-

ate a transaction (E1) that refunds the remaining 9 BTC. As illustrated in the figure,

until Alice either unregisters, cheats sufficiently many times or the original deposit

14https://en.bitcoin.it/wiki/Contract

113

expires, only a single transaction will be logged on the blockchain. Only when the

expiry date approaches or if Alice is a serial-cheater, will 𝐹 and other compensated

parties broadcast the chain of transactions (marked in green). Note that if Alice is

always honest, then in each sufficiently lengthy interval (e.g., 1000 blocks) she will

only ever post two transactions.

signs
and

broadcasts

A

broro

AA

bb10 BTC

A& F signsA signs
holdsF

F& H(r)F& H((r))

1 BTC

9 BTC

A& F

signsF signs
holdsB

signsA signs
holdsF

F

A

F

F&
OP_RETURN

1 BTC

9 BTC

A& F

B

signsF

holdsA

s g ssignsF g
holdsA

A
ds

10 BTC

broadcastsbroadcasts 10 BTC

nLockTime: 1000

signsA signs
holdsF

A

F

F& H(r)

1 BTC

8 BTC

A& F

signsF signs
holdsB

signsA signs
holdsF

A

F

F&
OP_RETURN

1 BTC

8 BTC

A& F

A

signsF

holdsA

A

9 BTC

nLockTime: 1000

9 BTC

gsignsF g
holdsA

AA

9 BTC

SD0

R0

SD1a

OO
SD1b

R1

SD2a

OO
SD2b

signsF

holdsA

A

8 BTC

nLockTime: 1000

gsignsF g
holdsA

AA

8 BTC

R2

E1
BC1

Figure 4: Off-chain and on-chain accounting of incentives.

Long-term storage. In the short term, parties are interacting with the federated

node and can visibly see if it breaks protocol. However, in the long term, we would like

to use the blockchain to ensure the integrity of the public state (mainly commitments

and transcripts), without trusting the federated node. We therefore set a time interval

(e.g., 1 day), after which the federated node creates a merkle tree (MT) 15 for the

current public state. It then creates a Null-data transaction that stores the merkle

root and sends it to the blockchain (we call this committing the state). In practice,

the merkle root is a hash of nested trees, each representing a different portion of the

state. For example, we generate a tree for each transcript of a computation that took

place that day. We then use these merkle roots as leaves to another merkle tree. We

have a similar process for commitments of secrets. With this approach, nodes in the

network can always ask the federated node to prove (in logarithmic time) what the

state was at any given time in the past.

15We assume the reader is familiar with merkle trees.

114

11.5 Refined Security Analysis

The federated solution imposes some centralization in our otherwise fully decentral-

ized system, but it is likely to be a temporary solution to a short-lived problem 16.

We designed the system in a way that never reveals private data to a federated node

and that any deviation is publicly visible. In that sense, parties trust a federated

node like miners in a Bitcoin mining pool trust a pool manager. In both cases, there

is a hub, which we assume is honest, that collects broadcasted transactions and pays

rewards based on (honest) work.

Note that we left open how a federated node is incentivized, but one could as-

sume that this would be based on fees similar to how mining pools operate. In this

case, there would be several federated nodes competing for parties’ resources, so the

operators would have an implicit incentive to remain honest (otherwise parties would

switch). Another solution to somewhat reduce the trust is to have several federated

nodes simulate 𝐹 using a standard consensus protocol [50]. Efficiency is not a concern

since we are only interested in eventual consensus and this federated sub-network is

likely to be small. Similarly, we can remove federation by selecting quorums of veri-

fiers (or validators) and have them reach consensus. This can be done less frequently

and with more nodes compared to the size of computing quorums, as it is less time

critical.

In any case, there are several solutions to decentralizing this (already limited)

amount of federation in the future, either when blockchains are scalable enough, or

by rolling out an internal consensus mechanism, which leverages the blockchain for

long term consensus.

16For the very least, quorums could be selected to do the verification with low overhead.

115

12 Evaluation

12.1 Empirical Analysis of Quorums

Until recently, achieving large-scale MPC was not practical due to the communica-

tion overhead that grows linearly with the number of parties (from a single party’s

perspective. The overall complexity grows quadratically). Using quorums presented

a theoretical solution, but creating them was expensive and re-using them was a

problem. In our solution we overcame this expensive pre-processing step and avoided

re-using quorums. The only remaining question was deciding on a quorum size.

Ideally we wanted to choose the smallest quorum possible (i.e., 3 parties), but there

is a non-negligible probability of selecting 3 corrupted parties for a computation that

would break privacy. The case of resiliency is easier since we can identify, penalize,

and replace active corruptions. Note that presumably, as the network scales, more

(rational) honest parties would join for the monetary rewards it offers, thus reducing

the fraction of parties the adversary controls. And yet, to be on the safe side and

conform with previous work, we decided to test the commonly used cases of 𝑇 = 𝑁
2

and 𝑇 = 𝑁
3

overall corruptions in the network. We use capital 𝑁, 𝑇 here to distinguish

between the complete network and the quorums.

With these parameters fixed, the number of corruptions in a randomly selected

quorum follows a binomial distribution, with parameters 𝑛, 𝑝 ∈ {1
3
, 1
2
}, where 𝑛 is

the number of parties in the quorum. Assuming we are using a (𝑛, 𝑡) secret sharing

scheme in the quorum, we can quantify the event of selecting a bad quorum using:

𝑃𝑟[𝑋 ≥ 𝑚] =
𝑛∑︁

𝑖=𝑚

(︂
𝑛

𝑖

)︂
𝑝𝑖(1− 𝑝)𝑛−𝑖, (21)

where 𝑚 := 𝑡+ 1.

To provide context to this probability, we assume our system is handling one mil-

lion requests per-day and check how long it would take (in expectation) to choose

a corrupted quorum that leaks the private information of a single execution. Just

by plugging in numbers, we can see that a relatively large quorum is required (ap-

116

proximately 100 parties, depending on the secret sharing threshold). To mitigate

this, we use a quorums of quorums approach. Instead of having a single quorum, we

have a small (3 or 4 parties) quorum for each share. Figure 5 illustrates how long

the adversary is expected to wait until it can successfully leak information from one

execution. Notice that using a (3, 2) secret sharing is much better than (4, 2), namely

– it is better to use the maximal (𝑛, 𝑛− 1) sharing internally, and be more flexible on

the external sharing. For example, if we set the internal quorum size to three parties

using (3, 2) sharing, it would take approximately three years to leak data, assuming 9

such quorums execute each computation, and the protocol tolerates three corrupted

quorums. If we increase the threshold by one (i.e., at most two corrupted quorums

are tolerated), it would take 300 years to leak data from a single execution.

(a) (b) (c) (d)

Figure 5: Analysis of time until the first bad quorum is selected.

12.2 Scaling

To analyze the performance of our system, we tested it with three to six quorums for

each computation, each with three parties using (3, 2) sharing.

Two scenarios were examined: one in which we scale the network, keeping the

data fixed at multiplying 10,000 field elements (see Figure 6a); and the other where

we scale the number of field elements from one to a million (multiplication). The first

graph also shows a simulation of a network-wide MPC computation, i.e., no quorums,

as is the case with all previous implementations. Notice the slight overhead in our

system due to quorum selection and using two-levels of secret-sharing, which becomes

insignificant almost immediately as the network scales beyond 50 nodes.

It is important to note the significance of MPC that scales independently of the

117

number of nodes. Effectively, this means that in the future we could parallelize

computations in the network, as is commonly done in high performance computing

(or HPC). Since our quorums are constant in size, we could let every quorum simulate

a processor in a heavy-duty concurrent computation. This implies that having a larger

network can actually yield better performance, in contrast to vanilla MPC protocols.

Figure 6b illustrates that adding even a single quorum is costly, especially beyond

5 quorums and with larger data. This is why we ended up choosing 5 quorums as our

default configuration.

100 101 102 103

of parties

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

s)

Everyone computes

5 Quorums compute

Network scalability

(a) first

0.2 0.4 0.6 0.8 1.0
of field elements 1e6

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
 (

s)

3 Quorums

4 Quorums

5 Quorums

6 Quorums

Data scalability

(b) second

Figure 6: Network and Data scaling.

12.3 Benchmarks

The results above illustrate how performance is generally affected by changing the

number of parties or the size of the data, as was discussed in the first part of this

thesis. Another aspect is to test the performance of the improved secure protocols

developed in the second part.

For these tests, we have set 𝑛 = 3, which is commonly used to benchmark MPC

systems [4], [59]. To evaluate both integers and fixed-point values, multiplication,

comparison and division were tested over blocks of 10,000 64-bit secret-shared ele-

ments in parallel. The results in Table 7 are the average time in milliseconds over

100 runs.

118

Mult. Comparison Div. Comparison [29] Div. [28]
172 211 1813 1448 13029

Table 7: Run-time (in ms) of selected protocols.

In addition to the improved protocols developed earlier, a variant of secure com-

parison and fixed-point division as proposed in [28] [29] were developed and tested as

well. As seen, the new protocols perform significantly better and thus agree with the

theoretical complexity analysis.

13 Conclusions

The work presented in this thesis attempts to make a first meaningful step towards

scalable secure multi-party computation deployed in practical systems. To this end,

cryptographic assumptions that are usually assumed with no justification (e.g., num-

ber of corruptions, cost-less consensus broadcast, asynchronous communication) were

implemented using means available today, most notably by leveraging a blockchain.

This has culminated in the development of an incentive-compatible model for MPC,

re-visiting the idea of rational parties and proving that incentives can overturn previ-

ous negative results on rationality. Instead, it was shown that rationality, when based

on incentives, can lead to a highly optimized version of MPC that discourages active

corruptions. By design, the system attains other important properties such as finan-

cial fairness and output delivery guarantees, as well as public verifiability of results.

IC-MPC was also used to develop (nearly) asynchronous MPC that can maintain a

high threshold of active corruptions, given that parties are rational. This is essential

for any practical deployment of MPC, as a synchronous model could lead to a delay

linear in the depth of the circuit, if most of the time is spent waiting for the round to

end and the parties’ clocks to synchronize. Instead, with asynchronous IC-MPC the

delay is at most one round, even for the general case where 𝑡 < 𝑛.

Optimizing MPC is the invisible thread connecting the different dots explored in

this work. For the first time, the theoretical idea of using quorums was examined in

119

practice, allowing the number of parties to scale while increasing both security without

impairing efficiency. Several chapters were dedicated to creating a new framework for

secure computation over the integers and reals (represented as fixed-point numbers).

The results show significant improvements compared to the state-of-the-art.

An initial implementation of such a platform, that allows for general-purpose

computing and storage of secret information, was developed. This implementation is

a significant step forward towards creating a secure cloud system, where owners are

in control of their data and they can set permissions on who can query them, without

ever observing the raw information directly. The potential of such a system extends to

many verticals, such as medical, financial, and even to consumer applications. In an

era of Big Data in particular, there is immense potential in providing researchers and

organizations with the ability to train statistical models while keeping data private.

This will likely allow them to share and consume data like never before.

To conclude, the relation of this work to the emerging field of blockchain research

is emphasized. Blockchain technology provides a form of incentive-compatible byzan-

tine agreement (IC-BA). This is the first work to formalize such an economic model for

studying the security of secure computation, which is a generalization of BA. There-

fore, while the system developed leverages in a black-box manner the blockchain, it

also serves as an extension to it, allowing computation with privacy and not just

correctness.

120

Bibliography

[1] Nakamoto, Satoshi. "Bitcoin: A peer-to-peer electronic cash system." Consulted

1.2012 (2008): 28.

[2] Yao, Andrew C. "Protocols for secure computations." 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science. IEEE, 1982.

[3] Ben-David, Assaf, Noam Nisan, and Benny Pinkas. "FairplayMP: a system for

secure multi-party computation." Proceedings of the 15th ACM conference on

Computer and communications security. ACM, 2008.

[4] Bogdanov, Dan, Sven Laur, and Jan Willemson. "Sharemind: A framework

for fast privacy-preserving computations." Computer Security-ESORICS 2008.

Springer Berlin Heidelberg, 2008. 192-206.

[5] Team, VIFF Developement. "Viff, the virtual ideal functionality framework."

2009.

[6] Ben-Or, Michael, Shafi Goldwasser, and Avi Wigderson. "Completeness theorems

for non-cryptographic fault-tolerant distributed computation." Proceedings of

the twentieth annual ACM symposium on Theory of computing. ACM, 1988.

[7] Goldreich, Oded, and Rafail Ostrovsky. "Software protection and simulation on

oblivious RAMs." Journal of the ACM (JACM) 43.3 (1996): 431-473.

[8] Goldreich, Oded. "Towards a theory of software protection and simulation by

oblivious RAMs." Proceedings of the nineteenth annual ACM symposium on

Theory of computing. ACM, 1987.

121

[9] Goldreich, Oded, Silvio Micali, and Avi Wigderson. "How to play any mental

game." Proceedings of the nineteenth annual ACM symposium on Theory of

computing. ACM, 1987.

[10] Chaum, David, Claude CrÃľpeau, and Ivan Damgard. "Multiparty uncondition-

ally secure protocols." Proceedings of the twentieth annual ACM symposium on

Theory of computing. ACM, 1988.

[11] Rabin, Tal, and Michael Ben-Or. "Verifiable secret sharing and multiparty pro-

tocols with honest majority." Proceedings of the twenty-first annual ACM sym-

posium on Theory of computing. ACM, 1989.

[12] DamgÃěrd, Ivan, et al. "Practical covertly secure MPC for dishonest majori-

tyâĂŞor: Breaking the SPDZ limits." Computer SecurityâĂŞESORICS 2013.

Springer Berlin Heidelberg, 2013. 1-18.

[13] Beaver, Donald. "Efficient multiparty protocols using circuit randomization."

Advances in CryptologyâĂŤCRYPTOâĂŹ91. Springer Berlin Heidelberg, 1992.

[14] Dani, Varsha, et al. "Brief announcement: breaking the o (nm) bit barrier, secure

multiparty computation with a static adversary." Proceedings of the 2012 ACM

symposium on Principles of distributed computing. ACM, 2012.

[15] Dani, Varsha, et al. "Quorums quicken queries: Efficient asynchronous se-

cure multiparty computation." Distributed Computing and Networking. Springer

Berlin Heidelberg, 2014. 242-256.

[16] Boyle, Elette, Shafi Goldwasser, and Stefano Tessaro. "Communication locality

in secure multi-party computation." Theory of Cryptography. Springer Berlin

Heidelberg, 2013. 356-376.

[17] WOOD, DR GAVIN. "ETHEREUM: A SECURE DECENTRALISED GENER-

ALISED TRANSACTION LEDGER." (2014).

122

[18] Andrychowicz, Marcin, et al. "Secure multiparty computations on bitcoin." Se-

curity and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014.

[19] Bentov, Iddo, and Ranjit Kumaresan. "How to use bitcoin to design fair pro-

tocols." Advances in CryptologyâĂŞCRYPTO 2014. Springer Berlin Heidelberg,

2014. 421-439.

[20] Halpern, Joseph, and Vanessa Teague. "Rational secret sharing and multiparty

computation." Proceedings of the thirty-sixth annual ACM symposium on The-

ory of computing. ACM, 2004.

[21] Abraham, Ittai, et al. "Distributed computing meets game theory: robust mech-

anisms for rational secret sharing and multiparty computation." Proceedings of

the twenty-fifth annual ACM symposium on Principles of distributed computing.

ACM, 2006.

[22] Schultz, David A., Barbara Liskov, and Moses Liskov. "Mobile proactive secret

sharing." Proceedings of the twenty-seventh ACM symposium on Principles of

distributed computing. ACM, 2008.

[23] Ishai, Yuval, Rafail Ostrovsky, and Vassilis Zikas. "Secure Multi-Party Com-

putation with Identifiable Abort." Advances in CryptologyâĂŞCRYPTO 2014.

Springer Berlin Heidelberg, 2014. 369-386.

[24] Zyskind, Guy, Oz Nathan, and Alex’Sandy Pentland. "Decentralizing Privacy:

Using Blockchain to Protect Personal Data." Security and Privacy Workshops

(SPW), 2015 IEEE. IEEE, 2015.

[25] DamgÃěrd, Ivan, et al. "Unconditionally secure constant-rounds multi-party

computation for equality, comparison, bits and exponentiation." Theory of Cryp-

tography. Springer Berlin Heidelberg, 2006. 285-304.

[26] Nishide, Takashi, and Kazuo Ohta. "Multiparty computation for interval, equal-

ity, and comparison without bit-decomposition protocol." Public Key Cryptog-

raphyâĂŞPKC 2007. Springer Berlin Heidelberg, 2007. 343-360.

123

[27] Lipmaa, Helger, and Tomas Toft. "Secure equality and greater-than tests with

sublinear online complexity." Automata, Languages, and Programming. Springer

Berlin Heidelberg, 2013. 645-656.

[28] Catrina, Octavian, and Amitabh Saxena. "Secure computation with fixed-point

numbers." Financial Cryptography and Data Security. Springer Berlin Heidel-

berg, 2010. 35-50.

[29] Catrina, Octavian, and Sebastiaan De Hoogh. "Improved primitives for se-

cure multiparty integer computation." Security and Cryptography for Networks.

Springer Berlin Heidelberg, 2010. 182-199.

[30] Reistad, Tord Ingolf. A General Framework for Multiparty Computations. Diss.

Norwegian University of Science and Technology, 2012.

[31] Toft, Tomas. "Constant-rounds, almost-linear bit-decomposition of secret shared

values." Topics in CryptologyâĂŞCT-RSA 2009. Springer Berlin Heidelberg,

2009. 357-371.

[32] Pullonen, Pille, and Sander Siim. "Combining secret sharing and garbled circuits

for efficient private IEEE 754 floating-point computations." Financial Cryptog-

raphy and Data Security. Springer Berlin Heidelberg, 2015. 172-183.

[33] Aliasgari, Mehrdad, et al. "Secure Computation on Floating Point Numbers."

NDSS. 2013.

[34] Kamm, Liina, and Jan Willemson. "Secure floating point arithmetic and private

satellite collision analysis." International Journal of Information Security 14.6

(2015): 531-548.

[35] Krips, Toomas, and Jan Willemson. "Hybrid model of fixed and floating point

numbers in secure multiparty computations." Information Security. Springer In-

ternational Publishing, 2014. 179-197.

124

[36] Liedel, Manuel. "Secure distributed computation of the square root and appli-

cations." Information Security Practice and Experience. Springer Berlin Heidel-

berg, 2012. 277-288.

[37] Damgard, Ivan, and Rune Thorbek. "Efficient Conversion of Secret-shared Values

Between Different Fields." IACR Cryptology ePrint Archive 2008 (2008): 221.

[38] Cramer, Ronald, Ivan DamgÃěrd, and Yuval Ishai. "Share conversion, pseu-

dorandom secret-sharing and applications to secure computation." Theory of

Cryptography. Springer Berlin Heidelberg, 2005. 342-362.

[39] Bentov, Iddo, and Ranjit Kumaresan. "How to use bitcoin to design fair pro-

tocols." Advances in CryptologyâĂŞCRYPTO 2014. Springer Berlin Heidelberg,

2014. 421-439.

[40] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In

Financial Cryptography, 2014

[41] I. Eyal. The MinerâĂŹs Dilemma. In IEEE Symposium on Security and Privacy,

2015.

[42] Bonneau, Joseph, et al. "SoK: Research Perspectives and Challenges for Bitcoin

and Cryptocurrencies." (2015).

[43] Kosba, Ahmed, et al. Hawk: The blockchain model of cryptography and privacy-

preserving smart contracts. Cryptology ePrint Archive, Report 2015/675, 2015.

http://eprint. iacr. org, 2015.

[44] Songhori, Ebrahim M., et al. "TinyGarble: Highly Compressed and Scalable

Sequential Garbled Circuits." IEEE S & P. 2015.

[45] Liu, Chang, et al. "Oblivm: A programming framework for secure computation."

(2015).

125

[46] Rastogi, Ayush, Matthew Hammer, and Michael Hicks. "Wysteria: A program-

ming language for generic, mixed-mode multiparty computations." Security and

Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014.

[47] Liu, Chang, et al. "Automating efficient RAM-model secure computation." Se-

curity and Privacy (SP), 2014 IEEE Symposium on. IEEE, 2014.

[48] Shamir, Adi. "How to share a secret." Communications of the ACM 22.11 (1979):

612-613.

[49] Forges, FranÃğoise. "An approach to communication equilibria." Econometrica:

Journal of the Econometric Society (1986): 1375-1385.

[50] King, Valerie, et al. "Scalable leader election." Proceedings of the seventeenth

annual ACM-SIAM symposium on Discrete algorithm. Society for Industrial and

Applied Mathematics, 2006.

[51] Dwork, Cynthia. "Differential privacy." Encyclopedia of Cryptography and Se-

curity. Springer US, 2011. 338-340.

[52] Bitansky, Nir, et al. "From extractable collision resistance to succinct non-

interactive arguments of knowledge, and back again." Proceedings of the 3rd

Innovations in Theoretical Computer Science Conference. ACM, 2012.

[53] Damgård, Ivan, Jesper Buus Nielsen, and Antigoni Polychroniadou. "On the

Communication required for Unconditionally Secure Multiplication."

[54] Jakobsen, Thomas. Secure multi-party computation on integers. Diss. Aarhus

Universitet, Datalogisk Institut, 2006.

[55] Veugen, Thijs, et al. "Secure comparison protocols in the semi-honest model."

Selected Topics in Signal Processing, IEEE Journal of 9.7 (2015): 1217-1228.

[56] Kendler, Ethan Heilman Alison, Aviv Zohar, and Sharon Goldberg. "Eclipse

Attacks on BitcoinâĂŹs Peer-to-Peer Network."

126

[57] Blakley, George Robert. "Safeguarding cryptographic keys." afips. IEEE, 1899.

[58] Damgård, Ivan, and Rune Thorbek. "Non-interactive proofs for integer multi-

plication." Advances in Cryptology-EUROCRYPT 2007. Springer Berlin Heidel-

berg, 2007. 412-429.

[59] Zhang, Yihua, Aaron Steele, and Marina Blanton. "PICCO: a general-purpose

compiler for private distributed computation." Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security. ACM, 2013.

[60] Canetti, Ran. "Universally composable security: A new paradigm for crypto-

graphic protocols." Foundations of Computer Science, 2001. Proceedings. 42nd

IEEE Symposium on. IEEE, 2001.

[61] Aumann, Yonatan, and Yehuda Lindell. "Security against covert adversaries:

Efficient protocols for realistic adversaries." Theory of cryptography. Springer

Berlin Heidelberg, 2007. 137-156. APA

[62] Roy, Partha Sarathi, et al. "An Efficient t-Cheater Identifiable Secret Sharing

Scheme with Optimal Cheater Resiliency." IACR Cryptology ePrint Archive 2014

(2014): 628.

[63] Dvir, Zeev, and Amir Shpilka. "Noisy interpolating sets for low degree polynomi-

als." Computational Complexity, 2008. CCC’08. 23rd Annual IEEE Conference

on. IEEE, 2008.

[64] Ben-Or, Michael, Ran Canetti, and Oded Goldreich. "Asynchronous secure com-

putation." Proceedings of the twenty-fifth annual ACM symposium on Theory

of computing. ACM, 1993.

[65] Shen, Emily, et al. "Cryptographically Secure Computation." Computer 48.4

(2015): 78-81.

[66] Yu, Ching-Hua. "Sign Modules in Secure Arithmetic Circuits." IACR Cryptology

ePrint Archive 2011 (2011): 539.

127

[67] Garay, Juan, Aggelos Kiayias, and Nikos Leonardos. "The bitcoin backbone pro-

tocol: Analysis and applications." Advances in Cryptology-EUROCRYPT 2015.

Springer Berlin Heidelberg, 2015. 281-310.

[68] Eyal, Ittay, et al. "Bitcoin-ng: A scalable blockchain protocol." arXiv preprint

arXiv:1510.02037 (2015).

[69] Luu, Loi, et al. "SCP: A Computationally-Scalable Byzantine Consensus Proto-

col For Blockchains."

[70] Bonneau, Joseph, Jeremy Clark, and Steven Goldfeder. "On Bitcoin as a public

randomness source." URL https://eprint. iacr. org/2015/1015. pdf (2015).

[71] Zyskind, Guy, Oz Nathan, and Alex Pentland. "Enigma: Decentralized Com-

putation Platform with Guaranteed Privacy." arXiv preprint arXiv:1506.03471

(2015).

[72] Ercegovac, M. D. "T. Lang Digital Arithmetic." (2003).

[73] Bar-Ilan, Judit, and Donald Beaver. "Non-cryptographic fault-tolerant comput-

ing in constant number of rounds of interaction." Proceedings of the eighth an-

nual ACM Symposium on Principles of distributed computing. ACM, 1989.

128

