
Local Multiagent Control in Large Factored
Planning Problems

by

Philipp Robbel

Master of Science, Massachusetts Institute of Technology (2007)
M.Sc., University of Edinburgh (2005)

Submitted to the Program in Media Arts and Sciences
in partial fulûllment of the requirements for the degree of

Doctor of Philosophy
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 2016

© 2016 Massachusetts Institute of Technology. All rights reserved.

Author
Program in Media Arts and Sciences

November 11, 2015

Certiûed by
Cynthia Breazeal

Associate Professor, MIT Program in Media Arts and Sciences
hesis Supervisor

Certiûed by
Jonathan P. How

Richard C. Maclaurin Professor of Aeronautics and Astronautics
MIT Department of Aeronautics and Astronautics

Certiûed by
Mykel J. Kochenderfer

Assistant Professor of Aeronautics and Astronautics
Stanford University

Accepted by
Pattie Maes

Professor of Media Technology
Academic Head, MIT Program in Media Arts and Sciences

2

Abstract

Local Multiagent Control in Large Factored Planning Problems

by
Philipp Robbel

Submitted to the Program in Media Arts and Sciences
on November 11, 2015 in partial fulûllment of the requirements for the degree of

Doctor of Philosophy at the Massachusetts Institute of Technology

Many problems of economic and societal interest in today’s world involve tasks that are in-
herently distributed in nature. Whether it be the eõcient control of robotic warehouses or de-
livery drones, distributed computing in the Internet of hings, or battling a disease outbreak in
a city, they all share a common setting where multiple agents collaborate to jointly solve a larger
task. he ability to quickly ûnd eòective solutions in such multiagent systems (MASs) forms
an important prerequisite for enabling applications that require �exibility to changes in tasks or
availability of agents.

his thesis contributes to the understanding and eõcient exploitation of locality for the so-
lution of general, cooperative multiagent Markov Decision Processes (MDPs). To achieve this,
the proposed approximation architectures assume that the solution of the overall system can be
represented with sparsely interacting (i.e., local) value function components that—if found—
approximate the global solution well. Locality takes on multiple interpretations, from its spatial
sense to more general sparse interactions between subsets of agents, and the eõcient represen-
tation of local eòects in large planning problems.

Developed in the thesis are computational methods for extracting sparse agent coordina-
tion structure automatically in general, cooperative MDPs. Based on novel theoretical insights
about factored value functions, the proposed algorithms automate the search for coordination
via principled basis expansion in the approximate linear program (ALP). We show that the
search maintains bounded solutions with respect to the optimal solution and that the bound
improves monotonically.

Introduced then are novel solution methods that exploit “anonymous in�uence” in a partic-
ular class of factored MDPs. We show how anonymity can lead to representational and compu-
tational eõciencies, both for general variable elimination in a factor graph but also for the ALP
solution to factored MDPs. he latter allows to scale linear programming to MDPs that were
previously unsolvable.

Complex MAS applications require a principled trade-oò between complexity in agent co-
ordination and solution quality. he thesis results enable bounded approximate solutions to
large multiagent control problems—e.g., disease control with up to 50 agents in graphs with 100
nodes—for which previously only empirical results were reported.

hesis Supervisor: Cynthia Breazeal
Title: Associate Professor of Media Arts and Sciences

3

Acknowledgements

here are countless people whom I have to thank for their direct and indirect support during
my graduate studies at MIT.

First and foremost my gratitude goes to my thesis advisor and committee members, Prof.
Cynthia Breazeal, Prof. Jonathan How, and Prof. Mykel Kochenderfer. I have been extremely
lucky to work in Cynthia’s research group throughout graduate school. Cynthia accepted me
into a group of wonderful labmates and kept everyone’s research interests aligned. I am deeply
thankful for the support over all these years, and in particular for her giving me the freedom
to explore this research in multiagent planning in depth. My deep gratitude goes to Jon for his
thoughtful comments, academic and non-academic guidance, for hosting me at ACL during
my graduate career, as well as his pointed and realistic feedback about research content and
timeline. I beneûted tremendously from Jon’s support and the collaboration with his research
group at MIT—from the early MURI days to the last thesis year in particular. It is fair to say that
without Mykel this thesis would not have happened. I owe him huge thanks for accepting me in
his lab as a visitor and for giving my research direction in the times when it mattered most. His
support and constructive feedback, along with the productive embedding in his research group
at Stanford, made this thesis possible. hank you, Mykel, for always making time to meet, for
oòering your personal advice as well, and for your detailed comments on various paper and
thesis dra�s.

My long-time collaborator and advisor, Frans Oliehoek, is the second person without whom
this thesis would have been impossible. Frans has had a great in�uence on me and shaped my
views on how to conduct research and how to distill and formulate thoughts crisply. His de-
mands for constant progress were crucial in moving forward with my thesis research. I will
miss our 7AM cross-continent research meetings.

My research has taken me to three labs over the years. I thank everyone at PRG for many
insightful discussions. I thank ACL for kindly hosting me and the continued friendship with
many alumni: Aditya Undurti, Alborz Geramifard, Luke Johnson, Kemal Ure, Georges Aoude,
to name just a few. I thank SISL, in particular, for the priviledge to work with and get to know
all of you. Everyone’s optimisim, research interests, and GSD spirit helped my thesis progress
tremendously.

My time in Cambridge and Boston has been some of the best of my life. his is largely due to
my friends at MIT and (now) beyond: Alexis Turjman, Siggi Örn, Pankaj Sarin, Maria Carcolé,
Craig Bonnoit, and many more. hese friendships and shared experiences have deûned my life
inside and outside of graduate school over more than half a decade. Alexis has had a profound
permanent positive impact onmy life. Imiss our regular hang-outs, be it at SidPac or ‘downtown’,
our discussions on entrepreneurship and the other important topics in life. I thank Siggi for his
close friendship, for being an inspiring colleague inside and outside of academia, and for his
close support during and in particular the ûnal stretches of the PhD. Pankaj has been a long-
time friend throughout graduate school who always supported me unconditionally. I cherish
our friendship. I thank Maria for the support over the last months in particular; her views and
logical thought strengthened me in times of uncertainty and turmoil. Craig tought me that
academic accomplishment is never enough and only a small aspect to a life well lived.

hanks are also due to my colleagues in the Autonomous Driving group at Bosch, in par-
ticular Jan Becker and Jeò Johnson, for their advice and support during the ûnal months of

4

the thesis. A kind acknowledgement also goes to Eminem for his ‘rhymes that help get people
through tough times’.

Last but not least, no one could be blessed with more wonderful parents and family. I thank
them for their unconditional love and tireless support. his thesis is dedicated to them.

5

6

Contents

Abstract 3

Acknowledgements 4

1 Introduction 11

1.1 Objectives and Research Questions . 12
1.2 Summary of Contributions . 15
1.3 hesis Structure . 17

2 Background 19

2.1 Factored Markov Decision Processes . 19
2.2 Overview of Solution Methods . 22
2.3 Eõcient Solutions to Large FMMDPs . 31
2.4 Solution Bounds . 33
2.5 Summary . 35

3 Approximate Models for Spatial Task Allocation Problems 37

3.1 Spatially Distributed Tasks in Multiagent MDPs 38
3.2 Online Approximations . 40
3.3 Related Work . 46
3.4 Contributions . 47

4 Generalizing Locality in Multiagent Control 49

4.1 Factored Q-value Functions . 50
4.2 Sparse Coordination Factor Graphs . 53
4.3 Generalized Locality . 58
4.4 Related Work . 58

7

4.5 Contributions . 60

5 Bounded Approximate Methods for Sparse Coordination Discovery 61

5.1 he Link between Basis and Coordination Discovery 62
5.2 Basis Function Selection . 63
5.3 Basis Function Generation . 66
5.4 Experimental Evaluation . 74
5.5 Related Work . 97
5.6 Contributions . 99

6 he Li�ed Approximate Linear Program 101

6.1 Introduction . 102
6.2 Anonymous In�uence . 103
6.3 Eõcient Variable Elimination . 105
6.4 Exploiting Anonymity in the ALP . 113
6.5 Experimental Evaluation . 114
6.6 Related Work . 117
6.7 Contributions . 118

7 Conclusions and Future Work 121

7.1 Conclusions . 121
7.2 Future Work . 123

A Proofs 127

A.1 Proofs for Results in Chapter 6 . 127

B Evaluation Domains 131

B.1 he SysAdmin Domain . 131
B.2 he TaskNetwork Domain . 132
B.3 he Disease Control Domain . 133

Bibliography 136

8

Although this may seem a paradox, all exact

science is dominated by the idea of approximation.

BERTRAND RUSSELL (1872–1970)

10

Chapter 1

Introduction

Many problems of economic and societal interest in today’s world involve tasks that are inher-
ently distributed in nature. Whether it be the eõcient control of robotic warehouses or delivery
drones, distributed computing in the Internet of hings, or battling a disease outbreak in a city,
they all share a common setting where multiple, distributed agents collaborate to jointly solve a
larger task. he ability to quickly ûnd eòective solutions in such cooperativemultiagent systems

(MASs) forms an important prerequisite for real-world applications that require robustness and
�exibility to changes in tasks or availability of agents.

Eõcient solution algorithms that deliver on the full promise of MASs are still in their early
stages. In particular, they rely on agent coordination that is predeûned by the designer of the
MAS, are limited in agent or task numbers, or heuristic in nature without any strong guarantees
about their performance during deployment. Li�ing these restrictions on problem size and type
for general multiagent systems remains a largely unsolved problem. A fundamental reason for
this is that large MASs suòer from well-known negative complexity results as problem sizes and
agent numbers increase.

One major source of this complexity is due to the number of joint (i.e., global) system states
and actions which tend to increase exponentially with the number of agents. Consider, e.g., the
running example of a disease outbreak where 50 agents have to coordinate (binary) vaccination
choices at their respective location in order to inhibit the further spread of the disease. he global
action space is then spanned by 250 distinct action choices for the team, and eõcient vaccination
policies raise complex multiagent planning problems. Unless the particular problem has some
structure thatmay be exploited, solutions in such general, real-world settingswill therefore likely
remain approximate in nature.

In the decision-theoretic community, models like the Markov decision process (MDP) and
its partially observable extensions have both seenwidespread use to represent and solve complex

11

12 Chapter 1. Introduction

planning problems for single and multiple agents in stochastic worlds. hese models provide a
formalization of the domain in terms of states, actions, and rewards, and deûne the stochastic
patterns governing the world. An optimal behavior of the agents in a system state follows from
the maximum expected sum of rewards that a particular action aòords. Determining a (joint)
agent policy that optimizes this expected sum of rewards in every state is also known as solv-
ing theMDP. Value function representations are commonly used intermediaries that store these
sums directly for every state or state-action pair in order to allow the principled extraction of
agent policies. In general, however, solving an MDP, e.g. by obtaining the value function gov-
erning the process, suòers from the negative complexity results introduced above—both on the
representational side (of storing exponentially many states or state-action pairs) but in partic-
ular also on the computational side. Many exact and approximate solution methods therefore
attempt to exploit structure in the problem or value function under the assumption that local
interactions describe the global state (or, solution) well.

his thesis contributes to the understanding and eõcient exploitation of locality for the solu-
tion of general, cooperativemultiagentMDPs, ultimately aiming to expand the size and problem
classes for which MASs may be deployed. A fundamental underlying assumption of the thesis
is that the global solution of the overall system is amendable to approximation with sparsely
interacting (i.e., local) value function components. Locality takes on multiple interpretations
throughout the thesis, from the immediate spatial sense to more general sparsity properties of
the multiagent planning problem. A key result are computational methods for extracting sparse
agent coordination structures in general MASs automatically, while maintaining bounded solu-

tions compared to the optimal value function.
Many future applications will depend on eõcient decision support systems as complexity

of distributed MASs increases. Due to the sheer problem sizes, manual solutions by domain
experts are inherently limited in scale; the guiding vision of this thesis is therefore to develop
approximation architectures that allow the designer of a MAS a principled trade-oò between
complexity in agent coordination and solution quality. Our results enable bounded approximate
solutions to large multiagent control problems – e.g., disease control with up to 50 agents in
graphs with 100 nodes – for which previously only empirical results were reported.

1.1 Objectives and Research Questions

he main objective of this thesis is the detailed exploration of locality for computing eõcient,
generally approximate solutions to cooperative multiagent planning problems. hese systems

1.1. Objectives and Research Questions 13

have negative complexity results for the large state and action spaces usually associated with
many agents. While signiûcant eòort has gone into developing theoretical insight and scalable
solution methods for large planning problems over the past decade [40, 46, 51, 93], support for
large discrete action spaces (as naturally posed by MASs) remains challenging and is the topic
of ongoing research [15, 59, 84, 85].

Given the unfavorable complexity results associated with large MASs, many problem rep-
resentations attempt to exploit structure in the domain for eõciency gains. he factored MDP
(FMDP), along with its multiagent extension (FMMDP), provide a scalable method for rep-
resenting the transition and reward models compactly. his is achieved by making local de-
pendencies in state and action variables explicit in the transition and reward models, e.g., by
encoding the transition function as a dynamic Bayesian network [54]. hese representational
beneûts of “locality”, however, do not in general translate into gains during policy computation
[12, 55]. he ûrst research question therefore addresses the scalability of solution methods in the
context of factored multiagent settings:

Question #1: Are there novel forms of “locality” that permit scaling FMMDP solution

methods for cooperative MASs beyond the state-of-the-art?

“Locality” is intentionally le� general and approached in this thesis from three distinct direc-
tions. In its ûrst, most immediate form, locality refers to its spatial interpretation, in particular
in the context of stochastic task allocation problems modeled as FMMDPs. In these settings,
the overall system state is o�en only aòected locally by agents that are in spatial proximity to a
task. Our focus is on formalizing a problem class that makes explicit these dependencies and on
reviewing existing solution methods that exploit independence of agent movement and locality

of tasks in these models for eòective, albeit unbounded approximations.
Locality then takes on a second, more principled interpretation. Of particular interest are

characterizations that are not domain-speciûc (e.g., do not require a map or distance metric
deûned for the problem) and therefore apply to a wider class of factored multiagent planning
problems. One such interpretation is a general notion of locality of interaction between agents
that does not necessarily stem from spatial proximity. Interaction structures between agents arise
from the (approximate) decomposition of value functions into local components, each deûned
over subsets of state and action factors. Many exact and approximate solution methods attempt
to exploit such factorization of the value function for eõciency during planning [3, 36, 53, 69].
Multiagent settings in particular are known to suòer from an exponential increase in value com-
ponent sizes as interactions becomedenser, meaning that approximation architectures are overly

14 Chapter 1. Introduction

restricted in the size and problem types they may address. One key research direction is there-
fore how ûnding and exploiting sparsity properties in agent interaction structures can enable
approximate solution algorithms for MASs to scale.

hird, locality can refer to the eõcient summarization of local eòects in both single- andmul-
tiagent planning problems. Consider again the running example of controlling a disease process
over a graph where summary statistics, such as the number of infected neighboring nodes, may
enable computational eõciencies during planning. Exploring this observation for purposes of
scaling up F(M)MDP solution methods deûnes another research objective spawned by ques-
tion #1.

Question #2: How can interaction structures that specify coordination between coop-

erative agents in an FMMDP be determined automatically?

Supporting diòerent interaction structures between agents introduces a burden on the de-
signer of theMAS, who has to decide which choice of agent coordination is eòective in a partic-
ular problem setting. Because of the complexity of largeMASs, the manual speciûcation of such
structures is not only unsatisfactory (due to the requirement of a domain expert) but also lim-
ited in scale. One research goal is therefore to investigate computational methods for automated
coordination discovery between agents.

By making explicit the link between basis function choice and induced coordination struc-
ture, basis selection or generation methods apply in principle [57, 74, 76, 81, 82]. However, multi-
agent planning methods that scale to large state and action spaces place unique constraints on
the basis function form in order to implement sparsity in agent interaction or to impose lim-
its on the value function component sizes. A key research focus is thus the eõcient search for
basis functions that give rise to locally-scoped value function components that approximate the
global value function well. Ideally, this search is conducted in a principledmanner by a decision
support system that not only draws on empirical evidence but supports performance guarantees
of the discovered interaction structures.

Question #3: How can bounds on the FMMDP solution resulting from a particular

agent interaction structure choice be derived?

he search for agent coordination is generally driven by a trade-oò between the desire for
sparsity (e.g. due to computational limits in solving the joint agent policy or the goal to mini-
mize agent communication overhead at runtime) and solution quality. Many algorithms address

1.2. Summary of Contributions 15

this trade-oò with domain-speciûc heuristics or implement unbounded approximations to the
optimal value function, without strong guarantees on policy performance.

Of particular interest, however, are methods that maintain bounds on the value function er-
ror to oòer stronger guarantees than only empirical evidence. A key research focus therefore
falls on domain-unspeciûc methods that enable bounded, approximate solutions to large fac-
tored planning problems. Bounded solutions will allow the MAS designer to make an educated
trade-oò between exact performance guarantees and complexity of agent interaction.

1.2 Summary of Contributions

he thesis contributes to the state-of-the-art in solution methods for large multiagent planning
problems by:

1. Formalizing the concept of “locality” in the context of FMMDPs that model spatial task alloca-

tion problems.

We formalize a general subclass of FMMDPs that model spatial task allocation problems

(SPATAPs). SPATAPs are characterized by the spatial distribution of tasks over a map, the
fact that tasks appear stochastically from exogenous events, and that a cooperative team of
agents has to coordinate to address them eòectively. he presented model exploits locality

for avoiding any exponential dependencies on joint states or actions at the representational
level. To illustrate the case for how domain-speciûc algorithms may exploit locality during
solution, we review online, distributed planning methods for multiagent teams that resolve
coordination in a decentralized fashion to tackle otherwise prohibitively large task assign-
ment problems. All presented models remain unbounded approximations to the original
SPATAP. he SPATAP model was co-developed by the thesis author; the reviewed class of
subjective approximations are due to the other co-authors in [18].

2. Providing novel theoretical insights on sparsity in multiagent interaction that enable the exact
computation and manipulation of the Bellman residual in large FMMDPs.

he concept of “locality” is extended beyond the mere spatial sense to address a wider class
of FMMDPs. Locality here refers to a general sparsity property in the interaction between
agents that does not necessarily stem from spatial proximity. A novel theoretical result shows
how the concept of sparse agent interaction permits the computation of the exact Bellman
residual. An “action-connectivity” property is introduced that provides a suõcient condi-
tion for the Bellman residual to remain factored in MASs with large state and action spaces.

16 Chapter 1. Introduction

Based on this insight, eõcient computations for Bellman error and marginals over subsets
of variables are derived.

3. (Based on 2:) Developing computational methods for the eõcient discovery of interaction struc-

tures between agents that i) retain sparsity, ii) iteratively improve on the solution bound to the

optimal value function, iii) apply to general FMMDPs.

At the core of this contribution are novel computational methods for automatic coordination
discovery between agents in large FMMDPs, together with theoretical insights about the im-
plied bound to the optimal solutionV∗. A general assumption of the developed approximate
methods is that there exists some form of sparse interaction between agents that—if found—
allows to approximate the global value function well. Based on this we phrase the search for
coordination as basis selection (through regularization) and as a principled basis discovery
method. Previous work introduced Bellman error basis functions (BEBFs) for basis expan-
sion in uncontrolled settings (e.g., policy evaluation in reinforcement learning [31, 76]). We
adapt this work to the full policy computation problem in the context of the approximate lin-
ear programming (ALP) solution to FMMDPs. A novel theoretical insight shows which basis
function yields a guaranteed reduction of the error bound of the ALP solution in principle
(referred to as the BEBF∗). To retain sparsity in agent coordination, eõcient approximations
to the BEBF∗ are developed (using results from contribution 2) and implemented as an itera-
tive basis expansion scheme from least tomost complex. Basis discovery is shown to improve
the bound to V∗ monotonically (in a ≤ sense) and alleviates the need of a domain expert to
specify a basis. Agent coordination follows as a by-product of achieving a desired bound
on the solution to the FMMDP; this permits the designer of a MAS to trade-oò complexity
in coordination with solution guarantees where warranted. Our evaluation scales bounded
solutions to problem sizes for which previously only empirical results were known.

4. Providing theoretical and algorithmic insights of how “anonymity” in large propositional do-

mains can be exploited during (exact) variable elimination for computational gain and scale.

he coordination discovery algorithms from contribution 3 retain the requirement that vari-
able elimination (VE) may be carried out eõciently in the factor graph underlying the FM-
MDP.We present a novel concept of “anonymity” in propositional domains where only local

eòects of a set of variables, rather than their identity, are required to describe the domain
exactly (albeit more compactly). his is naturally the case for stochastic propagation models
over graphs (e.g. in models for disease or forest ûre propagation). We show how under en-
forcement of a variable consistency property during elimination, VE computes the identical

1.3. Thesis Structure 17

result on the compressed factor graph. A novel theoretical result is proven that shows how
under the same consistency property, “shattering” into disjoint variable counter scopes can
be avoided so that VE retains compact representations during elimination. While related to
“generalized counts” in ûrst-ordermodels [68, 89], ourmethods are novel as they summarize
eòects of variables that are not necessarily indistinguishable in the problem. In the running
example of the disease control graph, nodes have a unique identity based on their distinct
connections in the factor graph, but may exert “anonymous in�uence” together with other
nodes on a target variable.

5. (Based on 4:) Addressing the issue of scale for a class of large FMMDPs that model the control

of dynamic processes on graphs, by virtue of exploiting “anonymity” properties in the problem.

he concept of “anonymity” from contribution 4 is extended beyond variable elimination to
the ALP solution method for factored single- or multiagent MDPs (referred to as the li�ed

ALP). We show how anonymity (i.e., aggregate counts over variable sets) at the represen-

tational level of the FMMDP translate into a compressed set of constraints that represent
the original ALP formulation exactly. his algorithmic contribution has a natural applica-
tion in a class of problems that control stochastic dynamics over large graphs. We show that
anonymity properties in this domain translate into computational gains for the ALP solu-
tion method that allow to scale linear programming to factored MDPs that were previously
unsolvable in practice with existing algorithms. Our results are shown for disease control
domains over graphs with 50 nodes and dense neighbor connectivity.

1.3 Thesis Structure

Chapter 2 provides the necessary background on factored planning problems and their eõcient
solution methods. Known theoretical results (e.g., solution bounds) are also shown. Chapter 3
then sets the stage for the general theme of this thesis by exploiting locality (in its immediate,
spatial sense) for modeling and solving spatial task allocation problems (contribution 1). We
then proceed to generalize locality beyond its spatial sense to general forms of sparse interaction
in FMMDPs. Chapter 4 provides the theoretical foundations for eõcient computation and ma-
nipulation of the Bellman residual in sparsely “action-connected”MASs (contribution 2). Based
on these results, Chapter 5 presents a key contribution of this thesis with computationalmethods
for coordination discovery thatmaintain bounded solutions (contribution 3). Chapter 6 exploits
locality in a class of problems that support eõcient representation with “anonymous in�uence”.

18 Chapter 1. Introduction

We present novel theoretical and computational results for exploiting anonymity during gen-
eral variable elimination (contribution 4) and the ALP solution to FMMDPs (contribution 5).
Chapter 7 discusses our contributions and suggests further work.

Chapter 2

Background

his chapter reviews the fundamental background on decision-theoretic planning that forms
the basis for the theoretical insights and solution algorithms developed in the remainder of the
thesis. In the decision-theoretic view of the planning problem, a solution corresponds to a course
of action (or, a policy) that maximizes expected utility in a stochastic world. Such problems of
planning sequential actions under uncertainty have a natural formulation as a Markov decision
process (MDP). In the following, we present a concise overview of MDPs, their factored and
multiagent extensions, and introduce their basic exact and approximate solution methods. Spe-
cial focus is then given to the approximate linear programming solution to multiagent MDPs
due to its favorable scale in domains with large (factored) state and action spaces. Concluding
the chapter is a summary of existing theoretical results for error analysis of the MDP solution.
For a more in-depth treatment of these topics, the reader is referred to [50, 83].

2.1 FactoredMarkov Decision Processes

he Markov decision process framework formalizes the planning problem in terms of states,
actions, and rewards, along with the stochastic processes governing the world. Future world
states follow a known probability distribution determined by the current world state and the
(joint) action of one or multiple decision makers (or, agents). Roughly speaking, the goal is to
control the system over extended interactions towards desirable states, as described by a numer-
ical reward measure. Solving the planning problem corresponds to computing a (joint) policy
that optimizes some function of the rewards (e.g., expected sum or average of rewards when
executing the policy in the world).

An important property underlying theMDP is theMarkov assumption (or memoryless prop-

erty) which deûnes that the current state alone represents a suõcient statistic for acting opti-

19

20 Chapter 2. Background

mally in the world. Stated diòerently, future world states depend only on the current state and
the joint action executed by the agents at the current time step. While, in general, the MDP
framework supports continuous or inûnite state and action spaces, we restrict our attention to
the discrete ûnite-state and ûnite-action settings with both single andmultiple decisionmakers.

2.1.1 Single-Agent Models

Deûnition 1. A Markov decision process (MDP) is deûned by the tuple ⟨S ,A, T , R, γ⟩, where

S = {s1, . . . , s∣S∣} andA = {a1, . . . , a∣A∣} are the ûnite sets of states and actions, T the (Markovian)

transition probability function specifying P(s′ ∣ s, a), R ∶ S×A ↦ R the reward function describing

the immediate reward for executing an action in a given state, and γ ∈ [0, 1] a discount factor.

Factored MDPs (FMDPs) exploit structure in the state space S and deûne system state s by
an assignment to the state variables X = {X1, . . . , Xn} instead. he global state space is then
spanned by the state variables, i.e., S = Xi × . . . × Xn. Transition and reward function decom-
pose into a two-slice temporal Bayesian network (2TBN) consisting of independent factors, each
described by their scope-restricted conditional probability distributions (CPDs) [54]. Under a
particular action a ∈ A the system described by a factored MDP transitions as:

P(x′ ∣ x, a) =∏
i

P(x′i ∣ x[Pa(X′

i)], a) (2.1)

where Pa(X′

i) denote the parent nodes of X′

i in the 2TBN and the term x[Pa(X′

i)] refers to the
value of the parent variables extracted from the current state x. A similar (additive) factorization
holds for the reward function given state x and action a:

R(x, a) =
r
∑
i=1

Ri(x[Ci], a) (2.2)

where each Ri is deûned over some subset of state factors Ci ⊆ {X1, . . . , Xn}. As shown in
Figure 2.1, this yields one 2TBN per action in the single-agent case. An MDP utilizing factored
transition and reward models is called a factored MDP [12].

2.1.2 Collaborative Multiagent Models

BothMDPs and FMDPS have a natural extension to collaborative multiagent settings which are
the main focus of this thesis.

2.1. Factored Markov Decision Processes 21

X1

X2

X3

X4

t

X′1

X′2

X′3

X′4

t + 1

R1

R2

R3

R4

X1

X2

X3

X4

t

A1

A2

A3

X′1

X′2

X′3

X′4

t + 1

R1

R2

R3

R4

Figure 2.1: Le�: Representation of transition and reward models of an example factored MDP (FMDP)
as a two-slice temporal Bayesian network (2TBN). Right: A 2TBN representation of the collaborative
factored multiagent MDP (FMMDP) with three agents, where parent node sets Pa(X′i) include both
state and action variables. Note that in the single-agent case, each action is associated with a unique
2TBN whereas the collaborative multiagent setting is fully described by a single 2TBN which includes
action factors with local eòects (formally a dynamic decision network).

Deûnition 2. A Multiagent Markov decision process (MMDP) is deûned by the tuple ⟨D,S ,A,
T , R, γ⟩, where D = {1, . . . , g} is the set of g agents, S a ûnite set of states s of the environment,

A = A1× ⋅ ⋅ ⋅×Ag the set of joint actions a = ⟨a1, . . . , ag⟩, T the (Markovian) transition probability

function specifying P(s′ ∣ s, a), R(s, a) the immediate reward function, and γ ∈ [0, 1] a discount
factor.

In the MMDP model, agents observe the full state of the environment, and transition and
reward dynamics depend on the global state and joint actions of all agents. Collaboration arises
from the fact that all agents share the identical reward function R.

Multiagent settings suòer from state and action spaces that generally grow exponentially
with the number of agents. Representing global transition and reward functions with a tabu-
lar encoding is quickly rendered prohibitive in large multiagent domains. Factored Multiagent

MDPs (FMMDPs) address this challenge by exploiting structure at the representational level of
the decision process. An MMDP is called factored if its state and action spaces are spanned
by a set of variables. For simplicity of notation, we assume one action variable per agent such
that A = {A1, . . . ,Ag} and X = {X1, . . . , Xn} span joint action and state spaces A and S , re-
spectively. he decomposition over the action space A further allows the direct representation
of the “locality of interaction” that commonly arises in many realistic multiagent settings [39].

22 Chapter 2. Background

In particular, in the class of collaborative FMMDPs underlying this thesis, action variables may
only aòect a subset of state variables at the next time step [36]. By exploiting this decomposition
of (generally exponential) state and action spaces, the collaborative FMMDP yields a tractable
representation that introduces action variables into the 2TBN (see Figure 2.1). he global tran-
sition function experiences a factorization over local terms that depend only on subsets of state
and action variables:

P(x′ ∣ x, a) =∏
i

P(x′i ∣ x[Pa(X′

i)], a[Pa(X′

i)]) (2.3)

where Pa(X′

i) now include state and action variables and each local CPD is only deûned over
their relevant subsets. Collaborative FMMDPs further assume that each agent observes part of
the global reward and is associated with (restricted scope) local reward function Ri , such that
the global reward factors additively as:

R(x, a) =
g

∑
i=1

Ri(x[Ci], a[Di]) (2.4)

for some subsets of state and action factors Ci andDi , respectively.
Additional representational eõciencies may be realized by exploiting other forms of struc-

ture that possibly exist in the decision process. Context-speciûc independence in the model, for
example, can be exploited by choosing decision trees or algebraic decision diagrams for com-
pactly encoding CPDs and reward functions [46].

2.2 Overview of SolutionMethods

In this section we provide a concise treatment of relevant exact and approximate solutionmeth-
ods for (factored) MDPs. We begin by deûning the single- or multiagent control problem as
determining a (joint) policy π that optimizes some optimality criterion involving the rewards.
Addressing the control problem is equivalently referred to as solving the decision process or the
planning problem.

A ûxed, deterministic policy π ∶ S ↦ A is a function that maps each state s ∈ S to an action
a ∈ A. For all solution methods considered in this thesis—apart from those in Chapter 3—we
consider the expected inûnite-horizon discounted return as the optimality criterion, deûned by:

Eπ [
∞

∑
t=0

γ
t
rt] (2.5)

2.2. Overview of Solution Methods 23

where Eπ is the expectation of the sum of exponentially discounted rewards obtained by exe-
cuting policy π in the stochastic world and γ ∈ [0, 1) ensures that this sum is ûnite. Chapter 3
considers an alternative criterion, Eπ [∑h

t=0 rt], commonly referred to as the expected undis-

counted return obtained over ûnite (planning) horizon h. An optimal policy π∗ maximizes the
selected optimality criterion for any system state s ∈ S and returns the action that achieves the
maximum expected return in a given state. A well-known result states that for any MDP there
exists at least one optimal policy that is ûxed and deterministic [83]. We will therefore only
consider such policies in this thesis.

In cooperative multiagent settings, π ∶ S ↦ A is the joint policy for the entire agent team,
deûned over joint states s ∈ S and joint actions a ∈ A of the MMDP, and can be written as:

π = ⟨π1, . . . , πg⟩ (2.6)

where πi ∶ S ↦ Ai denotes the local policy of agent i, still deûned over joint states s ∈ S . Since
the reward function is shared by all agents, π optimizes the total payoò achieved jointly by all
agents. In all but degenerate cases, a good joint policy has to take the eòects of agents on each
other into account to achieve high return in the domain.

Solution methods for the MDP planning problem can be divided along multiple axes. One
may broadly distinguish between exact and approximate solutions and within each class fur-
ther separate algorithms that use value functions from those that use other representations of
the solution. Another division is between online optimization for the current state only versus
oøine computation of the solution for all states s ∈ S . he focus of this thesis is on exact and
approximate value-basedmethods and our review considers common solution methods in this
class. Complementary reviews of other methods, such as search in (restricted) policy space,
are e.g. covered in [50]. hroughout our discussion, the focus is on the planning problem where
models of the decision process are available; an introduction to the ûeld of reinforcement learning
(RL) where accurate models are generally unavailable can be found in [97].

2.2.1 Value Functions and Bellman Equations

Value functions provide a link between optimality criterion and solution to the decision pro-
cess. hey directly store the expected return for every state or state-action pair, thereby allow-
ing the principled extraction of agent policies. In the following, we assume the inûnite-horizon
discounted optimality criterion from Equation 2.5 and generally use factored state and action
spaces in our presentation.

24 Chapter 2. Background

he (state) value function V π associated with policy π records the expected return when
starting in state x and following π a�er:

V
π(x) = Eπ [

∞

∑
t=0

γ
t
rt ∣ x0 = x] . (2.7)

Value functions possess certain recursive properties. Formally, V π(x) is the unique ûxed
point to the Bellman equation:

V
π(x) = R(x, π(x)) + γ∑

x′
P(x′ ∣ x, π(x))V π(x′). (2.8)

One may similarly consider the state-action value function Qπ which records the expected
return when executing action a in x and following π therea�er:

Q
π(x, a) = R(x, a) + γ∑

x′
P(x′ ∣ x, a)V π(x). (2.9)

he goal of solving an MDP is to ûnd the best solution, i.e. an optimal policy π∗ that maxi-
mizes the return from every state:

π
∗(x) ≜ argmax

a
Q

π∗(x, a) ∀x ∈ X. (2.10)

he optimal value function V π∗ ≜ maxaQπ∗(x, a) corresponding to π∗ can be shown to be
the ûxed point to the Bellman operator T ∗:

Deûnition 3 (Bellman operator). he Bellman operator T ∗ for any value function V is deûned

as:

T ∗V(x) ≜ max
a

[R(x, a) + γ∑
x′

P(x′ ∣ x, a)V(x′)] (2.11)

he optimal value function V π∗ is the unique ûxed point to T ∗, i.e., V π∗ = T ∗V π∗ .

Both V π∗ and Qπ∗ are commonly written as V∗ and Q∗. An optimal policy π∗ acts greed-

ily with respect to an optimal value function. In the state value function case, acting greedily
requires a one-step look-ahead to consider all possible transitions from the current state:

π
∗(x) = Greedy(V∗)(x) ≜ argmax

a
[R(x, a) + γ∑

x′
P(x′ ∣ x, a)V∗(x′)] . (2.12)

State-action value functions are useful since the greedy policy Greedy(Q∗) follows directly from

2.2. Overview of Solution Methods 25

Equation 2.10 without the additional enumeration over successor states. It is important to note
that, in general, structure in the transition or reward functions of a factored (M)MDP does not
imply structure in the value function since “scopes of in�uence” of state and action factors tend
to grow as the 2TBN is unrolled over time [55].

2.2.2 Exact SolutionMethods

he Bellman operator T ∗ in Equation 2.11 corresponds to a system of non-linear equations (∣S∣
equations in ∣S∣ unknowns) and can be solved as such in principle. Commonly used in prac-
tice are methods that employ linear programming or are implemented as iterative, dynamic
programming-based algorithms. he issue of scale has to be considered for large (e.g., multia-
gent) planning problems since exact solutions share polynomial (worst-case) time complexity
in states and actions [12]. More fundamentally, mere representation of the policy for exponen-
tial state spaces is generally prohibitive giving rise to the approximate solutions reviewed in the
following section.

Linear Programming

he (exact) linear programming (LP) solution to MDPs implements the non-linear Bellman
operator with ∣S∣ variables—one per state value V∗(x)—and ∣S∣∣A∣ linear constraints [83]:

min
V∗(x)

∑x α(x)V∗(x)

s.t. V∗(x) ≥ R(x, a) + γ∑x′ P(x′ ∣ x, a)V∗(x′) ∀x, a
(2.13)

where all variables V∗(x) are unbounded. Note that each max in Equation 2.11 is transformed
into ∣A∣ linear “greater than or equal” constraints in the exact LP. he optimal solution is com-
puted for any choice of positive state relevance weights α(x).

Value and Policy Iteration

Value and policy iteration are iterative, dynamic programming (DP)-based solution methods to
the planning problem.

Policy iteration starts with an (arbitrary) initial policy π0 and iterates policy evaluation (com-
putingV πk) and policy improvement (assigning πk+1 = Greedy(V πk)) until convergence, i.e., un-
til πk+1 = πk. Policy iteration can be shown to converge to the optimal policy π∗ from any initial
policy π0 [83]. Value iteration uses the Bellman operator T ∗ directly and turns the right-hand

26 Chapter 2. Background

side of Equation 2.11 into an update rule that is iterated until the ûxed point is achieved. Simi-
larly to policy iteration, value iteration can be shown to converge to the optimal value function
V∗ in the limit from any initial value function choiceV 0. he optimal policy π∗ is then obtained
as Greedy(V∗).

Structured DP

Representational beneûts, e.g. in factored MDPs, do not in general translate into gains during
policy computation [55]. Structured DP approaches are versions of classical value and policy
iteration that assume structure also in the solution (i.e., at the policy or value function level). In
practice, descriptions such as trees or rules are used for compact representation and eõcient
operators that directly manipulate these structures form the basis of a class of structured (or
symbolic) solution algorithms.

Compact descriptions can be viewed as implementing a form of state aggregation where
multiple states with similar value or policy outcome are summarized within a particular rule
or branch of the tree. Particularly compact are algebraic decision diagrams (ADDs) which cor-
respond to tree structures that can share subtrees. he Spudd algorithm operates directly on
ADDs and has demonstrated scalability to domains with large factored state spaces [46].

Exact structured approaches suòer from a lack of guarantees that the representation of the
solution remains compact. Additionally, they generally do not address large structured action
spaces in multiagent settings (notable exceptions being [84, 85]).

2.2.3 Approximate SolutionMethods

Exact solution methods are quickly rendered intractable as the sizes of state and action spaces
increase. Approximate methods are therefore fundamental to scale solutions to general multia-
gent planning problems that underlie this thesis.

A commonly employed class of approximate solution methods is (parametric) value func-
tion approximation which ûxes the structural description of the value function and reduces the
planning problem to one of parameter estimation. Unlike the exact structural DP methods in-
troduced previously, the value function is therefore guaranteed not to grow without limit and to
retain a tractable representation stemming from the choice of the function approximator. his
thesis focuses in particular on the linear family of value function approximators which has fa-
vorable theoretical guarantees, eõcient solution methods for large multiagent settings, and is
well-validated in practice [36, 97].

2.2. Overview of Solution Methods 27

In recent years, online, sample-based planning methods that repeatedly estimate the value
for the current system state have also demonstrated scalability to domains with large state spaces
[48, 51]. hey reduce planning complexity by sampling from the model of the decision process,
avoiding the exhaustive enumeration of the state space. Sample-based planning has also been
joined successfully with value function approximation in hybrid architectures (e.g., [93]).

Linear Function Approximation

A particular class of linear value functions consists of those that can be written as a linear com-
bination of pre-speciûed (possibly non-linear) basis functions.

Deûnition4 (Linear value function). A linear value functionV given basis function choice h1, . . . , hk

and associated parameters w1, . . . ,wk can be written as:

V(x) = ∑
i
wihi(x). (2.14)

A linear value function can also conveniently be expressed in vector notation as V = Hw for
parameter vectorw = (w1 w2 . . . wk)T andH, the ∣X∣ ⋅ k matrix of basis functions, deûned as:

H =

⎛
⎜⎜⎜⎜⎜
⎝

∣ ∣ ∣

F1 F2 ⋯ Fk

∣ ∣ ∣

⎞
⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜
⎝

— fT1 —

⋮

— fT
∣X∣ —

⎞
⎟⎟⎟⎟⎟
⎠

.

Here, basis functions hi span the columns of matrix H, i.e. hi ≜ Fi , so that each column
vector has ∣X∣ elements. Equivalently, each row fTj in the matrix denotes the features assigned
to state x j by each of the basis functions h1, . . . , hk. In general, k ≪ ∣X∣ so that the number of
parameters deûning the value function is reduced compared to the direct, tabular enumeration
of state values over the entire state space.

Linear function approximation (LFA) applied to arbitrary value functions approximates the
true value function V as a linear one for some choice ofH and w, i.e., V(x) ≈ V̂(x) = Hw. LFA
therefore consists of two separate steps, namely the speciûcation of a suitable basis (or, equiva-
lently, feature set)H, as well as the determination of parameter vectorw that jointly yield a close
approximation to the true value function. While H is frequently assumed given by a domain
expert, diòerent methods exist to compute w. Our focus is on the approximate linear program-
ming solution since it has a particularly eõcient form even for domains with exponential state
and action spaces, as will be covered later in Section 2.3.

28 Chapter 2. Background

Approximate Linear Programming

he approximate linear programming (ALP) solution to MDPs computes the best linear value
function approximation (in a weighted L1-norm sense) V̂ to the optimal value function V∗ in
the space spanned by the given basis functions H [83]. For an inûnite-horizon discountedMDP
and given basis choice h1, . . . , hk, the ALP formulation optimizes parameter vector w as per the
following objective and constraints:

min
w

∑x α(x)∑i wihi(x)

s.t. ∑i wihi(x) ≥ [R(x, a) + γ∑x′ P(x′ ∣ x, a)∑i wihi(x′)] ∀x ∈ X,∀a ∈ A

wi unbounded ∀wi

(2.15)

Let Q̂(x, a) = R(x, a)+γ∑x′ P(x′ ∣ x, a)V̂(x′) denote the usual deûnition of the state-action
value function but now including linear state value function approximation V̂ . hen the ALP
constraints merely encode the inequalities:

V̂(x) ≥ Q̂(x, a) ∀x ∈ X,∀a ∈ A

⇒ V̂(x) ≥ maxa Q̂(x, a) ∀x ∈ X

⇒ V̂(x) ≥ T ∗V̂(x) ∀x ∈ X

(2.16)

for approximate state and state-action value functions V̂ = Hw and Q̂(x, a), respectively. Unlike
the case for the exact LP, the solution to the LP in equation 2.15 depends on the chosen state rel-
evance weights α(x), essentially encoding how “tight” the value function approximation should
hold at a particular state x (see, e.g., [28] for details). Analogous to [40], state relevance weights
are assumed uniform throughout the thesis.

Lemma 1 (ALP Feasibility). he ALP in equation 2.15 is guaranteed feasible if the constant basis

function h0(x) = 1 ∀x ∈ X is included among the basis functions and the reward function R is

bounded by Rmax.

Proof. We show feasibility with one valid solution. Let wi≠0 = 0 and w0 denote the weight

2.2. Overview of Solution Methods 29

associated with h0. he ALP then corresponds to:

min
w0

∑x α(x)w0h0(x) = w0∑x α(x)

s.t. w0 ≥ [R(x, a) + γw0∑x′ P(x′ ∣ x, a)] ∀x ∈ X,∀a ∈ A

⇒ (1 − γ)w0 ≥ R(x, a) ∀x ∈ X,∀a ∈ A

⇒ w0 ≥ Rmax/(1 − γ)

It follows that w0 = Rmax/(1 − γ) and wi≠0 = 0 is a valid solution of the ALP. ◻
Note, however, that this solution to the value function is hardly a useful one as it assigns the

identical (optimistic upper bound) value w0 to every state x ∈ X.

he approximate linear program computes a solution in time polynomial in S and A but
both are exponentially large for general MASs. In Section 2.3 we return to the ALP and review
a particularly eõcient constraint generation method without any exponential dependencies in
either state or action spaces.

Sample-based Planning

Unlike the solution methods introduced previously, sample-based planning does not compute
a value-function approximation for the entire state space but instead continuously computes a
value estimate for the current state only. In the planning setting considered in this thesis, value
estimates are generated from full trajectories (or roll-outs) from the current state x0 by sampling
from the given MDP model. Solution methods in this class are therefore also referred to as
simulation-based search.

One can broadly distinguish between methods that evaluate a given policy π (cf . Equa-
tion 2.7) and those that approximate the optimal value (and optimal action π∗(x0)) in the current
state. In both cases, simulation-based solutions avoid the exhaustive enumeration of the state
space S (which may be exponentially large) and instead only utilize samples of successor states
for value estimation.

Monte Carlo (MC) simulation is one central algorithm for evaluating Qπ(x0, a), the mean
return of all simulations in which a was selected in x0, under a ûxed simulation policy π. Fol-
lowing the notation in [30], the MC equation is given by:

Q
π(x, a) = 1

N(x, a)
N(x)

∑
i=1

Ii(x, a)Ri (2.17)

30 Chapter 2. Background

where Ri is the return of the ith simulation, N(x) denotes the total simulations from root x,
Ii is an indicator function returning 1 iò a was selected in x during the ith simulation, and
N(x, a) = ∑N(x)

i=1 Ii(x, a) counts the total number of simulations in which a was selected in x.
Via the Chernoò bound one can derive the number of required samples per action such that
Qπ(x0, a) is є-accurate with probability at least 1 − δ, independent of the size of the state space.
MC does not possess the characteristics of an anytime algorithm that monotonically improves
on the estimate: the Q-value function estimate is only accurate in the limit of inûnite samples
[97].

For optimal value and policy estimation, (top-down) Monte Carlo Tree Search (MCTS) and
real-time dynamic programming (RTDP) algorithms have enjoyed wide popularity in recent
years [7, 48, 51, 92]. MCTS methods use MC simulation to evaluate the nodes of a search tree
and continuously improve the simulation policy π based on the tree. In its most basic form,
MCTS is sequentially best-ûrst, selecting actions greedily within the tree (referred to as the tree

policy) and randomly for unseen states until completion. A�er each simulation, each visited
node (or, alternatively, only the ûrst unseen node) is added to the tree. A number of methods
exist which vary in how they choose actions at each state in their search (an overview can be
found in [44]).

A frequently employed criterion for action choice is to focus sampling on themost promising
actions based on upper conûdence bounds on their return value: the UCT algorithm replaces
uniformMCTSwith a tree policy πucb that implements this criterion for trading-oò exploration
and exploitation in the search tree in a principled way [51]:

πucb(x, d) ≜ argmax
a

Q(x, a, d) + Cp

¿
ÁÁÀ logN(x, d)

N(x, a, d) (2.18)

for Q(x, a, d), the current MC value of node (x, d) at depth d in the tree, counters N(⋅) de-
noting the respective visit or action counts for that node, and assuming normalized payoòs in
[0, 1]. he upper conûdence bound (UCB) action-selection criterion has a principled motiva-
tion in the theory of multi-arm bandits with stochastic rewards. Adapted to trees, UCT has
been shown to be a consistent algorithm, i.e. the probability of selecting a non-optimal action
converges to 0 at polynomial rate as the number of trajectories grows to inûnity [51]. In the
worst case of very delayed rewards, however, the trajectory number until є-optimal behavior is
found is hyperexponential in the horizon [19].

In summary, sample-based planning methods can address scale in ∣S∣ but generally require

2.3. Efficient Solutions to Large FMMDPs 31

continuous replanning from every state (although hybridmodels that retain “memory” through
value function approximation have appeared in the literature [13, 93]). Further, uct must select
each action at each node at least once before the tree policy πuct is well-deûned. his is pro-
hibitive in multiagent settings where ∣A∣ is exponential in the number of agents, requiring the
development of additional approximations (e.g., [3, 20]).

2.3 Eácient Solutions to Large FMMDPs

As illustrated above, coordinating a team of agents to maximize a shared performance measure
(the long-term reward) is challenging because of exponential state and action space sizes. his
applies at a computational level but more fundamentally also at a representational level since
the exhaustive enumeration of all possible actions (for tabular storage or for retrieving the best
action in the current state) is generally infeasible. Factored value functions—which are deûned
over local factors—oòer a solution to these challenges and form a core approximation architec-
ture for the complex multiagent systems considered in this thesis.

2.3.1 Factored Value Functions

Value function factorization assumes that smaller, localized value function components approx-
imate the true value function well [36, 53]. his approach represents the global value function as
a linear combination of locally-scoped terms, each of which addressing a part of the system and
each covering potentially multiple, even overlapping, state factors. Following [36], we formalize
the concept of a factored (linear) value function:

Deûnition 5 (Factored value function). A linear value function V given basis function choice

h1, . . . , hk and associated parameters w1, . . . ,wk is called factored if each basis function hi is scope-

restricted to some subset of variables. It can therefore be written as:

V(x[C]) =
k
∑
i=1

wihi(x[Ci]) (2.19)

where Ci ⊆ X and C ⊆ X denote (distinct) subsets of state factors.

Factored value functions address the representational challenge since they are deûned over
locally-scoped terms. hey are further also key to eõcient computation: for a given basis choice
h1(c1), . . . , hk(ck), there exists an approximate solution method based on the ALP that retains
no exponential dependencies in ∣S∣ and ∣A∣ [39, 40]. In the following, when it is clear from the

32 Chapter 2. Background

context that factored value functions are used, we may omit individual function scopes Ci for
clarity in presentation.

2.3.2 Eácient Constraint Generation

Compared to the exact LP, the approximate linear programming (ALP) solution to general (mul-
tiagent) MDPs reduces the number of variables from ∣X∣ to the size of the basis function set.
However, it still retains exponentiallymany constraints from the exhaustive enumeration of state
and action spaces (cf . Equation 2.15). Guestrin et al. devise an eõcient method to represent ex-
ponentially many constraints that applies if the basis functions have local scope and the tran-
sitions and rewards are factored [40]. he ûrst realization is that backprojections of the local
basis functions through the 2TBN transition model retain local scopes, such that the exhaustive
enumeration of successor states x′ in each constraint can be avoided:

V̂(x) ≥ R(x, a) + γ∑x′ P(x′ ∣ x, a)∑i wihi(x′[Ci]) ∀x ∈ X,∀a ∈ A

= R(x, a) + γ∑i wi∑x′ P(x′ ∣ x, a)hi(x′[Ci]) ∀x ∈ X,∀a ∈ A

= R(x, a) + γ∑i wi∑c′i
P(c′i ∣ x, a)hi(c′i) ∀x ∈ X,∀a ∈ A

= R(x, a) + γ∑i wi gi(x, a) ∀x ∈ X,∀a ∈ A

(2.20)

where each term possesses local scope so that backprojections gi are computed eõciently. Note
that functions gi are themselves again deûned over local scopes which are determined by the
parents of variables Ci in the 2TBN (omitted for clarity).

he second insight is that the exponentially many constraints can be reduced to a single non-
linear constraint that, in turn, has an equivalent implementation with a small, non-exponential
set of linear constraints [40]:

V̂(x) ≥ R(x, a) + γ∑i wi gi(x, a) ∀x ∈ X,∀a ∈ A

⇒ 0 ≥ R(x, a) + γ∑i wi gi(x, a) −∑i wihi(x) ∀x ∈ X,∀a ∈ A

⇒ 0 ≥ R(x, a) +∑i wi[γgi(x, a) − hi(x)] ∀x ∈ X,∀a ∈ A

⇒ 0 ≥ maxx,a [∑r Rr(x, a) +∑i wi[γgi(x, a) − hi(x)]]

(2.21)

Every term on the right-hand side in the last row of Equation 2.21 has local scope (not shown)
so that the maximization can be performed eõciently, akin to variable elimination in Bayesian
networks. It follows that the non-linear max constraint has an exact implementation with a
small set of linear constraints, removing any remaining dependencies on the exponential state

2.4. Solution Bounds 33

and action spaces from the linear program [36]. he total number of resulting linear constraints
is only exponential in the largest clique formed during variable elimination.

Representation in General Form

Popular linear programming references (e.g., [10]) commonly represent LPs in a particular ma-
trix representation, referred to as the general LP form. It is instructive to show how the ALP
with factored value functions can be represented using the same notation. We ûrst note that
eõcient constraint generation via the max constraint is merely for computational reasons and
that the result is equivalent to the (still exponential set of) constraints in row 3 of equation 2.21.
he latter ones can immediately be translated to the general LP form given by:

Aw ≥ b. (2.22)

Let ⟨xk , a j⟩ denote a particular row index of the constraint matrix A, corresponding to the
constraint for state xk and action a j. hen, for the ALP with factored value functions the rows
of A can be written as:

aT
⟨xk ,a j⟩

= ([h0(xk) − γg0(xk , a j)]
´¹¹¹¸¹¹¶

f0(xk ,a j)

, [h1(xk) − γg1(xk , a j)]
´¹¹¹¸¹¹¶

f1(xk ,a j)

, . . . , [hN(xk) − γgN(xk , a j)]
´¹¹¹¸¹¹¹¶

fN(xk ,a j)

) (2.23)

he LP basis is spanned by the columns of matrix A, i.e., h j = (f j(x0, a0) . . . f j(xM , aL))T

for M and L total states and actions, respectively. he target vector b follows as R(x, a).

2.4 Solution Bounds

his section provides a brief overview of relevant bounds for the approximate linear program-
ming solution and—more generally—any value function for which the Bellman Error can be
computed. hese bounds establish a limit on the error that a value function (or policy) approx-
imation can have with respect to the optimal solution.

In our presentation we denote the optimal value function by V∗ and its approximation by
V̂ . Approximations that are based on linear value functions are also written as V̂ = Vŵ = Hŵ.
We begin by outlining a priori bounds that illustrate the eòect of basis choice H and are ALP
speciûc, and follow up with a posteriori, Bellman Error-based bounds that extend to general
value functions.

34 Chapter 2. Background

2.4.1 ALP Error Bounds

For a given basis choiceH and state-relevance weights α(x), the ALP computes solution vector
ŵ such that the approximation error to the optimal value function is minimized in a weighted
L1-norm sense [28]:

ŵ = argmin
w

∥V∗ − Vw∥1,α (2.24)

where the weighted L1-norm of a vector is deûned as ∥x∥1,α ≜ ∑N
i=1 αi ∣xi ∣. Under this norm, the

ALP solution in Equation 2.24 yields the “best” approximation in the space spanned by H for
the chosen state relevance weights α(x). From the same Equation it can be seen that if the span
of H includes V∗, it will be the ALP solution. It is further interesting to note that for any ûxed
state-relevance weights, the addition of basis functions to the ALP can never worsen the solution

Vŵ (in the norm ∥⋅∥1,α).

Of general interest is the distance to the optimal value function V∗ in a L∞-norm sense, i.e.,
themaximum discrepancy between value function estimate and the optimal value function. he
ALP result can be related to this understanding of “best possible” approximation to V∗ (in the
norm ∥⋅∥

∞
) by the following bound [28]:

∥V∗ − V̂∥1,α
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

“Error resulting from ALP”

≤ 2
1 − γ

min
w

∥V∗ − Vw∥∞
´¹¹¸¹¹¶

“Best possible approximation”

(2.25)

where the L∞-norm of a vector is deûned as ∥x∥
∞
≜ maxi ∣xi ∣. Increasing the degree to which V∗

may be approximated using basis choiceH (right-hand side of Equation 2.25) will similarly lead
to bringing the ALP solution closer to V∗. Further, adding basis functions to H can never make
the bound worse (in the norm ∥⋅∥

∞
). As mentioned above, in the limit that the optimal value

function lies in the span ofH, the bound is reduced to 0 and the ALP solution is optimal.

he authors in [28] also develop a bound on the quality of the policy πŵ ≜ Greedy(V̂), the
expected loss in return when acting under πŵ instead of π∗:

∥V∗ − V
πŵ∥1,ν ≤

1
1 − γ

∥V∗ − V̂∥1,(1−γ)µ(πŵ ,ν) (2.26)

where ν is the initial state distribution and µ(πŵ , ν) the expected state visitation frequencies
under policy πŵ conditioned on the initial state following distribution ν. A take-away is that
if the states which a reasonable policy should cover are known beforehand, the state-relevance
weights in the ALP, α(x), may be chosen accordingly to achieve a closer approximation in these

2.5. Summary 35

states (thereby also reducing the loss in expected return when acting under πŵ).

2.4.2 Bellman Error-based Bounds

he bounds in the previous section are all a priori bounds based on the “approximability” of V∗

with linear value functions under basis choiceH. he Bellman Error, on the other hand, enables
the computation of a posteriori bounds when a particular value function V̂ has been computed.
he bounds in this section extend to arbitrary value functions and therefore do not depend on
the ALP solution method or, more generally, linear value function approximations.

Deûnition 6 (Bellman residual). he Bellman residual for value function V̂ and any x ∈ X is

deûned as:

BellmanResidual(V̂)(x) ≜ V̂(x) − T ∗V̂(x). (2.27)

he Bellman Error is then deûned as the maximum absolute value of the Bellman residual
vector:

Deûnition 7 (Bellman Error). he Bellman Error for value function V̂ is deûned as:

BellmanError(V̂) ≜ ∥V̂ − T ∗V̂∥∞ = max
x

∣V̂(x) −max
a

Q̂(x, a)∣. (2.28)

A well-known bound relates the Bellman Error of value function approximation V̂ to the
maximum error (or, distance) with respect to the optimal value function [112]:

∥V∗ − V̂∥∞ ≤ γ

1 − γ
BellmanError(V̂) (2.29)

Equation 2.29 gives the rationale for optimization techniques that aim to reduce the Bellman
Error of a value function approximation as a means to bound the L∞ approximation error toV∗

(e.g. empirically for linear value functions in [82]). Even a single evaluation of the Bellman
Error, however, is computationally infeasible for exponential state and action spaces since an
exhaustive enumeration of both is generally required to implement the max operations in the
same Equation. We will return to the topic of Bellman Error minimization for “sparsely action-

connected” collaborative multiagent systems in Chapters 4 and 5.

2.5 Summary

his chapter covered the necessary background on factored models and their exact and approx-
imate solution, arriving at the concept of factored value functions that form the basis for the

36 Chapter 2. Background

theoretical insights and novel solution methods in later chapters.
Chapter 4 revisits collaborative multiagent systems and introduces a novel “sparse action-

connectivity” property inMASs that allows the eõcient computation of the Bellman Error, even
in domains with exponential state and action spaces. Based on these results, Chapter 5 develops
a novel coordination discovery algorithm that incrementally constructs basis matrixH such that
agent interaction remains sparse and bounded approximations to V∗ can be computed. One
of the fundamental assumptions in this background chapter, namely that H is provided by a
domain expert, is relaxed in Chapter 5. Chapter 6 builds on the eõcient constraint generation
method for FMMDPs and identiûes additional locality properties in the planning problem that
allow to reduce the number of constraints further, scaling themethod to planning problems that
were previously infeasible.

We begin the treatment of locality in this thesis for a speciûc subclass of collaborative mul-
tiagent MDPs in the next chapter. A formal model for stochastic task allocation problems with
many agents is introduced that makes the eòects of spatial location explicit. While Chapter 3 fo-
cuses on approximating the FMMDP model for enabling eõcient solutions, Chapters 4–6 intro-
duce methods that approximate the solution to the full decision process and maintain bounded
error guarantees.

Chapter 3

Approximate Models for Spatial Task

Allocation Problems

Given the well-known unfavorable complexity results associated with large action and state
spaces, many problem representations attempt to exploit structure in the domain for eõciency
gains. he speciûc class of problems considered in this chapter are resource allocation settings
under stochastic (generally, nonlinear) transition and reward models, which have a natural im-
plementation as a collaborative multiagentMDP. Our exploration of structural leverage is in the
context of a common subclass of these resource allocation settings where tasks are further char-
acterized by their spatial distribution (e.g., over a map), the fact that they may appear stochasti-
cally from external events, and that a cooperative team of robots has to coordinate to attend to
them eòectively. Jointly referred to as spatial task allocation problems (SPATAPs), these models
aòord particular representational beneûts by exploiting spatial locality in the problem.

As seen in Chapter 2, representational beneûts do not, in general, translate into computa-
tional gains during policy computation. However, task allocation problems lend themselves to
particular domain-speciûc approximations given both temporal duration (tasks appear stochas-
tically and disappear a�er servicing) and spatial location of tasks in the SPATAP model. One
approach for computational leverage is therefore a model reduction to multiple smaller plan-
ning problems that jointly approximate the full SPATAP while enabling solutions in settings
with large task and agent numbers.

In this chapter we consider two such classes of domain-speciûcmodel reductions for spatial
task allocation problems. Considered ûrst is an approximation that exploits the temporal char-
acteristics of tasks by restricting the solution to the currently enabled tasks in the SPATAP. Solv-
ing this phase approximation reduces exponential dependence on tasks but does not, in general,
enable scaling to large agent or (enabled) task numbers. To demonstrate how further domain-

37

38 Chapter 3. Approximate Models for Spatial Task Allocation Problems

speciûc model reductions may address exponential dependencies on these remaining factors,
we review three existing distributed planning methods (originally in [18]) that jointly remove
all exponential dependencies on task or agent numbers. Unlike in later chapters, these methods
solve approximate models and do not oòer solution bounds with respect to the optimal SPATAP
solution. heir practical performance in large multi-robot planning domains compared to opti-
mal (where available) and heuristic solutions has been validated in the extensive empirical study
in [18] and is brie�y summarized in the chapter.

his chapter therefore provides an introduction to thewider thesis topic of exploiting locality

for the eõcient solution of large factoredmultiagent problems. Revisited and generalized in later
chapters, ‘locality’ here ûnds a domain-speciûc interpretation for a common class of problems
where multiple robots have to address stochastic tasks in the environment.

3.1 Spatially Distributed Tasks in Multiagent MDPs

his chapter introduces a class of multiagent MDPs referred to as Spatial Task Allocation Prob-
lems (SPATAPs). SPATAPs are a general model for collaborative multiagent teams which jointly
maximize utility by attending to and completing tasks in the world. Fundamental to a SPATAP
is amap, i.e. a spatial representation of the world, together with a distance metric deûning “close-
ness” between agents and tasks. One common example is the representation as a simple grid-
world where tasks and robots are each assigned to individual locations (i.e., tiles) and “closeness”
is measured directly with the Euclidean distance.

A second key characteristic of SPATAPs is that they model stochastic task-assignment prob-
lems where tasks appear unpredictably due to external events outside the control of the agents.
A scenario from the empirical study in [18], for example, is aDirtWorld domain where multiple
robots coordinate to clean the world of stochastically appearing dirt spots. Another example is
an incoming customer request in a ridesharing application, whichmodiûes the current planning
phase accordingly to include the new customer.

SPATAPs are fully described as a factored multiagent MDP (FMMDP). Loosely following
the presentation in [18]:

Deûnition 8 (Spatial Task Allocation Problem). A SPATAP consists of the following elements:

1. A map deûning possible task locations L, distance metric dL, and agent movement actionsAM ,

2. A task structure T deûning the set of task types in the world: T = {T0, T1, . . . , T∣T ∣}, where T0
refers to a special NULL task,

3.1. Spatially Distributed Tasks in Multiagent MDPs 39

3. he set of task states for each task type Tk, denoted Tk, referring to the status of a task. Here,

T0 is deûned with exactly one state denoting the presence of no task, and T = ⋃k Tk is the set of

all task states,

4. One or more task actions aTk associated with task type Tk to perform that task,

5. A set of agents D = {1, . . . , n} where each agent i may perform movement and (a subset of)

task actions.

A SPATAP has an implementation as a factored multiagent MDP ⟨D,S ,A, P, R⟩. Let agents D
be as deûned above and actions A include movement and task actions. hen the set S is deûned

by (joint) states s = ⟨λ, τ⟩ denoting agent location vector λ = [λ0, . . . , λn]T and task status vector

τ = [τ0, . . . , τ∣L∣]T , where ∣L∣ denotes the size of the map. he transition model P naturally factors

per (independent) agent movement and task states:

P(λ′, τ′ ∣ λ, τ, a) = ∏
x∈L

p
T
x (τ′x ∣ τx , λ, a)∏

i∈D
p
M
i (λ′i ∣ λi , ai) (3.1)

where pT
x denotes the transition probability of the task at location x and pM

i agent i’s movement

probabilities. he reward function factors additively into task rewards and movement costs:

R(s, a) = ∑
x∈L

R
T
x (τx , λ, a) + ∑

i∈D
R

M
i (λi , ai). (3.2)

he FMMDP yields representational beneûts by making the independence between agents
and the locality of tasks explicit. In Equation 3.1, for example, tasks are assumed to transition
independently given (joint) agent locations and their actions. A key theme that we will return to
throughout this thesis is that of exploiting locality to translate these representational beneûts also
into eõciencies during solution of the planning problem. In this spirit, this chapter considers
multiple domain-speciûc approximations to SPATAPs that are particularly suited for the spatial
nature of the planning problem.

Note that the model is suõciently general in principle to support diòerent types of tasks
with varying internal transitions, as well as heterogeneous agents with distinct capabilities. In
the remainder of the chapter, however, we restrict our view to homogeneous agents that can
individually service tasks with a single PerformTask action. Under this consideration, multiple
agents servicing the same task is never beneûcial and a key focus falls on eõcient distribution
of the team.

40 Chapter 3. Approximate Models for Spatial Task Allocation Problems

3.1.1 Locality assumptions

he SPATAP transition and reward models in Deûnition 8 encode the (conditional) indepen-
dence between tasks that exists in the problem domain. In P(λ′, τ′ ∣ λ, τ, a), for example, tasks
transition independently given their current state, joint agent locations and their action choices.
his formulation does not address the unfavorable complexity results with many agents, how-
ever, since the terms pertaining to tasks remain non-local. One reasonable (domain-speciûc)
assumption to make this problem class tractable is therefore to further exploit spatial locality

inherent in agent and task locations, as measured by distance metric dL. Speciûcally, we assume
that only agents in the vicinity of a task may in�uence its transition dynamics and introduce
a task’s locality scope L(x , τx , λ, a) as the subset of agents within a speciûed distance d of task
location x. Further criteria for inclusion in L may pertain to an agent’s ability to service the
task in state τx , or their action choice; the subset of included agent locations and actions is then
denoted by λL and aL, respectively. With this assumption in place, all terms in transition and re-
wardmodels are local and can be represented eõciently as pT

x (τ′x ∣ τx , λL, aL) andRT
x (τx , λL, aL)

in Equations 3.1 and 3.2.

3.2 Online Approximations

he locality assumptions developed in the previous sectionmake the problemclass representable
for many agents but do not, in general, reduce the complexity for solving them. SPATAPs are
general MMDPs and can be solved with a centralized planning method (e.g. value iteration
or a factored planner like Spudd [46]) for moderate problem sizes, yielding a policy in joint

states x and actions a. A central solution, followed by the distribution of policies to all agents,
faces computational challenges in real-world systems as problems scale to many task and agent
numbers, however. he approximate models in this section therefore seek to approximate the
global solution well with a set of smaller, distributed planning problems, alleviating the need for
a central node in the network.

All methods reduce the model complexity of the full SPATAP MMDP (with the locality as-
sumptions from Section 3.1.1 in place) and solve the resulting reduced models exactly with an
online, distributed planning algorithm. To enable this reduction, we ûrst outline a phase ap-
proximation that exploits the distinct planning phases (i.e., active tasks) in the SPATAP at the
current time step. We then provide a review of existing, subjective approximations (originally in
[18]) that compute the approximate best response given a summary statistic of task attendance
by the other agents. Included in this review is an approximation that combines both phase and

3.2. Online Approximations 41

subjective approximations to yield a solution algorithm without any exponential dependencies
in (joint) state and action spaces. Table 3.1 summarizes the complexity of each model referred
to in the remainder of the section.

State space Action space

MMDP: ∣L∣∣D∣ ⋅ ∣T∣∣L∣ ∣A∗∣∣D∣

Phase-MMDP: ∣L∣∣D∣ ⋅ ∣T∣∣pL∣ ∣A∗∣∣D∣

S-MDP: ∣L∣ ⋅ ∣T∣∣L∣ ∣A∗∣
SP-MDP: ∣L∣ ⋅ ∣T∣∣pL∣ ∣A∗∣
k-SP-MDP: ∣L∣ ⋅ ∣T∣k ∣A∗∣

Table 3.1: he SPATAP state and action space sizes, ∣S∣, ∣A∣, for the original MMDP formulation (ûrst
row) and the four approximations outlined in the chapter. ∣A∗∣ is an upper bound on the size of any
agent’s action set. Solution times are a polynomial function of these values; the k-SP-MDP retains no
exponential dependencies (see text). Reproduced from [18].

3.2.1 Phase Approximations

Phase approximations exploit a domain-speciûc property of SPATAPs, namely their distinct di-
vision into planning phases of currently active tasks. A phase approximation ignores any task
spawning likelihoods in the future and only considers active tasks a�er an external event has in-
stantiated them. Phase approximations prohibit a proactive distribution of agents over the map
(in anticipation of task appearance) but may yield a good approximation for the case that new
tasks appear infrequently.

Phase approximations target one source of exponential dependencies in the SPATAP state,
namely that pertaining to task locations L. Planning is carried out in the SPATAP MMDP con-
sidering only the active tasks pL. his reduces the second source of exponential dependencies
but—in the limit—retains the dependency on the full set of tasks ∣L∣ (cf . Table 3.1). Additional
unbounded approximations through model reduction of the (joint) SPATAP can be introduced
to remove the exponential dependencies on both state and action space sizes.

3.2.2 A Review of Subjective Approximations

To address the issue of scale, the other co-authors in [18] introduce further, subjective approx-
imations that are reviewed in the remainder of the section. Subjective approximations decom-
pose a large planning problem into set of approximate, tractable problems, one for each agent

42 Chapter 3. Approximate Models for Spatial Task Allocation Problems

i ∈ D. he distributed solution to the local planning problems then yields a global solution that
is executed by the team. All local MDPs are referred to as subjective MDPs (S-MDPs) and con-
sider only a single agent’s action spaceAi . Agent i’s S-MDP is given by the tuple ⟨Ss ,Ai , Pi , Ri⟩
for some state (sub-)set Ss, agent actionsAi and transition and reward models that only depend
on agent i’s actions. For SPATAPs, the solution complexity reduces as shown in Table 3.1.

he division of the global solution into a set of local value functions has a principledmotiva-
tion as the “best-response” of an agent to all others in the planning problem. An approximation
to the global MMDP is given by the exact best responses, which can be computed for an agent
i under the (unrealistic) assumption that all other agents’ policies are known and ûxed over
the planning horizon h. Formally, the best response is an MDP deûned over local actions Ai ,
and—in the ûxed horizon case considered here—can be computed as:

Q
t
i(s, ai) = ∑

a−i

R(s, ai , a−i)p(a−i ∣ π−i) +∑
s′
∑
a−i

p(s′ ∣ s, ai , a−i)p(a−i ∣ π−i)V t+1
i (s′)

≡ R
π−i
i (s, ai) +∑

s′
P

π−i
i (s′ ∣ s, ai)V t+1

i (s′) (3.3)

where the other agents are collectively referred to by the set {−i}, and further assumed to jointly
execute known policy π−i . hat is, under an assumed behavior of the other agents, one can
compute a best response as the solution to an MDP with (local) transition (Pπ−i

i) and reward
(Rπ−i

i) functions. Note, however, that besides the assumption that π−i is known, the resulting
local value functions are still deûned over the (generally exponential) joint state space.

Subjective MDPs implement an approximate best response deûned over a local state space
Ss. For SPATAPs, the local state space is spanned by states si = ⟨λi , τ⟩, i.e. agent i’s position and
the (global) task status vector. Additionally, agent i’s S-MDP computes the approximate best re-
sponse with an approximate behavior model of the other agents {−i} during planning. Diòerent
such S-MDP implementations can be considered. One common baseline in this category is that
of completely independent (or, ignorant) agents that ignore the presence of all other agents in
the problem.

Ignorant Agent Baseline

A simple choice of S-MDP ignores the presence of other agents in the planning problem. It
only models the elements of the SPATAP pertaining to its own location and assumes that the
transitions (both movement and task status) only depend on its own actions (compare with

3.2. Online Approximations 43

Equations 3.1 and 3.2 of the full SPATAP):

p
SA
i (s′i ∣ si , ai) = (∏

x∈L
p
T ,SA
x (τ′x ∣ τx , λi , ai)) p

M
i (λ′i ∣ λi , ai)

R
SA
i (si , ai) = (∑

x∈L
R

T ,SA
x (τx , λi , ai)) + R

M
i (λi , ai). (3.4)

To compute individual task transition (pT ,SA
x) and reward (RT ,SA

x) terms in Equation 3.4 from
the full SPATAP, themodel treats other agents’ locations and actions as randomnoise or assumes
a default behavior for the rest of the team. he resulting value functions V SA,t

i and Q
SA,t
i disre-

gard any coordination between agents and are likely to perform poorly where coordination is
relevant.

An alternative is to compute the approximate best response via agent prediction. Prediction
may yield a full policy π−i of the remaining team over the planning horizon or take the form of
a summary statistic over the aggregated remaining agents.

Empathic Reasoning through Agent Prediction

An S-MDP version of the (approximate) best response faces two issues; ûrst, how to model the
behavior of the other agents, and second how to integrate the model into the local planning of
agent i. For general problems, a domain-speciûc form of policy prediction for every individual
agent in the team may be necessary to obtain (time-dependent) pt

i(a−i ∣ π−i), i.e. the expected
joint behavior from i’s perspective over planning horizon h.

For task-assignment problems (and SPATAPs with negative interactions in particular), a sum-
mary statistic suõces that ignores agent identities and insteadmaintains a belief over (any) agent
presence at locations on the map as a proxy during planning. In particular, agents that are close
to active tasks are likely to service them with high probability in the future and vice versa. Un-
der the assumption of such a reasonable policy, one may compute an aggregate statistic over
future agent locations given current planning state s0 and horizon h, represented by distribu-
tions P(λt

−i ∣ s0), and then choose the best response for agent i.

To compute the likelihood of task servicing by any other agent, one option is to assume that
other agents approximately (e.g., under a Boltzman action selection criterion [97]) follow the
self-interested policy from the previous section starting from their current state in s0, i.e. π j ∼
Greedy(VSA) ∀ j ≠ i. Note that VSA is identical for every agent j in the team.

he second question pertains to how agent i may integrate the belief over other agent po-

44 Chapter 3. Approximate Models for Spatial Task Allocation Problems

sitions in its own local planning of a best response. As outlined previously for the exact best
response in Equation 3.3, maintaining a joint value function that takes into account other agents’
predictions is generally intractable for large problems. An alternative is a fully distributed value
function (DVF) [65, 91] in the SPATAP that uses the model of other agents’ task attendance to
discount the value of tasks to planning agent i. Under negative interactions where co-location at
a task is never beneûcial, this intuitively corresponds to a reward sharing within the team when
a task is attended to by multiple agents [65]:

V
t
i (si) = max

a i
Q

t
i(si , ai)

Q
t
i(si , ai) = Ri(si , ai) +∑

s′i

P(s′i ∣ si , ai)
⎡⎢⎢⎢⎢⎣
V

t+1
i (s′i) −∑

j≠i
fi jP(st+1j = s

′

i)V t+1
j (s′i)

⎤⎥⎥⎥⎥⎦
(3.5)

where all terms are local, j refers to agents other than i, P(st+1j = s′i) denotes the likelihood of
agent j being co-located with agent i at the next time step, V t+1

j the value function used for
discounting its presence, and fi j a weighting factor.

Intuitively, value functions V t+1
j permit an empathic reasoning over other agents j and de-

scribe howmuch value will fall on the remaining (collaborative) teammembers in state s′i . Note
that in a fully decentralized team, agents do not communicate their valuation V t+1

j to the other
agents. Instead, every agent computes a value function from j’s perspective and uses it locally
for discounting. In the original formulation in [65] for example, each agent uses V SA,t+1, i.e. the
self-interested value function at t+ 1 (identical for all agents), for discounting of every agent j in
Equation 3.5. A simpler choice is suggested in [18] where agents may directly use their own val-
uation at the next time step, V t+1

i , also for discounting the presence of the other (homogeneous)
team members. his assumes that their valuation of a task is identical to one’s own without the
need to attribute another, self-interested valuation V SA,t+1(s′i).

In summary, the approximate best response for agent i reviewed in this section ûrst com-
putes a likelihood of task attendance of all remaining agents (unique computation for each agent
i) and joins this task attendance likelihood with the (common) valuation V t+1

i to discount other
agents’ behavior at the next time step. As outlined initially, the goal is to avoid agent presence
in con�icting states in a distributed planning algorithm without a central node for coordina-
tion; planning is repeated continuously in a receding horizon fashion to respond to changes in
agent behavior and task status at every time step. Social laws, such as an imposed ordering over
agents, can be used to break identical action choices should two agents end up in the identical
map location [18].

3.2. Online Approximations 45

Table 3.1 shows that S-MDPs reduce planning complexity to local robot state and actions; the
resulting approximate models generally still retain an exponential dependency in the number of
tasks, however. Merging a restricted version of the previously introduced phase approximations
with the subjective models removes this dependency fully.

Subjective Phase Approximations

Consider ûrst the direct combination of both subjective and phase approximations (referred to
as SP-MDP in Table 3.1). SP-MDPs are subjective models with (local) value functions V t

i and Q t
i

that only consider the active tasks at the current planning iteration.

A further approximation to render SPATAPs tractable is to assume an even distribution of
agents over the map and to discard tasks beyond a certain distance from agent i’s planning at
the current time step [18]. Given the local perspective of agent i, the k-SP-MDP only considers
the k closest tasks during computation of the local best response policies.

Phase and subjective approximations are complementary in their reduction of diòerent sources
of exponential dependencies in the SPATAP. he combination of both with an imposed limit k
on the considered number of tasks yields an approximationwithout exponential dependencies in
state and action spaces. he complexities of all discussed models are summarized in Table 3.1.

3.2.3 Experimental Summary

Since phase and subjective approximations are all unbounded reductions of the original SPATAP,
it is of key interest how they perform in practical multi-robot task-assignment problems. In the
extensive empirical study led the ûrst author in [18], the k-SP-MDP is compared to the optimal
solution (where feasible) and to other baselines for a range of multi-robot cleaning tasks in large
gridworlds. he DirtWorld problem consists of up to 6 homogeneous robots (with four move-
ment and one PerformTask action), each initialized in randomly selected starting states, along
with a small task spawning likelihood (p = 0.05) deûned over all tiles on the map. he robot
team has to react to external events (e.g., a coòee spill event instantiating a new task on themap)
and maintain a clean world eõciently. As outlined above, planning is fully decentralized in the
k-SP-MDP but agents are assumed to keep track of the other agents’ location in their planning,
e.g. via (local) communication.

For the small worlds with up to 3 agents that remain solvable optimally with a factored solver
(Spudd [46]), the k-SP-MDP with each agent considering the k = 4 nearest tasks performs
within 97% of optimal. he evaluation is then scaled up to large oõce worlds with up to ∣S∣ =

46 Chapter 3. Approximate Models for Spatial Task Allocation Problems

6.1⋅1030 joint states and ∣A∣ = 15,625 actions forwhich no optimal solutions are known. he k-SP-
MDPoutperforms the self-interestedmodel (Greedy(VSA)) by awidemargin and also an a priori
partition algorithm that assigns ûxed regions to every agent a�er it has been initialized on the
map [94]. A (loose) upper bound for an optimistic estimate of maximum team performance in
theworld is onewhere each task is completedwithin exactly two time steps, essentiallymodeling
a teleport followed by a successful PerformTask action. For the largest oõce world problems
over a map with 66 locations, the k-SP-MDP achieves within 70% of this loose bound. For the
full empirical study, we refer the reader to [18].

3.3 RelatedWork

he restriction of the local problem of each agent to a subset of state factors is reminiscent of
converting the problem to a Dec-MDP with limited observation, but is in fact fundamentally
diòerent, since the observation of the global state is used to construct the agents’ k-SP-MDPs.
Moreover, despite recent advances, e.g., [23], Dec-MDP solution methods do not nearly scale to
problems of the size considered here, or are suitable only for transition and observation inde-
pendent settings [8, 22] (which our setting is not).

While there have been other approximate methods for solving general MMDPs, these typi-
cally depend on pre-specifying the ûxed, or context-dependent coordination structure to scale
to large problem sizes [42, 53, 95]. For SPATAPs, however, ûxed coordination structures may be
a poor choice and the number of contexts infeasibly large. In addition, these methods are by
default not aimed at exploiting the particular structure present in SPATAPs, namely indepen-
dence ofmovement and locality of tasks. To overcome the problem of pre-specifying interaction
structures previous work has attempted to learn them [21, 67], but the premise underlying these
methods is that there are only few states in which the agents need to coordinate. In contrast, in
SPATAPs, the agents need to coordinate their task selection in all states.

Approaches for assigning agents to tasks based on auctions [2, 9, 14] are closely related, but
either do not reason about subsets of tasks [14], or do not properly address the sequential nature
of the task in SPATAPs [2, 63]. Furthermore, a�er the tasks are auctioned oò, agent policies are
ûxed and remain unchanged until the next bidding circle. SPATAPs also relate to more gen-
eral resource allocation problems, since agents may be interpreted as resources. [113] uses a
MILP formulation to solve the resource assignment and policy optimization problem jointly.
he methods proposed here, however, allow reallocation at every time step and consider spa-
tially distributed tasks and travel times.

3.4. Contributions 47

he idea of interacting with the aggregate eòect of other agents is studied in detail in the ûeld
of mean-ûeld games [35], where the focus lies on characterizing equilibria. A few approaches
have tried to extend these ideas to settings such as taxi-�eet optimization [1, 108] and theme
park crowd management [34] via oò-line planning. he ‘aggregate eòect’ in these approaches
typically consists of the number of agents present in diòerent zones which directly aòects utility
of the planning agent. In the methods reviewed here, the predicted future agent locations serve
as a proxy for their behaviors, which in turn aòects the utility of the planning agent. his is rem-
iniscent of agent aggregation in Dec-MDPs, e.g., the Group Aggregated Decentralized MMDP
(GA-Dec-MMDP) in [86, 104].

Finally, the subjective approximations can also be interpreted as online planning for a special
instance of a level 1 interactive POMDP [26, 32]. he solution methods reviewed in this chapter
are speciûc to SPATAPs and use location as the proxy for the other agents’ policies.

3.4 Contributions

he approximate models and results summarized in this chapter are based on previously pub-
lishedwork [17, 18]. he thesis author co-developed the SPATAPmodel and contributed optimal
full- andPhase-MMDP solutions to the evaluation. he subjective approximations are due to the
other co-authors in [18]. heir presentation here is modiûed slightly to emphasize the relation
to the (exact) best response.

Introduced in this chapter were thus SPATAPs, a general subclass of MMDPs suitable for
spatially distributed problems that a team of agents or robots needs to address. Such tasks are
characteristic of many realistic multi-robot systems, such as mobile sensor nets, distributed
transportation systems, and multi-robot exploration. SPATAPs make the independence be-
tween agents and the locality of tasks explicit in order to avoid any exponential dependencies
on joint states or actions at the representational level.

We then introduced two classes of domain-speciûc model reductions that exploit spatial lo-
cality and temporal duration of tasks for approximate solutions to SPATAPs. Model reductions
correspond to multiple, individually tractable MDPs that jointly approximate the global prob-
lem. Phase approximations considered only the currently active tasks; the reviewed class of sub-
jective approximations further implemented a fully distributed coordination method that pre-
dicted other agent locations as a proxy for discounting the value of these tasks in one’s own
planning. Combining both approximate models yielded the k-SP-MDP model (one per agent)
without any remaining exponential dependencies on either state or action factors.

48 Chapter 3. Approximate Models for Spatial Task Allocation Problems

Locality entered the SPATAP through restricted locality scopes per task at the representa-
tional level, then as a proxy for predicting the task attendance likelihood for the remainder
of the robot team, and lastly for distributing the computation of the value function across all
agents. he developed approximations generally remain unbounded but have been validated
empirically in the extensive studies in [17, 18]. Distributed value functions, which form the basis
of the work, have further demonstrated their suitability for deployment in realistic multi-robot
settings [66].

In the following chapters we continue with the exploration of locality in factored multiagent
planning problems. Our focus is extended signiûcantly to address general FMMDPs, the auto-
mated coordination discovery between sub-groups of agents, and the maintenance of bounded
approximate solutions even in large multiagent domains.

Chapter 4

Generalizing Locality in Multiagent

Control

Manymultiagent settings of interest do not necessarily possess a spatial element that lends itself
to the approximate solutions introduced in the previous chapter. Even in problems that do,
there may exist other forms of coordination structure that prove more eòective for tackling a
particular planning task (e.g., by taking speciûc roles of agents in the team into account). In
this chapter we therefore expand the interpretation of locality beyond the mere spatial sense to
address general factored multiagent MDPs.

he notion of generalized locality introduced in this chapter applies to collaborative factored
multiagent MDPs and equates to a form of sparse interaction between agents that is agnostic to
domain-speciûc details, such as spatial proximity. Key to the principled deûnition of general-
ized locality is the concept of factored (i.e., locally-scoped) value functions from Chapter 2. We
ûrst review how a particular basis choice induces a coordination factor graph (CFG) between
agents that deûnes observation and communication requirements within the team. CFGs per-
mit a particularly eõcient computation of the jointly maximizing action and can be stored in a
decentralized fashion across the agents.

We then introduce a sparse action-connectivity property for CFGs and outline a novel theo-
retical insight that shows how the Bellman residual factors over the state space if agent interac-
tion retains the sparsity property. In turn, the factored residual enables the eõcient computation
of the Bellman Error and the derivation of value function error bounds even in large multiagent
settings. In later chapters we translate these theoretical insights into novel planning algorithms
with bounded performance guarantees.

49

50 Chapter 4. Generalizing Locality in Multiagent Control

A1 A2 A3 A4 A5

Q1 Q2 Q3 Q4

Figure 4.1: An example coordination factor graph (CFG) with ûve agents (A1, . . . ,A5) and local payoò
functions Q1, . . . ,Q4. Edges indicate which agent participates in which Q-function component.

4.1 Factored Q-value Functions

In this section we introduce factoredQ-value (or, equivalently, state-action value) functions and
their key role in computing the jointly maximizing action in largemultiagent settings eõciently.
A factored value functionV(x) = ∑k

j=1w jh j(x[C j]) for given basis choice h1(c1), . . . , hk(ck) and
parameters w1, . . . ,wk induces a state-action value function that also factors into local terms:

Q(x, a) = R(x, a) + γ∑
x′

P(x′∣x, a)∑
j
w jh j(x′[C j])

= ∑
r

Rr(x, a) + γ∑
j
w jg j(x, a)

= ∑
i
Qi(x, a)

(4.1)

where all functions Rr, g j are again locally-scoped (omitted for clarity) and g j(x, a) is the ex-
pectation of an individual basis function h j, which is computed eõciently via backprojection of
h j through the 2TBN (cf . Chapter 2). Local Q-functions Qi follow by associating disjoint sub-
sets of local reward and backprojection functions with each Qi . Payoò functions Qi and agents
A1, . . . ,Ag then span a coordination factor graph.

Deûnition 9 (Factor graph). A factor graph (FG) [54] over variables X = {X1, . . . , XN}, factors
Φ = {ϕ1, . . . , ϕM}, and a function F ∶ X ↦ R ≜ ∑M

i=1 ϕi(x[Xi]), Xi ⊆ X, is an undirected graph

with N variable nodes (ovals) and M factor nodes (squares) and edges only between each variable

node Xi ∈ Xi and corresponding factor node ϕi , for all i.

Deûnition 10 (Coordination factor graph). A coordination factor graph (CFG) is a FG in which

variables correspond to agents A1, . . . ,Ag , factors to local Q-functions Qi , and function F is the

global Q-function Q(x, a) = ∑i Qi(x, a).

An example factorization of a global Q-value function into locally-scoped terms is shown as
a CFG in Figure 4.1.

4.1. Factored Q-value Functions 51

4.1.1 Distributed Q-functions

A factored Q-value function can be stored in a fully distributed fashion among the agents in
a collaborative multiagent team, reducing state observation and action coordination (i.e., com-

munication) requirements at runtime. Following [39], a subset of basis and reward functions is
associated with each agent A1, . . . ,Ag such that their union covers the entire set. Deûne by Hi

the set of basis functions associated with agent i such that ∪iHi = H and Hi ∩H j = ∅ for i ≠ j.
Similarly, let the reward function for agent i be given by Ri . hen the Q-component associated
with agent Ai ,

Qi(x, a) = Ri(x, a) + γ∑
x′

P(x′∣x, a) ∑
h j∈Hi

w jh j(x′[C j]),

has local state and action factor scope given by Scope(Qi) = Scope(Ri) ∪ ⋃h j∈Hi Scope(g j)
where Scope(f) ⊆ {X,A} denotes state and action variables that span the domain of a function
f . Let Qi(x[Ci], a[Di]) denote the Q-component associated with agent i, making the local
state and action factor scopes explicit. Note that variables Ci deûne the subset of the state space

that agent i needs to observe. To compute the globally maximizing joint action of the agent
team in a state x0, i.e. argmaxa∑i Qi(x0, a), each agent instantiates Qi in its (locally observed)
state x0[Ci], yielding a coordination factor graph of instantiated Q-functions with mere action
dependencies. As detailed in the following section, the coordination factor graph then enables
an eõcient computation of the max operation based on variable elimination or via a message
passing scheme in the case of a fully distributed agent team [40]. Approximate implementations
of the max operation over the CFG, akin to loopy belief propagation in Bayesian networks [54],
have also appeared in the literature [53].

4.1.2 Variable Elimination

he variable elimination (VE) algorithm may be used for computing the max over a set of
locally-scoped functions in a factor graph eõciently. Similarly to maximum a posteriori (MAP)
estimation in Bayesian networks, VE maximizes over single variables at a time rather than enu-
merating all joint states x ∈ X and picking the maximizing one [54]. VE performs two opera-
tions, Augment and Reduce, for every variable Xl to be eliminated. In our treatment of VE,
we consider Augment to implement the sum operation over functions, and Reduce to be the
maximization over Xl in the result. he VariableElimination(F ,O) algorithm in Figure 1
implements VE over a given set of functions F and elimination orderO.

Adopted to the coordination factor graph setting, VE has an immediate application for com-

52 Chapter 4. Generalizing Locality in Multiagent Control

Algorithm 1: VariableElimination(F ,O)
Input: F is a set of functions
Input: O is an elimination order over variable indices
Output: he result of the maximization over all variables referred byO
for i = 1, . . . , ∣O∣ do

l = O(i);
// Collect set of functions that depend on Xl
E = Collect(F , Xl);
// Construct intermediate function (the sum) and compute the max

f = Augment(E);
e = Reduce(f , Xl);
// Update the function set

F = F ∪ {e} ∖ E ;
end
// Return sum of empty-scope functions

return Augment(F);

Figure 4.2: he VariableElimination algorithm computing the maximum value of ∑ f ∈F f over the
state space [36, 54].

puting the globally maximizing joint action in a given state x0, i.e., a∗ = argmaxa∑i Qi(x0, a),
whenever the enumeration of all joint actions would be prohibitive. Every agent i ûrst instanti-
ates its local Q-component Qi in the locally observed state x0[Ci], yielding an instantiated CFG

with only action dependencies.
VE then proceeds as in Figure 4.2 but operates on action (or, agent) rather than state vari-

ables. he algorithm eliminates agents one-by-one from the instantiated CFG and performs
maximizations and summations over local terms only. A�er all agents have been eliminated, a
consistent maximizing joint action can be computed in a backwards pass [54].

Example 1. Consider removal of agent A4 from the CFG in Figure 4.1, instantiated in a particular

state x0. hen the global Q-function can be written as (omitting the state factor scopes):

Q(a) = Q1(a1, a2) + Q2(a1, a2, a3) + Q3(a2, a3, a4) + Q4(a4, a5).

To remove agent A4, a call to VariableElimination({Q1,Q2,Q3,Q4}, {A4}) yields:

max
a4

Q(a) = max
a4

[Q1(a1, a2) + Q2(a1, a2, a3) + Q3(a2, a3, a4) + Q4(a4, a5)]

= Q1(a1, a2) + Q2(a1, a2, a3) +max
a4

[Q3(a2, a3, a4) + Q4(a4, a5)]

= Q1(a1, a2) + Q2(a1, a2, a3) + e(a2, a3, a5)

4.2. Sparse Coordination Factor Graphs 53

where the intermediate function e(a2, a3, a5) denotes the result of themaximization over a4. Agent

A4 can consequently be removed from the CFG.

heVE algorithm computes the optimal joint action in an instantiated CFG independent of
the chosen elimination order. However, the algorithm’s execution time is exponential in the size
of the largest intermediate term formed during elimination which does depend on the chosen
elimination order. In the distributed implementation of VE via message passing, communi-
cation only needs to occur whenever a link between agents is introduced in the CFG during
elimination [36].

4.2 Sparse Coordination Factor Graphs

In this section we deûne a sparsity property for coordination factor graphs. As we will see later,
sparse CFGs admit particularly eõcient computation of the Bellman residual, even in large mul-
tiagent settings with exponential state and action spaces. he sparsity property is based on the
connectivity structure of the CFG, speciûcally on how agents may exert in�uence on each other
in a factored (i.e., locally-scoped) Q-value function Q(x, a) = ∑i Qi(x, a).

Deûnition 11 (Action-connectivity). Deûne two scopes Scope(Qi) and Scope(Q j) as “action-

connected” iò Ak ∈ Scope(Qi) ∧Ak ∈ Scope(Q j) for some action variable Ak ∈ A. Further, given

a set of scopesZ = {Scope(Q1), . . . , Scope(QN)}, deûne a partition P overZ that consists of the

disjoint sets C1, . . . ,Ck of within action-connected scopes: Ci ≜ {Scope(Q i
1), . . . , Scope(Q i

M)}
where any scope in Ci is action-connected to another in Ci but to no other scope in C j, j ≠ i.

Let Z collect the scopes of the Q-components of a factored Q-value function. Intuitively, P
partitions the corresponding CFG into disconnected agent chains.

Example 2. Consider the CFG in Figure 4.3 where partition P is given by the two disjoint setsC1 =
{Scope(Q1), Scope(Q2)} and C2 = {Scope(Q3), Scope(Q4)}. he ûrst set is action-connected

through agents A1,A2,A3, and the second set through A4,A5.

Partition P = {C1, . . . ,Ck} deûnes the “action-connected subcomponents” of a factored Q-
value function stemming frombasis choiceH, i.e. those agents that interact directly in the scopes
of either reward or backprojected basis functions. he action-connectivity property does not
postulate independence between agents in diòerent sets Ci ,C j, j ≠ i, since they may still coor-
dinate and exert in�uence on each other through mutually observed state factors.

54 Chapter 4. Generalizing Locality in Multiagent Control

A1 A2 A3 A4 A5

Q1 Q2 Q3 Q4

Figure 4.3: Two action-connected sets form a partition P of a coordination factor graph. he CFG fulûlls
a κA-sparsity bound of 3 since the largest agent chain in P is A1,A2,A3.

We can now deûne a sparsity property for coordination factor graphs. Denote by Ci .A the
union of action factors of all scopes in set Ci , i.e., Ci .A ≜ ⋃ j Scope(Q i

j).A ∀Scope(Q i
j) ∈ Ci ,

and similarly by Ci .X the union of state factors corresponding to Ci .

Deûnition 12 (Sparse coordination factor graph). Let P = {C1, . . . ,Ck} be the partition of a

CFG into action-connected scopes. hen, the CFG is κA-sparse iò the maximum number of action

variables in any of the sets in P is less than κA, i.e. ifmaxi ∣Ci .A∣ ≤ κA, ∀Ci ∈ P. Analogously, the

CFG is κX-sparse ifmaxi ∣Ci .X∣ ≤ κX, ∀Ci ∈ P.

Example 3. Consider the CFG in Figure 4.3 and its partition P = {C1,C2} into two disjoint action-

connected scope sets. he CFG fulûlls a κA-sparsity bound of 3 since the largest agent chain in P is

formed by A1,A2,A3, i.e. ∣C1.A∣ ≤ 3.

Sparse coordination factor graphs possess interesting properties that can be exploited com-
putationally, e.g. for the eõcient computation of the Bellman Error in large multiagent planning
problems.

4.2.1 Factored Bellman Error

As introduced in Chapter 2, the Bellman Error gives rise to a bound on the maximum error
between a value function approximation V̂ and the optimal solution V∗. Bounded approximate
solutions have the key advantage that they admit strong performance guarantees beyond results
from empirical evaluation alone. Unfortunately, evaluating the Bellman Error is computation-
ally infeasible for exponential state and action spaces since an exhaustive enumeration of both
is generally required to implement the max operations in the Bellman Error equation.

As introduced in the previous section, factored functions (which span a factor graph of
locally-scoped terms) have a particularly eõcient implementation of themax operation, even in
settings with exponential state and action spaces. In this sectionwe show that sparse CFGs retain
a Bellman residual that is factored over the state space, in turn permitting the computation of
solution bounds in large multiagent problems.

4.2. Sparse Coordination Factor Graphs 55

Recall the deûnition of the BellmanError fromEquation 2.28 and consider the full expansion
of the L∞-norm into the steps required to compute it:

BellmanError(V̂) = ∥V̂ − T ∗V̂∥∞

= max±
the ∣ ⋅ ∣

⎛
⎜⎜⎜
⎝

max
x

(∑
i
wihi(x) −max

a
[R(x, a) + γ∑

i
wi gi(x, a)]),

max
x

(max
a

[R(x, a) + γ∑
i
wi gi(x, a)] −∑

i
wihi(x))

⎞
⎟⎟⎟
⎠
.

(4.2)

where the outer max implements the absolute value in the deûnition of the L∞-norm. We ûrst
note that for the approximate linear programming solution only one of the two inner maximiza-
tions has to be computed:

Corollary 1. For the ALP solution, the LP constraints enforce that V̂ ≥ T ∗V̂ (∀x ∈ X) at the

solution, i.e., only the ûrst cost network in Equation 4.2 needs to be computed. We may therefore

deûne BellmanErrorALP as:

BellmanErrorALP(V̂) = max
x

(V̂ − T ∗V̂)

= max
x

(∑
i
wihi(x) −max

a
[R(x, a) + γ∑

i
wi gi(x, a)]).

(4.3)

For general CFGs, the inner maximization over actions a does not necessarily result in a
function that is factored over the state space. Evaluating the Bellman error exactly for these
CFGs becomes infeasible in the exponential state and action spaces presented by collaborative
multiagent systems. We now show a key result that for sparse CFGs the Bellman residual remains
a factored function in X so that the maximization over the state space is carried out eõciently
via variable elimination.

Lemma 2. Let Q(x, a) denote a factored Q-function and P = {C1, . . . ,Ck} be the partition of its

CFG into action-connected scopes. hen (T ∗V̂)(x) is a factored function over state variables X
and can be written as∑k

i=1 ϕi(x[Ci .X]).

Proof. he result follows directly from the deûnition of T ∗V̂ . Note that we can maximize over
each Ci .A individually and that the resulting function consists of local terms, each deûned over
local scopes Ci .X. he operation’s execution time is exponential in the largest clique formed,
i.e. in the largest value ∣Ci .X∣ + ∣Ci .A∣. ◻

Corollary 2. Since both V̂ and T ∗V̂ are factored functions inX for sparse CFGs, so is the Bellman

residual vector deûned as BellmanResidual(V̂) = V̂ − T ∗V̂ .

56 Chapter 4. Generalizing Locality in Multiagent Control

he Bellman residual can therefore be computed eõciently if the sparsity bounds on the
CFG, deûned by κX and κA, remain below a threshold (driven by computational considerations).
To compute the Bellman Error for the ALP solution V̂ , an additional variable elimination proce-
dure over the state spaceX is required to implement themax over the state space in Equation 4.3.

4.2.2 Bellman Residual Marginal

We have seen above that sparse CFGs enable the eõcient computation of the Bellman residual
by leveraging the factorization over action-connected scopes in the partition P of the CFG. he
result is a factored function over the state space X so that max (i.e., the Bellman Error) and min
operations can be carried out in principle via variable elimination. VE retains an exponential
dependency on the size of the largest intermediate term formed during elimination.

In this section we show how other functions of the Bellman residual can be computed eõ-
ciently, in particularwithout the need for VE. As will become apparent in the next chapter where
novel solution methods to FMMDPs are presented, we focus on the computation of marginals
of the factored Bellman residual. Marginals refer to sums of the Bellman residual over subsets

of variables, resulting in new functions with reduced state factor scope. We collectively refer to
these functions as “Bellman marginal functions” and delay a discussion of their detailed role to
the next chapter.

Consider again the Bellman residual corresponding to a sparse CFG. Since it is a factored
function per Corollary 2, we can write it explicitly as the sum over locally scoped factors ϕk:

BellmanResidual(V̂)(x) = ∑
i
wihi(x) −max

a
[R(x, a) + γ∑

i
wi gi(x, a)]

= ∑
k

ϕk(x[Ck])
(4.4)

where variable sets Ck ⊆ X span the local domains Dom(ϕk).
We ûrst show how the sum over all x ∈ X can be implemented eõciently with only local

computations over domains Dom(ϕk). We then extend this result to general marginals of the
Bellman residual. As noted above, Bellman marginal functions are deûned over subsets of vari-
ables Y ⊆ X, stemming from summing the Bellman residual over all other variables W = X ∖Y.

Eácient Summation over the State Space

he sum of the Bellman residual over the entire state space (denoted BRSV̂) can be computed
eõciently, avoiding the explicit sum over the (exponential) state space X, and variable elimina-

4.2. Sparse Coordination Factor Graphs 57

tion, by recognizing:

BRSV̂ ≜ ∑
x
BellmanResidual(V̂)(x) = ∑

x
∑
k

ϕk(x[Ck]) = ∑
k
∑
x

ϕk(x[Ck])

= ∑
k

λDom(ϕk) ∑
ck∈Dom(ϕk)

ϕk(ck)
(4.5)

where λDom(ϕk) =
∣Dom(V̂)∣
∣Dom(ϕk)∣

. he term λDom(ϕk) accounts for the fact that in the sum over all x,
the summation over the local domain (∑ck∈Dom(ϕk)

ϕk(ck)) occurs exactly λDom(ϕk) times. In
the last line of Equation 4.5, summations are only over local domains, i.e. tractable in otherwise
infeasibly large state spaces.

Example 4. Consider a factored BellmanResidual(V̂)(x) = ϕ1(x1, x2)+ϕ2(x2), deûned over two

factors given by:

X1 X2 ϕl(x1, x2) ϕ2(x2)
0 0 0 0
1 0 1
0 1 2 3
1 1 3
0 0 4 6
1 0 5
0 1 6 9
1 1 7

hen BRSV̂ can be computed via exhaustive summation over the state space as:

BRSV̂ = ϕ1(0, 0) + ϕ2(0) + ϕ1(1, 0) + ϕ2(0) + . . . + ϕ1(1, 1) + ϕ2(1) = 64.

Alternatively, BRSV̂ = λDom(ϕ1)(0+ 1+2+3+4+5+6+7)+ λDom(ϕ2)(0+3+6+9) for λDom(ϕ1) =
∣Dom(V̂)∣
∣Dom(ϕ1)∣

= 1 and λDom(ϕ2) =
∣Dom(V̂)∣
∣Dom(ϕ2)∣

= 2, resulting in the same value 64. he summation over the

(local) domain of ϕ2 occurs two times in the sum over the global state space, and is accounted for

in the result by multiplication with λDom(ϕ2).

Eácient Marginals over the State Space

Summing the Bellman residual over a subset of variables W = X ∖ Y yields a Bellman (residual)

marginal function deûned over Y. Eõcient computation of these functions is possible with an

58 Chapter 4. Generalizing Locality in Multiagent Control

analogous method to the previous one which only sums each local factor ϕk over the space
spanned byCk∖Y. Note that a�er summing outW, each local term ϕ′k(y[C′k]) is now a function
with scope C′k ≜ Ck ∩Y.

he Bellman residual marginal function over Y can be computed eõciently as:

BellmanMarginal(V̂)(y) = ∑
w∈W

∑
k

ϕk(w[Ck ∩W], y[C′k]) = ∑
k
∑
w

ϕk(w[Ck ∩W], y[C′k])

= ∑
k

λk ∑
zk∈ (Ck∖Y)

ϕk(zk , y[C′k]) = ∑
k

λk ϕ
′

k(y[C′k])

(4.6)
where coeõcients λk again account for how many times each function ϕ′k(y[C′k]) occurs in the
sum overW and each summation in the last row of Equation 4.6 is only over local subdomains.

Let Wk =W ∖Ck denote the variables that are summed over at a local factor ϕk. hen λk is
equivalent to the size of the space spanned by all variables inWk, i.e., λk = ∣×Wk ∣with ∣×∅∣ ≜ 1.

Equation 4.5 is merely a special case of Equation 4.6 where the summation is over the entire
state space, i.e.,W = X. In that special case it follows that Wk = X ∖ Ck and λk, the size of the
space spanned by variables in Wk, equates to λDom(ϕk) =

∣Dom(V̂)∣
∣Dom(ϕk)∣

, as shown previously.

4.3 Generalized Locality

heprevious section developed the concept of sparse CFGs and the eõcient operations that they
enable in domains with otherwise prohibitively large state and action spaces. For the remainder
of the thesis, we take the notion of generalized locality to refer to (generic) sparsity in agent coor-
dination stemming from a sparse CFG. here are no further assumptions in this understanding
of generalized locality, e.g., whether it is due to a spatial division between agents, diòerent roles
in the multiagent team, or any other domain-speciûc characteristics.

he approximation architectures for solving general, collaborative FMMDPs in the upcom-
ing chapter merely assume that a sparse CFG—where κX and κA remain below a pre-deûned
threshold—exists whose associated value function approximation V̂ approximates V∗ well.

4.4 RelatedWork

Generalized locality in this chapter takes on the meaning of factored (Q-)value functions and
the coordination factor graphs that they span. CFGs have been used in multiagent, decision-
theoretic planning to compactly encode interactions between subsets of agents, usually for a pre-

4.4. Related Work 59

speciûed coordination structure [39, 69]. hey have also found application in multiagent rein-
forcement learning (RL) settings in order to distribute the observed rewards over (pre-speciûed)
value function components [41, 53]. An extended overview of these RL methods can be found
in [109].

A major computational advantage aòorded by CFGs is their eõcient computation of the
jointly maximizing action. While we introduced variable elimination as an exact method, other,
approximate inference-based approaches have been introduced to implement the max approxi-
mately in large CFGs [29, 53]. Further, while the presentation in this chapter focused on ûxed
CFGs, context-based extensions exist that enable varying CFGs in diòerent states. Context-
speciûc structure is commonly implemented with rule-based representations [36, 52].

Outside of the decision-theoretic realm, coordination factor graphs have a long history in
decentralized coordination of actions to optimize a global utility function, e.g. in distributed con-
straint optimization problems (DCOPs). hese commonly focus on static domains without state
(e.g., [80]) or repeated, independent problems although extensions to Markovian state signals
exist [71]. A survey of these approaches can be found in [114].

A second focus of this chapter was the deûnition of “sparsity in interaction” between agents.
Sparsity assumptions commonly enter planning through pre-speciûed structure or heuristics,
e.g. via the spatial separation of agents [94], or distributed value functions [65, 91]. We deûne
sparsity as a general property of CFGs (an upper bound on the action-connected factors) mo-
tivated by the eõcient computation of the Bellman residual. Sparse CFGs admit bounded so-

lutions to the optimal value function. Our work can be seen as a generalization of previous
approaches that restrict policies to achieve the same eòect. Guestrin et al. show for the single-
agent case—based on Koller and Parr’s earlier results that greedy policies derived from factored
value functions have the form of a decision list [56]—that the computation of the Bellman Error
can be made tractable by assuming default transition and reward models in the MDP [40]. We
do not restrict the type of policies in our approach.

For CFGs that are not sparse, the Bellman residual is generally not factored and approxima-
tions need to be introduced to compute it. Common methods for approximating the Bellman
Error are sampling-based approaches (using simulations of the system), or those that use known,
canonical states for estimation [11]. hese can be joinedwith regressionmethods to attempt gen-
eralization in otherwise prohibitively large state spaces [31, 76]. We retain the exact solution of
the Bellman Error.

Finally, the concept of locality is just one form of the wider topic of utilizing structure for
representing or solving complex planning problems. Exploiting structure has long tradition in

60 Chapter 4. Generalizing Locality in Multiagent Control

both single- and multiagent planning and learning settings (see [107] for an overview). Popular
choices for structural leverage are parallel decompositions—splitting the MDP into several in-
dependently solved ones [37]—or hierarchical decompositions. he latter compute the solution
from a hierarchy of smaller sub-MDPs, e.g. by deûning sub-goals or independent regions that
agents may transition among [24, 43]. he options framework is closely related by introducing
temporally extended actions (sub-skills) during planning [64, 103] or learning [58, 98]. Auto-
matically determining a hierarchical decompositions for the eõcient solution of large MDPs
remains an active ûeld of research [5, 6].

4.5 Contributions

his chapter expanded the notion of locality beyond the spatial sense to general sparse interac-
tion in collaborative FMMDPs. We initially reviewed factored Q-value functions, their relation
to coordination factor graphs, and their key role in computing the jointly maximizing action in
large MASs eõciently.

We then introduced sparse coordination factor graphs (sparse CFGs), a novel contribution
for encoding “sparsity of interaction” between agents, agnostic to its concrete, domain-speciûc
source. We developed theoretical insights about the computational beneûts of factored value
functions that span a sparse CFG, in particular that the Bellman residual remains factored, al-
lowing the eõcient computation of the Bellman Error and other functions of the residual.

Sparse CFGs form the basic approximation architecture for the solution methods developed
in the forthcoming chapter. A key focus will be on ûnding “good” sparse CFGs whose associated
value function approximation V̂ approximates V∗ well.

Chapter 5

Bounded Approximate Methods for

Sparse Coordination Discovery

his chapter returns to the theme of solving large factored planning problems eõciently by ex-
ploiting locality present in the problem. We saw earlier in Chapter 3 how spatial locality, as
commonly found in multi-robot task assignment problems, can be leveraged for developing
approximations that have no exponential dependencies in state and action spaces. his chapter
extends this work along twomain lines: ûrst, the assumption of spatial locality is relaxed towards
the more general understanding of generalized locality developed in the previous chapter. he
solution methods presented here therefore apply to general factored multiagent problems (FM-
MDPs) that do not necessarily possess a spatial component. Second, unlike the domain-speciûc
(and generally unbounded) methods developed previously, our focus here is on approximate
methods for which exact solution bounds can be derived.

he planning methods we develop are based on a general assumption that there exists some
form of sparse interaction between agents that—if found—allows to approximate the global
value function well¹. Our goal is to discover this structure automatically (without any prior
domain knowledge) and to bound the value function solution arising from the discovered agent
coordination structure. he developed approximation architectures are value-based methods
that divide the global solution into locally-scoped value function components. As introduced
previously, thesemethods are promising for largemultiagent problems since solution algorithms
without exponential dependencies in state and action spaces apply in principle (see Chapter 2).
However, existing solution methods frequently assume a pre-speciûed coordination structure
between agents and therefore replace the search for “good” agent coordination with input from
a domain expert. In this chapter we make the link between coordination discovery and basis

¹he coordination structure is assumed to be ûxed throughout the problem.

61

62 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

choice explicit and phrase the search for coordination as a principled basis determination prob-
lem.

he search for agent coordination is generally driven by a trade-oò between the desire for
sparsity (e.g. due to computational limits in solving the joint agent policy or the goal tominimize
agent communication overhead at runtime) and solution quality. We show how this trade-oò is
implemented in the context of the approximate linear programming solution (ALP) to general
factored multiagent MDPs.

In order to do so, we ûrst establish the link between basis choice and resulting agent coor-
dination structure. We then show how a regularized version of the ALP addresses the search
for sparse coordination graphs in principle through basis selection from an ‘overcomplete’ set.
Based on our results for eõcient operations with the Bellman residual in the previous chapter,
we then move to incremental basis generation schemes that address computational issues with
the previous method by selectively expanding a basis set. A key contribution is a Bellman error-
based basis discovery scheme (referred to as BEBF∗) that expands a basis in regions where the
current value function error is largest. We develop an exact solution bound under the sparse
“action-connectivity” assumption introduced in Chapter 4 and show how a sorting over basis
functions implements the search from simple to complex coordination in a principled way.

Unlike methods that separate coordination discovery and solution of the actual multiagent
control problem, we treat coordination as a by-product of achieving a desired bound on the so-
lution to the FMMDP.his allows the designer of a multiagent system to trade-oò complexity in
coordinationwith solution quality where warranted. Alongside, we address a common criticism
of the ALP solution method, namely the requirement of a pre-speciûed (and domain-speciûc)
basis. Our bounded solutions scale to problems that could previously be evaluated empirically
through policy simulation only (such as 50-agent SysAdmin or DiseasePropagation domains).

5.1 The Link between Basis and Coordination Discovery

Both state and action spaces inmultiagent problems generally scale exponentially in the number
of agents. Besides computational challenges (i.e., computing a policy in the ûrst place), this
also introduces representational diõculties for storing the joint value function or retrieving a
maximizing joint action eõciently.

Chapter 4 introduced locally-scoped state-value functions, V(x) = ∑i wihi(x[Ci]), as a so-
lution and showed that in the multiagent setting, V induces a coordination factor graph (CFG)
with only local state observation and action coordination requirements. Operations like de-

5.2. Basis Function Selection 63

termining the jointly maximizing action are then carried out eõciently under certain sparsity
assumptions on the graph. Speciûcally, (exact) variable elimination is exponential in the size of
the largest clique formed during elimination, which is aòected by both state and action factor
scopes in the CFG. he relevance of sparsity for both algorithmic and representational reasons
underlies the notion of ‘locality’ used this chapter. Locality takes on the meaning of sparsity in
the coordination factor graph, covering both sparsity in each factor’s state scope (i.e., locality in
observation), as well as in action-connectivity between agents (i.e., locality in interaction).

For factored linear value functions, the scope of each factor in the CFG is determined by the
Backprojection operator applied to each basis function hk ∈ H (cf . Chapter 2). his establishes a
direct link between basis choice and coordination structure in a multiagent MDP.

Example 5. Consider an exhaustive indicator basis H1 with one indicator function Ii ∶ X ↦ {0, 1}
centered on each (joint) state xi ∈ X. Note that the optimal value function lies in the span of H1

and—by Equation 2.24—will be the solution to the ALP.heCFG is fully connected and each factor

is deûned over the joint state and action spaces X, A, resulting in an optimization problem that is

equivalent to solving all Bellman optimality equations exactly.

While the optimal value function can be spanned by an exhaustive indicator basis in prin-
ciple, this is quickly rendered impractical for the problem sizes of interest here. Underlying
the approximation architectures we develop in this chapter is the assumption that there exists a
mode of sparse interaction between agents that—if found—yields a good approximation to the
global value function. We arrive at an interesting trade-oò of constructing a set of basis func-
tions that admits a good value function approximation while maintaining localized state and
action factor scopes in the CFG. Coordination discovery is therefore treated as an optimization

of the basis set that maintains the aforementioned properties in the CFG.
In the following sections we develop two classes of algorithms to tackle this problem: ûrst,

we formulate basis choice as a selection from a given, ‘overcomplete’ basis set by introducing a
suitable regularization term in the ALP. We then move to an iterative basis generation scheme
that implements a search over coordination structures from least to most complex while at the
same time aòording bounded value function solutions.

5.2 Basis Function Selection

Basis function selectionmethods, such asMatching Pursuit (MP) [47, 74], assume that a domain
expert has provided an exhaustive (or, ‘overcomplete’) set of functions from which to select an

64 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

optimal subset given the speciûc problem requirements. Translated to the ALP, the initial basis
set may include a large number of functions of varying complexity (e.g., up to amaximum scope
size) with the goal to ûnd a sparse, scope-restricted subset of functions that reconstructs the
value function well.

Subset selection in the ALP corresponds to ûnding a sparse solution vector ŵ where only a
few basis weights are enabled, i.e. diòerent from 0. Such constraints on the solution vector can be
imposed with a regularization measure that penalizes number (and type) of the basis functions.
he ALP is then solved once as before and agent coordination follows from the CFG spanned
by the enabled basis set. Considered here are two such implementations of regularization that
trade oò basis complexity with expected performance.

5.2.1 The Regularized ALP

We saw previously that a large set of complex basis functions may generally lead to better ap-
proximations of the true value function (recall that in the limit, an exhaustive basis over the
joint state factor scope yields exactly V∗ as the ALP solution). he two regularization measures
introduced here therefore address both number and complexity of the basis functions enabled
at the solution.

First, we address sparsity in theALP solution vector ŵ. he L0 pseudonormof a vector, ∥w∥0,
is commonly taken to denote the number of elements in w that are not equal to 0. It is well es-
tablished that it has an approximation with the L1 (or, Manhattan) norm ∥w∥1 ≜ ∑i ∣wi ∣ which
is o�en used for regularization in sparse feature selection problems, for example in compres-
sive sensing [25]. he L1-regularized ALP (RALP) has been introduced previously for feature
selection purposes in a reinforcement learning setting in [81]. It is implemented with a straight-
forward modiûcation to the ALP objective (compare with Equation 2.15):

min
w

∑x α(x)∑i wihi(x) + λ ∥w∥1 (5.1)

or, alternatively, by enforcing a bound on each ∣wi ∣ in the constraints instead of modifying the
objective. Note that besides enforcing sparsity in the solution, L1 regularization may have the
additional positive eòect of reducing the overût of the ALP solution to the L1 norm and actually
improve on the value function solution (in terms of Bellman error, i.e. the distance to V∗ in a
L∞ sense) [82].

Merely enforcing sparsity in ŵmay be suõcient to bias the solution towards a non-complex
basis set as well. his is because computing an “everywhere-good” approximation to V∗ (under

5.2. Basis Function Selection 65

uniform α(x)) with a sparse basis will naturally involve features that are active in large portions
of the state space, i.e. those features with large coverage and, respectively, small scope size. Still,
regularization of basis function scope size ∣Dom(hi)∣may bemade explicit for each hi appearing
with non-zero weight in the solution vector ŵ. Here, ∣Dom(hi)∣ refers to the cardinality of
hi ’s domain; a regularization penalty that increases proportionally with scope size follows as
δi ≜ ∣Dom(hi)∣ and can be included in a revised objective:

min
w

∑x α(x)∑i wihi(x) + λ ∥w∥1 + β∑i I(wi) δi (5.2)

where I(wi) is an indicator function that is 1 iò wi ≠ 0 and 0 otherwise. In the linear program,
this objective can be implemented with two additional variables with the following procedure:

1. For every wi introduce variable zi denoting the absolute value of wi ,

2. For every zi introduce integer variable ki that is 1 iò zi ≠ 0 and 0 otherwise.

he revised approximate linear program with regularization terms for sparsity in both solu-
tion vector and basis scope then follows as (compare with Equation 2.15):

min
w

∑x α(x)∑i wihi(x) + λ∑i zi + β∑i ki δi

s.t. ∑i wihi(x) ≥ [R(x, a) + γ∑x′ P(x′ ∣ x, a)∑i wihi(x′)] ∀x ∈ X,∀a ∈ A

wi unbounded ∀wi

wi ≤ zi ∀zi

−wi ≤ zi ∀zi

ki ∈ {0, 1} ∀ki

ki ≥ z i
N ∀ki

(5.3)

with λ, β non-negative, N an upper bound on zi ∀i (e.g., ∣Rmax/(1 − γ)∣), and δi = ∣Dom(hi)∣.
Note that this reformulation is now an integer linear program and that λ and β are new parame-
ters to the algorithm denoting the degree of penalization in the objective. he eõcient solution
method for representing exponentially many constraints outlined in Chapter 2 remains directly
applicable.

66 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

5.2.2 The Issue of Scale

he regularized ALP presents a solution method for computing a value function approxima-
tion spanned by a sparse basis from an initial, overcomplete set. Each basis function (whether
it appears in the solution or not) aòects the number of variables and constraints in the ALP. In
the eõcient FMMDP solution method introduced in Chapter 2 for example, it is assumed that
variable elimination can be carried out eõciently in the scope of all backprojected basis func-
tions. It is conceivable that this assumption will be violated if basis functions are inserted into
the ALP without further restrictions, as provided for example by a domain expert. Even if VE
can be carried out eõciently, computation time may be better spent discovering a sparse basis
that will likely be active in the solution.

A second drawback of the regularized ALP is that a bounded solutionmay be hard to obtain
if the initial basis set is unconstrained. his is because the sparse ‘action-connectivity’ property
derived for the purpose of eõcient Bellman residual computations in Chapter 4 can, in general,
not be enforced through settings of λ and β alone. Further approximations to the Bellman error
at the solution are necessary for an a posteriori bound on V̂ .

A better approach appears to be a basis generation scheme that inserts complexity only if
and where (in state space) it is warranted. In the next section we outline the main contribution
of this chapter with an iterative method that selectively expands the basis in regions where the
current value function error is largest. We will further see how this alleviates the need for a
domain expert while maintaining eõcient computation of bounds on the solution V̂ .

5.3 Basis Function Generation

Delayed column generation has a long history as an eõcient solution method for large linear
optimization problems [10]. hese methods do not start with an exhaustive set of variables
but instead iteratively insert and re-solve the original (or, master) optimization problem. De-
termining the next best column to insert is formulated as a slave optimization problem that is
interleaved between each iteration of the master problem.

In the context of the ALP solution to large MDPs, an interesting approach implements a
similar iterative basis construction where full recovery of V∗ is possible (in the limit) but where
the process can be halted early, ideally with a bound on the obtained solution. As introduced in
Chapter 2, the ALP solves for the best approximation to V∗ in a weighted L1 norm sense given
basis setHk andweights α(x) (cf . Equation 2.24). Ofmain interest, however, is the solution’s dis-
tance toV∗ in a L∞ sense, i.e. themaximumdistance at any state x. Column generationmethods

5.3. Basis Function Generation 67

that directly optimize the ALP objective have only shown empirical reduction in Bellman error
(which bounds the L∞ distance toV∗) and are prone to overûtting the L1 objective [82]. An ideal
basis expansion, however, would reduce the L∞ distance on the right-hand side of Equation 2.25
directly, therefore tightening the closeness of the ALP solution to V∗ (the le�-hand side) at ev-
ery iteration. Intuitively, the “approximability” of V∗ aòorded by basis set Hk+1 should increase
“optimally” at each iteration (under any additional constraints on the basis functions, such as
the “small scope” requirement).

In the following section we introduce a novel basis expansion method for the ALP that im-
plements this intuition. Based on the theoretical results for eõcientmanipulation of the Bellman
residual in sparsely ‘action-connected’ MASs fromChapter 4, we show how basis expansion can
utilize the Bellman error metric directly to optimize insertion of a basis at the next iteration.
Eõcient computations with the Bellman residual therefore do not only enable error bounds at
each iteration but also the insight where in state space the error integral is largest.

As outlined for basis selection in the previous section, basis generation should maintain
certain properties of the coordination factor graph to scale the solution algorithm to large mul-
tiagent MDPs. Besides increasing the approximability of V∗ at the next iteration, a practical
basis construction method should therefore also consider sparsity in the CFG during expan-
sion. Delayed column generation oòers an additional, more general computational beneût by
selectively including (and backprojecting) only those basis functions that likely appear enabled
in the solution.

5.3.1 Bellman Error-based Coordination Discovery

Recent work in linear value function approximation in reinforcement learning (RL) has consid-
ered Bellman error-basedmetrics for incremental basis expansion [31, 57, 74, 76]. hesemethods
aim to iteratively improve the bound to the true value function by introducing as next feature
the Bellman error basis function (BEBF) hk+1 ≜ T V̂ − V̂—or an approximation thereof—into the
basis set. Here, T refers to the dynamic programming operator and V̂ = Hkŵ to the current
estimate of the value function at iteration k. It is easy to see that setting Hk+1 = [Hk , hk+1] is
equivalent to introducing T V̂ into the span of Hk+1, where T V̂ improves on the bound to the
true value function by at least γ due to the contraction property of the dynamic programming
operator in L∞. For linear ûxed point methods, such as TD or Least Squares Policy Iteration
(LSPI) [61], the fact that T is also a contraction in the weighted L2,ρ norm (with its associated
inner product space) allows to construct a geometrical argument for feature insertion: if both

68 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

ρ, the stationary distribution induced by policy π, and the Bellman error vector are known,
an approximation to the BEBF is also guaranteed to improve the error bound to the true value
function V π if it does not exceed a bound on the angle to the Bellman error vector [76]. Stated
diòerently, for linear ûxed point methods, basis function choice may actually worsen the error
bound to the true value function if this criterion for the angle is violated.

Note that the previous analysis justiûes the use of Bellman error basis functions for policy

evaluation (or with uncontrolled Markov chains) but does not immediately extend to the con-
trolled case since T ∗, the Bellman optimality operator, does not possess a contraction property
in L2,ρ. Further, since the Bellman error vector and steady-state distribution ρ are unavailable
in the Batch-RL analysis of [31, 76], approximations to both need to be computed in practice,
e.g. with a regression over sampled state-action pairs. If policy evaluation and improvement

steps are interleaved to compute the optimal value function V∗, there also exists a norm incom-
patibility since policy improvement as per the usual max-norm analysis again only possesses a
contraction property in L∞.

The BEBF*

We now proceed to combine the advantages of the ALP solution method (i.e., its suitability for
solving the full control problem in domains with large state and action spaces) with a principled,
Bellman error-based basis expansionmethod. We begin by formally introducing the BEBF*, the
equivalent to the BEBF for the Bellman optimality operator T ∗:

Consider the controlled case: it is well known that the Bellman operator T ∗ is a contraction
in L∞ [83]:

∥V1 − V2∥∞ = є⇒ ∥T ∗V1 − T ∗V2∥∞ ≤ γє (5.4)

where γ is the discount factor. Now consider the basis set Hk at the current iteration: including
T ∗V̂ = T ∗Hkŵ in the span ofHk+1 at the next iteration of the ALP is guaranteed to improve the
bound on the right-hand side of Equation 2.25 by at least a factor of γ unless the optimal value
function has been obtained. his is because the “best possible” approximation on the right-hand
side of the same equation at iteration k + 1,

min
w

∥V∗ − Vw∥∞ ≜ min
w

∥V∗ −Hk+1w∥∞ (5.5)

then includes T ∗V̂ as a solution which reduces the bound accordingly. Including this basis in
the span of Hk+1 is trivially achieved by deûning hk+1 to be the BEBF* ≜ T ∗V̂ − V̂ and letting
Hk+1 = [Hk , hk+1] (then, precisely vector w = [ŵ 1]T reconstructs T ∗V̂).

5.3. Basis Function Generation 69

In our setting, the Bellman residual can be computed eõciently since it is factored over the
state space under a sparse ‘action-connectivity’ assumption in the MAS (cf . Chapter 4). he
BEBF* can therefore be computed at a given iteration in principle. Every component 1, . . . ,M
of the BEBF* can then be appended as a (locally-scoped) basis function to Hk to form Hk+1:
note that T ∗V̂ is then trivially constructed in span(Hk+1) with the weights w1, . . . ,wk from the
previous iteration and wk+1∶M = 1, guaranteeing an improvement of the bound by a factor γ.
However, executing this procedure N times—T ∗N—leads to ever-increasing scopes of the basis
functions since every new basis is in turn backprojected through the DBN at the next iteration.

he derivation above serves therefore foremost as a theoretical result – as mentioned previ-
ously, there are reasons to impose constraints on the basis function choice hk+1 (such as “small
scope” to maintain sparsity in the CFG) while remaining a close approximation to the BEBF*.
In the following sections we implement this trade-oò between closeness to the BEBF* and fa-
vorable agent coordination as a principled search from least to most complex CFG for binary
basis functions. Binary basis functions have strong practical relevance since associated manip-
ulations are computationally cheap and a linearly-independent basis is easily constructed [31].
he procedure is divided into basis generation (i.e., construction of a candidate set χ) and evalu-
ation (i.e., a sorting operation on the candidate set), which are detailed below. In the remainder
of the chapter, we use the terms (binary) feature function and basis function interchangeably.

It is worthwhile to point out that unlike the analysis for linear ûxed pointmethods in [31, 76],
adding arbitrary columns to H can never worsen the bound in equation 2.25. his, however
does not mean that the ALP solution cannot worsen within this bound: as for the case of linear
ûxed pointmethods, only the bound is guaranteed to improvemonotonically. Corollary 3 below
restates this fact.

Feature Evaluation

In this section we introduce approximations to the BEBF* by leveraging the eõcient compu-
tation that the factored Bellman residual admits. Note that adding the BEBF∗ = T ∗V̂ − V̂ to
Hk is equivalent to adding the negative Bellman residual from V̂ as hk+1 to the basis. Following
the notation of [31], given a set of candidate features χ, we therefore seek the feature hk+1 ∈ χ
that most closely approximates the residual V̂ −T ∗V̂ (or, equivalently, the BEBF*), such that its
addition to Hk reconstructs T ∗V̂ in span(Hk+1) well. he exact procedure for constructing the
candidate set χ is treated in the next section.

Corollary 3. Trivially, for any choice hk+1,minw∥V∗ − V̂χ∥∞ −minw∥V∗ − V̂χ∪{hk+1}∥∞ ≥ 0 (one

70 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

may always choose wk+1, the weight associated with hk+1, to be 0). he bound in Equation 2.25 is

therefore monotonically decreasing (in the ≤ sense).

For the uncontrolled (policy evaluation) case, under the L2,ρ analysismentioned previously, a
suõcient condition for hk+1 that yields a strictly improving bound (in the < sense) can be derived
based on a geometrical argument [76]. he argument yields a maximum-angle bound between
the BEBF and the candidate feature in the inner product space associated with L2,ρ.

Deûnition 13 (Binary Feature Function). Denote by f ∶ X ↦ {0, 1}N a binary basis function (or,

feature function) that maps each state x1, . . . , xN ∈ X to a feature vector [ψ f (x1), . . . ,ψ f (xN)]T

indicating whether binary feature ψ f ∶ X ↦ {0, 1} is enabled in each state.

For the choice fk+1 from a given candidate set χ, Geramifard et al. show in [31] that the same
geometrical analysis can be extended to ûnd the feature f ∗k+1 ∈ χ with the maximum guaranteed
error bound reduction from the candidate set. Again, in practice two approximations to f ∗k+1 are
evaluated since the steady state distribution ρ and Bellman error are not available exactly.

For the analysis of the BEBF*, i.e. the controlled case of interest here, the “next best” feature
to select from a candidate set χ escapes a geometrical argument, precisely because the L∞ norm
is not associated with an inner product as is ∥⋅∥2,ρ and the notion of angles between vectors is
undeûned. Still, one may hope that approximations to the BEBF* that retain “closeness” may
yield a (strict) decrease in the error bound to V∗. Note that a key diòerence to the uncontrolled
implementation above is therefore that the Bellman residual is available exactly for constructing
candidate basis functions (i.e., does not have to be approximated) but that feature “closeness”
escapes an exact geometrical analysis. Second, since basis insertion may not worsen the error
bound to V∗ for the ALP, insertion of a suboptimal basis may only delay improvement of (but
not worsen) the bound.

We now turn to approximations to the BEBF* and show how they can be evaluated eõciently
for the binary feature function case, inducing an ordering over features in χ for iterative basis
expansion. he following general properties of candidate basis functions are considered for
evaluating approximations to the BEBF*:

Deûnition 14 (Feature Coverage). Consider the binary feature function f ∶ Dom(f) ↦ {0, 1}M

deûned over state variables Z ⊆ X of size ∣Dom(f)∣ = M. Deûne its coverage as the region of the

state space X where it is active, i.e.:

Coverage(f) ≜ {x ∣ ψ f (x[Z]) = 1, x ∈ X}

5.3. Basis Function Generation 71

where x[Z] denotes the value of x for the state variables in Z.

Corollary 4. he sum of the Bellman residual within the region of the (global) state space where

f is active (i.e., within Coverage(f)), can be computed eõciently for sparsely ‘action-connected’

MASs. Similarly for its maximum (i.e., the Bellman error) and minimum over Coverage(f).

Proof: Chapter 4 introduced the Bellman residual marginal overY, BellmanMarginal(V̂)(y), as
the sum of the Bellman residual over X ∖ Y, and showed its eõcient computation for sparsely
‘action-connected’ MASs. he sum of the Bellman residual marginal where binary feature f is
active, denoted BRS(f), can then be computed eõciently by realizing:

BRS(f) = ∑
x

∣BellmanResidual(V̂)(x) ⋅ f (x[Z])∣ = ∑
zi

∣BellmanMarginal(V̂)(zi) ⋅ f (zi)∣ (5.6)

where BellmanMarginal(V̂)(zi) is the Bellman residual marginal function overDom(f) evalu-
ated at zi . As shown in Equation 4.6, this is computed eõciently without a variable elimination
step. For the max (i.e., the Bellman error), variable elimination yields BellmanError(V̂)(z),
i.e. the Bellman error function over Dom(f) and Equation 5.6 applies again with the sum re-
placed by a max. he case of the min follows analogously. In the following, we denote the result
of max and min computations by BE(f) and BM(f), respectively. ◻

Intuitively speaking, one may hope that including features in the ALP that subsume a large
amount of the Bellman residual ‘integral’ will be active in the solution and move V̂k+1 “closer”
to V∗. A second property of a canddiate feature can be referred to as its range:

Deûnition 15 (Feature Range). Deûne by Range(f) the diòerence between maximum and mini-

mum Bellman residual in Coverage(f): Range(f) ≜ BE(f) − BM(f).

Corollary 5. Adding the binary feature fk+1 to the basis, i.e. Hk+1 = [Hk , fk+1], is equivalent to

introducing a value function in span(Hk+1) that is є-close to T ∗V̂ in Coverage(fk+1), where є ≜
Range(f)

2 .

Proof: Associate feature fk+1 with weight wk+1 = −BM(f) − Range(f)
2 and all other weights

w1, . . . ,wk as in the previous iteration. hen span(Hk+1) includes the value function where the
Bellman error BE(f) has been reduced within Coverage(f) so that the new values lie in the
band ±Range(f)

2 of T ∗V̂ . ◻
While again no formal guarantees on bound reduction can be made for introducing an є-

close function to T ∗V̂ (over a particular coverage) in span(Hk+1), a feature’s range may present
another criterion for candidate evaluation.

72 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

Given a set of candidate features fk+1 ∈ χ, there are therefore multiple criteria under which
the next feature f ∗k+1 to add to Hk may be selected:

1. he sum of the (absolute) Bellman residual within Coverage(f): BRS(f). Note that this
increases monotonically with feature coverage and will naturally prefer “coarser” features
(i.e., those that cover larger portions of the state space).

2. he achieved error band around T ∗V̂ in Coverage(f): є. Note that є is, in general, smaller
for small feature coverage and vice versa. In the extreme case, a feature that is active at a
single state can remove the Bellman error entirely at this state (є = 0).

3. he absolute reduction in Bellman error in Coverage(f), BE(f)−є = 1
2(BE(f)+BM(f)).

here is therefore a clear dependency between all criteria and the size of f ’s state space coverage,
∣Coverage(f)∣. A good feature selection criterion likely needs to trade oò a choice of 1 − 3 with
the coverage measure. In the max-norm analysis pursued here, without an option for a deeper
geometrical argument, this trade-oò has to be evaluated empirically.

Interestingly, in the ∥⋅∥2,ρ analysis for policy evaluation (or uncontrolled Markov chains),
the binary feature fk+1 ∈ χ that yields the maximum guaranteed error bound reduction can be
shown to be f ∗k+1 = argmax f ∈χ

BRS(f)
√

∣Coverage(f)∣
, showing a similar trade-oò, albeit with additional

approximations to both numerator and denominator in practice [31].

Incremental Feature Generation

Incremental feature generation addresses the question which feature set χ to construct for eval-
uation at each iteration of basis discovery. Here, we seek to implement a coordination graph
search from least to most complex through the restriction to locally-scoped basis functions in
the ALP. For binary basis functions, one basis sorting operator that achieves this expansion or-
dering is the binary feature conjunction operator, which can be deûned as [31]:

pair(χ) ≜ { f ∪ g ∣ f , g ∈ χ, f ∪ g ∉ χ} (5.7)

with (f ∪ g) denoting the feature function mapping each x1, . . . , xN ∈ X to the vector [ψ f (x1) ∧
ψg(x1), . . . ,ψ f (xN) ∧ ψg(xN)]T . his operator has the favorable theoretical properties that it
expands a basis of linearly independent columns, that the expanded basis spans V∗ in the limit,
and that the maximum number of expansions is bounded (under the mild assumptions given in
[31]). Further, if χ is initialized with a set of “small-scope” base features, the operator naturally

5.3. Basis Function Generation 73

implements an expansion from least to most complex basis via binary conjunctions of existing
features.

The Sparse Coordination Discovery (SCD) Algorithm

In this section we summarize the complete Sparse Coordination Discovery algorithm based on
the individual components described previously.

1. Initialization: Basis set χ is seeded with an exhaustive indicator basis centered on single
state factors Xi : Let X = {X1, X2, . . . , Xn}. One indicator IkX i

is inserted for all factors Xi

and factor values k: IkX i
= 1 iò Xi = k, 0 otherwise.

2. Feature generation: At every iteration of the algorithm, the pair operator constructs up
to (∣χ∣2) valid binary feature conjunctions from the existing features in χ.

3. Given the current ALP solution vector ŵ, BellmanResidual(V̂)(x) = V̂ − T ∗V̂ (factored
over state factors X) is computed, involving the eõcient maximization over the joint ac-
tion space detailed in Chapter 4.

4. Feature evaluation: Each candidate feature fk+1 is scored with an evaluation function
FeatureEval(fk+1) (see below). he largest ‘action-connected’ scope resulting from in-
cluding fk+1 in the basis set is determined via backprojection of the candidate through the
DBN (Chapter 4). If the sparsity bound of the CFG is violated, i.e. exceeding a limit on the
complexity of interaction between agents, fk+1’s score is set to −∞. Otherwise, the highest
scoring feature, f ∗k+1 = argmax fk+1

FeatureEval(fk+1), is determined.

5. he basis set is expanded greedily with the highest scoring feature, χk+1 = χ ∪ { f ∗k+1}, and
the ALP re-solved.

6. Error bound computation: he Bellman error (and bound on value function error) at the
new solution ŵk+1 is computed eõciently via variable elimination (Chapter 4).

7. Steps 2-6 are repeated until a pre-speciûed bound on the value function error has been
achieved, a plateau in Bellman error is observed, or no valid feature (with a score ≠ −∞)
remains. A�er the stopping criterion is met at iteration p, solution vectors ŵ1, . . . , ŵp,
associated coordination factor graphs, and error bounds are returned.

Note that at every iteration of the algorithm a bound on the distance to the optimal value
function is available. Let the pair operator generate a set of candidate features fk+1 from χ at

74 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

the current iteration. We consider two evaluation functions to stand in for FeatureEval(fk+1)
above:

1. FeatureEvalBRS(fk+1): Expand ûrst the feature f ∗k+1 ∈ pair(χ) that accumulates the max-
imum sum of the (absolute) Bellman residual where it is active, relative to its coverage. Note
that this is analogous to the expansion criterion for the uncontrolled case, BRS(fk+1)

√

∣Coverage(fk+1)∣
.

2. FeatureEvalEpsilon(fk+1): Expand ûrst the feature f ∗k+1 ∈ pair(χ) that achieves the tight-
est є-band around T ∗V̂ in Coverage(f). Intuitively, these features attempt to approximate
T ∗V̂ well, even if restricted to small coverage of the state space (a “discriminant feature”).

5.3.2 Summary

his section detailed a method for incremental basis generation in the ALP and established the
link to coordination discovery in a multiagent FMMDP. Based on the theoretical results for
eõcient manipulation of the Bellman residual in Chapter 4, more complex functions are con-
tinuously introduced into the basis whilemaintaining a bounded distance of the ALP solution to
the optimal value function V∗. Replicated is a search for coordination factor graphs that admit
“good” solutions while enforcing sparsity of agent interaction. Unlike previous methods, coor-
dination search is therefore treated as a by-product of achieving a desired bound on the solution
to the full control problem. Since the bound is monotonically decreasing at every iteration (in
the ≤ sense), the algorithm can further be interrupted at any time, allowing a trade-oò between
coordination complexity and value function solution bound.

5.4 Experimental Evaluation

In this sectionwe evaluate the two classes of approximation algorithms developed in this chapter,
i.e. the regularizedALP initializedwith an ‘overcomplete’ basis set (selection) and the incremental
basis expansionmethod (generation). Due to the aforementioned issues of scale with the former,
focus of the evaluation is on basis generation, which allows computing bounded solutions to
problems that could previously only be evaluated empirically through policy simulation. Of
particular interest are the coordination structures discovered by the algorithm and their intuitive
interpretation for the particular domain.

Outlined ûrst are the performance metrics used during evaluation which depend on the
availability of the optimal solution V∗. Second, we introduce the evaluation domains in detail.
Of particular interest is a large disease control domain where multiple agents attempt to control

5.4. Experimental Evaluation 75

a stochastic disease process over a graph through application of vaccinations. We then show the
principal applicability of the regularized ALP solution in domains where we retain an optimal
solution for comparison. Experiments are then scaled up to signiûcantly larger domains for
evaluation of iterative coordination discovery.

5.4.1 PerformanceMetrics

One can broadly distinguish between metrics for empirical evaluation and those that analyze
the error with respect to the optimal value function V∗ analytically. In the latter category, if
V∗ is available, is the direct computation of the relative error between both value functions,
∥V∗ −Hŵ∥

∞
/ ∥V∗∥

∞
, i.e., the maximum diòerence in value between approximation Hŵ and

V∗ at any state x. Normalization allows comparison across diòerent domains. Note that this
requires an exhaustive enumeration over all states x. In our analysis for general factored MDPs,
we use Spudd [46] to obtain the optimal reference value function and policy where problem
sizes permit.

he second entry in this category—ifV∗ is not available or cannot be enumerated exhaustively—
is a bound with respect to the optimal value function. As outlined in Chapter 2, the Bell-
man error oòers a bound on the approximation error to V∗. he normalized Bellman Error,
BellmanError(Hŵ)/Rmax, for Rmax denoting the maximum reward in any state x, generally re-
quires an exhaustive enumeration over all x but is computed eõciently for our approximation
methods that enforce the sparse action-connectivity property at the solution (Chapter 4).

In the category of empirical measures fall policy simulation results. hese refer to the (dis-
counted) return computed by simulating policy π̂ over an evaluation horizon, usually averaged
overmultiple runs. Policy simulation allows comparisonwith both the optimal policy π∗ (where
available), or other upper bounds or problem-speciûc heuristics. For empirical evaluation, we
frequently refer to the online sample-based planner Prost [48], the winner of the International
Planning Competition (IPPC) in 2011 and 2014 for binary state/action domains, for comparison
in domains with moderate branching factor (i.e., moderate ∣A∣). Where available, we refer to
published results for other (approximate) solvers for a subset of the domains below.

5.4.2 Domains

Five domains are considered in our evaluation (detailed speciûcations for each are given in
Appendix B). First, variants of the SysAdmin problem, originally introduced in [36] for pre-
determined basis functions, are considered, which commonly serve as baselines in other pub-

76 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

lishedwork. Evaluationwith 10 agents in a star conûguration (referred to assysadmin-star-10)
serves as a test case for which optimal solutions are available. Comparisons to other published
approximate solutions are drawn and UCT-based solvers (such as Prost) are applicable for ad-
ditional comparisons. he state and action space sizes are ∣S∣ = ∣A∣ = 210.

We then look at the same domain with more agents arranged in a diòerent conûguration
(sysadmin-ring-50). his is a signiûcantly more diõcult domain for which no optimal policy
is available. Without further approximations, UCT-based algorithms fail (or do not work well)
in this domain due to the large branching factor in ∣A∣. Recent extensions to UCT that attempt
to discover state-action symmetries fail in this domain as well [4]. We are interested in how au-
tomatic coordination discovery fares in this problem compared to the smaller 10 agent version.
We are the ûrst to report bounded solutions for this problem. State and action space sizes are
∣S∣ = ∣A∣ = 250.

AResourceProtect domain is introduced that is aminormodiûcation to the previous problem
and assigns vastly more reward to a speciûc computer in the network. Our goal is to evaluate
whether the discovered coordination structures change signiûcantly based on this modiûcation.

A TaskNetwork domain that is not binary and signiûcantly more diõcult than the previous
domains is introduced, for both 6 and 20 agents. In a task network, each computer i is asso-
ciated with two variables, one indicating its load (∣Li ∣ = 3) and the other its health (∣Si ∣ = 3)
and the goal is to move tasks to completion in the network. To avoid confusion with the previ-
ous SysAdmin domain, we refer to this as a TaskNetwork instead ofMultiagent-SysAdmin under
which name it has also appeared [36]. he tasknetwork-6 problem is the last instance for
which an optimal policy can be obtained with Spudd. We are the ûrst to present bounded so-
lutions in tasknetwork-20. Additionally, we demonstrate how important basis selection (and
coordination choice) is to achieve good policy performance in simulation. he larger of the
domains has approximately 1.3 ⋅ 1025 state-action pairs.

We then move to the signiûcantly larger DiseasePropagation domain [45, 87] with up to 50
agents in a graph of 100 nodes. Here, stochastic dynamics that model a disease propagation
over a graph are to be controlled through vaccinations. he evaluated domain has up to 1.4 ⋅ 1045

state-action pairs.

Lastly, a targeted version of the above problem is considered where the disease is intended
to be contained in a certain sub-region of a graph. We refer to this domain as GraphContain-

ment. his domain is identical in complexity to DiseasePropagation and is detailed further in
Appendix B.

5.4. Experimental Evaluation 77

5.4.3 Basis Function Selection

In this section we consider “exhaustive” insertion of basis functions into the ALP by a domain
expert, followed by a sparse selection with the regularized ALP. he setting is the TaskNetwork

domain with 6 computers arranged in a ring (each with ternary Status i and Load i variables),
and 6 administrators that may reboot individual computers to avoid errors in task processing
(cf . Appendix B). In total, there are ∣S∣ = 531,441 states and ∣A∣ = 64 actions in the domain. An
optimal reference policy can be computed with Spudd [46] (solved for tolerance = 0.0001).

For exhaustive basis insertion, we consider the following sets of basis functions (arranged
from “least” to “most complex” in terms of number and scope sizes):

H1: An exhaustive set of indicator functions per individual state variable (referred to as “in-

dividual basis”). Since ∣Xi ∣ = 3 ∀i in the TaskNetwork problem, this corresponds to 3
functions per variable indicating that a particular state value is active. he value function
and policy resulting from the ALP solution with this basis are referred to as V̂1 and π̂1.

H2: he ûrst half of computers is equipped with a “pairwise basis”, the second half with the
individual basis. In a pairwise basis, (Status i , Load i) are considered jointly for each
computer i and one indicator is inserted for every instantiation (i.e., 9 per computer).
he resulting value function and greedy policy are referred to as V̂2 and π̂2.

H3: All computers are equippedwith a pairwise basis. he resulting value function and greedy
policy are referred to as V̂3 and π̂3.

H4: Both pairwise and individual basis functions are inserted exhaustively for all computers.
he resulting value function and greedy policy are referred to as V̂4 and π̂4.

Basis set choices 1-3 are all proper subsets of 4; the latter corresponds to a possible “exhaustive”
basis choice of pairwise and individual features by a domain expert. We initially obtain the ALP
solution for all sets 1-4 and then consider basis selection from the exhaustive set. Note that for
the basis set choices here, the resulting Q-value components Qi(zi[x], zi[a]) are all deûned over
individual action variables Ai (by virtue of backprojection in the TaskNetwork DBN). Hence,
coordination between agents happens through jointly observed subsets of the state space.

Results for value function error measures and policy simulation for sets 1-4 are summarized
in Table 5.1 and Figure 5.1, respectively. Both relative error (in terms of L∞) and L1 distance
to V∗ are monotonically decreasing for more complex basis choices in the example. Policies
π̂ ≜ Greedy(V̂) are simulated for 50 trials of 200 steps each in Figure 5.1. Empirical policy

78 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

performance increases monotonically (in a ≥ sense) for basis choices 1-4. Note that sets 3 and 4
both perform equivalently to the (optimal) Spudd policy.

The Regularized ALP

In this sectionwe use the regularizedALP together with exhaustive basis set 4 (90 basis functions
in total) to evaluate the impact of diòerent regularization factors λ on the solution. In addition
to the value function metrics above, we show the number of enabled basis functions, ∥ŵ∥0, and
its (regularized) approximation ∥ŵ∥1 for each ALP solution. Distinguished is also between the
number of pairwise and individual basis functions active at the solution. Table 5.2 summarizes
the eòects of varying λ ∈ [0, 1] in the tasknetwork-6 domain (β = 0). For tested choices of
λ beyond 1.0, no further reduction in ∥ŵ∥1 or change in solution quality were recorded. It is
noticeable that with higher regularization penalty λ, more smaller-scope functions (h∣Dom(h)∣=1)
are enabled. his is in line with the previous intuition that spanning an “everywhere-close” ap-
proximation to the value function with fewer basis function biases the solution to those with
larger coverage of the state space. In the example, the state space coverage of an individual basis

function is 3 times as high as that of a pairwise function (given that ∣Xi ∣ = 3 ∀i). herefore, as the
L1 norm of solution vectorw is penalized, a solution composed out of individual basis functions
will cover a larger state space while encountering less penalty than the identical state space cov-
ered with pairwise basis functions. his trade-oò between solution quality and basis function
choice can be seen for increasing choices of λ in Table 5.2. he same pattern for enabled basis
functions h∣Dom(h)∣=1 and h∣Dom(h)∣=2 could be conûrmed with the alternative implementation of
L1 regularization through the constraints ∣wi ∣ ≤ c ∀i.

For the policy simulation results in Figure 5.2, the most interesting cases are summarized by
settings λ = 0.1 and 0.2 from Table 5.2. he former yields optimal policy performance during
simulation while disabling a number of larger-scope basis functions. he latter results in near-
optimal performance (shown on the right of the Figure) with only a third of the larger-scope
functions active at the solution compared to the unregularized solution. In practice, regular-
ization parameters λ and β require a parameter search (e.g. with a cross-validation method) to
avoid overût to a speciûc problem instance.

5.4.4 Basis Function Generation

In this section we move to evaluation of the iterative basis construction scheme in all ûve do-
mains introduced above. All experiments are reported for the FeatureEvalBRS evaluation

5.4. Experimental Evaluation 79

Figure 5.1: From top le� to bottom right: Discounted values of policies π̂1 − π̂4, corresponding to ALP
solutions with individual, partially pairwise, pairwise, and both individual and pairwise basis function
sets (see text). Shown are results for 50 trials of 200 steps each with 95% conûdence intervals computed
from 5 runs, in comparison with random and optimal Spudd policies. Note that for both ALP solutions
in the second row, the policy performance coincides with that of the optimal solution.

Basis set: H1 H2 H3 H4

L∞w.r.t. V∗ 3.966 2.420 0.756 0.756
L∞w.r.t. V∗/ ∥V∗∥

∞
0.181 0.110 0.034 0.034

L1w.r.t. V∗ 572,079 325,047 78,014 78,014
tcomp 0.09 s 0.12 s 0.25 s 0.46 s

Table 5.1: Value function error measures for ALP solutions corresponding to basis sets 1-4 (see text). For
comparison, Spudd’s computation time (tolerance = 0.0001) is tcomp = 5260 s on the same machine.

80 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

Figure 5.2: Discounted value of π̂ from regularized ALP solutions with λ = 0.1 (le�) and λ = 0.2 (right).
Shown are results for 50 trials of 200 steps each, averaged over 5 runs, in comparison with random and
optimal Spudd policies. Note that the former coincides with the optimal policy whereas the latter is near
optimal with one third of the pairwise basis functions enabled in the solution vector ŵ.

Regularization λ: 0 0.1 0.2 1.0

L∞w.r.t. V∗ 0.756 0.756 1.664 1.664
L1w.r.t. V∗ 78,014 78,014 217,582 217,582
∥ŵ∥1 74.693 61.716 59.531 59.531
∥ŵ∥0 (Note: ∣ŵ∣ = 90) 46 49 37 40
∥ŵ∣Dom(h i)∣=2∥0 , ∥ŵ∣Dom(h i)∣=1∥0 {33, 13} {24, 25} {12, 25} {15, 25}

Table 5.2: Comparison of diòerent regularization factors λ in tasknetwork-6 and their eòect on the
regularized ALP solution seeded with the exhaustive basis set H4 of both individual and pairwise basis
functions (see text).

criterion a�er it outperformed the FeatureEvalEpsilon function consistently in our tests.

Sysadmin-star-10

We consider an application of the coordination discovery method to the SysAdmin baseline in-
stance with 10 computers arranged in a star conûguration. When applying the coordination
discovery method, we obtain the optimal policy a�er 9 iterations (see value function error mea-
sures in Table 5.3, simulation results in Figure 5.3, and the discovered coordination structures

shown as a succession of CFGs in Figure 5.4 on page 83). Bounded solutions, and value function
error measures with respect to the optimal Spudd policy V∗, are available for this problem and

5.4. Experimental Evaluation 81

shown in Table 5.3 for every iteration of the algorithm. he optimal policy is achieved with 29
locally-scoped (at most pairwise) factors. Empirically, the policy in this simple problem is opti-
mal even before the ûrst iteration of basis construction (i.e., with the basis centered on individual
state factors only), as can be seen in the policy simulation results in Figure 5.3. In summary:

• No domain knowledge for basis construction was inserted into the problem. Discovered co-
ordination structures mimic pairwise coordination with the center node in the problem and
follow the intuition that this is the most important node in the network (if it goes down, all
computers are aòected)

• he process can be halted with a bounded solution as per the desired degree of agent coordi-
nation.

• Reported in [85] are policy simulation results for approximate symbolic dynamic program-
ming (SDP) methods in the sysadmin-star-10 domain. All are outperformed by the basis
discoverymethod. Prost achieves equivalent results to the optimal policy during simulation,
albeit without a bound on the solution.

• Solution times (not shown) outperform Prost in practice. Further, the obtained value func-
tion and policy is planned oøine over the entire state space and requires no search at runtime.

Iteration Bellman error ALP Objective Basis choice Bound ∥V∗ −Hw∥
∞

Actual ∥V∗ −Hw∥
∞

0 2.48031 84.0909 h10 = X0 ∧ X2 22.32279 3.77192
1 3.01435 83.8496 h11 = X0 ∧ X5 27.12915 4.12898
2 2.63756 83.6083 h12 = X0 ∧ X3 23.73804 3.61286
3 2.26077 83.367 h13 = X0 ∧ X6 20.34693 3.09674
4 1.88397 83.1257 h14 = X0 ∧ X1 16.95573 2.58062
5 1.50718 82.8844 h15 = X0 ∧ X8 13.56462 2.06449
6 1.13038 82.6431 h16 = X0 ∧ X9 10.17342 1.54837
7 0.753588 82.4018 h17 = X0 ∧ X7 6.782292 1.03225
8 0.376794 82.1605 h18 = X0 ∧ X4 3.391146 0.516123
9 4.57412E-14 81.9192 h19 = X0 ∧ X2 4.116708E-013 0
10 4.57412E-14 81.9192 — 4.116708E-013 0

Table 5.3: (sysadmin-star-10) Iteration 0 refers to the ALP before incremental basis construction.
Denoted in the Basis choice column is the conjunctive basis added at the next iteration. It can be seen
in iteration 1 that the Bellman error increases, which veriûes that the ALP optimization of the L1 norm
does not, in general, monotonically decrease the Bellman error. Bounds and resulting factor graphs are
visualized in Figures 5.3 and 5.4, respectively.

82 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

0 1 2 3 4 5 6 7 8 9

Iteration

0

5

10

15

20

25

30

|V
∗
−

H
w
| ∞

Value function error

0 10 20 30 40 50
Trials

140

160

180

200

220

240

260

280

300

R
e
tu

rn

exp_log/simple_sysadmin/resultsReturn.csv

RAND
ALP2
ALP1

Figure 5.3: (sysadmin-star-10) Le�: Value function error for 10 iterations of basis construction. Plot-
ted is the actual error ∥V∗

−Hw∥
∞

(in blue) versus the Bellman errror bound on the same metric (in
gray). Note that the maximum return is bounded by Rmax/(1 − γ) = 100 in this problem setup. he
optimum policy is obtained a�er 9 iterations. Right: Mean return for 50 trials of 30-step policy simula-
tion for a random policy and two ALP policies: ALP1 and ALP2 coincide in the ûgure and show policy
performance before and a�er 10 iterations of incremental basis construction. Both yield the same (i.e.,
optimal) performance during simulation. All results are averaged over 10 runs and are shown with 95%
conûdence intervals.

It is interesting to see that the bound shown in Figure 5.3 is rather pessimistic compared to the
actual error achieved with respect to the known optimal value function in this problem.

Sysadmin-ring-50

his is a larger domain for which no optimal policy is available. 50 agents are arranged in a
ring structure without a central node. UCT-based methods do not apply without further ap-
proximations over the exponential action space (∣A∣ = 250). Prost cannot serve as a baseline
in this experiment since it runs out of memory (speciûcally, during the conversion step into its
proprietary representation).

We apply our coordination discovery method to this scenario. For the Bellman error to
remain computable exactly, we restrict themaximumnumber of ‘action-connected’ state factors
to 12 (cf . Chapter4), enforcing a sparsity property on the coordination graph as per our working
assumption that such a sparse interaction structure approximates the true value function well.
For problems where the optimal value function is not available, the actual error ∥V∗ −Hŵ∥

∞

cannot be computed. Based on our eõcient computation of the Bellman error, we do maintain
the ability to bound the solution with respect to V∗ and present the ûrst such solutions for this

5.4. Experimental Evaluation 83

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

ϕ16

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

ϕ16ϕ17

A0

A7

A6

A5

A4
A3

A2

A1

A9

A8

ϕ0

ϕ7

ϕ6

ϕ5

ϕ4

ϕ3
ϕ2

ϕ1

ϕ9

ϕ8

ϕ10

ϕ11

ϕ12

ϕ13

ϕ14

ϕ15

ϕ16ϕ17

ϕ18

Figure 5.4: (sysadmin-star-10) Obtained factor graphs from 10 iterations of basis construction in the
SysAdmin domain with 10 computers connected in a star layout. Agents participating in pairwise factors

are highlighted in gray. Note that the last iteration is omitted since the policy has reached optimality in
the previous iteration.

84 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

problem.

A common metric to assess the results when the optimal policy is not available is the nor-

malized Bellman Error (BE), deûned as BellmanError(Hŵ)/Rmax. he BE is commonly not
available for large problems due to the max over exponentially many states – we compute it
eõciently during coordination discovery with a variable elimination procedure. Note that the
loss in return with respect to the optimal value function V∗ in any state is then bounded by
∥V∗ − V̂∥∞ ≤ γ

1−γBellmanError(V̂), which can similarly be compared to the upper bound on
the (inûnite, discounted) return in any state, Rmax/(1−γ). For the evaluation in simulation over
h timesteps, Rmax ⋅ h yields an optimistic upper bound if all computers were constantly running
and no reboot action ever occurred.

Table 5.4 shows 50 iterations of coordination discovery in this domain at increments of
10 iterations. Adjacent nodes in the ring are continuously joined into ‘action-connected’ sub-
sets while enforcing the upper bound on the maximum partition size. Within each partition,
pairwise factors join adjacent nodes into a connected chain, intuitively corresponding to “sub-
chains” of the original 50-node ring (without having provided such domain knowledge).

Iteration Bellman error Bound ∥V∗ −Hw∥
∞

Node partitions in ring (link 0-49 closes the ring)

0 10.7667 96.9003 {0}, . . . , {49}
1 9.12724 82.14516 {0}, . . . , {17, 18}, . . . , {49}
10 7.57585 68.18265 {0}, . . . , {8 − 18}, . . . , {49}
20 6.52235 58.70115 {2 − 7}, {8 − 18}, {36, 37}, {38, 39}, {44, 45}, {47, 48} (Rest: single)
30 4.65677 41.91093 {0 − 7}, {8 − 18}, {28, 29}, {30 − 39}, {44, 45}, {47, 48} (Rest: single)
40 2.79094 25.11846 {8 − 18}, {20 − 29}, {30 − 39}, {44, 45}, {47 − 7} (Rest: single)
50 2.04514 18.40626 {8 − 18}, {19 − 29}, {30 − 39}, {40 − 46}, {47 − 7}

Table 5.4: (sysadmin-ring-50) Iteration 0 refers to the ALP before incremental basis construction
with only single basis functions per state factor. Shown in the last column are the sets of nodes joined by
conjunctive basis functions up to that iteration. Note that within each set, pairwise factors connect the
nodes into sub-chains of the original ring.

A�er 50 iterations this approximation architecture reaches a plateau for the Bellman error
of 2.05 (compare to Rmax = 50) and a bound on the value function error of 18.41 (compare to
Rmax/(1 − γ) = 500). Figure 5.5 shows the relative Bellman error for all 50 iterations of coordi-
nation discovery and Figure 5.6 policy simulation results over 30 timesteps. As for the previous
smaller domain, only the bound is signiûcantly decreased; the performance in our simulations
is identical before and a�er coordination discovery in this problem.

In summary, introducing collaborating neighboring agents as per the partitions shown in
Table 5.4 reduces the bound on the value-function loss by a factor of 5.

5.4. Experimental Evaluation 85

0 5 10 15 20 25 30 35 40 45

Iteration

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

B
el

lm
an

E
rr

or
(V̂

)/
R

m
ax

Relative Bellman Error

sysadmin-ring-50

Figure 5.5: (sysadmin-ring-50) Relative Bellman error for 50 iterations of coordination discovery.
Note the intermediate increases in Bellman error where the ALP solution is not the best possible approx-
imation (in a L∞ sense) given the basis: the optimization of the weighted L1 norm does not, in general,
monotonically decrease the Bellman error.

Resourceprotect-ring-50

Webrie�y experimented with a variation of the previous domain where the ûrst computer in the
network (node 0, which is connected to nodes 49 to the le� and 1 to the right) is more important
than all others (by a factor of 5). his domain has the same complexity as the previous one; of
interest here is only a possible change in the agent coordination structure to account for the
more valuable resource.

A�er the ûrst 10 iterations, node 0 is covered by the largest connected chain formed: {45−1}
(besides connections {15 − 18} and {36, 37}). At iteration 22, that sub-chain has been further
expanded to cover nodes {41− 1}. Based on our domain knowledge, nodes n − 1 (i.e., neighbors
to the le� of a node n in the ring) aòect the status of node n at the next iteration. he discovered
coordination structure resembles that property of the domain. It is intuitive that a good policy
in this domain (i.e., one associated with low Bellman error) should yield agent coordination
around the important resource to maximize its uptime as is conûrmed by this experiment.

86 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

0 10 20 30 40 50
Trials

600

700

800

900

1000

1100

1200

1300

1400

R
e
tu

rn

exp_log/simple_sysadmin/.archive/2015-08-07@12:21:46/resultsReturn.csv

RAND
ALP2
ALP1

Figure 5.6: (sysadmin-ring-50) Mean return for 50 trials of 30-step policy simulation for a random
policy and two ALP policies; no optimal reference policy is available: ALP1 and ALP2 coincide in the
ûgure and show identical policy performance before and a�er 50 iterations of incremental basis con-
struction. All results are averaged over 10 runs and are shown with 95% conûdence intervals. Note the
(optimistic) upper bound of 1500 in this setup for constantly running computers and no reboot actions.

Tasknetwork-6

In the TaskNetwork domain, a computer network completes jobs based on both status and cur-
rent load at eachmachine (each represented with ternary variables as detailed in the full domain
description in Appendix B). he load variable at each computer indicates task progress and a
reward of 1 is collected only if a task continues uninterrupted over two processing steps.

As shown for the optimal policy performance over h = 200 steps in Figure 5.9, it is much
harder to achieve high reward in this domain (average reward of approximately 400 compared
to the optimistic upper bound Rmax ⋅ 200 = 1200). he case of N = 6 machines, where state and
action spaces have size ∣S∣ = 312 and ∣A∣ = 26, respectively, is the last one for which we could
obtain an optimal policy with Spudd.

Basis discovery is run for 20 iterations a�er which the Bellman error measure reaches a
plateau (stopped manually a�er 30 iterations). As shown in Table 5.5, all constructed features
increase complexity over the same computer through pairwise factors over the Si , Li variables.
Only during the last iterations are pairwise factors across other machines’ status variables intro-
duced, interestingly between equally distantmachines in the network (see Figure 5.8). Given the

5.4. Experimental Evaluation 87

0 2 4 6 8 10 12 14 16 18

Iteration

0

5

10

15

20

25

30

35

|V
∗
−

H
w
| ∞

Value function error

Figure 5.7: (tasknetwork-6) Actual (blue) versus bound (gray) on value function error for 20 iterations
of basis construction. Note that here Rmax/(1 − γ) = 60.

S1

S0

L0L1

S5

S4
L4L3

L5

S3

S2

L2

ϕ4

ϕ5

ϕ2

ϕ1

ϕ0

ϕ3

ϕ6

ϕ7

Figure 5.8: (tasknetwork-6) Discovered coordination structure at iteration 20. he last two factors
ϕ6, ϕ7 are added in the ûnal two iterations but do not improve the empirical (and theoretical) perfor-
mance of the policy during simulation (see Figure 5.9).

88 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

0 10 20 30 40 50
Trials

100

150

200

250

300

350

400

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND
SPUDD

0 10 20 30 40 50
Trials

100

150

200

250

300

350

400

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND
SPUDD

0 10 20 30 40 50
Trials

100

150

200

250

300

350

400

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND
SPUDD

0 10 20 30 40 50
Trials

100

150

200

250

300

350

400

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND
SPUDD

Figure 5.9: (tasknetwork-6) From top le� to bottom right: mean return for 50 trials of (here) 200-
step policy simulation comparing random and optimal policies to the ALP solution a�er a selection of 1,
10, 11, and 17 iterations of basis discovery. All results are averaged over 5 runs and are shown with 95%
conûdence intervals.

5.4. Experimental Evaluation 89

bounds on the value function error shown in Figure 5.7, a sparse coordination graphwithout any

inter-agent connections suõces to guarantee the same performance bound. Figure 5.9 shows the
empirical policy performance compared to the optimal Spudd policy, conûrming this intuition
(approximately optimal performance is achieved from 15 iterations onward).

Iteration Bellman error Bound ∥V∗ −Hw∥
∞

Actual ∥V∗ −Hw∥
∞

Factor graph partition

0 3.78598 34.07382 3.96567 {L0}, {S0}, . . . , {L5}, {S5}
5 2.12546 19.12914 2.30515 {L0, S0}, {L1, S1}, {L2, S2}, {L4, S4}, {L5, S5}, {L3}, {S3}
10 1.39284 12.53556 1.83688 {L0, S0}, {L1, S1}, {L2, S2}, {L3, S3}, {L4, S4}, {L5, S5}
15 0.851845 7.666605 1.51027 {L0, S0}, {L1, S1}, {L2, S2}, {L3, S3}, {L4, S4}, {L5, S5}
20 0.681476 6.133284 1.3399 {L0, S0, L2, S2, L4, S4}, {L1, S1}, {L3, S3}, {L5, S5}

Table 5.5: (tasknetwork-6) Iteration 0 refers to the ALP before incremental basis construction. Dis-
covered partitions join Si , Li corresponding to each individual agent i.

Tasknetwork-20

his domain is signiûcantly larger than the previous ones at ∣S∣ = 340 and ∣A∣ = 220 (approxi-
mately 1.3 ⋅ 1025 joint state-action pairs). No optimal policy is available; we are the ûrst to show
bounded solutions to this problem. It also serves to demonstrate the importance of good basis
choice, be it through automated discovery or manually by a domain expert.

he Bellman error reaches a plateau a�er 62 iterations at which time it has been reduced by
a factor of 6 compared to the non-optimized basis. Interestingly, Figure 5.10 (bottom) shows
a similar curve like the bound for 6 machines shown previously in Figure 5.7: the relative BE
decreases linearly until all Si , Li are covered by pairwise factors (here at iteration 20 compared
to iteration 6 before). he ALP policy converges to one with an average payoò of 180 (h = 30)
a�er approximately 40 iterations of basis discovery. We re-ran the previous experiment for the
same horizon (results on the le� of Figure 5.11) and obtain an average reward of 54 which directly
mimics the ratio in machine numbers. his leads us to believe that the optimal policy has in fact
also been discovered for this domain.

To show the diõculty of the search for a good basis set, we shi� the full set of pairwise factors
to the right to cover adjacent state factors Li , Si+1 instead, essentially introducing coordination
links between adjacent agents. he lack of performance (cf . right of Figure 5.11) validates the
criticism raised previously against manual basis selection for the ALP, i.e. that a domain expert
is required to choose a problem-speciûc basis set. Coordination discovery resolves this concern
with a principledmethod for basis discovery (respectively, coordination search in themultiagent
setting) that maintains bounds on the value function error.

90 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

0 10 20 30 40 50
Trials

40

60

80

100

120

140

160

180

200

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

RAND
ALP2
ALP3
ALP1
ALP4

0 10 20 30 40 50 60

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

B
el

lm
an

E
rr

or
(V̂

)/
R

m
ax

Relative Bellman Error

tasknetwork-20

Figure 5.10: (tasknetwork-20). Top: Comparison of 4 ALP policies (a�er 0, 30, 40, 70 iterations) to
the random policy (h = 30). Note that policies for iterations 40 and 70 coincide in the Figure. Bottom:
relative Bellman error over 70 iterations of basis discovery. Note the similarity in shape to the bound for
the smaller version of this problem in Figure 5.7 (see text).

5.4. Experimental Evaluation 91

0 10 20 30 40 50
Trials

15

20

25

30

35

40

45

50

55
R

e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND
SPUDD

0 10 20 30 40 50
Trials

60

80

100

120

140

160

180

R
e
tu

rn

exp_log/sysadmin/resultsReturn.csv

ALP
RAND

Figure 5.11: Le� (tasknetwork-6): mean return for 50 trials of (here) 30-step policy simulation com-
paring random and optimal policies to the ALP solution at iteration 20. Right (tasknetwork-20): the
eòect of a suboptimal basis choice, outlining the need for a domain expert or automated basis discovery
– here, pairwise factors are shi�ed to the right to cover Li , Si+1 in the ring.

DiseasePropagation

We now apply the same method to a disease propagation setting with up to 50 agents in a graph
of 100 nodes. his is the most complex of the domains considered with up to 1.4 ⋅ 1045 state-
action pairs (see Appendix B). Agents perform vaccinations in a generic network of nodes in
order to quickly cancel out the eòects of a disease process over a graph. Previous results (for
up to 3 agents where MCTS yielded empirically the best policies) are available in [45]. Our
contributions concern the extension to many more agents and the evaluation of coordination
requirements between those, and the availability of bounds on the solution.

As outlined in the algorithm description in Section 5.3.1, three steps are iterated: i) Repre-
senting the constraints and solving the ALP given a basis set, ii) computing the Bellman error
exactly given the (sparse) coordination graph, and iii) determining the next best basis to intro-
duce. Steps i) and ii) require a variable elimination (VE) procedure (exponential in the largest
clique size formed during VE) whereas iii) only requires the computation of the Bellman resid-
ual marginal “covered” by a candidate basis, which is, in general, less complex (exponential in
the chosen limit on the ‘action-connected’ state factors; a parameter to the basis discovery algo-
rithm which is ûxed at 12 for the experiments here). Note that the issues of scale for i) and ii) are
revisited in a later chapter on exploiting “anonymous in�uence” in large graphs with stochastic

92 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

Node ID out-degree controlled Node ID out-degree controlled

35 6 − 69 4 ✓
87 5 ✓ 45 4 ✓
22 5 − 50 4 −
12 4 − 18 4 −
72 4 − 25 4 −

Table 5.6: he ten nodes with the highest out-degree in the DiseaseProp graph. Column “controlled”
refers to whether an agent is present or not (cf . Figure 5.13).

dynamics. We provide timing results for each step of the algorithm in the experiments.

Figure 5.13 shows the graph used for the experiments. 15, 25, and 50 controlled agents are
placed at random locations in the graph. In the ûrst set of experiments, the goal is to quickly
cancel out the eòects of the disease. Since, to the best of our knowledge, no comparative results
are available, we formulate a problem-speciûc heuristic (referred to as “copystate”) which
immediately administers a vaccination at each infected, controlled node. Note that this policy
is reactive and cannot administer a vaccination proactively if nodes further up in the network
are already infected. In the results we omit a random policy since it is outperformed by a wide
margin in all experiments.

In problems of this scale, the ALP solution becomes a limiting factor (see the timing results
for the comparable GraphContainment problem in Figure 5.15). As basis functions are inserted
that span multiple nodes, (exact) variable elimination in the graph suòers from generally larger
scope sizes during elimination. Note in the same Figure that computation times for feature
evaluation (i.e. step iii) of the algorithm) is not aòected due to the eõcient computation of the
Bellman marginal without a VE procedure. Given the increase in ALP solution times, we com-
plete 24 iterations of basis discovery and evaluate the resulting policies for 15, 25, and 50 agents
against the copystate heuristic.

No links between agents are introduced during 24 iterations of basis discovery. Similarly to
the case for GraphContainment (see Table 5.7 in the next section), nodes appearing in pairwise
factors during basis discovery resemble the “most important” vertices (as per their out-degree)
in the graph.

he reduction in relative Bellman error of approximately 10% a�er 24 iterations does not
have an eòect on the empirical policy performance (see Figure 5.12). All ALP policies coincide
and outperform the heuristic signiûcantly: the mean return of the ALP policy with 15 agents
matches that of the heuristic with 50 agents. We experimented with a second version of the
problem (not shown) for a random re-shuøing of agents in the graph and note that the absolute

5.4. Experimental Evaluation 93

0 10 20 30 40 50
Trials

7500

7000

6500

6000

5500

5000

4500

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

COPYSTATE
BIGALP2

0 10 20 30 40 50
Trials

7500

7000

6500

6000

5500

5000

4500

4000

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

COPYSTATE
BIGALP2
BIGALP3

0 10 20 30 40 50
Trials

6500

6000

5500

5000

4500

4000

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

COPYSTATE
BIGALP3

Figure 5.12: (diseaseprop-100 with 50 agents). From top le� to bottom right:Mean return for 50 trials
of 30-step policy simulation for ALP policy and copystate heuristic for 15, 25, and 50 agents in the graph
(see text). Note that the mean return of the ALP policy with 15 agents matches that of the heuristic with 50

agents.

94 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

54

65

63

62

61

60

59

58

55

67

53

49

48

47

43

42

39

80

99

96

94

91

89

88

86

83

1

77

76

74

73

71

70

68

19

24

17

33

4

7

10

81

64

16

15

14

13

75

78

79

9

0
8

84

5

90

92

3

95

2

97

46

30

23

36

37 21

28

40

41

26

27

31

52
44

32

85

6

29
93

38

98

34

20

51

66

11
57

56

82

25

18

69

72

12

50

45

87

22

35

Figure 5.13: Example graph for DiseaseProp and GraphContainment domains with 100 nodes and 50
randomly placed agents (∣S∣ = 2100, ∣A∣ = 250). he following properties are visualized in the graph:

- controlled (i.e., agent) nodes are surrounded with hexagon shapes, uncontrolled nodes (where the
process may propagate undisturbed) with circles,

- each node’s size is proportional to its out-degree in the network ∈ [1, 6],

- edgewidth and color (heatmap fromblack towhite) indicate its “betweenness” centrality property,
i.e. the number of shortest paths from all vertices to all others that pass through it,

- analogous for a vertex’ color which indicates its “betweenness” centrality.

5.4. Experimental Evaluation 95

return depends strongly on agent placement in the graph: the re-shuøing resulted in a reduction
of mean return by approximately 2000.

GraphContainment

In theGraphContainment domain, the process may propagate without penalty among all 50 un-

controlled nodes in the graphwhereas the samepenalty as previously occurs at infected controlled
nodes. he goal is to contain the process in one half of the graph and controlled nodes have to
trade oò a vaccination action (at a cost) with letting the process pass through to “penalty-free”
regions of the graph.

Table 5.7 shows the results for 20 iterations of basis discovery, along with Bellman error
bounds on the value function and a summary of the pairwise factors that are introduced by
basis discovery. he Bellman error and the value function bound can be compared to Rmax = 0
(respectively, themaximumcost per step of−2550), and analogously themaximumaccumulated
cost of −25500 in this domain (γ = 0.9), yielding a tight guarantee on the error.

Similarly to the previous domain, increasing ALP solution times only allow us to solve 20 it-
erations of basis discovery, yielding a reduction of the error bound by approximately 10%. To the
best of our knowledge, a bounded solution to a problem of this size (without further restrictions
on the policy) were not shown previously.

Iteration Bellman error Bound ∥V∗ −Hw∥
∞

Nodes in pairwise factors (and their occurrence count if > 1)

0 118.233 1064.097 −
5 118.181 1063.629 34, 35(3), 72(2), 93(2), 98(2)
10 110.872 997.848 12(2), 34, 35(6), 50(2), 72(2), 84, 93(2), 98(4)
15 109.645 986.805 12(3), 15, 34, 35(10), 50(3), 64, 72(2), 84, 85, 92, 93(2), 98(4)
20 106.165 955.485 12(4), 15, 22(4), 25, 34(2), 35(11), 50(3), 64, 72(2), 84(2), 85, 92, 93(2), 98(5)

Table 5.7: (graphcontainment-100 with 50 agents). Iteration 0 refers to the ALP before incremental
basis construction with single basis functions per state factor. Shown in the last column are the nodes that
appear in pairwise factors up to that iteration, along with the number of times they appear (in brackets
and highlighted in bold if changed from previous row).

Interestingly, nodes appearing in pairwise factors during basis discovery resemble the “most
important” vertices (as per their out-degree) in the graph (cf . Table 5.6). Further, 20 iterations
of basis discovery in this domain did not cause links between agents to be introduced in the
coordination graph.

Results for policy simulation are summarized in Figure 5.14. he reduction in error bound
did not result in an empirical performance increase during simulation: all ALP solutions coin-
cide and outperform the copystate heuristic by a larger margin than in the previous domain.

96 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

0 10 20 30 40 50
Trials

4500

4000

3500

3000

2500

2000

1500

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

COPYSTATE
BIGALP3

Figure 5.14: (graphcontainment-100 with 50 agents). Mean return for 50 trials of 30-step policy sim-
ulation for ALP policy and copystate heuristic.

0 2 4 6 8 10 12 14 16 18 20

Iteration

101

102

103

104

105

106

107

C
o
m

p
u
ta

ti
o
n
 t

im
e
 [

m
s]

GraphContainment, 50 agents

BE computation
Feature evaluation
ALP solution

Figure 5.15: (graphcontainment-100 with 50 agents) Computation time (in ms) for each of Bellman
error computation, Feature evaluation, and ALP solution over 20 iterations (note the log scale). (n

2) can-
didate features are evaluated per iteration (between 19900 and 24090 binary feature conjunctions and
Bellman marginal evaluations over region where feature is active).

5.5. Related Work 97

his re�ects the intuition that a good policy in this domain should trade oò vaccination cost
with allowing a pass-through to “cost-free” regions in the graph. he results in Figure 5.14 fur-
ther indicate that even in this large (binary) problem, an exhaustive singleton basis is suõcient
to achieve a solution within the tight bound shown in Table 5.7. his is diòerent from e.g. the
previous TaskNetwork domain where only the introduction of pairwise factors reduced the rel-
ative Bellman error to comparable values.

5.4.5 Summary

In this section we have experimentally veriûed the regularized ALP approach to basis selection
and the iterative basis discovery method in general factored multiagent MDPs. Based on the
theoretical insight that “sparse agent interaction” enables eõcient computations with the Bell-
man residual, we have shown exact solution bounds in domains for which such bounds were
previously not available.

We also included comparisons with optimal (where available) and state-of-the-art planning
methods, speciûcally, a sampling-based planner that won the IPPC 2011 and 2014 competitions
[48]. For problems with 50 agents that are beyond the scope of these methods, we showed that
basis discovery outperforms a domain-speciûc heuristic: the obtained policy in theDiseaseProp

domain, for example, achieves comparable results with 15 agents to the heuristic with 50 agents.

Lastly, we noted that the ALP solution (and not basis discovery) becomes a limiting factor
in large-scale experiments with graphs of up to 100 nodes and 50 agents.

5.5 RelatedWork

he speciûc, novel focus in this chapter has been on basis discovery methods that retain a

(bounded) solution in large, collaborative FMMDPs. he methods introduced in this chapter
may be broadly related to existing basis discovery methods with the caveat that these do not ex-
plicitly address the scale to largeMASs. Multiagent settings have usually pursued a coordination
search and solve strategy, separating coordination (or, basis) discovery from solving the value
function. We ûrst introduce general basis discovery methods and then return to the multiagent
case below.

Among basis discovery methods, one can distinguish between methods for basis selection

and generation. he regularized ALP (RALP) formulations from Section 5.2 fall into the former
category while the Sparse Coordination Discovery (SCD) algorithm is an instance of the latter.

98 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

Regularization with the L1-norm is frequently applied in regression or compressive sens-
ing applications for sparse feature selection [25, 102]. Similar basis selection methods have also
appeared for approximate dynamic programming (ADP) formulations to planning and rein-
forcement learning. hey are usually based on sparsity-inducing regularization of the parameter
vector [57, 70]. In the context of reinforcement learning, [75, 81] consider L1-regularization for
linear value function approximation. Our regularized ALP implementation is most closely re-
lated to the RALP variant in [81]. Diòerent from their method, we do not rely on constraint
sampling [28] but instead implement the constraints exactly with the method detailed in Chap-
ter 2. We also consider a second regularization term on the domain size of the basis function
to encourage locally-scoped features in the ALP. Recent work has introduced a non-parametric
formulation of the ALP that skips feature selection and instead encodes a smoothness constraint
of the value function with the constraints [78]. An evaluation of this method in the context of
large multiagent settings is future work.

(Iterative) basis generation has a history in matching pursuit methods that greedily forward
select features [77]. Versions of matching pursuit were evaluated in context of RL in [27, 47, 74].
Diòerent from RL methods with basis function selection for policy evaluation we address the
control problem. As mentioned above, our interest is in maintaining eõcient solutions in the
multiagent setting. However, existing methods for control disregard the fact that in order for a
class of eõcient MAS solution algorithms to apply in the ûrst place, basis functions are addi-
tionally constrained to have local scope. Existing ALP basis generation methods, for example,
do not prioritize sparsity in the CFG and do not scale to large MASs. hese methods have also
only shown empirical reduction in Bellman Error [82, 106]. Unlike these methods, we directly
optimize for a Bellman Error-based basis selection criterion to avoid overût to the objective in
the ALP (observed, e.g., in [82]).

Recent work in linear value function approximation in reinforcement learning (RL) has con-
sidered Bellman Error-based metrics for incremental basis expansion [57, 74, 76]. hese meth-
ods aim to iteratively improve the bound to the true value function by introducing as next feature
the Bellman Error Basis Function (BEBF) or an approximation thereof. he BEBF is derived for
T operator (i.e., policy evaluation or uncontrolled settings) for linear ûxed point methods. Our
BEBF∗ is developed for T ∗ (i.e., the control problem) in context of the ALP. We also retain an
eõcient exact computation of the BEBF∗ in settings with sparse interaction but forego stronger
guarantees about bound reduction for approximations to the BEBF∗ (our results only guarantee
a monotonic decrease of the bound in the ‘≤’ sense). Our incremental basis expansion is most
closely related to the method in [31] although additional constraints (the sparsity assumption for

5.6. Contributions 99

CFGs) are necessary to scale the solution to the large factored action spaces of MASs.
Basis discovery in multiagent settings has usually pursued a coordination search and solve

strategy, separating coordination (or, basis) search from solving the value function. For example,
[105] considers a randomized search over structures that generates and evaluates coordination
factor graphs online. Other work in RL has considered statistical tests for greedily selecting
CFGs [52]. Our focus is on the joint optimization of value function and theCFG.Unlike previous
methods, coordination discovery is treated as a by-product of achieving a desired bound to the
optimal value function.

Planning in large discrete action spaces is challenging and frequently based on problem-
speciûc heuristics (not considered here). Our SCD algorithm extends Guestrin’s original work
on eõcient approximate linear programming (ALP) solutions to cooperative FMMDPs [36]. We
extend the method for the multiagent case with sparse interactions to include automated basis
discovery and develop exact Bellman Error-based bounds for the approximations.

Other general planning methods that are not based on linear value functions include sym-

bolic dynamic programming (SDP). Recent work on SDP with factored actions [84, 85] describes
both exact and approximate methods that extend earlier work on SDP (the Spudd algorithm
[46]) to the factored action case.

Sample-based planning algorithms can be applied in principle even if the action space cannot
be explored exhaustively [48, 51]. Recent extensions aim to address factored actions in particular
but have thus far not demonstrated scale to the many agents considered here [3, 20].

Recent multiagent work phrases decision-theoretic planning as inference in Bayesian Net-
works [59, 60]. Policies are restricted to ûnite state controllers (versus no such restrictions on
the policy in our approach). We note that in principle this method is promising for scaling to
many agents. he same assessment holds for the variational framework in [15] which uses be-
lief propagation (BP) and is exponential in the cluster size of the graph. Results are shown for
graphs with up to 20 nodes and a restricted class of chain graphs. In contrast, we provide exact
bounds on the solution for multiagent settings with sparse interactions.

5.6 Contributions

In this chapter we translated the theoretical insights about sparse CFGs from Chapter 4 into
novel basis selection and generationmethods for the ALP.We developed the Bellman Error Basis
Function for T ∗ (BEBF∗), which extends previous work on BEBFs for policy evaluation to the
control problem, i.e., the (approximate) solution to the optimal policy.

100 Chapter 5. Bounded Approximate Methods for Sparse Coordination Discovery

We then introduced a key algorithmic contribution with the Sparse Coordination Discov-
ery (SCD) algorithm for general collaborative FMMDPs. Underlying SCD is the assumption
that there exists some form of sparse interaction between agents that—if found—allows to ap-
proximate the global value function well. Based on the BEBF∗ and the eõcient computation
of the Bellman Error, SCD is implemented as an iterative algorithm that automates the search
for sparse coordination via basis expansion in the ALP. SCD implements a coordination factor
graph search from least to most complex by successively expanding more complex basis func-
tions that fulûll a sparsity constraint on the associated CFG.

We further showed that the search maintains bounded solutions (with respect to the optimal
solution V∗) and that it improves the bound monotonically (in a ‘≤’ sense). By utilizing the
eõcient constraint generationmethod for the ALP reviewed in Chapter 2, this joint optimization

of CFG and value function approximation V̂ further scales to large multiagent settings. It also
addresses a common criticism of the ALP solution method, namely the requirement of a pre-
speciûed (and domain-speciûc) basis. SCD was validated experimentally across a number of
large multiagent planning problems and enabled error bound analysis for the ûrst time in the
larger of the evaluated domains (e.g., SysAdmin or DiseasePropagation with 50 agents). Our
results aid the design of multiagent systems by allowing a principled trade-oò between strong
performance guarantees and associated complexity of coordination between agents.

Chapter 6

The Lifted Approximate Linear Program

he general class of cooperative multiagent systems (MASs) considered in this thesis possess
negative complexity results as they scale to larger agent numbers. Previous chapters introduced
diòerentmeans to exploit locality in the problem to scale solutionmethods in both agent number
and problem size. As shown in the previous two chapters in particular, many (general) exact and
approximate solution algorithms that attempt to exploit structure in the problem are based on
value factorization. Locally-scoped value functions induce a coordination factor graph (CFG),
enabling eõcient representation and computation of the joint policy, even in problems whose ex-
ponential state and action spaces would otherwise render a solution prohibitive. Especiallymul-
tiagent settings, however, are known to suòer from an exponential increase in value component
sizes as interactions among agents become denser, meaning that approximation architectures
are overly restricted in the problem sizes and types they can handle. In the previous chapter we
developed a coordination discovery method that enforces sparsity in agent interaction to main-
tain compact value function scopes. At the core of the method lies the assumption that variable
elimination can continue to be carried out eõciently in the underlying graph, which presents a
limit for general factored MDPs.

In this chapter we present an approach to mitigate this limitation for certain types of MASs,
exploiting a property that can be thought of as ‘anonymous in�uence’ in general, factoredMDPs.
In particular, we show how anonymity can lead to representational and computational eõcien-
cies, both for general variable elimination (VE) in a factor graph but also for the approximate
linear programming (ALP) solution to factoredMDPs. he latter allows to scale linear program-
ming to factored MDPs that were previously infeasible to solve.

his chapter therefore explores yet another interpretation of ‘locality’, speciûcally an eõ-
cient representation of local eòects in large graphs. Our contribution has a natural application
in a class of problems that can be summarized as the control of stochastic dynamics over large

101

102 Chapter 6. The Lifted Approximate Linear Program

graphs. As introduced in the previous chapter (and Appendix B in detail), one such example is
the disease propagation setting wheremultiple agents have to control a disease outbreak through
the targeted application of vaccinations. Our evaluation shows the computational beneûts of an
eõcient representation of local eòects in this class of problems, enabling the solution of instances
with both high node count and dense graph connectivity.

6.1 Introduction

Given the well-known unfavorable complexity results associated with large action and state
spaces, many problem representations and their solution methods attempt to exploit structure
in the domain for eõciency gains. he factored (equivalently, “graph-based”) MDPs (FMDPs)
introduced in Chapter 2 oòer representational advantages that do not, however, translate im-
mediately into gains for policy computation. he approximate linear program (ALP) is one of
the few general solution methods that has no exponential dependencies in S andA through the
eõcient computation of the constraints in the linear program based on a variable elimination
method [40]. he method retains an exponential dependency on the tree-width (the largest
clique formed during variable elimination) meaning that the feasibility of the approximation
architecture is based on the connectivity and scale of the underlying graph.

In this chapter we present an approach to mitigate this limitation for certain types of MASs,
exploiting a property that can be thought of as “anonymous in�uence” in the graph. Anonymity
refers to the reasoning over joint eòects rather than identity of the neighbors in the graph. In the
disease control example, the joint infection rates of the parent nodes rather than their individual
identity can fully deûne the behavior of the propagation model. Based on this observation we
show how variable elimination—and the complete set of constraints in the ALP—can still be
computed exactly for a larger class of graph-based problems than previously feasible.

he contributions of this chapter are as follows: ûrst, we deûne “anonymous in�uence” for
representing aggregate eòects in a graph. Second, we develop the concept in a general variable
elimination setting and show how it supports compact representation of intermediate functions
generated during elimination. A key contribution is the insight how a property referred to as
“variable consistency” during VE admits particularly compact representations without the need
to “shatter” function scopes into disjoint subsets. hird, based on the results for VE, we move
to the planning problem and establish how all constraints in the ALP can be represented exactly
(albeit more compactly) for factored MDPs that support anonymous in�uence. Forth, we con-
trast the eõciency gains from exploiting anonymous in�uence on a set of random graphs that

6.2. Anonymous Influence 103

can still be solvedwith the normal VE andALPmethods. We demonstrate speed-ups of the ALP
by an order of magnitude to arrive at the identical solution in a sampled set of random graphs
with 30 nodes. Last, we address the disease control problem in graph sizes that were previously
infeasible to solve with the ALP solution method. We show that the ALP policy outperforms a
hand-cra�ed heuristic by a wide margin in a 50-node graph with dense neighbor connections
and 25 controlled agents.

6.2 Anonymous Inæuence

he FMMDPs described in Appendix B may not, in general, impose strong constraints on the
connectivity of the underlying graph. In fact, many interesting disease propagation settings con-
tain nodeswith large in- or out-degrees yielding dense connectivity in some regions of the graph,
rendering the ALP solution method intractable (see, for example, the graphs in Figure 6.5). In
this section we develop a novel approach to deal with larger scope sizes than addressed previ-
ously.

At the core lies the assumption that in the graph-based problems above, only the joint eòects
of the parents Pa(Xi)—rather than their identity—may determine the outcome at an individual
node Xi . We show how under this assumption variable elimination can be run exactly in graphs
with higher node and degree counts. he key insight is that the exponential representation of in-
termediate functions emay be reduced to some subscopewhen only the joint eòects, rather than
the identity, of some variables in the domain Dom(e) need to be considered. In the following,
we ûrst address the representation of “joint eòects” before turning to how it can be exploited at
a computational level during VE (Section 6.3) and in the ALP (Section 6.4). In our exposition
we default to binary variables but the results carry over to the more general, discrete variable
setting.

6.2.1 Count Aggregator Functions

We deûne count aggregator functions to summarize the “anonymous in�uence” of a set of vari-
ables. In the disease propagation scenario for example, the number of active parents uniquely
deûnes the transitionmodel Ti while the identity of the parent nodes is irrelevant (for represent-
ing Ti).

Deûnition 16 (Count Aggregator Function). Let #{Z} ∶ Z1 × . . . × ZN ↦ R, Zi ∈ {0, 1}, deûne
a count aggregator function (CAF) that takes on N + 1 distinct values, one for each setting of k

104 Chapter 6. The Lifted Approximate Linear Program

‘enabled’ factors Zi (including the case that no factor is ‘enabled’). Note that all permutations of k

‘enabled’ factors map to the same value.

Count aggregator functions can be used to summarize the eòects of variable sets compactly
whenever their exact identity is not required, as is the case in the following example:

Example 6. Consider a monotonically increasing CAF, #i , that summarizes the number of infected

parents of a node Xi in a disease propagation graph. Here, the codomain of #i{Z} directly corre-
sponds to {0, . . . ,N}, i.e. the number of ‘enabled’ factors in z ∈ Z.

We delay a discussion of conceptual similarities with generalized (or ‘li�ed’) counters in
ûrst-order inference to the comparison with related work in Section 6.6.

6.2.2 Mixed-mode Functions

We now make the distinction between ‘proper’ variables and those variables that appear in a
counter scope explicit.

Deûnition 17 (Mixed-Mode Function). Let f (X, #{Z}) denote a mixed-mode function over

domain X × Z = X1 × . . . × XM × Z1 × . . . × ZN if, for every instantiation x ∈ X, f (x, #{Z}) is a

count aggregator function. We refer to Xi ∈ X as proper variables and Z j ∈ Z as count variables
in the scope of f .

Amixed-mode function can be described with (at most) KM(N + 1) parameters where K is
an upper bound on ∣Dom(Xi)∣. A CAF is a mixed-mode function where X = ∅.

Example 7. Consider the conditional probability distribution Ti(Xi ∣ Pa(Xi)) of a (binary) node

Xi and its parents in the disease propagation graph. Let xi and x̄i denote the case that node i is

infected and not infected, respectively. hen Ti(Xi ∣ #{Pa(Xi)}) is a mixed-mode function that

induces two CAFs, one for xi and one for x̄i .

he deûnition of mixed-mode functions can be extended to allow for multiple count scopes
#i :

Deûnition 18. Let f (X, #i{Zi}, . . . , #k{Zk}) denote a mixed-mode function and assume (for

now) that Zi ∩Z j = ∅ for i ≠ j. hen, for each of the KM instantiations x ∈ X, there is the induced
CAF f (x, #i{Zi}, . . . , #k{Zk})which is fully deûned by the values assigned to #i{Zi}, . . . , #k{Zk}.

6.3. Efficient Variable Elimination 105

A

B1 B2 . . . Bk

C

A

B1 B2 . . . Bk

C

#A

#C

Figure 6.1: An example Bayesian Network (le�) and factor graph (right). he latter deûnes two factors
withmixed-mode functions f (A, #{B1, B2, . . . , Bk}) and g(C , #{B1, B2, . . . , Bk}). Here, variables Bi only
occur in counter scopes # (not the general case).

Example 8. Consider, e.g., g(X1, X2, #1{Pa(X1)}, #2{Pa(X2)}) and let ∣Pa(X1)∣ = ∣Pa(X2)∣ = 6
and Pa(X1)∩Pa(X2) = ∅. While the naive representation has 214 values, the mixed-mode function

g can be represented with 22 ⋅ 7 ⋅ 7 parameters.

In the next section we show how mixed-mode functions can be exploited during variable
elimination and during constraint generation in the ALP.

6.3 Eácient Variable Elimination

Variable elimination (VE) removes variables iteratively from a factor graph given an elimination
orderingO. Diòerent elimination operators (e.g. sum or max) implement distinct operations on
the graph (such as marginalization of a variable in a probability distribution or determining the
maximizing action in a coordination factor graph (cf . Chapter 4). As part of this, VE performs
maximizations and summations over local terms.

he complexity of variable elimination is exponential in the scope size of the largest factor
generated during elimination, which generally depends on the chosen ordering O [54]. Con-
sider, e.g., the Bayesian Network on the le� of Figure 6.1 and assume that variables A, B1, . . . , Bk

are to be eliminated with some operator Op. If variable A is eliminated ûrst, the initial factor e
comprises all terms dependent on A. herefore, in order to implement Op, e(A, B1, . . . , Bk) has
to be constructed in full (exponential in k+1). In this section we show how the max operation is
implemented eõciently when factors are mixed-mode functions (results for summation follow
analogously). We begin with the special case that counter scopes in a mixed-mode function are
disjoint and then address the general setting.

106 Chapter 6. The Lifted Approximate Linear Program

Consider againmaximization over proper variableAunder the same orderingO in the factor
graph on the right of Figure 6.1. Denote the result by the intermediate (mixed-mode) function
f ′(#{B1, B2, . . . , Bk}) computed as:

f
′(v) = max [f (a, v), f (ā, v)] (6.1)

for all v ∈ {0, . . . , k} that can be assigned to counter #. his operation is implemented with k + 1
operations and has no exponential dependency on k like normal VE when computing f ′.

Now consider the elimination of count variable Bi from f . he result is again a mixed-mode
function f ′′(A, #{B1, . . . , Bi−1, Bi+1, . . . , Bk}) where:

f
′′(a, v) = max [f (a, v), f (a, v + 1)] (6.2)

for all a ∈ A, v ∈ {0, . . . , k − 1}, since the eliminated count variablemay increase the count by at

most 1. Note that for monotonically increasing (or decreasing) CAFs the max in Equation 6.2
can be avoided.

Completing the coverage of all elementary operations performed during variable elimina-
tion, sums ofmixed-mode functions can again bewritten compactly inmixed-mode form. Con-
sider N additional factors ϕ j(A, #{Z j}) in the factor graph and assume (for now) that all counter
scopes are mutually disjoint. hen l = f +∑N

j=1 ϕ j can be represented as:

l(A, #{B1, . . . , Bk}, #1{Z1}, . . . , #N{ZN}) (6.3)

which is computed without exponential expansion of any of the variables appearing in a counter
scope as l(a, v , z1, . . . , zN) = f (a, v) +∑N

j=1 ϕ j(a, zi) for all valid assignments a, v , zi .

Example 9. We now consider a fully worked-out example comparing the elimination of variable

A and C under Op = max in both graphs of Figure 6.1, for the case that k = 2 and that all

variables are binary. Both ‘regular’ and mixed-mode functions are represented in tabular form

and A is eliminated ûrst from the graph. Assume the deûnitions for fl(A, B1, B2) (le� graph) and

fr(A, #{B1, B2}) (right graph) as shown in Table 6.1:

To maximize over A, consider the last column (respectively, row) of fl and fr in Table 6.1. Note

that in order to perform the max operation, fl requires the construction of exponentially many

columns (with respect to its scope size). Further note that the result of maxA fr is a CAF. We now

6.3. Efficient Variable Elimination 107

fl ∶

A B1 B2 fl(A, B1, B2) maxA fl
0 0 0 0 0
1 0 0 0
0 1 0 2 3
1 1 0 3
0 0 1 2 3
1 0 1 3
0 1 1 4 6
1 1 1 6

fr ∶

A
0 1 2

0 0 2 4
1 0 3 6

maxA fr 0 3 6

Table 6.1: he deûnitions for ‘regular’ and mixed-mode functions fl and fr to go along with Example 9.

turn to elimination of C from the graph. he result—with the analogous operations to the previous

case—is shown in Table 6.2.

gl ∶

C B1 B2 gl(C , B1, B2) maxC gl

0 0 0 9 9
1 0 0 2
0 1 0 3 3
1 1 0 2
0 0 1 3 3
1 0 1 2
0 1 1 0 4
1 1 1 4

gr ∶

C
0 1 2

0 9 3 0
1 2 2 4

maxC gr 9 3 4

Table 6.2: he deûnitions for ‘regular’ and mixed-mode functions gl and gr to go along with Example 9.

Finally, consider the result of eliminating one of the remaining variables from the graph, i.e. let
ol = maxB1 [maxA fl +maxC gl] and or = maxB1 [maxA fr +maxC gr]. Note that B1 is a count

variable in CAFs fr and gr and that both functions are deûned over the same domain. It follows

that or is a CAF with reduced scope, or(#{B2}), which can be computed eõciently analogously to

Equation 6.2 (see Table 6.3 for the result).

To compute ol , on the other hand, the full table for all instantiations of B1, B2 has to be con-

structed (see Table 6.4 for the result).

108 Chapter 6. The Lifted Approximate Linear Program

or ∶
#
0 max[f ∗r (# = 0) + g∗r (# = 0), f ∗r (# = 1) + g∗r (# = 1)] = 9
1 max[f ∗r (# = 1) + g∗r (# = 1), f ∗r (# = 2) + g∗r (# = 2)] = 10

Table 6.3: he result of maximizing over count variable B1 a�er eliminating A and C from the graph.
Note that f ∗r = maxA fr and g∗r = maxC gr are both CAFs and or = maxB1[f

∗

r + g∗r].

ol ∶

B1 B2 f ∗l (B1, B2) + g∗l (B1, B2) maxB1

0 0 0 + 9 = 9 9
1 0 3 + 3 = 6
0 1 3 + 3 = 6 10
1 1 6 + 4 = 10

Table 6.4:he result of maximizing over variable B1 a�er eliminating A and C from the graph. Note that
f ∗l = maxA fl and g∗l = maxC gl and ol = maxB1[f

∗

l + g∗l].

6.3.1 The General Case

Both proper and count variables are, in general, not uniquely associated with a single factor
during VE. For example, in a disease propagation graph, variables may appear as both proper

and count variables in diòerent factors. We can distinguish two cases:

Shared proper and count variables

Consider factor e(A, #{A, B1, . . . , Bk}) where A appears as both proper and count variable.
Elimination of A requires full instantiation (i.e., it can be considered proper) and it is removed
from the counter scope: e′(a, v) = e(a, a + v) ∀a ∈ A, v ∈ {0, . . . , k} in a variant of Equation 6.2
that enforces consistencywith the choice of (binary) proper variable A, thereby avoiding the max
operation in the same Equation. he resulting e′ has a representation that is strictly smaller than
that of e.

Example 10. Consider the case of a mixed-mode function f (A, #{A, B}) with a (binary) variable

A appearing as both ‘proper’ and ‘count’ type. Removal of A from # is done as before in Equa-

tion 6.2, additionally ensuring that the setting of A in proper and counter scopes are consistent

during elimination. Figure 6.2 shows the implementation for eliminating A from the counter scope

of f .

6.3. Efficient Variable Elimination 109

f (A, #{A, B}) ∶=

A

2 f (A, #{A, B} = 2)

1 f (A, #{A, B} = 1)

0 invalid

Ā

2 invalid

1 f (Ā, #{A, B} = 1)

0 f (Ā, #{A, B} = 0)

f ′(A, #{B}) ∶=

A

1 f (A, #{A, B} = 2)

0 f (A, #{A, B} = 1)

Ā

1 f (Ā, #{A, B} = 1)

0 f (Ā, #{A, B} = 0)

Figure 6.2: Tree representation of function f ′(A, #{B}) a�er eliminating A from the counter scope in
f (A, #{A, B}). Note how the value of (proper) variable A is consistent with that in each counter scope
during elimination, removing the max operation in Equation 6.2. Further note that no invalid entries
from f (A, #{A, B}) appear in f ′ a�er variable elimination.

Non-disjoint counter scopes

Consider two non-disjoint count variable sets #i , # j in a function f , i.e. Zi ∩ Z j ≠ ∅. Triv-
ially, there always exists a partition of Zi ∪ Z j of mutually disjoint sets {Y}, {Wi}, {W j} where
Wi ,W j denote the variables unique to #i and # j, respectively, and Y are shared. Associate
the counts #{Y}, #{Wi}, and #{W j}. hen the mixed-mode function f can be written as
f (X, #{Y}, #{Wi}, #{W j}). his observation extends to more than two non-disjoint count
variable sets.

In the worst case, a partition of⋃k
i=1 Zi , k ≥ 2 requires p = 3 ⋅2k−2 splits into mutually disjoint

sets and the resulting representation of f is exponential in p. he next section shows that this
‘shattering’ into mutually disjoint sets can be avoided and representations be kept compact if
variable consistency is enforced during VE.

Example 11. Consider f (#{A, B,C ,D, E}, #{A, B, X ,Y , Z}, #{A,C ,W , X}) with non-disjoint

counter scopes. he direct tabular encoding of f requires 6 ⋅ 6 ⋅ 5 = 180 parameters but contains

invalid entries due to overlapping counter scopes. he representation of the identical function,

110 Chapter 6. The Lifted Approximate Linear Program

f ′(#{A}, #{B}, #{C}, #{D, E}, #{X}, #{W}, #{Y , Z}) with no invalid entries requires 288 pa-

rameters.

Note that, in general, the diòerence in size between shattered and un-shattered representa-
tions can be made arbitrarily large.

6.3.2 Compact Representation

As shown above, a representation that avoids invalid entries due to overlapping variable scopes
is, in general, less compact than one that does not. We now state a key result that functions
do not need to avoid overlapping counter scopes to guarantee valid solutions during variable
elimination. his establishes that intermediate functions generated during elimination do not

suòer from an exponential increase in representational size due to enforcing (disjoint) counter
scopes Y,Wi ,W j. For simplicity of proofs, we generally assume binary (proper) variables but
all results extend equally to the more general, multi-valued case.

heorem 1. Given amixed-mode function f with overlapping counter scopes, variable elimination

will never include an invalid value in any of its operations Op (e.g., max) on f . In particular,

denote by f ′ the result of eliminating one variable from f and consider a valid entry v in f ′. hen,

the operation Op used to compute v only involves feasible (i.e., consistent) values from f . his

holds for any elimination orderingO.

Proof. he result is immediately clear for the case of eliminating proper and non-shared count
variables. Let f ′ be the result of such elimination. In case of a proper variable, it follows from
Equation 6.1 that any valid assignment to the variables in f ′ yields a max operation over valid
entries in f . For non-shared count variables, the corresponding counter in f ′ is reduced by 1 and
the max is over assignments v + 0, v + 1 to the reduced counter scope (Equation 6.2). Both count
assignments are therefore valid in the extended counter scope of f . he full proof (in particular
the case for shared count variables is given in Appendix A.

Illustration. Consider the elimination of the shared count variable B1 from f in Figure 6.3 under
Op = max. Denote by f ′(#g−{B1}, #h−{B1}) the result of variable elimination. hen, for all valid
assignments a, b to its count functions we have that:

f
′(#g−{B1} = a, #h−{B1} = b) = max [f (#g = a, #h = b), f (#g = a + 1, #h = b + 1)]

with validity of the respective values in f established by heorem 1. Another way to see this

6.3. Efficient Variable Elimination 111

f (#g{B1, B2, B3}, #h{B1, B2, B4, B5}) ∶=

3

4 ub(4)f (= 5)
3 (= 6)
2 lb(4)f (= 8)
1 invalid

0 invalid

2

4 ub(3)f (= 1)
3 (= 3)
2 (= 9)
1 lb(3)f (= 1)
0 invalid

1

4 invalid

3 ub(2)f (= 4)
2 (= 7)
1 (= 5)
0 lb(2)f (= 3)

0

4 invalid

3 invalid

2 ub(1)f (= 3)
1 (= 4)
0 lb(1)f (= 2)

Figure 6.3: A valid tree representation for a mixed-mode function f with overlapping count variables
B1, B2. he tree is expanded along #g (level 1) and #h (level 2) and invalid combinations of values are
marked as such. ub(k)f and lb

(k)
f refer to upper and lower bounds, respectively, for all 4 subtrees corre-

sponding to #h in the tree (not shown for level 1 where all choices 0, . . . , 3 are valid).

is to consider the equivalent representation of f with disjoint (i.e., “shattered”) count variable
sets, l(#{B1, B2}, #g−{B1 ,B2}{B3}, #h−{B1 ,B2}{B4, B5}), with no invalid values. Note that l(# = v,
#g−{B1 ,B2} = w, #h−{B1 ,B2} = z) is just f (#g = (w + v), #h = (z + v)) which enforces the selection
of valid values from f . Eliminating B1 from l then corresponds to a removal of a non-shared

count variable via maxv,v+1 l ∀w , z (as previously in Equation 6.2). Note that this is equivalent
to treating #g and #h jointly in the original function f , i.e. incrementing both count functions
together.

Example 12. ComputemaxDom(f) f for the function f deûned in Figure 6.3 via variable elimination

given an elimination orderingO = B1, B3, B2, B4, B5. Results are shown in Figure 6.4 below.

Corollary 6. he representation of mixed-mode function f (X, #1{Z1}, . . . , #N{ZN}) for proper

variable set X and N counters is of O(K ∣X∣ ⋅ LN) where K is an upper bound on ∣Dom(Xi)∣ and L

the largest counter value.

112 Chapter 6. The Lifted Approximate Linear Program

f ′(#g{B2, B3}, #h{B2, B4, B5}) =

2

3 ub(3)f (= max[f (2, 3), f (3, 4)] = 5)
2 (= max[f (2, 2), f (3, 3)] = 9)
1 lb(3)f (= max[f (2, 1), f (3, 2)] = 8)
0 invalid

1

3 ub(2)f (= max[f (1, 3), f (2, 4)] = 4)
2 (= max[f (1, 2), f (2, 3)] = 7)
1 (= max[f (1, 1), f (2, 2)] = 9)
0 lb(2)f (= max[f (1, 0), f (2, 1)] = 3)

0

3 invalid

2 ub(1)f (= max[f (0, 2), f (1, 3)] = 4)
1 (= max[f (0, 1), f (1, 2)] = 7)
0 lb(1)f (= max[f (0, 0), f (1, 1)] = 5)

f ′′(#g{B2}, #h{B2, B4, B5}) =

1

3 ub(2)f (= max[f ′(1, 3), f ′(2, 3)] = 5)
2 (= max[f ′(1, 2), f ′(2, 2)] = 9)
1 lb(2)f (= max[f ′(1, 1), f ′(2, 1)] = 9)
0 invalid

0

3 invalid

2 ub(1)f (= max[f ′(0, 2), f ′(1, 2)] = 7)
1 (= max[f ′(0, 1), f ′(1, 1)] = 9)
0 lb(1)f (= max[f ′(0, 0), f ′(1, 0)] = 5)

f ′′′(#h{B4, B5}) =
2 ub(1)f (= max[f ′′(0, 2), f ′′(1, 3)] = 7)
1 (= max[f ′′(0, 1), f ′′(1, 2)] = 9)
0 lb(1)f (= max[f ′′(0, 0), f ′′(1, 1)] = 9)

f ′′′′(#h{B5}) = 1 ub(1)f (= max[f ′′′(1), f ′′′(2)] = 9)
0 lb(1)f (= max[f ′′′(0), f ′′′(1)] = 9)

f ′′′′′ = lb(1)f = ub(1)f = max[f ′′′′(0), f ′′′′(1)] = 9

Figure 6.4: Results of variable elimination for function f from Figure 6.3 under Op = max and ordering
O = B1, B3, B2, B4, B5 (see Example 12). ub

(k)
f and lb

(k)
f refer to upper and lower bounds, respectively

(not shown for level 1 where all choices are valid). hemax is computed with 22 rather than 25 operations.

he results above are for general variable elimination but can similarly be exploited in the
ALP for eõcient constraint generation in both single- and multiagent FMDPs.

6.4. Exploiting Anonymity in the ALP 113

6.4 Exploiting Anonymity in the ALP

In the previous section we showed how mixed-mode functions can be represented eõciently
during variable elimination via compact representations that do not need to enforce mutually
disjoint counter scopes. In this sectionwe apply this intuition to the approximate linear program
(ALP). For the ALP, the functions ci = γgi − hi ∀hi ∈ H, along with reward functions R j, j =
1, . . . , r deûne a factor graph corresponding to themax constraint in Equation 2.21 (cf . details for
the eõcient ALP solution method in Chapter 2). Note that the scopes of ci are generally larger
than those of hi since parent variables in the 2TBN are added during backprojection. Factors
are over state and action variables in the multiagent case.

A key insight is that for a class of factored (single- or multiagent) MDPs deûned with count
aggregator functions in the 2TBN, the same intuition as in previous section applies to implement
the non-linear max constraint in the ALP exactly.

We ûrst establish that basis functions hi ∈ H, when backprojected through the 2TBN (which
now includes mixed-mode functions), retain the counters in the resulting backprojections gi .
hebackprojection operator is the expectation of basis function hi deûned as gi(x, a) = ∑x′ P(x′ ∣
x, a)hi(x) and involves summation and product operations only (cf . Chapter 2). We have estab-
lished previously that summation of mixed-mode functions preserves counters (Equation 6.3).
he same result holds for multiplication when replacing the sum operation in Equation 6.3 with
a multiplication. It follows that gi (and ci) preserve counters present in the 2TBN and share the
results for compact representations derived in the previous section.

6.4.1 ALP Constraint Generation

he exact implementation of the max constraint via VE in Equation 2.21 proceeds as before with
compact representations. Note that the domainDom(e) of an intermediate (mixed-mode) term
e(X,Z) with proper and count variable sets X, Z, is reduced as established for general variable
elimination in Corollary 6. In particular, the number of variables and constraints in the ALP
is exponential only the size of the representation of the largest mixed-mode function formed
during VE. Further, the reduction is exact and the ALP computes the identical value function
approximation V̂ = Hŵ.

114 Chapter 6. The Lifted Approximate Linear Program

Figure 6.5: From top le� to bottom right: sample of three random graphs in the test set with 30 nodes and
a maximum out-degree of 10 (ûrst three). Bottom right: Test graph with an increased out-degree sampled
from [1, 20].

6.5 Experimental Evaluation

We evaluate the method on random disease propagation graphs with 30 and 50 nodes. For the
ûrst round of random graph experiments, we obtain the value function for an uncontrolled
disease propagation process and contrast runtimes of the normal VE/ALP method (where pos-
sible) with those that exploit “anonymous in�uence” in the graph. We thenmove to a controlled
disease propagation process with 25 agents in a 50-node graph and compare the results of the
obtained policy to two heuristics.

All examples implement the disease control domain from Section B.3. For the regular case
(referred to as VE1/ALP1), the parent scope in Ti includes only ‘proper’ variables as usual. he
alternative implementation (VE2/ALP2) utilizes count aggregator functions #{Pa(X′

i)} in every
Ti . We use identical transmission and node recovery rates throughout the graph, β = 0.6, δ =
0.3. Action costs are set to λ1 = 1 and infection costs to λ2 = 50. All experiments implement the
same greedy elimination heuristic for VE that minimizes the scope size at the next iteration.

6.5. Experimental Evaluation 115

6.5.1 RandomGraphs

Weuse graph-tool [79] to generate 10 randomgraphswith an out-degree k sampled from P(k) ∝
1/k, k ∈ [1, 10]. Table 6.5 summarizes the graphs and Figure 6.5 illustrates a subset. 60 indica-

Mean/min/max degree:
4.2/1/10 3.4/1/10 3.7/1/10 3.7/1/10 3.7/1/10
2.8/1/10 3.5/1/10 3.1/1/9 3.2/1/8 3.9/1/9

Table 6.5: Properties of the 10 random 30-node graphs.

∣C1∣ VE1 ALP1 ∣C2∣ VE2 ALP2 ∣C2∣/∣C1∣ VE2/VE1 ALP2/ALP1

131475 6.2s 1085.8s 94023 1.5s 25.37s 0.72 0.24 0.02
24595 1.1s 3.59s 12515 0.17s 1.2s 0.51 0.15 0.33
55145 3.5s 30.43s 27309 0.4s 8.63s 0.5 0.11 0.28
74735 3.0s 115.83s 41711 0.69s 12.49s 0.56 0.23 0.11
71067 4.16s 57.1s 23619 0.36s 8.86s 0.33 0.08 0.16
24615 1.6s 1.15s 4539 0.07s 0.35s 0.18 0.04 0.30
63307 2.2s 141.44s 34523 0.39s 4.03s 0.55 0.18 0.03
57113 0.91s 123.16s 40497 0.49s 2.68s 0.71 0.54 0.02
28755 0.54s 17.16 24819 0.36s 3.86s 0.86 0.67 0.22
100465 2.47s 284.75s 38229 0.62s 36.76s 0.38 0.25 0.13

Average reduction: 0.53 0.25 0.16

Table 6.6: Results of random graph experiment. Shown are constraint set sizes, VE and ALP solu-
tion times for both normal implementation (columns 1-3) and the one exploiting anonymous in�uence
(columns 4-6). Highlighted in bold are the maximal reductions for each of the three criteria.

tor basis functions IX i , IX̄ i (covering instantiations xi , x̄i for all 30 variables Xi), along with 30
reward functions Ri , are utilized in the ALP. he factor graph consists of functions ci that ad-
ditionally span the parent scope of hi . Table 6.5 shows minimum and maximum node degrees,
which correspond to lower bounds on parent scope sizes since action and state factors from the
previous time step are added in Equation B.2.

he results are summarized in Table 6.6. Recorded are the number of resulting constraints,
the wall-clock times for variable elimination to generate the constraints, and the ALP runtime
to solve the value function a�er constraint generation on the identical machine. he last three
columns record the gains in eõciency per graph.

Lastly, we test with a graph with a larger out-degree (k sampled from the interval [1, 20],
shown at the bottom right of Figure 6.5). he disease propagation problem over this graph
cannot be solved with the normal VE1/ALP1 because of exponential blow-up of intermediate

116 Chapter 6. The Lifted Approximate Linear Program

terms. he version exploiting anonymous in�uence can perform constraint generation using
VE in 124.7s generating 5,816,731 constraints.

6.5.2 Disease Control

In this section we show results of policy simulation for three distinct policies in the disease
control task over two random graphs (30 nodes with 15 agents, and 50 nodes with 25 agents with
a maximum out-degree per node of 15 neighbors: ∣S∣ = 250, ∣A∣ = 225). Besides a random policy,
we consider a heuristic (referred to as “copystate” policy) that applies a vaccination action at Xi

if Xi is infected in the current state. It is reactive and does not provide anticipatory vaccinations
if some of its parent nodes are infected. he “copystate” heuristic serves as ourmain comparison
metric for these large scale graphs where optimal solutions are not available.

Modiäcations to the Domain

he modiûed disease control domain used for the experiments utilizes the eõcient encoding
of stochastic dynamics that exploits anonymity. Speciûcally, the transition model introduced in
Equation B.3 is encoded with count aggregator functions #{Pa(X′

i)} instead of the exhaustive
enumeration over distinct parent set instantiations. his reduction in representational size is
lossless, i.e. both VE2 and ALP2 compute identical results as their regular counterparts.

Results

heALP is solvedwith the exactmax constraint by exploiting anonymous in�uence in the graph.
It is not possible to solve this problemwith the normal ALP1 due to infeasibly large intermediate
terms being formed during variable elimination. All nodes are covered with two indicator basis
functions IX i and IX̄ i as in the previous experiment. Results for the 30 and 50-node control
tasks are shown in Figure 6.6 with 95% conûdence intervals. he “copystate” heuristic appears
to work reasonably well in the ûrst problem domain but is consistently outperformed by the
ALP solutionwhich can administer anticipatory vaccinations. his eòect actually becomesmore
pronounced with fewer agents: we experimented with 6 agents in the identical graph and the
results (not shown) indicate that the “copystate” heuristic performs signiûcantly worse than the
random policy with returns averaging up to -20000 in a subset of the trials. his is presumably
because blocking out disease paths early becomes more important with fewer agents since the
lack of agents in other regions of the graph cannot make up for omissions later. Similarly, in
the 50-node scenario the reactive “copystate” policy does not provide a statistically signiûcant

6.6. Related Work 117

0 10 20 30 40 50
Trials

5000

4000

3000

2000

1000

R
e
tu

rn

./exp_log/graphprop/resultsReturn.csv

RAND
COPYSTATE
BIGALP2

0 10 20 30 40 50
Trials

14000

12000

10000

8000

6000

4000

2000

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

RAND
COPYSTATE
BIGALP2

Figure 6.6: Mean return for 50 trials of 200 steps each in the 30-node disease control domain with 15
agents (top) and 50-nodes with 25 agents (bottom). All results are averaged over 50 runs and shown with
95% conûdence intervals for each of random, “copystate” heuristic, and ALP policy (see text).

improvement over a random policy (Figure 6.6).

6.6 RelatedWork

Many recent algorithms tackle domains with large (structured) state spaces. For exact planning
in factored domains, SPUDD exploits an eõcient, decision diagram-based representation [46].
Monte Carlo tree search (MCTS) has been a popular online approximate planning method to
scale to large (not necessarily factored) domains [48, 51, 93]. hese methods do not apply to

118 Chapter 6. The Lifted Approximate Linear Program

exponential action spaces without further approximations. Ho et al., for example, evaluated
MCTS with 3 agents for a targeted version of the graph control problem [45]. Recent variants
that exploit factorization may be applicable [3, 20].

Ourwork is based onGuestrin et al.’s earlier contributions on exploiting factored value func-
tions to scale to large factored action spaces [36, 39]. Similar assumptions can be exploited by
inference-based approaches to planning which have been introduced for MASs where policies
are represented as ûnite state controllers [59, 60]. here are no assumptions on the policy in our
approach. he variational framework in [15] uses belief propagation (BP) and is exponential
in the cluster size of the graph. Results are shown for 20-node graphs with out-degree 3 and a
restricted class of chain graphs. he results here remain exponential in tree-width but exploit
anonymous in�uence in the graph to scale to random graphs with denser connectivity. A more
detailed comparison with (approximate) loopy BP is future work.

First-order (FO) methods [89, 90, 100, 107] solve planning problems in li�ed domains with-
out resorting to grounded representations. Our ideas share a similaritywith “generalized counts”
[16, 49, 68, 99] in FO models that can eliminate indistiguishable variables in the same predicate
in a single operation. Our contributions are distinct from FO methods. Anonymous in�uence
applies in propositional models and to node sets that are not necessarily indistiguishable in the
problem: even if nodes appear in a count aggregator scope of some Xi in the network, they are
further uniquely connected in the graph and are unique instances. We also show that shattering
into disjoint counter scopes is not required during VE and how this results in eõciency gains
during VE.

Lastly, decentralized and partially-observable frameworks exist to model a larger class of
MASs [33, 72, 73]. he issue of scalability in these models due to negative complexity results is
an active ûeld of research (see [3, 23] and references therein).

6.7 Contributions

he work presented in this chapter is an extended version of [87]. We introduce the concept of
“anonymous in�uence” in large factored multiagent MDPs and show how it can be exploited to
scale variable elimination and approximate linear programming beyond what has been previ-
ously solvable. he key idea is that both representational and computational beneûts follow from
reasoning about in�uence of variable sets rather than variable identity in the factor graph. hese
results hold for both single andmultiagent factoredMDPs and are exact reductions, yielding the
identical result to the normal VE/ALP, while greatly extending the class of graphs that can be

6.7. Contributions 119

solved. Potential future directions include approximatemethods (such as loopy BP) in the factor
graph to scale the ALP to even larger problems and to support increased basis function coverage
in more complex graphs.

120 Chapter 6. The Lifted Approximate Linear Program

Chapter 7

Conclusions and FutureWork

his chapter provides a high-level summary of our thesis results, reviewing and putting into
context the individual contributions from parts of the thesis. We conclude the chapter with
ideas for future work that are motivated by our results.

7.1 Conclusions

hemain focus of this thesis has been the exploration of locality—in its various forms—for the
eõcient solution of large, cooperative multiagent planning problems. Characteristic for prob-
lems in this important ûeld is that they possess large discrete state and action spaces, generally
driven by an exponential dependency on the number of agents. his fundamental complexity
makes existing exact solution methods intractable and illustrates the importance of developing
principled approximate solutions that scale to realistic settings.

Approximate solutions that rely on the pre-speciûcation of agent interaction require domain
expertise, are problem-speciûc, and commonly heuristic in nature without strong performance
guarantees. A reocurring theme in this thesis has therefore been the development of bounded
approximate solutions that, in addition to empirical evaluation, permit an error bound analysis
with respect to the optimal solution. We believe that future deployment scenarios formultiagent
systems (MASs) will beneût from the availability of such performance guarantees, especially
as other constraints, such as limits on the bandwidth of the communication channel between
agents, need to be weighed in a principled fashion against expected performance. Bounded
approximations could further widen the deployment of MASs to settings that require strict per-
formance guarantees.

121

122 Chapter 7. Conclusions and Future Work

7.1.1 Summary

his thesis can be divided into three lines of work with their individual contributions under the
“local multiagent control” umbrella. We began in Chapter 3 with the exploration of spatial lo-
cality in stochastic task assignment problems. Similarly to a human expert who may divide the
allocation of tasks according to spatial proximity of agents to tasks, we introduced a novel prob-
lem class that formalizes this intuition in the context of FMMDPs. hese spatial task allocation
problems (SPATAPs) oòer a tractable representation for many agents and tasks, and give rise
to approximate solutions that exploit locality. We explored two classes of solution algorithms
that compute exact solutions to model approximations of the SPATAP. First were methods that
exploit the temporal characteristics of tasks by restricting attention to the currently active set
of tasks (phase approximations). Second were fully distributed planning methods that restrict
planning at every agent to its individual action space (subjective approximations). hese latter
models predict the task attendance of other agents and plan the approximate best response. Com-
bining both approximations yields a model without exponential dependencies in either task or
agent number (the k-SP-MDP) whose solution outperforms recent partitioning algorithms in
the empirical analysis in [17, 18].

he second major line of work in this thesis generalizes the concept of locality beyond the
spatial interpretation to general collaborative FMMDPs that do not necessarily possess a spa-
tial component. Chapter 4 formalized the idea with the key contribution of sparse coordination
factor graphs (sparse CFGs) that encode a “sparsity of interaction” between agents, agnostic to
its concrete, domain-speciûc source. he same chapter also developed novel theoretical insights
about the computational beneûts of factored value functions that span a sparse CFG.We showed
that theBellman residual remains factored in these settings, allowing the eõcient computation of
the Bellman Error and other functions of the Bellman residual. hese insights consequently led
to the development of the Bellman Error Basis Function for T ∗ (BEBF∗) in Chapter 5, which ex-
tends previous work on BEBFs for policy evaluation to the control problem, i.e., (approximately)
solving for the optimal policy.

Chapter 5 then introduced a key algorithmic contribution with the “Sparse Coordination
Discovery” (SCD) algorithm for general collaborative FMMDPs. Underlying SCD is the as-
sumption that there exists some form of sparse interaction between agents that—if found—
allows to approximate the global value function well. Based on the BEBF∗ and the eõcient com-
putation of the Bellman Error, SCD is implemented as an iterative algorithm that automates the
search for sparse coordination via basis expansion in the approximate linear program (ALP).

7.2. Future Work 123

We showed that the search maintains bounded solutions (with respect to the optimal solution
V∗) and that it improves on the bound monotonically (in a ‘≤’ sense). By utilizing the eõcient
constraint generationmethod for the ALP reviewed in Chapter 2, this joint optimization of CFG
and value function approximation V̂ further scales to large multiagent settings. It also removes
the need for a domain expert to specify a basis function (or, feature) set. SCD was validated ex-
perimentally across a number of large multiagent planning problems and enabled error bound
analysis for the ûrst time in the larger of the evaluated domains (e.g., disease control with 50
agents in Chapter 5).

In the third and ûnal line of work in this thesis, we focused on the disease control example
and—more broadly—problems in the general class of controlling stochastic processes over graphs.
his problem class has broad application including in the management of electric power grids,
battling forest ûres, targeted drug delivery in biological networks, or detecting network intru-
sion. Chapter 6 introduced novel local summary statistics for controlled graphs that describe
the joint eòects of a set of variables compactly whenever variable identity does not have to be
represented explicitly. We proved a key theoretical result that shows how variable elimination
(VE) on compact representations can compute the identical result to general VE by enforcing
a variable consistency property during elimination. hese novel compact representations are (in
the limit) exponentially smaller than existing �at or “shattered” representations, scaling VE to
graphs that were previously computationally infeasible.

he Sparse Coordination Discovery (SCD) algorithm from Chapter 5 uses VE for eõcient
constraint generation in the ALP. Realizing this, Chapter 6 introduced a novel algorithmic con-
tribution (the “li�ed ALP”) that transfers the results for VE on compact representations to con-
straint generation in the ALP. he li�ed ALP computes the identical solution but exploits vari-
able anonymity for computational gain and scale (i.e., the same optimization problem is imple-
mented with fewer variables and constraints). In particular, we showed for the disease control
setting in densely connected graphs how the li�ed ALP solution scales to FMMDPs that were
previously unsolvable due to intermediate terms in general VE exceededing computational lim-
its.

7.2 FutureWork

We now outline possible extensions of the thesis work. We believe that each of these could be a
rewarding venue for follow-up research, further addressing scale and applicability of themodels
and algorithms proposed in this thesis.

124 Chapter 7. Conclusions and Future Work

7.2.1 Extending Sparse Coordination Discovery (SCD)

Context-dependent Coordination Discovery

heSCDalgorithmdetermines coordination structure between agents that remains ûxed through-
out the problem (although an online formulation applies in principle). As illustrated for the spa-
tial task allocation problems in Chapter 3, however, this may be a limiting assumption in cases
where agents move and dynamically associate with “close” tasks or agents. A promising venue
for future work is therefore the extension of the method to context-speciûc coordination. Exist-
ing methods rely on the pre-speciûcation of contexts via rule-based formulations (e.g., [40, 53])
although learning-based approaches based on statistical tests have been demonstrated in com-
parably small domains [52]. he SCD algorithm could in principle be extended to generate such
context-speciûc rules for novel deûnitions of the basis generation operator (pair in Chapter 5).
his would further enable interesting future applications, e.g. in vehicle collision avoidance.

Non-binary Basis Functions

Considered in this thesis were binary conjunctive features due to their eõcient manipulation
(e.g., for feature coverage computations) and the associated ease in determining a linearly inde-
pendent basis for the ALP. Along with other planning domains, extensions of the disease control
problem which adds more ûne-grained control of the �ow through the network may beneût
from non-binary feature functions. Many choices of basis functions apply in principle (see, e.g.,
[107] for an overview). An extension of the SCD algorithm would require the deûnition of basis
conjunctions for the non-binary case. Similarly, locally-scoped featuresmust retain awell-deûned
meaning for other basis function choices.

7.2.2 Addressing the Scale of SolutionMethods

Approximate Inference

heeõcientALP-based solutionmethod fromSection 2.3 relies on a variable eliminationmethod
to compute the (otherwise exponentially large) constraint set eõciently. However, VE possess
theoretical limits that prohibit scale in densely connected graphs. While the li�ed ALP of Chap-
ter 6 has addressed some of these concerns for the control of stochastic processes on graphs,
models with large induced width remain computationally challenging.

Future interesting work is in solving the ALP approximately, for example with an approx-
imate constraint generation scheme based on loopy belief propagation (e.g., “Max-Plus”, [29,
53, 54]), to allow further scaling of the solution method. An approximate, loopy BP-based step

7.2. Future Work 125

could be introduced in the ALP for approximately representing the max constraint in Equa-
tion 2.21. his is related to existing constraint-sampling methods in the LP [28]. Approximate
constraint generation could also permit the insertion of more basis functions into the ALP be-
fore computational limits are reached, thereby (in principle) enabling better approximations to
the optimal solution.

Approximate methods could also enter the picture for estimating the Bellman Error if coor-
dination graphs that violate the sparsity bound should be considered.

7.2.3 Planning with Structural Uncertainty

Changing Domains

An interesting class of planning and learning problems consists of those that permit variable
2TBN structure. In generalized domains (or, equivalently, generalized environments) the agent
may face a distribution over environments [110, 111]. Similarly, planning with relational tem-
plates aims to compute value functions with generalizable behavior over a set of possible en-
vironments [38, 62]. Existing work optimizes performance in expectation given a known dis-
tribution over environments. Interesting follow-up work would allow the transition between
environments in order to plan e.g. for failing agents.

he idea of “structural uncertainty” during planning is also highly applicable for the dis-
ease control setting as connectivity of the underlying graph changes. One idea to tackle these
problems is to generate new plans from factored value function components, akin to transfer
planning [38, 101].

Planning Agent Insertion

While the focus of generalized domains has historically not been in the context of multiagent
settings (a notable exception being [38]), their principal relatedness has been suggested before
(e.g., in [101]). A particularly interesting venue for future work is the optimization of agent
placement, e.g. in a disease control setting.

Heuristic solutions could evaluate which (local) value function component may beneût the
most from having another agent available and perform greedy insertion. Given the factoriza-
tion of the value function, it may be possible to only recompute a subset of the value function
components rather than optimize the complete basis H again.

126 Chapter 7. Conclusions and Future Work

Appendix A

Proofs

A.1 Proofs for Results in Chapter 6

A.1.1 Preliminaries

For simplicity of proofs, we generally assume binary (proper) variables but all results extend
equally to the more general, multi-valued case. Similarly to Figure 6.2, we choose to represent
functions in tree-form for illustration. Note that this representation is not unique since vari-
ables may be expanded in arbitrary order along the tree (commutative property). It follows that
showing the results for a single tree expansion suõces to establish the result.

Observation 1. In a mixed-mode function f with overlapping counter scopes every counter setting

#{Zi} = vi establishes an upper and lower bound on the permissive values of the following counters

#{Z j}, j > i, in any tree expansion of f .

In particular, no function f contains invalid values inside the upper and lower bounds es-
tablished (at each level of the tree) by a complete assignment to all #{Zi} = vi (see Figure 6.3 for
an illustration).

Example 13. Consider function f at the top of Figure 6.2. Note that the lower (lb) and upper bound

(ub) established for #{A, B} given the choice of A = 1 are 1 and 2, respectively. In general, the lower

and upper bounds for a counter # = 0, . . . , k along a speciûc expansion (i.e. branch in the tree) are

such that lb ≥ 0, ub ≤ k, ub ≥ lb.

127

128 Appendix A. Proofs

A.1.2 Proof of Theorem 1

Let mixed-mode function f denote a canonical intermediate term generated during variable
elimination which includes shared count variables:

f (X ,Y , #1{A, B}, #2{B,C}) = g(X , #1{A, B}) + h(Y , #2{B,C}) (A.1)

with f (x , y, #1 = v , #2 = w) ≜ g(x , #1 = v) + h(y, #2 = w) ∀x ∈ X , y ∈ Y , v ∈ #1,w ∈ #2. As
established before, f contains invalid values due to non-disjoint counter scopes, #1 ∩ #2 = {B}.

At any iteration, variable elimination may eliminate a proper, non-shared, or shared count

variable. We establish the result for all three cases. he case for overlap between proper and
count variables was addressed in Section 6.3.1, resulting in the removal of the variable from the
counter scope.

he result is immediately clear for the case of eliminating proper and non-shared count vari-

ables. Let f ′ be the result of such elimination. In case of a proper variable, it is easy to see from
Equation 6.1 that any valid assignment to the variables in f ′ yields a max operation over valid
entries in f . For non-shared count variables, the corresponding counter in f ′ is reduced by 1
and the max is over assignments v + 0, v + 1 to the reduced counter scope (Equation 6.2). Both
count assignments are therefore valid in the extended counter scope of f .

For shared count variables recall that a function tree expansion of f corresponds to a par-
ticular expansion ordering of variables and counters of f . In such an expansion, let tr(k) f1∶L =
⟨tr(k) f1 , . . . , tr(k)

f
L⟩ denote a particular path from root to a leaf, involving a choice of subtree

(i.e., variable assignment) at every level 1 − L in the tree. Denote by (lb, ub)k, f
1∶L the lower and

upper bounds encountered along tr(k) f1∶L in the tree. Without loss of generality, assume that
two counters in f , #1 = {0, . . . , ∣#1∣}, and #2 = {0, . . . , ∣#2∣}, contain shared count variable B. For
Op at a leaf in f ′ to be over valid values we have to show that any valid trace in f ′, tr(k) f

′

1∶L with
#1 = v, #2 = w, is also valid in f and further that a second trace tr(l) f1∶L with #1 = v + 1, #2 = w + 1
is also valid in f .

First, given arbitrary trace tr(k) f
′

1∶L, denote by tr(k) f1∶L the equivalent trace in f , i.e. the one
where the assignments (subtrees) are chosen identically. Assume tr(k) f

′

1∶L is valid. hen, adding
a (shared count) variable to both #1 and #2 (to form f) will never increase any of the lb

k, f ′
1∶L or

decrease any ub
k, f ′
1∶L since the interval of permissible values at any level 1−L in tr(k) f1∶L cannot be

reduced by virtue of having an additional variable available. It follows that tr(k) f1∶L is also valid.
Second, it can be seen at the top of Figure 6.4 that removing a shared count variable from

function f in Figure 6.3 has the eòect of bounding above all corresponding upper bounds in

A.1. Proofs for Results in Chapter 6 129

f ′ by ∣#1∣ − 1 and ∣#2∣ − 1 by virtue of removing a variable from both counters. Here, “bounding
above” refers to either reducing the upper bound directly or removing a previously invalid entry.
Further, consider f ’s tree expansion and observe that upper bounds within the same level of the
tree increase strictly by 1 up to the maximum value ∣#1∣ (respectively ∣#2∣). Combining all three
results that i) validity of tr(k) f

′

1∶L implies validity of tr(k) f1∶L, ii) new upper bounds ub
k, f ′
1∶L are

bounded above by ∣#1∣ − 1 and ∣#2∣ − 1, and iii) upper bounds increase monotonically up to ∣#1∣
and ∣#2∣ in f , establishes that tr(l) f1∶L is also valid in f . ◻

130 Appendix A. Proofs

Appendix B

Evaluation Domains

B.1 The SysAdmin Domain

he SysAdmin domain corresponds to a multiagent version of the domain with the same name
that originally appeared in [36]. he multiagent extension described here has been used in the
Boolean track of the International Planning Competition (IPPC) [88] and serves as a baseline
in much recent work on planning with large factored action spaces (e.g., [20, 84, 85]).

he SysAdmin domainmodels a set ofN computers arranged in either a star or ring topology.
Individual machines can fail with a certain probability; the global state space is spanned by
binary variables X = {X1, . . . , XN} where Xi = {0, 1} = {failed, running} denotes the state of
computer i.

If a neighboring machine in the topology has failed, the probability of oneself failing at the
next time step increases by a large amount. A team of system administrators (one per machine)
is in charge of maintaining the computers and collects a ûxed reward per running computer.
System administrators may reboot individual machines to guarantee their uptime at the next
time step, i.e. A = {A1, . . . ,AN} where A j = {0, 1} = {do nothing, reboot}.

he reward model incentivizes running computers and penalizes reboot actions by the ad-
ministrators:

R(x, a) = ∥x∥1 − λ ∥a∥1

where the L1-norms implement a reward of 1 per runningmachine discounted by a reboot penalty
of λ. he optimization problem is to minimize reboot interventions while ensuring high uptime
for all computers in the network.

131

132 Appendix B. Evaluation Domains

B.1.1 ResourceProtect

he ResourceProtect domain is a minor modiûcation to the SysAdmin domain where a much
higher reward r+ is associated with a speciûc machine (or, resource) in the network, denoted by
state factor X+. he only modiûcation to SysAdmin lies therefore with the reward model:

R(x, a) = ∥x[X ∖ {X+}]∥1 + r
+
x
+ − λ1 ∥a∥1

where x[X ∖ {X+}] extracts from state x the state of the “regular” computers and x+ refers to
the state of the protected resource in x. Of particular interest are the eòects of the presence of
X+ on the policy for the system administrator team.

B.2 The TaskNetwork Domain

In the TaskNetwork domain, a computer network completes jobs based on both status and cur-
rent load at each machine, i.e.X = {⟨S1, L1⟩, . . . , ⟨SN , LN⟩}. Figure B.1 shows the factored model
in plate notation which is instantiated for diòerent numbers of computers N . As shown, each
computer i is associated with two (ternary) variables, one indicating its health and the other its
current load:

⟨Si ∈ {running, faulty, failed}, Li ∈ {idle, loaded, task complete}⟩ ∀i = 1, . . . ,N

A reward of 1 is collected for every task that reaches the task complete state in the network. A
machine is then reset deterministically to the idle state andmay process another task. Stochastic
downtime eòects, similar to the SysAdmin domain, are deûned over the computers in the net-
work. In this domain, faulty or failed states impact the status at the next time step for neighbor-
ing machines. A faultymachine is also less eõcient at processing tasks than a running machine.
he action space is again spanned by binary decision variables, i.e. A = {A1, . . . ,AN} where
A j = {0, 1} = {do nothing, reboot}.

he goal is tomove asmany tasks as possible to completion in the network. A goodpolicy has
to trade oò the penalty of reboot actions (which additionally remove any tasks from processing
at the respective machine) with the risk of propagating downtime eòects in the network. To
avoid confusion with the simpler SysAdmin domain, we refer to this problem as a TaskNetwork

instead ofMultiagent-SysAdmin under which name it has also appeared [36].

B.3. The Disease Control Domain 133

L′i

S′i

L i

S i

A i

All con-
nected
nodes S j

R i

N

Figure B.1: he TaskNetwork domain in plate notation which can be instantiated for N computers. All
variables take three values; the action choice at each node is binary [36].

B.3 The Disease Control Domain

Weuse the domain of controlling a disease outbreak over a graph to serve as the running example
in this paper. Note that the control of stochastic dynamics over graphs has wider applications,
e.g. in management of electric power grids and network intrusion [45]. Other domains aim
to minimize collateral diòusion eòects while actively targeting speciûc nodes in the graph (e.g.
drugs in biological networks) [96].

Underlying the formulation as a FMMDP is a (directed or undirected) graph G = (V , E)
with controlled and uncontrolled vertices V = (Vc ,Vu) and the edge set E ⊆ V × V . he state
space S is spanned by state variables X = {X1, . . . , Xn}, one per associated vertex Vi , encoding
the health of that node. he action set A = {A1, . . . ,A∣Vc ∣} factors similarly over the controlled
vertices Vc in the graph and each denotes a modulation of the �ow out of node Vi ∈ Vc. Let
xi = x[{Xi}] and ai = a[{Ai}] denote the state and action for a single node. hen reward and
transition model factor on a per-node basis as:

R(x, a) =
n
∑
i
Ri(xi , ai) (B.1)

P(x′ ∣ x, a) =
n
∏
i

Ti(x′i ∣ x[Pa(X′

i)], ai) (B.2)

where the set Pa(X′

i) includes variable Xi at the previous time step as well as all nodes that �ow
into Xi in G. he known infection transmission probabilities from node j to i, β ji , and the

134 Appendix B. Evaluation Domains

Figure B.2: An example disease propagation scenario over a random graph with 100 nodes. Infected
nodes are shown in black and highlightedwith a red halo in case of a new infection at the current iteration.
Controlled nodes Vc are shown as triangles, those in Vu as circles.

recovery rate of node i, δi , deûne the transition function Ti(x′i ∣ x[Pa(X′

i)], ai) as follows:

Ti ≜
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(1 − ai)(1 −∏ j(1 − β jix j)) if xi = 0

(1 − ai) (1 − δi) otherwise
(B.3)

distinguishing the two cases that Xi was infected at the previous time step (bottom) or not (top).
Note that this model assumes binary state variables Xi = {0, 1} = {healthy, infected}, and ac-
tions Ai = {0, 1} = {do not vaccinate, vaccinate} and that Au = {0} for all uncontrolled nodes
Vu. he reward function factors as:

R(x, a) = −λ1 ∥a∥1 − λ2 ∥x∥1 (B.4)

where the L1-norm records a cost λ2 per infected node Xi and an action cost λ1 per vaccination
action at a controlled node. All our experiments are for the inûnite horizon case on an undi-
rected graphG of varying size and structure but with consistent transmission and recovery rates
β, δ.

B.3. The Disease Control Domain 135

B.3.1 GraphContainment

In the GraphContainment domain, the disease process may propagate without penalty among
all uncontrolled nodesVu in the graph while a penalty cost applies only at the infected, controlled
nodes Vc. he only modiûcation to the DiseasePropagation domain is therefore in the reward
model:

R(x, a) = −λ1 ∥a∥1 − λ2 ∥x[Xc]∥1 (B.5)

where x[Xc] extracts the state of the controlled nodes Vc from x.
he goal is to contain the stochastic process in one subset of the graph and controlled nodes

Vc have to trade oò a vaccination action (at a vaccination cost λ1) with letting the process pass
through to “penalty-free” regions of the graph.

136 Appendix B. Evaluation Domains

Bibliography

[1] A. Ahmed, P. Varakantham, and S. Cheng. Uncertain congestion games with assorted
human agent populations. In Proceedings of the Twenty-Eighth Conference on Uncertainty

in Artiûcial Intelligence, pages 44–53, 2012.

[2] S. Amador, S. Okamoto, and R. Zivan. Dynamic multi-agent task allocation with spa-
tial and temporal constraints. In Proceedings of the Twenty-Eighth AAAI Conference on

Artiûcial Intelligence, pages 1384–1390, 2014.

[3] C. Amato and F. A. Oliehoek. Scalable planning and learning for multiagent POMDPs.
In Twenty-Ninth Conference on Artiûcial Intelligence (AAAI), pages 1995–2002, Jan. 2015.

[4] A. Anand, A. Grover, Mausam, and P. Singla. ASAP-UCT: Abstraction of state-action
pairs in UCT. In Proceedings of the Twenty-Fourth International Joint Conference on Ar-

tiûcial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, pages 1509–1515,
2015.

[5] J. L. Barry, L. P. Kaelbling, and T. Lozano-Pérez. Hierarchical solution of largeMarkov de-
cision processes. In ICAPS 2010Workshop on Planning and Scheduling Under Uncertainty,
May 2010.

[6] J. L. Barry, L. P. Kaelbling, and T. Lozano-Pérez. Deth*: Approximate hierarchical solu-
tion of large Markov decision processes. In International Joint Conference on Artiûcial

Intelligence (IJCAI), pages 1928–1935, 2011.

[7] A. Barto, S. Bradtke, and S. Singh. Learning to act using real-time dynamic programming.
Artiûcial Intelligence, 72(1-2):81–138, Jan. 1995.

[8] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-independent decen-
tralized Markov decision processes. In AAMAS, pages 41–48, 2003.

[9] C. Bererton, G. J. Gordon, and S. hrun. Auction mechanism design for multi-robot
coordination. Advances inNeural Information Processing Systems 16, pages 879–886, 2004.

[10] D. Bertsimas and J. Tsitsiklis. Introduction to Linear Optimization. Athena Scientiûc, 1st
edition, 1997.

[11] B. Bethke and J. How. Approximate dynamic programming using Bellman residual elimi-
nation and Gaussian process regression. InAmerican Control Conference, 2009. ACC ’09.,
pages 745–750, June 2009.

137

138 Bibliography

[12] C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artiûcial Intelligence Research, 11:1–94, 1999.

[13] S. R. K. Branavan, D. Silver, and R. Barzilay. Non-linear Monte-Carlo search in Civiliza-
tion II. In Twenty-Second International Joint Conference on Artiûcial Intelligence (IJCAI),
pages 2404–2410, Barcelona, Spain, 2011.

[14] J. Capitán, M. T. J. Spaan, L. Merino, and A. Ollero. Decentralized multi-robot coopera-
tion with auctioned POMDPs. International Journal of Robotics Research, 32(6):650–671,
2013.

[15] Q. Cheng, Q. Liu, F. Chen, and A. Ihler. Variational planning for graph-based MDPs. In
C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Weinberger, editors, Advances
in Neural Information Processing Systems 26, pages 2976–2984, 2013.

[16] J. Choi, R. de Salvo Braz, and H. H. Bui. Eõcient methods for li�ed inference with aggre-
gate factors. In Proceedings of the Twenty-Fi�h AAAI Conference on Artiûcial Intelligence

(AAAI-11), pages 1030–1036, 2011.

[17] D. Claes, P. Robbel, F. A. Oliehoek, D. Hennes, and K. Tuyls. Eòective approximations
for spatial task allocation problems. In Proc. of the 25th Benelux Conference on Artiûcial

Intelligence (BNAIC), pages 33–40, 2013. Best paper runner up.

[18] D. Claes, P. Robbel, F. A. Oliehoek, D. Hennes, and K. Tuyls. Eòective approximations
for spatial task allocation problems. In Proc. of the 14th International Conference on Au-

tonomous Agents and Multiagent Systems (AAMAS), pages 881–890, May 2015.

[19] P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In Proceedings of Uncer-

tainty in Artiûcial Intelligence, 2007.

[20] H. Cui, R. Khardon, A. Fern, and P. Tadepalli. Factored MCTS for large scale stochastic
planning. In Proceedings of the Twenty-Ninth AAAI Conference on Artiûcial Intelligence,

January 25-30, 2015, Austin, Texas, USA., pages 3261–3267, 2015.

[21] Y.-M. De Hauwere, P. Vrancx, and A. Nowé. Learning multi-agent state space represen-
tations. In AAMAS, pages 715–722, 2010.

[22] J. S. Dibangoye, C. Amato, O. Buòet, and F. Charpillet. Exploiting separability in multia-
gent planning with continuous-stateMDPs. In Proceedings of thehirteenth International

Joint Conference on Autonomous Agents and Multiagent Systems, pages 1281–1288, 2014.

[23] J. S. Dibangoye, C. Amato, and A. Doniec. Scaling up decentralized MDPs through
heuristic search. In UAI, pages 217–226, 2012.

[24] T. G. Dietterich. heMAXQmethod for hierarchical reinforcement learning. In Proceed-

ings of the Fi�eenth International Conference onMachine Learning (ICML 1998), Madison,

Wisconsin, USA, July 24-27, 1998, pages 118–126, 1998.

Bibliography 139

[25] D. Donoho. Compressed sensing. Information heory, IEEE Transactions on, 52(4):1289–
1306, April 2006.

[26] P. Doshi, Y. Zeng, and Q. Chen. Graphical models for interactive POMDPs: Representa-
tions and solutions. Autonomous Agents and Multi-Agent Systems, 18(3):376–416, 2008.

[27] A. M. Farahmand and D. Precup. Value pursuit iteration. In P. Bartlett, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Pro-

cessing Systems 25, pages 1349–1357, 2012.

[28] D. P. D. Farias and B. V. Roy. he linear programming approach to approximate dynamic
programming. Oper. Res., 51(6):850–865, 2003.

[29] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings. Decentralised coordination of low-
power embedded devices using the max-sum algorithm. In Seventh International Confer-

ence on Autonomous Agents and Multi-Agent Systems (AAMAS-08), pages 639–646, May
2008.

[30] S. Gelly and D. Silver. Monte-Carlo tree search and rapid action value estimation in com-
puter go. Artiûcial Intelligence, 175(11):1856–1875, 2011.

[31] A. Geramifard, T. J. Walsh, N. Roy, and J. P. How. Batch-iFDD for representation ex-
pansion in large MDPs. Proceedings of the 29th Conference on Uncertainty in Artiûcial

Intelligence (UAI), pages 242–251, 2013.

[32] P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent
settings. Journal of Artiûcial Intelligence Research, 24:49–79, 2005.

[33] C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cate-
gorization and complexity analysis. Journal of Artiûcial Intelligence Research, 22:143–174,
2004.

[34] G. J. Gordon, P. Varakantham,W. Yeoh, H. C. Lau, A. S. Aravamudhan, and S. Cheng. La-
grangian relaxation for large-scale multi-agent planning. In 2012 IEEE/WIC/ACM Inter-

national Conferences on Intelligent Agent Technology, IAT 2012, Macau, China, December

4-7, 2012, pages 494–501, 2012.

[35] O. Guéant, J.-M. Lasry, and P.-L. Lions. Mean ûeld games and applications. In Paris-

Princeton Lectures on Mathematical Finance 2010, volume 2003 of Lecture Notes in Math-

ematics, pages 205–266. Springer Berlin Heidelberg, 2011.

[36] C. Guestrin. Planning Under Uncertainty in Complex Structured Environments. PhD
thesis, Computer Science Department, Stanford University, August 2003.

[37] C. Guestrin and G. Gordon. Distributed planning in hierarchical factored MDPs. Pro-

ceedings of the Eighteenth conference onUncertainty in artiûcial intelligence, pages 197–206,
2002.

140 Bibliography

[38] C. Guestrin, D. Koller, C. Gearhart, and N. Kanodia. Generalizing plans to new envi-
ronments in relational MDPs. In Eighteenth International Joint Conference on Artiûcial

Intelligence (IJCAI), Acapulco, Mexico, August 2003.

[39] C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In Ad-
vances in Neural Information Processing Systems (NIPS 2001), pages 1523–1530, Vancouver,
Canada, 2002.

[40] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Eõcient solution algorithms for
factored MDPs. Journal of Artiûcial Intelligence Research, 19:399–468, 2003.

[41] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. In Proc.

of the International Conference on Machine Learning, pages 227–234, 2002.

[42] C. Guestrin, S. Venkataraman, and D. Koller. Context speciûc multiagent coordination
and planning with factored MDPs. In AAAI, pages 253–259, 2002.

[43] M. Hauskrecht, N. Meuleau, L. P. Kaelbling, T. Dean, and C. Boutilier. Hierarchical solu-
tion of Markov decision processes using macro-actions. In Proceedings of the Fourteenth

Conference on Uncertainty in Artiûcial Intelligence, pages 220–229, San Francisco, CA,
USA, 1998. Morgan Kaufmann Publishers Inc.

[44] T. Hester and P. Stone. Learning and using models. In Reinforcement Learning: State of

the Art. Springer Verlag, 2011.

[45] C. Ho, M. J. Kochenderfer, V. Mehta, and R. S. Caceres. Control of epidemics on graphs.
In 54th IEEE Conference on Decision and Control (CDC), Osaka, Japan, 2015.

[46] J. Hoey, R. St-Aubin, A. J. Hu, and C. Boutilier. SPUDD: Stochastic planning using deci-
sion diagrams. In Proceedings of Uncertainty in Artiûcial Intelligence, Stockholm, Sweden,
1999.

[47] J. Johns. Basis Construction and Utilization for Markov Decision Processes using Graphs.
PhD thesis, University of Massachusetts Amherst, 2010.

[48] T. Keller and P. Eyerich. PROST: Probabilistic planning based on UCT. In International

Conference on Automated Planning and Scheduling, 2012.

[49] K. Kersting, B. Ahmadi, and S. Natarajan. Counting belief propagation. In Proceedings of

the Twenty-Fi�h Conference on Uncertainty in Artiûcial Intelligence (UAI), pages 277–284,
Arlington, Virginia, United States, 2009. AUAI Press.

[50] M. J. Kochenderfer. Decision Making Under Uncertainty: heory and Application. MIT
Press, 2015.

[51] L. Kocsis andC. Szepesvári. Bandit basedMonte-Carlo planning. In European Conference
on Machine Learning (ECML), volume 4212, pages 282–293, 2006.

Bibliography 141

[52] J. R. Kok, P. J. ’t Hoen, B. Bakker, and N. Vlassis. Utile coordination: Learning interde-
pendencies among cooperative agents. In Proceedings of the IEEE Symposium on Com-

putational Intelligence and Games (CIG), pages 29–36, Colchester, United Kingdom, Apr.
2005.

[53] J. R. Kok and N. A. Vlassis. Collaborative multiagent reinforcement learning by payoò
propagation. Journal of Machine Learning Research, 7:1789–1828, 2006.

[54] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

[55] D. Koller and R. Parr. Computing factored value functions for policies in structured
MDPs. In Proc. Sixteenth International Joint Conference on Artiûcial Intelligence (IJCAI),
pages 1332–1339, 1999.

[56] D. Koller and R. Parr. Policy iteration for factored MDPs. In Proceedings of the Sixteenth

Annual Conference on Uncertainty in Artiûcial Intelligence, pages 326–334, June 2000.

[57] J. Z. Kolter and A. Y. Ng. Regularization and feature selection in least-squares temporal
diòerence learning. Proceedings of the 26th Annual International Conference on Machine

Learning - ICML ’09, 94305:1–8, 2009.

[58] G. Konidaris and A. G. Barto. Eõcient skill learning using abstraction selection. In
C. Boutilier, editor, Proceedings of the 21st International Jont Conference on Artiûcal Intel-
ligence (IJCAI), pages 1107–1112, 2009.

[59] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable multiagent planning using proba-
bilistic inference. In Proceedings of the Twenty-Second International Joint Conference on

Artiûcial Intelligence, pages 2140–2146, Barcelona, Spain, 2011.

[60] A. Kumar, S. Zilberstein, andM. Toussaint. Probabilistic inference techniques for scalable
multiagent decision making. Journal of Artiûcial Intelligence Research, 2015. accepted.

[61] M.G. Lagoudakis and R. Parr. Least-squares policy iteration. Journal ofMachine Learning
Research, 4:1107–1149, 2003.

[62] T. Lang, M. Toussaint, and K. Kersting. Exploration in relational domains for model-
based reinforcement learning. Journal of Machine Learning Research, 13:3691–3734, 2012.

[63] H. lim Choi, L. Brunet, and J. P. How. Consensus-based decentralized auctions for robust
task allocation. IEEE Transactions on Robotics, 2009.

[64] T. Mann and S. Mannor. Scaling up approximate value iteration with options: Better
policies with fewer iterations. In T. Jebara and E. P. Xing, editors, Proceedings of the 31st
International Conference onMachine Learning (ICML-14), pages 127–135. JMLRWorkshop
and Conference Proceedings, 2014.

142 Bibliography

[65] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. Coordinated multi-robot exploration
under communication constraints using decentralized Markov decision processes. In
Proceedings of the 26th AAAI Conference on Artiûcial Intelligence (AAAI), pages 2017–
2023, 2012.

[66] L. Matignon, L. Jeanpierre, and A.-I. Mouaddib. Distributed value functions for multi-
robot exploration. In Robotics and Automation (ICRA), 2012 IEEE International Confer-

ence on, pages 1544–1550, May 2012.

[67] F. S. Melo and M. Veloso. Learning of coordination: Exploiting sparse interactions in
multiagent systems. In AAMAS, pages 773–780, 2009.

[68] B.Milch, L. S. Zettlemoyer, K. Kersting, M.Haimes, and L. P. Kaelbling. Li�ed probabilis-
tic inference with counting formulas. In Twentyhird Conference on Artiûcial Intelligence

(AAAI), pages 1062–1068, 2008.

[69] R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: A
synthesis of distributed constraint optimization and pomdps. In Proceedings of the 20th

National Conference on Artiûcial Intelligence - Volume 1, pages 133–139. AAAI Press, 2005.

[70] A. Y.Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. Twenty-ûrst
international conference on Machine learning - ICML ’04, page 78, 2004.

[71] D. T. Nguyen, W. Yeoh, H. C. Lau, S. Zilberstein, and C. Zhang. Decentralized multi-
agent reinforcement learning in average-reward dynamic DCOPs. In Proceedings of the

2014 International Conference on Autonomous Agents and Multi-agent Systems (AAMAS),
pages 1341–1342, Richland, SC, 2014. International Foundation for Autonomous Agents
and Multiagent Systems.

[72] F. A. Oliehoek. Decentralized POMDPs. InM.Wiering andM. vanOtterlo, editors, Rein-
forcement Learning: State of the Art, volume 12 ofAdaptation, Learning, andOptimization,
pages 471–503. Springer Berlin Heidelberg, Berlin, Germany, 2012.

[73] F. A.Oliehoek,M. T. J. Spaan, andN.Vlassis. Optimal and approximateQ-value functions
for decentralized POMDPs. Journal of Artiûcial Intelligence Research, 32:289–353, 2008.

[74] C. Painter-Wakeûeld, R. Parr, P. Cs, and D. Edu. Greedy algorithms for sparse reinforce-
ment learning. Proceedings of the 29th International Conference on Machine Learning

(ICML), pages 1391–1398, 2012.

[75] R. Parr, L. Li, G. Taylor, C. Painter-Wakeûeld, and M. L. Littman. An analysis of lin-
ear models, linear value-function approximation, and feature selection for reinforcement
learning. Proceedings of the 25th international conference on Machine learning - ICML ’08,
pages 752–759, 2008.

[76] R. Parr, C. Painter-Wakeûeld, and L. Li. Analyzing feature generation for value-function
approximation. Proceedings of the 24th International Conference on Machine Learning

(ICML), pages 737–744, 2007.

Bibliography 143

[77] Y. Pati, R. Rezaiifar, and P. Krishnaprasad. Orthogonal matching pursuit: Recursive func-
tion approximation with applications to wavelet decomposition. In Signals, Systems and

Computers, 1993. 1993 Conference Record of he Twenty-Seventh Asilomar Conference on,
pages 40–44 vol.1, Nov 1993.

[78] J. Pazis. Non-parametric approximate linear programming for MDPs. Proceedings of the
Twenty-Fi�h AAAI Conference on Artiûcial Intelligence, pages 459–464, 2011.

[79] T. P. Peixoto. he graph-tool Python library. ûgshare, 2014.

[80] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint optimiza-
tion. In IJCAI 05, pages 266–271, Edinburgh, Scotland, Aug 2005.

[81] M. Petrik, G. Taylor, R. Parr, and S. Zilberstein. Feature selection using regularization
in approximate linear programs for Markov decision processes. Proceedings of the 27th

International Conference on Machine Learning (ICML-10), pages 871–878, 2010.

[82] P. Poupart, C. Boutilier, R. Patrascu, D. Schuurmans, and C. Guestrin. Greedy linear
value-approximation for factored Markov decision processes. In Proceedings of the 18th

National Conference on Artiûcial Intelligence, pages 292–299, 2002.

[83] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming.
John Wiley & Sons, New York, 2005. A Wiley-Interscience publication.

[84] A. Raghavan, S. Joshi, A. Fern, P. Tadepalli, and R. Khardon. Planning in factored action
spaces with symbolic dynamic programming. In Proceedings of the Twenty-Sixth AAAI

Conference on Artiûcial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada., 2012.

[85] A. Raghavan, P. Tadepalli, A. Fern, and R. Khardon. Memory-eõcient symbolic online
planning for factored MDPs. In Proceedings of the hirty-First Annual Conference on

Uncertainty in Artiûcial Intelligence (UAI-15). AUAI Press, July 2015.

[86] J. Redding, N. Ure, J. How, M. Vavrina, and J. Vian. Scalable, mdp-based planning for
multiple, cooperating agents. In American Control Conference (ACC), 2012, pages 6011–
6016, June 2012.

[87] P. Robbel, F. A. Oliehoek, and M. J. Kochenderfer. Exploiting anonymity in approximate
linear programming: Scaling to large multiagent MDPs. In Proceedings of the AAAI Fall

Symposium: Sequential Decision Making for Intelligent Agents, Washington, DC, Novem-
ber 2015.

[88] S. Sanner. ICAPS 2011 international probabilistic planning competition. http://users.
cecs.anu.edu.au/~ssanner/IPPC_2011, 2011. Accessed: 2015-08-01.

[89] S. Sanner and C. Boutilier. Practical solution techniques for ûrst-order MDPs. Artiûcial
Intelligence, 173(5-6):748–788, Apr. 2009.

[90] S. Sanner and K. Kersting. Symbolic dynamic programming for ûrst-order POMDPs. In
Proceedings of the 24th AAAI Conference on Artiûcial Intelligence (AAAI-10), pages 1140–
1146, 2010.

144 Bibliography

[91] J. G. Schneider, W.-K.Wong, A.W.Moore, andM. A. Riedmiller. Distributed value func-
tions. In Proc. of the International Conference on Machine Learning, pages 371–378, 1999.

[92] D. Silver. Reinforcement Learning and Simulation-Based Search in Computer Go. PhD
thesis, University of Alberta, 2009.

[93] D. Silver, R. S. Sutton, andM. Müller. Sample-based learning and search with permanent
and transient memories. In Twenty-Fi�h International Conference on Machine Learning

(ICML), pages 968–975, 2008.

[94] J. Sleight and E. H. Durfee. A decision-theoretic characterization of organizational in�u-
ences. In Proc. of the 11th International Conference on Autonomous Agents andMultiagent

Systems (AAMAS), pages 323–330, 2012.

[95] M. T. J. Spaan and F. S. Melo. Interaction-driven Markov games for decentralized multi-
agent planning under uncertainty. In AAMAS, pages 525–532, 2008.

[96] S. Srihari, V. Raman, H. W. Leong, and M. A. Ragan. Evolution and controllability of
cancer networks: A boolean perspective. Computational Biology and Bioinformatics,

IEEE/ACM Transactions on, 11(1):83–94, Jan 2014.

[97] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. he MIT Press,
March 1998.

[98] R. S. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artiûcial Intelligence, pages 181–211,
1999.

[99] N. Taghipour, J. Davis, and H. Blockeel. Generalized counting for li�ed variable elimina-
tion. Springer Lecture Notes in Computer Science: Inductive Logic Programming, 8812:107–
122, 2014.

[100] N. Taghipour, D. Fierens, J. Davis, and H. Blockeel. Li�ed variable elimination: Decou-
pling the operators from the constraint language. Journal of Artiûcial Intelligence Research,
47:393–439, 2013.

[101] M. E. Taylor andP. Stone. Transfer learning for reinforcement learning domains: A survey.
Journal of Machine Learning Research, 10(1):1633–1685, 2009.

[102] R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society (Series B), 58:267–288, 1996.

[103] M. Toussaint, L. Charlin, and P. Poupart. Hierarchical POMDP controller optimization
by likelihood maximization. In Uncertainty in Artiûcial Intelligence (UAI 2008), pages
562–570. AUAI Press, 2008.

[104] N. Ure, G. Chowdhary, Y. F. Chen, M. Cutler, J. How, and J. Vian. Decentralized learning-
based planning formultiagentmissions in the presence of actuator failures. InUnmanned

Aircra� Systems (ICUAS), 2013 International Conference on, pages 1125–1134, May 2013.

Bibliography 145

[105] N. K. Ure, J. P. How, and J. Vian. Randomized coordination search for scalable multiagent
planning. In Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems (AAMAS), pages 1793–1794, Richland, SC, 2015. International Foun-
dation for Autonomous Agents and Multiagent Systems.

[106] M. J. Valenti. Approximate Dynamic Programming with Applications in Multi-Agent Sys-

tems. PhD thesis, Massachusetts Institute of Technology, 2007.

[107] M. vanOtterlo. heLogic of Adaptive Behavior - Knowledge Representation andAlgorithms

for theMarkovDecision Process Framework in First-OrderDomains. Phd thesis, University
of Twente, May 2008.

[108] P. Varakantham, S. Cheng, G. J. Gordon, and A. Ahmed. Decision support for agent
populations in uncertain and congested environments. In Proceedings of the Twenty-Sixth

AAAI Conference on Artiûcial Intelligence, July 22-26, 2012, Toronto, Ontario, Canada.,
2012.

[109] N. Vlassis. A Concise Introduction to Multiagent Systems and Distributed Artiûcial Intel-

ligence. Synthesis Lectures on Artiûcial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2007.

[110] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone. Generalized domains for empirical
evaluations in reinforcement learning. In ICML Workshop on Evaluation Methods for

Machine Learning, June 2009.

[111] S. Whiteson, B. Tanner, M. E. Taylor, and P. Stone. Protecting against evaluation over-
ûtting in empirical reinforcement learning. In IEEE Symposium on Adaptive Dynamic

Programming and Reinforcement Learning (ADPRL), April 2011.

[112] R. J. Williams and L. C. Baird. Tight performance bounds on greedy policies based on
imperfect value functions. Technical Report NU–CCS-93-14, Northeastern University,
Nov 1993.

[113] J. Wu and E. H. Durfee. Resource-driven mission-phasing techniques for constrained
agents in stochastic environments. Journal of Artiûcial Intelligence Research, 38:415–473,
2010.

[114] W. Yeoh and M. Yokoo. Distributed problem solving. AI Magazine, 33(3):53–65, 2012.

