
Overcoming Resource Limitations in the

Processing of Unlimited Speech:

Applications to Speaker and Language Recognition

by

Stephen H. Shum

B.S., University of California, Berkeley (2009)
S.M., Massachusetts Institute of Technology (2011)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c© Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
James R. Glass

Senior Research Scientist
Thesis Supervisor

Certified by. .
Najim Dehak

Assistant Professor, Johns Hopkins University
Thesis Supervisor

Accepted by .
Professor Leslie A. Kolodziejski

Chair, Department Committee on Graduate Students

2

Overcoming Resource Limitations in the

Processing of Unlimited Speech:

Applications to Speaker and Language Recognition

by

Stephen H. Shum

Submitted to the
Department of Electrical Engineering and Computer Science

on May 20, 2016,
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

We live an era with almost unlimited access to data. Yet without their proper tagging
and annotation, we often struggle to make effective use of most of it. And sometimes,
the labels we have access to are not even the ones we really need for the task at hand.
Asking human experts for input can be time-consuming and expensive, thus bringing
to bear a need for better ways to handle and process unlabeled data.

In particular, successful methods in unsupervised domain adaptation can auto-
matically recognize and adapt existing algorithms to systematic changes in the input.
Furthermore, methods that can organize incoming streams of information can allow
us to derive insights with minimal manual labeling effort – this is the notion of weakly
supervised learning.

In this thesis, we explore these two themes in the context of speaker and lan-
guage recognition. First, we consider the problem of adapting an existing algorithm
for speaker recognition to a systematic change in our input domain. Then we un-
dertake the scenario in which we start with only unlabeled data and are allowed
to select a subset of examples to be labeled, with the goal of minimizing the num-
ber of actively labeled examples needed to achieve acceptable speaker recognition
performance. Turning to language recognition, we aim to decrease our reliance on
transcribed speech via the use of a large-scale model for discovering sub-word units
from multilingual data in an unsupervised manner. In doing so, we observe the im-
pact of even small bits of linguistic knowledge and use this as inspiration to improve
our sub-word unit discovery methods via the use of weak, pronunciation-equivalent
constraints.

Thesis Supervisor: James R. Glass
Title: Senior Research Scientist

Thesis Supervisor: Najim Dehak
Title: Assistant Professor, Johns Hopkins University

3

4

Acknowledgments

I’ve said this before, and I will say it again: When it comes to research advisers, I

do not think I could have found a better combination than Jim and Najim. With

Jim’s calm, steady hand and Najim’s explosive flurry of ideas, the two styles managed

to regularize each other, and I think I hit the jackpot in terms of finding a balance

between them. Jim, I hope we can find the time to ride bikes again soon. Najim, I

look forward to catching up with you over some soft-shell crab in Baltimore.

Furthermore, I could not have done any of this without the help of a wonderful

thesis committee. Victor, thank you for your continued encouragement, for helping

me keep in mind the bigger picture, and for shaping so much of the identity of this

thesis. Tommi, thank you for your endless insights into the rigors of machine learning;

I really appreciate your helping me think outside of the box in all of the problems

that I faced. Doug, your advice and perspective has proven invaluable through the

years. It has been an absolute privilege working on a number of different projects with

you; I have learned so much through your guidance and witnessing your pragmatic

approach to research and development.

To past and present members of the Spoken Language Systems group – Ann,

Carrie, Chen, Daniel, Dave, Eann, Ekapol, Felix, Henry, Hung-An, Ian, Jackie, Jen,

Jingjing, Lee, Mandy, Marcia, Michael, Mitch, Mitra, Scott, Sree, Stephanie, Timo,

Tuka, Wei-Ning, William, Xue, Yaodong, Yonatan, Yu, Yushi – thank you for being

such a joy to work alongside. Special thanks to Daniel, Dave, and Tuka for bearing

with the mess I make in our office. And of course, thank you, Marcia! Without you,

I think a lot of our group’s operations would grind to a halt. For all that you do to

keep our worlds running smoothly – from birthdays to travel to correcting my poor

grammar to scheduling to providing words of encouragement when we need it most

– thank you so, so much.

Many thanks to the MIT Lincoln Laboratory for their continued support and

sponsorship throughout the course of my Ph.D. I really appreciate the freedom you

have given me to explore different research topics; it’s been an extremely rewarding

process. A massive thank you to Bill (and Doug R.) for a fantastic summer internship

in 2012, as well as to Fred for all of his help in the development of the work in this

thesis. Furthermore, it’s been a pleasure working and interacting regularly with Doug

S., Elliot, Joe, Pedro, and Tom.

Thank you to the JHU HLTCOE for an excellent SCALE 2013, especially Alan,

Daniel, and Chuck for all of their help and guidance in shaping one of the major

portions of this thesis. A shout-out as well to Colleen, Eli, Heather, Lisa, Sean,

Walker, and everyone else for making an abnormally warm Baltimore summer that

5

much more bearable.

I’ve had the pleasure of working and interacting with an amazing research group

at the Brno University of Technology, including Honza, Lukas, Mehdi, Mireia, Olda,

Ondrej, Pavel, among others. Thank you for your hospitality.

I owe much gratitude to Arlo, Elmar, Niko, Jason, and Sanjeev for being incredible

research mentors since the day I began doing research in the field. Thank you, also,

to Brian and Helen for hosting visits for me while I was in Hong Kong. Your insights

and leadership will never be forgotten.

I’ve been fortunate enough to have been a part of a number of fantastic groups

during my time here at MIT, most notably the MIT Cycling Team and the MIT Strong

group, who made my first Boston Marathon experience so extremely meaningful and

memorable. I’m also indebted to Abby, Jackie, and Michelle, for convincing me to

dust off my cello and join them for a few semesters of chamber music; playing with

you all was always an extremely welcome break from trying to finish this thesis!

I started graduate school here in 2009 and was lucky enough to make some amazing

friends. Between graduations and relocations, the subset of us that are still in the area

will always be evolving, but as a core, we’ll always be growing. Thank you to Aaron,

Angele, Bev, Chang, Christin, Dave S., Ian S., Janet, Jen W., Justin, Matthieu,

Mehul, Michael P., Morgan, Nick H., Phil, Sam, Seoyoung, for always being a group

I can always count on to put a smile on my face.

One of the first things I did upon my move to the Boston area was to find fellow

Cal alumni with whom to connect and watch college football. While our team may

still be in search of consistency on the field, I’ve always been able to count on Ben,

Chad, Eliza, Geoff, Joey, Matt, Michael C., Sarah, Toshiki, Tristan, and everyone

else in the Cal Alumni Club of New England. Go Bears!

Judy, William, and Carrie, thanks for being such a consistent source of friendship

and fun; I truly struggle to recall instances without you in which I have laughed

harder. Chian, I’m so glad we got to reconnect after so many years! Frances, thank

you for always finding new ways to make fun of me; isn’t life so much easier when

we don’t take it too seriously? Dave H., in addition to your incredible insight and

understanding of all things research- and life-related, thank you for being a consistent

source of deliciously brewed beverages – I’m not sure I would have made it this far

without them. Ekapol, it’s been a pleasure and an honor beginning and ending our

respective Ph.D. experiences together here at SLS – I believe this makes us brothers

in some sense! It’ll be sad to see you move back to Thailand, but I look forward to

visiting soon.

John and Michael A., I am honored to have the opportunity to graduate in the

6

cap and gown worn by such esteemed predecessors. And I really look forward to a

day in which we are all in the same geographic location.

A lot of my time as a graduate student was spent learning about myself through

participation in a number of endurance sports, and I couldn’t have done it without the

camaraderie of, support from, and shared suffering with Jen S., Alicia, Devin, Jimmy,

Michael A., Nick L., Pavel, and Scott. I look forward to continuing our journey

together with more epic runs, rides, races, and explorations into the unknown.

Eli, words cannot express the beauty and joy you’ve added to my life. Thank

you for helping me find myself, for guiding me through the darker times, and for

urging me to the finish line. It’s been an amazing ride, and I can’t wait for our next

adventure.

My final thanks goes to Mom and Dad, whose endless love, support, and encour-

agement I truly could not have made it this far without. Thank you for always being

there for me; thank you for taking the time to attend my thesis defense; and thank

you for being among the first to read through this thesis! For all that and much,

much more, I dedicate this thesis to you. Thank you for everything.

7

8

Contents

List of Figures 13

List of Tables 17

List of Abbreviations 21

1 Introduction 25

1.1 Tasks . 26

1.2 Themes . 26

1.2.1 Domain adaptation . 26

1.2.2 Weak supervision . 28

1.3 Overview of contributions . 29

2 i-vectors for Speaker and Language Recognition 31

2.1 Overview . 32

2.2 Spectral Features . 33

2.3 GMM-UBM-MAP . 34

2.4 Towards Factor Analysis . 36

2.4.1 The Posterior Distribution of w 37

2.5 Incorporating Labels and Scoring . 38

2.5.1 Speaker Verification . 38

2.5.2 Language Identification . 41

2.6 Summary . 44

3 Domain Adaptation for Speaker Recognition 45

3.1 Preliminaries . 46

3.2 The Domain Adaptation Challenge Task 47

3.3 Exploring the Domain Mismatch . 50

3.4 General Framework and Initial Setup 52

3.5 Clustering Algorithms . 54

9

3.5.1 Agglomerative Hierarchical Clustering 55

3.5.2 Markov Clustering . 55

3.5.3 Infomap . 56

3.5.4 Local Node Refinements . 57

3.6 Experiments and Results . 58

3.6.1 i-vector System Implementation 58

3.6.2 Evaluating Cluster Error . 59

3.6.3 Initial Results and Observations 59

3.6.4 Effect of Cluster Number on Recognition Performance 62

3.6.5 Automatic Estimation of Adaptation Parameters 65

3.7 Follow-up Work . 66

3.8 Summary . 66

4 Towards Active Learning for Speaker Recognition 69

4.1 Related Work . 70

4.2 Expectations on Sample Complexity 71

4.3 System Setup . 71

4.4 Naively Labeling Nearest-Neighbor Pairs 73

4.4.1 The Algorithm . 73

4.4.2 Initial Results . 75

4.5 Refinements . 78

4.5.1 Automatic, Noisy Labeling . 78

4.5.2 Data Re-representation . 80

4.5.3 Greedy Manifold Sampling and Clique-Growing 80

4.6 Future Work . 81

4.7 Summary . 82

5 Acoustic Unit Discovery for Language Identification 83

5.1 Introduction . 83

5.2 Acoustic Unit Discovery . 86

5.2.1 A Bayesian Nonparametric Model 86

5.2.2 Boundary Variables and Landmark Detection 88

5.2.3 Parallelization . 89

5.2.4 Model Selection . 90

5.2.5 Other Modifications . 90

5.2.6 Unit Recognizer Training . 91

5.3 The Bottleneck i-vector System . 91

5.3.1 DNN Bottleneck Features . 91

10

5.3.2 i-vector System and Scoring 93

5.4 Experiments . 93

5.4.1 Corpora . 94

5.4.2 Spectral Feature Baseline . 94

5.4.3 Transcribed SWB Benchmark 94

5.4.4 Initial Results . 95

5.4.5 Incorporating Fusion . 96

5.4.6 Incorporating Transcribed Data 97

5.5 Discussion . 99

5.5.1 Negative Results . 100

5.5.2 The 2015 NIST Language Recognition Evaluation 100

5.5.3 Exploring Language Specificity 102

5.6 A Phonotactic Perspective . 105

5.6.1 Introduction to Phonotactic Language Recognition 105

5.6.2 i-vectors for Phonotactic Language Recogntition 107

5.6.3 Initial Experiments . 109

5.6.4 Exploiting Fusion and Language Specificity 111

5.6.5 Towards Accumulating DNN Softmax Posteriors 113

5.7 Future Work . 114

5.8 Summary . 115

6 Improving Acoustic Unit Discovery: Analysis and Experiments 117

6.1 Desiderata . 118

6.2 Data . 120

6.3 A Broader Perspective . 122

6.4 Metrics and Baselines . 122

6.4.1 Normalized mutual information 123

6.4.2 Pronunciation-equivalent unit error rate 124

6.4.3 Evaluating segment boundaries 125

6.5 Clustering . 125

6.5.1 Incorporating sequence constraints 125

6.5.2 Varying the composition of the training data 127

6.5.3 The effect of different numbers of units 128

6.6 Segmentation . 128

6.6.1 Parameter marginalization . 129

6.6.2 Pronunciation-dependent utterance marginalization 130

6.6.3 Towards a bootstrapped approach to segmentation 131

6.7 Summary . 133

11

7 Conclusion 135

7.1 Future Work . 136

7.1.1 Adapting to broader domains 136

7.1.2 Out-of-domain detection . 136

7.1.3 Noisy labels and active learning in the real world 136

7.1.4 Discovering improved feature representations 137

7.1.5 Towards crowd-supervised development of speech

technologies . 137

Bibliography 139

12

List of Figures

1-1 Overview of thesis contributions. We cover domain adaptation for

speaker verification (top left) in Chapter 3, while Chapter 4 considers

the problem of active learning and speaker recognition (top right). We

apply large-scale unsupervised acoustic unit discovery to the language

identification problem (bottom left) in Chapter 5, while Chapter 6 in-

vestigates methods to improve acoustic unit discovery using equivalence

constraints (bottom right). 29

2-1 High-level diagram of i-vector system for speaker recognition showing

all hyper-parameters and which, respectively, require labeled and unla-

beled data to train. (Taken from [1].) 32

2-2 Overview of MFCC extraction. (Taken from [2].) 33

2-3 An illustration of how we compute shifted delta cepstral (SDC) features

for a single MFCC coefficient. (Taken from [3].) 34

2-4 Depiction of maximum a posteriori (MAP) adaptation, taken from [4,

2]. 36

3-1 High-level diagram of i-vector system showing all hyper-parameters and

which, respectively, require labeled and unlabeled data to train. (Taken

from [1].) . 47

3-2 Histogram comparing the respective distributions of calls per speaker in

both the SWB and SRE corpora. 49

3-3 SRE10 results obtained using various subsets of the SWB data for WC

& AC. 52

3-4 Example histogram of within- and between-speaker score distributions

for one particular node, as well as the cutoff thresholds discussed in

Section 3.5.4. 57

13

3-5 Summary of clustering (AHC) and recognition (SRE10) results as a

function of the number of speakers sampled from the SRE data. In the

top plot, the blue line for Cluster Error is plotted according to the y-axis

show on the right; all other lines are plotted according to the y-axis on

the left. 63

3-6 Effect of stopping AHC at varying numbers of clusters, averaged over

ten random draws of 1000 speakers each. Dash-dotted and solid lines

correspond to results using hypothesized and perfect clusters, respec-

tively. The blue line for Cluster Error is plotted according to the y-axis

show on the right; all other lines are plotted according to the y-axis on

the left. A more detailed explanation can be found in Section 3.6.4. . 64

3-7 Heatmaps showing the result of independently optimizing the adapta-

tion parameters, α. Both plots involve the same raw data but different

color scalings to illustrate the range of α that is appropriate for domain

adaptation. 66

4-1 Distributions of utterances per speaker in sampled subsets of SRE data:

(top) vanilla – all utterances from 1000 randomly chosen speakers;

(bottom) max-5 – no more than five utterances from every speaker in

the SRE data. 76

4-2 Initial results obtained on the vanilla distribution of utterances per

speaker: (top) graph edge properties as a function of pairs queried;

(middle & bottom) estimated number of speakers and resulting SRE10

EER for the uniform coverage and global score sort approaches,

respectively, as discussed in Section 4.4.1. 77

4-3 Results obtained on the max-5 distribution of utterances per speaker:

(top) graph edge properties as a function of pairs queried; (middle &

bottom) estimated number of speakers and resulting SRE10 EER for the

uniform coverage approach as well as techniques discussed in Section

4.5. 79

5-1 An overview of a bottleneck i-vector system: stacked spectral features

are passed as input to a neural network, whose activations at a bot-

tleneck layer are used as features for an i-vector classification system.

The resulting i-vectors are a low-dimensional summary of an utter-

ance’s distribution of bottleneck features. 84

5-2 An example of the observed data and hidden variables in the acoustic

unit discovery model, modified directly from Figure 1 of [5]. 87

14

5-3 The configuration of our proposed DNN. Its input is 819-dimensional

vector of stacked PLP frames. The first five hidden layers contain

1024 nodes featuring sigmoid activations. This is followed by a 64-

node bottleneck layer that uses linear activations (from which we draw

our bottleneck features) and a final sigmoid layer with 1024 nodes. The

number of output targets for which we obtain posteriors via a softmax

depends on the result of the acoustic unit discovery step. 92

5-4 System diagram of parallel phoneme recognition followed by language

modeling (PPR-LM). In this case, we have three phoneme recognizers

at our disposal (Hungarian, Russian, and Czech), and we build gen-

erative n-gram language models for each of our languages of interest

(Arabic, English, Czech, and Spanish). (Taken from [3].) 106

6-1 Two spectrograms for two instances of the same speaker saying the

word “really.” The phonetic transcription can be seen in the green box.

Underlined in blue are the parts of the discovered unit sequence that

match across both utterances; highlighted in red are the segments that

do not match. 119

6-2 A plot of NMI on the TIMIT test subset versus number of units learned.

Here, we sweep across the number of units learned for two different

segmentations: the TIMIT ground truth segmentation and the uncon-

strained, landmarks-based segmentation from Chapter 5. While the

number of units may make a minor difference, it seems as though seg-

mentation quality is a much more significant factor. 129

6-3 Spectrograms of a male (top) and a female (bottom) speaker saying

the TIMIT sx390 sentence, “He picked up nine pairs of socks for each

brother.” We show the result of our proposed segmentation method

that uses a DTW alignment between the two utterances and marginal-

izes over all landmark detection parameters. While most of the seg-

mentation is fairly reasonable, we highlight one area of inconsistency.

This region spans the /z/ in “pairs” and the /s/ in “socks” with a

schwa, /ax/, in between. While this should be three segments; our

segmentation hypothesizes only two. Furthermore, segment 14 in the

male spectrogram contains the schwa, whereas the schwa is attributed

to segment 15 in the female spectrogram. 132

15

16

List of Tables

3.1 Summary statistics for the SRE and SWB training lists. 48

3.2 EER’s on SRE10 from hyper-parameters trained using the SWB or

SRE datasets, as specified. 49

3.3 EER’s on SRE10 using various subsets of SWB to train the WC & AC

hyper-parameters. Each of rows 2-4 implies the use of the SWB subset

specified as well as all the data in the rows above. Per Section 3.3, the

UBM & T were trained using all of SWB, while W & m were obtained

from all of SRE. 51

3.4 Results from initial experiments in domain adaptation. Clustering per-

formance was evaluated using labels from the SRE data; recognition

performance (EER’s) is reported for the 1c task in SRE10. Section

3.6.3 explains rows 1-3; Section 3.6.4 discusses rows 5-6. 60

3.5 SRE10 results obtained using the entire unlabeled SRE dataset and op-

timal hyper-parameter adaptation, with α∗AC = 0.4 and α∗WC = 0.8.

It should be noted that the 2.23% EER given a perfect clustering is

different from the 1c EER of 2.30% shown in row 3 of Table 3.2 be-

cause of the adaptation with SWB hyper-parameters. The latter result

is obtained with no adaptation, or α∗AC = α∗WC = 1. 65

5.1 Initial language recognition results on 30 second test segments of LRE11;

the numbers shown are the average detection costs Cavg × 100. The

SWB row shows the results of a system built from acoustic units dis-

covered on a 100-hour subset of Switchboard I (English), while the

LRE-subset row corresponds to that of a system build from units

discovered on 240 hours of multilingual data. The various columns

show the results at different stages of unit discovery (unit cluster labels

versus HMM hidden state labels) and unit recognizer training (speaker-

independent and speaker-dependent). The bottom two rows show our

baseline and benchmark results, respectively. 96

17

5.2 Score-level fusion results on LRE11 for various test segment lengths

(30, 10, and 3 seconds); the numbers shown are the average detec-

tion costs Cavg × 100. We fuse the Spectral Feature Baseline (Sub-

section 5.4.2) with the best-performing system from Table 5.1, which

was built on the LRE-subset data using acoustic unit discovery (AUD)

and speaker-dependent unit recognizer training (Subsection 5.2.6). The

Transcribed SWB Benchmark is discussed in Subsection 5.4.3. 96

5.3 Score-level fusion results on LRE11 for various test segment lengths

(30, 10, and 3 seconds); the numbers shown are the average detection

costs Cavg×100. The first row, AUD(LRE-subset, MFCC), SD, is

the same result reported in Table 5.2. As discussed in Subsection 5.4.6,

the results in the second row, AUD(LRE-subset, SWB-BN), SI,

incorporate transcribed SWB data into the acoustic unit discovery pro-

cess in the form of BN features. Our best results are obtained by fus-

ing this semi-supervised system with the Transcribed SWB Benchmark

(Subsection 5.4.3). 98

5.4 Individual and score-level fusion results on LRE11 for various test seg-

ment lengths (30, 10, and 3 seconds); the numbers shown are the av-

erage detection costs Cavg × 100. All of the systems shown here use

transcribed SWB in some way, and all but the benchmark system (Row

4) incorporate the use of LRE-subset data. AUD (Row 1) is the same

result from Table 5.3 for a system that uses transcribed SWB data to

obtain BN features for acoustic unit discovery on LRE-subset data.

SWB-ASR (Row 2) uses a recognizer built from SWB to decode the

LRE-subset data. SWB-BN DNN (Row 3) classifies each frame of

the LRE-subset data using a DNN built from transcribed SWB data.

Finally, our transcribed SWB benchmark result is shown again in Row

4. 99

5.5 Results on LRE15 broken down by language cluster – Arabic, Chinese,

English, Iberian, and Slavic – the numbers shown are the average

detection costs Cavg × 100. 101

5.6 Results on LRE15 broken down by language cluster – Arabic, Chinese,

English, Iberian, and Slavic – the numbers shown are the average

detection costs Cavg × 100. For each of these systems, we run acoustic

unit discovery using only the data from the language cluster specified

and build a language recognition system to classify languages from all

five language clusters. 103

18

5.7 Results on LRE15 broken down by language cluster – Arabic, Chinese,

English, Iberian, and Slavic – the numbers shown are the average de-

tection costs Cavg × 100. For each of these systems, we run acoustic

unit discovery using only a 23 hour subset of the data from the language

cluster specified and build a language recognition system to classify lan-

guages from all five language clusters. 103

5.8 Results on LRE15 broken down by language cluster – Arabic, Chinese,

English, Iberian, and Slavic – the numbers shown are the average

detection costs Cavg× 100. For each of these systems, we represent the

audio using English-inspired SWB-BN features and run acoustic unit

discovery using a 23 hour subset of the data from the language cluster

specified. Using these discovered acoustic units, we build a language

recognition system to classify languages from all five language clusters. 104

5.9 Initial results on LRE11 for various test segment lengths (30, 10, and 3

seconds) using a phonotactic i-vector approach; the numbers shown are

the average detection costs, Cavg× 100. The first six systems (Rows 0-

5) are discussed in Section 5.6.3; the Acoustic bottleneck i-vector

result is repeated from Table 5.3 in Section 5.4.6. 111

5.10 Results of score-level fusion on LRE11 for various test segment lengths

(30, 10, and 3 seconds) using a phonotactic i-vector approach; the num-

bers shown are the average detection costs, Cavg × 100. For this exper-

iment, we ran acoustic unit discovery on 10 hours of each of the 24

LRE11 languages, built a unit recognizer for each of them, and then

used each recognizer to build a phonotactic language recognition system

based on unit bigram counts and i-vectors based on the SnGM. 112

5.11 Results of score-level fusion on LRE11 for various test segment lengths

(30, 10, and 3 seconds) using a phonotactic i-vector approach; the num-

bers shown are the average detection costs, Cavg × 100. In this exper-

iment, we ran acoustic unit discovery on 10 hours of each of the 24

LRE11 languages, built a unit recognizer for each of them, and then

used each recognizer to build a phonotactic language recognition system

based on unigram senone counts and PCA-based i-vectors. 113

19

5.12 Results on LRE11 for various test segment lengths (30, 10, and 3 sec-

onds) using SMM-based i-vectors extracted from expected senone counts

obtained by accumulating the DNN softmax over each frame of an ut-

terance; the numbers shown are the average detection costs, Cavg×100.

Each of the systems depicted below uses the exact same DNN trained

to obtain the results in Table 5.3. 114

6.1 Boundary F1 scores, normalized mutual information, and pronunciation-

equivalent unit error rates (PE-UER) obtained by our various acoustic

unit discovery configurations. Both F1 and NMI are evaluated against

the respective ground truth annotations of our TIMIT train and test

subsets, while the respective PE-UER values shown are evaluated on the

28-sentence, 66-utterance pron-eq-train subset and the 5-sentence,

10-utterance pron-eq-test subset described in Section 6.4.2. Our re-

sults here examine the effect of different clustering configurations as-

suming a fixed segmentation obtained from the TIMIT ground truth

annotations. 126

6.2 NMI and PE-UER obtained by our various acoustic unit discovery con-

figurations. NMI is obtained against the ground truth annotations of

our TIMIT test subset, while the PE-UER values shown are evaluated

on the 5-sentence, 10-utterance pron-eq-test subset described in Sec-

tion 6.4.2. Our results here examine the effect of differences in train-

ing data composition and unconstrained vs. constrained clustering for

acoustic unit discovery assuming a fixed segmentation obtained from

the TIMIT ground truth annotations. 128

6.3 NMI and PE-UER obtained on the TIMIT test subset using our DTW-

constrained segmentation proposed in Section 6.6.2 and constrained

clustering discussed in Section 6.5.1. Our results here demonstrate a

need for continued improvement in our DTW-constrained segmentation

algorithm. 133

20

List of Abbreviations

AC Across Class

ACP Average Cluster Purity

AD-LDA Approximate Distributed Latent Dirichlet Allocation

AHC Agglomerative Hierarchical Clustering

ASF Average Speaker Fragmentation

ASR Automatic Speech Recognition

AUD Acoustic Unit Discovery

BN Bottleneck

BUT Brno University of Technology

DCF Detection Cost Function

DCT Discrete Cosine Transform

DNN Deep Neural Network

DP Dirichlet Process

DTW Dynamic Time Warp

EER Equal Error Rate

EM Expectation-Maximization

FA False Alarm

FFT Fast Fourier Transform

GMM Gaussian Mixture Model

HMM Hidden Markov Model

IR Information Retrieval

21

LDA Linear Discriminant Analysis

LDC Linguistic Data Consortium

LLR Log Likelihood Ratio

LR Logistic Regression

LRE Language Recognition Evaluation

LRE11 2011 NIST LRE

LRE15 2015 NIST LRE

MAP Maximium a Posteriori

MCL Markov Clustering

MFCC Mel-Frequency Cepstral Coefficient

ML Maximum Likelihood

MMR Maximal Marginal Relevance

NAP Nuisance Attribute Projection

NIST National Institute of Standards and Technology

NMI Normalized Mutual Information

PCA Principal Components Analysis

PE-UER Pronunciation-Equivalent Unit Error Rate

PLDA Probabilistic Linear Discriminant Analysis

PPR-LM Parallel PR-LM

PR-LM Phoneme Recognition followed by Language Modeling

SD Speaker Dependent

SDC Shifted Delta Cepstral

SI Speaker Independent

SMM Subspace Multinomial Model

SnGM Subspace n-gram Model

SRE Speaker Recognition Evaluation

SRE10 2010 NIST SRE

SVM Support Vector Machine

SWB Switchboard

UBM Universal Background Model

UPGMA Unweighted Pair Group Method with Arithmetic Mean

22

vMF von Mises-Fisher (distribution)

WC Within Class

WCCN Within-Class Covariance Normalization

WER Word Error Rate

23

24

Chapter 1

Introduction

With the ubiquity, connectivity, and expansive storage of data-recording devices

(smart phones, embedded sensors, etc.), we live in an era with almost unlimited

access to data. Nevertheless, we often struggle to make sense – much less make effec-

tive use – of most of it. One major reason for this is that a lot of the data that we

have such convenient access to are unlabeled and, thus, useless in many of the tradi-

tionally supervised machine learning scenarios that require explicit labeled examples.

Furthermore, sometimes the labels that we do have access to are not necessarily the

labels that we really need for the task at hand. Because the process of using humans

to tag and annotate can be expensive and time-consuming, we’d like to develop meth-

ods that utilize existing, previously labeled examples in ways that can make use of

the many unlabeled examples at hand.

For many years now, the speech research community has dreamt of organic spoken

language systems that grow and improve without continued expert supervision [6].

While such systems are closer than ever to becoming a reality, it is still common for

users to simply learn to live with a system’s errors. That is, despite being deployed

in a dynamic environment, the underlying models of a spoken language system are

often fixed [7]; each interface knows what it knows and doesn’t know what it doesn’t

[6]. As such, when recording conditions change from a quiet meeting room to a

bustling street corner, the typical system not only continues to operate under the

former recording condition but also fails to recognize that its resulting outputs are

subject to corruption from the additional noise. Such lack of awareness and inability

to adapt to ever-changing scenarios are what prevent us from building machines that

can truly hear [8]. Instead what we really need is the ability to build systems that

behave like living organisms that can learn, grow, reconfigure, and repair themselves

as necessary [6].

As one possible scenario, we envision a robot deployed into the real world equipped

25

with the necessary computational capabilities and an ability to perceive audio, but

not necessarily the training to fully understand it. We task the system with learning

how to make sense of its environment and allow the robot to roam around freely

and collect information in some reasonable fashion. In the beginning, most of its

assimilation will come in an unsupervised manner – that is, no one will be there to

label out what it is the robot is hearing for every moment of its existence – although

later we can perhaps incorporate some interaction and allow the system to ask some

limited number of questions as a way for it to improve its understanding about the

world it inhabits. The ultimate result would be a robot that learns to make sense

of its audio environment without constant supervision, realizes the aspects of sound

that it knows and doesn’t know, and is able to ask for additional information and

clarification in a sensible manner. This is the sort of system that we strive for, a true

specimen of artificial intelligence that exists and operates in organic fashion.

1.1 Tasks

Our aim in this thesis is to develop methods for speaker and language recognition that

better utilize unlabeled data. The objective in speaker verification is to determine

whether or not a given test utterance originates from a hypothesized speaker, while the

goal of language identification is to determine, from a known set of target languages,

the spoken language of a given test utterance. In contrast to spoken content (i.e.,

speech recognition), which varies far more rapidly over time, we consider both speaker

and language identity to be more persistent properties of the speech signal. As we

will see in Chapter 2, state-of-the-art approaches to both problems involve a very

similar representation of the audio.

1.2 Themes

In the context of speaker and language recognition, we explore two main themes:

unsupervised domain adaptation and learning from weak supervision.

1.2.1 Domain adaptation

To illustrate the need for domain adaptation, we imagine one or more students who

have learned a lot from school and are looking to continue their education. To do so,

they are tasked with performing well on some sort of a college entrance exam (e.g.,

Scholastic Aptitude Test (SAT) or any of the Advanced Placement (AP) exams, et

26

cetera). One naive, baseline strategy is for these students, armed only with their

respective knowledge obtained from school, to simply show up at the test center and

take the exam without any exam-specific preparation. Another strategy that tends to

yield better results is for each student to augment his or her school-based knowledge

and prepare using an exam-specific study guide and maybe a set of practice tests. By

working through practice problems that are similar to those found in the exam, our

students might become more familiar with the testing environment and transfer their

respective school-based knowledge into a form that also improves exam performance.

This sort of transfer learning is what we call domain adaptation.

While effective, however, this strategy is not entirely scalable. Exams, such as

the SAT, change regularly. And every time there is such an update, our students will

need a new, corresponding study guide – this gets expensive! In this analogy, our

students should be thought of as a set of one or more algorithms trained initially on

knowledge from school and then tasked with performing well on a separate exam. By

using a study guide and practice tests corresponding to the most updated exam, they

are undergoing a process known as supervised domain adaptation.

Scalability is extremely important in many practical engineering scenarios. In this

world, we have over 7000 spoken languages, 400 of which have at least one million

speakers.1 Even under a generous estimate, we have developed reasonable speech

technologies for fewer than 100 languages. (This thesis involves no more than 30

different languages.) So we have a lot of work to do!

In this thesis, we are interested in the problem of unsupervised domain adapta-

tion, which can be thought of as access to an unlimited number of test preparation

resources, but no access to their corresponding answer keys. In this sense, our stu-

dents can take as many practice tests as they would like, but they will not be provided

any feedback on their performance. We are interested in this problem because tests

and evaluation conditions change regularly, and we’d like to be able to adapt to these

changes without needing a new study guide and corresponding answer key every time.

More formally, we would like to learn from some source data distribution (e.g.,

school) a model that can perform well on a different, but related, target data distri-

bution (e.g., SAT) [9]. In the unsupervised case, we assume that our learning sample

contains labeled source examples (e.g., textbooks) and unlabeled target examples

(e.g., practice tests without answers). In Chapter 3, we outline a task along these

lines in the context of speaker verification, while Chapter 5 entertains a variant of

this scenario for language identification.

1Taken from https://www.ethnologue.com/statistics/size.

27

1.2.2 Weak supervision

Learning from weak supervision touches upon the broad range of methods that are

neither fully supervised or fully unsupervised [10]. In this thesis, we specifically

consider two such aspects of this paradigm: active learning and top-down equivalence

constraints.

Active learning

Taken directly from [11], the key idea behind active learning is that a machine learning

algorithm can achieve greater accuracy with fewer training labels if it is allowed to

choose the data from which it learns. In situations where unlabeled data is abundant

but manual labeling is expensive, an active learning system will choose what queries to

pose, usually in the form of unlabeled data instances to be labeled by some oracle (e.g.,

a human annotator). Using these newly labeled instances, the system builds a model

and, using this model, either applies it to the task at hand or goes back to the set of

unlabeled data to find more examples that it might want to have labeled. In Chapter

4, we develop strategies to actively explore a database of unknown speakers and build

speaker models for speaker verification using queries between pairs of utterances.

Top-down equivalence constraints

In the section above, we pose pairwise queries in the following way: “Are utterances

A and B spoken by the same speaker?” The answer to such a query yields either a

positive or negative equivalence constraint. While having these sorts of constraints

are not quite the same as having fully labeled data, having enough of these con-

straints can still provide key bits of information that we can exploit to build our

models for speaker recognition. The motivation for work along this front is in an

effort to alleviate the need for expensive, expert-level knowledge. That is, instead

of having to ask linguistic experts to provide for us a pronunciation dictionary for

a new language, suppose our systems could simply organize the data in such a way

that allows us to ask informative questions about the language to fluent, but non-

linguist, speakers. The ability to involve a significantly broader population would be

a huge step towards scaling speech technology to all the languages of the world. In

addition to the pairwise equivalence constraints utilized in Chapter 4, we explore in

Chapter 6 the use of equivalence constraints between acoustic sequences to improve

the speaker-independence of discovered acoustic units.

28

1.3 Overview of contributions

Figure 1-1: Overview of thesis contributions. We cover domain adaptation for speaker
verification (top left) in Chapter 3, while Chapter 4 considers the problem of active
learning and speaker recognition (top right). We apply large-scale unsupervised acous-
tic unit discovery to the language identification problem (bottom left) in Chapter 5,
while Chapter 6 investigates methods to improve acoustic unit discovery using equiv-
alence constraints (bottom right).

Figure 1-1 provides an overview of our contributions in this thesis, which we also

summarize in the following.

• In Chapter 3, we motivate and define a task for domain adaptation in speaker

recognition, in which both in-domain and out-of-domain data are available, but

labels are provided only for the mismatched, out-of-domain data. Our proposed

approach, which utilizes both agglomerative and graph clustering techniques,

achieves performance within 15% of a system that has access to all speaker

labels. Along the way, we observe that both an imperfect clustering and an

imprecise estimate of the number of speakers are forgivable in the presence

of adaptation between hyper-parameters derived from in-domain and out-of-

domain data.

• We subsequently consider a different form of resource constraints in Chapter 4,

where we have matched, in-domain training data but no labels of any sort. In

this exploration, we develop a greedy algorithm based on active learning that

29

obtains speaker labels in the form of binary pairwise comparisons. We find that

the actual number of pairwise comparisons needed to obtain state-of-the-art

results is a mere fraction of the queries required to fully label an entire training

set of utterances and is in line with the sample complexity guarantees provided

by a more formal analysis of active learning.

• In Chapter 5, we return to the theme of domain adaptation and address the

problem of language identification. Previously, state-of-the-art results leaned

heavily on the use of transcribed speech in the languages we hope to recog-

nize. We remove the need for such transcriptions via the use of an unsupervised

method for discovering acoustic units. To do so, we modify an existing, small-

scale Bayesian nonparametric model in ways that allow it to scale computation-

ally to hundreds of hours of multilingual data. The resulting acoustic units can

then be used to obtain neural network-based features for language recognition.

• In validating the ability of our acoustic unit discovery to generalize to different

datasets and languages, we observe the continued importance of both language

specificity and an improved acoustic representation of speech. Not surprisingly,

we find that restricting our unit discovery to a particular family of languages –

e.g., the various dialects of Arabic – yields a system that performs best on that

specific subset of languages. We also find that supervised knowledge of even

just one language can help substantially in discovering linguistically meaningful

acoustic units and improving language recognition performance.

• In light of these observations, we explore ways to improve our acoustic unit dis-

covery methods in Chapter 6 by incorporating weak pronunciation-equivalent

constraints. While we still have no access to explicit textual transcriptions, we

assume that we are given subsets of utterances that contain equivalent pronun-

ciations of the same sentence (or word, or phrase) spoken by various speakers.

To this end, we hope to use these constraints to encourage our model to learn

similar unit sequences within these sets of utterances and, thus, arrive at a seg-

mentation and clustering at the sub-word unit level that is more linguistically

meaningful.

30

Chapter 2

i-vectors for Speaker and Language

Recognition

A speech signal conveys information at many levels. In addition to the spoken content

itself, we can also ascertain the language spoken, the speaker’s identity, and even the

speaker’s emotional state. Both speaker and language recognition can serve as a front-

end that improves the performance of an automatic speech recognizer; in particular,

we must know what language whose speech we aim to recognize, and knowledge of

the speaker’s identity can help the recognizer adapt its models accordingly.

This thesis explores both speaker verification and language identification. While

we loosely refer to these as “recognition” tasks throughout this thesis and correspond-

ing literature, they are slightly different and we formally define them here. In speaker

verification, we are given two speech utterances and asked to determine whether or

not they were spoken by the same speaker [2]. Language identification is the task of

automatically determining, from some list of known target languages, the language

of a spoken utterance [3]. We should note that the former is an open-set verification

problem in which our answer is either “yes” or “no.” On the other hand, the latter is

a closed-set identification problem in which we assume that the language of the test

utterance must belong to one of a set of K known languages.

At the heart of our approach to both problems is the i-vector, a low-dimensional,

vector-based representation of audio that easily allows the use of large amounts of

previously collected and labeled audio to characterize and exploit both desired and

nuisance directions of variability. Originally developed for speaker verification [12],

the representation also obtained state-of-the-art results on language identification [13].

In this chapter, we provide an overview of how an i-vector can be extracted from a

given utterance and used to represent the speaker or language within. Subsequently,

we will compare and contrast techniques for both speaker and language recognition

31

and provide some insights into what makes our approaches to each problem unique.

This chapter will be by no means a comprehensive review of all of the techniques

that have been explored, as the usage of i-vectors has grown enormously since their

inception. Instead, we hope that it can serve as a primer for reference throughout the

thesis.

2.1 Overview

In short, an i-vector can be seen as a low-dimensional summary of a particular ut-

terance’s distribution of acoustic features with respect to some existing background

model [14]. Such a representation is useful because of its ability to transform a

variable-length sequence of feature vectors into a single, fixed-length vector. We

should note, of course, that this is useful only for properties of a signal that are as-

sumed to be persistent throughout, such as speaker identity and language spoken.

The more transient characteristics of the signal, such as the identity and order of

phonemes spoken, are much more difficult to ascertain from an i-vector.

Figure 2-1: High-level diagram of i-vector system for speaker recognition showing all
hyper-parameters and which, respectively, require labeled and unlabeled data to train.
(Taken from [1].)

Figure 2-1 shows a high-level diagram of an i-vector system for speaker recog-

nition; a system for language recognition follows the same general flow but has a

few differences that we will highlight later in this chapter. In general, our goal is

to ascertain how likely some given test utterance is to have originated from some

model. In speaker recognition, the model might represent some target speaker whose

identity we’d like to verify; in language recognition, we would have a model for each

language we would like to identify. In the i-vector approach, both the model and the

test utterance are represented as fixed-dimensional i-vectors.

32

2.2 Spectral Features

In this section, we provide an overview of the spectral features that are typically used

for speaker and language recognition. A number of alternatives exist, many of which

are beyond the scope of this thesis but are reviewed in [15]. Where appropriate, we

will point out these variations throughout the text.

To obtain features for speech processing, we assume that the sampled speech

waveform is approximately stationary over short intervals of approximately 10-30 ms.

Taken from [2], Figure 2-2 provides an overview of the process, which involves a sliding

analysis window (typically 25 ms in length) along the speech signal and computing

a set of features every 10ms. For each window placement (typically Hamming), the

higher frequences of the speech speech signal are amplified via a linear “pre-emphasis”

filter and the discrete spectrum is computed using the fast Fourier transform (FFT).

Figure 2-2: Overview of MFCC extraction. (Taken from [2].)

Introduced in the early 1980s for speech recognition, the so-called mel-frequency

cepstral coefficients (MFCCs) are popular features in speech and audio processing

[15]. MFCCs are computed from a spectral representation of the signal with the aid

of a psychoacoustically motivated filterbank, followed by a logarithmic compression,

which mimics a human’s non-linear frequency resolution of loudness [3], and discrete

cosine transform (DCT). Each of the filters (typically 24 for telephone speech) in the

filterbank is triangular and computes the energy average around the center frequency

of each triangle. The center frequences are linearly spaced on a mel-frequency scale,

which was designed to approximate the behavior of the human auditory system.

Finally, the DCT is applied to reduce the correlation between the filters. For speaker

recognition, we use coefficients 1-19 as well as the log of the energy of the currently

windowed signal (in lieu of the 0th coefficient), giving us a 20-dimensional feature

vector. Finally, we typically incorporate some temporal information to the features

through estimates of the first-and second-order temporal derivatives, known as delta

and double-delta coefficients, respectively. This yields a final feature vector containing

60 dimensions for speaker recognition [2].

For language recognition, we derive a slightly different feature representation from

MFCCs [3]. Instead of using first- and second-order temporal derivatives, another way

33

to obtain information about temporal evolution is via shifted delta cepstral (SDC)

features, which involve computing delta cepstra across multiple frames. SDC features

are specified by four parameters: N , d, P , and k, where N is the number of cepstral

coefficients computed at each frame, d defines the time shift between each delta

computation, P is the time shift between the respective centers of consecutive blocks,

and k is the number of blocks whose coefficients are stacked to form the final feature

vector. A typical N -d-P -k configuration is 7-1-3-7, and Figure 2-3 illustrates the

process for one cepstral coefficient. In particular, this one coefficient will yield k = 7

delta computations, each delta involves the coefficients d = 1 frame in front and

behind some center frame, and each center frame is spaced P = 3 frames apart. In

language recognition, we typically use coefficients 0-6 of the MFCCs, thus yielding a

49-dimensional feature vector [3].

Figure 2-3: An illustration of how we compute shifted delta cepstral (SDC) features
for a single MFCC coefficient. (Taken from [3].)

2.3 GMM-UBM-MAP

We begin by modeling feature vectors – either MFCC or SDC features for speaker

or language recognition, respectively – as they relate to a Universal Background

Model (UBM), which is typically a Gaussian Mixture Model (GMM) built to represent

a speaker- and language-independent distribution of features [4]. The data used

to build this UBM will be task-dependent; in general, using data that matches as

closely as possible to the test data leads to better performance.1 For example, in the

ideal speaker recognition scenario, we would have data from thousands of speakers

1Of course, handling data mismatch is what this thesis is supposed to be all about!

34

each making over 10 calls from at least two different handsets [1]. And in the ideal

language recognition scenario, we would have data from every language that we would

ultimately want to be able to recognize.

A GMM is a generative model and can be seen as a semi-parametric probabilistic

method that, given appropriate front-end features, adequately represents a speech

signal and its variabilities [2]. Given a GMM, θ, consisting of C components and

F -dimensional feature vectors, the likelihood of observing a given feature vector y is

computed as

p(y|θ) =
C∑
c=1

πcNc(y|µc,Σc) (2.1)

where the sum of the mixture weights
∑

c πc = 1, and Nc(y|µc,Σc) is a multivariate

Gaussian with F -dimensional mean vector µc, F × F covariance matrix Σc, and

probability distribution function

Nc(y|µc,Σc) =
1

(2π)F/2|Σc|1/2
exp{−1

2
(y − µc)′Σ−1

c (y − µc)}. (2.2)

Though it is possible to use full covariances in the implementation, it is a bit more

computationally efficient to use only diagonal covariances. The density modeling of

a C-th order full covariance GMM can equally well be achieved using a diagonal

covariance GMM of higher order (i.e. C ′ > C) [4]. Finally, to preserve our previously

defined notation, we can denote θ = {θ1, ..., θC}, where θc = {πc, µc,Σc}.

Given a sequence of feature vectors u = {y1, y2, ..., yL}, we make the assumption

that each observation vector is independent of the other observations [2]. As such,

the likelihood of a given utterance u given the model θ is simply the product of the

likelihood of each of the L frames. Because the multiplication of many probabilities

on a machine can potentially lead to computational underflow, we instead use the

log-likelihood in our computation as follows:

log p(u|θ) =
L∑
t=1

log p(yt|θ) (2.3)

Given a collection of feature vectors, the parameters of a GMM can be estimated

via the Expectation-Maximization (EM) algorithm [16], which iteratively refines the

GMM parameters to monotonically increase the likelihood of the estimated model

for the observed feature vectors. Given a UBM, we can model a test utterance via a

maximum a posteriori (MAP) adaptation of the original UBM and obtain a new set

of parameters that characterizes the distribution of features in the test utterance. A

35

more thorough explanation of the MAP adaptation process can be found in [17], but

Figure 2-4 provides an illustration of adapting the mean and covariance parameters

of the observed Gaussians. In practice, only the mean vectors µc, c = 1, ..., C are

adapted; updating the weights and covariance matrices does not significantly affect

system performance [2].

Figure 2-4: Depiction of maximum a posteriori (MAP) adaptation, taken from [4, 2].

2.4 Towards Factor Analysis

One way to parameterize a UBM with C mixture components in a feature space of

dimension F is to view it as a single supervector, m, of dimension C · F along with a

diagonal “super”-covariance matrix of dimension CF×CF . This mean supervector is

generated by concatenating all the Gaussian component means, while the covariance

matrix is generated by respectively concatenating (along its diagonal) all the diagonal

covariances of each mixture.

The idea behind the i-vector approach is that most of the variability between

different supervectors can be captured within a subspace that is of far lower dimen-

sionality than that of the original supervector, which can be on the order of 120,000

(C = 2048, F ≈ 60). Intuitively, we can imagine applying principal components

analysis (PCA) to the supervectors obtained from the MAP adaptation of the UBM

to many different utterances; in practice, we use factor analysis and derive an EM

algorithm to estimate the subspace, T , and residual, Σ. More formally, we represent

our utterance-dependent supervector, M , as

M = m+ Tw, (2.4)

36

where m is the utterance-independent supervector taken from the UBM, T is a rect-

angular matrix of low rank, R, that defines our i-vector subspace, and w is an R-

dimensional random vector with a standard normal prior distribution, N (0, I). We

then define as our i-vector the MAP estimate of w given an observed utterance u. To

compute this quantity, we estimate the posterior distribution, w|u, and use the mean

of that resulting Gaussian distribution as the utterance’s i-vector. Depending on its

intended application, the rank of T and corresponding dimensionality of w typically

ranges between 100 and 600; i.e., R ∈ [100, 600].

2.4.1 The Posterior Distribution of w

A full explanation of the EM algorithm for training T can be found in [17]; here,

we simply state how the posterior distribution, w|u, is estimated using Baum-Welch

statistics from the UBM [12]. Assuming, as before, that our given utterance u is

represented as a sequence of L frames u = {y1, y2, ..., yL}, then the zeroth and first

order Baum-Welch statistics are

Nc (u) =
L∑
t=1

P (c|yt, θUBM) =
∑
t

γt(c) (2.5)

Fc (u) =
L∑
t=1

P (c|yt, θUBM) yt =
∑
t

γt(c) · yt (2.6)

where c = 1, ..., C is the index of the corresponding Gaussian component and γt(c) =

P (c|yt, θUBM) corresponds to the posterior probability of mixture component c from

our UBM generating the frame yt.

To make our subsequent notation a bit simpler, let us define the centralized first

order Baum-Welch statistics, F̃c(u), as

F̃c(u) = Fc (u)−Nc (u)mc =
∑
t

γt(c) · (yt −mc), (2.7)

where mc is the subvector corresponding to mixture component c of our supervector

m. Lastly, let N(u) be the CF×CF diagonal matrix whose diagonal blocks are Nc(u)·
I (c = 1, ..., C), and let F̃ (u) be the CF × 1 supervector obtained by concatenating

F̃c(u) (c = 1, ..., C).

Then the posterior distribution, w|u, given the acoustic observations of an utter-

ance u is Gaussian with mean l−1(u)T ∗Σ−1F̃ (u) and covariance matrix l−1(u), where

l(u) is the R×R matrix

l(u) = I + T ∗Σ−1N(u)T, (2.8)

37

and both T and Σ are estimated via the EM algorithm described in [17]. In running

that EM algorithm, T is initialized randomly and Σ is initialized as the diagonal

super-covariance matrix from the original UBM. Our i-vector, ultimately, is the mean

of this posterior distribution; i.e., ŵu = E[w|u] = l−1(u)T ∗Σ−1F̃ (u). To simplify our

notation throughout the rest of this chapter, we will use the term wu = ŵu to refer

an i-vector – i.e., the MAP estimate – and not the prior or posterior distributions of

w mentioned above.

2.5 Incorporating Labels and Scoring

As defined, the i-vector is simply a compressed representation of an utterance’s dis-

tribution of feature vectors with respect to a UBM; as such, it contains information

regarding the speaker, language, and recording environment. We can also see from

Figure 2-1 that the process so far has not required any supervised knowledge regard-

ing speaker or language labels pertaining to the utterances. This also implies that

we can use as much data as we would like to build our UBM and train our i-vector

subspace, T . But now the data has been projected into a lower dimensional space,

standard pattern classification techniques can be applied to utilize existing speaker

or language labels in a straightforward and computationally efficient manner [17].

Incorporating labels and computing scores is the step at which techniques for

speaker and language recognition diverge somewhat. Recall that speaker recognition

is the open-set verification task of determining whether two test utterances are spoken

by the same speaker, which is a two-class recognition problem. Language recognition,

on the other hand, is the closed-set identification problem of deciding, from some

known list of targets, the language of a test utterance; this is inherently a multi-

class recognition problem. While an exhaustive survey of the various backend recipes

for both respective problems is beyond the scope of this overview, we outline in the

following sub-sections the various approaches and evaluation metrics used in this

thesis.

2.5.1 Speaker Verification

A common theme in i-vector-based approaches is that they tend to ignore the pro-

cess by which i-vectors were extracted (i.e., the factor analysis) and instead pretend

they were generated by some assumed generative model [18]. Under this paradigm,

we further assume that an i-vector can be broken down into statistically indepen-

38

dent speaker and channel2 components, both of which are Gaussian distributions

[18, 19]. While the latter assumption was shown to be untrue in [19], the work in

[18] showed that whitening and then length-normalizing the entire set of i-vectors as

a pre-processing step can help overcome this setback. Our explorations in Chapters

3 and 4 will adhere to this pre-processing step.

In Probabilistic Linear Discriminant Analysis (PLDA) [20], we assume that the

i-vector, wu of some utterance, u, can be decomposed as

wu = µ+ V x+ εu, (2.9)

where s = µ+V x is the speaker-specific part that reflects the identity of the speaker in

u but does not depend on u, and εu is the utterance-dependent channel component.3

Specifically, εu is assumed to be Gaussian with zero mean and full covariance W , while

µ is a global offset (which should be zero after our pre-processing step), the columns

of V provide a basis for a speaker-specific subspace, and x is a latent speaker identity

vector that has a standard normal prior. The parameters {µ, V,W} can be estimated

from a large collection of labeled training data in maximum likelihood fashion using

an EM algorithm as described in [20]. Intuitively, we can view W as a within-speaker

covariance matrix and B = V V ∗ as the between-speaker covariance.

The task of determining whether two utterances – represented as i-vectors, w1, w2,

– share the same latent speaker identity can be restated as a hypothesis test between

HS, where both w1 and w2 share the same speaker identity, and HD, where the i-

vectors were generated from different identities. This amounts to the computation of

a log likelihood ratio (LLR), where

LLR(w1, w2) = log
P (w1, w2|HS)

P (w1|HD)P (w2|HD)
(2.10)

Conveniently, our Gaussian PLDA formulation above yields a closed-form solution

2We let the term “channel” encompass all the other variabilities that we don’t wish to model,
such as recording environment, speaker emotion, phonetic content, and even language identity.
Conversely, in the language recognition setting, the “channel” component might include speaker
identity.

3The version of PLDA presented in [20] assumes the channel component is c = Uz + εu, where
the columns of U provide a basis for a channel-specific subspace and εu has diagonal covariance; we
follow the simplification of [18, 19] to make c = εu, where εu is modeled with a full covariance, W .

39

for the computation of LLR’s. In particular,

LLR(w1, w2) = logN

([
w1

w2

]
;

[
µ

µ

]
,

[
Σ B

B Σ

])
− logN

([
w1

w2

]
;

[
µ

µ

]
,

[
Σ 0

0 Σ

])
,

(2.11)

where B = V V ∗ as above and Σ = B +W is the total data covariance. If we set the

global offset µ = 0, we can arrive at

LLR(w1, w2) = w∗1Qw1 + w∗2Qw2 + 2w∗1Pw2 + Z, (2.12)

where Z is some constant independent of w1, w2, and

Q = Σ−1 −
(
Σ−BΣ−1B

)−1
, (2.13)

P = Σ−1B
(
Σ−BΣ−1B

)−1
. (2.14)

The computation is straightforward and can be implemented even more quickly with

additional assumptions [18, 21].

For a speaker recognition evaluation, we compute the LLR for every necessary

pair of i-vectors and use these scores to measure system performance, which amounts

to two types of errors [2]:

• False acceptance / alarm (FA) – incorrectly believing that two utterances come

from the same speaker;

• False rejection, or Miss – incorrectly believing that two utterances come from

two separate speakers.

The frequency of these errors depend on the decision threshold. Higher thresholds

will yield fewer positive detections overall, thus reducing false alarms but also increas-

ing the number of misses. Conversely, lower thresholds will allow for more positive

detections, thus decreasing the number of misses while increasing the number of false

alarms.

When the National Institute of Standards and Technology (NIST) holds speaker

recognition evaluations (SREs), they define a Detection Cost Function (DCF) that is

a weighted sum of these FA and Miss rates. These weights correspond to costs, CFA

and CMiss, respectively, along with an a priori probability of same speaker trials, P=,

and different speaker trials, P 6=, all of which are specified by NIST depending on their

desired application context [2]. This yields a DCF defined as follows:

DCF = CFAP 6= ·RFA + CMissP= ·RMiss, (2.15)

40

where RFA and RMiss are rates of FA and Miss errors, respectively, on the test set.

While the value of the DCF depends on the value of the threshold, we typically sweep

across all possible threshold and report the MinDCF, which is the minimum value of

the DCF obtained across all thresholds. This value is the principal metric used in all

NIST SRE’s [22, 23].

Another summary metric to compare performance of speaker recognition systems

is the Equal Error Rate (EER), which represents the operating point at which the

FA rate is equal to the Miss rate. The EER tends to be slightly easier to understand

than the MinDCF; as such, our speaker recognition results in Chapters 3 and 4 will

be reported in terms of the EER.

2.5.2 Language Identification

In language recognition, we have been able to achieve consistent and robust perfor-

mance using the more traditional Linear Discriminant Analysis (LDA) – instead of

its probabilistic counterpart, PLDA, described above – followed by cosine scoring [13]

and an appropriate backend.

In order to better discriminate between classes, LDA looks to define a new or-

thogonal basis (rotation) within the feature space. In this case, different languages

correspond to different classes, and a new basis is sought to simultaneously maximize

the between-language variability while minimizing the within-language variability.

In the analogous explanation of PLDA for speaker recognition above, the between-

language covariance resembles B, while the within-language covariance resembles W .

The LDA basis is then defined by a projection matrix, A, composed of the eigenvectors

corresponding to the highest eigenvalues of the general equation

Bν = λWν, (2.16)

where λ is the diagonal matrix of eigenvalues. We train A using the training data

from all K target languages, which, in the case of the NIST LRE, typically ranges

between 20 and 24 different languages [24, 25].

We apply the LDA projection matrix, A, to our i-vector w and normalize the

result to unit length, yielding4

w̃ =
A∗w

‖A∗w‖
. (2.17)

We obtain a model i-vector, w̄k for each language k = 1, ..., K by assuming that

4In some systems, an additional Within-Class Covariance Normalization (WCCN) is also used
[13, 26], but because its effectiveness does not seem to generalize to all evaluations, our experiments
will not include WCCN.

41

languages can be modeled by a von Mises-Fisher distribution (vMF), which can be

seen as the analog of a Gaussian distribution on the unit sphere [27]. Sparing the

details of this distribution, it can be shown that the maximum likelihood estimate of

w̄k is

w̄k =

∑Nk

i=1 w̃
(k)
i

‖
∑Nk

j=1 w̃
(k)
j ‖

, (2.18)

where w̃
(k)
i is the ith i-vector in the kth language and Nk is the number of utterances

in that language. And finally, scoring, according to the von Mises-Fisher distribution,

merely reduces to a dot product between a test i-vector, w̃τ and the model:

score(τ, k) = w̃∗τ w̄k. (2.19)

At this point, we effectively have a K-dimensional score vector, sτ , for each test

utterance, τ . One naive approach to language identification would be to treat each

component of the score vector as though it were the likelihood of that particular lan-

guage and simply select the index of the largest component of sτ as our classification

decision. However, this fails to take into account prior probabilities of each language,

calibration issues, and other various relationships that may occur within the scores

themselves. Instead, these score vectors need to be calibrated via the use of an-

other multi-class probabilistic classifier on an additional, labeled, previously unused,

development set that can yield calibrated class likelihoods [3].

Lengthy discussions of backend calibration for language recognition using both

discriminative and generative techniques are given both in Chapter 5 of [3] and in

Chapters 3 and 4 of [28]. For a Gaussian backend, it largely comes down to three

main principles:

1. We assume that each score vector, sτ , is drawn from a single multivariate Gaus-

sian probability density corresponding to its target language.

2. During training, these Gaussian densities are estimated in maximum likelihood

fashion subject to various constraints. For example, we might assume that

all models in the score space share a common (possibly low-rank) within-class

covariance [28]. Other approaches have found success training these Gaussian

densities in discriminative fashion [13, 27].

3. During testing, the log-likelihood for each language is simply the log Gaussian

probability density of sτ , given the language. This yields a K-dimensional log-

likelihood vector `τ for test utterance, τ .

42

As we will see in Chapter 5, language recognition systems achieve improved per-

formance as a fused combination of multiple sub-systems. This fusion is typically

done via multi-class logistic regression across all sub-systems [27]. Let there be G

input recognizers such that the gth recognizer outputs a log-likelihood vector `
(g)
τ for

test utterance τ . Then the fused log-likelihood vector is

`′τ =
G∑
g=1

αg`
(g)
τ + β, (2.20)

where each αg, g = 1, ..., G, is a scalar, and β is a K-dimensional bias vector [28].

These fusion coefficients (α1, α2, ..., αG, β) can be estimated via the optimization of a

regularized multi-class cross entropy loss function [3]; we refer the interested reader

to [28] for a much more thorough exposition of this topic.

It is worth noting how far we have come since the i-vector representation of an

utterance. From the acoustic frames of test utterance τ = {y1, y2, ..., yL}, we have

obtained a raw i-vector wτ , applied LDA and length normalization to obtain w̃τ ,

scored against all language model i-vectors to obtain a score vector sτ , applied a

Gaussian backend to obtain a log likelihood vector `τ , which is then potentially fused

that with other sub-systems to obtain `′τ . And only now are we finally ready to

evaluate the output of a language recognition system!

While it is most intuitive to refer to language recognition as a closed-set identifi-

cation task, the evaluation metrics put forth by NIST treat the problem as a series

of verification tasks, in which the fundamental question is, “does test utterance τ be-

long to target language k?” In this way, we use false alarm rate, RFA, and miss rate,

RMiss, in a way similar to our evaluation of speaker recognition. The only difference

is that we express false alarm rate in the form of a language pair, RFA(kT , kN), which

is the rate at which some specific non-target language kN is mistaken for the target

language, kT . Under this paradigm, we obtain an average cost, Cavg, as

Cavg =
1

K

(
CMissPtarget ·

∑
kT

RMiss(kT) (2.21)

+
1

K − 1

(
CFAPnon-target ·

∑
kT

∑
kN 6=kT

RFA(kT , kN)

))
, (2.22)

where K is the number of target languages, kT and kN denote target and non-target

language, respectively. For the language recognition evaluations on which we report

our results, NIST sets the application-dependent costs for miss and false alarm errors,

respectively, to be CMiss = CFA = 1, and the probability of target and non-target

43

trials, respectively, are set at Ptarget = Pnon-target = 0.5 [24, 25]. Furthermore, we

obtain our miss and false alarm rates for Cavg assuming a fixed detection threshold

of 0 for all target languages; this is, in part, one reason why system calibration via

an appropriate backend is necessary.

2.6 Summary

This chapter has provided an overview of i-vectors as they are used for speaker and

language recognition. Broadly speaking, an utterance’s i-vector is a low dimensional

summary of that utterance’s distribution of acoustic features with respect to some

UBM. The estimation of hyper-parameters for i-vector extraction requires no speaker

or language labels; instead, these labels are used only at the scoring stage of the

process.

For speaker recognition, scoring is typically done using PLDA to compute a log

likelihood ratio between (i) the hypothesis that our two test utterances originate

from the same speaker and (ii) the hypothesis that our utterances come from dif-

ferent speakers. Evaluation of a speaker recognition system amounts to counting its

respective rates of false alarm and missed detections, and our experiments in Chapters

3 and 4 will report the equal error rate (the operating point at which RFA = RMiss)

as a summary metric.

In language recognition, our i-vectors undergo multiple transformations provided

by LDA, length normalization, dot product scoring, a Gaussian backend, and, option-

ally, system fusion. We go to these lengths to ensure a properly calibrated multi-class

classification system. Similar to speaker recognition, the evaluation of a language

recognition system involves a weighted average of false alarm rate and missed detec-

tion rate for each target language. Our experiments in Chapter 5 will report this

average cost, Cavg.

44

Chapter 3

Domain Adaptation for Speaker

Recognition

In this chapter,1 we consider the problem of domain adaptation for speaker recogni-

tion. While the speech signal in general conveys many levels of information – words

(speech recognition), language (language identification), speaker identity (speaker

recognition), and sentiment (emotion recognition), to name a few – the task of speaker

recognition is to simply ascertain a speaker’s identity independent of all that is being

said, the language spoken, and the speaker’s current emotional state [14]. Further-

more, because we operate under the assumption that every speaker has a unique vocal

identity, this task is not limited to the discrete confines of phonetic classes, the set of

the world’s languages, or the human construct of various emotions. In this way, we

reduce the problem of speaker modeling to that of modeling some continuous space

of speaker identity amidst the noisy and nuisance-filled space of recorded speech.

Over the past five years, results from the Speaker Recognition Evaluations (SRE)

put on by the National Institute of Standards and Technology (NIST) have progressed

towards real-world robustness and applicability in impressive fashion. One of the keys

to this success is the development of the i-vector approach discussed previously in

Chapter 2, a low-dimensional, vector-based representation of audio that easily allows

the use of large amounts of previously collected and labeled audio to characterize

and exploit speaker and channel (i.e., all non-speaker) variabilities [12]. In the SRE

scenario, data from thousands of speakers each making over 10 calls from at least 2

different handsets, collected in a consistent manner, has been readily available from

previous years. However, it is unrealistic to expect access to such large sets of labeled

data from matched conditions when deploying such a system to a new domain in the

1A portion of this work was previously published in [1]. Many thanks to my co-authors who
made this all possible.

45

real world.

To this end, we are faced with the problem of adapting the system so that it

can operate faithfully in this new domain. We further assume that some additional

in-domain examples can be made available, but access to expert knowledge is lim-

ited. In this chapter of the thesis, we describe a challenge task using SRE data that

demonstrates the effect of a subtle domain mismatch and design experiments that

allow for an empirical exploration of unsupervised domain adaptation techniques on

i-vector speaker recognition systems. The following section briefly reiterates the use

of prior data in an i-vector system and, while Section 3.2 describes an experiment

demonstrating the effect of a domain mismatch. We then outline a domain adapta-

tion challenge task for exploring techniques to mitigate performance degradations due

to such mismatch; this was one of the topics explored at the Johns Hopkins Univer-

sity (JHU), Center for Language and Speech Processing (CLSP) Summer Workshop

2013.2 Section 3.3 presents some initial experiments that attempt to quantify, at

least to some extent, the difference between the two domains in question and, to first

order, shed some insight on how the domain adaptation problem can be approached.

In Section 3.4, we propose our general experimental framework and describe how it

fits into an i-vector speaker recognition system. Section 3.5 outlines the various clus-

tering algorithms we explore, while in Section 3.6, we present our initial experiments,

results, and analysis. Section 3.7 surveys the work that followed our investigations

in [1], and finally, Section 3.8 summarizes this chapter and looks ahead to our subse-

quent exploration, which seeks to quantify exactly how many labels are necessary to

achieve high performance in speaker recognition.

3.1 Preliminaries

While an overview of the i-vector system and theory was provided in Chapter 2, it is

worth both reiterating which parts of the process require labeled and unlabeled data

and re-establishing notation. Figure 3-1 shows, once again, a simplified block diagram

of i-vector extraction and scoring. A speech utterance (e.g., one side of a telephone

call in SREs) is first represented by how its acoustic features (MFCC+deltas) are

distributed relative to a Universal Background Model (UBM), which is a Gaussian

mixture model (GMM) characterizing speaker-independent speech feature distribu-

tions. This representation consists of the zeroth-order (counts) and first-order (means)

sufficient statistics of the speech utterance. These sufficient statistics are then trans-

2In the literature, this task may also be referred to as the 2013 JHU CLSP Summer Workshop
Challenge.

46

Figure 3-1: High-level diagram of i-vector system showing all hyper-parameters and
which, respectively, require labeled and unlabeled data to train. (Taken from [1].)

formed into an i-vector, typically of 600 dimensions, using a total variability matrix

T . The i-vector is then whitened by subtracting a global mean, m, and scaling by the

inverse square root of a global covariance matrix, W , and then length-normalized to

unit length [18]. Finally, a scoring function between a model and test i-vector is com-

puted; this requires a within-class (WC) matrix, characterizing how i-vectors from

a single speaker vary, and an across class (AC) matrix, characterizing how i-vectors

between different speakers vary. The scoring function most often used is called Prob-

ablistic Linear Discriminant Analysis (PLDA) [18, 20], which we briefly covered in

Chapter 2.

Collectively, the UBM, T , W , m, WC, and AC are known as the system’s hyper-

parameters and must be trained before a system can enroll and/or score any data.

The UBM, T , W , and m represent general feature distributions and total variance of

statistics and i-vectors, so they only require unlabeled data for training. The WC and

AC matrices, however, require labeled data to learn within speaker (calls from the

same speaker) and across speaker (calls from different speakers) variabilities. While

all hyper-parameters are susceptible to mismatch, those requiring labeled data to

train are more difficult to handle.

3.2 The Domain Adaptation Challenge Task

When porting a system to a new domain, we are faced with three options:

(1) Assume the new domain data is sufficiently close to the data used to train the

hyper-parameters that the system will work well;

(2) Collect a large amount of unlabeled data from the new domain and adapt the

hyper-parameters using unsupervised techniques;

47

(3) Collect and label sufficient amounts of new domain data to allow re-training or

supervised adaptation of the hyper-parameters.

In this work, we will explore approaches to option (2). Another paper examines

approaches to option (3) using limited labeled data in a similar context [29].

Using Linguistic Data Consortium (LDC) telephone corpora, we have designed

an experiment that demonstrates the effect of data mismatch on hyper-parameters

and defines the challenge task on which we are working. In this experiment, we

use the telephone data from the 2010 NIST SRE (SRE10) as enroll and test sets.

Specifically, we are using the one conversation (1c) telephone data enroll and test

lists from condition 5 (normal vocal effort) [30, 22].

We designate two datasets to be used for hyper-parameter training:

• SRE – this consists of all telephone calls from all speakers taken from the SRE

04, 05, 06, and 08 collections. This will serve as the “matched” hyper-parameter

training list or in-domain data.

• SWB – this consists of all telephone calls from all the speakers taken from

switchboard-I and switchboard-II (all phases) corpora. This will serve as the

“mismatched” hyper-parameter training list or out-of-domain data.

In accordance with the NIST SRE protocol, the speakers present in these prior data

are explicitly disjoint from the speakers in SRE10 used to evaluate the system. Some

key statistics of the two data sets are given in Table 3.1, while Figure 3-2 shows a

histogram of the distribution of calls per speaker for both SWB and SRE.

Table 3.1: Summary statistics for the SRE and SWB training lists.
SRE SWB

spkrs (m, f) 3790 (1115, 2675) 3114 (1461, 1653)
calls 36470 33039
Avg. # calls/spkr 9.6 10.6
Avg. # phone-numbers/spkr 2.8 3.8

These two datasets appear very similar and the expectation is hyper-parameters

trained from these should produce similar results. However, the resulting equal error

rates (EER’s) in Table 3.2 clearly show a gap in performance on the SRE10 enroll/test

set when hyper-parameters are trained with the different sets.3 Similar performance

gaps were observed by other sites using independent i-vector implementations, indi-

cating that the performance gap is not a function of particular implementation details

(features, speech activity detection, hyper-parameter training algorithms, etc.).

3We provide our implementation details in Section 3.6.1.

48

Figure 3-2: Histogram comparing the respective distributions of calls per speaker in
both the SWB and SRE corpora.

Table 3.2: EER’s on SRE10 from hyper-parameters trained using the SWB or SRE
datasets, as specified.

UBM & T W & m WC & AC 1c EER (%)
1 SWB SWB SWB 6.92%
2 SWB SRE SWB 5.54%
3 SWB SRE SRE 2.30%
4 SRE SRE SRE 2.43%

In this work, we are primarily focused on how to effectively train or adapt the

hyper-parameters that depend on labeled data (WC, AC) when only unlabeled data

is available in the target domain. Of the hyper-parameters which do not depend

on labeled data – UBM, T , W , and m – it was found on this challenge set that

the difference in using SWB or SRE for UBM and T training was insignificant, but

using SRE (in-domain) data for training the whitening, W and m, gave a significant

improvement (compare rows 1 and 2 in Table 3.2) [29]. We will use the system

specified in row 2 of Table 3.2 as our starting out-of-domain baseline and the result in

row 3 as our desired in-domain benchmark. To avoid making this a data engineering

exercise, we restrict our system to only use the labeled SWB data and unlabeled SRE

data. The ultimate goal is to develop a recipe that can be applied in future situations

where only unlabeled data from a new domain is available.

49

3.3 Exploring the Domain Mismatch

Before attempting to compensate for the mismatch in performance between the SWB

and SRE corpora, we attempt to explain, anecdotally, some of the difference between

the two datasets. An analysis of respective age distributions and languages spoken

– SWB includes only English, while a small proportion of SRE also contains speech

from over 20 different languages – yielded no fruitful insights. This came as a surprise;

the work in [31] seemed to demonstrate that a discrepancy in languages spoken would

introduce a dataset shift. However, we did notice that using different subsets of SWB

produced different recognition results.

In particular, the entire SWB set can be broken down into six subsets that ap-

proximately correspond to their chronological release. Follow the labeling convention

of [32], these subsets are: SWPH0 (1992), SWPH1 (1996), SWPH2 (1997), SWPH3

(1997), SWCELLP1 (1999), and SWCELLP2 (2000). We observed initially that, upon

training a simple linear classifier to separate between the SRE and SWB i-vectors, the

subsets of SWB that shared the most overlap with the SRE data were SWCELLP1

and SWCELLP2, while those that were easiest to separate were SWPH0, SWPH1,

and SWPH2. Conversely, the 04, 05, 06, and 08 collections composing the SRE data

seem to be more homogenous and do not exhibit similar trends. One possible expla-

nation could be the difference between recorded cellular and landline telephone calls;

perhaps the progression of technology caused a systematic shift in the data.

In light of this, we ran another set of baseline experiments using the various

subsets of SWB in reverse chronological order. That is, we first use the labels from

just SWCELLP2 and SWCELLP1, which are the two most recent subsets of SWB.

Then we add in SWPH3, followed by SWPH2 and SWPH1, before finally including

SWPH0. These results are shown in Table 3.3. For these experiments, we only varied

the data used to train our WC & AC matrices; our UBM & T were always trained

using the entirety of SWB (all subsets), while W & m were obtained using all of SRE.

As such, row 4 of Table 3.3 displays exactly the same result as row 2 of Table 3.2,

which was obtained using all of SWB.

From these results, it becomes clear that the SWB data is not homogenous and

that there certainly exist subsets of our out-of-domain SWB data that are more

suited to the in-domain SRE data. Similar findings were reported in [33], where the

mismatch caused by different SWB subsets was compensated via a Nuisance Attribute

Projection (NAP) before applying PLDA. These observations also seem to support

the conjecture made above that the mismatch is, in part, driven by the progress in

telephone technology moving from landline to cellular. A more detailed analysis of

the meta-data, however, would be required before any more assertions can be made.

50

Table 3.3: EER’s on SRE10 using various subsets of SWB to train the WC & AC
hyper-parameters. Each of rows 2-4 implies the use of the SWB subset specified as
well as all the data in the rows above. Per Section 3.3, the UBM & T were trained
using all of SWB, while W & m were obtained from all of SRE.

WC & AC 1c EER (%)
1 SWCELLP1/2 4.67%
2 + SWPH3 3.51%
3 + SWPH1/2 4.85%
4 + SWPH0 5.54%

We ran two additional experiments to test whether the domain mismatch can be

overcome simply by selecting a subset of the out-of-domain SWB i-vectors for WC

& AC training in some clever way. This sort of a strategy is known more formally

in the literature as covariate shift adaptation and revolves around techniques such as

importance sampling or weighting [34, 35]. Our initial experiments described below

are not as sophisticated or well-developed, but we would like to point out that an

initial attempt at the covariate shift problem in the context of closed-set speaker

identification (i.e., as opposed to our problem of open-set speaker verification) was

done in [35] and demonstrated some improvement using the techniques developed

by [36, 37]. Some possible reasons why the work in [35] did not seem to achieve

more significant improvements, despite demonstrating significant gains on the tasks

evaluated in [36, 37], may have been due to their evaluating on a closed-set speaker

identification test set consisting of only ten speakers as well as their choice to identify

speakers using a mere 1.5 seconds of observed speech, which is orders of magnitude less

data than the 150 seconds of speech that we typically use to build speaker models for

our task. In light of this, an investigation of these methods under a more appropriate

context may be a fruitful avenue for further analysis. For example, it might be

interesting to model the progression of such a shift over time across the various SWB

subsets and try to extrapolate this effect on the SRE data.

Figure 3-3 shows the result of our first approach in blue, where the resulting

SRE10 EER is plotted as a function of the proportion, x, of SWB i-vectors that were

the closest in likelihood to the marginal distribution of the in-domain SRE i-vectors.

When x = 1.0, we are using all of SWB, so the result is, correspondingly, the same

as both row 4 of Table 3.3 and row 2 of Table 3.2. Similarly, in green is the set

of results obtained using the proportion, x, of SWB i-vectors that were closest to

the SRE i-vectors in a linear discriminant sense. That is, we trained a simple linear

classifier between the SWB and SRE corpora and used the subset of SWB i-vectors

whose scores were closest to those of the SRE i-vectors.

51

Figure 3-3: SRE10 results obtained using various subsets of the SWB data for WC &
AC.

The results shown in Figure 3-3 suggest that there exist ways in which we can

improve our baseline results by selecting, in unsupervised fashion, subsets of our

out-of-domain data to match our in-domain data as closely as possible. However, our

analysis is incomplete in two ways: (a) our methods for subset selection are still unable

to attain performance comparable to the 3.51% EER obtained using SWCELLP1/2

+ SWPH3 on row 2 of Table 3.3 and shown in red on Figure 3-3; and (b) we are still

unable to explain why this aforementioned subset of SWB is able to obtain such an

outstanding baseline result.

Upon implementing the domain adaptation framework outlined in Section 3.4, our

experimental results still demonstrate that using all of the SWB data for WC & AC

still provides the best speaker recognition performance. Indeed, despite the ability of

subset selection to improve the initial baseline, there really is “nothing better than

more data,” at least in this context. Thus, the rest of our work in this chapter will

not discern between different SWB subsets; we will use all of SWB as our labeled,

out-of-domain data.

3.4 General Framework and Initial Setup

We begin our work assuming the existence of an initial set of hyper-parameters and

a PLDA scoring function, as discussed in Chapter 2; exact implementational details

are consistent with our parallel work in [38] and can be found in Section 3.6.1. For

notational convenience, we will subsequently use Σ to refer to the WC matrix and Φ

52

to refer to the AC matrix. As such, our initial setup begins with ΣSWB and ΦSWB,

which we train using the labeled SWB data that are provided.

We propose the following approach to the domain adaptation problem:

(a) Use ΣSWB and ΦSWB to compute a pairwise affinity matrix, A, on the unlabeled

SRE data. Specifically, element Aij is the log likelihood ratio between the

hypothesis that i-vectors i and j are from the same speaker and the hypothesis

that they come from different speakers.

(b) Use A to obtain a hypothesized speaker clustering of the SRE data. A discussion

of different clustering algorithms will be covered in Section 3.5. These estimated

speaker clusters can then be used to obtain estimates of ΣSRE and ΦSRE, which

can be used in PLDA scoring for the final recognition task.

(c) However, instead of directly using ΣSRE and ΦSRE for recognition, we found

success in linearly interpolating between the prior (SWB) and new (SRE) co-

variance matrices to obtain the final hyper-parameters, ΣF and ΦF, as follows:

ΣF = αWC · ΣSRE + (1− αWC) · ΣSWB (3.1)

ΦF = αAC · ΦSRE + (1− αAC) · ΦSWB (3.2)

To simplify notation, we denote the set of parameters as α = {αAC, αWC}. Note that

setting α = 1 corresponds to ΣF = ΣSRE and ΦF = ΦSRE, or the hyper-parameters

obtained using only the hypothesized speaker labels obtained from clustering the

unlabeled SRE data. Conversely, setting α = 0 is equivalent to not using any of the

in-domain data; this yields the 5.54% EER shown on row 2 of Table 3.2.

Intuitively, we might expect that αAC should reflect the relative proportion of the

number of speakers between the SWB data and the subset of SRE data used, while

αWC should reflect the relative proportion of the number of utterances between the two

datasets. However, we will see in both Sections 3.6.3 and 3.6.5 that an independent

optimization of these parameters yield significantly better results (i.e., ≈ 10% relative

improvement) on the SRE10 evaluation. Section 3.6.3 will cover the results in more

detail, while Section 3.6.5 will discuss potential ways to ascertain optimal values of α

without the use of an oracle.

It should be noted that such an arbitrary weighting system may not be theoret-

ically justified; the sum ΣF + ΦF should equal the total variability of our i-vectors,

XXT , where X is a D×N matrix consisting of all N of our D-dimensional i-vectors

[39], but it does not. Nevertheless, in addition to observing improved performance,

53

we can interpret this linear combination as a form of maximum a posteriori (MAP)

adaptation with an associated set of relevance factors, α = {αAC, αWC} [4].

Lastly, another possibility is to iterate this procedure, where the ΣF and ΦF ob-

tained in step (c) respectively replace the ΣSWB and ΦSWB of step (a) and the process

is repeated until some form of convergence criterion is met, after which we proceed to

the final recognition task. We observed from some pilot experiments that, assuming

a reasonable choice of clustering algorithm in step (b), iterating can have a positive

impact on both clustering and recognition performance, but its effect is quite small.

Results tended to converge within just a few (≤ 5) iterations, so it is a relatively

inexpensive modification that might be useful to explore in future work.

We should point out that this framework follows what [9] calls the “standard ap-

proach” to domain adaptation, where our out-of-domain data are treated as “prior

knowledge” and maximum a posteriori values are estimated for the model parame-

ters given the unlabeled in-domain data [40]. We initially coined this a “bootstrap”

method based on the discussion in [41] on semi-supervised algorithms. While this ap-

proach has been successfully applied to language modeling, parsing and other problem

domains in addition to ours [9],4 we realize that there are other solutions to domain

adaptation that can be applied in our scenario for potentially improved and more

generalizable results [43, 44, 45]. For the purposes of this thesis and for the sake

of presenting an effective initial solution to our version of the domain adaptation

problem, however, we proceed with the approach just described.

3.5 Clustering Algorithms

Our experiments focus on the subset of algorithms that proved to be the most effective

and practical from our previous work on large-scale speaker clustering [46]. Each of

the algorithms explored is designed to work given only a (potentially sparse) pairwise

affinity matrix, A.5 That is, we need not go back to the raw data (i-vectors); simply

knowing the pairwise relationships between them will suffice.

In our earlier work [46], we found success using agglomerative hierarchical cluster-

ing and various random walk-based clustering algorithms. Both Infomap and Markov

Clustering (MCL) are explained in [47] and [48], respectively; we cover their essen-

4In fact, it was admitted in [42] that this “standard approach” tends to perform only slightly
worse than the significantly more complex approach proposed in [9]. However, we also realize, from
[41], that performance could potentially degrade even further if assumptions about the unlabeled
data are not met.

5As described in step (a) of Section 3.4, Aij would correspond to the log likelihood ratio between
the hypothesis that i-vectors i and j are from the same speaker and the hypothesis that they come
from different speakers.

54

tials in the following subsections. In the random walk setting, each i-vector can be

thought of as a node on a large graph, and each edge is weighted according to the

affinity between the two associated i-vectors.

3.5.1 Agglomerative Hierarchical Clustering

The well-known and widely-used agglomerative hierarchical clustering (AHC) is a sim-

ple and greedy algorithm that works in bottom-up fashion, initializing each i-vector

as its own cluster and iteratively merging two clusters at a time via some cluster-

similarity metric until some stopping criterion (e.g., BIC [49], maximum distance

[50], number of clusters [46], etc.) is met [51]. In our implementation, the number of

clusters is provided as an input; Section 3.6.4 discusses how that stopping criterion

can be estimated automatically. In choosing a cluster-similarity metric, we follow

our previous work in [46] and use the unweighted pair group method with arithmetic

mean (UPGMA) [52] as a measure of similarity between two clusters. In particular,

if we let X and Y be distinct clusters, let x ∈ X and y ∈ Y , and let d(x, y) represent

some distance measure between two elements x and y (e.g., −Axy from our pairwise

affinity matrix), then the distance between clusters X and Y would be

D(X ,Y) =
1

|X | · |Y|
∑
x∈X

∑
y∈Y

d(x, y). (3.3)

We also considered representing a newly merged cluster as the mean of all of the

i-vectors in question,6 but this would have been more expensive both in terms of

computation and memory requirements. Re-computing the pairwise PLDA log like-

lihoods between the new cluster i-vector and all other clusters also requires that all

other i-vectors be accessed repeatedly. Experiments run using this flavor of AHC are

discussed more extensively in [38]; our experiments will demonstrate the suitability

of UPGMA as a cluster-similarity metric.

3.5.2 Markov Clustering

As summarized in [53], Markov Clustering (MCL) converts a pairwise affinity matrix

to a stochastic matrix by dividing the elements of each row by their sum and then

iterates between the following two steps. During expansion, we compute an integer

power of this matrix (usually a square), which yields the probability matrix of a

random walk after that number of steps (e.g., 2). During inflation, each element

6One could even imagine extracting a new “cluster” i-vector altogether from the original utter-
ances in the cluster.

55

of the matrix is raised to some power, α, artificially enhancing the probability of a

random walker being trapped within a community. These steps are iterated until the

stochastic matrix reaches a fixed point; the components of the resulting “forest” (i.e.,

disconnected clusters) are our discovered communities. By solely iterating on the

stochastic matrix, this method satisfies the Markov property, and we obtain clusters

of separated communities upon convergence. We run this algorithm according to the

implementation provided by [48] using the default settings for the parameter α = 2.

3.5.3 Infomap

The problem of finding the best cluster structure of a graph can be seen as the

problem of optimally compressing its associated random walk sequence [47]. The

goal of Infomap is to arrive at a two-level description that exploits both the network’s

structure and the fact that a random walker is statistically likely to spend long periods

of time within certain clusters of nodes. More specifically, we look for a module

partition M (i.e., set of cluster assignments) of N nodes into m clusters that minimizes

the following expected description length of a single step in a random walk on the

graph:

L(M) = qyH(Q) +
m∑
i=1

pi�H(P i). (3.4)

This equation comprises two terms: first is the entropy of the movement between

clusters, and second is the entropy of movements within clusters, both of which are

weighted respectively by the frequency with which it occurs in the particular parti-

tioning. Here, qy is the probability that the random walk switches clusters on any

given step, and H(Q) is the entropy of the top-level clusters. Similarly, H(P i) is

the entropy of the within-cluster movements and pi� is the fraction of within-cluster

movements that occur in cluster i.

Ultimately, Eqn. (3.4) serves as a criterion for a bottom-up agglomerative clus-

tering search. The implementation provided by [47] uses Eqn. (3.4) to repeatedly

merge the two clusters that give the largest decrease in description length until further

merging gives an increase. Results are further refined using a simulated annealing ap-

proach, the specifics of which can be found in [47]. Our work in this paper, however,

did not use this algorithm according to the exact implementation from [47]; rather,

we used the modified version detailed in the following section.

56

Infomap-λ

Although the original formulation of Infomap in [47] involves no tuneable parame-

ters except for the scale and sparsity of the affinity matrix provided as input, the

minimization criterion presented in Eqn. (3.4) implicitly assigns equal weight to

the between-cluster and within-cluster entropies. As such, we introduce a tuneable

parameter, λ, into the equation as follows [46]:

L(M) = qyH(Q) + λ

m∑
i=1

pi�H(P i). (3.5)

The original Infomap corresponds to λ = 1. Letting λ → ∞ increases our relative

sensitivity to within-cluster entropy and yields more clusters that are smaller in size.

Conversely, letting λ → 0 favors larger and fewer clusters. In our previous work

using the SRE data [46], we consistently obtained improved results using λ > 1 and

achieved our best result using λ = 1.5. Even though this implies the use of prior

knowledge, we run our experiments with λ = 1.5 to present an upper bound on our

system performance.

3.5.4 Local Node Refinements

In agreement with our previous observations in [46], all of the methods just discussed

worked well assuming some reasonable choice of a sparse graph (i.e., affinity matrix).

As such, we implemented a local node pruning algorithm to automatically sparsify

the affinity matrix [46].

Figure 3-4: Example histogram of within- and between-speaker score distributions for
one particular node, as well as the cutoff thresholds discussed in Section 3.5.4.

57

Figure 3-4 shows the distribution of the top 100 PLDA log likelihoods between an

arbitrary utterance A produced by speaker sA and the rest of the utterances in the

data. These scores are separated into two different histograms: red “within-speaker”

scores and blue “between-speaker” scores. The combined score distribution, including

both within- and between-speaker scores, which is what the clustering algorithms see,

has a right skew. Assuming, per the speaker recognition literature, that both within-

and between-speaker scores can be modeled using respective Gaussian distributions

[4], we can use simple measures of symmetry and kurtosis to arrive at the following

heuristic to prune away between-speaker edges.

Let ZA denote the combined distribution of scores for some node A. We keep

the subset of scores Z+
A , or edges, that are greater than some threshold θmm (i.e.,

Z+
A = {z ∈ ZA|z > θmm}), where θmm is the largest value such that for the subset

of scores Z−A = {z ∈ ZA|z ≤ θmm}, mean(Z−A) ≤ median(Z−A). This method assumes

that the mean should be greater than the median in a combined score distribution with

a right skew, but without the tail of within-speaker scores, the remaining between-

speaker score distribution should be symmetric.

Taking the assumption of between-speaker score Gaussianity a step further, we

introduce kurtosis into our local-node pruning. In this case, we choose θkurt to be the

largest score value such that kurtosis(Z−A) ≤ 3, where 3 is the kurtosis of a normal

distribution. Figure 3-4 shows the cutoff found by kurtosis in magenta, as well as the

cutoff, in green, found by the mean-median method above.

In our implementation of this heuristic, we take our full affinity matrix, consisting

of all the pairwise PLDA log likelihoods between all of the i-vectors in the data, and

sparsify it such that only the top 100 scores for each row (i.e., utterance) have non-

zero entries, thus turning it into a 100-nearest neighbors graph. Then, for each row

of the sparse matrix, we use the threshold θ̃ = max {θmm, θkurt}. An edge was pruned

away if either node in the edge-pair deemed the connection unnecessary.

3.6 Experiments and Results

3.6.1 i-vector System Implementation

In this section, we give an overview of the i-vector system implementation used in our

experiments. Both the UBM, which is a Gaussian mixture model (GMM) character-

izing speaker-independent speech feature distributions [4], and the total variability

matrix, T [12], were trained using just SWB. Before obtaining any PLDA hyper-

parameters for either SWB or SRE, we obtain a whitening transform (global mean

58

subtraction and scaling by the inverse square root of the global covariance matrix, W)

from just the unlabeled SRE data;7 note that whitening is an unsupervised procedure

and does not require any speaker labels [18]. This whitening transform is applied to

both the i-vectors from the SWB and SRE, and finally, all the i-vectors are length-

normalized to unit length. The initial PLDA hyperparameters, ΦSWB and ΣSWB, are

then obtained using the speaker labels from SWB and their respective pre-processed

i-vectors. From here, we can proceed to the approach outlined in Section 3.4.

3.6.2 Evaluating Cluster Error

In our initial experiments, we examine “speaker confusion error” as a metric to mea-

sure clustering performance in addition to the more standard measures of average

cluster purity and average speaker fragmentation. We also show plots of the speaker

confusion error in Figures 3-5 and 3-6. Admittedly, there exist a number of differ-

ent metrics for evaluating cluster quality, including Precision and Recall, Normalized

Mutual Information, F-score, B-cubed, et cetera [54]. We describe the one we chose

below, which met our desire for a single number that summarizes the essential aspects

of precision, recall, cluster confusion and purity and allows us to seamlessly compare

performance across all algorithms and their parameters.

Let our r hypothesized clusters be indexed by i and our s true clusters be in-

dexed by j. We evaluate our clustering output by considering all possible alignments

that assign each hypothesized cluster i to exactly one true cluster j. Given such

an alignment, say i ↔ j, we define cluster error as the number of elements in hy-

pothesized cluster i whose true cluster is not actually j. Furthermore, any of the

|r− s| extra hypothesized or true clusters that did not receive an assignment are also

counted as errors. Every possible alignment is considered, and the alignment that

provides the smallest clustering error is used. In enforcing a one-to-one assignment

of hypothesized-to-true clusters, we are able to summarize both the precision and

recall of our clustering output. The procedure described above is equivalent to the

evaluation procedure of “speaker confusion error” in the NIST Speaker Diarization

task [55].

3.6.3 Initial Results and Observations

The results from our initial experiments are shown in rows 1-3 of Table 3.4. Instead

of simply obtaining ΣSRE and ΦSRE by clustering just once on the entire SRE dataset,

we strove to attain some form of statistical significance by randomly sampling just

7The only time we used SWB data for whitening was to obtain the results in row 1 of Table 3.2.

59

Table 3.4: Results from initial experiments in domain adaptation. Clustering perfor-
mance was evaluated using labels from the SRE data; recognition performance (EER’s)
is reported for the 1c task in SRE10. Section 3.6.3 explains rows 1-3; Section 3.6.4
discusses rows 5-6.

Spkrs # Clstrs Clustering Performance

K K̂ Confusion Purity Frag.
1 AHC 1000 1000∗ 7.4% 94.9% 1.20
2 Infomap-λ — 918 18.2% 85.9% 1.44
3 MCL — 997 15.1% 90.3% 1.45
4
5 Infomap+AHC 1000 918 9.0% 92.6% 1.19
6 MCL+AHC — 997 7.5% 94.9% 1.20

α∗ EER (%) α = 1 EER (%)
Perfect Hyp. Gap Perfect Hyp. Gap
1 AHC 2.37 2.55 7.8% 2.77 3.16 14%
2 Infomap-λ — 2.71 14% — 3.45 25%
3 MCL — 2.68 13% — 3.40 23%
4
5 Infomap+AHC 2.37 2.56 8.2% 2.77 3.18 15%
6 MCL+AHC — 2.56 8.0% — 3.16 14%

a subset of the SRE data ten different times. For each sample, we randomly select

K = 1000 speakers, cluster all their utterances using the various algorithms described

previously in Section 3.5, and then obtain the corresponding hyper-parameters for the

speaker recognition task. Rows 1-3 of Table 3.4 show our results averaged over ten

such trials.

For each clustering algorithm described previously in Section 3.5, we report the

following measures of clustering performance: number of speakers estimated (K̂),

cluster confusion error as detailed in Section and implemented in the evaluation of

“speaker confusion error” in NIST Speaker Diarization scoring script [55], average

cluster purity (ACP), and average speaker fragmentation (ASF). A given cluster’s

purity is the maximal proportion of that cluster that is represented by a single speaker;

ACP is simply the mean purity computed over all clusters.8 We define ASF as the

average number of clusters used to represent all utterances of a single speaker.9

For recognition performance, we present the EER’s obtained using the following

configurations for α:

8Trivially, an ACP = 1 can be obtained when all clusters contain exactly one element.
9Conversely, an ASF = 1 can be achieved trivially if all elements are grouped into one single

cluster.

60

α = 0 EER – the SRE10 performance of the hyper-parameters obtained using only

the labeled SWB data; i.e., ΣF = ΣSWB and ΦF = ΦSWB. Independent of

clustering, this result was reported on row 1 of Table 3.2: 5.54% EER.

α = 1 EER – the SRE10 performance of hyper-parameters trained using only the

hypothesized speaker labels obtained from clustering on the unlabeled SRE

data; i.e., ΣF = ΣSRE and ΦF = ΦSRE.

α∗ EER – the best SRE10 performance obtained from hyper-parameters trained using

both the hypothesized speaker labels obtained from clustering on SRE and

combined (via some α) with the hyper-parameters from the labeled SWB data,

as represented in Eqns. (3.1) and (3.2). In this scenario, we report the best

result obtained for α ∈ [0, 1] × [0, 1], where for simplicity we sample the space

in intervals of 0.2.

In addition to reporting the results from our hypothesized (Hyp.) clusters, we

also show the results of a perfect clustering, which is the SRE10 performance using

hyper-parameters obtained from the use of exact speaker labels and the selection of

the optimal values for α∗. Since we only use sampled subsets of the SRE data in this

experiment, this result represents the best we can do. Admittedly, the “α∗ EER”

is an oracle-based experiment that assumes knowledge of some best-case scenario.

We report our results this way so as to establish performance bounds in a controlled

environment.

The results from our initial experiments are shown in rows 1-3 of Table 3.4. Instead

of simply obtaining ΣSRE and ΦSRE by clustering just once on the entire SRE dataset,

we strove to attain some form of statistical significance by sampling just a subset of

the SRE data ten different times. For each sample, we randomly select all utterances

from K = 1000 out of the original 3790 speakers, cluster all their utterances using

the various algorithms described in Section 3.5, and then obtain the corresponding

hyper-parameters for the speaker recognition task.

We can see that AHC provides the best clustering and recognition results by

a significant margin. Yet, despite a rather wide range of clustering performances,

the resulting range in speaker recognition performance is not nearly as dramatic.

This could be specific to the SWB and SRE datasets; we know that the EER is

upper-bounded at 5.5% using just the SWB hyper-parameters. When α = 1, a

better clustering algorithm yields better recognition results; however, the impact of

clustering on recognition performance is attenuated by the presence of adaptation

(i.e., when α ∈ (0, 1)× (0, 1)).

61

Figure 3-5 shows a summary of AHC clustering and subsequent recognition results

as we vary the number of speakers sampled from the SRE data. The top plot shows,

in red and green lines respectively, the α∗ EER and α = 1 EER, while the results

obtained via hypothesized versus perfect clusters are denoted by dash-dotted and

solid lines, respectively. In black is the α = 0 EER line, while the blue line, whose

corresponding y-axis is on the right side of the plot, denotes cluster confusion error.

Despite cluster error increasing as we sample larger and larger speaker subsets, we

can see that EER’s on speaker recognition continue to decrease, although the rate of

decline seems to slow after 2500 speakers.

The values of α∗ given perfect clusters may be different from the values of α∗ under

the hypothesized clusters. In our experiments, we observed that α∗WC for hypothesized

clusters was consistently similar to α∗WC for perfect clusters. However, the bottom

plot of Figure 3-5 shows that the difference between α∗AC for hypothesized (red) and

perfect (blue) clusters increases with the number of speakers sampled. For reference,

we also plot the value of α̂AC (black), which is the value that reflects the relative

proportion of the number of speakers between the SRE data used and the SWB data.

While values for α∗WC ∈ [0.4, 0.8] for the most part, we see that α∗AC ∈ [0.2, 0.6]. This

may suggest that adapting to the SRE WC matrix is of higher relative importance

than adapting to the SRE AC matrix.

From rows 1-3 of Table 3.4, it is clear that AHC, when given the number of

speakers, provides the best clustering and recognition results. Nevertheless, Infomap

and MCL are able to do a reasonable job in detecting the number of speakers, which

we did not explicitly explore with AHC. Instead, we could simply consider running

MCL or Infomap to obtain an estimate of the number of speakers, K̂, and use that

estimate as an input to the AHC algorithm. This brings to bear the question of how

robust AHC is to error in estimating the number of speakers. In particular, if either

MCL or Infomap provides an imperfect estimate of the number of speakers as input

to AHC, how much does that affect subsequent recognition results?

3.6.4 Effect of Cluster Number on Recognition Performance

Figure 3-6 shows the result of stopping AHC at varying numbers of clusters. These

results are averaged over ten random draws of 1000 speakers, and α∗ is optimized as

previously discussed. The plot of cluster confusion error, in blue, is scaled according

to the y-axis on the right and shows that clustering performance is best when AHC is

provided a number of clusters equal to the number of speakers present. Yet, consid-

ering recognition performance alone, we can see that the resulting EER is relatively

robust to stopping AHC at incorrect numbers of clusters. That is, we can actually

62

Figure 3-5: Summary of clustering (AHC) and recognition (SRE10) results as a func-
tion of the number of speakers sampled from the SRE data. In the top plot, the blue
line for Cluster Error is plotted according to the y-axis show on the right; all other
lines are plotted according to the y-axis on the left.

provide AHC with a significant underestimate of the number of speakers and still do

fairly well on the SRE10. Additional experiments are necessary to better understand

this phenomenon; in particular, an underestimate seems more forgiving than an over-

estimate, which implies the somewhat counterintuitive idea that modeling multiple

speakers as one cluster is acceptable. One possible explanation is that an overestimate

of the number of speakers will lead to an underestimate of the actual WC matrix,

while conversely, an underestimate of the number of speakers allows the resulting WC

matrix to model additional uncertainty that is somehow necessary and beneficial for

speaker recognition. For now, we leave this as an open thread for further analysis in

future work.

In rows 5-6 of Table 3.4, we show the results of using Infomap and MCL to

63

Figure 3-6: Effect of stopping AHC at varying numbers of clusters, averaged over ten
random draws of 1000 speakers each. Dash-dotted and solid lines correspond to results
using hypothesized and perfect clusters, respectively. The blue line for Cluster Error is
plotted according to the y-axis show on the right; all other lines are plotted according
to the y-axis on the left. A more detailed explanation can be found in Section 3.6.4.

estimate the number of speakers and taking that estimate as an input to AHC for

clustering and recognition. We can see that both random walk algorithms are able to

provide a reasonable estimate of the number of speakers, and the resulting recognition

performance is just about as good as the case in which AHC is given the exact number

of speakers (row 1). This is expected, as subsequent partitions produced at each step

of AHC differ only by a single cluster merge and thus yield only small changes in

cluster error. But more significantly, the gap in recognition performance between

knowing and not knowing a priori the number of speakers in the unlabeled SRE

is effectively nil. Indeed, when final recognition performance is the main priority,

obtaining an exact estimate of the number of speakers may, in fact, be unnecessary.

As a final experiment, we run our proposed adaptation procedure on the full

SRE data, using Infomap and MCL to estimate the number of speakers for input

to AHC. Table 3.5 shows our final results, which were obtained with α∗AC = 0.4

and α∗WC = 0.8. Note how Infomap+AHC severely underestimates the number of

speakers – thus obtaining the worst clustering performance of the three algorithms

– but manages to attain recognition performance that is at least as good as when

AHC is given the correct number of clusters. We hope to better understand this

64

phenomenon in future work.

Table 3.5: SRE10 results obtained using the entire unlabeled SRE dataset and optimal
hyper-parameter adaptation, with α∗AC = 0.4 and α∗WC = 0.8. It should be noted that
the 2.23% EER given a perfect clustering is different from the 1c EER of 2.30%
shown in row 3 of Table 3.2 because of the adaptation with SWB hyper-parameters.
The latter result is obtained with no adaptation, or α∗AC = α∗WC = 1.

K̂ Perfect Hypothesized Gap (%)
AHC 3790* 2.23 2.58 16%

Infomap+AHC 3196 — 2.53 13%
MCL+AHC 3971 — 2.61 17%

3.6.5 Automatic Estimation of Adaptation Parameters

In this section, we examine the issue of automatically determining optimal values for

α = {αAC, αWC}. Figure 3-7 shows the result of independently optimizing both αAC

and αWC, averaged over ten sampled subsets of 1000 speakers; the color scaling is

shown to the right of each subplot, and blue indicates a relatively low EER, while

red indicates a relatively high EER. The plot on the left suggests that there is a

reasonably wide range of possible values for α that yield EER’s less than 3%; this

fact is consistent for sampled subsets that contain different numbers of speakers as

well (e.g., 500, 1500, 2000, etc.). The heatmap on the right, in which the color scaling

is limited to only the values that are within 10% of the optimal EER of 2.55% shown

on the left, further confirms this notion. It seems as though we can obtain sufficiently

good results simply by erring on the low side (i.e., [0, 0.4]) in our estimate of αAC

and using a moderate value of αWC (i.e., [0.4, 0.8]). More experiments are needed to

better understand this phenomenon and how it might generalize to other datasets,

but this does seem to reflect our finding in previous sections that adapting to the SRE

WC matrix is of higher relative importance than adapting to the SRE AC matrix. A

parallel study on supervised domain adaptation reported a similar finding [29]. All of

this suggests, perhaps, that the global space of speakers (modeled by the AC matrix)

may be sufficiently well-represented in both the SRE and the SWB data; however,

we need to find good ways to adapt our within-speaker modeling (WC matrix) to

changes in the telephone recording channel over time.

65

Figure 3-7: Heatmaps showing the result of independently optimizing the adaptation
parameters, α. Both plots involve the same raw data but different color scalings to
illustrate the range of α that is appropriate for domain adaptation.

3.7 Follow-up Work

Since our work on the task [1], a number of other approaches have achieved success

on the domain adaptation task. The work in [56] extends our initial explorations in

Section 3.3 and proposes a dynamic approach to data whitening that yields improve-

ments without the need for any in-domain data, labeled or unlabeled, whatsoever.

The work in [57] managed to obtain a more robust acoustic feature representation us-

ing a deep neural network trained from transcribed English. These features improved

performance on all fronts: using hyperparameters trained on out-of-domain data,

[57] managed to achieve speaker recognition performance similar to our proposed

clustering methods without employing any explicit method for domain adaptation.

Furthermore, using in-domain data to train their hyperparameters yielded a new

state-of-the-art benchmark. We surmise that a combination of the clustering meth-

ods proposed in this chapter and the improved feature representation from [57] might

yield even further performance gains. Our work in Chapter 5 proposes a method to

extend the work of [57] and obtain a similarly effective feature representation without

the need for any transcribed speech.

3.8 Summary

In this chapter, we motivate and define the domain adaptation challenge task for

speaker recognition, in which both in-domain and out-of-domain data are available

66

for system development, but labels are provided only for the mismatched, out-of-

domain data. Our initial investigations into the cause of this mismatch seem to point

towards the progression of telephone technology moving from landline to cellular. We

propose an approach to overcome this mismatch that combines both agglomerative

and graph clustering techniques to adapt our out-of-domain hyperparameters to fit

the unlabeled, in-domain data. Results from our experiments suggest that both an im-

perfect clustering and an imprecise estimate of the number of speakers are forgivable

in the presence of adaptation with out-of-domain hyperparameters. And although

the optimal selection of their values remains an open question, we are able to obtain

reasonable results from a wide range of adaptation parameter values. Ultimately, our

final system obtains speaker recognition performance that is within 15% of a system

that has access to all speaker labels.

In the following chapter, we consider a slightly different paradigm that no longer

requires our system to passively contend with unlabeled, in-domain data in unsuper-

vised fashion. Instead, we consider the scenario in which our system begins with no

labeled data whatsoever, but has the ability to actively ask for information about

particular examples. This moves us towards a semi-supervised and, more specifically,

active learning approach to speaker recognition.

67

68

Chapter 4

Towards Active Learning for

Speaker Recognition

The work we just discussed in Chapter 3 explored domain adaptation techniques

that utilized, in an unsupervised manner, a set of matched, but unlabeled, data to

supplement an existing system trained from labeled, but mismatched, data [1, 38].

Related work has also explored domain adaptation in the fully supervised sense [29].

While both scenarios are relevant, the actual deployment of a speaker recognition

system into the real world is unlikely to warrant such extreme circumstances.

Obtaining a complete and exhaustive labeling of a set of N unlabeled utterances

would require, in the worst case, N ·(N−1)
2

pairwise comparisons, but rather than de-

prive ourselves of any labels whatsoever as in the fully unsupervised case, perhaps

we can obtain useful information from the expert labeling of some small fraction of

these utterances. In this chapter,1 we attempt to quantify how many labels are actu-

ally necessary to obtain state-of-the-art performance. We consider a scenario similar

to the one considered in [1, 29, 38] in which we are provided with a vast quantity of

matched, but completely unlabeled, data and are asked to build a speaker recognition

system for subsequent audio.

To focus solely on the effect of limited labels, we remove the notion of mismatched

domains – as in the domain adaptation problem previously explored – and assume

that the unlabeled data at our disposal sufficiently matches the conditions in which we

evaluate our speaker recognition system. Indeed, the existence of a previous system

should only further reduce the number of expert labels required to obtain optimal

performance, but we hope to keep things simple and not belabor our explorations

with the implementation details of previous work on domain adaptation. Finally,

1A portion of this work was previously published in [58].

69

to simulate the presence of expert labeling, we query an oracle for the answers to

pairwise comparisons, such as, “Do utterances A and B contain the same speaker?”

4.1 Related Work

The setup of this problem moves us into the realm of semi-supervised and, more

specifically, active learning, in which the system we build is allowed to ask for input

and supervision on a limited number of specific examples [11]. We design our ora-

cle setup to operate like humans might; in particular, a human asked to separate N

utterances into homogeneous speaker clusters would likely break the problem down

into a set of pairwise comparisons. This setup also provides a framework for a poten-

tially crowd-supervised [7, 59] speaker recognition system, which we plan to pursue

as future work.

For now, we consider a set of N unlabeled utterances and allow our system to ask

for additional information in the form of pairwise comparisons. These comparisons

yield a set of pairwise constraints that can be used to help in our process of active,

semi-supervised clustering, which was formally developed into a variant of the general

K-means algorithm in [60]. Our work utilizes a much more primitive connected-

components algorithm that does not require an estimate of the number of clusters,

K.

The movement towards requiring less labeled data to build a speaker recognition

system has been explored in the past. The saga of work in [61, 62] managed to obtain

solid results without the use of any labeled data. Based on previous work in speaker

diarization, they utilize an unsupervised clustering technique resembling a K-means

algorithm that also estimates the number of clusters via a heuristic that re-assigns

the elements of small clusters to larger ones. We adapted their methods to our setup

(i.e., from supervectors to i-vectors) and were able to obtain clusters of comparable

purity, but we were unable to produce an estimate of the number of speakers that was

as accurate as reported in [61]. As we continue to explore their methods, we reserve

for future work a more in-depth consideration of unsupervised methods for speaker

recognition. But in accordance with the theme of this thesis, we continue to allow

the use of labels, albeit as few as possible.

The rest of this chapter is organized as follows. We begin with an elementary

theoretical overview in Section 4.2 that will set the expectations for our experimental

results. Section 4.3 presents an overview of our system setup. Then Section 4.4 both

outlines a naive initial algorithm that queries pairwise labels based on a nearest-

neighbor approach and discusses its initial results. We propose techniques to further

70

minimize the number of queries needed in Section 4.5, and finally, Sections 4.6 and

4.7 conclude with a discussion of potential avenues for future work.

4.2 Expectations on Sample Complexity

Consider a setting in which we are provided a set of N utterances for which speaker

labels are unknown or unavailable. Asking humans to provide a complete and exhaus-

tive labeling of this set of utterances would require O(N2) pairwise comparisons, in

which each comparison would involve two utterances, uA, uB, and the provided label

c(uA, uB) ∈ {1,−1}, corresponding to “same” or “different” speakers, respectively.

The setup of our problem can thus be re-framed as the problem of learning a binary

classifier from a set of O(N2) training examples, where each training example, x,

is feature vector constructed by stacking a pair of i-vectors; i.e., x = [w∗A w
∗
B]∗. As

it does not change the result of this analysis, we ignore for now the fact that the

structure of this setup can be further exploited with the knowledge that the labeling

of c(x) = c(x′), where x′ = [w∗B w∗A]∗. Along similar lines, the work in [63] achieved

competitive speaker recognition performance learning SVM classifiers from stacked

i-vector pairs; for the sake of consistency within this thesis, we will continue scoring

speaker similarity using PLDA.

In the passive learning setting under probably approximately correct (PAC) model

assumptions [64], we know that the number of labeled examples required for a classifier

to achieve at most ε error is, ignoring other factors, O(1
ε
). If a system is given control

over which training examples it would like to have labeled, however, the active learning

literature [65, 66] has shown, under fairly reasonable assumptions, that the same

performance can be achieved using just O(log 1
ε
) labels.

In our evaluation framework, if we let the speaker recognition performance (in the

EER sense) serve as a proxy for the ε error produced by our classifier, we should ex-

pect our active learning-based system to achieve performance (EER) that exhibits

exponential decay as we increase the number of labeled examples, L, used; i.e.,

EER(L) ∝ e−τL, where τ > 0. Our experiments will provide evidence to this claim,

and our proposed methods will explore ways to increase the effective value of τ and

quicken the exponential decay of our EER.

4.3 System Setup

We follow a similar setup to those presented in [1, 29, 38] and extract i-vectors

[12] from a total variability matrix T of rank 600 and a gender-independent Uni-

71

versal Background Model containing 2048 Gaussian mixtures of acoustic features

(MFCC+deltas). A more detailed background on how these hyper-parameters are

obtained was covered in Chapter 2 and can also be found in [12, 67, 68].

Just like in our work on domain adaptation described in Chapter 3, we use the

data from the NIST Speaker Recognition Evaluations (SRE) of previous years (2004-

2008) to train these hyper-parameters. These telephone calls contain roughly 3800

unique speakers (1100 male, 2700 female) and 33,000 phone calls. The average number

of calls per speaker is roughly 8.7, and each speaker is represented by 2.8 different

phone numbers. While our work in the previous chapter also used data from all

phases of Switchboard to train the hyper-parameters [1], this work is focused more

on the use of limited labels than the issue of mismatched domains, so we focus only

on the SRE data. Our performance evaluation is conducted on the one conversation

(1c) telephone data from condition 5 (normal vocal effort) of the SRE 2010 (SRE10)

[30, 22].2

To reiterate from Chapter 2, the training of these hyper-parameters does not

require any labels; these initial i-vectors contain both speaker and channel (i.e., nui-

sance) information. Labels are not made available a priori, but if they were provided

– or estimated via some clustering method – then we could obtain a within-class

(WC) matrix, characterizing how i-vectors from a single speaker vary, and an across-

class (AC) matrix, characterizing how i-vectors between different speakers vary [1].

The scoring function that has obtained state-of-the-art results is Probabilistic Linear

Discriminant Analysis (PLDA) and is described in [20].

Our setup begins with a set of N utterances from the SRE data – the SRE10

data is not included here – represented as N i-vectors. We are allowed to ask some

noiseless oracle for input in the form of pairwise labels; that is, “Are i-vectors i and

j from the same speaker or different speakers?” The next section discusses a simple

algorithm that makes use of these oracle queries to obtain respective WC and AC

matrices, from which we can derive an appropriate PLDA scoring function and assess

speaker recognition performance on SRE10.

2We also applied the methods discussed in this paper to various microphone conditions (1,2 –
int-mic vs. int-mic; 4 – int-mic vs. room-mic) of the SRE10 and obtained trends similar to those
reported on condition 5 (tel vs. tel) in this paper. In order to stay consistent with our preceding
chapter, as well as previous work [1, 29, 38], we will continue reporting our performance based on
the 1c telephone results from SRE10.

72

4.4 Naively Labeling Nearest-Neighbor Pairs

In this section, we propose a naive algorithm based on querying nearest-neighbor

pairs to a noiseless oracle to obtain speaker clusters from which we can obtain WC

and AC matrices for PLDA training and subsequent evaluation. We should note that

there are a large variety of selective sampling-based query strategies in active learning

that have been studied extensively [11, 69]; our initial approach here can be seen as

a naive version of “balancing exploration and exploitation” [70] that we will further

refine in Section 4.5.

4.4.1 The Algorithm

(a) Obtain pairwise cosine similarities in the form of an affinity matrix, A, where

each entry Aij represents the cosine similarity between i-vectors i and j. The

cosine similarity (i.e., a length-normalized dot product) has been shown to be

both a reasonable and fast metric for comparisons between i-vectors [12, 71, 72].

(b) Sort each row of A in descending order to obtain an ordered list of each node’s

nearest neighbors and their similarities. Specifically, row Ã(i, :) is the sorted

list of cosine similarity scores produced by i-vector i. Accompanying Ã is a

matrix Ĩ such that Ĩ(i, :) is the corresponding list of i-vector indices with whom

i-vector i produced each of the scores in Ã(i, :).

(c) The cth column of Ĩ and Ã specifies the respective indices and scores for the

cth nearest neighbor of each of our N i-vectors. For c = 1, 2, ..., query the pair(
i, Ĩ(i, c)

)
for each i = 1, ..., N . The number of unique pairs that are actually

queried for each column Qc ≤ N , as each i-vector’s ranking of its respective

nearest neighbors will differ.3 Operate on all i-vectors for a given column (i.e.,

cth nearest neighbor) before moving on to the (c+ 1)th nearest neighbor.

(d) Let G be an N -by-N binary matrix such that Gij = 1 if i-vectors i and j

originate from the same speaker, and Gij = 0 otherwise. Initialize G as a matrix

of all zeros, implying a completely disconnected graph, and when given a query

that returns a same-speaker result, update G and its affected cliques. That is, if

i-vectors i and j are a same-speaker pair (i.e., Gij = 1), and i ∈ I = {i1, i2, ...}
while j ∈ J = {j1, j2, ...} for cliques I and J , then this clique-update step

automatically connects every element in I with every element in J . Because

3That is, without loss of generality, i-vector j may be i-vector i’s cth nearest neighbor, but i may
be j’s ĉth nearest neighbor, for some ĉ ≤ c.

73

we assume that our oracle is noiseless, this is easy and saves us from making

superfluous queries.

(e) As G becomes more and more connected as a result of querying the oracle, the

size of the cliques in G will increase. Since these cliques correspond to perfectly

pure speaker clusters, use the non-singletons to obtain WC and AC matrices for

PLDA scoring. In the next section, we present our initial results as a function

of the number of labels actively queried from the oracle.

In (c), the choice to operate on each column separately instead of simply querying the

pairs corresponding to the highest global similarity scores, i.e., global score sort,

is in an effort to maximize coverage of the i-vector space [73, 74]; i.e., “explore” [70].

In our unknown manifold, the highest similarity scores may simply correspond to

parts of the manifold that are most densely packed. By requiring that each column

be treated separately, we enforce a more uniform coverage of the i-vector space,

thus ensuring that every node (i-vector) in our graph (dataset) is considered at least

once every N queries. This argument is not unlike the difference between using K

nearest neighbors (uniform coverage) versus an ε-ball to build a graph; previous work

has shown that the former (i.e., K-NN) yields better results in speaker recognition

[46, 73, 74]. In the next section, the results of our initial experiments justify this

hypothesis.

Along the lines of (d), we can further reduce the number of unnecessary queries

by making use of information about different pairs that were previously encountered.

For example, suppose the oracle returns (i, j) as a different-speaker pair, where i ∈ Xq

and j ∈ Yq for separate cliques Xq and Yq in our graph Gq, where the subscript q

denotes the state of the graph after q queries. Then for every subsequent query q′ > q,

if x ∈ Xq′ and y ∈ Yq′ , we already know without querying the oracle that (x, y) must

be a different-speaker pair.

Admittedly, there are a number of other ways in which this algorithm can be

further optimized. At the moment, we adhere to a static representation of the data,

but as information is obtained from our oracle, we would ideally be able to continu-

ously update and improve our representation of the i-vectors in the form of A, Ã, and

Ĩ. Furthermore, apart from avoiding a few unnecessary queries per the explanation

above, the generative-modeling framework of our PLDA setup has no way of making

better use of negatively labeled pairs, which is valuable discriminative information

obtained from the oracle. We re-consider some of these ideas in Section 4.5.

74

4.4.2 Initial Results

We visualize the results of our naive algorithm as a function of different subsets

of the SRE data. Figure 4-1 shows the histograms of two different distributions

of utterances-per-speaker in our sampled subset of SRE i-vectors. The subset rep-

resented in the plot at the top, vanilla, consists of all the utterances from 1000

speakers chosen uniformly at random, while the distribution displayed in the lower

plot allows no more than five utterances per speaker, max-5. As this is a more difficult

subset to work with, we will see that the baseline result of using all speaker labels for

the max-5 distribution (Figure 4-3) is slightly worse than the result of using all labels

for the vanilla distribution (Figure 4-2).

While it serves no purpose from a theoretical point of view, it may be helpful to

consider how many queries are needed to verify a perfect cluster-labeling of all of the

utterances in each of our SRE subsets considered. Note that this is neither clustering

from scratch nor any measure about sample complexity as discussed in Section 4.2;

we are simply verifying the validity of some hypothesized partition, H, of N i-vectors

from M speakers. This can be done using (N−M)+ M ·(M−1)
2

queries. The first term,

(N −M), comes from verifying the purity of each cluster – i.e., a speaker cluster of

size |C| would require (|C| − 1) queries to verify its purity – while the second term

comes from verifying that each of the M clusters is indeed different from the rest.

Verifying a clustering of the vanilla distribution would require 500,000 queries, while

exhaustively checking a partition of the max-5 distribution would require 7.2 million

queries. We also show this information as part of the x-axis label at the bottom of

Figures 4-2 and 4-3.

We plot our results as a function of the number of labels queried from the oracle

(x-axis). While this includes queries of different-speaker pairs, this does not include

the edges that are automatically created as a result of the clique-update step, only

those in which the oracle is actively accessed. After every 1000 queries, we use the

resulting cliques to define the speaker clusters, which are then applied to train a

PLDA scoring function, and then run speaker recognition on the SRE10.

In Figure 4-2, we consider a number of different metrics as a function of the

number of pairs queried (x-axis). On the top plot, we show the number of different-

speaker pairs encountered by the oracle (blue), the number of automatic connections

made (green), and the resulting number of edges in our graph G (red). The middle

plot compares the number of clusters found with the number of actual speakers, and

the bottom plot shows both our subsequent results on SRE10 – in the form of an

equal error rate (EER) – using the labels queried as well as the results using all

possible labels. In these lower plots, we also justify our algorithmic choice in (c) of

75

Figure 4-1: Distributions of utterances per speaker in sampled subsets of SRE data:
(top) vanilla – all utterances from 1000 randomly chosen speakers; (bottom) max-5

– no more than five utterances from every speaker in the SRE data.

Section 4.4.1 by showing the difference in results obtained using our chosen uniform

coverage approach (blue), which queries all pairs corresponding to each i-vector’s

respective Kth nearest neighbor before moving to the (K+1)th, as well as the global

score sort approach (green), which sorts all possible pairs in order of decreasing

similarity score.4 Lastly, while both seem to exhibit the expected exponential decay

in EER as a function of pairs queried – as discussed in Section 4.2 – the uniform

coverage approach obtains a better EER with fewer pairs queried.

A relatively small number of queries already produces results comparable to those

obtained using all corpus labels. In fact, the vanilla distribution yields the same

EER using just about 9000 pairwise queries. On the other hand, using fewer than 5000

queries is worse than simply using the cosine similarity metric to evaluate on SRE10,

which yields a 6.61% EER. This is because there are not enough edges on the graph

to form reliable cliques that can faithfully model the WC and AC matrices for PLDA;

in fact, with just 1000 queries using global score sort, these covariance matrices

were not even of sufficient rank to complete PLDA training. As such, detecting

when we have enough queries to sufficiently represent our speaker space would be an

interesting direction for future work. Conversely, the rate of change in the number

of cliques detected (middle plot) may be a reasonable indicator for when we have

utilized enough queries from our data.

4Furthermore, when pairs were queried in a completely random order, obtaining results compa-
rable to those shown required an unreasonably large number of oracle queries.

76

Figure 4-2: Initial results obtained on the vanilla distribution of utterances per
speaker: (top) graph edge properties as a function of pairs queried; (middle & bottom)
estimated number of speakers and resulting SRE10 EER for the uniform coverage

and global score sort approaches, respectively, as discussed in Section 4.4.1.

The plot at the top of Figure 4-2 shows a rapid increase in the number of automatic

connections made after 8000 queries. This is approximately where we begin querying

pairs corresponding to second nearest neighbors. Once these connections are made,

we start to see both the number of clusters found and the EER leveling off. The

sudden spike in interconnected-ness makes sense given the vanilla distribution of

utterances per speaker in our set of i-vectors; however, such a trend should not be

expected for all such distributions.

For example, the top plot of Figure 4-3 shows no rapid increase in the number

of automatic connections made for the max-5 distribution and, relatively speaking,

a much larger number of different-pairs encountered as a function of pairs queried.

77

The two lower plots in Figure 4-3 show the rest of the results obtained on the max-5

distribution, namely the number of clusters found (middle) as well as the resulting

SRE10 EER (bottom) as a function of the number of pairs queried (x-axis). For

now, note that the uniform coverage approach (blue) exhibits similar trends on

both the vanilla (Fig. 4-2) and max-5 distributions, even though their respective

baseline performances are different due to different speaker-utterance distributions.

The other approaches will be discussed in the following section.

4.5 Refinements

So far, we have demonstrated the ability to obtain a good speaker recognition system

using a relatively small number of pairwise queries. So far, these queries are chosen

naively based on nearest neighbors according to a cosine distance metric. Having

set an initial baseline, our interests turn to minimizing the number of active queries

needed to obtain similar results.

4.5.1 Automatic, Noisy Labeling

One of the most straightforward ways to minimize the number of queries is to add

edges automatically. Doing so would require making at least some assumptions about

the data, such as the number of speakers present or a minimum cluster size. For

example, it turns out that 95% of the first nearest-neighbor pairs correspond to the

same speaker in the vanilla distribution.5 Such an assumption would be dangerous

to make for any general distribution of utterances per speaker, but for the vanilla

scenario, one approach could be to simply connect all such first nearest-neighbor pairs

and begin querying from the pairs corresponding to second nearest neighbors.

Unfortunately, upon initial experimentation, this turns out not to work so well.

Allowing any impurities or noisy labels at such an early stage causes clustering errors

to compound exponentially. One heuristic to avoid this might be to check the cluster

purity on the largest clusters. Another remedy would be to use softer scores (i.e.,

weights ∈ [0, 1]) instead of adhering to {0, 1} hard edge assignments. We note from

earlier work [46], however, that the mere presence of an edge is more significant than

the value of the weight itself. In light of this, we choose not to pursue this path

of investigation in this work for now but note that there do exist principled ways to

handle such noisy labels in clustering with partially labeled data that can be explored

in future work [45].

5Unfortunately, the distribution of cosine similarity scores from the same- and different-speaker
pairs show no discernible separation.

78

Figure 4-3: Results obtained on the max-5 distribution of utterances per speaker: (top)
graph edge properties as a function of pairs queried; (middle & bottom) estimated
number of speakers and resulting SRE10 EER for the uniform coverage approach
as well as techniques discussed in Section 4.5.

79

4.5.2 Data Re-representation

One way to make use of the additional information obtained via pairwise queries

would be to re-represent the data using a new pairwise affinity matrix A′. Instead of

the cosine similarity, we could let A′ij be the log-likelihood ratio (LLR) that i-vectors

i and j belong to the same speaker; this can be computed via PLDA, whose AC and

WC matrices can be determined by the cliques in our graph Gq after q queries. The

mechanics of this are straightforward; the more interesting problem is determining

when such a re-representation is appropriate. That is, we would like to know when

the scoring function we are currently using to compare i-vectors – whether it is a

cosine similarity or a PLDA LLR – is no longer suitable.

We consider a “blacklisting” approach, where each i-vector i is queried against its

successively more distant neighbors, {j1, j2, j3, ...}, until the oracle returns a different-

speaker pair (i.e., (i, jd) ∈ D for some d ≥ 1). Once that occurs, we know that either

our scoring function is no longer reliable or, ideally, that all the utterances involving

the speaker in i-vector i have been found. As such, we add i to the blacklist and ignore

subsequent comparisons involving it. This method greedily finds, with respect to the

scoring function at hand, all of the same-speaker neighbors in the local neighborhood

of i, thus accelerating the growth of speaker cliques. Once all – or some predetermined

percentage – of the nodes have been blacklisted, we know that either all the speaker

clusters in our data have been found or a re-representation of the data is necessary.

4.5.3 Greedy Manifold Sampling and Clique-Growing

Another potential way to reduce the number of queries is to be more selective about

the order in which we pose them. For a given set of cth nearest-neighbor pairs, our

initial algorithm saw no difference between asking in a random order or in order of

decreasing similarity score, but perhaps we can do better by modifying the “black-

listing” approach to also sample the entire i-vector space as quickly and uniformly as

possible.

Suppose we start at node i and query its nearest neighbors, {j1, j2, j3, ...}, in

order of decreasing similarity until the oracle returns a different-speaker pair for

(i, jd). Then we pick a node k that is as far away (i.e., dissimilar) from {i, j1, ..., jd}
as possible. This can easily be done by averaging the corresponding rows of A and

picking the i-vector corresponding to the minimum average similarity. As before,

we query the neighbors of k until a different-speaker pair is returned, and so on.

Along the lines of the “exploration and exploitation” algorithm in [70], the hope

is that this method will sample all corners of the manifold (exploration) in as few

80

queries as possible and, at the same time, grow as large of speaker clusters as possible

(exploitation) with every node visitation.

The result of these refinements is shown in Figure 4-3, which compares the uniform

coverage algorithm (blue) from Section 4.4.1 to the methods described previously.

Without even needing to re-represent the data, the “blacklisting” approach (green)

immediately yields a significant improvement on the SRE10 EER using just 2000

pairwise queries. This shows the effectiveness of greedily growing speaker cliques.

Finally, the impact of the greedy cover approach (black) can be seen starting at

4000 queries, thus demonstrating that maximal coverage of the i-vector manifold can

indeed help maximize performance in speaker recognition with limited labeled data.

These ideas can be further refined along the lines of Maximal Marginal Relevance

(MMR) introduced in [75]. In the parlance of information retrieval (IR), given some

document query – not to be confused with our pairwise oracle queries – the idea

behind MMR is to return an ordered list of documents, each of which is both as

related as possible to the query itself (absolute relevance) and is as different as possible

from the documents previously returned (relevant novelty) [75]. In our scenario, we

can think of i as a document query and its nearest neighbors being the returned

documents in order of decreasing absolute relevance. But instead of querying these

nearest neighbors in order (i.e., {j1, j2, j3, ...}), perhaps there is a way to incorporate

the notion of relevant novelty that can further minimize the number of pairwise oracle

queries needed per node visited.6 We see this as a potential avenue for future work.

4.6 Future Work

We have left open a number of avenues for future work. As a way to minimize

the number of queries needed, we have not yet considered the idea of adding edges

automatically and how to handle such potentially noisy labels; this may warrant the

use of soft graph edge weights (i.e., [0, 1]) instead of hard assignments ({0, 1}), as well

as clustering techniques discussed in the previous chapter. To that end, we should

apply the developments of our previous work on domain adaptation and verify that

knowledge gained from previously labeled data, albeit from a mismatched domain,

can improve our initial representation of the data in the form of a better pairwise

affinity matrix, A. Lastly, our work so far has been based on the existence of a

noiseless oracle, but previous work has shown that both naive and expert human

listeners can be imperfect [59]. In future work, we plan to bridge the gap between

6That said, picking the next document query (node to visit), k, that is as unrelated as possible
from documents (nodes) previously seen can simply be considered ”absolute novelty!”

81

our noiseless oracle and a crowd-sourced system for speaker recognition.

4.7 Summary

In this chapter, we quantified the amount of labeled data needed to build a speaker

recognition system. Beginning with unlabeled i-vectors and the cosine similarity met-

ric, we query a noiseless oracle with nearest-neighbor pairs. Our initial results confirm

the expectation that the sample complexity in the number of active labels needed to

achieve state-of-the-art results is significantly lower than the number of labels needed

in the passive learning case. We further refine our techniques in accordance with the

“exploration and exploration” paradigm to maximize both cluster size and manifold

coverage while minimizing both the number of queries needed and the resulting EER.

In both this and the previous chapter, we explored the problem of speaker recog-

nition under various resource-constrained scenarios. In Chapter 3, we considered the

problem of domain adaptation and discovered ways to utilize matched, but unlabeled

data alongside a representation derived from labeled, but mismatched data. In this

chapter, we entertained a scenario in which we were provided no labeled data to

begin with, but our system was allowed to actively seek labels in the form of pair-

wise queries. In the following chapters, we examine analogous scenarios within the

task of language identification and acoustic unit discovery. Along the lines of domain

adaptation, in Chapter 5, we overcome the lack of transcribed data in certain tar-

get languages by discovering acoustic units in unsupervised fashion. Subsequently in

Chapter 6, we look for ways to improve our discovery of acoustic units by incorpo-

rating weak supervision in the form of pairwise constraints.

82

Chapter 5

Acoustic Unit Discovery for

Language Identification

5.1 Introduction

In this chapter,1 we depart from our explorations of speaker recognition and con-

sider the problem of language recognition. The effectiveness of deep neural net-

works (DNNs) for automatic speech recognition (ASR) [77] has led to their use in

other speech-related classification tasks, including speaker and language recognition

[78, 79, 80, 81, 57, 82, 83, 84]. The training of such DNNs, however, relies on the

presence of pronunciation dictionaries and large amounts of transcribed speech, which

may only be available for a small subset of the languages present in the evaluation

task. For example, the work in [57, 82] used only transcribed English from the

Switchboard I corpus [85] to build a system that could distinguish between 24 differ-

ent languages, while the use of transcribed data from additional languages achieved

even better results in [83]. On the other end of the spectrum, this brings to bear the

question of how well we can do without any transcribed data. Following the premise

of [86], we aim to exploit the existing sound pattern structure of speech without the

need for transcription or a dictionary. More specifically, we investigate the effect of

unsupervised acoustic unit discovery on language recognition.

To do so, we follow the framework proposed in [57, 82], where a DNN is trained

from spectral input features and automatic speech recognition (ASR)-based output

labels such that the activations at a so-called bottleneck (BN) layer provide frame-

level features of manageable dimensionality. A BN feature of a given frame of audio

can be seen as a compression of the information about both the frame’s phonetic class

1A portion of this work has been accepted for publication in [76].

83

and context [81]. These features can then be treated as acoustic features of their own,

from which an i-vector system can be built for language recognition [13]. Figure 5-1

presents an overview of this system.

Figure 5-1: An overview of a bottleneck i-vector system: stacked spectral features
are passed as input to a neural network, whose activations at a bottleneck layer are
used as features for an i-vector classification system. The resulting i-vectors are a
low-dimensional summary of an utterance’s distribution of bottleneck features.

In our approach, unlike any recent work on language recognition to the best of

our knowledge, we replace the ASR-based output labels from the original DNN-based

setup with those learned from a Bayesian nonparametric model that learns an appro-

priate set of sub-word units automatically from speech data [5]. The development of

this model was motivated by the desire for robust zero resource speech technologies

that can operate without the expert-provided linguistic knowledge that standard ASR

systems rely on [87]. Designed to uncover phone-like units from a given language, the

resulting acoustic unit discovery system simultaneously segments the speech, discov-

ers a proper set of sub-word units, and learns a Hidden Markov Model (HMM) for

each [5]. Using neither transcribed data nor prior language-specific knowledge, this

system obtained results on TIMIT that demonstrate the ability to discover sub-word

units that are highly correlated with English phones, produced a better segmentation

than the state-of-the-art unsupervised baseline, and performed well on a spoken term

detection task [5].

Despite the promise of this model and that of similar systems [86, 88, 89], we

are still unable to robustly and precisely uncover a particular language’s phonetic

inventory. As such, we instead broaden our consideration of unsupervised unit dis-

covery from a monolingual setting to a multilingual one. Rather than focusing on

any single language in particular, we aim to learn a set of acoustic units from many

different languages at once. To paraphrase the analogy to human infants, who must

84

specialize their speech perception and production systems to their native language

(though perhaps with help from other sensory modalities) [87], we see our human

infant as developing in a multilingual household. And more importantly, because we

are not bound by any limited quantity of transcribed corpora, our models can instead

be built on as much data as they can handle. Indeed, unsupervised methods give us

the flexibility to work directly on data that matches the test domain, thus avoiding

issues of language or channel mismatch.

In addition to the work reviewed in [87], the notion of transforming speech and

audio data into a sequence of arbitrary symbols has been well-explored [90]. The work

in [86] details the unsupervised training of an HMM-based self-organizing unit rec-

ognizer, while the work in [91] learns a set of “acoustic unit descriptors” to represent

audio content for event classification and detection. The work in [92, 93, 94] proposes

the Automatic Language Independent Speech Processing (ALISP) approach, which

was initially developed for low bit-rate speech coding before evolving into a generic

method for audio indexing, retrieval, and recognition, including initial attempts at

speaker verification and forgery, as well as language identification [93].

Although more detailed explanations can be found throughout the rest of this

chapter, let us first summarize the novel contributions and findings of our work below:

1. We show that a system built from learned acoustic units can be used effectively

for language recognition. In particular, we find that a score-level fusion with a

baseline system built from acoustic features yields substantial gains and signif-

icantly closes the gap between the acoustic feature baseline and a benchmark

system built using transcribed English, suggesting that acoustic unit discovery

provides complementary information to that of a bag-of-features baseline.

2. We find that using an improved representation of speech (i.e., supervised bottle-

neck features) as input to our acoustic unit discovery system can yield acoustic

units that similarly improve performance on our language recognition task, and

additional score-level fusion provides even further gains. This continues to mo-

tivate the need for a better understanding of the speech signal.

3. We demonstrate the ability to learn acoustic units in an unsupervised fashion

on a dataset containing hundreds of hours of speech. This was achieved by

modifying a Bayesian nonparametric model in a way that allows for effective

parallelization. To the best of our knowledge, this is also the first Kaldi-based

implementation of the acoustic unit discovery process [95].

4. We present our initial results on the Language Recognition Evaluation (LRE)

from 2011 [24] presented by the National Institute of Standards and Technology

85

(NIST) and subsequently validate the generalizability of our proposed approach

on the NIST 2015 LRE, which features a modified evaluation protocol involving

specific language clusters.

5. We also run some initial experiments exploring a phonotactic approach to lan-

guage recognition and use their results to motivate subsequent improvements

to our proposed framework.

The rest of this chapter is organized as follows. Section 5.2 outlines our unit

discovery process, and we reiterate the language recognition system from [57] that

serves as our experimental framework in Section 5.3. Section 5.4 presents our initial

results; Section 5.5 discusses some of the design choices that both worked and didn’t

work and validates our original results on another dataset. Finally, we take a look at

phonotactic approaches to language recognition in Section 5.6 and then conclude in

Sections 5.7 and 5.8 with a look ahead to future work.

5.2 Acoustic Unit Discovery

In this section, we outline the essentials of a previously-proposed acoustic unit discov-

ery process [5] and highlight the modifications we make in its updated implementation

to make inference more computationally feasible on data involving hundreds of hours

of speech.

5.2.1 A Bayesian Nonparametric Model

Given a set of spoken utterances, the goal of acoustic unit discovery is to jointly learn

the following [96]:

• segmentation – find the phonetic boundaries within each utterance;

• clustering – obtain an appropriate number of clusters within which acoustically

similar segments can be grouped;

• modeling – learn a Hidden Markov Model (HMM) to model each sub-word

acoustic unit.

In [5], all three sub-tasks were modeled using latent variables in a single Bayesian

nonparametric model. More specifically, [5] formulates a Dirichlet process mixture

model where each mixture is a HMM used to model a sub-word unit and generate

observed segments of that unit. Via Gibbs sampling inference, the model seeks to

86

obtain the set of sub-word units, segmentation, clustering, and HMMs that best

represent the observed data.

Figure 5-2: An example of the observed data and hidden variables in the acoustic unit
discovery model, modified directly from Figure 1 of [5].

An explanation of the associated variables and the entire generative process, as

well as a derivation of the conditional posterior distributions for each hidden variable

in the model is provided in [5, 97]. Figure 5-2 directly replicates an example of the

observed data and hidden variables of the setup [5]; we outline the essential ingredients

below:

• speech feature (xt) – 13-dimensional MFCCs and their first- and second-order

derivatives extracted every 10 ms, resulting in a 39-dimensional observed feature

vector;

• boundary (bt) – a binary variable indicating whether a phone boundary exists

(bt = 1) between xt and xt+1 or not (bt = 0);

• HMM (Θc) – each HMM has three emission states, corresponding respectively

to the beginning, middle, and end of each sub-word unit. A traversal of each

HMM must start from the first (left-most) state, and transitions may only occur

from left to right. While skipping of the middle and last states is allowed in

87

[5], our implementation requires that each segment be at least three frames in

length. The emission probability of each state is modeled by a Gaussian Mixture

Model (GMM).

• hidden state (st) – the hidden state index of the HMM associated with each

feature vector, xt.

• mixture ID (mt) – the Gaussian mixture index associated with each feature

vector, xt.

If we assume, for the time being, that the values of the boundary variables, bt, are

given, then the generative process looks as follows:

1. Given a segment, p = {xt|L < t ≤ R}, as determined by two boundary variables

(bL, bR = 1), choose a cluster label, c ∈ C, which can either be an existing label

or a new one. (The Dirichlet process allows for a potentially infinite number of

clusters.) This cluster label will determine which HMM, Θc, is used to generate

the segment.

2. Given the HMM corresponding to the cluster label, choose a hidden state, st,

for each feature vector in the segment.

3. Given the hidden state of each feature vector, choose a mixture from the GMM

of the chosen state, mt.

4. Given the mixture ID, generate the observed feature vector, xt.

A full derivation of conditional posterior distributions for each hidden variable in the

model as needed by the Gibbs sampling procedure is beyond the scope of this thesis

but is provided in [5, 97].

5.2.2 Boundary Variables and Landmark Detection

In practice, we reduce the inference load on the boundary variables, bt, by exploiting

acoustic cues in the feature space to eliminate the need for sampling on frames that

are unlikely to be phonetic boundaries (i.e., P (bt = 0) = 1). This is done by following

the pre-segmentation method described in [98].

We should note that introducing boundary variables and allowing them to be

sampled on or off during inference places this model in a unique space between more

traditional HMM-based modeling and that of segment-based speech recognition [98].

While other methods use an initial segmentation to seed its HMM clusters, those

88

segmentations tend to be fixed and subsequently discarded during later iterations of

training in favor of the more traditional Viterbi decoding step [86, 94]. The model in

[5] not only implements a form of duration modeling by forcing the 3-state HMM to

represent the entire segment between two boundary variables (bl, br = 1), it also allows

for its boundary variables to be sampled on and off (bt ∈ {0, 1}). This allows the

model to continuously refine both its segmentation and clustering at a more localized

level without having to rely on HMMs to model the duration of an acoustic unit.

5.2.3 Parallelization

While Gibbs sampling is theoretically guaranteed to converge to the true posterior

distribution of the hidden variables in [5], the process can be quite slow – the sampling

of each variable in turn requires updates to all its dependent variables at each frame

of audio. In an effort to scale from processing the relatively small TIMIT corpus [99]

containing less than ten hours of speech to a corpus containing a few hundred hours of

audio, we focused our efforts on parallelizing the sampling algorithm. The drawback

of such parallelization is that the resulting algorithm, while computationally scalable,

will only approximate Gibbs sampling [100]. There have been attempts to better

understand these effects at a more theoretical level, but these initial studies have

been restricted to simpler models [101]; the impact of more complex approaches has

largely been observed empirically.

A traditional, serial Gibbs sampler samples from one conditional posterior distri-

bution at a time. Our implementation resembles that of a blocked Gibbs sampler and

conditions on all of the HMM and GMM parameters to sample, in parallel, a new set

of alignments (i.e., per-frame segmentation boundaries and cluster assignments) for

all utterances. Assuming our data is split into some arbitrary number of partitions, P ,

this allows for parallelization that can effectively decrease the required computation

time by a factor of 1
P

. Given an entirely new set of alignments, we then accumulate

statistics to update, in batch mode, our Dirichlet process counts, HMM transition

probabilities, and GMM emission probabilities accordingly. Distributing the sampling

process across a number of parallel workers before accumulating statistics globally is

a technique that has been explored as a parallelized version of Latent Dirichlet Al-

location (LDA) known as Approximate Distributed LDA (AD-LDA) [100]. Despite

losing the traditional Gibbs sampling guarantee of converging to the true posterior

distribution of the hidden variables, our implementation achieves strong empirical

performance in its ability to scale to large datasets.

89

5.2.4 Model Selection

Another difference between the model in [5] and our implementation is in the Dirich-

let process (DP) mixture model. While the model allows for an infinite number of

cluster labels in theory; practical implementations tend to over-initialize the number

of possible mixtures and allow both the data and the DP concentration parameter,

γ, to influence how many of those clusters actually retain probability mass. In our

experiments, however, we found that our model would end up using all of the avail-

able mixtures, no matter how many we allowed for (up to 1000) or how small of a

value we set for γ (as low as 0.001). This may have been a collective outcome of all

our modifications; it may also indicate a lack of fit between our data and the model.

Nevertheless, we found that the number of allowed clusters had a significant impact

on both computational complexity and language recognition results; as such, we de-

cided to fix the number of clusters at |C| = 100 << ∞ and γ = 1, which achieves

a balance between runtime and performance. While we realize this is no longer a

principled implementation of a DP mixture model, it worked well in practice.

5.2.5 Other Modifications

We use the same pre-segmentation method used in [5] to obtain a set of candidate

boundaries; this method essentially hypothesizes phonetic boundaries where the dif-

ference in spectral energy is large in magnitude. Originally built for a segment-based

speech recognition system [98, 102], we further tuned this procedure to propose more

candidate boundaries than usual, since the number of boundaries actually used (i.e.,

bt = 1) will be a subset of those candidates. Lastly, while [5] imposed an equal prior

probability on these candidate boundaries (i.e., P (bt = 1) = P (bt = 0) = 0.5), we

found success in biasing the model towards keeping the boundary turned on with

a prior of P (bt = 1) = 0.8 and incorporating a localized post-processing step that

merges consecutive segments if their respectively sampled cluster assignments are the

same.

The model in [5] allows its HMMs to skip its middle and last states for segments

shorter than three frames; our implementation does not allow for state-skipping and

thus requires each acoustic unit to have a minimum duration of three frames. Our

implementation also updates the GMM parameters in maximum likelihood fashion

and increases the number of Gaussian mixtures it uses to model acoustic features at

every pass through the data;2 the formulation in [5] samples the emission probabilities

of each HMM state using eight Gaussians with diagonal covariance matrices.

2This is done according to the method used by default in Kaldi [95].

90

5.2.6 Unit Recognizer Training

The unit discovery process essentially produces an acoustic model consisting of HMM

parameters for each individual acoustic unit (i.e., mono-unit), as well as a set of per-

frame alignments from the training data indicating the Gaussian mixture, the HMM

state, and the HMM cluster label that are associated with each acoustic feature vec-

tor. If we collapse these per-frame alignments into unit sequences, they can be used

as transcripts to train a “unit recognizer” in the traditional way. This releases the

model from the segment-based rigidity of boundary variables and lets boundaries be

determined automatically via a forced alignment of the data. Recognizer training also

allows for context-dependent modeling (i.e., “tri-units”) – something our unit discov-

ery method cannot do – which can ultimately provide us with per-frame alignment

sequences in the form of senones [103].

In addition to showing the results of using per-frame unit sequences and per-frame

HMM state sequences from our context-independent acoustic unit discovery, we will

also show the results obtained at the speaker-independent (SI) and speaker-dependent

(SD) stages of context-dependent unit recognizer training. For the SI stage, we build

a context tree containing roughly 2500 senones, and for the SD stage, we use roughly

4500 senones and include MLLT, fMLLR, and speaker adaptive training.3 The exact

number of senones obtained from the context tree is a function of the data and will

differ between experiments; the resulting per-frame senone sequences are used as

targets for training the DNN bottleneck features.

5.3 The Bottleneck i-vector System

In this section, we summarize the essential pieces of our bottleneck i-vector language

recognition system. To the extent possible, we followed the setup of the state-of-the-

art LID system presented in [57]. As discussed in Section 5.1, the overall process is

summarized in Figure 5-1.

5.3.1 DNN Bottleneck Features

A DNN classifier is essentially a multi-layer perceptron with more than two hidden

layers that typically uses random initialization and stochastic gradient descent to

initialize and optimize its weights [77]. To provide temporal context, the input to

the DNN is typically a stacked set of spectral features extracted from short (20 ms)

3These stages roughly follow the tri2 and tri4a steps, respectively, in the s5b recipe of the Kaldi
example for Switchboard I [95].

91

segments (frames) of speech. In our system, we computed 13 Gaussianized PLP

coefficients as well as their first and second derivatives and then stacked +/−10 frames

of context around the current input frame to obtain a (13 ∗ 3) ∗ (10 + 10 + 1) = 819

dimensional input feature vector to the DNN. The output of the DNN is a prediction

of the posterior probability of the target classes for the current input frame; our

experiments in Section 5.4 will explore the use of unit cluster labels, ct, hidden states,

st, and senones as target classes.

We use this DNN as a means of extracting features for use by a secondary classifier

(i.e., an i-vector system). This is accomplished by using the activation of one of the

DNN’s hidden layers as a feature vector. In particular, we optimize a dimension-

reducing linear transformation as part of the DNN training that results in a special

“bottleneck” layer with fewer nodes and, thus, a manageable dimensionality. The

bottleneck layer uses a linear activation and behaves very much like a LDA or PCA

transformation on the activation of the previous layer [104, 105]. In addition to the

previous work in [57], BN features also have been shown to work well for language

recognition in [78, 81, 83, 84].

Figure 5-3: The configuration of our proposed DNN. Its input is 819-dimensional vec-
tor of stacked PLP frames. The first five hidden layers contain 1024 nodes featuring
sigmoid activations. This is followed by a 64-node bottleneck layer that uses linear
activations (from which we draw our bottleneck features) and a final sigmoid layer
with 1024 nodes. The number of output targets for which we obtain posteriors via a
softmax depends on the result of the acoustic unit discovery step.

As illustrated in Figure 5-3, all of our experiments utilize a common DNN structure

92

containing seven hidden layers of 1024 nodes each with the exception of a bottleneck

sixth layer, which has 64 nodes instead. All hidden layers use a sigmoid activation

function except for the fifth layer, which is linear [105]. As mentioned above, the

input layer contains 819 input features covering 21 frames of context. In this setup,

the only difference between experiments is the number of target classes, which is

determined by the acoustic unit discovery system described in Section 5.2.

5.3.2 i-vector System and Scoring

A more detailed description of the i-vector system and underlying theory was covered

in Chapter 2 (and can be found in [12]); here, we provide a high-level overview of

such a system built for language recognition (Figure 5-1) and note that our framework

closely follows that of [57, 13, 27]. In our experiments, the only difference between

the various systems will be in the original acoustic/bottleneck features used.

A test utterance whose language we hope to ascertain is first passed through

a GMM-based speech activity detector, after which the detected speech is repre-

sented by a sequence of bottleneck feature vectors as obtained from a DNN classi-

fier explained above. From these features, we obtain the zeroth-order (counts) and

first-order (means) sufficient statistics of the utterance from a Universal Background

Model (UBM), which is a 2048-mixture GMM characterizing a speaker- and language-

independent feature distribution. These statistics are then transformed into a raw

i-vector of 600 dimensions using a total variability matrix, T [12]. We transform this

raw i-vector using linear discriminant analysis (LDA) and within-class covariance nor-

malization (WCCN) [13, 26], both of which are estimated a priori from the training

data and their language labels, and finally length-normalize the result to obtain a test

i-vector. We use the dot product to compute the similarity score between the test

i-vector and each language-representing model i-vector. These scores are calibrated

using the discriminative Gaussian backend described in [27], which is trained using

both scores and utterance durations.

5.4 Experiments

In this section, we first provide an overview of the data used in our experiments

and present our initial results. Then we explore the use of score-level fusion and the

incorporation of transcribed data on language recognition performance.

93

5.4.1 Corpora

Our experiments utilized three corpora in various ways. We evaluate all of our

language recognition systems on the 2011 NIST Language Recognition Evaluation

(LRE11), which covers 24 languages4 coming from telephone and broadcast audio

and has test durations of 3, 10, and 30 seconds [24]. The hyper-parameters for each of

these systems – i.e., the UBM, the i-vector extractor, and the discriminative backend

– are trained using the same training and development data from [27],5 which we will

refer to as LRE-train and LRE-dev, respectively. For our acoustic unit discovery on

multilingual data, we used a subset of LRE-train consisting of 10 hours from each of

the 24 evaluation languages, yielding a 240-hour LRE-subset dataset. For proper

comparison with previous work in [57], we also use a 100-hour subset of Switchboard

I [85] as defined by the example system distributed with Kaldi [95], which we will

abbreviate as SWB. Finally, while all of the experiments in this section report re-

sults on LRE11, we demonstrate the generalizability of our methods in Section 5.5 by

applying them to the 2015 NIST LRE (LRE15) [25, 106], which features a modified

evaluation protocol involving explicit language clusters.

5.4.2 Spectral Feature Baseline

Following previous work, our baseline results come from an i-vector system built using

spectral features. The baseline in [57], as well as in other work [13, 27, 107, 108], used

Shifted Delta Cepstral (SDC) features in the conventional 7-1-3-7 scheme, which we

described in Chapter 2. The seven static cepstra are appended to the 49 SDC features

to produce a 56-dimensional acoustic feature vector. A more detailed explanation on

how the SDC are obtained can be found in [107]. Whereas the work in [27] included

vocal tract length normalization and feature-domain nuisance attribute projection,

these techniques are neither used in our work nor that of [57].

5.4.3 Transcribed SWB Benchmark

We use the results obtained in [57] as our supervised benchmark system. This system

trains a DNN from 4,199 senone target labels generated at the tri4a step from the

4The LRE11 languages include Arabic-Iraqi, Arabic-Levantine, Arabic-Maghrebi, Arabic-MSA,
Bengali, Czech, Dari, English-American, English-Indian, Farsi, Hindi, Lao, Mandarin, Pashto, Pol-
ish, Punjabi, Russian, Slovak, Spanish, Tamil, Thai, Turkish, Ukrainian, and Urdu.

5Some of the corpora represented include CallFriend, CallHome, Mixer, OHSU, and OGI-22,
VOA, Radio Free Asia/Europe, GALE broadcasts, and Arabic corporal from the LDC and Appen
[27].

94

s5b recipe of the Kaldi example for Switchboard I [95], which we also adopted in

Subsection 5.2.6.

5.4.4 Initial Results

In our initial experiment, we fix the number of acoustic units at 100 and run acoustic

unit discovery on SWB and LRE-subset. This results in per-frame unit sequences

for the 100 units and corresponding 300 states (for each 3-state HMM), both of

which can be used as targets for DNN training. As described in Subsection 5.2.6,

we also treat the resulting unit sequences as transcriptions and train an acoustic

unit recognizer. We present our results obtained at two different stages of recognizer

training: speaker-independent triphones (SI) and speaker-dependent (SD) modeling,

which includes MLLT, fMLLR, and speaker adaptive training.

Table 5.1 presents our initial results, where for simplicity, we only show the aver-

age detection cost, Cavg, (as described in Chapter 2 and [24, 27]) on 30 second test

segments of LRE11. In comparing between rows, we can see that running acoustic

unit discovery on the multilingual LRE-subset is consistently better than running the

unit discovery on the English-only SWB. This can be explained as either a result of

domain adaptation to the multiple LRE11 languages or the effect of having 240 hours

in the LRE-subset data versus 100 hours in SWB, or some combination of both. That

said, the virtue of unsupervised methods is that they can be applied to the untran-

scribed multilingual data that matches the test domain; as such, subsequent results

will be limited to units discovered on the LRE-subset.

Examining the columns from left to right, we can also see that each additional step

of model refinement corresponds to additional improvements. Going from per-frame

unit sequences (100) to context-independent HMM state sequences (300) yielded the

most substantial gain; we note once again that both sets of sequences are solely the

result of the acoustic unit discovery inference process (involving segment boundaries)

and not a result of the unit recognizer training discussed in Subsection 5.2.6.6 During

unit recognizer training, the SI step utilizes context tree-based clustering that yields

∼2500 senones, while the SD step yields ∼4500 senones and incorporates speaker

adaptive training [95]. As a result, we are able to obtain results comparable to the

acoustic baseline using SDC features (Subsection 5.4.2). However, such performance

is still significantly worse than that of the transcribed SWB benchmark (Subsection

5.4.3).

6Recall from Subsection 5.2.6 that the subsequent unit recognizer training ignores the original
segment boundaries, bt, from the acoustic unit discovery process and defines its own via the standard
HMM training algorithms (forward-backward and Viterbi).

95

Table 5.1: Initial language recognition results on 30 second test segments of LRE11;
the numbers shown are the average detection costs Cavg × 100. The SWB row shows
the results of a system built from acoustic units discovered on a 100-hour subset of
Switchboard I (English), while the LRE-subset row corresponds to that of a system
build from units discovered on 240 hours of multilingual data. The various columns
show the results at different stages of unit discovery (unit cluster labels versus HMM
hidden state labels) and unit recognizer training (speaker-independent and speaker-
dependent). The bottom two rows show our baseline and benchmark results, respec-
tively.

100 units 300 states SI SD
SWB (100 hrs) 9.10 7.36 6.29 5.89

LRE-subset (240 hrs) 9.02 6.67 5.65 5.24

Spectral Feature Baseline (Subsection 5.4.2) 5.29
Transcribed SWB Benchmark (Subsection 5.4.3) 2.60

5.4.5 Incorporating Fusion

Given the similar performance of both the unit discovery-based system and the spec-

tral feature baseline, we present the result of a score-level system fusion (via multi-

class logistic regression [27]) between the baseline and the best-performing system

from Table 5.1, which was built on the LRE-subset data using acoustic unit discovery

(AUD) and speaker-dependent recognizer training. The results in Table 5.2 suggest

that the unit discovery-based system captures language-related information comple-

mentary to that of the spectral feature baseline. Fusing these two systems together

yields a 27%, 29%, and 14% relative gain on 30-, 10-, and 3-second test segments, re-

spectively, and significantly reduces the gap between the baseline and the transcribed

SWB benchmark without using any transcribed data.

Table 5.2: Score-level fusion results on LRE11 for various test segment lengths (30,
10, and 3 seconds); the numbers shown are the average detection costs Cavg × 100.
We fuse the Spectral Feature Baseline (Subsection 5.4.2) with the best-performing
system from Table 5.1, which was built on the LRE-subset data using acoustic unit
discovery (AUD) and speaker-dependent unit recognizer training (Subsection 5.2.6).
The Transcribed SWB Benchmark is discussed in Subsection 5.4.3.

30 sec 10 sec 3 sec
* Spectral Feature Baseline 5.29 10.4 21.4
* AUD(LRE-subset), SD 5.24 10.1 20.1

Fusion of [*] above 3.80 7.17 17.2

Transcribed SWB Benchmark 2.60 6.25 16.5

96

5.4.6 Incorporating Transcribed Data

The work presented thus far has focused on a fully unsupervised scenario that involves

no transcribed data. Fusing an acoustic unit discovery-based system with a spectral

feature baseline reduces the performance gap between the baseline and supervised

system based on transcribed English. In practical scenarios, however, we will seldom

be limited to situations in which we have absolutely no access to transcribed data

or pronunciation dictionaries for any language. Instead, we are more likely to find

ourselves in a situation where the linguistic knowledge we have at hand (e.g., Amer-

ican English) does not necessarily match the data we need to work with (e.g., the 23

other languages of LRE11). This situation was thoroughly explored in [57, 82] and

is directly reflected in our transcribed SWB benchmark system (Subsection 5.4.3).

In this section, we further investigate the effect of utilizing existing transcriptions,

but strictly in the context of improving acoustic unit discovery for subsequent lan-

guage recognition. We would like to see whether an improved representation of speech

might result in the discovery of more salient acoustic units and thus improve language

recognition performance.

To do so, we use the bottleneck features obtained from the transcribed SWB

benchmark system described in Subsection 5.4.3 as the feature representation for

acoustic unit discovery. That is, instead of using 39-dimensional MFCC features, we

run the entire unit discovery and recognizer training process described in Section 5.2

using the 64-dimensional bottleneck features extracted from the transcribed SWB

DNN (Subsection 5.4.3). The resulting per-frame senone labels are then used as out-

put targets to train (from scratch) a brand new DNN whose input layer is, as before,

the original 819-dimensional stacked PLP features. In this way, the transcribed SWB

bottleneck features (SWB-BN) are used only as a pre-processing step for the unit

discovery; thus, their impact manifests solely in the quality of the resulting per-frame

senone labels.

Table 5.3 summarizes these results. The first row repeats the results from Tables

5.1 and 5.2 that ran acoustic unit discovery using MFCC features, while the second

row displays the results of running acoustic unit discovery using SWB-BN features as

described above. We can see the immediate impact of the improved feature represen-

tation and note that SD training did not provide any improvement over SI modeling –

this makes sense, since the SWB-BN bottleneck features are trained using the speech

of many speakers for the explicit purpose of discriminating between phonetic vari-

ability7 – so we only show our SI results. But what is most important to realize is

7The work in [57] notes, however, that these same SWB-BN bottleneck features can be effective
for speaker recognition when used in tandem with spectral features.

97

that these SWB-BN features are seen only by the unit discovery process to obtain

the resulting per-frame senone sequences that we use as targets for subsequent DNN

training. Everything else in our bottleneck i-vector system, from stacked PLP coeffi-

cients as DNN inputs to i-vector extraction, remains exactly as described in Section

5.3. Aside from the supervision involved in obtaining the SWB-BN features, the rest

of the unit discovery system is still fully unsupervised. This clear difference in per-

formance between the first and second rows of Table 5.3 demonstrates yet again the

limitations of MFCC’s as acoustic features.

Because we are now using transcribed SWB data to obtain our bottleneck features,

it is only fair to compare our results against those of the transcribed SWB benchmark.

While this benchmark is still the best individual system, its fusion with our (now

semi-supervised) unit discovery-based system (using supervised SWB-BN features)

yields relative gains of 19%, 16%, and 9% on 30-, 10-, and 3-second test segments,

respectively. These results suggest that the information each of these two systems

focuses on to make its classification decisions may be complementary.

Table 5.3: Score-level fusion results on LRE11 for various test segment lengths (30,
10, and 3 seconds); the numbers shown are the average detection costs Cavg×100. The
first row, AUD(LRE-subset, MFCC), SD, is the same result reported in Table
5.2. As discussed in Subsection 5.4.6, the results in the second row, AUD(LRE-
subset, SWB-BN), SI, incorporate transcribed SWB data into the acoustic unit
discovery process in the form of BN features. Our best results are obtained by fusing
this semi-supervised system with the Transcribed SWB Benchmark (Subsection 5.4.3).

30 sec 10 sec 3 sec
AUD(LRE-subset, MFCC), SD 5.24 10.1 20.1

** AUD(LRE-subset, SWB-BN), SI 2.87 7.27 18.1
** Transcribed SWB Benchmark 2.60 6.25 16.5

Fusion of [**] above 2.10 5.21 15.0

We realize that there are a variety of other ways in which the transcribed SWB

data can be utilized alongside the LRE-subset data in the form of unsupervised do-

main adaptation. For the sake of comparison, we explore a few of these methods

but note that a thorough treatment of this problem is not the intended focus of this

paper; our work simply aims to address the use of large-scale acoustic unit discov-

ery as a tool to obtain features for language recognition. As a first experiment, we

built and tuned an English recognizer from the transcribed SWB data (SWB-ASR),

used the recognizer to decode the LRE-subset data, and built a new DNN from the

corresponding per-frame senone sequences. For the next experiment, instead of a

recognizer, we simply used the original SWB-BN DNN to classify each frame of the

98

LRE-subset data. Those classification results were then used as (potentially noisy)

targets to train a brand new DNN from scratch.8 In Table 5.4, we can see that both

experiments yielded individual and score-level fusion results that were similar to those

obtained via our acoustic unit discovery bottleneck i-vector system.

Table 5.4: Individual and score-level fusion results on LRE11 for various test segment
lengths (30, 10, and 3 seconds); the numbers shown are the average detection costs
Cavg× 100. All of the systems shown here use transcribed SWB in some way, and all
but the benchmark system (Row 4) incorporate the use of LRE-subset data. AUD
(Row 1) is the same result from Table 5.3 for a system that uses transcribed SWB data
to obtain BN features for acoustic unit discovery on LRE-subset data. SWB-ASR
(Row 2) uses a recognizer built from SWB to decode the LRE-subset data. SWB-
BN DNN (Row 3) classifies each frame of the LRE-subset data using a DNN built
from transcribed SWB data. Finally, our transcribed SWB benchmark result is shown
again in Row 4.

30 sec 10 sec 3 sec
1 AUD(LRE-subset, SWB-BN), SI 2.87 7.27 18.1
2 SWB-ASR, Decode LRE-subset 2.96 7.25 17.2
3 SWB-BN DNN, Classify LRE-subset 2.69 6.72 16.8
4 Transcribed SWB Benchmark 2.60 6.25 16.5

Fusion: 1 + 4 2.10 5.21 15.0
Fusion: 2 + 4 2.12 5.07 14.2
Fusion: 3 + 4 2.16 5.11 14.9

While the results shown in Table 5.3 demonstrate that even a little linguistic

knowledge from just a single language (i.e., English) can have a huge impact in a

multilingual setting (i.e., LRE11 performance), the results from Table 5.4 further

suggest that such supervision can be utilized in a variety of ways and still yield good

results. We can also see that the original benchmark system (Row 4 of Table 5.4),

which simply uses the original SWB-BN features for language recognition, continues

to be the single best-performing system. This may imply that bottleneck features are

the most robust when trained using only labels obtained in a fully supervised fashion.

We defer a more in-depth exploration of this phenomenon to future work.

5.5 Discussion

So far, we have seen that a large-scale acoustic unit discovery system can yield a

segmentation and clustering of untranscribed data that is useful for language recog-

8Training a new DNN from scratch yielded better results than simply fine-tuning the original
SWB-BN DNN.

99

nition. And while our focus continues to be on a fully unsupervised approach, we have

also seen that even a little bit of supervision can go a long way to improve results.

In this section, we discuss some of the other approaches we tried that did not work

as well as planned and then demonstrate the generalizability of our approach to the

previously unseen LRE15 data.

5.5.1 Negative Results

In the development of our proposed system, we explored the use of various levels

of supervision in initializing the acoustic unit discovery process. In one experiment,

we initialized our HMMs with a set of transcription-derived alignments (i.e., SWB).

In another, we initialized our HMMs at random, but at every iteration, we updated

our models using statistics accumulated from both the newly-sampled alignments (on

LRE-subset) and the transcription-derived alignments (from SWB). We also tried

scaling the statistics from these respective alignments in various ways to adjust the

amount our updated model relied on each one. Our hypothesis was that maintain-

ing some level of supervision might help anchor an otherwise unsupervised process;

however, this set of experiments yielded results that were no different from simply

initializing the HMMs at random and accumulating statistics from just the newly-

sampled alignments.

We also considered different ways to obtain our set of potential phonetic bound-

aries (i.e., {bt} from Section 5.2). In addition to using the acoustic cues-based method

from [98] with various parameter settings, we also experimented with the phone

boundaries obtained from decoding the data using a speech recognizer trained on

SWB. We found, however, that language recognition performance overall remained

fairly stable across different segmentation methods, so long as the determined bound-

aries occurred at a reasonable frequency and, as discussed in Section 5.2.5, the prior

on the boundary variables is biased towards being turned on (i.e., P (bt = 1) = 0.8).

Because the unit recognizer training step subsequently redefines these initial bound-

aries, the quality of the discovered units seems to be most dependent on how well we

can cluster the data given the feature representation (i.e., MFCC or SWB-BN).

5.5.2 The 2015 NIST Language Recognition Evaluation

Despite the amount of system development involved in obtaining the results described

in Section 5.4, we demonstrate here that our proposed methods can generalize from

LRE11 to a previously-unseen language recognition evaluation. The 2015 NIST Lan-

guage Recognition Evaluation encompasses 20 languages that can be grouped into

100

six clusters9 and, just like the LRE11, contains test durations of 3, 10, and 30 sec-

onds [25]. Unlike previous evaluations, LRE15 focused on classifying target languages

within the six language clusters. As such, we present our results on each language

cluster, with the exception of French, as well as an average over all clusters. It was de-

termined during the post-evaluation workshop that the French language cluster data

featured a systematic channel mismatch between the train and test segments that

led to near-random classification performance for most submitted systems. Further-

more, it was noted that Haitian Creole has a range of spoken forms, with the more

formal variety being more French-like and the informal variety much less so [106].

Addressing this issue is beyond the scope of this investigation, so we omit these re-

sults; but for future work, it would be interesting to investigate more channel-robust

(and speaker-independent) methods for unit discovery.

We used the development data provided by NIST: 141 hours of Arabic, 52 hours

of Chinese, 65 hours of English, 4 hours of French, 23 hours of Iberian, and 30 hours

of Slavic. A more complete breakdown of the amount of speech provided for the

languages within each cluster can be found in [106]. Despite the uneven distribution

of these data across the various language clusters, we decided against selecting a more

balanced subset and ran our initial experiments using all of it.

The top three rows of Table 5.5 are analogous to the results shown in Table 5.2,

which respectively include baseline results using just spectral features, results from

units discovered on MFCC features, and results from a fusion of the two. The lower

three rows present results analogous to those shown in Table 5.3, which include results

from units discovered on SWB-BN features, benchmark results using just SWB-BN

features, and results from a fusion of the two, respectively.

Table 5.5: Results on LRE15 broken down by language cluster – Arabic, Chinese,
English, Iberian, and Slavic – the numbers shown are the average detection costs
Cavg × 100.

Ar Ch En Ib Sl Avg
* Spectral Baseline 26.6 23.4 16.9 23.4 11.4 20.3
* AUD(MFCC), SD 24.6 18.4 18.3 21.9 7.27 18.1

[*] above fused 24.1 18.1 14.7 20.9 6.32 16.8

** AUD(SWB-BN), SI 19.6 13.3 12.7 18.5 3.89 13.6
** SWB-BN Benchmark 19.6 13.1 11.2 18.4 3.27 13.1

[**] above fused 18.6 11.8 10.3 17.1 2.89 12.1

9Arabic – Egyptian, Iraqi, Levantine, Maghrebi, Modern Standard; Chinese – Cantonese, Man-
darin, Min, Wu; English – British, General American, Indian; French – West African, Haitian Creole;
Iberian – Caribbean Spanish, European Spanish, Latin American Spanish, Brazilian Portuguese;
Slavic – Polish, Russian

101

We can see in Table 5.5 that the same trends from our LRE11 results persist in

LRE15, thus demonstrating the applicability of our approach to different languages.

In fact, acoustic unit discovery using MFCC features does substantially better than

the spectral feature baseline on all language clusters except for English. Furthermore,

the performance of our acoustic unit discovery-based system using SWB-BN features

is just about the same as that of the SWB-BN Benchmark, again with the exception

of English. Finally, we should note that in our actual submission to the LRE15, the

two best performing individual systems were the SWB-BN Benchmark with a slightly

different DNN configuration (i.e., 80 nodes at the bottleneck layer) and our acoustic

unit discovery-based system as described here [106].

5.5.3 Exploring Language Specificity

Because the LRE15 explicitly focuses on distinct language clusters, we also explore

the impact of language-specific perspectives in our unit discovery. Each row of Table

5.6 shows the result of building a language recognition system via unit discovery

(on MFCC features) on just the specified language cluster. In each column, we

highlight the best result obtained on the corresponding language cluster. This yields

a fairly strong diagonal, where the only off-diagonal element is likely due to the lack

of Iberian data relative to the amount of Arabic data. Otherwise, our results seem

to confirm the notion that learning units on a particular family of related languages

does indeed improve recognition performance for that specific language cluster, which

may not be terribly profound but serves as further evidence that our acoustic unit

discovery process captures language-specific information. Finally, fusing together the

five language cluster-specific systems also yields a stronger result on each language

cluster than simply discovering acoustic units from all languages pooled together.

A natural extension of these results would be a set of experiments that separate

the impact of data amount from that of language specificity. In particular, Table

5.7 shows the results of running unit discovery on the same amount of data from

each language cluster and building respective language recognition systems for each

one. Iberian is our most data-limited language cluster, so we use all of its data and

randomly select a 23-hour subset of data from every other language cluster for acoustic

unit discovery. Upon highlighting the corresponding row that obtains the best result

for each column, we see a diagonal that is not confounded by an imbalance of training

data between language clusters. Compared to the results shown in Table 5.6, we can

see that a decrease in the amount of data used for acoustic unit discovery on each

language cluster seems to worsen language recognition performance on average, but

not all language clusters are affected in the same way. For example, all of the results

102

Table 5.6: Results on LRE15 broken down by language cluster – Arabic, Chinese,
English, Iberian, and Slavic – the numbers shown are the average detection costs
Cavg × 100. For each of these systems, we run acoustic unit discovery using only the
data from the language cluster specified and build a language recognition system to
classify languages from all five language clusters.

hrs Ar Ch En Ib Sl Avg
Ar 141 25.1 20.3 18.8 22.0 8.21 18.9
Ch 52 25.6 19.8 17.8 22.9 9.14 19.0
En 65 25.8 19.8 15.9 23.0 8.20 18.5
Ib 23 27.3 21.5 19.8 22.5 9.71 20.2
Sl 30 26.5 20.5 19.6 22.7 7.63 19.4

Fused (315) 24.5 17.6 14.8 20.6 6.11 16.7

All 315 24.6 18.4 18.3 21.9 7.27 18.1

on the English language cluster actually improve with the decrease in the amount of

provided data for acoustic unit discovery. Table 5.5 also reflects this anomaly: the

spectral baseline significantly outperforms the unit discovery method (16.9 vs. 18.3)

on the English language cluster. Our future investigations will explore the causes of

such systematic discrepancies in our results on the English language cluster.

Table 5.7: Results on LRE15 broken down by language cluster – Arabic, Chinese,
English, Iberian, and Slavic – the numbers shown are the average detection costs
Cavg × 100. For each of these systems, we run acoustic unit discovery using only a
23 hour subset of the data from the language cluster specified and build a language
recognition system to classify languages from all five language clusters.

hrs Ar Ch En Ib Sl Avg
Ar 23 25.8 21.4 18.6 22.9 8.84 19.5
Ch 23 26.7 21.0 17.5 22.9 10.2 19.7
En 23 26.5 21.8 15.7 23.0 9.37 19.3
Ib 23 27.3 21.5 19.8 22.5 9.71 20.2
Sl 23 26.1 21.2 19.1 22.5 8.69 19.5

Fused (115) 24.9 18.4 14.2 20.7 7.00 17.0

All 115 25.3 18.2 16.4 22.0 7.89 18.0

As expected, score-level fusion of the five separate language cluster-specific sys-

tems provides the best result on each individual language cluster and overall. The

fused system (Fused, 115 hours) also achieves better performance on average and on

each individual language cluster except Chinese when compared to the experiment

shown in the last row of Table 5.7 in which we pool the 23 hour subsets together and

discover a single set of units on all of the languages combined (All, 115 hours). Lastly,

comparing the (Fused, 115) and (All, 115) results in Table 5.7 with the (Fused, 315)

103

and (All, 315) results in Table 5.6, we can see that the results are actually quite sim-

ilar despite an almost three-fold difference in the amount of data used to for acoustic

unit discovery. This seems to suggest that the amount of data may not be the primary

factor inhibiting performance.

All of the results from Tables 5.6 and 5.7 are obtained via acoustic unit discovery

on MFCC features and, despite significantly improving upon the spectral feature

baseline result in Table 5.5, are still far from the respective performances of the

SWB-BN benchmark and acoustic unit discovery-based system that uses English-

inspired SWB-BN features. Our original intention was to ascertain the true effect of

language specificity at the spectral feature level; as such, we chose not to use these

English-inspired features in our initial investigation. But for completeness, Table 5.8

presents the result of using SWB-BN features for acoustic unit discovery on a per-

language cluster basis, and we can see the corresponding performance improvements.

In addition to being better than systems in which all languages are pooled together

for acoustic unit discovery, our fusion of language-specific systems does even a bit

better than the SWB-BN Benchmark on average.

Table 5.8: Results on LRE15 broken down by language cluster – Arabic, Chinese,
English, Iberian, and Slavic – the numbers shown are the average detection costs
Cavg × 100. For each of these systems, we represent the audio using English-inspired
SWB-BN features and run acoustic unit discovery using a 23 hour subset of the data
from the language cluster specified. Using these discovered acoustic units, we build a
language recognition system to classify languages from all five language clusters.

hrs Ar Ch En Ib Sl Avg
Ar 23 20.9 16.0 15.2 20.3 6.39 15.8
Ch 23 22.1 16.1 15.2 20.3 5.72 15.9
En 23 21.6 15.4 12.8 19.2 5.84 15.0
Ib 23 21.4 15.3 15.5 19.1 5.40 15.3
Sl 23 21.3 16.0 15.6 20.8 4.66 15.7

Fused (115) 19.5 12.9 11.2 17.6 3.53 12.9

All subsets together 115 20.2 14.3 13.1 18.3 3.94 14.0
All languages, all data 315 19.6 13.3 12.7 18.5 3.89 13.6

SWB-BN Benchmark – 19.6 13.1 11.2 18.4 3.27 13.1

Our experiment results continue to motivate the need for an improved feature

representation for all languages. Our results in Table 5.8 were obtained using tran-

scribed English and did fairly well. However, appropriate features for English may

be insufficient for other language clusters. The tonal nature of Chinese, for example,

is completely ignored in the standard MFCC-based representation used for English;

as such, there remains plenty of room for improvement. As we look ahead to future

104

work, one experiment that would help ascertain the generalizability of our methods

is to use a more appropriate feature representation for Chinese, learn acoustic units

on those, and evaluate the new system.

5.6 A Phonotactic Perspective

So far, our discussion has been limited to an acoustic approach to language recogni-

tion. For a given utterance whose language we would like to identify, we extract an

i-vector that summarizes that utterance’s distribution of acoustic (spectral or bottle-

neck) features. Another possible approach to language recognition is a phonotactic

approach, which deals with combinations of phonemes [3, 109]. In this section, we

discuss our initial experiments on phonotactic language recognition.

5.6.1 Introduction to Phonotactic Language Recognition

Languages can, to some extent, be characterized by their phoneme sets.10 In lin-

guistics, a phoneme is a basic element of a given language that can be used to build

words and distinguish them from one another [3]. Phonotactics deals with the rules

governing the possible phoneme sequences in a language. In particular, two languages

may share a very similar set of phonemes, but their respective combinations of sounds

may differ and thus provide information useful for langauge recognition.

A typical phonotactic approach uses one or more linguistic unit recognizers to

tokenize a speech signal into a stream of linguistic units upon which n-gram statistics

are extracted. Note that the recognizer can be trained on a language (or languages)

that is disjoint from the set of languages that we would ultimately like to identify.

These n-gram statistics can be seen as information about the language phonotactics

in the utterance and can be used to train statistical language models (or other related

representations) for each of the languages in the evaluation set. [3]

In one traditional approach, known as phoneme recognition followed by language

modeling (PR-LM) [110, 111], we run a phoneme recognizer on training data from

each target language and then train a separate n-gram language model for the corre-

sponding language, thus yielding N language models for N target languages in our

language recognition task. During the test phase, we can calculate the likelihood of

each utterance with respect to each of the target languages by running the phoneme

recognizer on the test speech sample and calculating the likelihood of the produced

10For a fantastic review of the current state-of-the-art in this field, please refer to [3]; much of this
overview is taken directly from it.

105

phoneme sequence with respect to the corresponding language model. This simulates

a situation in which a monolingual person is exposed to utterances from a list of

target languages and asked to identify the language of each utterance. [3]

Figure 5-4: System diagram of parallel phoneme recognition followed by language
modeling (PPR-LM). In this case, we have three phoneme recognizers at our disposal
(Hungarian, Russian, and Czech), and we build generative n-gram language models
for each of our languages of interest (Arabic, English, Czech, and Spanish). (Taken
from [3].)

This analogy can be extended to that of a multilingual individuals, giving us par-

allel PR-LM (PPR-LM), in which each utterance is decoded with multiple phoneme

recognizers and their corresponding target language-specific n-gram language models

[110, 111]. An example of such a system is illustrated in Figure 5-4. Incorporating

more phoneme recognizers built for different languages broadens a system’s ability

to recognize the different acoustic sequences of all languages. Other attempts to in-

corporate a better coverage of the various languages include different configurations

for multilingual phoneme recognizers [112], as well as the use of acoustic sub-word

units without language-specific designations as an alternative to a language-dependent

phoneme recognizer [113].

Our work in unsupervised acoustic unit discovery also falls within this framework.

106

The work in [113] presents a way to obtain a version of our acoustic units – referred

to in their work as “acoustic segment models (ASMs)” – by bootstrapping from a

set of phone models trained on transcribed multilingual data. Models representing

these ASMs are then used to tokenize a test utterance, and a classification decision

is made based on its n-gram co-occurrence statistics [113]. In our investigation, we

replace their (semi-supervised) ASMs with our discovered acoustic units, which can

be obtained in a fully unsupervised or semi-supervised fashion, and run a similar

set of experiments to evaluate the efficacy of acoustic unit discovery for phonotactic

language recognition.

5.6.2 i-vectors for Phonotactic Language Recogntition

Upon tokenizing a test utterance using a unit/phoneme recognizer, recent approaches

to phonotactic language recognition have achieved success accumulating an utter-

ance’s n-gram counts into a fixed length vector, which can then be used as input to

a discriminative classifier, such a support vector machine (SVM) [114, 115, 116] or

logistic regression (LR). However, because the length of this count vector scales expo-

nentially with the order of the n-gram (usually 3 or 4), recent work has been devoted

to obtaining a good compact representation of the original n-gram counts that is

computationally feasible in terms of both time and memory. One approach achieved

success using principal component analysis (PCA) [115]; a more recent approach uses

i-vectors in the form of a subspace multinomial model (SMM) [117].

In Chapter 2, we introduced the i-vector, w, as the posterior distribution of coor-

dinates within a linear subspace, T , that parameterizes an utterance’s distribution of

acoustic features in the form of a supervector, M , of stacked GMM component means

with respect to some existing UBM, m; that is,

M = m+ Tw. (5.1)

While this formulation is based on continuous features, we can similarly model discrete

features under the subspace paradigm [117]. Discrete events can be modeled using

a multinomial distribution and, in a way similar to the original i-vector formulation,

we can assume that there is a low-dimensional subspace in which the parameters of

the multinomial distributions for individual utterances live. Along similar lines, the

work in [118] develops a method to model the component weights of a GMM using

non-negative factor analysis.

In the following sections, we provide an overview on how to represent an utterance-

specific multinomial distribution using a low-dimensional i-vector. First, we assume

107

that all observations are outputs of a single multinomial distribution (i.e., unigram)

and derive the subspace multinomial model (SMM) [117]. Then we extend the SMM

to allow us to model language phonotactics in a way that is consistent with the n-

gram model (n > 1); this is known as the subspace n-gram model (SnGM) [119].

A more comprehensive derivation of these models can be found in [3]; our overview

offers just the essentials.

The Subspace Multinomial Model (SMM)

In a deliberate abuse of notation, we define for utterance u and unigram e ∈ {1, ..., E}
an utterance-dependent model parameter, Mue, representing the probability for the

corresponding unigram, as

Me(u) =
exp(me + tew(u))∑E
i=1 exp(mi + tiw(u))

, (5.2)

where w(u) is an utterance-dependent latent variable, me is the eth component of the

E-dimensional vector m, and te is the eth row of the subspace matrix, T, which spans

a linear subspace in the log-probability domain.

Given parameters m and T, we can estimate w(u) to maximize the log-likelihood

of utterance u, which is given as

logP (c(u)|M(u)) =
E∑
e=1

ce(u) logMe(u), (5.3)

where ce(u) is the occupation count for unigram e in utterance u and, correspond-

ingly, c(u) is an E-dimensional vector of observed unigram counts. As defined with

the softmax normalization above, the E-dimensional vector M(u) parameterizes a

probability distribution over the unigrams in u. A more comprehensive explanation

of how these parameters (m,T,w) are estimated in iterative fashion using maximum

likelihood (ML) estimation is beyond the scope of this overview, but can be found in

[3, 117, 120]. This is known as the subspace multinomial model (SMM).

This formulation assumes that each element in utterance u is generated indepen-

dently from a single multinomial distribution (i.e.,
∑

eMe(u) = 1), which limits its

application to the unigram approximation.11 A subsequent extension of this work

estimates i-vectors that correctly maximize the likelihood of the observed phoneme

sequences under n-gram model assumptions for n > 1 [119].

11In practice, however, this model still achieved relative success when applied to 3-grams [117].

108

The Subspace n-gram Model (SnGM)

In the n-gram model, we assume that n-grams with the same history, h, are drawn

from the same multinomial distribution and n-grams with different histories are drawn

from different multinomial distributions. That is, suppose we are given a decoded

sequence of units from an utterance u = {l1, l2, l3, ..., lW}. Then, in another deliberate

abuse of notation, we assume that the conditional distribution of a phoneme l given

its history h is a multinomial distribution with parameters Mhl; i.e.,

logP (l|h) = logMhl, (5.4)

where Mhl > 0 and
∑

lMhl = 1. Note in this case that
∑

h

∑
lMhl 6= 1, whereas in

the unigram SMM discussed previously,
∑

h

∑
lMhl =

∑
eMe = 1. The parameters

of the corresponding utterance-specific multinomial distribution can be represented

as

Mhl(u) =
exp(mhl + thlw(u))∑E
i=1 exp(mhi + thiw(u))

, (5.5)

where mhl is the log-probability of n-gram hl calculated over all the training data,

thl is a row of a low-rank rectangular matrix T and w(u) is an utterance-specific

low-dimensional i-vector. Given parameters {mhl} and T, we can estimate w(u) to

maximize the log-likelihood of utterance u, which is given as

W∑
i=1

logP (li|hi) =
∑
h

∑
l

chl(u) logMhl(u). (5.6)

The EM-like algorithm involved in estimating these parameters in iterative fashion

to maximize a regularized form of this likelihood function is discussed in [3, 119]. We

apply this subspace n-gram model in our subsequent experiments.

5.6.3 Initial Experiments

A large proportion of recent developments in phonotactic language recognition uti-

lize the Hungarian phone recognizer developed at the Brno University of Technology

(BUT) [121] to obtain the necessary n-gram counts for processing [3, 115, 117, 119].

To avoid introducing the additional complexity involved in comparing with another

system developed using a completely different set of labeled data, we will continue

presenting our results using only the SWB and LRE datasets previously described

and note here that our intent is not to present state-of-the-art results in phonotactic

language recognition, but to explore the effectiveness of our discovered acoustic units

109

in a phonotactic setting. As such, we present as our baseline a phonotactic system

built from the speech recognizer trained on SWB data, which we refer to as SWB-

ASR. For consistency, this is the same SWB-ASR with which we built a bottleneck

i-vector system and obtained the results on acoustic language recognition shown on

Row 2 of Table 5.4. Because this recognizer employs a language model tuned for En-

glish, this is indeed a weak and unfair baseline; however, our attempts to improve its

performance via the use of a null grammar yielded insignificant gains. It is possible

that the discrepancy between these baseline results on Row 0 and the rest of those

shown in Table 5.9 is the result of a language and recording channel domain mismatch

between SWB and LRE data, but further experimentation would be required to sub-

stantiate this claim. For now, what we observe is that the English speech recognizer

trained on 100 hours of SWB data seems to be an ill-suited tokenizer for phonotactic

language recognition.

In our initial experiments, we use the acoustic units discovered on the LRE-subset

data represented by our SWB-BN features (Table 5.3) and build various phonotactic

i-vector language recognition systems. The most primitive system involves using the

context-independent acoustic model obtained from the original acoustic unit discovery

and running one iteration of Gibbs sampling on all of the LRE11 data; we will refer

to this as CI sampling. As a more advanced system, we use the context-dependent,

speaker-independent acoustic model derived from these units alongside a null gram-

mar, with which we decode all of the LRE11 data; we will subsequently refer to this

as CD-SI decode. In both of these systems, we use the resulting unit sequences

to train an i-vector extractor based on the SnGM described above. From our 100

acoustic units, we accumulate statistics on 1002 = 10, 000 bigrams.12 Furthermore,

while better results can be obtained using expected (soft) counts from our decoding

lattices [122], we simplify our process and accumulate hard counts from the 3-best

paths through our phone lattices.

For comparison, we also use the corresponding 1-best, per-frame senone sequences

from the decoded LRE11 data and apply both the SMM to extract i-vectors as well as

the PCA-based feature extraction from [115]. Because senones themselves are context-

dependent triphone states, they should provide relevant contextual information that

is comparable to the bigram model above; we will refer to these systems as senone

SMM and senone PCA, respectively. Table 5.9 displays our initial results; note

that the results for all the systems shown in Rows 1-6 are obtained from the same

set of acoustic units discovered on the LRE-subset data using SWB-BN features.

12Previous works using the BUT Hungarian phone recognizer [121] accumulated 333 = 35937
trigram counts [115, 117, 119].

110

Furthermore, all systems including the baseline result in Row 0 use exactly the same

amount of labeled data.

Table 5.9: Initial results on LRE11 for various test segment lengths (30, 10, and 3
seconds) using a phonotactic i-vector approach; the numbers shown are the average
detection costs, Cavg× 100. The first six systems (Rows 0-5) are discussed in Section
5.6.3; the Acoustic bottleneck i-vector result is repeated from Table 5.3 in Section
5.4.6.

30 sec 10 sec 3 sec
0 SWB-ASR / phone seq. / bigram SnGM 18.6 28.9 40.0
1 CI sampling / unit seq. / bigram SnGM 11.4 18.2 31.6
2 CD-SI decode / unit seq. / bigram SnGM 10.5 16.2 29.5
3 CD-SI decode / per-frame senone / SMM 9.26 16.7 30.4
4 CD-SI decode / per-frame senone / PCA 8.23 16.8 30.9
5 Fusion: 2 + 4 6.73 13.8 27.4

6 Acoustic bottleneck i-vector (cf. Table 5.3) 2.87 7.27 18.1

Despite the myriad ways in which we can improve upon these results – using

expected trigram counts, tuning the i-vector dimensionality and SngM regularization

parameter, et cetera – it is clear from Table 5.9 that there is a significant discrepancy

between the results obtained via any of our phonotactic approaches (Rows 0-5) and

the results of our acoustic approach to language recognition (Row 6). Note that the

results in Rows 1-5 used SWB-BN features for acoustic unit discovery and are, even

with the expert-level knowledge, still significantly worse than the spectral feature

baseline acoustic approach (cf. Table 5.2) that uses neither labeled data nor unit

discovery.

Nevertheless, a slightly closer look at these results yields a few insights that we can

explore further. First, decoding the LRE data using our trained, context-dependent

unit recognizer (Row 2) seems to do better than sampling from our mono-unit acoustic

model (Row 1). Second, while a simple PCA applied to per-frame senone sequences

(Row 4) seems to perform best on the longer, 30-second test segments, the bigram

SnGM (Row 2) stands out on the shorter, 10- and 3-second test segments. In light

of this, we show a fusion of these results in Row 5 to illustrate the best we can

do. However, these results are still far worse than the previous result obtained using

acoustic bottleneck features (Row 6).

5.6.4 Exploiting Fusion and Language Specificity

Throughout this chapter, we have observed both the effectiveness of score-level fusion

and the importance of language specificity. We should also realize that, with the

111

exception of the fusion result in Row 5, each of the results in Table 5.9 were obtained

from just a single PR-LM system, in which we have a “phoneme” (i.e., acoustic unit)

recognizer followed by a language modeling scheme in the form of SnGM, SMM, or

PCA-based i-vectors. Recall from our introduction in Section 5.6.1 that performance

gains in phonotactic language recognition are often obtained via the use of multiple

phoneme recognizers in the form of parallel PR-LM, or PPR-LM. To this end, we

return to the notion of language specificity explored earlier and exploit the LRE data

in a way that only our acoustic unit discovery method can:

1. Build a separate acoustic unit recognizer for each of the 24 languages in LRE11;13

2. For each language-specific acoustic unit recognizer, accumulate bigram statistics

from all of the LRE data and train an i-vector extractor based on the SnGM;

3. Fuse together all 24 language recognition systems at the score level.

Table 5.10 provides a summary of these results. To provide additional clarity, we

also report the worst, average, and best results obtained by individual languages for

the various test segment lengths. Comparing these results with those in Table 5.9,

we can see that the individual phonotactic systems built from specific languages are,

at best, still slightly worse than a single phonotactic system built from all languages

combined; however, we should also keep in mind that each of these systems was built

on only a fraction of the data! Ultmately, a score-level fusion of systems built from

individual languages yields immense improvements, thus suggesting once again the

importance and benefit of combining different language-specific perspectives.

Table 5.10: Results of score-level fusion on LRE11 for various test segment lengths
(30, 10, and 3 seconds) using a phonotactic i-vector approach; the numbers shown
are the average detection costs, Cavg× 100. For this experiment, we ran acoustic unit
discovery on 10 hours of each of the 24 LRE11 languages, built a unit recognizer for
each of them, and then used each recognizer to build a phonotactic language recognition
system based on unit bigram counts and i-vectors based on the SnGM.

30 sec 10 sec 3 sec
Worst of Individual Languages 12.9 19.8 33.2
Mean of Individual Languages 11.6 18.3 31.9
Best of Individual Languages 10.3 17.0 30.7

All 24 LRE11 Languages Fused 6.27 9.73 22.4

Acoustic bottleneck i-vector (cf. Table 5.3) 2.87 7.27 18.1

In another experiment, we run the same procedure outlined above, but instead of

using the bigram SnGM to obtain i-vectors, we accumulate per-frame senone unigram

13We use 10 hours from each language that comprise the LRE-subset data.

112

statistics from each of the recognizers and simply apply PCA to obtain our i-vectors.

We saw in Row 4 of Table 5.9 that this PCA-based method performs relatively well

on the longer, 30-second test segments, but worse than the bigram SnGM on shorter

test segments. Table 5.11 shows that score-level fusion helps the PCA-based i-vectors

obtain comparable performance on shorter test segments and attain even better per-

formance on the 30-second test segments. The effectiveness of a simple PCA-based

approach relative to that of the SMM and SnGM is somewhat surprising; we defer to

future work a more in-depth analysis of the differences between these i-vector models

(PCA, SMM, SnGM) for phonotactic language recognition using discovered acoustic

units.

Table 5.11: Results of score-level fusion on LRE11 for various test segment lengths
(30, 10, and 3 seconds) using a phonotactic i-vector approach; the numbers shown
are the average detection costs, Cavg × 100. In this experiment, we ran acoustic unit
discovery on 10 hours of each of the 24 LRE11 languages, built a unit recognizer for
each of them, and then used each recognizer to build a phonotactic language recognition
system based on unigram senone counts and PCA-based i-vectors.

30 sec 10 sec 3 sec
Worst of Individual Languages 11.3 21.6 34.7
Mean of Individual Languages 10.2 20.2 33.4
Best of Individual Languages 9.24 19.1 32.5

All 24 LRE11 Languages Fused 4.24 9.72 23.4

Acoustic bottleneck i-vector (cf. Table 5.3) 2.87 7.27 18.1

5.6.5 Towards Accumulating DNN Softmax Posteriors

As an alternative to phoneme recognizer-based phonotactic approaches, recent work

has found success in accumulating the softmax posteriors at the output layer of a

DNN over each frame of an entire utterance and using the resulting “expected senone

counts” vector as a feature from which to extract SMM-based i-vectors [106]. In this

section, we adopt the same approach using the DNNs trained on acoustic unit and

present our results in Table 5.12. Each of the systems depicted uses the exact same

DNN trained to obtain its respective result in Table 5.3.

We can see that the results in Table 5.12 are indeed better than the results of more

traditional phonotactic approaches from Table 5.9; however, they are still significantly

worse than the acoustic approaches shown in Table 5.3. In fact, the Transcribed

SWB Benchmark result from both Tables 5.12 and 5.3 represent, to some extent,

the supervised upper bounds on the performance potential of phonotactic and acous-

tic approaches, respectively, since the DNN is trained using transcribed English and

113

Table 5.12: Results on LRE11 for various test segment lengths (30, 10, and 3 sec-
onds) using SMM-based i-vectors extracted from expected senone counts obtained by
accumulating the DNN softmax over each frame of an utterance; the numbers shown
are the average detection costs, Cavg × 100. Each of the systems depicted below uses
the exact same DNN trained to obtain the results in Table 5.3.

30 sec 10 sec 3 sec
AUD(LRE-subset, MFCC) SD 8.69 14.7 25.5

AUD(LRE-subset, SWB-BN), SI 5.98 12.9 25.6
Transcribed SWB Benchmark 4.81 10.5 23.2

involves no acoustic unit discovery. The significant gap in performance isn’t sur-

prising, as acoustic approaches to language recognition have surpassed phonotactic

approaches in recent years. The typical strategy for a NIST LRE submission is to

fuse together a select subset of these systems that covers both approaches [106].

Finally, the performance gaps between the rows of Table 5.12 are readily apparent.

The final row portrays the benefit of expert linguistic knowledge, while the first

row represents the outcome of acoustic unit discovery given no initial supervision.

The middle row, which uses SWB-BN features for acoustic unit discovery, presents

results in between. Yet if SWB-BN features are based on expert linguistic knowledge

and acoustic unit discovery can purportedly adapt to new and unseen languages, we

should expect to see results that are an improvement to those shown in the final

row. As it stands, acoustic unit discovery actually makes matters worse. While we

have demonstrated the ability to achieve gains via fusion and language specificity,

there remains much to be done to improve the acoustic unit discovery process (and

its input feature representation) in such a way that it can ascertain more salient

linguistic knowledge. We embark upon this investigation in the following chapter.

5.7 Future Work

As we have commented throughout this chapter, there exist many avenues for future

work. Apart from a cursory visual inspection, we have not done much to measure,

using existing metrics [123], the quality of the discovered acoustic units using such

a large set of multilingual data. To bridge the gap between running unit discovery

on MFCCs and discovery acoustic units on SWB-BN features, we could consider in-

corporating autoencoders of stacked MFCC features, such as in [124], or adopting a

bootstrapping approach, in which we learn an initial set of units on MFCCs, train

a DNN on those targets, and use the resulting bottleneck features as input to an-

other round of acoustic unit discovery, and so on. We can also update our DNN

114

architecture to account for language specificity at the output layer; for example, each

target class could be a language-specific senone where, during training, we compute

our softmax only for the senones pertinent to the current language [125, 126]. Lastly,

it might be useful to consider developing a new architecture altogether that can inte-

grate the acoustic unit discovery, context-dependent modeling, and bottleneck feature

extraction into a single, data-driven process.

Continuing to explore different language-specific perspectives is certainly ripe with

possibilities, especially in the context of LRE15 and our observations with the English

and French language clusters. Another easy extension would be to consider the use of

different acoustic features for different languages – for example, we mentioned earlier

that running unit discovery using MFCCs is far less meaningful on tonal languages

such as Chinese. If we were to view the notion of language specificity as a weak form

of supervision, then it is evident that even just a little supervision of any form and

from any language can be extremely useful. There are many ways to incorporate this

that can still be explored, including equivalence constraints on acoustic sequences

(e.g., examples of the same word) [127, 128, 129].

5.8 Summary

In this chapter, we explored the application of large-scale acoustic unit discovery as

a tool to obtain features for language recognition. To do so, we implemented a par-

allelized version of a Bayesian nonparametric model from previous work, which let

us scale the acoustic unit discovery process from operating on 10 hours of data to

discovering acoustic units on hundreds of hours of multilingual data. We use these

per-frame sequences of units (or states or senones) as targets to train a DNN that,

given stacked spectral features as input, provides a bottleneck feature representation

that can be used for i-vector language recognition. We found that a score-level fu-

sion with a baseline system built from acoustic features yields substantial gains and

significantly closes the gap between the baseline and a benchmark system built using

transcribed English, suggesting that discovered acoustic units may be complementary

to spectral features. Subsequently, we also found that using an improved represen-

tation of speech (i.e., supervised bottleneck features) as input to our acoustic unit

discovery system can yield substantial performance gains, thus motivating the need

for a better understanding of the speech signal. We validated the generalizability of

our proposed approach by presenting results that exhibit similar trends on the LRE’s

from both 2011 and 2015. Finally, we demonstrated on LRE15, as well as in our

attempts at phonotactic language recognition, the continued importance and efficacy

115

of different language-specific perspectives for unit discovery.

In the following chapter, we dig a little deeper into possible improvements for our

acoustic unit discovery process. To this end, we return to a monolingual setting and

attempt to modify the original, fully unsupervised method of acoustic unit discovery

such that it can take into account weak constraints. These constraints may come in

the form of pairs or clusters of repeated words, phrases, or even sentences. While an

appropriate segmentation and clustering still needs to be learned for each of these

utterances, we hope this form of weak supervision can bring forth the discovery of

more linguistically meaningful sub-word units.

116

Chapter 6

Improving Acoustic Unit

Discovery: Analysis and

Experiments

Previously in Chapter 5, we successfully applied acoustic unit discovery to language

recognition and, in doing so, observed a fair amount of room for improvement in

our ability to ascertain linguistic knowledge in an unsupervised (or semi-supervised)

manner. We saw that an improved feature representation in the form of supervised

DNN bottleneck features can yield more salient acoustic units for language recog-

nition; however, these acoustic units were unable provide an improvement over the

straightforward application of those supervised bottleneck features, suggesting that

there are still many linguistic properties that are not captured by either the unit

discovery model or the bottleneck features.

In this chapter, we analyze the behaviors of our acoustic unit discovery method and

explore various ways to improve the quality of our discovered units in the linguistic

sense. To this end, we return to a monolingual setting and exploit the human-labeled

ground-truth conveniences of the TIMIT corpus [99] to run our initial experiments.

Instead of using language recognition performance as our primary metric, we will use

various methods to evaluate the segmentation and clustering returned by our unit

discovery model and proposed modifications. These metrics will include a combina-

tion of boundary F1 score (for segmentation), normalized mutual information (for

clustering), word (or phone or unit) error rate (for both), and visual inspection. Our

hope is that a closer look at the intricacies of the entire process may yield insights

into how linguistic knowledge can be better ascertained from data.

117

6.1 Desiderata

Our ultimate goal is to modify the original, fully unsupervised method of acoustic

unit discovery so that it can take into account weak constraints, such as equivalent

realizations of words or sentences. For example, Figure 6-1 shows spectrograms for

two instances of the same speaker (from Switchboard) saying the word “really;” the

phonetic transcription can be found in the green box. We can see the result of our

unit discovery run on SWB-BN features: underlined in blue are the parts of the unit

sequence that match across both utterances, while highlighted in red are the segments

that do not match. We can also see that the segmentation boundaries differ between

the transcription and the result of our unit discovery. In particular, if there had

been a hypothesized boundary somewhere within unit 5 on the lower spectrogram,

perhaps we could have obtained a clustering that matches the 70-90 unit sequence on

the upper spectrogram. That said, we should note that the two spectrograms actually

look rather different; indeed, it may not be obvious to an untrained eye that these

two segments are instances of the same word. It is quite remarkable that so much of

the unsupervised segmentation is identical.

During the supervised training of a speech recognizer, the system is given an ut-

terance and a corresponding phonetic sequence of finite length. Via a process known

as forced alignment, the system is then tasked with fitting each frame of the utterance

to the sequence of HMM states corresponding to the provided phone sequence, thus

yielding a phonetic segmentation for the utterance. Recall from Section 5.2.6 that

this is also how our unit recognizer training process modifies the original landmark

boundaries specified by our unit discovery Gibbs sampling. The difference between

traditional speech recognizer training and our unit recognizer training process, how-

ever, lies in the origin of these phone/unit sequences.

In the case of the latter, the unit sequences provided for unit recognizer training

are the result of sampling from a generative model; as such, outside of the provided

acoustic features and assumed (HMM/GMM) model parameters, the unit discovery

process is otherwise unconstrained and, by definition, unsupervised. For example, if

the respective features of a male /ah/ and a female /ah/ look different enough, then

it is perfectly reasonable, from the point of view of the generative model, to have

two separate acoustic units for a female /ah/ and a male /ah/. On the other hand,

the transcriptions provided in the fully-supervised training of a speech recognizer will

likely require that an /ah/ spoken by any speaker be modeled with the same unit.

This encourages the /ah/ model to take into account gender and speaker variability,

thus making it more speaker independent.

Our goal in this work is to encourage the learning of more speaker-independent

118

Figure 6-1: Two spectrograms for two instances of the same speaker saying the word
“really.” The phonetic transcription can be seen in the green box. Underlined in
blue are the parts of the discovered unit sequence that match across both utterances;
highlighted in red are the segments that do not match.

or, at the very least, instance-robust acoustic units. Since both instances of “really”

in Figure 6-1 come from the same speaker and occur in isolation from potential

coarticulating effects, it would be especially nice to be able to discover the same

resulting unit sequence. At the end of the day, we would like to impose the same

form of consistency that a supervised phonetic transcription might, but we would like

to do so without the use of a lexicon or pronunciation dictionary. Instead, we imagine

a scenario in which a user (or some oracle) points out clusters of two or more speech

segments (i.e., utterances) that correspond to the same word (or phrase or sentence)

and use this knowledge to guide our unit discovery process.

This notion of weak, cluster-based constraints likens back to our explorations using

119

pairwise speaker labels in Chapter 4. The scenario here is a little more involved in that

we still need to obtain a segmentation and clustering at the sub-word unit level. Our

weak constraints here simply serve to encourage our acoustic unit discovery to learn

the same sequences for sets of corresponding utterances;1 the actual unit sequences

themselves still need to be determined!

Other approaches to guided (i.e., semi-supervised) unit discovery have been ex-

plored in [127] and, more recently, in [128, 129]. The work in [127] used spoken term

discovery to find pairs of repeated words. For each pair, they perform a dynamic

programming alignment of the acoustic observations, thus generating a correspon-

dence between cross-speaker frame pairs that can be used to partition the Gaussians

of some GMM into sub-word unit models that exhibit more speaker independence.

Subsequent work in [128, 129] uses these correspondences to learn a better neural

network-based feature representation of the audio.

Given the relative success of pairwise constraints in [127, 128, 129] in guiding the

partitioning of the mixtures of a GMM to obtain more speaker-independent acoustic

units, we aim to explore the learning of sub-word unit HMMs (i.e., acoustic units) in

a similar fashion. Instead of correspondences between pairs of individual frames, we

consider correspondences between sub-word segments and use them to build speaker-

independent HMMs. Enforcing such constraints, however, requires a more detailed

understanding of each stage in the unit discovery process and the effect of perturba-

tions at each stage. As segmentation and clustering are obviously inter-related, our

subsequent explorations will separately consider the impact of segmentation on the

resulting clustering, and vice versa. That is, we will begin by analyzing the effect of

clustering using these pairwise constraints while assuming the existence of a consis-

tent segmentation. Then we will explore ways to obtain a robust segmentation that

utilizes these constraints.

6.2 Data

Because of its implementational convenience, we return to the TIMIT corpus used

in [5] for the experiments in this exploration [99]. TIMIT is a corpus of read speech

containing broadband recordings of 630 speakers of eight major dialects of American

English, each reading ten phonetically rich sentences. Each utterance has been tran-

scribed and verified, and we use these labels as a ground truth on which to base our

1In future work, we will also explore the effect of difference constraints; i.e., encouraging the
learning of different unit sequences that can distinguish between pairs of utterances that contain
different spoken content.

120

comparisons [99]. Our work will utilize the corpus-specified training, development

(dev), and testing subsets in various ways that we will explicitly detail for each ex-

periments. The speakers present in each of the three subsets are disjoint, and none of

the sentences recorded in the train subset are present in the dev or test subsets. How-

ever, the dev and test subsets share a few realizations of the same sentence recorded

by different speakers; we will specify how they are used in our experiments.

The entirety of TIMIT can be broken down into three different types of sentences:

the sa sentences recorded by all speakers; the si sentences are each read by two

different speakers, and the sx sentences are each spoken by seven different speakers.

None of the recorded sa sentences are used in the corpus-specified train, dev, or test

sets. The train subset contains 8 recordings (3 si and 5 sx) from each of 462 speakers

(326 male and 136 female) – yielding a total of 3696 utterances – which can be broken

down as 1 recording for each of 1386 distinct si sentences and, more importantly, 7

separate recordings for each of 330 distinct sx sentences (2310 total utterances). We

can see these sx sentences as providing text-equivalent constraints, in which seven

different speakers provide realizations of the same text.

It is extremely important to note, however, that even though a sentence may

contain the same underlying words, it may not have the same underlying phonetic

transcription. For example, one of the most well-known sentences in TIMIT is sa1,

which reads, “She had your dark suit in greasy wash water all year.” While this is

not a part of the specified training subset that we will use, this is a sentence that all

462 speakers recorded, and the expert-level transcription of these sentences resulted

in 458 unique phonetic sequences. In only four instances was there a recording whose

pronunciation was exactly the same as that of another speaker!

Of course, this is largely due to utterance length and thus breaks down when we

begin to consider speech segments within these utterances. For instance, the words

“dark suit” has 102 instances (out of 462) of the same pronunciation: /d aa r kcl

k s ux tcl t/. Another popular alternative pronunciation (72 instances) is /d aa

r kcl k s ux dx/, where the unvoiced /tcl t/ from the first sequence is replaced

with continued voicing in the form of a flap /dx/ in anticipation of the vowel at the

start of the next word, “in.” To this end, we must stress that our goal is not to

force our acoustic units to marginalize out pronunciation variability across speakers

or instances. This would be extremely dangerous – confusing or combining models of

inherently different phonemes due to pronunciation variablity would be detrimental

to our goal of ascertaining linguistic insight for any language. Rather, our intent is

to enforce constraints on utterances that we know contain the same pronunciation

(i.e., sequence of phonemes) to increase the speaker independence (and instance-

121

robustness) of our acoustic units; we will refer to these as pronunciation-equivalent

constraints.2

In some of our subsequent experiments, we limit ourselves to just the pronunciation-

equivalent (pron-eq-train) subset of the training data. This set of 66 utterances

contains 28 distinct sentences, where each sentence has between 2 and 6 recordings

that feature the exact same pronunciation sequence from different speakers. We re-

alize that the size of this data set is quite small and that it is possible to obtain a

larger set of sub-sentences (i.e., words or phrases) from the many utterances of sx

sentences, but we feel that this is a reasonable place to begin our initial explorations.

6.3 A Broader Perspective

Previously, the work in [130] proposed a model of unsupervised phonological lexi-

con discovery to learn phoneme-like and word-like units from acoustic input. Build-

ing upon the acoustic unit discovery work in [5], this model integrates an Adaptor

Grammar framework [131] that allows for the unsupervised learning of lexicons from

unsegmented symbolic sequences. Bridging the gap between the sequences of dis-

covered acoustic units and the Adaptor Grammar, however, required the use of a

noisy-channel model to map variations in speech production – including differences

not only in pronunciation but also in stress pattern, phonetic context, et cetera –

to a more unique representation [130]. In the context of the work in this chapter,

we propose the use of pronunciation-equivalent constraints to improve the low-level

acoustic model in a way that makes the task more straightforward for the noisy-

channel model. In a subsequent exploration, it would be interesting to explore the

use of the text-equivalent constraints mentioned above as a form of weak supervision

to aid the adaptor grammar in its lexicon discovery process.

6.4 Metrics and Baselines

In this work, our goal is to discover acoustic units subject to a set of weak con-

straints. As such, we need a set of metrics that can measure both acoustic unit

quality with respect to some ground truth, as well as some notion of consistency

within our pronunciation-equivalent utterances. This sort of a tradeoff is necessary,

as one could imagine satisfying the consistency constraint trivially with discovered

2From a practical point of view, this methodology begets the somewhat circular question of
how we can guarantee without expert-level knowledge (e.g., transcribed TIMIT) that these imposed
constraints satisfy our assumptions – for now, we defer this to future work.

122

acoustic unit sequences that are all the same.3 To this end, we will report our results

in terms of both normalized mutual information (NMI) and pronunciation-equivalent

unit error rate (PE-UER), as described below. Finally, in our subsequent consid-

eration of finding improved segmentation boundaries, we will revisit the boundary

precision, recall, and F1 score that were also used in [5]. While there are a number

of other ways to measure differences between sets of sequences [54], as well as a few

other existing metrics for measuring the quality of discovered acoustic units [87, 123],

we believe this is a reasonable place to start for our initial explorations.

In our experiments, we will report these metrics as measured on the TIMIT test

set. While unsupervised methods are, for the most part, agnostic to the strictness

of train/dev/test protocols, our work now does involve some form of supervision,

albeit weak. As such, we will discover our acoustic units on the train set and, where

specified, enforce our weak constraints using the pron-eq-train subset of the training

data. Then we will use the resulting model to sample a single alignment from the

TIMIT test set and evaluate the NMI of that result against our ground truth.4 We

can also evaluate the consistency of the model by computing the PE-UER from the

pronunciation-equivalent subset of the test data (pron-eq-test). Lastly, computing

segmentation boundary precision, recall, and F1 score are similarly straightforward.

6.4.1 Normalized mutual information

A robust clustering approach aims to strike a balance between cluster purity and

fragmentation. The purity of a hypothesized cluster can be seen as the maximal pro-

portion of the cluster that represents a single reference entity, while the fragmentation

of a reference entity can be seen as the number of clusters needed to represent it. Triv-

ially, a high average cluster purity can be achieved by assigning each element to its

own cluster; conversely, a low entity fragmentation can be achieved by assigning all

elements to a single cluster. While there exist many ways in which to express the bal-

ance between these two measures [54], we choose to compute the normalized mutual

information (NMI) between the per-frame phone sequences given by the ground truth

annotation and the corresponding per-frame unit sequences discovered automatically.

Formally, for reference sequence, R, and hypothesized sequence, S, we have

NMI(R, S) =
I(R, S)

1
2
(H(R) +H(S))

, (6.1)

3In reference to Footnote 1 above, this motivates once again the use of difference constraints.
4In practice, so long as we don’t update the model using the alignments sampled from the test

data, we can evaluate on multiple samples and average the results for a more statistically significant
evaluation.

123

where I(R, S) denotes the mutual information between R and S, and H(R) and H(S)

are their respective marginal entropies. For completeness,

I(R, S) =
∑
r∈R

∑
s∈S

p(r, s) log

(
p(r, s)

p(r) · p(s)

)
, (6.2)

and

H(X) = −
∑
x∈X

p(x) log(p(x)). (6.3)

The mutual information, I(R, S), can be seen as a measure of the information that

S gives us about R, and vice versa. Normalizing the mutual information with their

respective entropies scales the range of NMI to be between 0 and 1.

6.4.2 Pronunciation-equivalent unit error rate

We derive our measure of pronunciation-equivalent unit error rate (PE-UER) from

the traditional word error rate (WER) metric typically used to evaluate the quality

of speech recognition systems. Given a reference transcription, r, and a hypothesized

word sequence, h, the WER is simply the number of word substitutions (S), deletions

(D), and insertions (I) required to obtain the reference sequence from the hypothesis

normalized by the length of the reference:

WER(r, h) =
S + D + I

|r|
. (6.4)

Instead of words, we can use phones to obtain a phone error rate or, in our case, a

unit error rate (UER) for discovered acoustic units. To obtain a PE-UER for our set

of discovered acoustic sequences in TIMIT, we compute the average UER for each

unit sequence uP against all the other unit sequences in its pronunciation-equivalent

subset, P , and average this across all pronunciation-equivalent subsets P ∈ E. That

is,

PE-UER(E) =
1

|E|
∑
P∈E

1

|P |
∑
u∈P

1

|P | − 1

∑
w∈{P\u}

UER(u,w), (6.5)

where E is the set of distinct sentences whose set of realizations, P , contain two or

more equivalent pronunciations. Each u ∈ P gets used as a reference in the UER(u,w)

computation and is compared to all the other sequences w ∈ {P \ u}. From our

earlier discussion of the pron-eq-train data subset in Section 6.2, |Etrain| = 28 and

|Ptrain| ∈ [2, 6]. And for evaluation on the pron-eq-test subset of our TIMIT test

set, |Etest| = 5 and |Ptest| = 2,∀Ptest ∈ Etest. Of course, our benchmark using the

124

ground truth TIMIT annotations is PE-UER(E) = 0.

6.4.3 Evaluating segment boundaries

We assess the quality of our segmentation boundaries using the precision, recall, and

F1 score metrics explored in [5]. Here, we ignore cluster labels and simply measure the

presence or absence of segmentation boundaries. Precision is defined as the fraction of

hypothesized segment boundaries that correspond to reference segment boundaries as

given by the ground truth annotation. Recall is the proportion of reference segment

boundaries that have a corresponding hypothesized segment boundary. The F1 score

is then defined as the harmonic mean of precision, P , and recall, R:

F1 = 2 · P ·R
P +R

(6.6)

6.5 Clustering

In this section, we consider the problem of clustering assuming a fixed segmentation.

In particular, assuming that we are provided with a meaningful segmentation, how

consistent is our resulting clustering? To assess this, we use a segmentation derived

from TIMIT’s ground truth annotations and run the same acoustic unit discovery

system as described in Chapter 5, but with a single modification: we enforce a fixed

segmentation by setting strong priors on the boundary variables; i.e., P (bt = 1) = 1

if the tth frame corresponds to a ground truth segment boundary, and P (bt = 1) = 0

otherwise. This causes our unit discovery system, which we run on MFCC features

for all experiments in this chapter, to focus solely on the clustering of segments.

The result of this approach can be seen in Row 1 of Table 6.1, denoted TIMIT

segmentation, unconstrained clustering. Note that we have not yet used any

information about pronunciation-equivalence, but both the NMI and mean PE-UER

are already substantially better than the results of the baseline system shown in Row

0, which were obtained by running the exact same acoustic unit discovery system as

described in Chapter 5. This demonstrates the impact of a consistent segmentation.

6.5.1 Incorporating sequence constraints

We take into account our pronunciation-equivalence constraints in the accumulation

of statistics during the HMM-GMM model update step of the unit discovery pro-

cess. Given utterance, u, and a corresponding pronunciation-equivalent utterance, w,

we further assume that w has a corresponding segmentation such that each of the

125

Table 6.1: Boundary F1 scores, normalized mutual information, and pronunciation-
equivalent unit error rates (PE-UER) obtained by our various acoustic unit discovery
configurations. Both F1 and NMI are evaluated against the respective ground truth
annotations of our TIMIT train and test subsets, while the respective PE-UER val-
ues shown are evaluated on the 28-sentence, 66-utterance pron-eq-train subset and
the 5-sentence, 10-utterance pron-eq-test subset described in Section 6.4.2. Our re-
sults here examine the effect of different clustering configurations assuming a fixed
segmentation obtained from the TIMIT ground truth annotations.

F1 NMI PE-UER (%)
train test train test train test

0 Unconstrained segmentation
and clustering (Baseline)

0.856 0.860 0.361 0.388 43.1 35.7

1 TIMIT segmentation (fixed),
unconstrained clustering

1 1 0.554 0.575 32.8 26.7

2 TIMIT segmentation (fixed),
constrained clustering

1 1 0.561 0.584 28.1 25.0

3 TIMIT transcription
(Benchmark)

1 1 1 1 0.0 0.0

subsegments in u has a corresponding subsegment in w. Then during inference (at

train time), after we sample a unit sequence for u, we can update our models by

accumulating statistics from both u and w as though we had sampled the exact same

unit sequence on w as we did on u. In practice, we use the unit sequence sampled

from u to sample a corresponding HMM state sequence on w and update our models

using the accumulated statistics from the sampled state sequences of both u and w.

During each pass through the data, we sample u ∈ P uniformly at random and then

accumulate additional statistics for all w ∈ {P \ u}.

One of the limitations of this method is that it will only work if every utterance

in P has a respective segmentation that corresponds exactly with one another. While

this is not an issue for the segmentation derived from TIMIT’s ground truth annota-

tions, we consider ways to automatically obtain a consistent segmentation in Section

6.6. Until then, Row 2 of Table 6.1, denoted TIMIT segmentation, constrained

clustering, shows that enforcing constraints on the pron-eq-train subset of the

training data (i.e., the 66 pronunciation-equivalent utterances from the 27 distinct

sentences out of 3696 total utterances of 1716 distinct sentences) can still improve

our NMI and PE-UER compared to the unconstrained clustering shown in Row 1 and

described above, thus suggesting that this constrained accumulation of state sequence

statistics really can increase the speaker independence of our acoustic unit models, at

least to some degree. Nevertheless, the magnitude of this impact is still rather small

126

compared to the effect of simply switching from our landmark segmentation (Row 0)

to the TIMIT-based segmentation.

6.5.2 Varying the composition of the training data

We should expect that the impact of constrained clustering depends on the size of

the pron-eq-train subset relative to the rest of the training set. While Table 6.1

shows the slight positive effect of a pron-eq-train subset that is less than 2% of the

total training set, Table 6.2 offers a glimpse of what might happen with training sets

composed in different ways. In these experiments, we only vary the composition of the

training data; the results shown are still obtained from evaluating on the full TIMIT

test set and, as such, are comparable to those in Table 6.1. Because each system will

feature a separate subset of training data, we will focus on just the test NMI and

PE-UER, as all F1 scores are 1 due to the use of a fixed segmentation obtained from

the TIMIT ground truth annotations.

In this subsection and Table 6.2, we use as our new baseline the results of acoustic

unit discovery on just the pron-eq-train subset of the training data – this is shown

on Row 0. From here, we introduce additional training data along two dimensions:

speaker variability and phonetic variability. Note that this additional training data

is not subject to any constraints; these utterances do not have any pronunciation

equivalents. In the unconstrained and unsupervised setting, this does not matter,

as additional data simply gets modeled along directions of maximal variance in the

feature space. We will see in the constrained setting, however, that this can affect

results.

Row 1 of Table 6.2 shows the result of introducing speaker and pronunciation

variability without introducing additional phonetic content. In particular, we use

only the sentences present in pron-eq-train, but we include all realizations of those

sentences. This yields 189 utterances of 28 distinct sentences spoken by 169 differ-

ent speakers. While the unconstrained result is largely unaffected by the additional

data and perhaps even offers a minor improvement, the PE-UER for the constrained

data increases from our previous result in Row 0. This may be because the added

unconstrained data is quite similar to that of the constrained data, and because no

phonetic variability is introduced, some of the acoustic units that are not subject to

pronunciation-equivalence constraints begin to model speaker-specific differences.

On the other hand, we see in Row 2 the result of introducing additional phonetic

content without introducing additional speaker variability. In this system, we include

all sentences spoken by each of the speakers present in pron-eq-train. This yields a

substantial increase in the amount of training data, which explains the increase in NMI

127

for both the constrained and unconstrained clustering scenarios. What is even more

profound, however, is the resulting decrease in PE-UER of the constrained clustering,

which seems to suggest that increasing within-speaker training data can potentially

lead to the learning of more consistent, speaker-independent acoustic units. While

additional experiments are necessary to make this notion more concrete, this may

point to better ways to utilize data for more robust acoustic unit discovery.

Table 6.2: NMI and PE-UER obtained by our various acoustic unit discovery config-
urations. NMI is obtained against the ground truth annotations of our TIMIT test
subset, while the PE-UER values shown are evaluated on the 5-sentence, 10-utterance
pron-eq-test subset described in Section 6.4.2. Our results here examine the effect of
differences in training data composition and unconstrained vs. constrained clustering
for acoustic unit discovery assuming a fixed segmentation obtained from the TIMIT
ground truth annotations.

NMI PE-UER (%)
unconst. const. unconst. const.

0 pron-eq-train only 0.476 0.515 26.4 25.1
1 pron-eq-train + spkr-var 0.522 0.528 24.2 26.3
2 pron-eq-train + phn-var 0.561 0.568 26.3 21.3

6.5.3 The effect of different numbers of units

Clustering quality is inherently dependent on the number of units discovered. Since

this is a parameter specified as input to our acoustic discovery model, we should

examine the effect of varying the number of discovered units on both constrained

and unconstrained clustering. A quick look at Figure 6-2, however, seems to suggest

that the number of units learned is far less significant than the quality of the initial

segmentation. As such, we defer to future work further optimization of the number

of units to learn and consider ways to improve our initial segmentation.

6.6 Segmentation

We saw in Figure 6-2 and in the results from the previous section that a linguistically

relevant initial segmentation (from TIMIT ground truth annotations) helps signifi-

cantly in the discovery of better acoustic units. In this section, we explore techniques

to automatically obtain an initial segmentation given our set of text-equivalent con-

straints. We make the distinction here that our goal is not necessarily to obtain at a

perfect segmentation from the point of view of the TIMIT ground truth; instead, our

128

Figure 6-2: A plot of NMI on the TIMIT test subset versus number of units learned.
Here, we sweep across the number of units learned for two different segmentations:
the TIMIT ground truth segmentation and the unconstrained, landmarks-based seg-
mentation from Chapter 5. While the number of units may make a minor difference,
it seems as though segmentation quality is a much more significant factor.

goal is to obtain a form of consistency within our segmentation that can yield simi-

larly consistent acoustic units. Following the work in [127, 132], we aim to utilize a

dynamic programming alignment of text-equivalent utterances to find candidate seg-

mentation boundaries that correspond across all utterances of the same text. Ideally,

these resulting segmentations will also yield an exact correspondence that allows us

to incorporate the sequence-constrained accumulation of model statistics as discussed

in Section 6.5.1.

6.6.1 Parameter marginalization

So far, our experiments in acoustic unit discovery focused on the use of a pre-

segmentation algorithm developed in [98, 102]. As mentioned in Section 5.2.5, this

method essentially hypothesizes phonetic boundaries where the difference in spectral

energy is large in magnitude. Despite its conceptual simplicity, the inherent vari-

ability of speech makes it extremely difficult to guarantee a consistent segmentation

across all utterances, even if they contain the same spoken content. Furthermore,

there are a number of parameters that can be adjusted in this landmark segmenta-

129

tion algorithm, and our work in Chapter 5 focused solely on the output of a single

set of parameters tuned separately on a set of development data.

Here, we consider the effect of marginalizing over the entire set of landmark seg-

mentation parameters, Θ, and obtaining, for each frame in a given utterance, an

estimate of its likelihood as a landmark boundary. That is,

p̂(bt = 1) =
1

|Θ|
∑
θ∈Θ

δ(bt; θ), (6.7)

where the indicator variable δ(bt; θ) = 1 if a boundary at frame t is hypothesized

under parameter setting θ, and δ(bt; θ) = 0 otherwise. The idea is that different

sets of parameters may yield different segmentations, but the more obvious boundary

locations should be fairly persistent across many parameter settings.

6.6.2 Pronunciation-dependent utterance marginalization

While the method described above yields a segmentation that obtains an F1 score that

is not significantly better than that of our original, unconstrained baseline (Row 0,

Table 6.1), the benefit is that we can extend the probability distribution in Eqn. 6.7 to

additionally marginalize over all pronunciation-equivalent utterances. In particular,

suppose we chose an exemplar utterance u ∈ P and mapped the frames of all the

other utterances, w ∈ {P \u} to u via the Dynamic Time Warping (DTW) algorithm

[133]. Then we can write

p̃(b
(u)
t = 1) =

1

|P |
∑
w∈P

1

|Θ|
∑
θ∈Θ

δ(b
(w)
t′ ; θ), (6.8)

where t′ = DTWu→w(t) is the frame index of w corresponding to frame t in utterance

u under a DTW alignment.5

Given these aggregated statistics, we can choose a segmentation for u from p̃(b
(u)
t),∀t

via a local peak-picking algorithm and subsequently obtain a segmentation for the

rest of w ∈ {P \ u} using their corresponding DTW alignments. An example of

this segmentation can be seen in Figure 6-3, which shows spectrograms of a male

(top) and a female (bottom) speaker saying the TIMIT sx390 sentence, “He picked

up nine pairs of socks for each brother.” Above each spectrogram is an enumerated

segmentation (0-27) where each numbered segment is supposed to correspond across

both spectrograms. Despite missing a few stop releases (e.g., the /p/ in “pairs”

in segment 13), we can see that the location of these proposed segment boundaries

5Trivially, DTWu→u(t) = t.

130

mostly make sense and correspond fairly consistently across both spectrograms. In

the region highlighted, however, we can also see a source of inconsistency. This region

spans the /s/ (realized as the voiced fricative, /z/) in “pairs” and the /s/ in “socks”

with a short vowel (i.e., a schwa, /ax/) in between. This should be three segments;

however, our segmentation hypothesizes only two. Furthermore, segment 14 in the

male spectrogram contains the schwa, whereas the schwa is attributed to segment 15

in the female spectrogram. Indeed, despite the ability to do quite well on a majority

of the speech segments, our developing methods still have to contend with many of

these inconsistencies.

Table 6.3 shows the result of an initial experiment using this segmentation method.

For consistency, we simply discover our units on just the pron-eq-train subset of

data. Because we do not have any pronunciation-dependent constraints for the test

set, we obtain a segmentation using the parameter marginalization method described

previously in Section 6.6.1. Despite the promise of our proposed segmentation ap-

proach as seen in Figure 6-3, there is still much work to be done on this front. One rea-

son for such a wide performance discrepancy is that the proposed DTW-constrained

segmentation is unable to provide a segmentation at a high enough resolution com-

pared to both the TIMIT segmentation and the parameter-marginalized segmentation

method from Section 6.6.1; we saw evidence of these missed segment boundaries in

Figure 6-3. The marginalization over utterances seems to act as a low-pass filter

of sorts that blurs out finer spectral differences within individual utterances, thus

yielding long segments that cannot be faithfully modeled by single acoustic units

consisting of 3-state HMMs. Since our acoustic unit discovery sampling method will

use only a subset of these segment boundaries, the fact that this method is unable to

err towards hypothesizing more segments is a disadvantage.

In light of this, perhaps our DTW-based correspondences can serve instead as

constraints for a subsequent consolidation step after a more fine-grained, initial unit

discovery, such as an extension to the noisy channel model of [130]. As an alternative

to this top-down approach to segmentation, we subsequently discuss a bottom-up ap-

proach that involves bootstrapping the discovery and modeling of broad-class acoustic

units.

6.6.3 Towards a bootstrapped approach to segmentation

In Section 6.5.3, we saw that clustering performance in both the NMI and PE-UER

sense remained fairly stable in the face of varying the number of units discovered.

This brings to bear the idea of replacing the landmark segmentation algorithm al-

together and leveraging both clustering and unit recognizer training to bootstrap a

131

F
igu

re
6-3:

S
pectrogram

s
of

a
m

ale
(top)

an
d

a
fem

ale
(bottom

)
speaker

sayin
g

the
T

IM
IT

sx390
sen

ten
ce,

“H
e

picked
u

p
n

in
e

pairs
of

socks
for

each
brother.”

W
e

show
the

resu
lt

of
ou

r
proposed

segm
en

tation
m

ethod
that

u
ses

a
D

T
W

align
m

en
t

betw
een

the
tw

o
u

tteran
ces

an
d

m
argin

alizes
over

all
lan

dm
ark

detection
param

eters.
W

hile
m

ost
of

the
segm

en
tation

is
fairly

reason
able,

w
e

highlight
on

e
area

of
in

con
sisten

cy.
T

his
region

span
s

the
/
z
/

in
“pairs”

an
d

the
/
s
/

in
“socks”

w
ith

a
schw

a,
/
a
x
/

,
in

betw
een

.
W

hile
this

shou
ld

be
three

segm
en

ts;
ou

r
segm

en
tation

hypothesizes
on

ly
tw

o.
F

u
rtherm

ore,
segm

en
t

14
in

the
m

ale
spectrogram

con
tain

s
the

schw
a,

w
hereas

the
schw

a
is

attribu
ted

to
segm

en
t

15
in

the
fem

ale
spectrogram

.

132

Table 6.3: NMI and PE-UER obtained on the TIMIT test subset using our DTW-
constrained segmentation proposed in Section 6.6.2 and constrained clustering dis-
cussed in Section 6.5.1. Our results here demonstrate a need for continued improve-
ment in our DTW-constrained segmentation algorithm.

NMI PE-UER (%)
0 TIMIT segmentation 0.515 25.1
1 DTW-constrained segmentation 0.327 36.4

new segmentation. In particular, we considered running acoustic unit discovery on

a uniform segmentation – e.g., enforce a new segment every 3 frames – and merging

consecutive segments at every sampling iteration. That is, if a cluster sequence had

consecutive repeated values, we would remove the boundary between the repeated

values and train an HMM on the longer segment. To make such merges more likely,

we allowed for only a very small number of acoustic units (e.g., 5-10) in hope that our

discovered units would correspond to broad phone classes, such as vowels, fricatives,

stops, et cetera. After the unit discovery, we exploit the recognizer training step to

further refine these boundary locations and used these final locations as our initial

segmentation to learn our final set of (50-100) acoustic units. While results using

this method were not unreasonable, they did not yield any improvement over the

original landmark segmentation algorithm. Furthermore, with respect to the primary

objectives of the explorations in this chapter, this approach provided no straightfor-

ward way to exploit text-equivalent constraints. Despite the negative result, we can

see this as a step towards a multi-scale approach to segmentation and, potentially, a

top-down approach to acoustic unit discovery that can be guided by human input.

6.7 Summary

In this exploratory chapter, we examine various ways to increase the speaker indepen-

dence of our discovered acoustic units. We propose a simple way to use pronunciation-

equivalent constraints by appropriately accumulating statistics during the model up-

date step of our unit discovery process. We also observe the effect of varying the

composition of the training data from which we learn these units and find that proper

selection of what data to use can have a significant impact on the quality and consis-

tency of our resulting units. In addition to clustering, we further consider a method

for constrained segmentation and develop a dynamic programming-based approach

to take into account pronunciation-equivalent constraints. We find, however, that our

proposed top-down approach may not yield segmentations that are temporally fine

133

enough to be robustly modeled by our acoustic units. As such, despite the promise

observed in the visualizations of our segmentation output, there is still much work to

be done. Incorporating weak constraints into unit discovery is just the first step in a

new saga of work in resource-constrained speech processing.

134

Chapter 7

Conclusion

In this thesis, we explored the themes of unsupervised domain adaptation and learning

from weak supervision in the context of speaker and language recognition. We began

in Chapter 3 by motivating and defining a task for domain adaptation in speaker

recognition, in which labels are only available for the subset of training data that

does not match our evaluation task. Without obtaining additional labels, we drew

from our previous work on large-scale speaker clustering and proposed an approach

that utilizes both agglomerative and graph clustering techniques to close the gap

between our setup and that of a fully supervised system by 85%.

In Chapter 4, we entertained a different set of resource constraints in which we

began with no labels of any sort and are tasked with selecting a subset of the training

data to be labeled. In this exploration, we develop a greedy algorithm based on active

learning that obtains speaker labels in the form of binary pairwise comparisons. We

find that the actual number of pairwise comparisons needed to obtain state-of-the-

art results is both consistent with the theoretical guarantees in active learning and

manageable in practice.

Turning to language recognition in Chapter 5, we employed the use of a large-scale

system for acoustic unit discovery to alleviate our reliance on transcribed, multilin-

gual speech. Along the way, we observe the importance of different language-specific

perspectives as a form of weak supervision as well as the profound impact of even

small bits of linguistic knowledge.

Ultimately, this led us to explore ways to improve our methods for acoustic unit

discovery in Chapter 6 so that they can incorporate weak, pronunciation-equivalent

constraints and ultimately obtain more speaker-independent acoustic units.

135

7.1 Future Work

During these investigations, we came across many avenues for future work. Some of

these ideas were alluded to towards the end of their corresponding chapters; here, we

elaborate upon them at a higher level.

7.1.1 Adapting to broader domains

The domain adaptation task in Chapter 3 involved adapting between two disjoint

sets of telephone data. In our exploration, we surmised the cause of this mismatch

was driven, in part, by the progress in telephone technology moving from landline to

cellular. Another natural source of mismatch is between telephone and microphone

recordings, which has been explored in a fully supervised setting [134, 135]. It would

be useful to develop methods that can leverage the abundance of telephone data

and deploy practical speaker recognition systems built on other recording devices

without the need to train on additional labeled data. This moves towards the theme

of channel-robustness in general.

7.1.2 Out-of-domain detection

With the problem of domain adaptation comes the problem of detecting a need for

it in the first place. In general, this problem can be seen as an instance of the

anomaly/outlier detection problem [136, 137], but the ability to do such detection is

key to the deployment of more organic spoken language systems, which we motivated

at the start of this thesis. For our systems to be aware and able to adapt to ever-

changing scenarios, they must start by recognizing when they don’t know. Once we

have attained the ability to robustly detect an out-of-domain situation, we can then

find ways to attribute this mismatch to various factors – in speaker recognition, some

possibilities might include utterance length, channel condition, speaker similarity, et

cetera. Along these lines of uncertainty attribution, some recent work takes into

account utterance length when making speaker recognition decisions [138, 139]; it

would be nice to add to that perspective.

7.1.3 Noisy labels and active learning in the real world

Our simulations in active learning for speaker recognition were based on the existence

of a noiseless oracle, but previous work has shown that both naive and expert human

listeners can be imperfect [59]. A possible extension of our work would involve actually

deploying crowd-sourced system for speaker recognition and developing new ways to

136

handle potentially noisy labels. Furthermore, an analysis of the collected data would

likely yield new insights into how humans themselves ascertain and evaluate speaker

similarity.

7.1.4 Discovering improved feature representations

Our development and use of a large-scale system for acoustic unit discovery yielded

insights into the importance of language-specific perspectives as well as the impact of

an improved feature representation for speech. In a sense, we verified that “language

matters;” that is, any knowledge about the language currently being processed – even

information as broad as other closely-related languages – can be helpful and should be

exploited. As a direct extension of our explorations in Chapter 5, we should consider

using different feature representations to learn acoustic units in various languages.

Perhaps this will also help explain the discrepancies in our phonotactic experiments.

Automatically uncovering phonotactics is an extremely difficult problem, but our

developed ability to process large volumes of data should provide a good place to

start.

We also observed the unequivocally positive impact of an improved feature rep-

resentation for speech, which was obtained using explicit transcriptions. We should

continue to extend our work in acoustic unit discovery to automatically learn improved

representations for speech by better leveraging speaker, language, and pronunciation-

based side information. This may result in features obtained via correspondence

autoencoders [128] or a bootstrapped acoustic unit discovery system on acoustic fea-

tures or even some combination of both. We also have yet to explore the use of more

recent developments in recurrent neural network architectures; better features tend

to be better at representing longer-term contexts, which may be a task well-suited

for LSTMs.

7.1.5 Towards crowd-supervised development of speech

technologies

The thesis in [7] brings to bear the potential of crowds of non-expert humans to

improve the quality of existing spoken language systems, while the thesis in [97]

demonstrates the potential of fully unsupervised methods for discovering linguistic

structures in speech. Our work in this thesis attempted to simulate the potential of

crowd-based guidance to obtain better acoustic models, and there are many possibil-

ities in which we can enhance our current methods.

We see a future in which speech technology reaches all corners of the world, where

137

robust and strong performance in speech recognition is not limited to the major lan-

guages in which we have ample amounts of training data. We imagine the development

of systems that can automatically ingest unlabeled recordings from a new language

and present non-linguist speakers with queries designed to make better sense of that

language’s acoustics, semantics, and everything in between. We hope to see a day in

which a speech recognizer can be grown from nothing more than the input of a few

benign, native speakers.

Our work exploring the use of pronunciation-equivalent constraints were the first

steps along those lines. But while we focused on pronunciation equivalence, we have

not addressed the notion of pronunciation differences. In particular, knowing that

the realizations of two sounds are distinctly different is just as valuable to learning

a language’s set of phonemes as knowing when two sounds correspond to the same

acoustic unit. These bits of information should be relatively straightforward to obtain

through the crowd-sourcing of native, but not necessarily expert-level, speakers. And

incorporating both positive and negative constraints into our framework would be

instrumental.

We should also extend from pronunciaton-equivalent constraints to that of text-

equivalent constraints. We limited our initial experiments to pronunciation-equivalent

utterances to ensure that our discovered acoustic units do not consider variations in

pronunciation as a source of noise. When modeling at a level higher than that of

acoustic units, however, incorporating textual constraints would likely be a tremen-

dous source of help in, say, automatically building a lexicon for a particular target

language [130].

In this thesis, we explored a variety of methods to make better use of unlabeled

data. Yet, by the end of it all, we seem to have come around to looking for con-

venient ways to obtain more labels! As it stands, labeled data is still essential for

our development of speech technologies, and while we have discovered many ways

in which unlabeled data can help, it seems as though a combination of weakly and

semi-supervised approaches will prove to be most useful in the future. In the vastness

of this space in between, there are innumerable ways to leverage the powers of both

fully supervised and fully unsupervised approaches; we are just getting started.

138

Bibliography

[1] S. H. Shum, D. A. Reynolds, D. Garcia-Romero, and A. McCree, “Unsuper-
vised Clustering Approaches for Domain Adaptation in Speaker Recognition
Systems,” in Proceedings of Odyssey: The Speaker and Language Recognition
Workshop, 2014.

[2] N. Dehak, “Discriminative and Generative Approaches for Long- and Short-
Term Speaker Characteristics Modeling: Application to Speaker Verification,”
Ph.D. dissertation, Ecole de Technologie Superieure de Montreal, June 2009.

[3] M. Soufifar, “Subspace Modeling of Discrete Features for Language Recog-
nition,” Ph.D. dissertation, Norwegian University of Science and Technology,
November 2014.

[4] D. Reynolds, T. Quatieri, and R. Dunn, “Speaker Verification Using Adapted
Gaussian Mixture Models,” Digital Signal Processing, vol. 10, no. 1-3, pp. 19–
41, 2000.

[5] C. Lee and J. Glass, “A Nonparametric Bayesian Approach to Acoustic Model
Discovery,” in Proceedings of ACL, 2012.

[6] V. Zue, “On Organic Interfaces,” in Proceedings of Interspeech, 2007.

[7] I. C. McGraw, “Crowd-supervised Training of Spoken Language Systems,”
Ph.D. dissertation, Massachusetts Institute of Technology, June 2012.

[8] R. F. Lyon, “Machine Hearing: An Emerging Field,” IEEE Signal Processing
Magazine, September 2010.

[9] H. Daume, III and D. Marcu, “Domain Adaptation for Statistical Classifiers,”
Journal of Artificial Intelligence Research, vol. 26, pp. 101–126, May 2006.

[10] J. Hernandez-Gonzalez, I. Inza, and J. A. Lozano, “Weak supervision and other
non-standard classification problems: A taxonomy,” Pattern Recognition Let-
ters, vol. 69, pp. 49–55, January 2016.

[11] B. Settles, “Active Learning Literature Survey,” University of Wisconsin–
Madison, Computer Sciences Technical Report 1648, 2009.

139

[12] N. Dehak, P. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-End
Factor Analysis for Speaker Verification,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 4, pp. 788–798, May 2011.

[13] N. Dehak, P. A. Torres-Carrasquillo, D. Reynolds, and R. Dehak, “Language
Recognition via i-vectors and Dimensionality Reduction,” in Proceedings of In-
terspeech, 2011.

[14] N. Dehak and S. Shum, “Low-dimensional Speech Representation Based on
Factor Analysis and its Applications,” in Tutorial at Interspeech, 2011.

[15] T. Kinnunen and H. Li, “An overview of text-independent speaker recognition:
From features to supervectors,” Speech Communication, vol. 52, no. 1, pp. 12–
40, January 2010.

[16] A. Dempster, N. Laird, and D. Rubin, “Maximum Likelihood from Incomplete
Data via the EM Algorithm,” Journal of the Royal Statistical Society, vol. 39,
no. 1, pp. 1–38, 1977.

[17] S. Shum, “Unsupervised Methods for Speaker Diarization,” Master’s thesis,
Massachusetts Institute of Technology, June 2011.

[18] D. Garcia-Romero and C. Y. Espy-Wilson, “Analysis of I-vector Length Normal-
ization in Speaker Recognition Systems,” in Proceedings of Interspeech, 2011.

[19] P. Kenny, “Bayesian Speaker Verification with Heavy-Tailed Priors,” in Pro-
ceedings of Odyssey, 2010.

[20] S. J. Prince and J. H. Elder, “Probabilistic Linear Discriminant Analysis for
Inferences About Identity,” in Proceedings of ICCV, 2007.

[21] N. Brummer and E. de Villiers, “The speaker partitioning problem,” in Pro-
ceedings of Odyssey, 2010.

[22] A. Martin and C. Greenberg, “The 2010 NIST Speaker Recogni-
tion Evaluation (SRE10),” 2010, http://www.nist.gov/itl/iad/mig/upload/
SRE10 maineval workshop public brief.pdf.

[23] NIST, “The NIST Year 2010 Speaker Recognition Evaluation Plan,” 2010,
http://www.itl.nist.gov/iad/mig/tests/sre/2010/NIST SRE10 evalplan.r6.pdf.

[24] ——, “The 2011 NIST Language Recognition Evaluation Plan (LRE11),” 2011,
http://www.nist.gov/itl/iad/mig/lre11.cfm.

[25] ——, “The 2015 NIST Language Recognition Evaluation Plan (LRE15),” 2015,
http://www.nist.gov/itl/iad/mig/upload/LRE15 EvalPlan v23.pdf.

[26] A. Hatch, S. Kajarekar, and A. Stolcke, “Within-Class Covariance Normaliza-
tion for SVM-based Speaker Recognition,” in Proceedings of ICSLP, 2006.

140

[27] E. Singer, P. Torres-Carrasquillo, D. Reynolds, A. McCree, F. Richardson,
N. Dehak, and D. Sturim, “The MITLL NIST LRE 2011 Language Recognition
System,” in Proceedings of Odyssey, 2012.

[28] N. Brummer, “FoCal Multi-class: Toolkit for Evaluation, Fusion and Calibra-
tion of Multi-class Recognition Scores – Tutorial and User Manual,” Spescom
DataVoice, Tech. Rep., 2007.

[29] D. Garcia-Romero and A. McCree, “Supervised Domain Adaptation for i-vector
Based Speaker Recognition,” in Proceedings of ICASSP, 2014.

[30] NIST, “Speaker Recognition Evaluation 2010,” 2010,
http://www.nist.gov/itl/iad/mig/sre10.cfm.

[31] C. Vaquero, “Dataset Shift in PLDA-based Speaker Verification,” in Proceedings
of Odyssey, 2012.

[32] L. Ferrer, H. Bratt, L. Burget, H. Cernocky, O. Glembek, M. Graciarena,
A. Lawson, Y. Lei, P. Matejka, O. Plchot, and Others, “Promoting robust-
ness for speaker modeling in the community: the PRISM evaluation set,” 2012,
http://code.google.com/p/prism-set/.

[33] H. Aronowitz, “Adaptation of PLDA to New Domains,” in Results from JHU
CLSP Summer Workshop, 2013.

[34] H. Shimodaira, “Improving Predictive Inference Under Covariate Shift by
Weighting the Log-Likelihood Function,” Journal of Statistical Planning and
Inference, vol. 90, no. 2, pp. 227–244, October 2000.

[35] M. Yamada, M. Sugiyama, and T. Matsui, “Covariate Shift Adaptation for
Semi-Supervised Speaker Identification,” in Proceedings of ICASSP, 2009.

[36] M. Sugiyama, M. Krauledat, and K.-R. Muller, “Covariate Shift Adaptation
by Importance Weighted Cross Validation,” Journal of Machine Learning Re-
search, vol. 8, pp. 985–1005, 2007.

[37] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bunau, and
M. Kawanabe, “Direct Importance Estimation for Covariate Shift Adaptation,”
Annals of the Institute of Statistical Mathematics, 2008.

[38] D. Garcia-Romero, A. McCree, S. Shum, N. Brummer, and C. Vaquero, “Unsu-
pervised Domain Adaptation for i-vector Speaker Recognition,” in Proceedings
of Odyssey: The Speaker and Language Recognition Workshop, 2014.

[39] M. McLaren and D. van Leeuwen, “Source-Normalized LDA for Robust Speaker
Recognition Using i-Vectors From Multiple Speech Sources,” IEEE Transac-
tions on Audio, Speech, and Language Processing, vol. 20, no. 3, pp. 755–766,
March 2012.

141

[40] C. Chelba and A. Acero, “Adaptation of Maximum Entropy Capitalizer: Little
Data Can Help A Lot,” in Proceedings of EMNLP, 2004.

[41] R. K. Ando and T. Zhang, “A Framework for Learning Predictive Structures
from Multiple Tasks and Unlabeled Data,” Journal of Machine Learning Re-
search, 2005.

[42] H. Daume, III, “Frustratingly Easy Domain Adaptation,” in Association of
Computational Linguistics, 2007.

[43] H. Daume, III, A. Kumar, and A. Saha, “Frustratingly Easy Semi-Supervised
Domain Adaptation,” in Proceedings of the 2010 Workshop on Domain Adap-
tation for Natural Language Processing, 2010.

[44] B. Zadrozny, “Learning and Evaluating Classifiers under Sample Selection
Bias,” in Proceedings of ICML, 2004.

[45] M. Szummer and T. Jaakkola, “Information Regularization with Partially La-
beled Data,” in Proceedings of NIPS, 2002.

[46] S. H. Shum, W. M. Campbell, and D. A. Reynolds, “Large-Scale Community
Detection on Speaker Content Graphs,” in Proceedings of ICASSP, 2013.

[47] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks
reveal community structure,” Proceedings of the National Academy of Sciences,
2008.

[48] S. van Dongen, “Graph Clustering by Flow Simulation,” Ph.D. dissertation,
University of Utrecht, May 2000.

[49] D. A. van Leeuwen, “Speaker Linking in Large Data Sets,” in Proceedings of
Odyssey, 2010.

[50] M. Huijbregts and D. van Leeuwen, “Large Scale Speaker Diarization for Long
Recordings and Small Collections,” IEEE Transactions on Audio, Speech, and
Language Processing, 2010.

[51] S. E. Tranter and D. A. Reynolds, “An Overview of Automatic Speaker Diarisa-
tion Systems,” IEEE Transactions on Audio, Speech, and Language Processing,
vol. 14, no. 5, pp. 1557–1565, September 2006.

[52] R. Sokal and C. Michener, “A Statistical Method for Evaluating Systematic
Relationships,” University of Kansas Science Bulletin, 1958.

[53] A. Lancichinetti and S. Fortunato, “Community detection algorithms: a com-
parative analysis,” Physical Review E, 2009.

[54] E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo, “A Comparison of Extrin-
sic Clustering Evaluation Metrics based on Formal Constraints,” Information
Retrieval, vol. 12, no. 4, pp. 461–486, 2009.

142

[55] NIST, “Diarization Error Rate (DER) Scoring Code,” 2006,
www.nist.gov/speech/tests/rt/2006-spring/code/md-eval-v21.pl.

[56] E. Singer and D. A. Reynolds, “Domain Mismatch Compensation for Speaker
Recognition Using a Library of Whiteners,” IEEE Signal Processing Letters,
vol. 22, no. 11, pp. 2000–2003, July 2015.

[57] F. Richardson, D. Reynolds, and N. Dehak, “Deep Neural Network Approaches
to Speaker and Language Recognition,” IEEE Signal Processing Letters, vol. 22,
no. 10, pp. 1671–1675, 2015.

[58] S. H. Shum, N. Dehak, and J. R. Glass, “Limited Labels for Unlimited Data:
Active Learning for Speaker Recognition,” in Proceedings of Interspeech, 2014.

[59] W. Shen, J. Campbell, D. Straub, and R. Schwartz, “Assessing the Speaker
Recognition Performance of Naive Listeners Using Mechanical Turk,” in Pro-
ceedings of ICASSP, 2011.

[60] S. Basu, A. Banerjee, and R. J. Mooney, “Active Semi-Supervision for Pairwise
Constrained Clustering,” in Proceedings of SIAM International Conference on
Data Mining (SDM), 2004.

[61] H. Sun and B. Ma, “Unsupervised NAP Training Data Design for Speaker
Recognition,” in Proceedings of Interspeech, 2012.

[62] ——, “Improved Unsupervised NAP Training Dataset Design for Speaker
Recognition,” in Proceedings of Interspeech, 2013.

[63] S. Cumani, N. Brummer, L. Burget, P. Laface, O. Plchot, and V. Vasilakakis,
“Pairwise Discriminative Speaker Verification in the i-vector Space,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 21, no. 6, pp.
1217–1227, June 2013.

[64] D. Haussler, “Probably Approximately Correct Learning,” in Proceedings of
AAAI, 1990.

[65] S. Dasgupta, “Coarse sample complexity bounds for active learning,” in Pro-
ceedings of NIPS, 2005.

[66] M.-F. Balcan, S. Hanneke, and J. W. Vaughan, “The True Sample Complexity
of Active Learning,” in Proceedings of COLT, 2008.

[67] P. Kenny, G. Boulianne, and P. Dumouchel, “Eigenvoice Modeling With Sparse
Training Data,” IEEE Transactions on Speech and Audio Processing, vol. 13,
no. 3, pp. 345–354, May 2005.

[68] P. Kenny, P. Ouellet, N. Dehak, V. Gupta, and P. Dumouchel, “A Study of
Inter-Speaker Variability in Speaker Verification,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 16, no. 5, pp. 980–988, July 2008.

143

[69] D. Cohn, L. Atlas, and R. Ladner, “Improving Generalization with Active
Learning,” Machine Learning Journal, vol. 15, pp. 201–221, 1994.

[70] T. Osugi, D. Kun, and S. Scott, “Balancing Exploration and Exploitation: A
New Algorithm for Active Machine Learning,” in Proceedings of IEEE ICDM,
2005.

[71] S. Shum, N. Dehak, and J. Glass, “On the Use of Spectral and Iterative Methods
for Speaker Diarization,” in Proceedings of Interspeech, 2012.

[72] O. Glembek, L. Burget, N. Dehak, N. Brummer, and P. Kenny, “Comparison
of Scoring Methods Used In Speaker Recognition with Joint Factor Analysis,”
in Proceedings of ICASSP, 2009.

[73] Z. Karam and W. M. Campbell, “Graph Embedding for Speaker Recognition,”
in Proceedings of Interspeech, 2010, pp. 2742–2745.

[74] Z. Karam, W. M. Campbell, and N. Dehak, “Graph Relational Features for
Speaker Recognition and Mining,” in IEEE Statistical Signal Processing Work-
shop, 2011, pp. 525–528.

[75] J. Carbonell and J. Goldstein, “The Use of MMR, Diversity-Based Rerank-
ing for Reordering Documents and Producing Summaries,” in Proceedings of
SIGIR, 1998.

[76] S. H. Shum, D. Harwath, N. Dehak, and J. R. Glass, “On the Use of Acous-
tic Unit Discovery for Language Recognition,” IEEE Transactions on Audio,
Speech, and Language Processing (to appear), May 2016.

[77] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural Net-
works for Acoustic Modeling in Speech Recognition,” IEEE Signal Processing
Magazine, pp. 82–97, November 2012.

[78] Y. Song, B. Jiang, Y. Bao, S. Wei, and L.-R. Dai, “i-vector representation based
on bottleneck features for language identification,” Electronics Letters, vol. 49,
no. 24, pp. 1569–1570, 2013.

[79] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A Novel Scheme for Speaker
Recognition Using a Phonetically-Aware Deep Neural Network,” in Proceedings
of ICASSP, 2014.

[80] L. Ferrer, Y. Lei, M. McLaren, and N. Scheffer, “Spoken Language Recognition
Based on Senone Posteriors,” in Proceedings of Interspeech, 2014.

[81] P. Matejka, L. Zhang, T. Ng, S. H. Mallidi, O. Glembek, J. Ma, and B. Zhang,
“Neural Network Bottleneck Features for Language Identification,” in Proceed-
ings of Odyssey, 2014.

144

[82] F. Richardson, D. Reynolds, and N. Dehak, “A Unified Deep Neural Network
for Speaker and Language Recognition,” in Proceedings of Interspeech, 2015.

[83] R. Fer, P. Matejka, F. Grezl, O. Plchot, and J. Cernocky, “Multilingual Bottle-
neck Features for Language Recognition,” in Proceedings of Interspeech, 2015.

[84] L. Ferrer, Y. Lei, M. McLaren, and N. Scheffer, “Study of Senone-Based Deep
Neural Network Approaches for Spoken Language Recognition,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 24, no. 1, pp.
105–116, 2016.

[85] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “Switchboard: Telephone
Speech Corpus for Research and Development,” in Proceedings of ICASSP,
1992.

[86] M.-H. Siu, H. Gish, A. Chan, W. Belfield, and S. Lowe, “Unsupervised training
of an HMM-based self-organizing unit recognizer with applications to topic
classification and keyword discovery,” Computer Speech and Language, vol. 28,
no. 1, 2014.

[87] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudanpur, K. Church,
N. Feldman, H. Hermansky, F. Metze, R. Rose, M. Seltzer, P. Clark, I. McGraw,
B. Varadarajan, E. Bennett, B. Borschinger, J. Chiu, E. Dunbar, A. Four-
tassi, D. Harwath, C. Lee, K. Levin, A. Norouzian, V. Peddinti, R. Richardson,
T. Schatz, and S. Thomas, “A Summary of the 2012 JHU CLSP Workshop on
Zero Resource Speech Technologies and Models of Early Language Acquisition,”
in Proceedings of ICASSP, 2013.

[88] A. Jansen, K. Church, and H. Hermansky, “Towards Spoken Term Discovery
at Scale with Zero Resources,” in Proceedings of Interspeech, 2010.

[89] A. Jansen and K. Church, “Towards Unsupervised Training of Speaker Inde-
pendent Acoustic Models,” in Proceedings of Interspeech.

[90] R. Singh, B. Raj, and R. M. Stern, “Automatic Generation of Subword Units
for Speech Recognition Systems,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 10, no. 2, pp. 89–99, 2002.

[91] S. Chaudhuri, M. Harvilla, and B. Raj, “Unsupervised Learning of Acoustic
Unit Descriptors for Audio Content Representation and Classification,” in Pro-
ceedings of Interspeech, 2011.

[92] G. Chollet, J. Cernocky, A. Constantinescu, S. Deligne, and F. Bimbot, Com-
putational Models of Speech Pattern Processing. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1999, ch. Toward ALISP: A proposal for Automatic Lan-
guage Independent Speech Processing, pp. 375–388.

145

[93] D. Petrovska-Delacretaz, M. Abalo, A. E. Hannani, and G. Chollet, “Data-
driven Speech Segmentation for Language Identification and Speaker Verifica-
tion,” in Proceedings of NOLISP, 2003.

[94] H. Khemiri, “Unified Data-driven Approach for Audio Indexing, Retrieval, and
Recognition,” Ph.D. dissertation, TELECOM ParisTech, 2013.

[95] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Han-
nemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stemmer, and
K. Vesely, “The Kaldi Speech Recognition Toolkit,” in Proceedings of ASRU,
2011.

[96] A. Garcia and H. Gish, “Keyword Spotting of Arbitrary Words Using Minimal
Speech Resources,” in Proceedings of ICASSP, 2006.

[97] C. Lee, “Discovering Linguistic Structures in Speech: Models and Applica-
tions,” Ph.D. dissertation, Massachusetts Institute of Technology, 2014.

[98] J. Glass, “A probabilistic framework for segment-based speech recognition,”
Computer Speech and Language, vol. 17, pp. 137–152, 2003.

[99] J. S. Garofolo, L. F. Lamel, W. M. Fisher, J. G. Fiscus, D. S. Pallet, N. L.
Dahlgren, and V. Zue, “TIMIT Acoustic-Phonetic Continuous Speech Corpus,”
1993.

[100] A. Ihler and D. Newman, “Understanding Errors in Approximate Distributed
Latent Dirichlet Allocation,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 24, no. 5, pp. 952–960, May 2012.

[101] M. J. Johnson, J. Saunderson, and A. S. Willsky, “Analyzing Hogwild Paral-
lel Gaussian Gibbs Sampling,” in Advances in Neural Information Processing
Systems, 2013.

[102] J. R. Glass and V. W. Zue, “Multi-Level Acoustic Segmentation of Continuous
Speech,” in Proceedings of ICASSP, 1988.

[103] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-based State Tying for
High Accuracy Acoustic Modelling,” in Proceedings of the Workshop on Human
Language Technology, 1994.

[104] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank Matrix Factorization for Deep Neural Network Training with High-
dimensional Output Targets,” in Proceedings of ICASSP, 2013.

[105] Y. Zhang, E. Chuangsuwanich, and J. Glass, “Extracting Deep Neural Network
Bottleneck Features Using Low-rank Matrix Factorization,” in Proceedings of
ICASSP, 2014.

146

[106] P. Torres-Carrasquillo, N. Dehak, E. Godoy, D. Reynolds, F. Richardson,
S. Shum, E. Singer, and D. Sturim, “The MITLL NIST LRE 2015 Language
Recognition System,” in Proceedings of Odyssey (submitted), 2016.

[107] P. A. Torres-Carrasquillo, E. Singer, M. A. Kohler, R. J. Greene, D. A.
Reynolds, and J. Deller, Jr., “Approaches to Language Identification using
Gaussian Mixture Models and Shifted Delta Cepstral Features,” in Proceed-
ings of ICSLP, 2002.

[108] B. Bielefeld, “Language Identification Using Shifted Delta Cepstrum,” in Pro-
ceedings of the 14th Annual Speech Research Symposium, 1994.

[109] D. A. Reynolds, W. M. Campbell, W. Shen, and E. Singer, “Automatic Lan-
guage Recognition Via Spectral and Token Based Approaches,” in Springer
Handbook of Speech Processing and Communication, 2007.

[110] M. Zissman, “Comparison of Four Approaches to Automatic Language Identi-
fication of Telephone Speech,” IEEE Transactions on Speech and Audio Pro-
cessing, vol. 4, no. 1, pp. 31–44, January 1996.

[111] P. Matejka, P. Schwarz, J. Cernocky, and P. Chytil, “Phonotactic Language
Recognition using High Quality Phoneme Recognition,” in Proceedings of In-
terspeech, 2005.

[112] A. Stolcke, M. Akbacak, L. Ferrer, S. Kajarekar, C. Richey, N. Scheffer, and
E. Shriberg, “Improving Language Recognition with Multilingual Phone Recog-
nition and Speaker Adaptation Transforms,” in Proceedings of Odyssey, 2010.

[113] H. Li, B. Ma, and C. Lee, “A Vector Space Modeling Approach to Spoken
Language Identification,” IEEE Transactions on Audio, Speech, and Language
Processing, vol. 15, no. 1, pp. 271–284, January 2007.

[114] W. M. Campbell, F. Richardson, and D. A. Reynolds, “Language Recognition
with Word Lattices and Support Vector Machines,” in Proceedings of ICASSP,
2007.

[115] T. Mikolov, O. Plchot, O. Glembek, P. Matejka, L. Burget, and J. Cernocky,
“PCA-based Feature Extraction for Phonotactic Language Recognition,” in
Proceedings of Odyssey, 2010.

[116] F. S. Richardson and W. M. Campbell, “NAP for High Level Language Identi-
fication,” in Proceedings of ICASSP, 2011.

[117] M. Soufifar, M. Kockmann, L. Burget, O. Plchot, O. Glembek, and T. Svendsen,
“iVector Approach to Phonotactic Language Recognition,” in Proceedings of
Interspeech, 2011.

147

[118] M. H. Bahari, N. Dehak, H. Van hamme, L. Burget, A. M. Ali, and J. Glass,
“Non-Negative Factor Analysis of Gaussian Mixture Model Weight Adaptation
for Language and Dialect Recognition,” IEEE/ACM Transactions of Audio,
Speech, and Language Processing, vol. 22, no. 7, pp. 1117–1129, July 2014.

[119] M. Soufifar, L. Burget, O. Plchot, S. Cumani, and J. Cernocky, “Regularized
Subspace n-Gram Model for Phonotactic iVector Extraction,” in Proceedings of
Interspeech, 2013.

[120] M. Kockmann, L. Burget, O. Glembek, L. Ferrer, and J. Cernocky, “Prosodic
Speaker Verification using Subspace Multinomial Models with Intersession
Compensation,” in Proceedings of Interspeech, 2010.

[121] P. Schwarz, P. Matejka, and J. Cernocky, “Hierarchical Structures of Neural
Networks for Phoneme Recognition,” in Proceedings of ICASSP, 2006.

[122] J. Gauvain, A. Messaoudi, and H. Schwenk, “Language Recognition Using
Phone Lattices,” in Proceedings of ICSLP, 2004.

[123] M. Versteegh, R. Thiolliere, T. Schatz, X. N. Cao, X. Anguera, A. Jansen,
and E. Dupoux, “The Zero Resource Speech Challenge 2015,” in Proceedings of
Interspeech, 2015.

[124] L. Badino, C. Canevari, L. Fadiga, and G. Metta, “An Auto-encoder Based Ap-
proach to Unsupervised Learning of Subword Units,” in Proceedings of ICASSP,
2014.

[125] F. Grezl, M. Karafiat, and K. Vesely, “Adaptation of Multilingual Stacked
Bottleneck Neural Network Structure for New Language,” in Proceedings of
ICASSP, 2014.

[126] Y. Zhang, E. Chuangsuwanich, and J. Glass, “Language ID-based training of
multilingual stacked bottleneck features,” in Proceedings of Interspeech, 2014.

[127] A. Jansen, S. Thomas, and H. Hermansky, “Weak Top-Down Constraints for
Unsupervised Acoustic Model Training,” in Proceedings of ICASSP, 2013.

[128] H. Kamper, M. Elsner, A. Jansen, and S. Goldwater, “Unsupervised Neural
Network Based Feature Extraction Using Weak Top-Down Constraints,” in
Proceedings of ICASSP, 2015.

[129] H. Kamper, W. Wang, and K. Livescu, “Deep Convolutional Acoustic Word
Embeddings Using Word-Pair Side Information,” in Proceedings of ICASSP,
2016.

[130] C. Lee, T. J. O’Donnell, and J. Glass, “Unsupervised Lexicon Discovery from
Acoustic Input,” Transactions of the Association for Computational Linguistics,
vol. 3, pp. 389–403, July 2015.

148

[131] M. Johnson, T. L. Griffiths, and S. Goldwater, “Adaptor Grammars: A Frame-
work for Specifying Compositional Nonparametric Bayesian Models,” in Pro-
ceedings of NIPS, 2006.

[132] A. Park and J. R. Glass, “Unsupervised Pattern Discovery in Speech,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 16, no. 1, pp.
186–197, 2008.

[133] H. Sakoe and S. Chiba, “Dynamic Programming Algorithm Optimization for
Spoken Word Recognition,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. 26, no. 1, pp. 43–49, February 1978.

[134] M. Senoussaoui, P. Kenny, N. Dehak, and P. Dumouchel, “An i-vector Ex-
tractor Suitable for Speaker Recognition with Both Microphone and Telephone
Speech,” in Proceedings of IEEE Odyssey, 2010.

[135] N. Dehak, Z. N. Karam, D. A. Reynolds, R. Dehak, W. M. Campbell, and J. R.
Glass, “A Channel-Blind System for Speaker Verification,” in Proceedings of
ICASSP, 2011.

[136] V. J. Hodge and J. Austin, “A Survey of Outlier Detection Methodologies,”
Artificial Intelligence Review, vol. 22, no. 2, pp. 85–126, 2004.

[137] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly Detection: A Survey,”
University of Minnesota, Tech. Rep. TR 07-017.

[138] P. Kenny, T. Stafylakis, P. Ouellet, M. J. Alam, and P. Dumouchel, “PLDA for
Speaker Verification with Utterances of Arbitrary Duration,” in Proceedings of
ICASSP, 2013.

[139] S. Cumani, O. Plchot, and P. Laface, “Probabilistic Linear Discriminant Anal-
ysis of i-vector Posterior Distributions,” in Proceedings of ICASSP, 2013.

149

