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Abstract

In this thesis, I designed a computational method for predicting substrates of 𝛾−secretase
in Drosophila and compared this method with other popular methods using some
benchmark data set. Results show our method significantly outperforms other meth-
ods and generates important candidates for further experimental validation. Results
from this computational experiment could be very important in comparing two com-
mon hypotheses for Alzheimer’s disease: the presenilin hypothesis and amyloid hy-
pothesis.
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Chapter 1

Introduction

1.1 Motivation

Inherited mutations in genes encoding presenilins (PS) and amyloid precursor proteins

(APP) are strongly associated with Alzheimer’s disease, but the molecular mechanism

is still unknown. As presenilins could form 𝛾-secretase, a protease complex involved

in the cleavage of many type I transmembrane proteins [1], such as Notch and N-

cadherin, and APP is a substrate of 𝛾−secretase, two hypothese for the molecular

mechanism exist.

The first is the amyloid hypothesis [2, 3], which states that overexpression of

APP triggers neurodegeneration and thus leads to Alzheimer’s disease (AD); here,

Alzheimer’s associated mutations in PS are mainly caused by cleavage of APP from

𝛾−secretase. The second is the presenilin hypothesis [4], which states that degen-

eration of presenilin causes accumulation of its substrates, mainly the type I trans-

membrane proteins, and eventually leads to neurodegeneration; here, APP may be

a factor but not the main cause. There is also experimental evidence that supports

this latter hypothesis in mouse [5] with presenilin knockout in the forebrain.

In this project we are primarily interested in investigating which hypothesis is

correct. In order to verify the two hypotheses, the first thing we need to do is to find

all the substrates of 𝛾−secretase for experiments to test association of each substrate

with AD, which is also the primary focus of this project. It is a very important step to
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test the two hypotheses as after that, we could be able to compare the two hypotheses

by testing association of each substrate predicted from the first step with AD in real

experiment, which would be further discussed in Sec. 1.2.2.

As experiments to find the target of 𝛾−secretase in mice or other higher organisms

are not practically feasible due to time and cost, using Drosophila as a model system

has the benefit of its short lifespan, feasibility of phenotypic screening, and huge

resources (eg. Genome-wide transgenic RNAi library [6]). Once we identify candidate

genes in the fly system, we will validate them in the mouse or human systems with

our experimental collaborators Dr. Jie Shen and Norbert Perrimon.

Traditionally researchers would select a list of proteins from empirical experience

and experimentally detect their association with Alzheimer’s disease; as the number of

protein candidates is too large [1], it is important to develop data analysis techniques

to prioritize proteins for experimental testing.

The entire project is composed of two parts: the first is to use computational ap-

proaches to discover transmembrane proteins cleaved by 𝛾−secretase, and the second,

experimental approaches to identify its association with Alzheimer’s disease.

1.2 Experimental Methods for Alzheimer’s Associ-

ated Protein Discovery

The experiments are based on RNA interference (RNAi) [7], a technology that uses

RNA molecules to inhibit gene expression [8].

1.2.1 RNA Interference for Gene Knockdowns

RNA interference technology is based on the phenomenon that some RNA molecules

can destruct specific mRNA to suppress mRNA expressions. It was first observed in

Fire et al. [9] where Caenorhabditis elegans used interfering RNA to cleave double-

stranded RNA for genetic regulation.

Two kinds of RNA are used for interfering with RNA: microRNAs (miRNA) and
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small interfering RNAs (siRNA); each recognizes specific mRNA by their sequence

and silence specific RNA based on their sequences.

Based on this property, RNAi is widely used as a gene silencing technique; this

technique is achieved by the following procedure:

∙ Introduction of siRNA into the cell, either through direct introduction or using

an expression vector [10] to synthesize siRNA within the cell;

∙ RNA-induced silencing complex (RISC) [11] processes the siRNA and degrades

mRNAs complementary to the induced siRNA.

1.2.2 Experiment to Compare Presenilin Hypothesis and Amy-

loid Hypothesis

Here is how we design an experiment to compare the presenilin and amyloid hypothe-

ses.

For all the flies we are going to use in this experiment, we use RNAi to knockdown

presenilin; then for each substrate of 𝛾−secretase, we have a perspective group of fly

where this substrate is also knocked down using RNAi, so that we can distinguish the

association between the substrate and Alzheimer’s disease by observation of double

knockdowns, if AD symptoms are weakened or strengthened as a result of double

knockdowns, then we say this substrate is associated with AD; if double knockdowns

does not cause any changes relative to single knockdown, then the substrate is not

associated with AD.

There are many ways to detect the association between the substrate and AD,

one is through lifespan; lifespans for flies with more serious AD symptoms would be

shorter, and vice versa. As measurements using lifespan are quite unstable, we also

consider using microscopy technologies.

We pursue the intuition that if there are a lot of substrates verified to be associated

with AD, then the presenilin hypothesis is correct, otherwise, the amyloid hypothesis

is correct. As one can imagine finding the substrates of 𝛾−secretase is very important
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to initialize the experiment. As the substrate of 𝛾−secretase is still unknown, we need

to design computational methods to discover them.

1.3 Computational Framework for Protein Interac-

tion Prediction

As stated in Sec. 1.2, from a computational perspective, to test the hypothesis, we

need to design computational methods to predict substrates of 𝛾−secretase. the motif

based method has been widely used to predict interaction candidates of proteins. The

core part, motif finding, can be split into two approaches, one using multiple sequence

alignment and constructing motif using alignment results (alignment based method);

another non-alignment based method, where we construct a motif without sequence

alignment.

1.3.1 Alignment Based Method for Motif Finding

The alignment based method has been widely used in constructing motifs for a wide

variety of biological sequences; for example, Lambert et al. [12] used RNA multiple

sequence alignment with secondary structure information to find RNA motifs and

Kellis et al. [13, 14] used whole genome alignment of multiple yeast species to find

regulatory motif elements across genome.

Although alignment based methods have been successfully applied to motif finding

of RNA and DNA sequences, it has been a challenge to apply these to finding protein

sequence motifs. Challenges involve:

∙ protein function is mostly determined by structure, so discovering sequence

motifs is not so helpful for understanding function;

∙ alphabet size of amino acids is much larger than nucleotides, which significantly

reduces multiple sequence alignment performance.
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Here we overcome these challenges. For the first challenge, as 𝛾−secretase would

cleave at a transmembrane region, where proteins are unfolded into 𝛼−helix struc-

ture, which is very close to their native state: linear sequences from a computational

perspective, sequence based methods would be more informative than structure based

methods. For the second, we could use a recently proposed alphabet reduction method

[15] to improve alignment quality.

1.3.2 Non-alignment Based Method for Motif Finding

There are also other motif finding approaches without alignment, the most famous

one would be EM based motif finding algorithm [16], like MEME [17] and DREME

[18]. They both assume a generative model that generates the sequences for protein

interaction and use EM-based algorithm for parameter estimation.

1.4 Thesis Overview

The rest of thesis is composed of the following parts. Chapter 2 contains the compu-

tational method for predicting 𝛾−secretase substrates, Chapter 3 contains the results

analysis and comparison with other popular methods, and Chapter 4, a discussion

chapter as well as topics for future research.
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Chapter 2

Methods

In this chapter we give a detailed summary of the method designed to discover sub-

strates of 𝛾−secretase. The whole method is based on motifs. First, we used mul-

tiple bioinformatics tools to extract homologous proteins of the known substrates of

𝛾−secretase, then use these proteins, together with the known substrates of 𝛾−secretase,

as input data to train the motif model. After we have trained a motif, we use the

motif scanning algorithm to find the substrates of 𝛾−secretase.

In this chapter, we will start by introducing the bioinformatics methods we are

going to use to train the motif, including homologous protein discovery for training

data for the motif model (Sec. 2.1), multiple sequence alignment (Sec. 2.2), alphabet

reduction (Sec. 2.3), statistical model of sequence motif (Sec. 2.4), sequence scoring

using a position weight matrix (Sec. 2.5). Finally, in Sec. 2.6, we introduce the

pipeline to predict 𝛾−secretase using the aforementioned bioinformatics tools.

2.1 Data Preparation

Training motif model for 𝛾−secretase substrates requires proteins cleaved by 𝛾−secretase

as input. As there are only three experimentally verified substrates of 𝛾−secretase,

𝛽 amyloid protein precursor-like (Appl), Notch and Cadherin-N (CadN), we need to

expand the training set by using homologous proteins of these substrates.

Since all substrates of 𝛾−secretase are type I transmembrane protein, we first
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use TMHMM [19], a hidden Markov model [20] based method to predict trans-

membrane regions within protein sequences and select transmembrane proteins from

all Drosophila proteins. In total, we have found 673 transmembrane proteins from

TMHMM prediction.

Next, we ran HHpred [21], a HMM-HMM comparison method that uses HMMs to

encode protein evolutionary constraints, with human APP, human Notch, Drosophila

APPL and Drosophila Notch as input to detect their homologous proteins amongst

those 673 transmembrane proteins. This procedure results in a list of 112 proteins.

Then we used the 112 proteins, together with the three known 𝛾-secretase substrates,

as a case data set, and the rest of the 673 proteins as a control to train the motif

model.

2.2 Multiple Sequence Alignment

As mentioned in the previous chapter, there are two ways to train motif models: one is

based on homologous information, where we find the consensus region of homologous

proteins, another is the EM based algorithm, where given a list of unaligned sequences,

we predict the site of the motif in each sequence and simultaneously train the motif

model using the predicted sites. Since here we first chose the homologous based motif

training method, selecting an effective method for multiple sequence alignment is

an important step in our pipeline. Later in Sec. 3.3 we compare to the EM based

algorithm and other methods to demonstrate our favourable performance.

Multiple sequence alignment assumes the input query sequences descended from

a common ancestor and aligns them together through detecting homologus regions.

The most simple way is through dynamic programming, which is computationally

infeasible as it is NP-complete [22]. There are also other approaches, such as pro-

gressive alignment construction [23], iterative methods [24], consensus methods [25]

and hidden Markov model [24], all of which cannot guarantee an optimal alignment

from a theoretical perspective, but usually have good performance in real world data

analysis.
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Here we used mafft [26] for multiple sequence alignment. It is a multiple sequence

alignment program that uses fast Fourier transform (FFT) to discover homologous

segments and then builds up multiple sequence alignments through pairwise alignment

from the most similar to the most different sequences. It is based on the observation

that fast Fourier transform is a very efficient method to detect sequence similarities

[27, 28].

2.3 Alphabet Reduction

In order to generate multiple sequence alignments, as the amino acid alphabet of pro-

teins is too large, which significantly influences the performance of multiple sequence

alignment, we used an alphabet shrinkage method to shrink the alphabet size to

four letters [15]. There are many strategies to shrink alphabets based on biophysical

similarity of amino acids.

In Bacardit et al. [15], the authors changed this problem into an optimization one

that they solve by clustering amino acids by maximizing the objective function:

𝐼(𝑋;𝑌 ) =
∑︁
𝑦∈𝒴

∑︁
𝑥∈𝒳

𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)

where for each instance in the database, 𝑥 corresponds to a string encoding the “fea-

ture” (either contact number [29] or solvent accessibility [30]) of this instance and 𝑦

denotes the cluster index this instance belongs to. All probabilities are calculated

from their occurrence in the database. Based on maximizing the mutual information

strategy, the authors [15] also made a few extensions beyond that. One is called the

“robust mutual information” strategy, where they add a shuffling process to the orig-

inal mutual information computation to avoid overestimation of small sample size.

Another is called the “dual robust mutual information” strategy, which is developed

based on a “robust mutual information” strategy that assigns different alphabet re-

duction strategy between target residues and non-target residues (see Fig. 1 and Fig.

2 of [15]).
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From the experimental performance (which will be further discussed in the results

chapter), we found the “dual robust mutual information” strategy with solvent ac-

cessibility features has the best performance, and choose that strategy to reduce the

amino acid into a four-letter alphabet.

2.4 Position Weight Matrix for Sequence Motif Model

Position weight matrices (PWM) are commonly used to model sequence motifs, based

on the assumption that a protein would interact with another biomolecule by recog-

nizing a k-mer, a short continuous sequence fragment of length 𝑘, within the sequence.

PWMs match the 𝛾−secretase case as the cleavage site of 𝛾−secretase is within

the transmembrane region of protein. In these regions, most transmembrane proteins

would unfold into a more linear structure: 𝛼−helix [31], for 𝛾−secretase cleavage.

Therefore, a k-mer model would be suitable to model 𝛾−secretase cleavage considering

its linear nature.

From a mathematical perspective, PWMs use matrix to model occurrence prob-

abilities of amino acids in each position of the k-mer, where each row in the matrix

corresponds to an amino acid and each column corresponds to a position in the k-

mer. In this way, value of each cell 𝑀𝑙,𝑗 in the matrix 𝑀 represents the probability

of occurrence of amino acid 𝑙 at k-mer’s position 𝑗, which is calculate as:

𝑀𝑙,𝑗 =
1

𝑁

𝑁∑︁
𝑖=1

𝐼(𝑋𝑖,𝑗 = 𝑙),

here 𝑙 is the amino acid of the row, 𝑋𝑖,𝑗 is the letter of 𝑖-th sequence at 𝑗-th position

of the k-mer in sequence, all indices are 1-indexed.

2.5 Scoring Motif Match Using Log-likelihood

Given the PWM of motif, 𝑀 , we calculate the score of sequence 𝑠 using the following

formula:
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𝑠𝑐𝑜𝑟𝑒 = max
𝑖

𝑘∑︁
𝑗=1

log𝑀𝑠[𝑖+𝑗−1],𝑗.

Here 𝑘 is the length of k-mer, 𝑠[𝑖] is the 𝑖−th amino acid in sequence 𝑠. The intuition

is that if we consider a PWM as a generative model for a k-mer, we need to select

the k-mer that has the highest generative probability in the matrix model. When the

motifs for both case (𝑀 𝑐𝑎𝑠𝑒) and control (𝑀 𝑐𝑡𝑟𝑙) data are provided, we can calculate

the score using the log-likelihood ratio:

𝑠𝑐𝑜𝑟𝑒 = max
𝑖

𝑘∑︁
𝑗=1

log
𝑀 𝑐𝑎𝑠𝑒

𝑠[𝑖+𝑗−1],𝑗

𝑀 𝑐𝑡𝑟𝑙
𝑠[𝑖+𝑗−1],𝑗

.

2.6 Pipeline for 𝛾−secretase Substrate Prediction

See Fig. 2-1 for an outline of the pipeline we used to predict 𝛾−secretase substrates.

Figure 2-1: Pipeline for prediction of 𝛾−secretase cleavage substrates

First, for all the 112 predicted substrates of 𝛾−secretase, as the cleavage site of
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𝛾−secretase is within the transmembrane region of the protein, we extracted trans-

membrane regions (predicted by TMHMM) with flanking regions on each side as

input sequence for alignment, here we tested different flanking region length and

found flanking regions with 50 amino acids on each side has the best performance.

We also added regions extracted from the three experimentally verified 𝛾−secretase

substrates to the alignment input. When there are multiple regions of the protein

predicted as transmembrane regions, we just consider all of them.

Then we used the alphabet reduction strategy described in Sec. 2.3 to reduce the

original amino acid alphabet into a four-letter alphabet and run mafft on the sequence

translated to the reduced alphabet. We also did the same thing on the control.

After a multiple sequence alignment has been constructed using mafft, for each

protein in the training set, we checked the quality of the alignment to the three

experimentally verified substrates and discarded the proteins with poor alignment.

In particular, we manually selected a region of Appl such that the local alignment

with > 90% sequence identity was kept to generate the motif.

Next, as the three experimentally verified substrates are also candidates in the

multiple sequence alignment, for each of the three substrates, we constructed a PWM

by first manually selecting a region in that substrate and using sequences aligned to

that region to build a PWM. The coordinates of the regions we selected to build the

PWM are listed in Table 2.1. Here for each substrate we generated motifs using both

case and control sequence sets.

protein symbol isoform id start end
Appl FBpp0070104 819 842
Notch FBpp0070483 1748 1771
CadN FBpp0080569 2923 2946

Table 2.1: Coordinates of the alignment region used for generating 𝛾−secretase sub-
strate motif relative to three experimentally verified substrates. Notice they are all
aligned with each other and have high alignment coverage.

After we have gotten the PWM of the substrate motif, we used the PWM to

predict scores for 𝛾−secretase cleavage using the method of Sec. 2.5. Both using

only the case motif and using the case and control motifs together are considered to
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compare performance.

2.7 Empirical Reasons for Choosing Alignment Based

Method

We choose the alignment based method relative to non-alignment based method for

the empirical reason that:

∙ training data is composed of homologous proteins, thus alignment based meth-

ods are able to fully utilize homology information as compared to non-alignment

based methods.

In the results chapter, we support this empirical insight with computational vali-

dation on benchmark data set.
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Chapter 3

Results

3.1 Motifs Generated by Multiple Sequence Align-

ment

Once we have aligned case sequences, we need to select regions for each experimentally

verified substrate and use the sequences aligned to that region to generate a substrate

motif.

First, for each experimentally validated substrate, we selected a flanking region

of 20 amino acids on each side of the cleavage site and used the sequences aligned

to this region to generate the motif. The reason for choosing flanking length as 20

is that the regions we chose to build up PWM (Table 2.1) are all within 20 amino

acids from the cleavage site, so we picked flanking regions of 20 for visualization. The

motif in Fig. 3-1 was generated by weblogo [32].

We also used the same approach to generate motifs using control data (Fig. 3-

2), for consistency we chose the same coordinate as cases. By comparing cases and

controls, we have found several differences:

∙ motifs for case sequences look more similar, due mostly to better alignment

quality so that selected regions of the three substrates are aligned together;

∙ amino acid distribution for the control motif tend to be more uniform than
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case, which means case sequences tend to be more homologous than control

sequences.

As the number of control sequences is much larger than case, and a larger number

of alignment candidates could significantly reduce the alignment quality, here we also

randomly selected control sequences with equal size to the case and constructed the

motif based on the sampled set (Fig. 3-3).

We also summarized the alignment coverage: percentage of amino acids aligned

to those regions rather than gaps (red line in Fig. 3-4) to measure the motif quality.

Alignment coverage of the control set is depicted by the green line.

Based on both case motif and alignment coverage data, we further shrink the

motif into the red rectangular region to build motif for prediction, it is based on two

reasons:

∙ red rectangular region of all three motifs are aligned together in the multiple

sequence alignment;

∙ the alignment coverage of the region in the dark red rectangular is very high

(red line in Fig. 3-4).

From motif shown in Fig. 3-1, it is interesting to see that the motif contains a

segment of medium-size hydrophobic residues, such as Leucine (L) and Valine (V), and

a cluster of positively charged residues, such as Arginine (R). This motif is consistent

with a hypothetical model described in a recent manuscript by Bai et al. [33], which

provides biological evidence to support our computational motif discovery.

3.2 Motif Prediction Result

After the motif finding procedure, we also tested the predictive performance on two

benchmark data sets we collected. Details of how the two data sets are generated is

listed here:
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∙ first benchmark: the 112 proteins used in the training case motif as positive, all

predicted type I transmembrane proteins as negative;

∙ second benchmark: Drosophila proteins predicted to be orthologous to human

𝛾−secretase substrates (DIOPT [34] as prediction tool, with DIOPT score at

least 1) as positive, all predicted type I transmembrane proteins as negative.

After the benchmark data was generated, we used motifs generated in Sec. 3.1 to

make predictions with three methods:

∙ likelihood method: calculate likelihood of each sequence using motif from case

data;

∙ likelihood ratio method: calculate likelihood ratio of each sequence using motif

from both case and control data;

∙ likelihood ratio (shrink) method: calculate likelihood ratio of each sequence

using motifs from case data and randomly sampled control data.

Method AUC value

first benchmark
likelihood 0.80

likelihood ratio 0.81
likelihood ratio (shrink) 0.82

second benchmark
likelihood 0.69

likelihood ratio 0.67
likelihood ratio (shrink) 0.71

Table 3.1: AUC value of method on benchmark dataset

Results indicate that when using case data, the performance of the three models

looks nearly identical (Table 3.1), however, this could be caused by overfitting of

benchmark. When transformed into a completely new data set (benchmark 2), the

likelihood ratio (shrink) has the best performance, and thus we used this method to

rank all type I transmembrane proteins we discovered (Table 3.2). And we would use

the top 10 transmembrane proteins for experimental validation.
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Rank fbgnid Gene SymbolMotif APPL Notch
1 17 2 FBgn0011592 fra
2 FBgn0015609 CadN
3 FBgn0036202 CG6024
4 FBgn0030603 CG5541
5 FBgn0051072 Lerp
6 1 FBgn0000108 Appl
7 FBgn0261574 kug
8 FBgn0040256 Ugt86Dd
9 FBgn0004370 Ptp10D
10 FBgn0005631 robo1

Table 3.2: Prediction result of type I transmembrane proteins: “Rank” means the
rank of score using motif model, “APPL” means rank of homologous protein of Appl,
same for “Notch”, only top 10 is shown.

Table 3.2 contains some of the top ranked type I transmembrane proteins. Due

to space limitions, here we just show the top 10 proteins in the prediction list, the

rest are in Supplement (Table A.1). From the results we see both Appl (ranking 6)

and CadN (ranking 2) have very high predicted ranks, but surprisingly Notch is not

in the top list (the rank is 13); only a protein highly homologous to Notch is in the

top list. This is a reasonable prediction error.

3.3 Comparison with Other Methods

3.3.1 Comparison with Non-alignment Based Method

Here we also compared with a non-alignment based method. As mentioned in the

introduction chapter, there are two ways to find sequence motif, one is by using mul-

tiple sequence alignment and then build a position weight matrix based on alignment

result, which we have done; another is by using an EM based algorithm to predict

the binding site of each sequence and construct a position weight matrix through

occurrence of amino acids at the predicted sites.

There are two additional requirements if we want to use evolutionary based meth-

ods rather than the straightforward EM-based algorithm:
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∙ input sequences are homologous proteins;

∙ we are certain about where the binding site is for at least one protein in the

multiple sequence alignment.

Fortunately the provided dataset happens to satisfy these requirements, so em-

pirically evolutionary based methods should have better performance. Here for com-

parison I used the EM based algorithm MEME [17] to generate the motif.

To run MEME, we set the maximum number of motifs generated to 5, As MEME

selects a subset of sequences to generate a motif, we set the minimum number of

sequences in generating this motif to 200. As DREME does not support protein

sequences, here we just consider MEME. See Fig. 3-5 for motifs generated from case

sequences and Fig. 3-6 for motifs from control sequences.

We can see the first discovered motif using case data (Fig. 3-5a), as compared

to control data (Fig. 3-6), matches our empirical evaluation best (“L” enriched), so

we used it as the motif from case set. For the control motif, we chose Fig. 3-6a.

After motifs were generated, we tested their performance using the aforementioned

benchmark, see Table 3.3 for results. We can see the MEME suite using the likelihood

method has the best performance in this test.

Method AUC value

first benchmark likelihood 0.71
likelihood ratio 0.66

second benchmark likelihood 0.62
likelihood ratio 0.61

Table 3.3: AUC value for non-alignment based method on benchmark dataset using
MEME motif

By comparing Tables 3.1 and 3.3, we observe the alignment based method signifi-

cantly outperforms the non-alignment based method, which also matches our empir-

ical observations.

The superior performance is likely due to that case data are mainly generated

from homology search, and homology based methods can fully use the evolutionary

information to align cleavage sites of candidates for more accurate inference of the
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motif. In contrast, the EM based method cannot fully utilize this information, but

could be more effective when the case set is not comprised of homologous proteins.

3.3.2 Comparison with Alignment Based Method without Al-

phabet Reduction

Here we also examine the affect of alphabet reduction. First we generated case motifs

using multiple sequence alignment without alphabet reduction (Fig. 3-8) and used

this motif for prediction (Table 3.4).

experiment AUC value

case data
case motif only 0.68

case and control motif 0.74
case and control motif (shrink) 0.63

experiment data
case motif only 0.67

case and control motif 0.66
case and control motif (shrink) 0.67

Table 3.4: AUC value of method without alphabet reduction procedure on benchmark
dataset

From the AUC result, as well as the motif picture, we see that alphabet reduction

significantly improves alignment quality and thus creates a more accurate motif model

for prediction.
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(a) Appl

(b) Notch

(c) CadN

Figure 3-1: Motif of three experimentally verified substrates using case data; regions
within red rectangle are the selected regions for position weight matrix
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(a) Appl

(b) Notch

(c) CadN

Figure 3-2: Motif of three experimentally verified substrates using control data; re-
gions within red rectangle are the selected regions for position weight matrix, for
consistency we selected the same coordinates as case motifs.
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(a) Appl

(b) Notch

(c) CadN

Figure 3-3: Motif found for three experimentally verified substrates using (shrink)
control data set of equal size to case set through random sampling; regions within
red rectangle are the selected regions for position weight matrix.
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(a) Appl (b) Notch (c) CadN

Figure 3-4: Alignment coverage for both case sequence alignment (red line) and con-
trol sequence alignment (green line), y-axis is the percentage of amino acid coverage
for each position, x-axis is the same as the x-axises in previous motif logos; regions
within red rectangle are the selected regions for position weight matrix.
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Figure 3-5: Non-alignment based motif found using MEME suite with case data
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Figure 3-6: Non-alignment based motif found using MEME suite with control data

(a) ROC curve for training data (b) ROC curve for experimental data

Figure 3-7: Comparison of ROC curve for non-alignment based methods using ho-
mologous motif and MEME motif; red line corresponds to using homologous motif,
green line to using MEME motif
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(a) Appl

(b) Notch

(c) CadN

Figure 3-8: Motif of three experimentally verified substrates using case data without
alphabet reduction; regions within red rectangle are the selected regions for position
weight matrix
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Chapter 4

Conclusion

In this project, we have proposed a computational method to predict substrates of

𝛾−secretase based on motifs devised through a multiple sequence alignment pipeline.

Importantly, a reduced amino acid alphabet was a critical component. We also de-

signed several experiments to compare its performance with other popular methods.

Overall, we expect predictions resulting from this computational method to be

very helpful in testing two hypotheses of Alzheimer’s disease: presenilin hypothe-

sis and amyloid hypothesis. This experiment also shows that sequence motif based

methods are be very helpful in predicting protein interactions within transmembrane

proteins, which could be generalized in principle to other transmembrane binding

problems.
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Appendix A

Tables

Rank
fbgnid Gene Symbol

Motif APPL Notch

1 17 2 FBgn0011592 fra

2 FBgn0015609 CadN

3 FBgn0036202 CG6024

4 FBgn0030603 CG5541

5 FBgn0051072 Lerp

6 1 FBgn0000108 Appl

7 FBgn0261574 kug

8 FBgn0040256 Ugt86Dd

9 FBgn0004370 Ptp10D

10 FBgn0005631 robo1

11 FBgn0030310 PGRP-SA

12 FBgn0261262 CG42613

13 16 1 FBgn0004647 N

14 FBgn0262018 CadN2

15 FBgn0030090 fend

16 FBgn0030769 CG13012

17 FBgn0013997 Nrx-IV
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18 FBgn0038868 CG5862

19 FBgn0011283 Obp28a

20 FBgn0032235 CG5096

21 FBgn0038028 CG10035

22 FBgn0032713 CG17323

23 FBgn0034718 wdp

24 5 23 FBgn0261822 Bsg

25 FBgn0028400 Syt4

26 FBgn0034797 nahoda

27 22 4 FBgn0038638 CG7702

28 15 22 FBgn0010473 tutl

29 FBgn0011204 cue

30 FBgn0031735 CG11029

31 FBgn0037007 CG5059

32 FBgn0265182 CG44247

33 FBgn0031305 Iris

34 FBgn0031879 uif

35 FBgn0035543 CG15020

36 FBgn0002543 robo2

37 FBgn0040388 boi

38 FBgn0016061 side

39 FBgn0051036 CG31036

40 FBgn0015380 drl

41 FBgn0034066 CG8397

42 FBgn0033403 CG13739

43 FBgn0032856 CG16798

44 FBgn0036509 CG7739

45 FBgn0024245 dnt
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46 FBgn0032851 CG13970

47 FBgn0035833 CG7565

48 FBgn0263219 Dscam4

49 FBgn0029922 CG14431

50 FBgn0010395 Itgbn

51 FBgn0030260 CG1537

52 FBgn0039265 CG11790

53 FBgn0039140 Miro

54 FBgn0030703 MSBP

55 FBgn0001083 fw

56 30 FBgn0085400 CG34371

57 FBgn0036587 CG4950

58 FBgn0034642 CG15674

59 FBgn0036146 CG14141

60 FBgn0263830 CG40486

61 FBgn0004242 Syt1

62 FBgn0259245 DIP-beta

63 FBgn0034541 CG13437

64 FBgn0264975 Nrg

65 FBgn0029866 CG3842

66 FBgn0051262 CG31262

67 FBgn0263256 CG43394

68 FBgn0002306 sas

69 FBgn0031554 CG15418

70 FBgn0003716 tkv

71 FBgn0033777 CG17574

72 FBgn0085409 CG34380

73 FBgn0030992 CG33253
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74 FBgn0028482 bdl

75 FBgn0004369 Ptp99A

76 FBgn0003366 sev

77 FBgn0011300 babo

79 FBgn0000094 Anp

80 FBgn0000636 Fas3

81 FBgn0033880 CG6553

82 FBgn0004511 dy

83 FBgn0035483 Mul1

84 FBgn0035040 CG4741

85 FBgn0003285 rst

86 FBgn0028369 kirre

88 FBgn0026314 Ugt35b

89 FBgn0038871 CG3337

90 FBgn0035043 CG4781

91 FBgn0053087 LRP1

92 FBgn0051068 CG31068

93 FBgn0085292 CG34263

94 FBgn0262482 CG43072

95 FBgn0036928 Tom20

96 FBgn0261260 mgl

97 FBgn0031571 bark

98 FBgn0264739 CG43997

99 FBgn0034031 CG12963

100 FBgn0035429 CG12017

101 FBgn0039086 CG16732

102 FBgn0044809 TotZ

103 FBgn0250832 Dup99B
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104 FBgn0260223 CG42497

105 FBgn0261277 rtv

106 FBgn0035444 CG12012

107 FBgn0025686 Amnionless

108 FBgn0010482 l(2)01289

109 FBgn0039521 CG5402

110 FBgn0066365 dyl

111 FBgn0031560 CG16713

112 FBgn0085423 CG34394

113 FBgn0266757 mfr

114 FBgn0016047 nompA

115 FBgn0031564 CG2816

116 FBgn0261358 CG42635

117 FBgn0003391 shg

118 FBgn0039928 Cals

119 FBgn0034005 ItgaPS4

120 FBgn0086604 CG12484

121 FBgn0033814 CG4670

122 FBgn0015622 Cnx99A

123 FBgn0030847 CG12991

124 FBgn0029669 CG13021

125 FBgn0033020 COX4L

126 FBgn0260954 CG42586

127 FBgn0028537 CG31775

128 FBgn0051431 CG31431

129 FBgn0026754 Ugt37c1

130 FBgn0052141 CG32141

131 FBgn0031294 IA-2
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132 FBgn0030993 Mec2

133 FBgn0053144 CG33144

134 FBgn0038809 CG16953

135 FBgn0034540 Lrt

136 FBgn0051004 mesh

137 FBgn0052792 ppk8

138 FBgn0250821 CG14644

139 FBgn0004648 svr

140 FBgn0040250 Ugt86Dj

141 14 8 FBgn0000463 Dl

142 FBgn0085377 CG34348

143 FBgn0038610 CG7675

144 FBgn0028872 CG18095

145 FBgn0264303 CG43781

146 FBgn0262515 VhaAC45

147 FBgn0033943 CG12869

148 FBgn0085199 CG34170

149 FBgn0264302 CG43780

150 FBgn0037030 CG3288

151 FBgn0032860 CG15130

152 FBgn0083975 Nlg4

153 FBgn0083963 Nlg3

154 FBgn0038156 CG14372

155 FBgn0042179 CG18869

156 FBgn0004591 Eig71Ed

157 FBgn0263083 CG43351

158 FBgn0004197 Ser

159 FBgn0037110 ORMDL
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160 FBgn0038127 CG8476

161 FBgn0043903 dome

162 FBgn0050373 CG30373

163 FBgn0031548 CG8852

164 FBgn0262870 axo

165 FBgn0259110 mmd

166 FBgn0019985 mGluR

167 FBgn0259238 CG42336

168 FBgn0005672 spi

169 FBgn0031969 pes

170 FBgn0040261 Ugt36Bb

171 FBgn0037736 CG12950

172 FBgn0259190 Ir7d

173 FBgn0033519 CG11825

174 FBgn0034476 Toll-7

175 FBgn0053523 Vap-33B

176 FBgn0261801 CG42747

177 FBgn0036380 CG8757

178 FBgn0261975 CG42806

179 FBgn0260230 CG42504

180 FBgn0037416 Osi9

181 FBgn0085279 CG34250

182 FBgn0040636 CG13255

183 FBgn0046875 Obp83g

184 FBgn0264255 para

185 24 24 FBgn0262509 nrm

186 FBgn0051676 CG31676

187 FBgn0034468 Obp56a
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188 FBgn0027074 CG17324

189 FBgn0034605 CG15661

190 FBgn0039234 nct

191 FBgn0051665 wry

192 FBgn0037411 Osi3

193 FBgn0039852 nyo

194 FBgn0261509 haf

195 FBgn0262730 CG14446

196 FBgn0052667 ssp7

197 FBgn0263249 CG43392

198 FBgn0002577 m

199 FBgn0262788 CG43169

200 FBgn0085485 CG34456

201 FBgn0260768 CG42566

202 FBgn0037908 dpr5

203 44 FBgn0066101 LpR1

204 FBgn0004657 mys

205 FBgn0029687 Vap-33A

206 FBgn0083991 CG34155

207 FBgn0003377 Sgs7

208 FBgn0264000 GluRIB

209 FBgn0034671 CG13494

210 FBgn0052240 CG32240

211 FBgn0051496 CG31496

212 FBgn0035020 CG13585

213 FBgn0085398 ppk9

214 FBgn0037134 CG7407

215 FBgn0037421 CG15594
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216 FBgn0037963 Cad87A

217 FBgn0032484 kek4

218 FBgn0032095 Toll-4

219 FBgn0266801 CG45263

220 FBgn0085322 CG34293

221 FBgn0001137 grk

222 FBgn0259896 NimC1

223 FBgn0039723 CG15522

224 FBgn0004118 nAChRbeta2

225 FBgn0042180 CG18870

226 FBgn0002873 mud

227 FBgn0024983 CG4293

228 FBgn0030319 CG2533

229 FBgn0050495 CG30495

230 FBgn0264077 Cnx14D

231 10 FBgn0259685 crb

232 FBgn0033313 Cirl

233 FBgn0039704 neo

234 FBgn0053143 CG33143

235 FBgn0030440 CG15719

236 10 FBgn0010452 trn

237 FBgn0024189 sns

238 FBgn0261674 CG42709

239 FBgn0039709 Cad99C

240 FBgn0259717 CG42371

241 3 3 FBgn0027594 drpr

242 FBgn0028430 He

243 FBgn0029868 ND-B16.6
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244 FBgn0053493 CG33493

245 FBgn0050125 Ir56a

246 FBgn0261538 CG42662

247 FBgn0250845 CG1288

248 FBgn0034730 ppk12

249 FBgn0000119 arr

250 FBgn0259202 CG42306

251 FBgn0020521 pio

252 FBgn0035976 PGRP-LC

253 FBgn0036488 CG6878

254 FBgn0039087 CG10168

255 FBgn0004619 GluRIA

256 FBgn0051092 LpR2

257 FBgn0030174 CG15312

258 FBgn0040931 CG9034

259 FBgn0011016 SsRbeta

260 FBgn0261567 CG42681

261 FBgn0262794 CG43175

262 FBgn0028939 NimC2

263 4 FBgn0030001 cyr

264 FBgn0040212 Dhap-at

265 FBgn0003984 vn

266 FBgn0037406 Osi1

267 FBgn0061492 loj

268 FBgn0259991 CG42488

269 FBgn0032006 Pvr

270 FBgn0031275 GABA-B-R3

271 FBgn0259185 Ir60b
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272 FBgn0085339 CG34310

273 FBgn0031950 Herp

274 FBgn0083950 CG34114

275 46 FBgn0034602 Lapsyn

276 FBgn0010309 pigeon

277 FBgn0034072 Dg

278 FBgn0000152 Axs

279 FBgn0053196 dpy

280 FBgn0038098 CG7381

281 FBgn0265266 CG13639

282 FBgn0034050 CG8297

283 FBgn0030706 CG8909

284 FBgn0035785 ppk26

285 FBgn0040743 CG15919

286 FBgn0036173 CG7394

287 FBgn0038083 CG5999

288 FBgn0014868 Ost48

289 FBgn0000497 ds

290 FBgn0264908 pHCl

291 FBgn0034206 CG18469

292 FBgn0037016 CG13252

293 FBgn0035699 CG13300

294 FBgn0051360 CG31360

295 FBgn0032434 CG5421

296 FBgn0051913 CG31913

297 29 FBgn0029082 hbs

298 FBgn0265140 Meltrin

299 FBgn0260775 DnaJ-60
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300 FBgn0053702 CG33702

301 FBgn0031049 Sec61gamma

302 FBgn0260452 CG13984

303 FBgn0051105 ppk22

304 FBgn0039527 CG5639

305 FBgn0261566 CG42680

306 FBgn0039810 CG15549

307 FBgn0037012 Rcd2

308 FBgn0040551 CG11686

309 FBgn0051323 CG31323

310 FBgn0031478 CG8814

311 FBgn0034737 CG11362

312 FBgn0037413 Osi5

313 FBgn0052313 CG32313

314 FBgn0031164 CG1724

315 FBgn0034578 CG15653

316 FBgn0038460 CG18622

317 FBgn0026619 Taz

318 FBgn0033691 CG8860

319 FBgn0035258 CG13931

320 FBgn0031190 CG12576

321 FBgn0010638 Sec61beta

322 FBgn0262508 CG43078

323 FBgn0034389 Mctp

324 FBgn0050411 CG30411

325 FBgn0039177 CG13611

326 FBgn0032752 CG10702

327 FBgn0085207 CG34178
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328 FBgn0259916 CG42445

329 FBgn0038682 CG5835

330 FBgn0052283 Drsl3

331 FBgn0050381 CG30381

332 FBgn0052179 Krn

333 FBgn0261053 Cad86C

334 FBgn0025820 JTBR

335 FBgn0037419 Osi12

336 FBgn0261514 NimA

337 FBgn0039528 dsd

338 FBgn0039160 CG5510

339 FBgn0250876 Sema-5c

340 FBgn0036698 CG7724

341 FBgn0033405 CG13954

342 FBgn0085274 CG34245

343 FBgn0265187 CG44252

344 FBgn0051146 Nlg1

345 FBgn0038761 CG17190

346 FBgn0262686 CG43156

347 FBgn0262867 Ptr

348 FBgn0085320 CG34291

349 FBgn0004598 Fur2

350 FBgn0034545 CG13438

351 FBgn0039942 CG17163

352 FBgn0013272 Gp150

353 FBgn0037238 CG1090

354 FBgn0085201 CG34172

355 FBgn0015770 MstProx
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356 FBgn0000277 CecA2

357 FBgn0000276 CecA1

358 FBgn0266124 ghi

359 FBgn0031505 ND-B14.5B

360 FBgn0051220 CG31220

361 FBgn0062442 Cisd2

362 FBgn0034717 CG5819

363 FBgn0039321 CG10550

364 FBgn0040324 Ephrin

365 FBgn0028327 l(1)G0320

366 FBgn0263031 CG43326

367 FBgn0029131 Debcl

368 FBgn0034498 CG16868

369 FBgn0037958 CG6962

370 FBgn0034554 CG15227

371 FBgn0259932 CG42455

372 FBgn0051774 fred

373 FBgn0025936 Eph

374 FBgn0034880 ItgaPS5

375 FBgn0011596 fzo

376 FBgn0033168 CG11145

377 FBgn0036145 CG7607

378 FBgn0040571 CG17193

379 FBgn0040251 Ugt86Di

380 FBgn0039431 plum

381 FBgn0034083 lbk

382 FBgn0052230 ND-MLRQ

383 FBgn0052450 CG32450
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384 FBgn0261836 Msp300

385 FBgn0036008 CG3408

386 FBgn0030941 wgn

387 34 FBgn0266420 Ote

388 FBgn0003731 Egfr

389 FBgn0053310 CG33310

390 FBgn0262530 CG43084

391 FBgn0053531 Ddr

392 FBgn0042119 Cpr65Au

393 FBgn0260231 CG42505

394 FBgn0037796 CG12814

395 FBgn0263997 CG43740

396 FBgn0032013 Scgalpha

397 FBgn0000635 Fas2

398 FBgn0036286 CG10616

399 FBgn0053003 CG33003

400 FBgn0051002 CG31002

401 FBgn0046294 CG12699

402 FBgn0262467 Scox

403 FBgn0028475 Hrd3

404 FBgn0034270 CG6401

405 FBgn0052280 CG32280

406 FBgn0262838 CG43202

407 FBgn0036715 Cad74A

408 FBgn0265416 Neto

409 FBgn0035971 CG4477

410 FBgn0036670 CG13029

411 FBgn0037151 CG7130
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412 FBgn0262823 CG43194

413 FBgn0035471 Sc2

414 FBgn0264478 CG43886

415 FBgn0039068 CG13827

416 FBgn0036978 Toll-9

417 FBgn0267428 CG45781

418 FBgn0043792 CG30427

419 FBgn0053481 dpr7

420 FBgn0037553 CG18249

421 FBgn0259677 CG42346

422 21 FBgn0026566 CG1307

423 FBgn0030991 CG7453

424 FBgn0032217 CG4972

425 FBgn0039811 CG15550

426 FBgn0259204 CG42308

427 FBgn0031981 CG7466

428 FBgn0031887 CG11289

429 FBgn0050438 CG30438

430 FBgn0267488 Mcr

431 FBgn0259821 CG42402

432 FBgn0033593 Listericin

433 FBgn0040491 Buffy

434 36 FBgn0001987 Gli

435 FBgn0040773 COX7C

436 FBgn0038886 CG6475

437 FBgn0034140 Lst

438 FBgn0262473 Tl

439 FBgn0037133 CG7370
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440 FBgn0035290 dsb

441 FBgn0001075 ft

442 FBgn0266084 Fhos

443 FBgn0266696 CG45186

444 FBgn0033703 CG13170

445 FBgn0004456 mew

446 FBgn0265296 Dscam2

447 FBgn0259992 CG42489

448 FBgn0040719 CG15357

449 FBgn0027073 CG4302

450 FBgn0045823 vsg

451 FBgn0031518 CG3277

452 FBgn0260234 Xport-B

453 FBgn0001989 ND-B17

454 FBgn0026756 Ugt37a1

455 FBgn0039677 ppk30

456 19 5 FBgn0243514 eater

457 FBgn0030670 Pis

458 FBgn0037719 bocks

459 FBgn0263046 CG43341

460 FBgn0262356 CG43054

461 FBgn0262567 CG43107

462 FBgn0021979 l(2)k09913

463 FBgn0031058 CG14227

464 FBgn0038639 CG7705

465 FBgn0035032 ATPsynF

466 FBgn0032233 dpr19

467 FBgn0040715 CG15386
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468 FBgn0263086 CG43354

469 FBgn0036627 Gagr

470 FBgn0036690 Ilp8

471 FBgn0259950 CG42460

472 FBgn0028942 CG16852

473 FBgn0034568 CG3216

474 25 11 FBgn0031872 ihog

475 FBgn0261634 CG42717

476 FBgn0030868 CG12986

477 FBgn0041160 comm2

478 FBgn0039357 CG4743

479 FBgn0031080 CG12655

480 FBgn0025558 CG4101

481 FBgn0040514 CG17169

482 FBgn0262537 CG43091

483 FBgn0266580 Gp210

484 FBgn0029603 CG14053

485 FBgn0262790 CG43171

486 FBgn0036851 CG14082

487 FBgn0262791 CG43172

488 FBgn0029838 CG4666

489 FBgn0004055 uzip

490 FBgn0040091 Ugt58Fa

491 FBgn0034368 CG5482

492 8 FBgn0039969 Fis1

493 FBgn0261925 CG42792

494 FBgn0035346 CG1146

495 FBgn0040968 CG14933
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496 FBgn0034639 CG15673

497 FBgn0050222 CG30222

498 FBgn0010415 Sdc

499 FBgn0243486 rdo

500 FBgn0034122 CG15711

501 FBgn0037530 EMC1

502 FBgn0262837 CG43201

503 FBgn0039031 CG17244

504 FBgn0265188 CG44253

505 FBgn0010548 Aldh-III

506 FBgn0259735 CG42389

507 FBgn0041097 robo3

508 FBgn0040805 CG12355

509 FBgn0052037 CG32037

510 FBgn0035094 CG9380

511 FBgn0259971 CG42481

512 FBgn0032900 CG14401

513 FBgn0003997 hid

514 FBgn0264561 Glg1

515 FBgn0261999 CG42817

516 FBgn0085399 CG34370

517 FBgn0052521 CG32521

518 FBgn0264297 CG43775

519 FBgn0036980 RhoBTB

520 FBgn0032474 DnaJ-H

521 FBgn0263971 CG43725

522 FBgn0038515 CG5823

523 FBgn0263761 CG43678
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524 FBgn0263621 CG43630

525 FBgn0263247 CG43390

526 FBgn0263248 CG43391

527 FBgn0040832 CG8012

528 FBgn0261550 CG42668

529 FBgn0262840 CG43204

530 FBgn0262683 CG43153

531 FBgn0039172 Spase22-23

532 FBgn0032129 jp

533 FBgn0261991 CG42809

534 FBgn0036586 CG13070

535 FBgn0261697 tectonic

536 FBgn0028572 qtc

537 FBgn0040011 Slmap

538 FBgn0029728 CG2861

539 FBgn0032336 AstC

540 FBgn0038451 CG14893

541 FBgn0261984 Ire1

542 FBgn0053155 CG33155

543 FBgn0033645 CG13196

544 FBgn0050104 NT5E-2

545 FBgn0039666 Diedel

546 FBgn0023178 Pdf

547 FBgn0039356 CG5039

548 FBgn0039188 Golgin84

549 FBgn0051198 CG31198

550 FBgn0038751 CG4770

551 FBgn0038656 CG14294
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552 FBgn0037828 tomboy20

553 FBgn0037679 CG8866

554 FBgn0040532 CG8369

555 FBgn0051787 CG31787

556 FBgn0028520 CG4891

557 FBgn0031849 CG11327

558 FBgn0031779 CG9175

559 FBgn0031737 obst-E

560 FBgn0037105 S1P

561 FBgn0040842 CG15212

562 FBgn0035880 CG17352

563 FBgn0000358 Cp19

564 FBgn0052069 CG32069

565 FBgn0036643 Syx8

566 FBgn0036938 CG14187

567 FBgn0030723 dpr18

568 FBgn0035518 CG15011

569 FBgn0029750 CG3323

570 FBgn0025645 CG3598

571 FBgn0037933 Ho

572 FBgn0040877 CG12994

573 FBgn0034172 CG6665

574 FBgn0050377 CG30377

575 FBgn0044047 Ilp6

576 FBgn0050355 CG30355

577 FBgn0039085 CG10170

578 FBgn0262808 CG43179

579 FBgn0262846 CG43210
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580 FBgn0034129 CG15925

581 FBgn0024985 CG11448

582 FBgn0029128 tyn

583 FBgn0034861 CG9815

584 FBgn0036221 CG11588

585 FBgn0264389 opm

586 FBgn0264991 CG44142

587 FBgn0003328 scb

588 FBgn0261628 CG42711

589 FBgn0004649 yl

590 FBgn0037199 CG11137

591 FBgn0040899 CG17776

592 FBgn0051644 CG31644

593 FBgn0264089 sli

594 FBgn0038602 CG7126

595 FBgn0038631 CG7695

596 FBgn0264543 CG43922

597 FBgn0038071 Dtg

598 FBgn0033961 ND-B15

599 FBgn0035909 ergic53

600 FBgn0029696 CG15571

601 FBgn0028331 l(1)G0289

602 FBgn0035593 CG4603

603 FBgn0051279 CG31279

604 FBgn0014189 Hel25E

605 FBgn0052448 CG32448

606 FBgn0021764 sdk

607 FBgn0262843 CG43207
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608 FBgn0010105 comm

609 FBgn0050269 CG30269

610 FBgn0037131 CG14564

611 FBgn0037552 CG7800

612 FBgn0029740 CG12680

613 FBgn0040849 Ir41a

614 FBgn0262877 CG43232

615 FBgn0085468 ND-MWFE

616 FBgn0033337 CG8272

617 FBgn0051704 CG31704

618 FBgn0051858 t-cup

619 FBgn0259227 CG42327

620 FBgn0050172 CG30172

621 FBgn0034214 CG6550

622 FBgn0050401 CG30401

623 FBgn0028379 fan

624 FBgn0036391 CG17364

625 FBgn0036494 Toll-6

626 FBgn0036360 CG10713

627 FBgn0032055 CG13091

628 FBgn0052750 CG32750

629 FBgn0003310 S

630 FBgn0027550 CG6495

631 FBgn0085489 CG34460

632 FBgn0037671 VhaM8.9

633 FBgn0051609 CG31609

634 FBgn0040651 CG15458

635 FBgn0085225 CG34196
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636 FBgn0053688 CG33688

637 FBgn0038643 CG14300

638 FBgn0262005 CG42823

639 FBgn0085371 CG34342

640 28 FBgn0260011 NimC4

641 FBgn0083972 CG34136

Table A.1: Prediction result of type I transmembrane proteins: “Rank” means the
rank of score using motif model, “APPL” means rank of homologous protein of Appl,
same for “Notch”.
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