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Abstract

Recommender systems are tools that provide suggestions for items that are most
likely to be of interest to a particular user; they are central to various decision making
processes so that recommender systems have become ubiquitous. We introduce blind
regression, a framework motivated by matrix completion for recommender systems:
given 𝑚 users, 𝑛 items, and a subset of user-item ratings, the goal is to predict the
unobserved ratings given the data, i.e., to complete the partially observed matrix.
We posit that user 𝑢 and movie 𝑖 have features 𝑥1(𝑢) and 𝑥2(𝑖) respectively, and
their corresponding rating 𝑦(𝑢, 𝑖) is a noisy measurement of 𝑓(𝑥1(𝑢), 𝑥2(𝑖)) for some
unknown function 𝑓 . In contrast to classical regression, the features 𝑥 = (𝑥1(𝑢), 𝑥2(𝑖))
are not observed (latent), making it challenging to apply standard regression methods.

We suggest a two-step procedure to overcome this challenge: 1) estimate distance
for latent variables, and then 2) apply nonparametric regression. Applying this frame-
work to matrix completion, we provide a prediction algorithm that is consistent for all
Lipschitz functions. In fact, the analysis naturally leads to a variant of collaborative
filtering, shedding insight into the widespread success of collaborative filtering. As-
suming each entry is revealed independently with 𝑝 = max(𝑚−1+𝛿, 𝑛−1/2+𝛿) for 𝛿 > 0,
we prove that the expected fraction of our estimates with error greater than 𝜖 is less
than 𝛾2/𝜖2, plus a polynomially decaying term, where 𝛾2 is the variance of the noise.

Experiments with the MovieLens and Netflix datasets suggest that our algorithm
provides principled improvements over basic collaborative filtering and is competitive
with matrix factorization methods. The algorithm and analysis naturally extend to
higher order tensor completion by simply flattening the tensor into a matrix. We
show that our simple and principled approach is competitive with respect to state-of-
art tensor completion algorithms when applied to image inpainting data. Lastly, we
conclude this thesis by proposing various related directions for future research.

Thesis Supervisor: Devavrat Shah
Title: Professor
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Chapter 1

Introduction

1.1 Background

Recommender systems have become ubiquitous in our lives. They help us filter a vast

amount of information we encounter into smaller selections of likable items customized

to the users’ tastes. Amazon recommends items to customers; Netflix recommends

movies to users; and LinkedIn recommends job positions to users or candidate profiles

to recruiters.

There have been many studies on recommender systems, which were fueled by the

Netflix Prize competition that began in October 2006 [5, 6, 7]. Because of the compe-

tition, the research community was able to gain access to large-scale data consisting

of 100 million movie ratings, and a huge group of researchers were attracted to attack

the problem. The competition has encouraged rapid development in techniques to

improve prediction accuracy. As a result, much progress has been made in the field

of collaborative filtering.

One natural approach for recommendation is to use auxiliary/exogenous content

information about the users or items. For example, the information on the director,

the lineup of actors, genre, or the language can help us figure out whether two movies

are similar or not. Likewise, information including age, geographic location, and

academic background reveals some characteristics of a user. Recommendations based

on such content-specific data is called content filtering [4, 8, 44]. With quantitative
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content features, this setting becomes that of traditional regression problems.

However, in practice, recommendations are often made via a technique called col-

laborative filtering (CF), which provides recommendations in a content-agnostic way

by exploiting patterns to determine similarity between users or items. The use of such

techniques is partly because the exogenous content information (or its quantitative

representation) is usually not available. Moreover, it is known that recommender

systems purely based on content generally suffer from the problems of limited content

analysis and over-specialization [48].

Instead of relying on content information, collaborative filtering approaches use

the rating information of other users and items in the system. For example, if two

users are revealed to have similar tastes, a CF algorithm might recommend the items

the first user liked to the second user (user-user CF). On the other hand, if many

users agree on two items, a CF algorithm might recommend the second item to a

user who likes the first (item-item CF). Collaborative filtering has been successful

and used extensively for decades including Amazon’s recommendation system [32]

and the Netflix Prize winning algorithm by BellKor’s Pragmatic Chaos [29].

There are two primary approaches to relate two different entities: users and

items, by utilizing such similarities. They are two main branches of CF: one is the

neighborhood-based mehod, and the other is the latent factor method (=model-based

method). Neighborhood-based methods concentrate on similarities (or relationships)

between items or between items. For example, an item-item CF models the prefer-

ence of a user for an item based on the past ratings of similar items by the user.

Latent factor methods comprise an alternative approach by transforming both items

and users to the same (low-dimensional) latent factor space. Matrix factorization

methods, such as singular value decomposition (SVD) is an example of a latent factor

method [30, 41].

Although latent factor models have gained popularity because of their relatively

high accuracy and theoretical elegance, neighborhood-based approaches to CF are still

widely used in practice. One reason for this is that good prediction accuracy is not the

sole objective for recommender systems. Other factors, for instance, recommendation
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serendipity, can play an important role in the appreciation of users [21, 47].

The main advantages of neighborhood-based methods are as follows. They are

intuitive and simple to implement (simplicity). They can provide intuitive explana-

tions for the reasons recommendations work (justifiability). Unlike most model-based

systems, they require less or no costs of training phases, which need to be carried

at frequent intervals in large commercial applications; meanwhile, storing nearest

neighbors requires very little memory (efficiency). In addition, a neighborhood-based

approach is little affected by the constant addition of new data (stability). That is,

once item similarities have been computed, an item-based system can readily provide

immediate recommendations to a newly entered user based on her feedback. This

property makes it desirable for an online recommendation setting [41].

1.2 Related Work

The term collaborative filtering was coined in [19]. Collaborative filtering approaches

can be grouped into two general classes: model and neighborhood-based methods.

Model-based CF: Model-based approaches use the stored ratings to learn a pre-

dictive model. Principal characteristics of users and items are captured by a set of

model parameters, learned from a training dataset, and used to predict ratings on

new items. There have been numerous model-based approaches toward the task of

recommendation, which include Bayesian Clustering [11], Latent Dirichlet Allocation

[9], Maximum Entropy [54], Boltzmann Machines [46], Support Vector Machines [20],

and Singular Value Decomposition [50, 43, 28, 51].

Low-rank Matrix Factorization: In the recent years, there has been excit-

ing theoretical development in the context of matrix-factorization-based approaches.

Since any matrix can be factorized, its entries can be described by a function with

the form 𝑓(𝑥1, 𝑥2) = 𝑥𝑇
1 𝑑𝑖𝑎𝑔(𝜎)𝑥2, and the goal of factorization is to recover the la-

tent features for each row and column. [50] was one of the earlier works to suggest

the use of low-rank matrix approximation, observing that a low-rank matrix has a
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comparatively small number of free parameters. Subsequently, statistically efficient

approaches were suggested using optimization based estimators, proving that ma-

trix factorization can fill in the missing entries with sample complexity as low as

𝑟𝑛 log 𝑛, where 𝑟 is the rank of the matrix [15, 25, 45, 40, 23]. Also, there has been

an exciting line of ongoing work to make the resulting algorithms faster and scalable

[17, 14, 31, 49, 34, 38].

These approaches are based on the structural assumption that the underlying ma-

trix is low-rank and the matrix entries are reasonably “incoherent”. Unfortunately,

the low-rank assumption may not hold in practice. The recent work [18] makes pre-

cisely this observation, showing that a simple non-linear, monotonic transformation

of a low-rank matrix could easily produce an effectively high-rank matrix, despite

few free model parameters. They provide an algorithm and analysis specific to the

form of their model, which achieves sample complexity of 𝑂((𝑚𝑛)2/3). However, their

algorithm only applies to functions 𝑓 which are a nonlinear monotonic transformation

of the inner product of the latent features. The limitations of these approaches lie in

the restrictive assumptions of the model.

Neighborhood-based CF: In neighborhood-based (also called memory-based)

collaborative filtering, the stored user-item ratings are directly used to predict ratings

for new pairs of user-item. This prediction can be done in two ways: user-based or

item-based. User-based systems, such as Ringo [48], GroupLens [27], and Bellcore

video [22], evaluate the preference of a target user for items by using the ratings for

the items by other users (neighbors) who have similar preference patterns.

There are two main paradigms in neighborhood-based collaborative filtering: the

user-user paradigm and the item-item paradigm. To recommend items to a user in

the user-user paradigm, one first looks for similar users, and then recommends items

liked by those similar users. In the item-item paradigm, in contrast, items similar to

those liked by the user are found and subsequently recommended. Much empirical

evidence exists that the item-item paradigm performs well in many cases [47, 32,

16, 41], however the theoretical understanding of the method has been limited. In
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recent works, Latent mixture models have been introduced to explain the collaborative

filtering algorithm as well as the empirically observed superior performance of item-

item paradigms, c.f. [12, 13].

However, these results assume a specific parametric model, such as a mixture

distribution model for preferences across users and movies. We hope that by provid-

ing an analysis for collaborative filtering within our broader nonparametric model,

we can provide a more complete understanding of the potentials and limitations of

collaborative filtering.

Tensor completion: A tensor is the higher-dimensional analogue of a matrix (or

a vector). Therefore, it is natural to consider extending the neighborhood-based ap-

proaches to the context of tensor completion; however, there is little known literature

about this setting.

Tensor completion is known to be much harder than matrix completion. Ten-

sors do not have a canonical decomposition such as the singular value decomposition

(SVD) for a matrix, which simultaneously possesses two desirable properties: (i) it

computes a rank-r decomposition, and (ii) it yields orthonormal row/column matri-

ces. These properties makes obtaining a decomposition for a tensor challenging [26].

There have been recent developments in obtaining an efficient rank-1 tensor decompo-

sition [1], which is effective in learning latent variable models and estimating missing

data [24, 42]. In the context of learning latent variable models or mixture distri-

butions, there have been developments in non-negative matrix/tensor factorizations

[3, 2] which go beyond SVD.

Kernel regression: The algorithm we propose in this work is inspired by the

local approximation of functions by the Taylor series expansion. We would first build

local estimators with observed ratings, and then combine these with appropriately

chosen weights. For this reason, there is a connection to the classical setting of kernel

regression, which also relies on smoothed local approximations [35, 52]. However,

both the power series expansion and the kernel regression require explicit knowledge
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of the geometry of feature space, which is not permitted in the setting of recommender

systems. As a result, their analysis and proof techniques do not extend to our context

of Blind regression, in which the features are latent; the analysis required is entirely

different despite the similarity in the form of computing a convex combination of

nearby datapoints.

1.3 Our Contribution

In contrast to numerous empirical attempts to obtain accurate prediction methods,

we have few theoretical studies on neighborhood-based models. One objective of

this thesis is to provide a general statistical framework for performing nonparametric

regression over latent variable models, from which a neighborhood-based algorithm

with provable performance bounds follows. We are initially motivated by the problem

of matrix completion arising in the context of designing recommendation systems, but

we additionally show that our framework allows for systematic extensions to higher

order tensor completion as well.

In the popularized setting of Netflix, there are 𝑚 users, indexed by 𝑢 ∈ [𝑚], and

𝑛 movies, indexed by 𝑖 ∈ [𝑛]. Each user 𝑢 has a rating for each movie 𝑖, denoted

as 𝑦(𝑢, 𝑖). The system observes ratings for only a small fraction of user-movie pairs.

The goal is to predict ratings for the rest of the unknown user-movie pairs, i.e., to

complete the partially observed 𝑚×𝑛 rating matrix. To be able to obtain meaningful

predictions from the partially observed matrix, it is essential to impose a structure

on the data.

We assume each user 𝑢 and movie 𝑖 is associated to features 𝑥1(𝑢) ∈ 𝒳1 and

𝑥2(𝑖) ∈ 𝒳2 for some compact metric spaces 𝒳1,𝒳2. We assume that the latent features

are drawn independently from an identical distribution (IID) with respect to some

Borel probability measures on 𝒳1,𝒳2. Following the philosophy of non-parametric

statistics, we assume that there exists some function 𝑓 : 𝒳1 × 𝒳2 → R such that the
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rating of user 𝑢 for movie 𝑖 is given by

𝑦(𝑢, 𝑖) = 𝑓(𝑥1(𝑢), 𝑥2(𝑖)) + 𝜂𝑢𝑖, (1.1)

where 𝜂𝑢𝑖 is some independent bounded noise. However, we refrain from any specific

modeling assumptions on 𝑓 , requiring only mild regularity conditions following the

traditions of non-parametric statistics. We observe ratings for a subset of the user-

movie pairs, and the goal is to use the given data to predict 𝑓(𝑥1(𝑢), 𝑥2(𝑖)) for all

(𝑢, 𝑖) ∈ [𝑚] × [𝑛] whose rating is unknown.

In classical nonparametric regression, we observe input features 𝑥1(𝑢), 𝑥2(𝑖) along

with the rating 𝑦(𝑢, 𝑖) for each datapoint, and thus we can approximate the function

𝑓 well using local approximation techniques as long as 𝑓 satisfies mild regularity

conditions. However, in our setting, we do not observe the latent features 𝑥1(𝑢), 𝑥2(𝑖),

but instead we only observe the indices (𝑢, 𝑖). Therefore, we use blind regression to

refer to the challenge of performing regression with unobserved latent input variables.

This paper addresses the question, does there exist a meaningful prediction algorithm

for general nonparametric regression when the input features are unobserved?

Our answer is “yes.” In spite of the minimal assumptions of our model, we provide

a consistent matrix completion algorithm with finite sample error bounds as well.

Furthermore, as a coincidental by-product, we find that our framework provides an

explanation for the mystery of “why collaborative filtering algorithms work well in

practice.”

As the main technical result, we show that the user-user nearest neighbor variant of

collaborative filtering method with our similarity metric yields a consistent estimator

for any Lipschitz function as long as we observe max(𝑚−1+𝛿, 𝑛−1/2+𝛿) fraction of the

matrix with 𝛿 > 0. In the process, we obtain finite sample error bounds, whose

details are stated in Theorem 1. We compared the Gaussian kernel variant of our

algorithm to classic collaborative filtering algorithms and a matrix factorization based

approach (softImpute) on predicting user-movie ratings for the Netflix and MovieLens

datasets. Experiments suggest that our method improves over existing collaborative
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filtering methods, and sometimes outperforms matrix-factorization-based approaches

depending on the dataset.

There are two conceptual parts to our algorithm. First, we derive an estimate

of 𝑓(𝑥1(𝑢), 𝑥2(𝑖)) for an unobserved index pair (𝑢, 𝑖) by using linear approximation

of 𝑓 pivoted at (𝑥1(𝑢
′), 𝑥2(𝑖

′)). By Taylor’s theorem, this estimates the unknwon

𝑓(𝑥1(𝑢), 𝑥2(𝑖)) quite well as long as 𝑥1(𝑢
′) is close to 𝑥1(𝑢) or 𝑥2(𝑖

′) is close to 𝑥2(𝑖).

However, since the latent features are not observed, we need a method to approxi-

mate the distance in the latent space. The second observation we make is that under

our mild Lipschitz conditions, the similarity metrics commonly used in collaborative

filtering heuristics correspond to an estimate of distances in the latent space. In par-

ticular, we use the sample variance of the differences between observations between a

pair of users to capture distances between two users in this thesis. Formally speaking,

we cannot guarantee that if the sample variance is small, the distance in the latent

space is small, yet we show in our analysis that there is a direct relation between the

sample variance and the estimation error.

To analyze the performance of our algorithm, we make minimal model assumptions

just like any such work in non-parametric statistics. Let the latent features be drawn

independently from an identical distribution (IID) over a compact metric spaces; the

function 𝑓 is Lipschitz with respect to the latent space metrics; entries are observed

independently with some probability 𝑝; and the additive noise in observations is

bounded and independently distributed with zero mean.

In addition, there is no reason to limit ourselves to bivariate functions 𝑓 in (1.1).

The equivalent extension of the bivariate latent variable model to multivariate latent

models is to extend from matrices to higher order tensors. The algorithm and analysis

that we provide for matrix completion also extends to higher order tensor completion,

due to the flexible and generic assumptions of our model.

The algorithm discussed above, as well as its analysis, naturally extends beyond

matrices, to completing higher order tensors. In Section 4.2, we show that the tensor

completion problem can be reduced to matrix completion, and thus we have a con-

sistent estimator for tensor completion under similar model assumptions. We show
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in experiments that our method is competitive with respect to state of the art tensor

completion methods when applied to the the image inpainting problem. Our esti-

mator is naively simple to implement, and its analysis sidesteps the complications of

non-unique tensor decompositions. The ability to seamlessly extend beyond matri-

ces to higher order tensors suggests the general applicability and value of the blind

regression framework.

1.4 Organization of Thesis

In Chapter 2 of this thesis, we propose a novel nonparametric framework to make

predictions without knowledge on the latent function and feature representations.

The framework comprises two steps: 1) estimating the distance between unknown

feature representations, and 2) running nonparametric kernel regression. Unlike low-

rank matrix factorization techniques, this framework does not require strict structural

assumptions. Meanwhile, the framework may not need the explicit feature represen-

tations of the input, but only their identifiers. This property justifies the name ’blind’

regression and differentiates our framework from classical nonparametric regression.

In Chapter 3, we suggest a recommendation algorithm based on the suggested

framework. It is essentially a neighborhood-based algorithm, motivated by the Tay-

lor series expansion and the idea of boosting, which is a machine learning technique.

The suggested algorithm is simple to implement, widely applicable due to its non-

parametric nature, and fairly competitive in terms of its prediction accuracy.

In Chapter 4, we present our main technical results for the proposed algorithm.

To the best of our knowledge, this analysis provides the first provable performance

bounds on the sample complexity and prediction accuracy of neighborhood-based

methods. Our algorithm is proven to be a consistent estimation algorithm as the size

of the matrix grows infinitely large. In Section 4.2, the analysis extends to the tensor

completion setting via flattening. In addition, the trade-off of averaging multiple

estimators is briefly discussed in Section 4.3 under a set of simplifying assumptions.

Chapter 5 provides lemmas used in proving the main theorem (Theorem 1). Each
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section of this chapter contains a key lemma used in the proof of the theorem, and

auxiliary lemmas if necessary. The proof of the lemmas are based on various concen-

tration inequality techniques, whose details can be found in the Appendix.

In Chapter 6, we present the performance of our algorithm with experiments on

real world datasets. First of all, we show our algorithm outperforms other neighbor-

based collaborative filtering algorithms on MovieLens and Netflix datasets. Also, its

performance is comparable to a matrix factorization method (SoftImpute). Next,

we apply our algorithm for image reconstruction via tensor flattening. Despite its

simplicity, our algorithm performs nearly as good as the best tensor completion algo-

rithms reported.

In Chapter 7 we summarize all the pieces and discuss some directions for future

work.
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Chapter 2

Blind Regression

This chapter covers the introduction to our novel framework of blind regression. Re-

gression is a statistical process for estimating relationships among variables, which

help to understand how dependent variable varies as one or more independent vari-

ables changes. Regression includes many techniques, and is widely used for prediction.

However, geometric information on the feature space is essential for all of these tech-

niques, whereas it is not available for the class of problems we are interested in. In

this chapter, we will briefly review regression, with an emphasis on kernel regression,

a non-parametric technique. Then, we will describe the blind regression framework,

pointing out its connection to the traditional regression as well as its unique features.

2.1 Traditional Regression

2.1.1 Regression Regime

Regression is a statistcal process for estimating relationships among variables. More

specifically, the aim of regression analysis is to describe the value of a dependent

variable in terms of other variables. This objective is achieved by estimating a target

function of independent variables, called regression function. In many cases, it is also

of interest to characterize the variation of dependent variable around the regression

function, which can measure the descriptive power of the regression function.
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Regression analysis is widely used for prediction and forecasting, and thus has

connection to the field of machine learning. Consider the following situation, which is

familiar in supervised learning context: we are given a traning dataset consisting of

𝑁 labeled data points {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1. Our task is to estimate the relationship between

the feature 𝑥𝑖 and the response 𝑦𝑖, or to learn the structure concealed in the data, in

order to make a prediction 𝑦 when given a new input 𝑥.

There are many techniques developed for regression analysis. Some methods, such

as linear regression and ordinary least squares estimation, are parametric, in which the

regression function is defined in terms of a finite number of unknown parameters to

be estimated from the data. On the other hand, nonparametric regression techniques

allow the regression function to lie in a more general class of functions, which may

possibly constitute an infinite-dimensional space of functions.

Parametric regression models assume a specific form of the underlying function

y = 𝑓𝛽(x) where the model involves the following variables: the independent variables

x ∈ R𝑑; the dependent variable y ∈ R; and the unknown parameters 𝛽. For example,

a linear regression model can be written as

𝑌 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑦1

𝑦2
...

𝑦𝑛

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
1 𝑥1

1 𝑥2

...
...

1 𝑥𝑛

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎣𝛽0

𝛽1

⎤⎦+ 𝜖 = 𝑋𝛽 + 𝜖,

and the objective is to estimate the parameter 𝛽 = (𝛽0, 𝛽1)
𝑇 ∈ R𝑑+1 from the data.

Sometimes, the matrix 𝑋, a stack of independent variable instances
[︁
1 𝑥𝑖

]︁
, is called

a design matrix. This kind of structural assumption simplifies the problem and makes

the parametric models easier to implement and analyze.

One of the most famous and standard approaches to parametric regression is

the method of least squares. It attempts to minimize the mean squared error in

the dependent variables, or the sum of squared residuals
∑︀𝑁

𝑖=1 (𝑦𝑖 − 𝑥𝑖𝛽)2, assuming

there are zero or negligible errors in the independent variables. It has closed-form

expressions for 𝛽 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 and a nice geometric interpretation. The least
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square solution ŷ(x) = x𝛽 is a Euclidean projection of 𝑦 onto the subspace spanned

by 𝑋.

Although parametric approaches are efficient, making incorrect structural assump-

tions may result in a poor estimator. For example, estimating a trigonometric func-

tion with polynomial bases will require an unnecessarily large number of parameters.

Moreover, an attempt to estimate a quadratic function with a linear model will not be

productive. Sometimes, machine learning practitioners deal with this problem with

model selection and regularization techniques.

There is an alternative approach to overcome the rigidity of parametric regression,

which is commonly referred to as nonparametric regression. This is a generic term

for methods which do not make a priori structural assumptions for the underlying

function. Typical examples include kernel regression and spline interpolation, which

allow the data to decide which function fits them the best via local approximation.

Abandoning such restrictions imposed by a parametric model allows more general-

ity for this approach. However, nonparametric methods are computationally more

expensive compared to parametric models.

2.1.2 Kernel Regression

There are several approaches to the nonparametric regression. Some of the most pop-

ular methods are based on local function smoothing, using kernel functions, spline

functions, and wavelets. Each of these techniques has its own strengths and weak-

nesses. Among various nonparametric estimators, kernel estimators have the advan-

tage of being intuitive, and are simple to analyze.

In any nonparametric regression, the objective is to find an estimator 𝑓(𝑋) for

the conditional expectation E [𝑌 |𝑋] of a dependent variable 𝑌 relative to a given

independent variable 𝑋. Kernel regression is a technique to estimate this conditional

expectation as a locally weighted average, using kernel as a weighting function.

In this thesis, we will consider the simple and traditional Nadaraya-Watson esti-
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mator:

𝑓𝜆(𝑥) =

∑︀𝑛
𝑖=1𝐾𝜆(𝑥, 𝑥𝑖)𝑦𝑖∑︀𝑛
𝑖=1𝐾𝜆(𝑥, 𝑥𝑖)

,

where 𝐾 is a kernel with a bandwidth ℎ. A kernel determines the intensity of influence

one point can exert on other points, while the bandwidth ℎ controls how fast the effect

decays in space.

This estimator is known to be consistent when certain technical conditions on

the kernel 𝐾 and the bandwidth 𝜆 are satisifed. For the rest of this thesis, we will

exclusively consider the Gaussian kernel (also known as the heat kernel):

𝐾𝜆(𝑥, 𝑥𝑖) = 𝑒−𝜆(𝑥−𝑥𝑖)
2

.

2.2 Blind Regression

We are interested in a certain class of problems, for which each instance of indepen-

dent variable 𝑥𝑖 is distinguishable by identities, but there is no meaningful feature

representation. For example, Amazon can distinguish one customer from another

from their customer IDs, but their IDs are arbitrary and do not represent their char-

acteristics. In addition, they do not provide any clue on the distance between two

users. This makes the traditional regression approach impossible because all the

above approaches rely on the geometry of feature representations. In fact, having

such a void representation is quite easily observed in real-world data applications.

This challenge mainly arises from the fact that we do not have a metric to measure

distance between any two datapoints without having meaningful feature representa-

tions. Therefore, we suggest to learn geometry of a latent representation of data from

the data themselves. In some applications, such as recommender systems, the notion

of similarity between users or between items is already widely used. We propose to

unify such heuristic approaches in language of a pseudo-metric in the latent space

and kernel regression.

The term ‘blind regression’ refers to this two-step procedure: 1) estimate the

distance between data points, using heuristics if applicable; and 2) make prediction
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based on a kernel regression estimator. One benefit of this framework is that we can

adopt techniques for kernel regression to analyze estimators that can be parsed via

lens of blind regression.

In the following chapters, we apply this framework to build and analyze neighbor-

based algorithms for matrix completion.
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Chapter 3

Application to Matrix Completion

In this chapter, we apply the blind regression framework to the matrix completion

problem. We will describe the problem, and our modeling assumptions to obtain

provable guarantees in the following chapters. Then we will describe our collaborative

filtering algorithm, with two variants which will be analyzed in subsequent chapters.

We will also provide some intuition behind the algorithm.

3.1 Model and Notation

3.1.1 Motivation

Our work is motivated by the problem of matrix completion arising in the context

of designing recommendation systems. In the popularized setting of the Neflix Chal-

lenge, there are 𝑚 users, indexed by 𝑢 ∈ [𝑚], and 𝑛 movies, indexed by 𝑖 ∈ [𝑛].

Each user 𝑢 has a rating for each movie 𝑖, denoted as 𝑅(𝑢, 𝑖). The system observes

ratings for only a small fraction of user-movie pairs. The goal is to predict ratings

for the rest of the unknown user-movie pairs, i.e., to complete the partially observed

𝑚× 𝑛 rating matrix. To be able to obtain meaningful predictions from the partially

observed matrix, it is essential to impose a structure on the data.
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3.1.2 Model and Assumptions

Model. We assume the following data generation process: each user 𝑢 and movie

𝑖 is associated to feature representations 𝑥1(𝑢) ∈ 𝒳1 and 𝑥2(𝑖) ∈ 𝒳2 for some metric

spaces 𝒳1,𝒳2. The rating of user 𝑢 for movie 𝑖 is given by

𝑅(𝑢, 𝑖) = 𝑓 (𝑥1(𝑢), 𝑥2(𝑖)) ,

for some function 𝑓 : 𝒳1 ×𝒳2 → R.

We observe ratings for 𝑁 ≪ 𝑚×𝑛 user-movie pairs, denoted as 𝒟 =
{︀

(𝑢𝑘, 𝑖𝑘, 𝑅𝑘)
}︀𝑁
𝑘=1

,

where (𝑢𝑘, 𝑖𝑘, 𝑅𝑘) ∈ [𝑚]× [𝑛]×R. Also, we assume that the measurements are noisy:

𝐴(𝑢, 𝑖) = 𝑅(𝑢, 𝑖) + 𝜂(𝑢, 𝑖), (3.1)

for (𝑢, 𝑖, 𝑅) ∈ 𝒟 with noise 𝜂(𝑢, 𝑖). The goal is to use the data 𝒟 to predict 𝑅(𝑢, 𝑖)

for all (𝑢, 𝑖) ∈ [𝑚] × [𝑛] whose rating is unknown.

For brevity, this can be summarized as follows in terms of matrices: we are given

an incomplete matrix 𝐴 ∈ R𝑚×𝑛 generated by

𝐴 = 𝑀 ∘ (𝑅 + 𝐸) .

where ∘ is the Hadamard product (= entrywise multiplication) and

∙ The mask matrix 𝑀 takes either 1 or ∞

𝑀(𝑢, 𝑖) =

⎧⎪⎨⎪⎩1 if (𝑢, 𝑖, 𝑅(𝑢, 𝑖)) ∈ 𝒟,

∞, otherwise.

∙ Each entry of the noise matrix 𝐸 represents i.i.d. additive noise

𝐸(𝑢, 𝑖) = 𝜂(𝑢, 𝑖).
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Assumptions. We shall make the following assumptions on regularity of the latent

spaces 𝒳1,𝒳2 (assumptions 1 and 2), the latent function 𝑓 (assumption 3), the noise

𝜂 (assumption 4), and the dataset 𝒟 (assumption 5).

1. 𝒳1 and 𝒳2 are compact metric (therefore totally bounded, and hence bounded)

spaces endowed with metrics 𝑑1 and 𝑑2 respectively:

𝑑1(𝑥1, 𝑥
′
1) ≤ 𝐵, ∀𝑥1, 𝑥

′
1 ∈ 𝒳1,

𝑑2(𝑥2, 𝑥
′
2) ≤ 𝐵, ∀𝑥2, 𝑥

′
2 ∈ 𝒳2.

2. Let 𝑃1 and 𝑃2 be Borel probability measures on (𝒳1, 𝑇1) and (𝒳2, 𝑇2), respec-

tively, where 𝑇𝑖 denotes the Borel 𝜎-algebra of 𝒳𝑖 generated by the metric 𝑑𝑖

above. We shall assume that the latent features of each user 𝑢 and movie 𝑖,

𝑥1(𝑢) and 𝑥2(𝑖), are drawn i.i.d. from the distribution given by 𝑃1 and 𝑃2

respectively.

3. The latent function 𝑓 : 𝒳1 ×𝒳2 → R is 𝐿-Lipschitz with respect to ∞-product

metric (see Definition 3 in Appendix A.1) of 𝑑1 and 𝑑2:

|𝑓(𝑥1, 𝑥2) − 𝑓(𝑥′
1, 𝑥

′
2)| ≤ 𝐿 (𝑑1(𝑥1, 𝑥

′
1) ∨ 𝑑2(𝑥2, 𝑥

′
2)) , ∀𝑥1, 𝑥

′
1 ∈ 𝒳1, ∀𝑥2, 𝑥

′
2 ∈ 𝒳2.

4. The additive noise for all data points are independent and bounded with zero

mean and variance 𝛾2: for all 𝑢 ∈ [𝑛1], 𝑖 ∈ [𝑛2],

𝜂(𝑢, 𝑖) ∈ [−𝐵𝜂, 𝐵𝜂], E[𝜂(𝑢, 𝑖)] = 0, Var[𝜂(𝑢, 𝑖)] = 𝛾2.

5. Rating of each entry is revealed (observed) with probability 𝑝, independently.

In other words,

𝑀(𝑢, 𝑖) ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝).
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3.1.3 Notations

We introduce some notations which will be used in later sections.

Index sets: We let 𝒪𝑢 denote the set of column indices of observed entries in row

𝑢. Similarly, let 𝒪𝑖 denote the set of row indices of the observed in column 𝑖, namely,

𝒪𝑢 := {𝑖 : 𝑀(𝑢, 𝑖) = 1},

𝒪𝑖 := {𝑢 : 𝑀(𝑢, 𝑖) = 1}.

For rows 𝑣 ̸= 𝑢, we define the overlap between two rows 𝑢 and 𝑣 as

𝒪𝑢𝑣 := 𝒪𝑢 ∩ 𝒪𝑣,

the set of column indices of commonly observed entries for the pair of rows (𝑢, 𝑣).

Similarly, the overlap between two columns 𝑖 and 𝑗 (𝑗 ̸= 𝑖) is defined as

𝒪𝑖𝑗 := 𝒪𝑖 ∩ 𝒪𝑗.

𝛽-overlapping neighbors: Given a parameter 𝛽 ≥ 2, and (𝑢, 𝑖), define 𝛽-

overlapping neighbors of 𝑢 and 𝑖 respectively as

𝒮𝛽
𝑢 (𝑖) = {𝑣 𝑠.𝑡. 𝑣 ∈ 𝒪𝑖, 𝑣 ̸= 𝑢, |𝒪𝑢𝑣| ≥ 𝛽},

𝒮𝛽
𝑖 (𝑢) = {𝑗 𝑠.𝑡. 𝑗 ∈ 𝒪𝑢, 𝑗 ̸= 𝑖, |𝒪𝑖𝑗| ≥ 𝛽}.

Empirical statistics: For each 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖), we can compute the empirical row

variance between 𝑢 and 𝑣,

𝑠2𝑢𝑣 :=
1

2 |𝒪𝑢𝑣| (|𝒪𝑢𝑣| − 1)

∑︁
𝑖,𝑗∈𝒪𝑢𝑣

((𝐴(𝑢, 𝑖) − 𝐴(𝑣, 𝑖)) − (𝐴(𝑢, 𝑗) − 𝐴(𝑣, 𝑗)))2 . (3.2)
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We can also compute empirical column variances between 𝑖 and 𝑗, for all 𝑗 ∈ 𝒮𝛽
𝑖 (𝑢),

𝑠2𝑖𝑗 :=
1

2 |𝒪𝑖𝑗| (|𝒪𝑖𝑗| − 1)

∑︁
𝑢,𝑣∈𝒪𝑖𝑗

((𝐴(𝑢, 𝑖) − 𝐴(𝑢, 𝑗)) − (𝐴(𝑣, 𝑖) − 𝐴(𝑣, 𝑗)))2 . (3.3)

In fact, these quantities can be computed in a more traditional manner:

𝑚𝑢𝑣 :=
1

|𝒪𝑢𝑣|

(︃∑︁
𝑖∈𝒪𝑢𝑣

𝐴(𝑢, 𝑖) − 𝐴(𝑣, 𝑖)

)︃
, (3.4)

𝑚𝑖𝑗 :=
1

|𝒪𝑖𝑗|

⎛⎝∑︁
𝑢∈𝒪𝑖𝑗

𝐴(𝑢, 𝑖) − 𝐴(𝑢, 𝑗)

⎞⎠ ,

𝑠2𝑢𝑣 :=
1

|𝒪𝑢𝑣| − 1

∑︁
𝑖∈𝒪𝑢𝑣

(𝐴(𝑢, 𝑖) − 𝐴(𝑣, 𝑖) −𝑚𝑢𝑣)
2 ,

𝑠2𝑖𝑗 :=
1

|𝒪𝑖𝑗| − 1

∑︁
𝑢∈𝒪𝑖𝑗

(𝐴(𝑢, 𝑖) − 𝐴(𝑢, 𝑗) −𝑚𝑖𝑗)
2 .

Here, 𝑚𝑢𝑣 is the row displacement from 𝑣 to 𝑢, which is the sample mean of 𝐴(𝑢, 𝑗)−

𝐴(𝑣, 𝑗) for 𝑗 ∈ 𝒪𝑢𝑣; 𝑚𝑖𝑗 is the column displacement from 𝑗 to 𝑖.

3.1.4 Performance Metrics

We will introduce three types of performance metrics. Root mean squared error

(RMSE), or the Frobenius norm is most traditional. But our analysis based on

Chebyshev’s inequality doesn’t allow a finite provable bound for RMSE.

We define a new metric, the 𝜖-risk that we analyze to quantify the performance

of our prediction algorithm. Let 𝐸 ⊂ [𝑚] × [𝑛] be the evaluation set which is a

subset of unobserved user-movie indices for which the algorithm predicts a rating.

Specifically, let �̂�(𝑢, 𝑖) be the predicted rating while the true (unknown) rating is

𝑅(𝑢, 𝑖) for (𝑢, 𝑖) ∈ 𝐸.

∙ Root mean squared error (RMSE): The root mean squared error (RMSE)
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is defined as follows:

𝑅𝑀𝑆𝐸 =

√︃
1

|𝐸|
∑︁

(𝑢,𝑖)∈𝐸

(︁
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

)︁2
.

This is a risk with the squared loss, and converges to the 𝐿2 distance between

the estimated matrix and the true (unknown) matrix as 𝐸 approaches to the

whole index set. The RMSE is widely accepted as a standard performance

metric.

∙ Relative squared error (RSE): Relative squared error is the ratio between

the norms of the residual error and the true signal. We can also interpret this

as the normalized version of RMSE:

𝑅𝑆𝐸 =

⃦⃦⃦
𝑌 − 𝑌

⃦⃦⃦
𝐹

‖𝑌 ‖𝐹
=

√︂
1
|𝐸|
∑︀

(𝑢,𝑖)∈𝐸

(︁
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

)︁2
√︁

1
|𝐸|
∑︀

(𝑢,𝑖)∈𝐸 |𝑅(𝑢, 𝑖)|2
.

∙ 𝜖-risk: For a given error threshold 𝜖 > 0, we define 𝜖-risk of the algorithm as

the fraction of the entries for which our estimate has error greater than 𝜖:

𝑅𝑖𝑠𝑘𝜖 =
1

|𝐸|
∑︁

(𝑢,𝑖)∈𝐸

I
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁
.

3.2 Description of the Algorithm

Let 𝐵𝛽(𝑢, 𝑖) denote the set of positions (𝑣, 𝑗) such that the entries 𝐴(𝑣, 𝑗), 𝐴(𝑢, 𝑗) and

𝐴(𝑣, 𝑖) are observed, and the commonly observed ratings between (𝑢, 𝑣) and between

(𝑖, 𝑗) are at least 𝛽.

𝐵𝛽(𝑢, 𝑖) =
{︁

(𝑣, 𝑗) ∈ 𝒮𝛽
𝑢 (𝑖) × 𝒮𝛽

𝑖 (𝑢) s.t. 𝑀(𝑣, 𝑗) = 1
}︁
.
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Compute the final estimate as a convex combination of estimates derived in (3.6) for

(𝑣, 𝑗) ∈ 𝐵𝛽(𝑢, 𝑖),

�̂�(𝑢, 𝑖) =

∑︀
(𝑣,𝑗)∈𝐵𝛽(𝑢,𝑖) 𝑤𝑢𝑖(𝑣, 𝑗) (𝐴(𝑢, 𝑗) + 𝐴(𝑣, 𝑖) − 𝐴(𝑣, 𝑗))∑︀

(𝑣,𝑗)∈𝐵𝛽(𝑢,𝑖) 𝑤𝑢𝑖(𝑣, 𝑗)
, (3.5)

where the weights 𝑤𝑢𝑖(𝑣, 𝑗) are defined as a function of (3.2) and (3.3). We proceed

to discuss a few choices for the weight function, each of which results in a different

algorithm.

3.2.1 User-User or Item-Item Nearest Neighbor Weights.

We can evenly distribute the weights only among entries in the nearest neighbor row,

i.e., the row with minimal empirical variance,

𝑤𝑣𝑗 = I(𝑣 = 𝑢*), for 𝑢* ∈ arg min
𝑣∈𝒮𝛽

𝑢 (𝑖)

𝑠2𝑢𝑣.

If we substitute these weights in (3.5), we recover an estimate which is asymptotically

equivalent to the mean-adjusted variant of the classical user-user nearest neighbor

(collaborative filtering) algorithm,

�̂�(𝑢, 𝑖) = 𝐴(𝑢*, 𝑖) + 𝑚𝑢𝑢* .

Equivalently, we can evenly distribute the weights among entries in the nearest neigh-

bor columns, i.e., the column with minimal empirical variance, recovering the classical

mean-adjusted item-item nearest neighbor collaborative filtering algorithm. Theorem

1 proves that this simple algorithm produces a consistent estimator, and we provide

the finite sample error analysis. Due to the similarities, our analysis also directly im-

plies the proof of correctness and consistency for the classic user-user and item-item

collaborative filtering method.
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3.2.2 User-Item Gaussian Kernel Weights.

Inspired by kernel regression, we introduce a variant of the algorithm which com-

putes the weights according to a Gaussian kernel function with bandwith parameter

𝜆, substituting in the minimum row or column sample variance as a proxy for the

distance,

𝑤𝑣𝑗 = exp(−𝜆min{𝑠2𝑢𝑣, 𝑠2𝑖𝑗}).

When 𝜆 = ∞, the estimate only depends on the basic estimates whose row or col-

umn has the minimum sample variance. When 𝜆 = 0, the algorithm equally averages

all basic estimates. We applied this variant of our algorithm to both movie recom-

mendation and image inpainting data, which show that our algorithm improves upon

user-user and item-item classical collaborative filtering.

3.2.3 Some Intuition

Connection to Taylor Series Approximation

Our prediction algorithm for unknown ratings is inspired by the classical Taylor ap-

proximation of a function. Suppose 𝒳1
∼= 𝒳2

∼= R, and we wish to predict unknown

rating, 𝑓(𝑥1(𝑢), 𝑥2(𝑖)), of user 𝑢 ∈ [𝑚] for movie 𝑖 ∈ [𝑛]. Using the first order Taylor

expansion of 𝑓 around (𝑥1(𝑣), 𝑥2(𝑗)) for some 𝑢 ̸= 𝑣 ∈ [𝑚], 𝑖 ̸= 𝑗 ∈ [𝑛], it follows that

𝑓(𝑥1(𝑢), 𝑥2(𝑖)) ≈ 𝑓(𝑥1(𝑣), 𝑥2(𝑗))+

+
𝜕𝑓(𝑥1(𝑣), 𝑥2(𝑗))

𝜕𝑥1

(𝑥1(𝑢) − 𝑥1(𝑣)) +
𝜕𝑓(𝑥1(𝑣), 𝑥2(𝑗))

𝜕𝑥2

(𝑥2(𝑖) − 𝑥2(𝑗)).

We are not able to directly compute this expression, as we do not know the latent

features, the function 𝑓 , or the partial derivatives of 𝑓 . However, we can again apply

Taylor series expansion for 𝑓(𝑥1(𝑣), 𝑥2(𝑖)) and 𝑓(𝑥1(𝑢), 𝑥2(𝑗)) around (𝑥1(𝑣), 𝑥2(𝑗)),

which results in a set of equations with the same unknown terms. It follows from
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rearranging terms and substitution that

𝑓(𝑥1(𝑢), 𝑥2(𝑖)) ≈ 𝑓(𝑥1(𝑣), 𝑥2(𝑖)) + 𝑓(𝑥1(𝑢), 𝑥2(𝑗)) − 𝑓(𝑥1(𝑣), 𝑥2(𝑗)),

as long as the first order approximation is accurate. Thus if the noise term in (3.1) is

small, we can approximate 𝑓(𝑥1(𝑢), 𝑥2(𝑖)) by using observed ratings 𝐴(𝑣, 𝑗), 𝐴(𝑢, 𝑗)

and 𝐴(𝑣, 𝑖) according to

�̂�(𝑢, 𝑖) = 𝐴(𝑢, 𝑗) + 𝐴(𝑣, 𝑖) − 𝐴(𝑣, 𝑗). (3.6)

Connection to Kernel Regression

Once basic estimates are obtained, our algorithm computes both the row and column

sample variance, and uses the minimum of the two as the reliability of the estimate.

We weight each estimate using a Gaussian kernel computed on the sample variance

with the kernel bandwidth parameter 𝜆 , which isexp(−𝜆min{(𝑠𝑢𝑣)2, 𝑠2𝑖𝑗}). When

𝜆 = ∞, the estimate only depends on the basic estimates from the row or column

which has the minimum sample variance. When 𝜆 = 0, the algorithm equally weights

all basic estimates and takes simple average. The final estimate as a function of 𝜆

and 𝛽 is computed to be a Nadaraya-Watson estimator with distance proxy.

Reliability of Local Estimates: We will show that the variance of the difference

between two rows or columns upper bounds the estimation error. Therefore, in order

to ensure the accuracy of the above estimate, we use empirical observations to estimate

the variance of the difference between two rows or columns, which directly relates to

an error bound. By expanding (3.6) according to (3.1), the error 𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖) is

equal to

𝐸𝑟𝑟𝑜𝑟 = (𝑅(𝑢, 𝑖) −𝑅(𝑣, 𝑖)) − (𝑅(𝑢, 𝑗) −𝑅(𝑣, 𝑗)) − 𝜂𝑣𝑖 + 𝜂𝑣𝑗 − 𝜂𝑢𝑗.
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If we condition on 𝑥1(𝑢) and 𝑥1(𝑣),

E
[︀
(Error)2 | 𝑥1(𝑢), 𝑥1(𝑣)

]︀
= 2 𝑉 𝑎𝑟x∼𝑃2 [𝑓(𝑥1(𝑢),x) − 𝑓(𝑥1(𝑣),x) | 𝑥1(𝑢), 𝑥1(𝑣)] + 3𝛾2.

Similarly, if we condition on 𝑥2(𝑖) and 𝑥2(𝑗) it follows that the expected squared error

is bounded by the variance of the difference between the ratings of columns 𝑖 and 𝑗.

This theoretically motivates weighting the estimates according to the variance of the

difference between the rows or columns.

Connections to Cosine Similarity Weights: In our algorithm, we determine

reliability of estimates as a function of the sample variance, which is equivalent to

the squared distance of the mean-adjusted values. In classical collaborative filtering,

cosine similarity is commonly used, which can be approximated as a different choice

of the weight kernel over the squared difference. In other words, our blind regression

framework subsumes collaborative filtering with cosine similarity as another variant

for which 𝑤𝑢𝑖(𝑣, 𝑗) is determined by the cosine kernel.
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Chapter 4

Main Theorems

In this chapter, we state our main results for the algorithm presented in Chapter 3.

Theorem 1 argues that the nearest neighbor algorithm is consistent when there is no

noise. With presence of the noise, our error bound for the expected 𝜖-risk will converge

to the Chebyshev bound for the noise, which is the optimal achevable bound without

imposing further structural assumptions. The proof of the main theorem depends

on the lemmas in Chapter 5, whose proofs hinge on concentration inequalities and

regularity assumptions on the latent feature space. We also discuss about extending

our algorithm and analysis to tensor completion of higher order by simple flattening

method. In Section 4.3, we provide a preliminary discussion for the effect of the

parameter 𝜆 in more general Gaussian kernel variant of the proposed algorithm.

4.1 Consistency of the Nearest Neighbor Algorithm

Recall that for 𝜖 > 0, we defined in Section 3.1.4 the overall 𝜖-risk of the algorithm

as the fraction of estimates whose error is larger than 𝜖

𝑅𝑖𝑠𝑘𝜖 =
1

|𝐸|
∑︁

(𝑢,𝑖)∈𝐸

I
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁
,

where 𝐸 ⊂ [𝑚]×[𝑛] denote the set of user-movie pairs for which the algorithm predicts

a rating.
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Theorem 1 provides an upper bound for the expected 𝜖-risk of the nearest neighbor

version of our algorithm. It proves the nearest neighbor estimator is consistent, in

the presence of no noise, which means the estimates converge to the true values as

𝑚,𝑛 → ∞. We may assume 𝑚 ≤ 𝑛 without loss of generality.

Theorem 1 (Consistency of the Nearest-neighbor version). For a fixed 𝜖 > 0, as long

as 𝑝 ≥ max{𝑚−1+𝛿, 𝑛−1/2+𝛿} (where 𝛿 > 0), for any 𝜌 > 0, the user-user nearest-

neighbor variant of our method with 𝛽 = 𝑛𝑝2/2 achieves

E [𝑅𝑖𝑠𝑘𝜖] ≤
3𝜌 + 𝛾2

𝜖2

(︂
1 +

3 · 21/3

𝜖
𝑛− 2

3
𝛿

)︂
+ 𝑂

(︂
exp

(︂
−1

4
𝐶𝑚𝛿

)︂
+ 𝑚𝛿 exp

(︂
− 1

5𝐵2
𝑛

2
3
𝛿

)︂)︂
,

where 𝐵 = 2(𝐿𝐵𝒳+𝐵𝜂), and 𝐶 = ℎ
(︀√︀

𝜌
𝐿2

)︀
∧1

6
for ℎ(𝑟) := ess inf𝑥0∈𝒳1 Px∼𝑃𝒳1

(𝑑(x, 𝑥0) ≤ 𝑟).

For a generic 𝛽, we can also provide precise error bounds of a similar form, with

modified rates of convergence. Choosing 𝛽 to grow with 𝑛𝑝2 ensures that as 𝑛 goes

to infinity, the required overlap between rows also goes to infinity, thus the empirical

mean and variance computed in the algorithm converge precisely to the true mean

and variance. The parameter 𝜌 in Theorem 1 is introduced purely for the purpose of

analysis, and is not used within the implementation of the the algorithm.

The function ℎ behaves as the cumulative distribution function of 𝑃𝒳1 , and it

always exists under our assumptions that 𝒳1 is compact (see Section 5.2 for more

detail). It is used to ensure that for any 𝑢 ∈ [𝑚], with high probability, there exists

another row 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖) such that 𝑑𝒳1(𝑥1(𝑢), 𝑥1(𝑣)) is small, implying that we can use

the values of row 𝑣 to approximate the values of row 𝑢 well. For example, if 𝑃𝒳1 is a

uniform distribution over a unit cube in 𝑞 dimensional Euclidean space, then ℎ(𝑟) =

min(1, 𝑟)𝑞, and our error bound becomes meaningful for 𝑛 ≥ (𝐿2/𝜌)𝑞/2𝛿. On the other

hand, if 𝑃𝒳1 is supported over finitely many points, then ℎ(𝑟) = minx∈supp(𝑃𝒳1
) 𝑃𝒳1(x)

is a positive constant, and the role of the latent dimension becomes irrelevant, allowing

us to extend the theorem to 𝜌 = 0. Intuitively, the “geometry” of 𝑃𝒳1 through ℎ near

0 determines the impact of the latent space dimension on the sample complexity, and

our results hold as long as the latent dimension 𝑞 = 𝑜(log 𝑛).
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4.1.1 Proof of Theorem 1

In this section, we will prove Theorem 1. From the definition of 𝑅𝑖𝑠𝑘𝜖, it follows that

for any evaluation set of unobserved entries 𝐸, the expectation of 𝜖-risk is

E [𝑅𝑖𝑠𝑘𝜖] = E

⎡⎣ 1

|𝐸|
∑︁

(𝑢,𝑖)∈𝐸

I
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁⎤⎦

=
1

|𝐸|
∑︁

(𝑢,𝑖)∈𝐸

E
[︁
I
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁]︁

= P
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁
,

because the indexing of the engries are exchangeable and identically distribued.

Therefore, in order to bound the expected risk, it suffices to upper bound the proba-

bility P
(︁⃒⃒⃒
𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)

⃒⃒⃒
> 𝜖
)︁

to prove the theorem.

Proof. For any fixed 𝑎, 𝑏 ∈ 𝒳1, and random variable x ∼ 𝑃𝒳2 , we denote the mean

and variance of the difference 𝑓(𝑎,x) − 𝑓(𝑏,x) by

𝜇𝑎𝑏 , Ex[𝑓(𝑎,x) − 𝑓(𝑏,x)]

𝜎2
𝑎𝑏 , Varx[𝑓(𝑎,x) − 𝑓(𝑏,x)].

These are also equivalent to the expectation of the empirical means and variances

computed by the algorithm when we condition on the latent representations of the

users, i.e.

E [𝑚𝑢𝑣|x1(𝑢) = 𝑎,x1(𝑣) = 𝑏] = 𝜇𝑎𝑏, and E
[︀
𝑠2𝑢𝑣|x1(𝑢) = 𝑎,x1(𝑣) = 𝑏

]︀
= 𝜎2

𝑎𝑏.

The computation of �̂�(𝑢, 𝑖) involves two steps: first the algorithm determines

the neighboring row with the minimum sample variance, 𝑢* = arg min𝑣∈𝒮𝛽
𝑢 (𝑖)

𝑠2𝑢𝑣,

and then it computes the estimate by adjusting according to the empirical mean,

�̂�(𝑢, 𝑖) := 𝐴(𝑢*, 𝑖) + 𝑚𝑢𝑢* .

The proof involves three key steps, each of which is stated as a separate Lemma.
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Lemma 1 proves that with high probability the observations are dense enough such

that there is sufficient number of rows with overlap of entries larger than 𝛽. Precisely,

the number of the candidate rows, |𝒮𝛽
𝑢 (𝑖)|, concentrates around (𝑚− 1)𝑝. This relies

on concentration of Binomial random variables via Chernoff’s bound.

Lemma 2 proves that due to the assumption that the latent features are sampled iid

from a bounded metric space, for any index pair (𝑢, 𝑖), there exists “good” neighboring

row 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖), whose true variance 𝜎2

𝑥1(𝑢)𝑥1(𝑣)
is small. In the process, we use the

function ℎ(·) which satisfies

𝑃1 (x ∈ 𝐵(𝑥0, 𝑟)) ≥ ℎ(𝑟), ∀𝑥0 ∈ 𝒳1, 𝑟 > 0,

where 𝐵(𝑥0, 𝑟) , {𝑥 ∈ 𝒳1 𝑠.𝑡. 𝑑𝒳1(𝑥, 𝑥0) ≤ 𝑟}. Discussion about existence of such

functions for essentially all probability distributions is discussed in Section 5.2.

Subsequently, conditioned on the event that
⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
≈ (𝑚 − 1)𝑝, Lemmas 4 and

6 prove that the sample mean and sample variance of the differences between two

rows concentrate around the true mean and true variance with high probability. This

involves using the Lipschitz and bounded assumptions on 𝑓 and 𝒳1, as well as the

Bernstein and Maurer-Pontil inequalities.

Given that there exists a neighbor 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖) whose true variance 𝜎2

𝑥1(𝑢)𝑥1(𝑣)
is small,

and conditioned on the event that all the sample variances concentrate around the

true variance, it follows that the true variance between 𝑢 and its nearest neighbor 𝑢* is

small with high probability. Finally, conditioned on the event that |𝒮𝛽
𝑢 (𝑖)| ≈ (𝑚−1)𝑝

and the true variance between the target row and the nearest neighbor row is small,

we provide a bound on the tail probability of the estimation error by using Chevyshev

inequalities. The only term in the error probability which does not decay to zero is

the error from Chebyshev’s inequality, which dominates the final expression, thus

leading to the desired result.

For readability, we define the following events: with 𝛽 = 𝑛𝑝2/2,

∙ Let 𝐴 denote the event that |𝒮𝛽
𝑢 (𝑖)| ∈ [(𝑚− 1)𝑝/2, 3(𝑚− 1)𝑝/2].

∙ Let 𝐵 denote the event that min𝑣∈𝒮𝛽
𝑢 (𝑖)

𝜎2
𝑥1(𝑢)𝑥1(𝑣)

< 𝜌.
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∙ Let 𝐶 denote the event that
⃒⃒
𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

⃒⃒
< 𝛼 for all 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖).

∙ Let 𝐷 denote the event that
⃒⃒⃒
𝑠2𝑢𝑣 − (𝜎2

𝑥1(𝑢)𝑥1(𝑣)
+ 2𝛾2)

⃒⃒⃒
< 𝜌 for all 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖).

Consider the following:

P
(︁
|𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)| > 𝜖

)︁
≤ P

(︁
|𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)| > 𝜖 |𝐴,𝐵,𝐶,𝐷

)︁
+ P (𝐴𝑐) + P (𝐵𝑐|𝐴) + P (𝐶𝑐|𝐴,𝐵) + P (𝐷𝑐|𝐴,𝐵,𝐶) . (4.1)

Now,

P (𝐴𝑐) = P
(︂
|𝒮𝛽

𝑢 (𝑖)| /∈
[︂

(𝑚− 1)𝑝

2
,
3(𝑚− 1)𝑝

2

]︂)︂
≤ 2 exp

(︂
−(𝑚− 1)𝑝

12

)︂
+ (𝑚− 1) exp

(︂
−𝑛𝑝2

8

)︂
, (4.2)

using Lemma 1. Similarly, using Lemma 2

P (𝐵𝑐|𝐴) ≤
(︂

1 − ℎ

(︂√︂
𝜌

𝐿2

)︂)︂ (𝑚−1)𝑝
2

≤ exp

(︃
−

(𝑚− 1)𝑝 ℎ
(︀√︀

𝜌
𝐿2

)︀
2

)︃
. (4.3)

Given choice of parameters, i.e. choice of 𝑚 and 𝑝 large enough for a given 𝜌, as we

shall argue, the right hand side of (4.3) will be going to 0, and hence definitely less

than 1/2. That is, P (𝐵|𝐴) ≥ 1/2. Using this fact and Bayes formula, we have

P (𝐶𝑐|𝐴,𝐵) ≤ 2P (𝐶𝑐|𝐴)

= 2P

⎛⎝ ⋃︁
𝑣∈𝒮𝛽

𝑢 (𝑖)

{︀⃒⃒
𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

⃒⃒
> 𝛼

}︀ ⃒⃒⃒⃒⃒⃒ 𝐴
⎞⎠

≤ 3(𝑚− 1)𝑝 exp

(︂
− 3𝑛𝑝2𝛼2

12𝐵2 + 4𝐵𝛼

)︂
, (4.4)

where last inequality follows from union bound, Lemmas 4 and choice of 𝛽 = 𝑛𝑝2/2.
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Again, choice of parameters, i.e. 𝑚,𝑛, 𝑝 and 𝛼 will be such that we will have the right

hand side of (4.4) going to 0 and definitely less than 1/8. Using this and arguments

as used above based on Bayes’ formula, we bound

P (𝐷𝑐|𝐴,𝐵,𝐶) ≤ P (𝐷𝑐|𝐴)

P (𝐵|𝐴)P (𝐶|𝐴,𝐵)

≤ 4P (𝐷𝑐|𝐴) .

= 4P

⎛⎝ ⋃︁
𝑣∈𝒮𝛽

𝑢 (𝑖)

{︀⃒⃒
𝑠2𝑢𝑣 −

(︀
𝜎2
𝑥1(𝑢)𝑥1(𝑣)

+ 2𝛾2
)︀⃒⃒

> 𝜌
}︀ ⃒⃒⃒⃒⃒⃒ 𝐴

⎞⎠
≤ 12(𝑚− 1)𝑝 exp

(︂
− 𝛽𝜌2

4𝐵2(2𝐿𝐵2
𝒳 + 4𝛾2 + 𝜌)

)︂
, (4.5)

where last inequality follows from union bound and Lemma 6.

Finally, with the choice of 𝛼 = 𝛽−1/3, which is
(︁

𝑛𝑝2

2

)︁−1/3

since 𝛽 = 𝑛𝑝2

2
, using

Lemma 7, we obtain that

P ( |𝑓(𝑥1(𝑢), 𝑥2(𝑖)) − 𝑦(𝑢, 𝑖)| > 𝜖 |𝐴,𝐵,𝐶,𝐷) ≤ 3𝜌 + 𝛾2

𝜖2

(︁
1 − 𝛼

𝜖

)︁−2

≤ 3𝜌 + 𝛾2

𝜖2

(︂
1 +

3𝛼

𝜖

)︂
. (4.6)

where we have used the fact that for given choice of 𝛼 (since 𝜖 is fixed), as 𝑚 increases,

the term 𝛼/𝜖 becomes less than 1/5; for 𝑥 ≤ 1/5, (1 − 𝑥)−2 ≤ (1 + 3𝑥).

If 𝑝 = 𝜔(𝑚−1) and 𝑝 = 𝜔(𝑛−1/2), all error terms from (4.2) to (4.5) diminish to

0 as 𝑚,𝑛 → ∞. Specifically, if we choose 𝑝 = max(𝑚−1+𝛿, 𝑛−1/2+𝛿), then putting

everything together, we obtain (we assume that 𝑚/2 ≤ 𝑚− 1 ≤ 𝑚)

P
(︁
|𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)| > 𝜖

)︁
≤ 3𝜌 + 𝛾2

𝜖2

(︃
1 +

3 3
√

2

𝜖
𝑛− 2

3
𝛿

)︃
+ 2 exp

(︂
− 1

24
𝑚𝛿

)︂
+ 𝑚 exp

(︂
−1

8
𝑛2𝛿

)︂
+ exp

(︂
−1

4
ℎ

(︂√︂
𝜌

𝐿2

)︂
𝑚𝛿

)︂
+ 3𝑚𝛿 exp

(︂
− 1

5𝐵2
𝑛

2
3
𝛿

)︂
+ 12𝑚𝛿 exp

(︂
− 𝜌2

8𝐵2(2𝐿𝐵2
𝒳 + 4𝛾2 + 𝜌)

𝑛2𝛿

)︂
.
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The above bound holds for any 𝜌 > 0, though as 𝜌 → 0, 𝑚,𝑛 also need to increase

accordingly such that ℎ
(︀√︀

𝜌
𝐿2

)︀
is not too small. When the support of 𝑃𝒳 is finite,

then

ℎ

(︂√︂
𝜌

𝐿2

)︂
≥ min

𝑥∈𝒳
𝑃𝒳 (𝑥),

such that the above bound holds even when 𝜌 = 0.

4.2 Tensor Completion by Flattening

A tensor is a higher order analog of a matrix. As a matrix represents interactions be-

tween two entities (e.g. users and movies), higher order tensors represent interactions

between more than two entries. As a result, tensors can yield more appropriate and

flexible models for reality in some situations. For example, we may have time series

data for each user-movie rating, such that the completion problem concerns predict-

ing an unknown user-movie rating at a given time instance. Then the completion

problem concerns predicting the unknown rating of a user for a movie at a given time

instance. However, a tensor completion problem is known to be much harder than

a matrix completion. Recently, specific tensor decomposition approaches have been

suggested for tensor completion, but there is still little understanding on the problem.

One naïve approach toward tensor completion is to simply consider it as a matrix

completion via flattening. Due to the mildness and simplicity of our assumptions,

we can easily reduce a tensor to an appropriate matrix problem which our algorithm

and analysis can solve. Let 𝑇 ∈ R𝑘1×𝑘2×...𝑘𝑡 denote a 𝑡-order tensor. Assume that

the equivalent higher order assumptions presented in Section 3.1.2 hold, in particular

that the indices are associated with latent features drawn according to a probability

measure over a compact metric space, and that the observed values can be described

by a Lipschitz function over the latent spaces with an independent bounded zero-mean

additive noise.

We consider the higher order extension of the same assumptions as presented in

Section 3.1.2. Assume that for each dimension 𝑟 ∈ [𝑡], each index 𝑖 ∈ [𝑘𝑡] is associated

to a latent feature 𝑧𝑟(𝑖) which is sampled according to a probability measure 𝑃𝒵𝑟 over
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a compact metric space 𝒵𝑟. Assume that there exists some 𝐿-Lipschitz function

𝑔 :
∏︀

𝑟∈[𝑡] 𝒵𝑟 → R which relates latent features to the observed values, such that for

i = (𝑖1, 𝑖2, . . . 𝑖𝑡) ∈ [𝑘1] × [𝑘2] × . . . [𝑘𝑡], 𝑇 (i) = 𝑔(𝑧1(𝑖1), 𝑧1(𝑖2), . . . 𝑧𝑡(𝑖𝑡)) + 𝜂i, where 𝜂i

is some independent bounded zero-mean noise.

Let (𝒯1, 𝒯2) be a disjoint partition of [𝑡] such that 𝒯1 ∪ 𝒯2 = [𝑡]. Then we can

reduce the tensor to a matrix 𝐴𝑇 by “flattening” or combining all dimensions in 𝒯1 as

the rows of the matrix, and similarly combining dimensions in 𝒯2 as the columns of

the matrix, such that the flattened matrix has dimensions 𝑚×𝑛 where 𝑚 =
∏︀

𝑟∈𝒯1 𝑘𝑟

and 𝑛 =
∏︀

𝑟∈𝒯2 𝑘𝑟. The latent spaces of the matrix are defined as the product spaces

over the corresponding latent spaces of the tensor. Similarly the probability measures

𝑃𝒳1 and 𝑃𝒳2 are defined according to the appropriate product measures.

The matrix we constructed satisfies all assumptions required in Section 3.1.2,

therefore we can proceed to apply our algorithm and analysis to predict the missing

entries.When reducing a general 𝑡-order tensor to a matrix, it is desirable to balance

the size of the two partitions so that 𝑚 ≈
√
𝑛 in order to achieve the best sample

complexity. For a specific setting in which the dimensions of the tensor are equivalent

(i.e. identical latent spaces, probability measures, and number of sampled indices),

Theorem 2 presents error bounds for our tensor completion method, derived from

Theorem 1.

Theorem 2. For a 𝑡-order tensor 𝑇 ∈ R𝑘𝑡, given any partition (𝒯1, 𝒯2) of [𝑡] such

that |𝒯1| = 𝑡/3 and |𝒯2| = 2𝑡/3, let 𝐴𝑇 denote the equivalent matrix which results

from flattening the tensor according to the partitioning (𝒯1, 𝒯2). For a fixed 𝜖 > 0,

as long as 𝑝 ≥ 𝑘−𝑡/3+𝛿 (where 𝛿 > 0), for any 𝜌 > 0, the user-user nearest-neighbor

variant of our method applied to matrix 𝐴𝑇 with parameter 𝛽 = 𝑘2𝑡/3𝑝2/2 achieves

E [Risk𝜖] ≤
3𝜌 + 𝛾2

𝜖2

(︂
1 +

3 · 21/3

𝜖
𝑘− 2

3
𝛿

)︂
+ 𝑂

(︂
exp

(︂
−1

4
𝐶𝑘𝛿

)︂
+ 𝑘𝛿 exp

(︂
− 1

5𝐵2
𝑘

2
3
𝛿

)︂)︂
,

where 𝐵 = 2(𝐿𝐵𝒵+𝐵𝜂), and 𝐶 = ℎ
(︀√︀

𝜌
2𝐿2

)︀𝑡/3∧1
6

for ℎ(𝑟) := ess inf𝑧0∈𝒵 Pz∼𝑃𝒵 (𝑑𝒵(z, 𝑧0) ≤ 𝑟).
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4.3 The Effects of Averaging Estimates over Rows:

Brief Discussion

Unlike the nearest neighbor algorithm, it is hard to obtain an error bound for the

algorithm with general kernel weights. In this section, we will consider an intermediate

between the nearest neighbor algorithm and the general kernel algorithm. Define row-

collaborative algorithm by taking weights as

𝑤𝑣𝑗 = exp(−𝜆𝑠2𝑢𝑣).

Alternatively, if we let the estimator for (𝑢, 𝑖) based on the row 𝑣 be

�̂�𝑣(𝑢, 𝑖) =
1

|𝒪𝑢𝑣|
∑︁
𝑗∈𝒪𝑢𝑣

[𝐴(𝑢, 𝑗) + 𝐴(𝑣, 𝑖) − 𝐴(𝑣, 𝑗)] ,

then the row-averaged estimator can be written as a weighted average of these:

�̂�(𝑢, 𝑖) =

∑︀
𝑣∈𝒮𝛽

𝑢 (𝑖)
𝑐𝑣�̂�𝑣(𝑢, 𝑖)∑︀

𝑣∈𝒮𝛽
𝑢 (𝑖)

𝑐𝑣
, (4.7)

where 𝑐𝑣 = exp (−𝜆𝑠2𝑢𝑣).

In fact, it is not easy to obtain an error bound even for the row-collaborative

algorithm. Nevertheless, the analysis on it can help to understand trade-off between

the increase in signal variance and the decrease in noise variance as 𝜆 changes. In this

section, we briefly discuss the effect of averaging and the role of kernel parameter 𝜆

with some calculations for the row-collaborative algorithm, thereby gaining insights

on the influence of averaging on the Chebyshev bound in Theorem 1. To simplify

calculations, we will impose a set of strong assumptions on the latent space and the

latent function throughout this section, which will help us appreciate the essential

effects of averaging:

1. Consider R𝑑 and the standard Gaussian measure 𝛾𝑑
0,1 on it. For any 𝜖 > 0, we

can find 𝑅 < ∞ such that 𝛾𝑑
0,1 (𝐵(0, 𝑅)) > 1 − 𝜖.
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2. Let 𝒳1 = 𝐵(0, 𝑅) ⊂ R𝑑, and 𝑃𝒳1 is a uniform probability measure on 𝒳1.

3. Suppose that 𝑓 and (𝒳2, 𝑃𝒳2) satisfies that for any 𝑎, 𝑏 ∈ (𝒳1, 𝑑1),

𝑑1(𝑎, 𝑏) = 𝑉 𝑎𝑟 [𝑓(𝑎,x2) − 𝑓(𝑏,x2)] .

4. Consider 𝑐𝑣 := exp (−𝜆𝑠2𝑢𝑣) → exp (−𝜆(𝜎2
𝑢𝑣 + 2𝛾2)) for a fixed parameter 𝜆.

The following analyses show that varying 𝜆 affects the signal variance and the

noise variance in the opposite directions. As 𝜆 decreases, the algorithm becomes to

count more on neighbors farther away, thereby the signal variance enlarges. On the

other hand, as independent noises cancel each other, the noise variance diminishes

from 𝛾2 to 0. Therefore, we can expect a trade-off between these two effects. We can

interpret the parameter 𝜆 as the inverse temperature 1
𝑇
: as temperature increases the

thermal noises cancel out in expectation, however, when the system freezes as 𝑇 → 0,

one single row dominates with noise 𝛾2.

4.3.1 Rough Signal Analysis

Since the noise is independent of the structured signal, we can analyze the variance

of signals and noises separately. Although we do not have information on the co-

variance between row estimators, we can provide an upper bound from the following

observation: |𝐶𝑜𝑣(𝑋1, 𝑋2)| ≤
√︀

𝑉 𝑎𝑟(𝑋1)𝑉 𝑎𝑟(𝑋2) and hence,

𝑉 𝑎𝑟(
𝑛∑︁

𝑖=1

𝑐𝑖𝑋𝑖) =
𝑛∑︁

𝑖=1

𝑛∑︁
𝑗=1

𝑐𝑖𝑐𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) ≤

(︃
𝑛∑︁

𝑖=1

𝑐𝑖
√︀

𝑉 𝑎𝑟(𝑋𝑖)

)︃2

.

Under the simplifying assumptions, the combined variance

(
∑︀

𝑣 𝑐𝑣𝜎𝑢𝑣)
2

(
∑︀

𝑣 𝑐𝑣)
2 =

(︁∑︀
𝑣 𝑒

−𝜆𝑠2𝑢𝑣𝜎𝑢𝑣
)︁2

(
∑︀

𝑣 𝑒
−𝜆𝑠2𝑢𝑣)

2 . (4.8)
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Moreover, because 𝜎2
𝑢𝑣 = 𝑑1 (𝑥1(𝑢), 𝑥1(𝑣))2 and 𝑠2𝑢𝑣 → 𝜎2

𝑢𝑣 + 2𝛾2,

∑︁
𝑣

𝑒−𝜆𝑠2𝑢𝑣𝜎𝑢𝑣 →
1

𝑍

∫︁ ∞

0

𝑒−𝜆𝑟2𝑟 (𝑆𝑑−1(𝑟)𝑑𝑟) , (4.9)

∑︁
𝑣

𝑒−𝜆𝑠2𝑢𝑣 → 1

𝑍

∫︁ ∞

0

𝑒−𝜆𝑟2 (𝑆𝑑−1(𝑟)𝑑𝑟) , (4.10)

as 𝑚,𝑛 → ∞ and 𝜖 → 0. Here, 𝑍 is a normalization constant, and 𝑆𝑑−1(𝑟) is the

surface area of (𝑑− 1)-sphere:

𝑆𝑑−1(𝑟) =
2𝜋𝑑/2

Γ
(︀
𝑑
2

)︀𝑟𝑑−1.

It remains to compute the ratio of two integrals 𝐹𝑑(𝜆)/𝐹𝑑−1(𝜆), where

𝐹𝑛(𝜆) =
1

𝑍

2𝜋𝑑/2

Γ
(︀
𝑑
2

)︀ ∫︁ ∞

0

𝑒−𝜆𝑟2𝑟𝑛𝑑𝑟.

Then by Equations 4.8, 4.9, 4.10, it follows that

(
∑︀

𝑣 𝑐𝑣𝜎𝑢𝑣)
2

(
∑︀

𝑣 𝑐𝑣)
2 .

(︂
𝐹𝑑(𝜆)

𝐹𝑑−1(𝜆)

)︂2

. (4.11)

Integration by substitution yields

∫︁ ∞

0

𝑒−𝜆𝑟2𝑑𝑟 =

√︂
𝜋

𝜆
,∫︁ ∞

0

𝑒−𝜆𝑟2𝑟𝑑𝑟 =
1

2𝜆
.

Now, we can obtain the following recursive formula from integration by parts:

∫︁ ∞

0

𝑒−𝜆𝑟2𝑟𝑑𝑑𝑟 =
1

𝑑 + 1
𝑒−𝜆𝑟2𝑟𝑑+1

⃒⃒⃒⃒∞
0

+
2𝜆

𝑑 + 1

∫︁ ∞

0

𝑒−𝜆𝑟2𝑟𝑑+2𝑑𝑟

=
2𝜆

𝑑 + 1

∫︁ ∞

0

𝑒−𝜆𝑟2𝑟𝑑+2𝑑𝑟.
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We can conclude that

𝐹𝑑(𝜆)

𝐹𝑑−1(𝜆)
=

𝑑

2𝜆

𝐹𝑑−2(𝜆)

𝐹𝑑−1(𝜆)
=

𝑑

2𝜆

2𝜆

𝑑− 1

𝐹𝑑−2(𝜆)

𝐹𝑑−3(𝜆)
= . . .

=

⎧⎪⎨⎪⎩
(𝑑−1)(𝑑−3)...2
(𝑑−2)(𝑑−4)...2

𝐹1(𝜆)
𝐹0(𝜆)

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑜𝑑𝑑,

(𝑑−1)(𝑑−3)...1
(𝑑−2)...2

𝐹0(𝜆)
2𝜆𝐹1(𝜆)

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛.

=

⎧⎪⎨⎪⎩
(𝑑−1)(𝑑−3)...2
(𝑑−2)(𝑑−4)...2

1
2
√
𝜋𝜆

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑜𝑑𝑑,

(𝑑−1)(𝑑−3)...1
(𝑑−2)...2

√︀
𝜋
𝜆

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛.

≤

⎧⎪⎨⎪⎩
√︁

𝑑
4𝜋𝜆

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑜𝑑𝑑,√︁
2𝑑𝜋
𝜆

𝑤ℎ𝑒𝑛 𝑑 𝑖𝑠 𝑒𝑣𝑒𝑛.

Plugging this into Equation 4.11 gives us

(
∑︀

𝑣 𝑐𝑣𝜎𝑢𝑣)
2

(
∑︀

𝑣 𝑐𝑣)
2 . 𝑐

𝑑

𝜆
.

This asymptotic inequality suggests that this variance diminishes to 0 as 𝜆 → ∞.

It is an expected result because the algorithm itself shrinks to the nearest neighbor

algorithm. Moreover, this bound also suggests that the signal variance is roughly less

than or proportional to the dimension of the latent space.

4.3.2 Noise Analysis

The IID assumption on the noise makes the noise analysis much simpler than the

signal analysis. In contrast to the signal variance, the noise variance decreases as

𝜆 → 0:

lim
𝜆→0

∑︀
𝑣 𝑐

2
𝑣

(
∑︀

𝑣 𝑐𝑣)
2𝛾

2 = lim
𝜆→0

𝑒−2𝜆𝛾2∑︀
𝑣 𝑒

−2𝜆𝜎2
𝑢𝑣

𝑒−2𝜆𝛾2 (
∑︀

𝑣 𝑒
−𝜆𝜎2

𝑢𝑣)
𝛾2 =

𝛾2⃒⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒⃒ → 0,

as 𝑚,𝑛 → ∞. On the other hand,
∑︀

𝑣 𝑐2𝑣

(
∑︀

𝑣 𝑐𝑣)
2𝛾2 → 𝛾2 as 𝜆 → ∞.
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Chapter 5

Useful Lemmas and their Proofs

In this chapter, we present five main lemmas (1, 2, 4, 6, 7) used in the proof of The-

orem 1. Lemma 1 ensures that for each unknown entry (𝑢, 𝑖), there is a sufficiently

large number of rows and columns which have observed overlapped entries with high

probability. Lemma 2 guarantees there exists a good neighbor with high probability

whenever the size of the matrix is sufficiently large and the latent space is compact.

Also, Lemmas 4 and 6 ascertain the sample statistics (mean and variance) concentrate

to the population statistics; therefore, we can use the sample statistics in our estima-

tors as surrogates for the population statistics. Lastly, we show an upper bound for

the conditional error of our nearest-neighbor estimator. Combining all these results

by the union bound proves Theorem 1; the detailed proof can be found in Section

4.1.1. The error bounds in each of these lemmas are obtained by applying various

concentration inequalities.

5.1 Sufficient Overlap

In this section we show that there exists a a neighbor for a given target (𝑢, 𝑖) ∈ [𝑚]×[𝑛]

with high probability. A sufficiently many, yet still vanishing number of observations

are required for that purpose. In fact, Lemma 1 implies an even stronger result. For

a given (𝑢, 𝑖), not only will there exist a feasible base row, but also the number of

those rows concentrates to (𝑚 − 1)𝑝 with high probability. Moreover, we can show
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that every pair (𝑢, 𝑖) ∈ [𝑚] × [𝑛] has roughly (𝑚− 1)𝑝 neighbors (i.e. every estimate

is defined) with high probability.

Lemma 1. Given 𝑝 > 0, 2 ≤ 𝛽 ≤ 𝑛𝑝2

2
, and 𝛼 > 0, for any (𝑢, 𝑖) ∈ [𝑚] × [𝑛],

P
(︀⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
̸∈ (1 ± 𝛼) (𝑚− 1) 𝑝

)︀
≤ (𝑚− 1) exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃

+ 2 exp

(︂
−𝛼2

3
(𝑚− 1)𝑝

)︂
≤ (𝑚− 1) exp

(︂
−𝑛𝑝2

8

)︂
+ 2 exp

(︂
−𝛼2

3
(𝑚− 1)𝑝

)︂
.

Proof. First of all, we can observe that having 1) |𝒪𝑢𝑣| ≥ 𝛽 for every 𝑣 ∈ [𝑚] ∖ 𝑢,

and 2) (1 − 𝛼)(𝑚 − 1)𝑝 ≤ |𝒪𝑖| ≤ (1 + 𝛼)(𝑚 − 1)𝑝, is a sufficient condition for

(1 − 𝛼)(𝑚− 1)𝑝 ≤
⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
≤ (1 + 𝛼)(𝑚− 1)𝑝. Our goal is to provide a lower bound

on the probability of this event, by showing an upper bound on its complement (i.e.,

‘failure’ probability). Given that the test 1) fails with probability at most 𝜖1, and 2)

fails with no greater than 𝜖2, the total failure probability is upper bounded by 𝜖1 + 𝜖2

by the union bound.

Let’s fix any pair of row indices (𝑢1, 𝑢2). The probability for any column index

𝑖 ∈ [𝑛] to be in their overlap 𝒪𝑢𝑣 is P (𝑀(𝑢1, 𝑖) = 1)P (𝑀(𝑢2, 𝑖) = 1) = 𝑝2 and it

follows that |𝒪𝑢1𝑢2 | ∼ 𝐵𝑖𝑛(𝑛, 𝑝2) from the i.i.d. assumption on 𝑀 . By the Chernoff

bound for lower tail of a binomial distribution,

𝜖1 := P (|𝒪𝑢1𝑢2| ≤ 𝛽) ≤ exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃
.

For a fixed 𝑢, there are (𝑚− 1) candidate rows to test, and the probability of failing

in the first condition

𝜖1 := P (∃𝑣 ∈ [𝑚] ∖ 𝑢 𝑠.𝑡. |𝒪𝑢𝑣| ≥ 𝛽)

≤ (𝑚− 1) exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃
.
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From the assumption 𝛽 ≤ 𝑛𝑝2

2
, it follows that

exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃

≤ exp

(︂
−𝑛𝑝2

8

)︂
.

Now we claim that |𝒪𝑖| concentrates around 𝑚𝑝. Because |𝒪𝑖| ∼ 𝐵𝑖𝑛 ((𝑚− 1), 𝑝)

for any 𝑖 ∈ [𝑛], we have

P (|𝒪𝑖| ̸∈ (1 ± 𝛼) (𝑚− 1)𝑝) ≤ 2 exp

(︂
−𝛼2

3
(𝑚− 1)𝑝

)︂
, ∀𝛿 ∈ (0, 1).

By the union bound, the total failure probability is no greater than 𝜖1 + 𝜖2, and

we can conclude that
⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
≈ (𝑚− 1)𝑝 for every (𝑢, 𝑖) with high probability.

Applying the union bound for every (𝑢, 𝑖) ∈ [𝑚] × [𝑛] naïvely, we know that

P
(︀
∃(𝑢, 𝑖) ∈ [𝑚] × [𝑛] :

⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
̸∈ (1 ± 𝛼) (𝑚− 1)𝑝

)︀
≤

∑︁
(𝑢,𝑖)∈[𝑚]×[𝑛]

P
(︀⃒⃒
𝒮𝛽
𝑢 (𝑖)

⃒⃒
̸∈ (1 ± 𝛼) (𝑚− 1)𝑝

)︀
≤ 𝑚(𝑚− 1)𝑛 exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃

+ 2𝑚𝑛 exp

(︂
−𝛼2

3
𝑚𝑝

)︂
.

However, a slight modification in the proof of the previous lemma can provide a better

result:

P
(︀
∃(𝑢, 𝑖) ∈ [𝑚] × [𝑛] :

⃒⃒
ℬ𝛽
𝑟𝑜𝑤(𝑢, 𝑖)

⃒⃒
̸∈ (1 ± 𝛼) (𝑚− 1)𝑝

)︀
≤ 𝑚(𝑚− 1)

2
exp

(︃
−𝑛𝑝2

2

(︂
1 − 𝛽

𝑛𝑝2

)︂2
)︃

+ 2𝑛 exp

(︂
−𝛼2

3
𝑚𝑝

)︂
.

These two terms decay exponentially as long as 𝛽 < 𝑛𝑝2

2
, log𝑚(𝑚− 1)− 𝑛𝑝2

2
< 0, and

log 𝑛− 𝛼2

3
𝑚𝑝 < 0, i.e., 𝑝 & max{

√︀
𝑛−1 log𝑚,𝑚−1 log 𝑛}.
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5.2 Existence of a Good Neighbor

In order to show that a good-quality neighbor can be detected through sample vari-

ance, we need to show there exists a neighbor row whose population variance is small.

For that purpose, we assume our latent space 𝒳1 is bounded, the distribution 𝑃𝒳1

allows every nontrivial ball to have positive measure, and 𝑓 is Lipschitz. Under these

assumptions, every (𝑢, 𝑖) has nonzero probability of having a close neighbor. In fact,

there exists a close neighbor for every entry with high probability.

Let’s suppose row 𝑢1 has a latent feature representation 𝑎 and row 𝑢2 has 𝑏. We

cannot observe those feature representations, but we can define the popultion variance

of the differences between those two features 𝑎 and 𝑏 as

𝜎2
𝑎𝑏 , 𝑉 𝑎𝑟[𝑓(𝑎,x2) − 𝑓(𝑏,x2)],

for 𝑎, 𝑏 ∈ 𝒳1 and x2 ∼ 𝑃𝒳2 . Abusing terminology, this will be also referred to as the

population variance between two rows 𝑢1 and 𝑢2.

Lemma 2 (Existence of a good neighbor). Suppose that (𝒳1, 𝑃𝒳1) admits a nonde-

creasing function ℎ : R++ → (0, 1] satisfying

𝑃𝒳1 (x1 ∈ 𝐵(𝑥0, 𝑟)) ≥ ℎ(𝑟), ∀𝑥0 ∈ 𝒳1, ∀𝑟 > 0,

where 𝐵(𝑥0, 𝑟) , {𝑥 ∈ 𝒳1 𝑠.𝑡. 𝑑(𝑥, 𝑥0) ≤ 𝑟}. If we fix 𝑢 ∈ [𝑚], for any subset of

indices 𝒮 ⊂ [𝑛] ∖ {𝑢} and any 𝜌 > 0, the probability of nonexistence of a neighbor

within 𝜌 in 𝑆 satisfifes

P

(︃⋂︁
𝑣∈𝒮

{︀
𝜎2
𝑥1(𝑢)𝑥1(𝑣)

> 𝜌
}︀)︃

≤
[︂
1 − ℎ

(︂√︂
𝜌

𝐿2

)︂]︂|𝒮|
.

Proof. Recall that 𝜎2
𝑎𝑏 , Var[𝑓(𝑎, 𝑥) − 𝑓(𝑏, 𝑥)], for some 𝑎, 𝑏 ∈ 𝒳1, and 𝑥 ∼ 𝑃𝒳2 . We

can bound 𝜎2
𝑎𝑏 as a function of 𝑑1(𝑎, 𝑏) by using the Lipschitz property of 𝑓 , that
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|𝑓(𝑎, 𝑥2) − 𝑓(𝑏, 𝑥2)| ≤ 𝐿𝑑1(𝑎, 𝑏), ∀𝑥2 ∈ 𝒳2.

𝜎2
𝑎𝑏 = Var[𝑓(𝑎,x2) − 𝑓(𝑏,x2)]

= E
[︀
(𝑓(𝑎,x2) − 𝑓(𝑏,x2))

2
]︀
− E [𝑓(𝑎,x2) − 𝑓(𝑏,x2)]

2

≤ E
[︀
(𝑓(𝑎,x2) − 𝑓(𝑏,x2))

2
]︀

≤ E
[︀
(𝐿𝑑1(𝑎, 𝑏))

2
]︀

= 𝐿2𝑑1(𝑎, 𝑏)
2.

It follows that

P

(︃⋂︁
𝑣∈𝒮

{︀
𝜎2
𝑥1(𝑢)𝑥1(𝑣)

> 𝜌
}︀)︃

=

∫︁
P

(︃⋂︁
𝑣∈𝒮

{︀
𝜎2
𝑥1(𝑢)𝑥1(𝑣)

> 𝜌
}︀⃒⃒⃒⃒⃒𝑥1(𝑢) = 𝑥0

)︃
𝑃𝒳1(𝑥0)𝑑𝑥0

=

∫︁
P
(︀
𝜎2
𝑥0,𝑥1(𝑣)

> 𝜌
)︀|𝒮|

𝑃𝒳1(𝑥0)𝑑𝑥0 ∵ 𝑥1(𝑣) 𝑑𝑟𝑎𝑤𝑛 𝑖.𝑖.𝑑.

≤
∫︁

P
(︀
𝐿2𝑑1(𝑥0, 𝑥1(𝑣))2 > 𝜌

)︀|𝒮|
𝑃𝒳1(𝑥0)𝑑𝑥0

=

∫︁
P
(︂
𝑑1(𝑥0, 𝑥1(𝑣)) >

√︂
𝜌

𝐿2

)︂|𝒮|

𝑃𝒳1(𝑥0)𝑑𝑥0

=

∫︁
𝑃𝒳1

[︂
x1 ̸∈ 𝐵

(︂
𝑥0,

√︂
𝜌

𝐿2

)︂]︂|𝒮|
𝑃𝒳1(𝑥0)𝑑𝑥0

≤
∫︁ [︂

1 − ℎ

(︂√︂
𝜌

𝐿2

)︂]︂|𝒮|
𝑃𝒳1(𝑥0)𝑑𝑥0

=

[︂
1 − ℎ

(︂√︂
𝜌

𝐿2

)︂]︂|𝒮|
.

How does ℎ look like? In order to provide some understanding toward the

assumption on distribution 𝑃𝒳1 , observe that the function ℎ(·) is a form of the cu-

mulative distribution function (CDF) for 𝑃𝒳1 . The only distribution which does not

satisfy this property is a distribution which has non-atomic isolated points. How-

ever, these isolated points have measure zero, such that they will never appear in our

datasets with probability 1. We provide a few examples of distributions and their
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corresponding functions ℎ(·).

Example 1 (extremely uniform). Suppose that 𝒳 = ×𝑑
𝑘=1[𝑎𝑖, 𝑏𝑖] ∈ R𝑑 equipped with

𝐿∞ norm and 𝑃𝒳 is a uniform distribution over 𝒳 . We can see that the function

ℎ(𝑟) :=
∏︀𝑑

𝑘=1 min
{︁

1, 𝑟
𝑏𝑖−𝑎𝑖

}︁
satisfies the condition 𝑃𝒳 (x ∈ 𝐵(𝑥0, 𝑟)) ≥ ℎ(𝑟), ∀𝑥0 ∈

𝒳 , ∀𝑟 > 0. Note that ℎ(𝑟) ≈ 𝑐𝑟𝑑 for 𝑟 ≪ 1.

Example 2 (extremely clustered). Suppose that 𝒳 = {𝑥1, . . . , 𝑥𝑑} equipped with the

discrete topology and 𝑃𝒳 is expressed in terms of the probability masses 𝑃𝒳 (𝑥𝑘) = 𝑝𝑘

with
∑︀𝑑

𝑘=1 𝑝𝑘 = 1. We can see that the function ℎ(𝑟) := min𝑘 𝑝𝑘 works for (𝒳 , 𝑃𝒳 )

even when we do not know the metric.

We show that a compact metric space admits such a function ℎ(·) for regular

points.

Definition 1 (regular points). Let (𝑋, 𝑑) be a compact metric space, and 𝑃𝑋 be a

Borel probability measure on it. A point 𝑥 ∈ 𝑋 is called regular if

𝑃𝑋 (𝐵(𝑥, 𝑟)) > 0, ∀𝑟 > 0.

Lemma 3 (Existence of ℎ function). Let (𝑋, 𝑑) be a compact metric space, and 𝑃𝑋

be a Borel probability measure on it. Then there is a function ℎ on (𝑋,𝑃𝑋) which

satisfies

1. ℎ : R++ → (0, 1] is nondecreasing, and

2. 𝑃𝑋 (𝐵(𝑥, 𝑟)) ≥ ℎ(𝑟), ∀𝑥 ∈ 𝑋 𝑟𝑒𝑔𝑢𝑙𝑎𝑟, ∀𝑟 > 0.

Proof. For any 𝑟 > 0, the family {𝐵(𝑥, 𝑟/2) : 𝑥 ∈ 𝑋} forms n open cover 𝑋. Since 𝑋

is compact, there exists a finite subcover 𝐶0 := {𝐵1, . . . , 𝐵𝑁0}. From this subcover,

remove every measure-zero ball to obtain 𝐶 := {𝐵1, . . . , 𝐵𝑁}. It can be observed

that for every regular point 𝑥 ∈ 𝑋, there exists an 𝑟/2-ball 𝐵𝑖 ∈ 𝐶 contained in

𝐵(𝑥, 𝑟). Therefore, for every regular 𝑥 ∈ 𝑋, 𝐵(𝑥, 𝑟) ≥ min𝐵𝑖∈𝐶 𝑃𝑋(𝐵𝑖). We let

ℎ(𝑟) := sup𝐶 min𝐵𝑖∈𝐶 𝑃𝑋(𝐵𝑖) over every finite subcover 𝐶 ⊂ 𝐶0. It is obvious that

𝑃𝑋 (𝐵(𝑥, 𝑟)) ≥ ℎ(𝑟) and ℎ(𝑟) > 0 for 𝑟 > 0.

56



For 𝑟1 > 0, ℎ(𝑟1) := sup𝐶(𝑟1)⊂𝐶0(𝑟1) min𝐵𝑖∈𝐶(𝑟1) 𝑃𝑋(𝐵𝑖) by definition. If 𝐶 :=

{𝐵(𝑥1, 𝑟1/2), . . . , 𝐵(𝑥𝑁 , 𝑟1/2)} is a finite cover of 𝑋, so is the collection of balls

with extended radii 𝐶 ′ := {𝐵(𝑥1, 𝑟2/2), . . . , 𝐵(𝑥𝑁 , 𝑟2/2)} when 𝑟2 ≥ 𝑟1. Because

𝐵(𝑥𝑖, 𝑟1/2) ⊂ 𝐵(𝑥𝑖, 𝑟2/2) and 𝑃𝑋 is a measure, 𝑃𝑋 (𝐵(𝑥𝑖, 𝑟1/2)) ≤ 𝑃𝑋 (𝐵(𝑥𝑖, 𝑟2/2)).

Therefore, min𝐵𝑖∈𝐶 𝑃𝑋(𝐵𝑖) ≤ min𝐵𝑖∈𝐶′ 𝑃𝑋(𝐵𝑖) for every finite subcover 𝐶 of 𝐶0(𝑟1)

and it follows that

ℎ(𝑟2) := sup
𝐶(𝑟2)⊂𝐶0(𝑟2)

min
𝐵𝑖∈𝐶(𝑟2)

𝑃𝑋(𝐵𝑖)

≥ sup
𝐶′(𝑟1):𝐶(𝑟1)⊂𝐶0(𝑟1)

min
𝐵𝑖∈𝐶′(𝑟1)

𝑃𝑋(𝐵𝑖)

≥ sup
𝐶(𝑟1)⊂𝐶0(𝑟1)

min
𝐵𝑖∈𝐶(𝑟1)

𝑃𝑋(𝐵𝑖)

= ℎ(𝑟1).

5.3 Concentration of Sample Mean and Sample Vari-

ance

5.3.1 Concentration of Sample Means

Lemma 4 (Concentration of sample means). Given 𝑢, 𝑣 ∈ [𝑛], 𝑖 ∈ [𝑚] and 𝛽 ≥ 2,

for any 𝛼 > 0,

P
(︀⃒⃒
𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

⃒⃒
> 𝛼 | 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖)
)︀
≤ exp

(︂
− 3𝛽𝛼2

6𝐵2 + 2𝐵𝛼

)︂
,

where recall that 𝐵 = 2(𝐿𝐵𝒳 + 𝐵𝜂).

Proof. Given x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣), the mean 𝜇𝑥1(𝑢)𝑥1(𝑣) is a constant. Recall
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that empirical mean 𝑚𝑢𝑣 is defined as (see (3.4))

𝑚𝑢𝑣 =
1

|𝒪𝑢𝑣|

(︃∑︁
𝑗∈𝒪𝑢𝑣

𝐴(𝑢, 𝑗) − 𝐴(𝑣, 𝑗)

)︃
. (5.1)

The variable x2(𝑗) is sampled as per 𝑃2, independently from 𝑥1(𝑢), 𝑥1(𝑣). And the

noise term in each of the observation is independent zero-mean variable. Therefore,

conditioned on x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣), we have independent random variable,

𝑍(𝑗) = 𝐴(𝑢, 𝑗) − 𝐴(𝑣, 𝑗) for 𝑗 ∈ 𝒪𝑢𝑣, that have mean 𝜇𝑥1(𝑢)𝑥1(𝑣). That is, 𝑍(𝑗) =

𝑍(𝑗) − 𝜇𝑥1(𝑢)𝑥1(𝑣), 𝑗 ∈ 𝒪𝑢𝑣 are zero-mean independent random variables. And by

definition, each of them is bounded as

|𝑍(𝑗)| ≤ 2𝐵𝜂 + 𝐿𝐵𝒳 ≤ 2(𝐿𝐵𝒳 + 𝐵𝜂) = 𝐵. (5.2)

In summary, conditioned on x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣) and 𝒪𝑢𝑣, 𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

is the average of 𝒪𝑢𝑣 independent, zero mean random variables ˜𝑍(𝑗), each of which

have absolute value bounded above by 𝐵. Therefore, an application of Bernstein’s

inequality imply that

P
(︀ ⃒⃒
𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

⃒⃒
> 𝛼

⃒⃒
x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣),𝒪𝑢𝑣

)︀
≤ exp

(︂
− 3 |𝒪𝑢𝑣|𝛼2

6𝐵2 + 2𝐵𝛼

)︂
.

(5.3)

When 𝑣 ∈ 𝑆𝛽
𝑢 (𝑖), |𝒪𝑢𝑣| ≥ 𝛽. Further, since above holds for all possibilities of

𝑥1(𝑢), 𝑥2(𝑣), we conclude that

P
(︀⃒⃒
𝜇x1(𝑢)x1(𝑣) −𝑚𝑢𝑣

⃒⃒
> 𝛼 | 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖)
)︀
≤ exp

(︂
− 3𝛽𝛼2

6𝐵2 + 2𝐵𝛼

)︂
.

5.3.2 Concentration of Sample Variances

Next we establish the concentration of the sample variance.
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To begin with, for every x = (𝑥1, . . . , 𝑥𝑛) ∈ [0, 1]𝑛, we let

𝑚𝑛(x) :=
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖,

and

𝑉𝑛(x) :=
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1

(𝑥𝑖 − 𝑥𝑗)
2

2
.

It is easy to check that 𝑉𝑛 is the same with the traditional sample variance:

𝑆2
𝑛 =

1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑥𝑖 −𝑚𝑛(x))2

=
1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
𝑥𝑖 −

1

𝑛

𝑛∑︁
𝑗=1

𝑥𝑗

)︃2

=
1

𝑛− 1

𝑛∑︁
𝑖=1

⎡⎣𝑥2
𝑖 −

2

𝑛
𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 +
1

𝑛2

(︃
𝑛∑︁

𝑗=1

𝑥𝑗

)︃2
⎤⎦

=
1

𝑛− 1

𝑛∑︁
𝑖=1

𝑥2
𝑖 −

1

𝑛

(︃
𝑛∑︁

𝑖=1

𝑥𝑖

)︃2

=
1

2(𝑛− 1)

(︃
𝑛∑︁

𝑖=1

𝑥2
𝑖 − 2

𝑛∑︁
𝑖=1

𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 +
𝑛∑︁

𝑗=1

𝑥2
𝑗

)︃

=
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1

(𝑥𝑖 − 𝑥𝑗)
2

2

= 𝑉𝑛(x).

The following lemma provides concentration inequalities for sample variance of

bounded independent random variables (see Appendix B.2.3 for more detail).

Lemma 5. Let 𝑛 ≥ 2 and X = (𝑋1, . . . , 𝑋𝑛) be a vector of independent random

variables with values in [𝑐, 𝑑]. Then for 𝑡 > 0 we have

1. Upper tail: P (𝑉𝑛(X) − E𝑉𝑛 > 𝑡) ≤ exp
(︁
− (𝑛−1)𝑡2

(𝑑−𝑐)2(2E𝑉𝑛+𝑡)

)︁
, and

2. Lower tail: P (𝑉𝑛(X) − E𝑉𝑛 < −𝑡) ≤ exp
(︁
− (𝑛−1)𝑡2

2(𝑑−𝑐)2E𝑉𝑛

)︁
.

Proof. We can normalize Y = X−𝑐
𝑑−𝑐

so that Y is a vector of independent random

59



variables with values in [0, 1]. Note that 𝑉𝑛(X) = (𝑑− 𝑐)2𝑉𝑛(Y).

Write 𝑍(Y) = 𝑛𝑉𝑛(Y). Fix some 𝑘 and choose any 𝑧 ∈ [0, 1]. Then

𝑍(Y) − 𝑍(Y𝑧
𝑘) =

1

𝑛− 1

∑︁
𝑖

(︀
(𝑌𝑘 − 𝑌𝑖)

2 − (𝑧 − 𝑌𝑖)
2
)︀

≤ 1

𝑛− 1

∑︁
𝑖

(𝑌𝑘 − 𝑌𝑖)
2 ∵ (𝑧 − 𝑌𝑖)

2 ≥ 0.

It follows from (𝑌𝑘 − 𝑌𝑖)
2 ∈ [0, 1] that 𝑍(Y) − inf𝑧∈[0,1] 𝑍(Y𝑧

𝑘) ≤ 1. We also get

𝑛∑︁
𝑘=1

(︂
𝑍(Y) − inf

𝑧∈[0,1]
𝑍(Y𝑧

𝑘)

)︂2

≤
𝑛∑︁

𝑘=1

(︃
1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑌𝑘 − 𝑌𝑖)
2

)︃2

=
𝑛3

(𝑛− 1)2

⎡⎣ 1

𝑛

∑︁
𝑘

(︃
1

𝑛

∑︁
𝑖

(𝑌𝑘 − 𝑌𝑖)
2

)︃2
⎤⎦

≤ 𝑛3

(𝑛− 1)2

[︃
1

2𝑛2

∑︁
𝑖,𝑘

(𝑌𝑖 − 𝑌𝑘)2
]︃

∵ 𝐶𝑜𝑟𝑜𝑙𝑙𝑎𝑟𝑦 12

=
𝑛

𝑛− 1
𝑍(Y).

It follows that 𝑍 satisfies two conditions in Theorem 7with 𝑎 = 𝑛
𝑛−1

.

Note that

P
(︀
𝑉𝑛(X) − E

[︀
𝑉 𝑋
𝑛

]︀
> 𝑡
)︀

= P
(︂
𝑉𝑛(Y) − E

[︀
𝑉 𝑌
𝑛

]︀
>

𝑡

(𝑑− 𝑐)2

)︂
= P

(︂
𝑍(Y) − E [𝑍] >

𝑛𝑡

(𝑑− 𝑐)2

)︂
,

and similarly,

P
(︀
𝑉𝑛(X) − E

[︀
𝑉 𝑋
𝑛

]︀
< −𝑡

)︀
= P

(︂
𝑉𝑛(Y) − E

[︀
𝑉 𝑌
𝑛

]︀
< − 𝑡

(𝑑− 𝑐)2

)︂
= P

(︂
𝑍(Y) − E [𝑍] < − 𝑛𝑡

(𝑑− 𝑐)2

)︂
.
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From Theorem 7, we can conclude that

P (𝑉𝑛(X) − E𝑉𝑛 > 𝑡) ≤ exp

(︂
− (𝑛− 1)𝑡2

(𝑑− 𝑐)2 (2E𝑉𝑛 + 𝑡)

)︂
, and

P (𝑉𝑛(X) − E𝑉𝑛 < −𝑡) ≤ exp

(︂
− (𝑛− 1)𝑡2

2(𝑑− 𝑐)2E𝑉𝑛

)︂
.

Returning to our problem, we know that the ratings 𝐴(𝑢, 𝑖) are bounded in our

model:

|𝐴(𝑢, 𝑖) − 𝐴(𝑣, 𝑗)| = |[𝑓 (𝑥1(𝑢), 𝑥2(𝑖)) + 𝐸(𝑢, 𝑖)] − [𝑓 (𝑥1(𝑣), 𝑥2(𝑗)) + 𝐸(𝑣, 𝑗)]|

≤ |𝑓 (𝑥1(𝑢), 𝑥2(𝑖)) − 𝑓 (𝑥1(𝑣), 𝑥2(𝑗))| + |𝐸(𝑢, 𝑖) − 𝐸(𝑣, 𝑗)|

≤ 𝐿𝐵 + 2𝐵𝑒.

Alternatively, one might directly know that 𝐴(𝑢, 𝑖) ∈ [𝐵𝐴1, 𝐵𝐴2]. In either case, we

know that 𝐴 is bounded. Let 𝐷 = min {𝐿𝐵 + 2𝐵𝑒, 𝐵𝐴2 −𝐵𝐴1} denote the range of

observed ratings.

Lemma 6 (Concentration of sample variances). Given 𝑢 ∈ [𝑚], 𝑖 ∈ [𝑛], and 𝛽 ≥ 2,

for any 𝜌 > 0,

P
(︀⃒⃒
𝑠2𝑢𝑣 − (𝜎2

𝑥1(𝑢)𝑥1(𝑣)
+ 2𝛾2)

⃒⃒
> 𝜌

⃒⃒
𝑣 ∈ 𝒮𝛽

𝑢 (𝑖)
)︀
≤ 2 exp

(︂
− 𝛽𝜌2

4𝐵2(2𝐿𝐵2
𝒳 + 4𝛾2 + 𝜌)

)︂
,

where recall that 𝐵 = 2(𝐿𝐵𝒳 + 𝐵𝜂).

Proof. Recall 𝜎2
𝑎𝑏 , Var[𝑓(𝑎,x)− 𝑓(𝑏,x)] for 𝑎, 𝑏 ∈ 𝒳1, x ∼ 𝑃𝒳2 , and sample variance

between rows 𝑢 and 𝑣 is defined as

𝑠2𝑢𝑣 =
1

2 |𝒪𝑢𝑣| (|𝒪𝑢𝑣| − 1)

∑︁
𝑗,𝑗′∈𝒪𝑢𝑣

((𝑦(𝑢, 𝑗) − 𝑦(𝑣, 𝑗)) − (𝑦(𝑢, 𝑗′) − 𝑦(𝑣, 𝑗′)))
2

=
1

|𝒪𝑢𝑣| − 1

∑︁
𝑗∈𝒪𝑢𝑣

(𝑦(𝑢, 𝑗) − 𝑦(𝑣, 𝑗) −𝑚𝑢𝑣)
2 .
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Conditioned on x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣), we obtain that E [𝑠2𝑢𝑣] = 𝜎2
𝑥1(𝑢)𝑥1(𝑣)

+2𝛾2,

with respect to randomness induced by 𝑃2 for sampling latent parameters for columns.

Further, 𝑍(𝑗) = 𝐴(𝑢, 𝑗) − 𝐴(𝑣, 𝑗) are independent random variables conditioned on

x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣). Using the fact that 𝑓 is Lipschitz, space is bounded

and noise is bounded, as before, we obtain that

|𝑍(𝑗)| = |𝐴(𝑢, 𝑗) − 𝐴(𝑣, 𝑗)| ≤ 2(𝐿𝐵𝒳 + 𝐵𝜂) = 𝐵.

Given this, by an application of Maurer-Pontil inequality (see Lemma 5 above, and

Theorem 7 in Appendix), we obtain that

P
(︀⃒⃒
𝑠2𝑢𝑣 − (𝜎2

𝑥1(𝑢)𝑥1(𝑣)
+ 2𝛾2)

⃒⃒
> 𝜌 | 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖),x1(𝑢) = 𝑥1(𝑢),x1(𝑣) = 𝑥1(𝑣)
)︀

≤ 2 exp

(︃
− 𝛽𝜌2

4𝐵2(2(𝜎2
𝑥1(𝑢)𝑥1(𝑣)

+ 2𝛾2) + 𝜌)

)︃
, (5.4)

where we used the property that 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖) implies |𝒪𝑢𝑣| ≥ 𝛽. Using the Lipschitz

property of 𝑓 and boundedness of 𝒳1, we can bound 𝜎2
𝑥1(𝑢)𝑥1(𝑣)

≤ 𝐿2𝐵2
𝒳 as before.

Therefore, the right hand side of (5.4) can be bounded as

≤ 2 exp

(︂
− 𝛽𝜌2

4𝐵2(2𝐿2𝐵2
𝒳 + 4𝛾2 + 𝜌)

)︂
. (5.5)

Given that this bound is indepedent of 𝑥1(𝑢), 𝑥1(𝑣), we can conclude the desired

result.

5.4 Concentration of Estimates

Now we establish the final step in the proof of Theorem 1. As in the proof of Theorem

1, for a given (𝑢, 𝑖) with 𝑢 ∈ [𝑚], 𝑖 ∈ [𝑛] and 𝛽 ≥ 2, define events

∙ Let 𝐴 denote the event that |𝒮𝛽
𝑢 (𝑖)| ∈ [(𝑚− 1)𝑝/2, 3(𝑚− 1)𝑝/2],

∙ Let 𝐵 denote the event that min𝑣∈𝒮𝛽
𝑢 (𝑖)

𝜎2
x1(𝑢)x1(𝑣)

< 𝜌,
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∙ Let 𝐶 denote the event that
⃒⃒
𝜇x1(𝑢)x1(𝑣) −𝑚𝑢𝑣

⃒⃒
< 𝛼 for all 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖),

∙ Let 𝐷 denote the event that
⃒⃒⃒
𝑠2𝑢𝑣 − (𝜎2

x1(𝑢)x1(𝑣)
+ 2𝛾2)

⃒⃒⃒
< 𝜌 for all 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖).

Lemma 7. Under the setting described above and given 𝛼 > 0, 𝜌 > 0 and 𝜖 > 𝛼,

under the algorithm user-user nearest neighbor, we have

P
(︁ ⃒⃒⃒

𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖)
⃒⃒⃒
> 𝜖 |𝐴,𝐵,𝐶,𝐷

)︁
≤ 3𝜌 + 𝛾2

(𝜖− 𝛼)2
.

Proof. Under the algorithm user-user nearest neighbor, the error of the estimate is

given by

𝑅(𝑢, 𝑖) − �̂�(𝑢, 𝑖) = 𝑓(x1(𝑢),x2(𝑖)) − 𝐴(𝑢*, 𝑖) −𝑚𝑢𝑢*

= 𝑓(x1(𝑢),x2(𝑖)) − 𝑓(x1(𝑢
*),x2(𝑖)) − 𝜂𝑢*,𝑖 −𝑚𝑢𝑢* .

Given x1(𝑢) = 𝑥1(𝑢),x1(𝑢
*) = 𝑥1(𝑢

*) such that events 𝐴,𝐵,𝐶 and 𝐷 are satisfied,

we have that

E [𝑓(𝑥1(𝑢),x2(𝑖)) − 𝑓(𝑥1(𝑢
*),x2(𝑖)) − 𝜂𝑢*,𝑖] = 𝜇𝑥1(𝑢)𝑥1(𝑢*), (5.6)

with respect to x2(𝑖) ∼ 𝑃2.

Conditioned on event 𝐶, that is,
⃒⃒
𝜇𝑥1(𝑢)𝑥1(𝑣) −𝑚𝑢𝑣

⃒⃒
< 𝛼 for all 𝑣 ∈ 𝒮𝛽

𝑢 (𝑖), included

𝑢*, it is sufficient to bound the probability of event

𝐸 =
{︁
|𝑓(𝑥1(𝑢),x2(𝑖)) − 𝑓(𝑥1(𝑢

*),x2(𝑖)) − 𝜂𝑢*,𝑖 − 𝜇𝑢𝑢*| > 𝜖− 𝛼
}︁
. (5.7)

Conditioned on x1(𝑢) = 𝑥1(𝑢),x1(𝑢
*) = 𝑥1(𝑢

*),

Var [𝑓(𝑥1(𝑢),x2(𝑖)) − 𝑓(𝑥1(𝑢
*),x2(𝑖)) − 𝜂𝑢*,𝑖] = 𝜎2

𝑥1(𝑢)𝑥1(𝑢*) + 𝛾2. (5.8)
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Therefore, by standard Chebychev’s inequality, we obtain

P
(︀
|𝑓(𝑥1(𝑢),x2(𝑖)) − 𝑓(𝑥1(𝑢

*),x2(𝑖)) − 𝜂𝑢*,𝑖 − 𝜇𝑥1(𝑢)𝑥1(𝑢*)| > 𝜖− 𝛼
)︀
≤

𝜎2
𝑥1(𝑢)𝑥1(𝑢*) + 𝛾2

(𝜖− 𝛼)2
.

(5.9)

The selection of 𝑢* was done using empirical estimates 𝑠2𝑢𝑣 across 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖). By

condition on event 𝐷 happening, we have that for any 𝑣 ∈ 𝒮𝛽
𝑢 (𝑖), 𝑠2𝑢𝑣 is within 𝜌

of (𝜎2
x1(𝑢)x1(𝑣)

+ 2𝛾2). And condition on event 𝐵, we have that there is at least one

𝑣 ∈ 𝒮𝛽
𝑢 (𝑖) so that 𝜎2

x1(𝑢)x1(𝑣)
< 𝜌; let one such 𝑣 be denoted as 𝑣*. Therefore, we

obtain that

𝜎2
𝑥1(𝑢)𝑥1(𝑢*) + 2𝛾2 − 𝜌 ≤ 𝑠2𝑢𝑢*

≤ 𝑠2𝑢𝑣

≤ 𝜎2
𝑥1(𝑢)x1(𝑣)

+ 2𝛾2 + 𝜌

≤ 2𝛾2 + 2𝜌. (5.10)

From above, we can conclude that 𝜎2
𝑥1(𝑢)𝑥1(𝑢*) ≤ 3𝜌. Replacing this in (5.9), we obtain

the bound on right hand side as

≤ 3𝜌 + 𝛾2

(𝜖− 𝛼)2
. (5.11)

Since this bound holds for all choices of x1(𝑢),x1(𝑢
*) conditioned on events 𝐴,𝐵,𝐶

and 𝐷, we conclude the desired result.
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Chapter 6

Experiments

In this chapter, we present some empirical observations on our algorithm. In Section

6.1, we evaluate our algorithm on two movie rating datasets and the experiments

on MovieLens and Netflix datasets suggest that our algorithm provides principled

improvements over basic collaborative filtering and matrix factorization methods. The

blind regression framework naturally extends to the setting of higher order tensors

by simply flattening the tensor into a matrix. In Section 6.2, we apply our method to

the tensor completion problem for image reconstruction, showing that our simple and

principled approach is competitive with respect to the state-of-art tensor completion

algorithms. Lastly, in Section 6.3, we report additional observations which empircally

justify the use of sample variance as a proxy for the squared distance.

6.1 Matrix Completion Experiments

We evaluated the performance of our algorithm to predict user-movie ratings on the

MovieLens 1M and Netflix datasets. The MovieLens 1M data set contains about 1

million ratings by 6000 users of 4000 movies from the online movie recommendation

service MovieLens. The Netflix data set consists of about 100 million movie ratings

by 480,189 users of about 17,770 movies. In both data sets, the ratings are integers

from 1 to 5. From each dataset, we generated 100 smaller user-movie rating matrices,

in which we randomly subsampled 2000 users and 2000 movies.

65



For the implementation of our method, we used user-item Gaussian kernel weights

for the final estimator. We chose overlap parameter 𝛽 = 2 to ensure the algorithm is

able to compute an estimate for all missing entries. When 𝛽 is larger, the algorithm

enforces rows (or columns) to have more commonly rated movies (or users). Although

this increases the reliability of the estimates, it also reduces the fraction of entries

for which the estimate is defined. We optimized the bandwidth parameter 𝜆 of the

Gaussian kernel by evaluating the method with multiple values for 𝜆 and choosing

the value which minimizes the error.

We compared our method with user-user collaborative filtering, item-item collabo-

rative filtering, and softImpute from [39]. We chose the classic mean-adjusted collab-

orative filtering method, in which the weights are proportional to the cosine similarity

of pairs of users or items (i.e. movies). SoftImpute is a matrix-factorization-based

method which iteratively replaces missing elements in the matrix with those obtained

from a soft-thresholded SVD.

For each rating matrix, we randomly select and withhold a percentage of the

known ratings for the test set, while the remaining portion of the data set is revealed

to the algorithm for computing the estimates. After the algorithm computes its

predictions for unrevealed movie-user pairs, we evaluate the root mean squared error

(RMSE) of the predictions compared with the withheld test set, where RMSE is

defined as the square root of the mean of squared prediction error over the evaluation

set. Figure 6-1 plots the RMSE of our method along with classic collaborative filtering

and softImpute evaluated against 10%, 30%, 50%, and 70% withheld test sets. The

RMSE is averaged over 100 subsampled rating matrices, and 95% confidence intervals

are provided.

Figure 6-1 suggests that our algorithm achieves a systematic improvement over

classical user-user and item-item collaborative filtering. SoftImpute performs worse

than all methods on the MovieLens dataset, but it performs better than all methods

on the Netflix dataset.

The reason behind this behavioral difference is not clear, but it could be due

to the different nature of the dataset, for example, the density (or sparsity) of the
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Figure 6-1: Performance of algorithms on Netflix and MovieLens data set with 95%
confidence interval. 𝜆 values used by our algorithm are 2.8 (10%), 2.3 (30%), 1.7
(50%), 1 (70%) for MovieLens, and 1.8 (10%), 1.7 (30%), 1.6 (50%), 1.5 (70%) for
Netflix.

dataset. For the MovieLens dataset, roughly 4.2% (1M out of 6,000 users and 4,000

movies) of the user-movie ratings are known, while only 1.2% (100M out of of 480,189

users and 17,770 movies) the ratings are available for the Netflix dataset. From

the observations, we hypothesize that neighborhood-based methods provide more

accurate predictions when there are abundant rating data available; however, their

performance deteriorates sharply as data become sparse, compared to the low-rank

matrix factorization method. This behavior could be due to the different underlying

assumptions of low rank for matrix factorization methods as opposed to Lipschitz for

collaborative filtering methods.

6.2 Tensor Completion Experiments

We evaluated and compared the performance of our tensor completion algorithm

against existing methods in the literature on the image inpainting problem. An image

can be represented as a 3rd-order tensor where the dimensions are rows × columns ×
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RGB. In particular we used three images (Lenna, Pepper, and Facade) of dimensions

256 × 256 × 3. For each image, a percentage of the pixels are randomly removed,

and the missing entries are filled in by various tensor completion algorithms.

For the implementation of our tensor completion method, we collapsed the last

two dimensions of the tensor (columns and RGB) to reduce the image to a matrix,

and applied our method with user-item Gaussian kernel weights. We set the overlap

parameter 𝛽 = 2, and we optimized over the Gaussian kernel bandwidth parameter

𝜆. We compared our method against fast low rank tensor completion (FaLRTC)

[33], alternating minimization for tensor completion (TenAlt) [24], and fully Bayesian

CP factorization (FBCP) [53], which extends the CANDECOMP/PARAFAC (CP)

tensor factorization with automatic tensor rank determination.

Figure 6-2: Performance comparison between different tensor completion algorithms
based on RSE vs testing set size. For our method, we set overlap parameter 𝛽 to 2.

To evaluate the outputs produced by each method, we computed the relative

squared error (RSE), defined as

RSE :=

∑︀
𝑖,𝑗,𝑘∈𝐸(�̂�𝑖𝑗𝑘 −𝑅𝑖𝑗𝑘)2∑︀
𝑖,𝑗,𝑘∈𝐸(𝑅𝑖𝑗𝑘 − �̄�)2

,

where �̄� is the average value of the true entries. Figure 6− 2 plots the RSE achieved

by each tensor completion method on the three images, as a function of the percentage

of pixels removed. Figure 6-3 shows a sample of the image inpainting results for the
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Original Incomplete FaLRTC

0.0924

TenAlt

0.099

FBCP

0.12

Our Method

0.0869

0.1101 0.1182 0.154 0.109

Figure 6-3: Recovery results for Lenna, Pepper and Facade images with 70% of
missing entries. RSE is reported under the recovery images.

lenna and pepper images when 70% of the pixels are removed.

Again as discussed in the previous section about movie rating experiments, our

algorithm outperforms TenAlt and FBCP in dense settings where a small portion

of rating data is withheld as a test set, but the prediction accuracy steeply declines

in a very sparse setting. However, the overall results demonstrate that our tensor

completion method is competitive with existing tensor factorization based approaches,

while maintaining a naive simplicity.

6.3 Additional Results from Experiments

We also compute the 𝜖-risk achieved by each algorithm on the MovieLens data set

when 10% of known ratings are withheld for evaluation. Figure 6 − 4 shows that our

method again outperforms classic collaborative filtering methods in the 𝜖-risk. Since

the rating scale is only the values 1 to 5, the scale is not fine enough to verify whether

it decreases roughly as 𝑂(𝜀−2).
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Figure 6-4: Risk𝜖 achieved on Movie-
Lens data set (10% evaluation).

Figure 6-5: Effect of 𝜆 on RMSE from
MovieLens data set (10% evaluation).

6.3.1 Choice of 𝜆

The parameter 𝜆 corresponds to the inverse of variance in Gaussian kernel, in other

words, it determines how much the algorithm emphasizes “close” neighbors with small

sample variances over other neighbors. When 𝜆 = 0, the algorithm naively computes

the average over all estimates, possibly allow “distant” neighbors with large sample

variances to bias the estimate. When 𝜆 = ∞, the algorithm computes its estimate

using only the closest neighbor with the minimum sample variance. This could also

increase the noise and variance in the estimate, since it relies only on a few entries.

This highlights the tradeoff between incorporating many datapoints into the estimate

to reduce the noise through averaging, and emphasizing only the datapoints which

seem to be closer in behavior to the target user or movie.

Figure 6-5 plots the RMSE as a function of 𝜆 for our algorithm applied to the

MovieLens data set with 10% evaluation set. The figure shows that the performance

of the algorithm first improves with increasing values of 𝜆 and then worsens as 𝜆 grows

larger, with optimal 𝜆 ≈ 3 (see Section 4.3 for further discussion on the trade-off).

In the caption of Figure 6-1, we reported the optimal value of 𝜆 for each size of

the available data. We observe that when the percentage of ratings available to the

algorithm decreases (i.e. the percentage of evaluation set increases), the optimal value

of 𝜆 decreases, indicating that the algorithm needs to widen its circle to include esti-

mates with larger sample variance. This intuitively makes sense, since the algorithm
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can depend more heavily on close neighbors as the matrix becomes denser, but needs

to gather estimates more widely when the data is sparse.

6.3.2 Existence of Close Neighbors

For each (𝑢, 𝑖) in the evaluation set (10%) for the MovieLens data set, we find the

row 𝑣 with minimum sample variance (min𝑣 𝑠
2
𝑢𝑣) while requiring overlap of at least 5

(𝛽 = 5). Figure 6 − 6 shows the distribution over the value of the minimum sample

variances. Observe that the minimum sample variance 𝑠2𝑢𝑣 ≤ 0.8 for more than 90%

of the entries, showing that it is unlikely for a user to have a closest neighbor with

high sample variance, indicating that there is sufficient information to obtain good

estimates through neighbor methods.

Figure 6-6: Distribution of minimum sample variance (𝛽 = 5).

We divided the entries into different buckets based on their minimum sample vari-

ances (intervals of width 0.1 as plotted in Figure 6-6). We computed the error for each

bucket, with the prediction that for estimates such that the nearest neighbors have

large sample variance, the error will also vary more widely. Recall that our algorithm

computes the estimates by a weighted combination of many values, where the weights

decay exponentially with the sample variance. Therefore, the minimum sample vari-

ance only indicates the lowest sample variance among all values incorporated into
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the estimate. However, we could observe that the minimum sample variance indeed

provides a good indication of the reliability of the estimate.

Figure 6-7: Variation of squared error across min𝑣 𝑠
2
𝑢𝑣 buckets (𝛽 = 5). The red line

plots the median, while the box shows the 25𝑡ℎ and 75𝑡ℎ percentile, and end of dashed
lines extends to the most extreme data point within 1.5 interquartile range of the
upper quartile.

Figure 6 − 7 plots the squared error (�̂�(𝑢, 𝑖) − 𝑅(𝑢, 𝑖))2 for each bucket. As

predicted, the variance and variability of the prediction error indeed increase with

the minimum sample variance, validating the theoretical prediction that the sample

variance is an observable measure of the reliability of the estimate. In fact, this is

quite useful in practice, since this implies that in addition to computing estimates for

the missing entries, our algorithm can provide a confidence for each estimate obtained

through a function of the sample variance of the entries involved in computing the final

estimate. Note that attaining 𝑅𝑖𝑠𝑘𝜖 ≤ 𝛼 is equivalent to acquiring an 𝛼-confidence

interval for the estimate of length smaller than 2𝜖.
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Chapter 7

Conclusion and Future Work

In this thesis, we provided a statistical framework for performing nonparametric re-

gression over latent variable models. The investigation was motivated by recom-

mender system applications. Inspired by local function approximation and kernel

regression, we explored to construct a prediction algorithm which provides consistent

estimates with provable performance guarantees. To overcome the challenge of un-

known geometry of the latent space, we suggest to use a distance proxy which can be

computed as a function of data. For example, the variance of difference between com-

monly observed entries in two rows (𝑢, 𝑣) can mimic the squared 𝐿2 distance between

the latent features 𝑥1(𝑢) and 𝑥2(𝑣) of the rows. We proved that our framework can

provide a prediction algorithm that is consistent for all Lipschitz functions, where

the convergence rate depends on the model parameters. We also showed that our

algorithm and analysis can be extended to higher-order tensor completion problems

by flatteing a tensor to a matrix.

However, there are several interesting and important questions which we have not

addressed in this thesis:

More general extension to higher dimension: Although we have shown in Sec-

tion 4.2 that we can apply our matrix completion algorithm to tensors, this approach

does not exploit the properties of tensor as a higher dimensional object. Recalling
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Taylor’s series approximation, we may approximate

𝐴(𝑢, 𝑖, 𝑡) ≈ 𝐴(𝑣, 𝑖, 𝑡) + 𝐴(𝑢, 𝑗, 𝑡) + 𝐴(𝑢, 𝑖, 𝑠) − 2𝐴(𝑣, 𝑗, 𝑠).

This alternative approach requires only 4 out of 8 points in the cube {𝑢, 𝑣}×{𝑖, 𝑗}×

{𝑡, 𝑠} to make a prediction, which is much less as a ratio than 3 out of 4 required in

the matrix case. However, it would be less likely to find a good neighbor 𝑣 of 𝑢, which

has a small variance of the difference 𝐴(𝑢, *, *) − 𝐴(𝑣, *, *) as the dimensionality of

slices increases from 1 to 2. It will be interesting to find a generalized extension of our

blind regression framework in a higher-dimensional setting as well as to investigate

the trade-off between the sample complexity and the accuracy of distance estimation.

Analysis for the algorithm with kernel weights: Theorem 1 shows the consis-

tency of the nearest-neighbor algorithm; it is optimal when there is no noise. With

the presence of noise, our analysis cannot surpass the Chebyshev bound for the noise.

We briefly sketched the effect of averaging over rows in Section 4.3, and glimpsed

the possiblility of smoothing out the noise. However, the examination is preliminary

and the consistency of our algorithm with general user-item kernel weights is, yet,

unclear. Therefore, it could be of interest to have an analysis on the algorithm with

general kernel weights; it can also suggest a disciplined choice of the parameter 𝜆.

Combining CF with content information: As discussed in the introduction,

it is natural to use the content of data to make recommendations. In practice, rec-

ommendations are often made in a content-agnostic way via collaborative filtering,

because such exogenous content information is not usually available. However, if we

can find a systematic way to combine content information within the framework of

collaborative filtering, the combination will yield more accurate and reliable recom-

mendations. For example, information of users, such as age, gender, and geographic

location, can be used to estimate the distance between two users in combination with

the distance proxy computed from the variance of the difference in the ratings of

commonly rated items.
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Application to other types of problems: Lastly, we would like to point out that

the underlying ideas of our blind regression are simple, but the results we obtained are

powerful. It implies that our blind regression framework may possibly extend beyond

the recommender system application - the main focus in this thesis. We believe that

the concepts of blind regression as well as the 2-step regression framework itself can

be extended to various other applications, especially where the latent variable model

can be applied. The insights obtained in this thesis may find applications beyond.
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Appendix A

Geometry

A.1 Metric Space

The metric is a notion of separating one point from another, and a metric on a space

induces topological properties like open and closed sets.

Definition 2 (Metric space). A metric space is an ordered pair (𝑋, 𝑑) where 𝑋 is

a set and 𝑑 is a metric on 𝑋, which is a function 𝑑 : 𝑋 × 𝑋 → R such that the

following holds for any 𝑥, 𝑦, 𝑧 ∈ 𝑋:

1. 𝑑(𝑥, 𝑦) ≥ 0.

2. 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦.

3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥).

4. 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧).

Definition 3 (𝑝-product metric). Let (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ) be metric spaces and let

1 ≤ 𝑝 ≤ +∞. Define the 𝑝-product metric 𝑑𝑝 on the Cartesian product 𝑋 × 𝑌 by

𝑑𝑝 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) := (𝑑𝑋(𝑥1, 𝑥2)
𝑝 + 𝑑𝑌 (𝑦1, 𝑦2))

1/𝑝 𝑓𝑜𝑟 1 ≤ 𝑝 < ∞;

𝑑∞ ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) := max {𝑑𝑋(𝑥1, 𝑥2), 𝑑𝑌 (𝑦1, 𝑦2)} .
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Remark 1. An inner product ⟨·, ·⟩ induces a norm ‖ · ‖ by letting ‖𝑥‖ := ⟨𝑥, 𝑥⟩1/2,

and a norm ‖ · ‖ induces a metric 𝑑 by letting 𝑑(𝑥, 𝑦) := ‖𝑥− 𝑦‖.

A.2 Lipschitz Continuity

For a map between two metric spaces, continuity preserves “closeness” or inseparabil-

ity. Lipschitz continuity is a strong form of uniform continuity. Intuitively, a Lipschitz

continuous map is limited in how fast it can expand.

Definition 4 (Lipschitz continuity). Given two metric spaces (𝑋, 𝑑𝑋) and (𝑌, 𝑑𝑌 ),

a map 𝑓 : 𝑋 → 𝑌 is called (𝐿-)Lipschitz continuous if there exists a real constant

𝐿 ≥ 0 such that

𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐿𝑑𝑋 (𝑥1, 𝑥2) , ∀𝑥1, 𝑥2 ∈ 𝑋.

Any such 𝐿 is referred to as a Lipschitz constant for the map 𝑓 . The smallest constant

is sometimes called the (best) Lipschitz constant.

Definition 5 (Hölder continuity). More generally, a map is said to be Hölder con-

tinuous of order 𝛼 > 0 on 𝑋 if there exists a constant 𝑀 > 0 such that

𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝑀𝑑𝑋 (𝑥1, 𝑥2)
𝛼 , ∀𝑥1, 𝑥2 ∈ 𝑋.

Lipschitz continuity is a special case of Hölder continuity with 𝛼 = 1.

Definition 6 (Bilipschitz). A map 𝑓 : 𝑋 → 𝑌 is called (𝐿-)bilipschitz if there exists

𝐿 ≥ 1 with

1

𝐿
𝑑𝑋 (𝑥1, 𝑥2) ≤ 𝑑𝑌 (𝑓(𝑥1), 𝑓(𝑥2)) ≤ 𝐿𝑑𝑥 (𝑥1, 𝑥2) , ∀𝑥1, 𝑥2 ∈ 𝑋.

A bilipschitz mapping is injective, and is in fact a homeomorphism onto its image.

A bilipschitz mapping with 𝐿 = 1 is an isometry.
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A.3 Doubling Space

One way to define the dimension of a space is by quantifying how fast the volume of

a ball in it grows as its radius increases. Doubling dimension is one measure for that,

which also has connection to properties of the measures on the space.

Definition 7 (Doubling measure). A measure 𝜇 on a metric space 𝑋 is said to be

doubling if there is a constant 𝐶 > 0 such that

𝜇 (𝐵(𝑥, 2𝑟)) ≤ 𝐶𝜇 (𝐵(𝑥, 𝑟)) , ∀𝑥 ∈ 𝑋, ∀𝑟 > 0.

In this case, 𝜇 is said to be 𝐶-doubling.

Definition 8 (Doubling space). A metric space (𝑋, 𝑑) is said to be doubling if there

is a constant 𝑀 > 0 such that for any 𝑥 ∈ 𝑋 and 𝑟 > 0, the ball 𝐵(𝑥, 𝑟) may be

contained in a union of no more than 𝑀 many balls of radius 𝑟/2. Here, log2𝑀 is

referred to as the doubling dimension of 𝑋.

A measure space that supports a 𝐶-doubling measure is necessarily a doubling

metric space, where the doubling dimension depends on the constant 𝐶. Conversely,

any complete doubling metric space supports a doubling measure.
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Appendix B

Probability

B.1 Borel Probability Measures

B.1.1 Topological Spaces

Definition 9 (Topology). Let 𝑋 be a set and let 𝒯 be a family of subsets of 𝑋. Then

𝒯 is called a topology of 𝑋 if

1. 𝜑,𝑋 ∈ 𝒯

2. Any union of elements of 𝒯 is an element of 𝒯 .

3. Any finite intersection of elements of 𝒯 is an element of 𝒯 .

If 𝒯 is a topology on 𝑋, then the pair (𝑋, 𝒯 ) is called a topological space. The

elements in 𝒯 are called open.

Remark 2. A metric 𝑑 on 𝑋 induces a topology 𝒯𝑑 of which the open sets are all

subsets that can be realized as the unions of open balls

𝐵(𝑥0, 𝑟) := {𝑥 ∈ 𝑋 : 𝑑(𝑥0, 𝑥) < 𝑟} ,

where 𝑥0 ∈ 𝑋 and 𝑟 > 0.
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Definition 10. A topological space is called separable if there exists a sequence {𝑥𝑛}∞𝑛=1

of elements of the space such that every nonempty open subset of the space contains

at least one element of the sequence.

B.1.2 Borel Probability Measures

Definition 11 (𝜎-algebra). Let 𝑋 be some set, and let 2𝑋 represent its power set. A

subset Σ ⊂ 2𝑋 is called a 𝜎-algebra if it satisfies

1. 𝑋 ∈ Σ.

2. If 𝐴 ∈ Σ, then 𝐴𝐶 = 𝑋 ∖ 𝐴 ∈ Σ.

3. Σ is closed under countable unions.

Definition 12 (Borel 𝜎-algebra). The Borel algebra ℬ(𝑋) on 𝑋 is the smallest 𝜎-

algebra containing all open sets (equivalently, all closed sets).

Proposition 8. ℬ(𝑋) is the smallest sigma algebra with respect to which all contin-

uous functions on 𝑋 are measurable.

Definition 13. Let (𝑋, 𝑑) be a metric space. A finite Borel measure on 𝑋 is a map

𝜇 : ℬ(𝑋) → [0,∞) such that

1. 𝜇(𝜑) = 0, and

2. If 𝐴1, 𝐴2, . . . ∈ ℬ(𝑋) are mutually disjoint, then 𝜇 (∪∞
𝑖=1) =

∑︀∞
𝑖=1 𝜇(𝐴𝑖).

𝜇 is called a Borel probability measure if in addition 𝜇(𝑋) = 1.

Proposition 9. Any finite Borel measure on 𝑋 is regular, that is, for every 𝐵 ∈ ℬ(𝑋)

𝜇(𝐵) = sup {𝜇(𝐶) : 𝐶 ⊂ 𝐵, 𝑐𝑙𝑜𝑠𝑒𝑑} (𝑖𝑛𝑛𝑒𝑟 𝑟𝑒𝑔𝑢𝑙𝑎𝑟)

= inf {𝜇(𝑈) : 𝑈 ⊃ 𝐵, 𝑜𝑝𝑒𝑛} (𝑜𝑢𝑡𝑒𝑟 𝑟𝑒𝑔𝑢𝑙𝑎𝑟).

Definition 14. A finite Borel measure 𝜇 on 𝑋 is called tight if for every 𝜖 > 0 there

exists a compact set 𝐾 ⊂ 𝑋 such that 𝜇(𝑋 ∖𝐾) < 𝜖. A tight finite Borel measure is

also called a Radon measure.

88



Theorem 3. If (𝑋, 𝑑) is a compact metric space, or (𝑋, 𝑑) is a complete separable

metric space, then every finite Borel measure on 𝑋 is tight.

B.2 Some Concentration Inequalities

B.2.1 Markov’s and Chebyshev’s Inequality

Theorem 4 (Markov’s inequality). If 𝑋 is a nonnegative random variable, then for

any 𝜖 > 0,

P (𝑋 ≥ 𝜖) ≤ E [𝑋]

𝜖
.

Theorem 5 (Chebyshev’s inequality). For any random variable 𝑋 and for any 𝜖 > 0,

P (|𝑋 − E [𝑋]| ≥ 𝜖) ≤ 𝑉 𝑎𝑟(𝑋)

𝜖2
.

B.2.2 Chernoff Bounds

There are various forms of Chernoff bounds, each of which are tuned to different as-

sumptions. The following theorem gives the bound for a sum of independent Bernoulli

trials.

Theorem 6 (Chernoff bounds). Let 𝑋 =
∑︀𝑛

𝑖=1 𝑋𝑖, where 𝑋𝑖 = 1 with probability 𝑝𝑖,

and 𝑋𝑖 = 0 with probability 1−𝑝𝑖, and 𝑋𝑖’s are independent. Let 𝜇 = E [𝑋] =
∑︀𝑛

𝑖=1 𝑝𝑖.

Then

1. Upper tail: P (𝑋 ≥ (1 + 𝛿)𝜇) ≤ exp
(︁
− 𝛿2

2+𝛿
𝜇
)︁

for all 𝛿 > 0.

2. Lower tail: P (𝑋 ≤ (1 − 𝛿)𝜇) ≤ exp
(︁
− 𝛿2

2
𝜇
)︁

for all 0 < 𝛿 < 1.

For 𝛿 ∈ (0, 1), we can combine the upper and lower tails to obtain the following

simple bound:

Corollary 10. With the same assumptions as in Theorem 6,

P (|𝑋 − 𝜇| ≥ 𝛿𝜇) ≤ 2 exp−𝜇𝛿2

3
𝑓𝑜𝑟 𝑎𝑙𝑙 0 < 𝛿 < 1.
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B.2.3 Concentration of Sample Variance of i.i.d. Bounded

Random Variables

The results in this section is originally motivated by the entropy method. The en-

tropy method is a novel way of deriving powerful inequalities based on logarithmic

Sobolev inequalities, developed for proving sharp concentration bounds for maxima

of empirical processes. It is shown that the methodology provides a general way of

obtaining powerful results in a large variety of applications in [10].

Concentration Inequality for Self-Bounding Random Variables

Theorem 7. [Theorem 7 in [37]; Theorem 13 in [36]] Let X = (𝑋1, . . . , 𝑋𝑛) be a

vector of independent random variables with values in some set 𝒳 . For 1 ≤ 𝑘 ≤ 𝑛

and 𝑦 ∈ 𝒳 , we use X𝑦
𝑘 to denote the vector obtained from X by replacing 𝑋𝑘 by 𝑦.

Suppose that 𝑎 ≥ 1 and a function 𝑍 = 𝑍(X) satisfies the inequalities

𝑍(X) − inf
𝑦∈𝒳

𝑍(X𝑦
𝑘) ≤ 1, ∀𝑘,

𝑛∑︁
𝑘=1

(︂
𝑍(X) − inf

𝑦∈𝒳
𝑍(X𝑦

𝑘)

)︂2

≤ 𝑎𝑍(X),

almost surely. Then for 𝑡 > 0,

1. Upper tail: P (𝑍 − E𝑍 > 𝑡) ≤ exp
(︁
− 𝑡2

2𝑎E𝑍+𝑎𝑡

)︁
.

2. Lower tail: P (𝑍 − E𝑍 < −𝑡) ≤ exp
(︁
− 𝑡2

2𝑎E𝑍

)︁
.

Variance of Bounded i.i.d. Random Variables

To begin with, for every x = (𝑥1, . . . , 𝑥𝑛) ∈ [0, 1]𝑛, we let

𝑚𝑛(x) :=
1

𝑛

𝑛∑︁
𝑖=1

𝑥𝑖

and

𝑉𝑛(x) :=
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1

(𝑥𝑖 − 𝑥𝑗)
2

2
.
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It is easy to check that 𝑉𝑛 is the same with the traditional sample variance:

𝑆2
𝑛 =

1

𝑛− 1

𝑛∑︁
𝑖=1

(𝑥𝑖 −𝑚𝑛(x))2

=
1

𝑛− 1

𝑛∑︁
𝑖=1

(︃
𝑥𝑖 −

1

𝑛

𝑛∑︁
𝑗=1

𝑥𝑗

)︃2

=
1

𝑛− 1

𝑛∑︁
𝑖=1

⎡⎣𝑥2
𝑖 −

2

𝑛
𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 +
1

𝑛2

(︃
𝑛∑︁

𝑗=1

𝑥𝑗

)︃2
⎤⎦

=
1

𝑛− 1

𝑛∑︁
𝑖=1

𝑥2
𝑖 −

1

𝑛

(︃
𝑛∑︁

𝑖=1

𝑥𝑖

)︃2

=
1

2(𝑛− 1)

(︃
𝑛∑︁

𝑖=1

𝑥2
𝑖 − 2

𝑛∑︁
𝑖=1

𝑥𝑖

𝑛∑︁
𝑗=1

𝑥𝑗 +
𝑛∑︁

𝑗=1

𝑥2
𝑗

)︃

=
1

𝑛(𝑛− 1)

𝑛∑︁
𝑖,𝑗=1

(𝑥𝑖 − 𝑥𝑗)
2

2

= 𝑉𝑛(x).

Before proceeding on to the concentration of sample variances, let us look at a

technical lemma on conditional expectations.

Lemma 11. [Lemma 8 in [37]] Let 𝑋, 𝑌 be i.i.d. random variables with values in an

interval [𝑎, 𝑎 + 1]. Then

E𝑋

[︀
E𝑌 (𝑋 − 𝑌 )2

]︀2 ≤ 1

2
E(𝑋 − 𝑌 )2.

Proof. Since 𝑋, 𝑌 are i.i.d., the RHS E(𝑋 − 𝑌 )2 = E [𝑋2 −𝑋𝑌 ] = E [𝑉2(𝑋, 𝑌 )].

Meanwhile, one can compute the LHS E𝑋 [E𝑌 (𝑋 − 𝑌 )2]
2

= E [𝑋4 + 3𝑋2𝑌 2 − 4𝑋3𝑌 ] .

So, it suffices to show that E [𝑔(𝑋, 𝑌 )] ≥ 0 where

𝑔(𝑋, 𝑌 ) = 𝑋2 −𝑋𝑌 −𝑋4 − 3𝑋2𝑌 2 + 4𝑋3𝑌.
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With symmetrization, we obtain

𝑔(𝑋, 𝑌 ) + 𝑔(𝑌,𝑋) = 𝑋2 −𝑋𝑌 −𝑋4 − 3𝑋2𝑌 2 + 4𝑋4𝑌

+ 𝑌 2 −𝑋𝑌 − 𝑌 4 − 3𝑋2𝑌 2 + 4𝑌 3𝑋

= (1 + 𝑋 − 𝑌 )(1 + 𝑌 −𝑋)(𝑌 −𝑋)2

≥ 0, ∵ 𝑋, 𝑌 ∈ [0, 1].

Therefore, E [𝑔(𝑋, 𝑌 )] = 1
2
E [𝑔(𝑋, 𝑌 ) + 𝑔(𝑌,𝑋)] ≥ 0, which completes the proof.

When the random variables 𝑋 and 𝑌 are uniformly distributed on a finite set,

(treat 𝑥𝑖 as a realization of 𝑋, and 𝑥𝑗 as one of 𝑌 ), Lemma 11 gives the following

corollary.

Corollary 12. Suppose that {𝑥1, . . . , 𝑥𝑛} ⊂ [0, 1]. Then

1

𝑛

∑︁
𝑖

(︃
1

𝑛

∑︁
𝑗

(𝑥𝑖 − 𝑥𝑗)
2

)︃2

≤ 1

2𝑛2

∑︁
𝑖,𝑗

(𝑥𝑖 − 𝑥𝑗)
2 .

B.2.4 Subgaussian and Subexponential Random Variables

Definition 15. A random variable 𝑋 with mean 𝜇 = E [𝑋] is said to be sub-Gaussian

with variance proxy 𝜎2 if

E [exp (𝑠(𝑋 − 𝜇))] ≤ exp

(︂
𝜎2𝑠2

2

)︂
, ∀𝑠 ∈ R.

In this case we write 𝑋 ∼ 𝑠𝑢𝑏𝐺(𝜎2). Note that 𝑠𝑢𝑏𝐺(𝜎2) is a class of distributions.

Proposition 13. The following are equivalent:

1. 𝑋 is sub-Gaussian.

2. There exists 𝑎 > 0 for which P (|𝑋| > 𝑡) ≤ 2𝑒−𝑎𝑡2 .

3. (If E [𝑋] = 0) There exist 𝑏 > 0 for which E
[︀
𝑒𝜆𝑋
]︀
≤ 2𝑒𝜆

2𝑏 for all 𝜆 ∈ R.
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4. There exists 𝑐 > 0 for which ‖𝑋‖𝑝 ≤ 𝑐
√
𝑝, ∀𝑝 ≥ 1 where

‖𝑋‖𝑝 = E [|𝑋|𝑝]1/𝑝 =
√

2

[︃
Γ
(︀
1+𝑝
2

)︀
Γ
(︀
1
2

)︀ ]︃1/𝑝 .

Definition 16. A random variable 𝑋 with mean 𝜇 = E [𝑋] is said to be sub-

exponential with nonnegative parameters (𝜆, 𝜈) if

E [exp (𝑠(𝑋 − 𝜇))] ≤ exp

(︂
𝜆2𝑠2

2

)︂
, ∀|𝑠| ≤ 1

𝜈
.

Proposition 14. Suppose that 𝑋 is sub-exponential with parameters (𝜆, 𝜈). Then

P (𝑋 ≥ 𝜇 + 𝑡) ≤

⎧⎪⎨⎪⎩exp
(︁
− 𝑡2

2𝜆2

)︁
, if 0 ≤ 𝑡 ≤ 𝜆2

𝜈
;

exp
(︀
− 𝑡

2𝜈

)︀
, for 𝑡 > 𝜆2

𝜈
.

Hoeffding’s Inequality

Theorem 8 (Hoeffding’s inequality). Suppose that the variables 𝑋1, . . . , 𝑋𝑛 are in-

dependent, and 𝑋𝑖 has mean 𝜇𝑖 and subGaussian with variance proxy 𝜎2
𝑖 . Then for

all 𝑡 ≥ 0, we have

P

(︃
𝑛∑︁

𝑖=1

(𝑋𝑖 − 𝜇𝑖) ≥ 𝑡

)︃
≤ exp

{︂
− 𝑡2

2
∑︀𝑛

𝑖=1 𝜎
2
𝑖

}︂
.

Bernstein’s Inequality

Definition 17. Given a random variable 𝑋 with mean 𝜇 = E [𝑋] and variance

𝜎2 = E [𝑋2] − E [𝑋]2, we say that Bernstein’s condition with parameter 𝑏 holds if

⃒⃒
E
[︀
(𝑋 − 𝜇)𝑘

]︀⃒⃒
≤ 1

2
𝑘!𝜎2𝑏𝑘−2, 𝑓𝑜𝑟 𝑘 = 3, 4, . . .

Theorem 9 (Bernstein’s inequality). For any random variable satisfying the Bern-
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stein’s condition, we have

E [exp (𝑠(𝑋 − 𝜇))] ≤ exp

(︂
𝑠2𝜎2/2

1 − 𝑏|𝑠|

)︂
, ∀|𝑠| < 1

𝑏
,

and

P (|𝑋 − 𝜇| ≥ 𝑡) ≤ 2 exp

(︂
− 𝑡2

2(𝜎2 + 𝑏𝑡)

)︂
, ∀𝑡 ≥ 0.

For example, we have the following simpler inequality for bounded random vari-

ables.

Corollary 15. If 𝑋1, . . . 𝑋𝑛 are independent zero-mean r.v. such that |𝑋𝑖| ≤ 𝑀 almost

surely, then for all 𝑡,

P

(︃
1

𝑛

𝑛∑︁
𝑖=1

𝑋𝑖 > 𝑡

)︃
≤ exp

(︃
− 3𝑛2𝑡2

2(3
∑︀

𝑗 E
[︀
𝑋2

𝑗

]︀
+ 𝑀𝑛𝑡)

)︃

≤ exp

(︂
− 3𝑛𝑡2

6𝑀2 + 2𝑀𝑡

)︂
.
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