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Abstract

We have applied a time-resolved polarized/depolarized light scattering technique,
impulsive stimulated light scattering (ISS), to glass-forming liquids to study the
liquid-glass transition phenomena. We have compared the results to the predictions
of a first-principles theory, the mode coupling theory (MCT).

We have developed a theoretical understanding of viscoelastic properties of vis-
cous liquids measured with ISS. By using the generalized hydrodynamics equations,
we have derived the Jensity response functions to the impulsive heating and impul-
sive electrostrictive force. There appear three modes including the acoustic mode,
thermal diffusion mode, and relaxation or Mountain mode in ISS data. The struc-
tural relaxation dynamics can be obtained either from the time-dependence of the
acoustic mode or from the relaxation mode. In addition, the relaxation strength
can be determined from the relative amplitude ratio of the relaxation mode to the
thermal diffusion mode. Both the relaxation dynamics and the relaxation strength
can be compared to fundamental theoretical predictions.

We have conducted ISS experiments on two model fragile glass formers, an or-
ganic molecular liquid salol and an ionic sali mixture calcium nitrate/potassium
nitrate (CKN). The temperature dependences of the relaxation strengths or Debye-
Waller factors for both salol and CKN show a square-root cusp at a crossover tem-
perature T.. The relaxation mode dynamics are characterized from nanosecond to
millisecond time scales and show a characteristic change around T,. These findings
are consistent with the MCT predictions. We have also characterized the acous-
tic mode dynamics in salol over a frequency range from 10 MHz to several GHz.
The observed a relaxation peaks at high teraperatures are analyzed in terms of a
stretched exponential function. The acoustic modulus spectra at low temperatures
are compared to the susceptibility spectra measured in depolarized light scattering
and to the MCT predictions.

We have also performed preliminary ISS experiments on salol to monitor trans-



verse acoustic wave propagation and orientational relaxation. Further experimental
studies are suggested.
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Title: Professor of Chemistry
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Chapter 1

Introduction

The dynamics of glass-forming liquids have come under intense study in recent years,
largely as a result of advances in both experimental and theoretical approaches to
the problem of complex relaxation. From the experimental side, methods newly
developed or refined and/or newly applied to glass-forming materials include mea-
surements of neutron spin echoes [1, 2], neutron time-of-flight [1, 3], frequency-
dependent heat capacities [4], frequency-dependent dielectric constants [4-7], depo-
larized light scattering (DLS) [8-10], photon correlation spectroscopy (PCS) [11, 12],
and impulsive stimulated light scattering (ISS), the subject of this thesis. Some well-
established experimental methods have also been extended into previously inaccessi-
ble ranges of time, frequency, or wavevectors. In addition, new theoretical analyses
of experimental observables such as DLS have revealed possibilities that were not
earlier appreciated for extraction of complex relaxation dynamics [13]. This array
of experimental methods has helped to deal with the central experimental challenge
presented by glass-forming liquids, namely the broad range of time scales (typically
several decades) over which relaxation occurs even at a single temperature and the
extraordinary range (about 14 decades) covered as the temperature is varied across
the liquid and glass regions. Concerning the theoretical treatment of glass-forming
liquids, much of the recent surge in activity has been based on the results of mode
coupling theory(MCT) [1, 14-16] which have offered a number of experimentally

testable predictions. The ongoing challenge between experiment and theory in this
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area has spurred the rapid development of both.

In this thesis we present theoretical and experimental studies of impulsive stim-
ulated light scattering on glass-forming liquids. We provide a detailed theoretical
description of this method based on generalized hydrodynamics equations. We also
describe ISS experiments on two different glass-forming liquids to test the mode
coupling theory predictions. In Sec. 1.1 we give a brief description of the general
features of the liquid-glass transition. Mode coupling theory of the liquid-glass tran-
sition and its predictions relevant to our experiments are summarized in Sec. 1.2.
In Sec. 1.3 we briefly review several experimental results which support the basic
idea of MCT. However more experimental tests of MCT are still necessary, and this
is partly the motivation of the work described in this thesis. Section 1.4 gives an

overview of the thesis.

1.1 General Features of Liquid-Glass Transition

When a liquid is slowly cooled below its bulk melting temperature T,,, it usually
undergoes a first-order phase transition and forms a crystal, via a nucleation and
growth process. Crystal growth starts when the size of a crystalline nucleus produced
by spontaneous fluctuations of the liquid is larger than some critical size, and then
the nucleus continues to grow until it envelopes the entire system. Because a critical
nucleus can take a long time to form, one can preveit nucleation by cooling the liquid
at a sufficiently high rate and thereby avoiding crystallization. Upon sufficiently fast
cooling, the liquid can be supercooled indefinitely and can form an amorphous solid
called a glass at or below the glass transition temperature T,. The state of the
system at T above T}, but below T, is called a supercooled liquid. The temperature
T, is conventionally defined as the temperature where the viscosity 5 reaches 10!
poise [1 poise = 0.1 Nsm™?], or defined as the temperature at which the specific
heat measured in calorimetric experiments shows a jump. The latter is called the
calorimetric glass transition temperature. This is a ubiquitous liquid-glass transition

phenomencn and is believed to happen in all liquids including ones with metallic,
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ionic, covalent or Vander Waals bonds [17-19]. For liquids like argon the cooling
rates needed for supercooling are much greater than that can be currently achieved
in the laboratory. However, it is possible to slow down the cooling rate for liquids
with sufficient anisotropy or complexity to frustrate nucleation so that experiments
can be performed close to the region of the glass transition. In this section we

summarize a series of features of supercooled dynamics.

1.1.1 Non-Arrhenius Behavior

As a liquid is supercooled, its viscosity increases dramatically from 5 ~ 102 poise
at T, to n ~ 10" poise at T,. Like any other transport coefficient, the viscosity
reflects the underlying movement of the liquid molecules. The viscosity at T, is the
value at which the liquid takes approximately half an hour to respond to a small
external stress. The variation of 7 is essentially proportional to that for the time
scale 7 of the relevant relaxation process. Thus the relaxation time increases by
more than 14 orders of magnitude from T}, to T,, perhaps the largest change ever
known to occur in any physically measurable material property.

If some activated process involving crossing over a barrier of potential energy
(ksT4) could be the essential microscopic transport mechanism, one would expect
an Arrhenius law for the viscosity 7 or the relaxation time 7,

0 _T4/T,
b

A = N4€ TgA = 'rng"/T. (1.1)

In an Arrhenius plot of logn, or log T4 versus 1/T, this yields a straight line. As
shown in Fig. 1-1, only those liquids with open networks like Si0; and GeO, show
an Arrhenius variation of viscosity or structural relaxation time between the glass
transition temperature and the high temperature limit. These systems are classified
as “strong” glass-forming liquids [20, 21] because their glassy structures are Lelieved
to be frozen rigidly into deep, isolated local potential energy minimum. However,
for the liquids characterized by simple non-directional Coulomb attractions or by

van der Waals interactions, the viscosities vary in a strongly non-Arrhenius fashion
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Figure 1-1: T;-scaled Arrhenius plots of viscosities or relaxation times showing the
strong/fragile pattern of liquid behavior

between T, and T,. These liquids are called “fragile” liquids, suggestive of many
local potential energy minima which are closely spaced in energy and position phase
space.

Several functional forms have been proposed to describe the strongly non- Arrhenius
behavior of the viscosity. Among them an often used expression is the Vogel-

Tamman-Fulcher (VTF) equation

0 ex [TVTF]
IVTF = NvTF €XP T—Tp)°
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or for the relaxation time

Tvtr ]

T (1.3)

(4]
TVTF = TVTF Cxp [

This formula anticipates a special singularity at a temperature Ty < T,. Since we
are concerned with the relaxation dynamics above T,, we will not try to discuss the

significance of the temperature Ty. (For discussion of Ty, see, for example, Ref. {4])

1.1.2 « Relaxation Stretching

The strongly temperature-sensitive slow processes mentioned above are believed to
be due to the cooperative motion of large clusters of molecules, and are therefore
referred to as structural relaxation. The slowest of these is called the a relaxation
process, the second slowest one is called the 3 relaxation, etc.

An outstanding feature of structural relaxation is the stretching of the dynamics
over time or frequency intervals of several orders of magnitude. We will describe the
appearance of this feature in both time domain and frequency domain experiments.

Let us begin with the time domain experiments. In time domain experiments
either the relaxation function ¢(t) or the response function (t) is measured. In the
former case, the system is disturbed by a perturbation field which is switched on
slowly at time t = —oo and turned off abruptly at ¢ = 0. The change of the variable

A is then monitored as a function of time for ¢ > 0. In the linear response regime
SA(t) = ¢(t)6A(t =0). (1.4)

In the experiments where the response function 1(t) is measured, the external field
a(t) is switched on suddenly at ¢t = 0 and a(t) = apexp(—et),e — +0 for t > 0 [22].

In the linear regime one has

§A(t) = P(t)SA(t = +00). (1.5)
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Since there is simple relation between 1 (t) and ¢(t):

P(t) =1 - 6(1), (1.6)

we will discuss the characteristics of structural relaxation in terms of the relaxation
function ¢(t).
It has been experimentally established that the relaxation function ¢(t) does not

follow the Debye model,
ép(t) = fexp[—t/7a]- (1.7)

Instead it shows stretched exponential decay and can be described reasonably well

by the Kohlrausch-William-Watts (KWW) function

dxww(t) = fexp[—(t/7.)"], (1.8)

with the stretching parameter 0 < 8 < 1. The difference between the Debye model
and the KWW function is obvious. While ¢p(t) decays from 90% to 10% of its
initial value in a time interval of 1.34 decades, the dynamical window of a KWW
relaxation process spans more than two decades.

The structural relaxation dynamics of a system can also be probed in the fre-
quency domain. In this case, one applies an external field a with its amplitude a,
and frequency w to the system and measures the induced change § A of the conjugate

variable A. In the linear response regime, one can write
A = x(w)a, (1.9)

where x(w) = x'(w) + ix"(w) is the dynamical susceptibility of variable A, which
is independent of ag. The real part x'(w) is even in w and describes the reactive
response. The imaginary part x"(w) is odd in w and has a property wy”(w) > 0.
X"(w) describes dissipation phenomena and is called the susceptibility spectrum.
The real and imaginary parts of x(w) are connected to each other through the

Kramers-Kronig relation.
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The relaxation functions ¢(¢) and the dynamical susceptibility xy(w) are the prop-
erties of the system. Therefore for the same observable A, they should provide
the same dynamical information of the system. In fact, ¢(t) is equivalent to y(w)

through the Kubo relation [23]

x(z)/xr = z¢(2) + 1, (1.10)

where xr = x(z — 0) is the thermodynamic derivative and ¢(z) is the Laplace

transform of ¢(t):
8(z) = i/ow dte™ ¢(t) = LT(4(1)](z) Im:z > 0. (1.11)

In particular, with z = w+10 and ¢(w+1:0) = ¢'(w)+i¢"(w) one finds from Eq. 1.10

X"()/xT = we" (w). (1.12)

Here ¢”(w) is the relaxation spectrum. ¢'(w) and ¢”(w) are the Fourier transform

of the relaxation function ¢(t),

Fw) = — /Ooodtsin(wt)d)(t), (1.13)
§'(w) = /Ooodtcos(wt)qﬁ(t). (1.14)

Therefore for a Debye relaxation function (Eq. 1.7), one gets a Lorentzian relax-

ation spectrum
WTqy

m. (1.15)

p(w) = f

The width in the curve of x}(w) = wé})(w) versus w at half height is about 1.14
decades. But experimental spectra of glass-forming liquids are stretched over several

orders of magnitude of frequency variation.
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1.1.3 « Relaxation Strength

Besides the dynamical parameters 7, and 3, aiother important parameter specifying
the a relaxation is its relaxation strength f,. It is defined as the initial amplitude
of the « relaxation function or the integrated area of the relaxation spectrum ¢"(w)
with respect to w over the peak.

The o relaxation strength can be measured, in principle, in neutron scattering
experiments. For an ideal solid the measured density spectrum includes a strictly

elastic contribution and a continuum due to inelastic excitations
¢, (w) = 7 f,6(w) + continuum. (1.16)

The probability for elastic scattering f,, or the intensity of the elastic line, is called
the Debye-Waller factor. For a glass or a supercooled liquid, the elastic line in
neutron scattering is replaced by a quasi-elastic peak. Therefore the « relaxation
strength is referred to as effective Debye-Waller factor of the glass or the supercooled
liquid. Obviously one has to choose a cutoff frequency w. such that only the a
peak and the whole o peak is bracketed within the interval |w| < w,. The cutoff
frequency w, is often given by the size of the experimental frecuency window. Thus
with the limited frequency window available it sometimes poses a problem for the
determination of the Debye-Waller factor, especially at higher temperatures when
the o peak broadens and the higher-frequency part of the spectrum falls outside of
the experimental frequency window. In the following Chapters, we shall show an
alternative optical method to measure the Debye-Waller factor f, in the low-¢ limit.
With this method cutoff frequency problem can be avoided entirely.

For T < Ty, f, is found to show a linear temperature dependence. However,
for T' > T,, f, exhibits a strong non-linear decrease with increasing T'. In Sec. 1.2,
we will give a MCT equation concerning the temperature dependence of the Debye-

Waller factor.
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1.1.4 3-Relaxation Regime

Between the very slow « relaxation peak and the band of typical microscopic (optic
phonon) excitations, there is an intermediate or mesoscopic region called the j3-
relaxation regime. In this region, there is a secondary or 3 relaxation, which precedes
the a relaxation in time. There are two features of the 8 relaxation which are most
different from those of the « relaxation. One is that the 8 relaxation shows smooth
temperature dependence and the other is that the relaxation stretching is more
pronounced for the 3 peak than for the « resonance.

In the B-relaxation regime which consists of the 3 relaxation and the high fre-
quency part of the a relaxation, the relaxation dynamics follow power law depen-
dences. For the initial part of the  decay process, the von Schweidler law is proposed

to describe its dynamics

¢von(t) = fvon - hvon(t/Ta)b 0<b<l. (117)

"

" (w) oc w™t. Note that even

Equivalently for the susceptibility spectrum one has y
though Eq. 1.17 could be treated as a limiting case of Eq. 1.8 under the condition
t/T, < 1, the critical exponent b is not necessarily the same as the stretching
parameter 3. Experiments have shown that the 3 relaxation spectra follow a power

law behavior, i.e.

Pq(t) ox t7° Xq(w) o< w?. (1.18)

In addition, the structural relaxation follows the scaling law or time temperature

superposition principle. We will delay the discussion to the next section.

1.2 Brief Review of Mode Coupling Theory of
Liquid-Glass Transition

Since mode coupling theory was first developed successfully to describe the dynamics

of liquids in the region of the liquid-vapor critical point [24], it has found many
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applications. For example, it has been used to evaluate transport coefficients and
their long time tails in fluids away from critical points, and to describe Brownian
motion and steady state systems [25]. In recent years, applications of the mode
coupling approach include in the description of granular flow [26], and most actively,
in the liquid-glass transition (for a complete review of MCT see Ref. [1]}. This
section is devoted to the brief review of the mode coupling theory of the liquid-glass
transition.

Mode coupling theory interprets the liquid-glass transition as the interplay of
two physical mechanism inherent to liquid state dynamics: the cage effect and the
thermally assisted hopping processes [27-29]. The cage effect is seen as the origin
of the dramatic slowing down of the dynamics in supercooled liquids. A particle is
trapped in the cage formed by its neighbors and each one of the neighboring par-
ticles again is trapped by its own neighbors, and so on. Therefore a movement of
any one of the particles is possible only when the cages rearrange cooperatively. As
the particle density is increased or equivalently the temperature is decreased, the
particle cannot move very far so diffusion over long distances is not possible. The
particle merely rattles in the cage and experiences many shapes of the cages. At
a critical temperature 7, or critical density, it then drives the system towards the
ideal ergodic-nonergodic transition. This result is produced in the idealized MCT
where only the cage effect is considered. However, the cages are not given static
entities because the surrounding particles which form the cages are not fixed. The
trapped particle can move because its neighbors move out of the way via thermally
assisted hopping; and the neighbors can move because their neighbors move out
of the way, etc. Because the particles build up this so-called backflow pattern,
ergodic dynamics are established. As the system approaches T or the critical den-
sity, the hopping effect contribution becomes comparable to that of the cage effect,
which provide another channel for density fluctuations. These processes allow struc-
tural rearrangements even above the critical density or below T.. Thus inclusion of
this effect in the extended MCT leads to smearing of the sharp ergodic-nonergodic

transition. Below T, hopping events are the elementary steps leading to complex

26



relaxation. Structural relaxation continues to slow down until its time scale becomes
slower than thai of the experimental probe at T,. At this point the system falls out
of equilibrium.

Mode coupling theory is the first first-principles approach to the liquid-glass
transition. Under a number of assumptions and approximations whose validity
remain under examination, it provides detailed quantitative predictions for complex
structural relaxation. Substantial experimental attention has now shifted toward
examination of the MCT predictions. In this thesis we will describe a method which
has a dynamical window of more than 6 decades for testing soriie of MCT predictions.
In the rest of this section we begin with MCT equation and then summarize the

MCT predictions which are relevant to our experiments.

1.2.1 Mode Coupling Theory Equations

In 1984 mode coupling theory was proposed to describe the liquid-glass transi-
tion [14, 15]. Since then, there has been considerable progress on the theoretical
side toward understanding of structural relaxation in supercooled liquids. The basic
quantities of the MCT for structural relaxation are the normalized autocorrelation

functions

$q(t) =<bpy(t)pe(0)>/5, (1.19)

of the density fluctuation ép,(t) at wavevector magnitude ¢. S, =<|ép,|*> denctes
the structure factor, the spatial Fourier transform of the averaged distribution of

particle pairs. MCT starts with generalized oscillator equations of motion for ¢,(t),

Ba(t) + 280 (1) + Qy(0) + 02 [ dmylt — V() =0, (120)

where }, = \/m (the thermal velocity v = \/m) and v, specify Hooke’s
restoring forces and Newton’s friction constants, respectively. Just as v, is the New-
ton’s friction constant, the kernel is the constant of proportionality between a force
at time ¢t and a velocity at a preceding time t’. Thus the integral in Eq. 1.20 de-

scribes the retardation effect. The essence of the MCT is to use the mode coupling
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approximation to express the kernel m,(t) in terms of products of correlation func-
tions for pairs of density fluctuations, and pairs of density fluctuations and currents.
Explicitly, the memory function {or kernel) in the idealized MCT with activated

hopping processes (discussed below) not included is expressed as

me(t) = S VU(q,q)de, (1) + Y Vg, q1,42) 04, () g (8) + - - - (1.21)

91,92

Hence MCT deals with a closed set of integro-differential equations which can be
solved numerically.

Equation 1.20 can be rewritten as a two step fraction via Laplace transformation:

1
d.(2) = — . 1.22

T 93(% + mgy(2))

Substituting the above equation into k4(z) = [l + 2¢,(2)]S,/(nksT), we obtain an

equivalent result for the frequency-dependent dynamical compressibility,

7
Po
= - , 1.23
() w? — ﬁl = w(iyg + my(w)) ( )
Po KT

which reduces to the isothermal compressibility 7 in the ¢ — 0 and w — 0 limits.

For sound excitations in a simple liquid the compressibility reads

¢/po (1.24)

Kq(w) = —m,

where the sound speed is given by the longitudinal acoustic modulus M and the
mass density po as ¢2 = M/py. Comparison of Eq. 1.23 to 1.24 leads to a generalized

wavevector and frequency dependent longitudinal elastic modulus:

1 —w(ivy, + my(w))

M,(w) = o

(1.25)
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In addition to the viscosities yielding an imaginary part for the modulus (7, term),
the structural relaxation which is described by the relaxation kernel m,(w), induces
a frequency dependence for the modulus. The imaginary part of the kernel, i.e.
the relaxation spectrum mg(w), yields additional acoustic damping and the real
part m (w) leads to shifts of the acoustic frequency. The structural relaxation
contribution to the modulus M,(w) can be closely related to the one for the density

autocorrelation spectrum ¢;(w), the Fourier cosine transform of ¢,(t).

1.2.2 Predictions of the Mode Coupling Theory
1.2.2.1 Nonergodicity Parameter f,(T)

A central prediction of MCT concerns the nonergodicity parameter f,(t), the t — oo
limit of @,(t). In the idealized MCT where activated hopping processes are assumed
tc be absent, the analysis of Eq. 1.20 shows that there exists a critical temperature
T, at which a transition from a weak-coupling ergodic or liquid-like state to a strong-
coupling nonergodic or ideal glass state occurs. For T' > T, the density fluctuations
relax toward equilibrium at sufficiently long time, ie. f,(T) = 0. At T = T,
structural arrest occurs and ¢,(t — oo0) = ff > 0. For T < T, ¢,(t = o0) = f,
increases rapidly with decreasing 7.

As discussed in Sec. 1.1.3, the « relaxation appears in neutron scattering as a
quasi-elastic peak. Thus the integrated area of the a peak is defined as the effective
Debye-Waller factor fq, which corresponds to the value of ¢4(¢) not at ¢ = oo, but
at the beginning of the « relaxation. In the idealized MCT, fq(T) is expected to

show a square-root cusp at T, i.e.

fe +0(o) T>T.,

~ (1.26)
fe+hp/T+0(c) T<T,

fq(T) =

where ¢ = (T — T')/T. is the dimensionless separation parameter and f; varies
smoothly with temperature. In the extended MCT, the predicted behavior is similar

but with some rounding of the cusp around T.. Note that the crossover temperature
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T. is a wavevector-independent property of the material, so its value should not

depend on thc experimental method used for its determination.

1.2.2.2 The o Relaxation

Within the idealized MCT, a relaxation only exists above T, in the liquid state.
MCT predicts that the a relaxation dynamics above T, obeys the time-temperature

superposition principle, or the scaling law,
¢q(6; T) = F(t/7a(T)). (1.27)

Here the master functions F' are temperature independent to the lowest order, and
the temperature dependences of the relaxation functions ¢,(¢;T) only enter via
the scaling of the characteristic a relaxation times 7,(7T"). The relaxation time 7,
diverges at T, via a power law dependence

Ta =wy' = to|o| ™. (1.28)

The scaling functions F' are generally well approximated by the KWW function of
Eq. 1.8 with T-independent stretching exponent £.

When hopping processes are included in the extended MCT, ¢,(t) is no longer
completely arrested at sufficiently long times to form an “ideal” glass. Instead,
below T, the « relaxation dynamics continue and evolve smoothly with decreasing
temperature. Also, the divergence of 7,(T') is eliminated. Up to date, the detailed

temperature dependence of 7, around T, has not been worked out theoretically.

1.2.2.3 The Factorization Property

In the B-relaxation region, Eqs. 1.20 are solved by the following factorization of time

and wavevector dependencies:

¢q(t) = f; + th(t), (1.29)
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for |G(t)] < 1. Here h, is the critical amplitude and f; is the non-ergodicity
parameter or Debye-Waller factor at T..

Similar expressions hold for all those correlators between variables X and Y
which have a nonzero projection on density fluctuations or products of density fluc-

tuations,

xy(t) = fxy + hxyG(t). (1.30)

The time independent quantities fxy and hxy have the same meaning as f; and
h, in Eq. 1.29, which can, in principle, be calculated from the equilibrium static
structure factor S, taken at the critical temperature T;. For all pairs X and Y, the
time and temperature dependences of the correlation function ¢xy(t) are the same,
as expressed in the so-called 3 correlator G(t). By performing the Fourier-Laplace

transformation, one obtains

C

brv(z) = =B 4 heyG(a), (1.31)

For the corresponding susceptibility, one has

Xxy = hxywG"(w) = hxyx"(w). (1.32)

In other words, all susceptibility spectra have the same frequency dependence given
by the B-susceptibility spectrum x”(w) and they only differ up to a constant factor
hxy.

One example is for the generalized longitudinal acoustic modulus M in Eq. 1.25 [30].
Apart from a background (zv, term) contribution, the w-dependent part of the acous-
tic modulus is introduced by the memory function m,(t), which has the factorization
property, my(t) = m{ 4+ h7*G(t) + O(G?), in the B-relaxation regime. Equation 1.25

then becomes
1+ me = w(ing + hPG(w))

KT

M,(w) = (1.33)
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Therefore for the structural relaxational part of the acoustic modulus, one has

Mp(w) = hywG"(w) = hpyrx"(w). (1.34)

Another example is for the longitudinal acoustic compliance J, which is the
inverse of the longitudinal acoustic modulus M [30]. Since the condition G(t) being

small means that wG(w) is small, one gets

_ 1 _ KT
B = M@ T T — e, G (1:39)
_ 1 w(iy, + h7'G(w)) (1.36)

T 14+ m¢ (1+m§)2

In the above derivation, we have considered the fact that the background contribu-

tion (77, term ) is small. Eq. 1.36 then leads to
Jr(w) = hywG"(w) = hyx"(w). (1.37)

Again, the structural relaxational part of the longitudinal acoustic compliance, J}
g p g R

follows the universal 3-susceptibility spectrum y” (w) in the B-relaxation regime.

1.2.2.4 The Critical Dynamics

With the factorization approximation of Eq. 1.29, Eq. 1.20 reduces to
d rt
o =8t +XG(t) = = / dt'G(t — 1)G(t'), (1.38)
0

where § denotes the thermally activated hopping rate, and A (3 < X <1)iscalled the
exponent parameter. The common # correlator G(t) or the corresponding dynamical
susceptibility x”(w) is the solution of Eq. 1.38.

In the lowest order approximation of the power series expansion, the master
function G(t) takes explicit asymptotic forms. For ¢t < ts, G(t) follows the same
power law on both sides of the ideal glass transition point, i.e. G(t) = lo|(ts/t).

For t > t,, G(t) asymptotes to a constant ,/|o|(1 — A) in the glass state and it
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Table 1.1: Exponents ¢ and b as a function of the exponent parameter A

A a b A a b

0.95 0.155 0.200 || 0.50 0.395 1.00
0.90 0.209 0.303 || 0.45 0.409 1.10
0.85 0.248 0.392 || 0.40 0.422 1.22
0.80 0.279 0.476 || 0.35 0.433 1.34
0.75 0.305 0.558 || 0.30 0.445 1.438
0.70 0.327 0.641 || 0.25 0.455 1.66
0.65 0.347 0.725 | 0.20 0.465 1.84
0.60 0.364 0.725 |[ 0.15 0.474 2.09
0.55 0.380 0.903 || 0.10 0.483 2.43

diverges according to a critical law —y/|o|(¢/t,)® in the liquid state. The time scale

t, which denotes the onset of the «a relaxation is governed by the scaling law
t, = w;! = tolo| V%, (1.39)

and the two exponents ¢ and b are determined by the single material-dependent

parameter A through the relation:

I'?(1+ b)
= — " < y
N = Mo 0<b<1 (1.40)
I'%(1 — a)
= <1/2. .
T 0<a<1/2 (1.41)

Here I'(z) denotes the gamma function. Table 1.1 lists the characteristic exponents
a and b as a function of .
Therefore for T' < T, density correlations initially decay through g relaxation

described by the critical law and then arrest at a finite value,

(1.42)

a0 ={ e+ hoflolite/ty o<t <t

fe—hpJlol/VT =X to<t, < L.

Equivalently the dynamical susceptibility x” crosses over from the critical power law
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behavior x"(w) o hgy/|o|(w/w,)® to a linear w dependence. This gives rise to a knee
in the log x” versus logw plot close to the scaling frequency w,.
Above T, in the liquid state, ¢,(¢) obeys a power law on the short time scales

and another power law, the von Schweidler law on longer time scales,

) t/t)* t L t, o
%(t):{m Vol o<t <t, < .

fi - ho /T (t]t,) o < t, <t K 7.

So the corresponding susceptibility \” takes the form

hoVo(wfws )  T7'<w, Kw <KL Gt
Vw) o § FaV7llee) : (144)

! hoVo(wlws)™t 17w K w, L 151

The susceptibility therefore exhibits a minimum around w, in the y"(w) curve. This

susceptibility minimum is often described by the MCT interpolation equation,

b(w/wmin)* + a(w,,ﬁ,,/w)b
o —
/\q(w) Xmm a + b

: (1.45)

where x”. o \/|o|, and wmin x w, x |o|'/22. This interpolation is equivalent to a
Amin 9 p

similar interpolation formula for the time dependent correlation function:

8a(t) = f3 = boflol [5 (#212)" - o (1/22)]. (1.46)

where t? denotes a time before which the B relaxation follows the critical law, while
after which the initial part of the «a relaxation decays via the von Schweidler law.
In the extended MCT, the hopping rate § is finite and positive. The S-correlator
G(t) thus depends on both the separation parameter o and the hopping rate 6. The
one-parameter (o) scaling in the idealized MCT is replaced by a two-parameter (o, §)
scaling. As a consequence, the dynamics are modified. The most obvious differences
occur at long times or low frequencies for temperatures close to and below T.. Both
the a peak and the minimum in x”(w) exist in the extended MCT, but not in

the idealized MCT. In the transition regime for T near T, the cage effect and
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the hopping effect provide comparable contributions. The hopping contributions
modify the low-frequency +wing of the idealized MCT g-spectrum so that, with
decreasing T, the slope of the low frequency part (below the minimum) of the -
susceptibility spectrum becomes steeper. At temperatures well below T, in the glass-
like regime, the hopping effect dominates the dynamics. Since at high temperatures
§ < w|o|, both versions of MCT are essentially indistinguishable for temperatures
well above T,. Therefore, Egs. 1.27, 1.43-1.46 for T above T, are still valid as good
first approximations in the extended MCT.

With the definition of the nonergodicity parameter or the Debye-Waller factor
fq, Eq. 1.26 also survives in the extended MCT, although with rounding of the cusp
around T,. Thus Eq. 1.26 should still be used to locate the crossover temperature.
In the extended MCT, the crossover temperature T, marks a change in the nature
of a relaxation. The « relaxation dynamics are controlled primarily by anharmonic

processes above T, and by activated hopping processes below T..

1.3 Some Previous Experimental Results

The study of viscous liquids and the liquid-glass transition has been pursued exten-
sively for over 100 years [31]. Relaxation in glass forming liquids has been observed
in many different response functions: neutron scattering [2, 3], frequency-dependent
specific heat [4], dielectric loss [4-7], photon correlation {11, 12], light scattering [8,
32-36], longitudinal and transverse acoustic wave propagation [37], NMR [38, 39],
and many more. While most dynamics studies have been concerned with motion on
a time scale between 107® s and macroscopic times (say 102 s) around T,, much of
the recent effort has been shifted toward examination of the dynamics on fast time
scales (from 1 MHz to 1 THz) to test the mode coupling theory predictions as well
as empirical and heuristic models. In this section we review some of experimental
re<v1ts which bear on the mode coupling theory of the liquid-glass transition.
wode coupling theory describes the liquid-glass transition scenario as a purely

dynamic crossover from liquid-like (ergodic) to solid-like (glassy, nonergodic) be-



havior. The crossover is expected to occur at some critical temperature T, of the
supercooled liquid state, located at somewhere above T,. The Debye-Waller factor

f4(T) shows a square-root cusp (see Eq. 1.26) at T..

1.3.1 Neutron Scattering

Among the very first experimental data published in support of the crossover phe-
nomena of MCT are neutron scattering measurements of the Debye-Waller factor
fo(T), the height of the plateau in the correlation function ®(q,t). As shown in
figure 3 of Ref. [40], the data from fragile glass formers, Cag 4Ko4(NO3),.4 (CKN),
o-terphenyl, and polybutadiene exhibit the square-root law at a crossover temper-
ature T.. For the intermediate system glycerol no crossover has been observed.
However, as pointed out by the authors themselves [41], caution needs to be taken
to interpret the CKN data, which do not show an obvious cusp. It was argued that
for CKN the a relaxation has already moved in the experimental window at temper-
atures close to T.. As a result ®(q,t) begins to fall within the experimental window
and there is no pronounced plateau, which makes the reading of f, difficult. This
problem is similar to the one of the cutoff frequency encountered in energy-resolved

neutron scattering as discussed in Sec. 1.1.3.

1.3.2 Light Scattering

It has been shown that f; in the low-q limit can be determined from the relation [42]

fo—0 =1 = (co/co)?, (1.47)

where ¢, (cp) is the limiting sound velocity measured at frequencies well above
(below) the o relaxation frequency range. The significance of Eq. 1.47 is two-fold.
First, it provides an alternative experimental approach to test the MCT predic-
tion of Eq. 1.26. In addition, it allows one to test the possible g-dependence of
T., since cusp-like behavior can be sought in the T-dependence of fq—o as well as

the Debye-Waller factor at high wavevector determined through neutron scattering.
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The temperature T, should be independent of wavevector ¢ because, as shown in
7"1. 1.26, it marks the onset of nonergodic behavior for density uctuations at all
wavevectors. The two limiting velocities and subsequently th~ value of f,_o can be
measured by ultrasonics or Rayleigh-Brillouin scattering (BS). However, ultrasonics
or mechanical measurements are suitable only for determination of ¢o, but not ¢,
in the temperature range around T.. Rayleigh-Brillouin scattering cannot determine
both ¢g and ¢, either. Even a determination of ¢, from the positions of the Brillouin
peaks is often impossible because the highest scattering wavevectors accessible with
visible light do not yield sufficiently high acoustic frequencies. Therefore one cannot
make a unique determination of T, through Eq. 1.47 from acoustic measurements
and Rayleigh-Brillouin scattering alone. That is the reason that the BS value of T.
determined for propylene carbonate [43] exceeded that determined through neutron
scattering [44] by 60K. In other cases [45, 46], BS spectra have not been used for
a unique determination but have been found to be consistent with values of T, de-
termined through neutron scattering measurements of f,(T') and depolarized light
scattering susceptibility spectra [10] (which, as discussed below, provide a separate,
dynamical route to T, not involving the Debye-Waller factor). Clearly more tests
of Eq. 1.26 are necessary, especially in the low-¢ limit.

Other experimental evidence in support of MCT comes from comprehensive stud-
ies of depolarized light scattering from glass forming liquids (8, 47]. Figure 1-2 shows
DLS susceptibility spectra of salol at several temperatures and the extended MCT
fits. The T-sensitive a relaxation peak moves from high frequency at high temper-
atures to low frequency at low T until it shifts out of the experimental frequency
range. Minima are observed above 253K in the susceptibility spectra. Around the
minimum region, the dynamics follow the critical power laws which are represented
by the solid lines in Fig. 1-2. The extended MCT analysis predicts that there exist
minima in x”(w) for T below 253K, which fall below the spectral region available.

Data in this region are needed to allow a complete test of the MCT.
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Figure 1-2: Susceptibility spectra x”(w) of salol from 313K to 218K. The solid lines
represent the extended MCT fits with the exponent parameter A = 0.73.
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1.4 Overview of the Thesis

In this thesis, we shall describe one of the applications of impulsive stimulated light
scattering in the research of the liquid-glass transition. It covers a time window from
sub-nanoseconds to many milliseconds, which makes it suitable for examination of
the dynamics of liquid-glass transitions. We shall first present the experimental
technique, and then give a detailed theoretical description of the technique. Fol-
lowing that we present applications of the technique .» wo glass forming liquids
and analyses of the experimental data to test the predictions of the mode coupling
theory.

Chapter 2 contains a description of the implementation of the ISS technique. The
excitation mechanisms and a comparison of two probe systems will be discussed.

In Chapter 3, we present a generalized hydrodynamics approach to impulsive
stimulated light scattering from glass-forming liquids. The generalized hydrody-
namics equations, including nonlocal behavior in time, are used to calculate density
response functions of ISS. Single-exponential relaxation dynamics are considered
first, and then the results are generalized to account for complex relaxation. Ther-
mal diffusion, acoustic, and relaxation modes are described. The time dependence
of both acoustic and relaxation modes yields the structural relaxation dynamics. In
addition, the relative amplitudes of the modes in ISS data yield the Debye-Waller
factor f, in the limit of low wavevector ¢. This permits testing of MCT predictions
of a square-root cusp in the temperature dependence of f,_o(7') at a crossover tem-
perature T,. The information which can be obtained through ISS is compared in
theoretical and practical terms to that obtainable through low-frequency Rayleigh-
Brillouin scattering spectroscopy.

The remainder of the thesis is devoted to ISS experimental studies of two differ-
ent glass formers. Chapter 4 contains an investigation of the structural relaxation
dynamics of the organic glass former salol. In Chapter 5, we present results of
another ISS study of the ionic glass former Cag 4Ko6(NO3); 4.

In Chapter 6, we further examine the longitudinal acoustic dynamics revealed
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in the ISS study of salol. Longitudinal acoustic velocities and damping rates are
measured in the MHz-GHz range, from which the longitudinal modulus spectra and
the compliance spectra are derived in the intermediate temperature range. The
observed a relaxation peaks are analyzed in terms of an empirical (KWW stretched
exponential) relaxation function. The high-frequency wings of the a relaxation
peaks are compared to the susceptibility spectra from depolarized light scattering
and the extended mode coupling theory predictions.

Chapter 7 contains some data on orientational relaxation dynamics of salol
and partial data analysis. They are measured in ISS experiments with depolar-
ized (VHVH) geometry. Further experiments to cover a wider dynamical range are
suggested.

In Chapter 8 we summarize our findings and draw conclusions from the results
we shall present in this thesis. Suggestions for possible future experiments and

improvements of the technique are also presented.
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Chapter 2

Impulsive Stimulated Light

Scattering Technique

2.1 Introduction

Impulsive stimulated light scattering is a time-resolved optical spectroscopy method.
It has been shown to be very powerful for following the acoustic dynamics of glass-
forming liquids in the frequency range from 10 MHz to 10 GHz [33, 48-53]. Recently
its dynamical range has been extended to cover sub-nanosecond through millisecond
time scales, well suited for investigation of the dynamics in supercooled liquids. Also
this method has recently been applied to examination of mechanical and thermal
properties of polymer and other thin films [54-57]. In this Chapter we describe the

details of the experimental implementation of the ISS technique.

2.2 The Technique

Impulsive stimulated light scattering is a time-delayed four-wave mixing or “tran-
sient grating” experiment. A schematic illustration of ISS experiment as conducted
this thesis is shown in Fig. 2-1. Two parallel-polarized, picosecond excitation pulses
of wavelength Ag are crossed at an angle of intersection 8¢ and overlapped spatially

and temporally inside the sample. Optical interference of these two pulses creates
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Figure 2-1: Formation of the interference grating pattern by crossing two excitation
pulses.
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an intensity grating pattern with wavevector magnitude

q= M = ?_7: (2.1)
AE A’

where A is the interference fringe spacing. The interaction of the field with the
matter generates phase-coherent material excitations with the same wavevector q.
When a third probe beam is incident at the phase-matching (Bragg) angle for the
grating, part of the probe light will be diffracted in a direction with the mirror
symmetry of the transmitted prohe light. The time dependence of the material
excitations is obtained by recording the diffraction efficiency as a function of the
time delay between the pump and probe pulses with a variably-delayed short probe
pulse, or time-resolving the ditfracted probe light electronically with CW or quasi-
CW probe system.

The excitation pulses can interact with the sample in two ways of interest here.
First, acoustic modes can be excited through impulsive stimulated Brillouin scat-
tering (ISBS). In this mechanism, the electric field exerts a sudden (“impulsive”)
electrostrictive stres: at the excitation wavevector, launching two counterpropagat-
ing acoustic waves with wavevectors ¢q. Second, absorption of the excitation light
by the sample can occur. For absorbing materials, optical absorption at the in-
tensity peaks and subsequent rapid thermalization lead to the sudden formation of
a temperature grating with wavevector q. Thermal expansion due to this impul-
sive, spatially periodic heating then results in a time-dependent density response at
this wavevector. This process is referred to as impulsive stimulated thermal scat-
tering (ISTS). In simple cases like normal liquids, the sample density overshoots
and oscillates about the steady-state level. After the acoustic oscillations are fully
damped, the steady-state density modulation decays due to thermal diffusion. Thus
the acoustic mode can be excited through ISTS in addition to the thermal diffusion
mode. In the following Chapters, we will discuss more complicated systems like
complex liquids, in which the materials responses include an additional relaxation

mode besides the acoustic and thermal diffusion modes.
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As far as excitation of acoustic dynamics is concerned, there is no difference
between the ISBS and ISTS mechanisms. Both of them give the same acoustic
frequency and damping rate. Note that the acoustic mode can always be excited
through ISBS for absorbing or non-absorbing materials, while only absorbing mate-
rials give ISTS signal. This is because ISTS depends on optical absorption by the
sample at the excitation laser wavelength and subsequent rapid heating at the in-
tensity grating peaks to suddenly generate the temperature grating. However, ISTS
provides much more information than ISBS, which will be discussed in detail in the
next Chapter. In practice, ISTS signal is much stronger than ISBS signal with the
same excitation laser intensity even for weakly absorbing materials, except at very
large wavevectors where the ISBS contribution may be no longer negligible, as will

be shown in the next Chapter.

2.3 Experimental Setup

2.3.1 The Quasi-CW Probe System

Experiment implementation of ISS with a quasi-CW probe system is schematically
shown in Fig. 2-2. The excitation pulses are derived from the output of a Q-switched,
mode-locked, and cavity-dumped Nd:YAG laser which yields a pulse of about 500 pJ
energy and 100 ps duration at a repetition of up to 1 kHz [58, 59]. The pulse is split
with a 50% beam-splitter into two excitation pulses that are cylindrically focused
and crossed at an excitation angle (in air) fg. These two pulses are temporally and
spatially overlapped inside the sample by adjusting the relative path lengths and
mirror positions. Typically, the laser spots are about 100 gm high and 5 mm wide
at the focus. The large width is necessary so that the laser-generated acoustic waves
observed in ISS do not leave the excitation region before they are fully damped.
The probe beam is derived from a single-mode CW Argon laser (Lexel, 1 W
average power). The output of the Argon laser is electro-optically gated with an

adjustable duration from several hundreds of nanoseconds to many seconds. The
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Figure 2-2: Experimental setup of the quasi-CW probe system. M: mirror; L: lens.
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duration of the probe light is selected such that it is just long enough to detect the
excited material dynamics with each pump laser shot. Therefore the probe light is
incident on the sample only for a short period of time, which is often necessary to
avoid sample blooming. The quasi-CW probe light is focused first by a cylindrical
lens horizontally and then by another (also used for the excitation beams) vertically
in the center of the grating. Diffracted signal is directed into an amplified fast
photodiode (Antel Co., 2GHz bandwidth) whose output is processed by a digitizing
oscilloscope (Tektronix DSA, 1GHz bandwidth). The digitized signal is transferred
to a computer for storage and subsequent analysis.

This system has several useful features. Of primary importance are the wide
ranges of scattering wavevectors ¢ and time scales (from 1 ns to many milliseconds)
which are accessible. Also important in practice is the fact that the entire temporal
response is recorded in a single laser shot, and very high signal-to-noise (S/N) ratios
can be realized with several seconds of signal averaging. Typically, data from 1000

shots are recorded and averaged in about 10 seconds.

2.3.2 The Pulse Probe System

Excitation at large wavevectors (large excitation angles) results in acoustic frequen-
cies exceeding the 1-GHz bandwidth of the detection electronics in the quasi-CW
probe system described above. In this case, the acoustic data can be collected with
a pulse probe system. In this system, the excitation pulses are generated and over-
lapped inside the -ample in the same way as in quasi-CW probe system, and the
probe pulse is derived from a second mode-locked and Q-switched Nd:YAG laser. Its
output consists of a train of 100 ps, 1.064 um pulses. The largest pulse is selected
electro-optically by a Pockel’s cell and then frequency-doubled to yield 532 nm probe
light. This probe pulse is incident upon the center of the grating at Bragg angle.
(Fig. 2-3). The timing delay between excitation and probe pulses is controlled elec-
tronically by shifting the phase of common mode-locker radio-frequency (rf) source
to the probe laser and by electronically delaying the appropriate amount o timing

of the Q-switches and the single pulse selector concurrently [58, 59].
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Figure 2-3: Experimental setup of the pulse probe system. M: mirror; L: lens; CP:

Mechanical Chopper.
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The signal beam is directed into a low-bandwidth amplified photodiode. The
output of the photodiode is sent to a lock-in amplifier whose reference frequency is
synchronized with a mechanical chopper running at an arbitrary frequency less than
the laser repetition rate. The mechanical chopper is placed in the probe beam in
order to reduce scattered light due to the excitation beams. The lock-in is connected
through a general purpose interface bus (GPIB) interface to a personal computer,
which also controls the time delay of the probe pulse. For each given delay time
between the excitation and probe pulses, the computer records the diffracted signal
intensity from the lock-in amplifier. Usually, the lock-in time constant is set to
100 ms, and the data are averaged over 20 consecutive sweeps over the whole time
range. In this way the data are recorded “point by point” on the time axis and
the time resolution is limited only by the pulse duration. Besides its higher time
resolution than that of the CW probe system, the pulse probe system also has higher
sensitivity. This is because the ISS signal level is proportional to the peak power in
the probe beam and the peak power of the CW probe beam is much lower than that
of the pulse probe beam. However, the S/N of the pulse probe system is generally
lower than that of the quasi-CW probe system, since laser intensity fluctuations
contribute to noise in the former. In addition, the data collection time is far longer
(typically 10-30 minutes) in the pulse probe system since each laser shot yields just

on point on the time axis rather than the entire temporal response.

2.4 Discussion

Both pulse and CW probe systems, in principle, can be used to detect ISBS or ISTS
signal. But due to the very weak ISBS signal level, especially at low wavevector,
and due to the low sensitivity of the CW probe system, it is often impossible to use
the CW system for non-absorbing samples. In this case, the pulse probe system has
to be used. However, ISTS signal intensity is usually strong enough to use the CW
probe system so that one can take advantage of its superior signal to noise ratio,

fast data acquisition rate, and wide dynamical range. Also ISTS yields not only
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acoustic dynamics as does ISBS, but also long-lived thermal diffusion dynamics as
well as structural relaxation information. Therefore, generally ISTS is preferable to
ISBS. To create ISTS signal, one has to choose the excitation laser wavelength so
that the sample will weakly absorb the excitation light, or add into the sample a
small amount of a strongly absorbing guest. Introduction of guests must be done
judiciously, however, to avoid guest relaxation dynamics from contributing to the
signals observed.

For acoustic oscillations excited by ISTS with frequencies above 1 GHz, as an al-
ternative to pulse probe detection, a streak camera has recently become available as
signal detector which has much higher time resolution (~ 2 ps) than the combination
of the fast photodiode and transient digitizer. In this case, two different detection
systems have to be utilized, the streak camera detection for fast acoustic dynamics,
and the fast photodiode and transient digitizer detection for long time dynamics.

The two sets of data are then combined to give the complete ISTS response.
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Chapter 3

(Generalized Hydrodynamics
Theory of ISS from
Glass-Forming Liquids

3.1 Introduction

In this Chapter! a generalized hydrodynamics analysis of impulsive stimulated light
scattering is presented. In the ISS experiment, the time-dependent density response
to crossed laser pulses which produce sudden heating (in ISTS) or sudden stress
(in ISBS) is measured. The information content of ISS data is analyzed .. detail
for the cases of simple (single-exponential) or complex (nonexponential) structural
relaxation dynamics. There appear thermal diffusion, acoustic, and structural relax-
ation modes in ISS data, which are time-dependent analogs of Rayleigh, Brillouin,
and Mountain modes which appear in Rayleigh-Brillouin scattering (BS) spectra
of complex fluids. In addition to their dynamics, the relative amplitudes of ther-
mal diffusion, acoustic, and structural relaxation modes in ISTS data are shown to
vield the value of the Debye-Waller factor, f,(T') in the low-wavevector limit. This
permits testing of MCT predictions of the temperature dependence of f,_(T).

Some of the materials in this Chapter have been published in Ref. (60].
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In Sec. 3.2, formal ISS response functions are given for any relaxation kernel form
based on the generalized hydrodynamics equations. In Sec. 3.3 we present a detailed
analysis of the ISS response functions for a single-relaxation-time process. The
results for the Debye model are generalized for a stretched exponential relaxation
function in Sec. 3.4.

A comparison of ISS to BS is presented in the context of measurements on glass-
forming liquids in Sec. 3.5. In some cases the time-domain approach offers significant
advantages which permit elucidation of complex relaxation dynamics and testing of
mode-coupling theoretical predictions in ways which are difficult through frequency-
domain light scattering spectroscopy. Particularly important are the capabilities in
ISS of conducting measurements with a wide range of excitation angles or wavevec-
tors and over a wide range of time scales. ISS and BS are compared with respect to
information content which can be extracted in principle and in practice.

In Sec. 3.6, the generalized hydrodynamics equations for ISS are shown to be
essentially the same as the MCT equations. Thus one can in principle calculate the
ISS response functions by using the MCT relaxation kernel. ISS response function
then should reveal the B relaxation dynamics in short time scales preceding the «

relaxation. The conclusions are given in Sec. 3.7.

3.9 Generalized Hydrodynamics Equations for

ISS

The general theory for impulsive stimulated light scattering has been developed in

detail [61]. In the limit of ideal time resolution, ISS signal intensity is given by

I(q1 t) = |—F0Gpp(q1 t) + QOGpT(qa t)|2 9 (31)

where G,,(q,t), the density-density response function, gives the time-dependent
density response of the sample to laser-induced electrostrictive stress (of magni-

tude proportional to Fp), and G,r(g,t) gives the density response to laser-deposited
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heating of extent proportional to (Jo. Note that the response to heating might be
expressed in terms of G,s, the density-entropy correlation function, but as discussed
below the specific heat connecting temperature to entropy is treated as a frequency-
independent quantity; all the complex (frequency-dependent) behavior is described
by the complex elastic modulus and viscosity.

For samples which are transparent at the excitation wavelength, there is no
heating. So the signal contribution from G,,(¢,t) dominates ISS signal, i.e. the
density response is driven directly through impulsive simulated Brillouin scattering.

Therefore for ISBS, the signal intensity is

Ips(q,t) = |FoG,s(q,t)[*. (3.2)

For materials which absorb the excitation wavelength, heat is deposited into
the sample in a spatially varying pattern and thermal expansion produces the den-
sity response. The scattering process in this case is impulsive stimulated thermal

scattering and G,r(q,?) is the dominating term, i.e. the signal intensity is

Irs(g,t) = |QoG,r(q,t)|*. (3.3)

The response functions G,,(q,t) and G,r(q,t) for simple liquids have been de-
rived previously based on ordinary hydrodynamics equations [59]. Here we start with
generalized hydrodynamics equations and calculate the density response functions
for complex liquids. The basic generalized hydrodynamics equations in g-space [27]

are the continuity equation

06p(q,t ,
—pa(tq_—) - pOqu”(qv t) =0, (34)

and the generalized Navier-Stokes equation

ovy(q,t) . kgTo . kgTy
pPo—>, 500 p(q,t) qu(q)pofcéT(q,t)

t
+po® [ dtgula,t—V)oylat) = iF(g,t),  (35)

33



and the energy-transport equation

08T(q,t) _ v —106p(g,1)

PoCs =~ T G, o +Ag*8T(q,t) = Q(q, 1), (3.6)

where £ is the thermal expansion coefficient, ¥ = ¢,/c, the specific heat ratio, A
the thermal conductivity coefficient, pg the equilibrium density, and T, the equi-
librium temperature. The electrostrictive pressure due to the laser pulses and the
heating rate per unit volume due to absorption of laser light are denoted by F(q, t)
and Q(q,t), respectively. ¢r(q,t) is a memory function representing the retarded
response of the current to a change in the stress tensor and S(¢) is the structure fac-
tor. Note that only the compressibility and the longitudinal viscosity are generalized,
whereas the thermal conductivity and specific heat are not modified. In the limit
¢L(g,t) = 6(t) and limy_o kgT/S(q) = (9p/dp)7" = 7~ 'c? where ¢ is the adiabatic
sound velocity, Eqs. 3.4-3.6 reduce to the ordinary linearized equations. Because
the transverse part of the velocity is not coupled to the density in this linearized
theory, we have not included the transverse part of the Navier-Stokes equation here.
This has been treated in connection with depolarized ISBS experiments on shear
waves in glass-forming liquids [51]. Since we are interested in the density response,
the velocity component v)(¢,t) in Eq. 3.5 can be eliminated by using Eq. 3.4. One
can then derive two simultaneous linear equations for the density response 8p(q, s)

and temperature response 67(q, s) through Laplace transformation:

32 k To k TO
[? +s4L(q,s) + g’?—(ﬁl ép(g,s) + [ponfm] 6T (q,s)

= —F(q,s)+ ép(q) [.‘s/q2 + ¢L(q, 3)] (3.7)
and

[_ f.(_-_y.i._l_)ﬁ] 5p(q’ 3) + [pOC,,S + )\42] 6T(q’ 3)

= Q(q,s) - 5p(q)(—7—_nl—)c” + 6T'(q)poc.- (3.8)
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Here 6p(q) and 6T(q) are the initial values

6p(q) = [ drexp(~iq-r)sp(r,0), (3.9)

§T(q) = / drexp(—iq - r)6T(r, 0), (3.10)

which are necessary to construct the spontaneous light scattering spectrum. Equa-

tions 3.7 and 3.8 can be rewritten in a matrix form

32 kBTO -kBTO
;—2‘ + S¢L(q,3) + S(([) pOhS_(q—)— ( 6p((I1S) ) (311)
Rl A
—(q,8) + 6p(q) {S/q2 + ¢L(q,3)} (3.12)

| 29— 8001 ¢ 1

This matrix equation describes the density and temperature responses of the sample
to the electrostrictive stress and heat exerted by the excitation laser pulses. It can

be expressed in an abbreviated form as

LX =F (3.13)
where ) . "
s '8 Lo ‘BL0
-= 4+ sér(g,s)+ K
L=]| & g : Sty ™S |, (3.14)
_3(7 — )cv PoCyS + /\qg
K
and
—F(q,9) + 8p(q) {s/4* + bL(9,9)}
F= (v - 1)es (3.15)
Q(g,8) = 8p(g)—— + 8T(q)poc.
The solutions to Eq. 3.13 are given by
X=L"'"F=GF (3.16)
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with

Go(q,8) = %{sqz+-p);ic‘:}, (3.17)
Gyr(a,9) %{—" ';’?Z)} (3.18)
Gro(q,s) = %{—(7—;;)—3—@}, (3.19)
and
Graa,9) = 5 {2t oulgoer LI g
Here

A = ss+s2q2{¢L(q,s)+—L}

PoCy
/\q4 2kBT0} /\q4 kBTO
+s ¢ ,8) + + . 3.21
{pocv 49) 474 S(g) ]~ pocy S(q) (321

For a density change dp(q, s), the formal solution is

8p(q, ) = GopFy + G,r F. (3.22)

We will now calculate the density response functions G,, and G,r. Since the
changes in temperature described by Gr, and Grr produce negligible change in the
dielectric constant and thus negligible contributions to ISS signal, we will not discuss
these two response functions. For ISS, the initial values of Egs. 3.9 and 3.10 are
set to zero. The external forces in the ideal time and wavevector resolution limits
can be approximated as delta functions in time and sinusoidal waves in space with

specified wavevector g, i.e.

F(q,s) = Fob(q % qo) (3.23)

and

Q(g,s) = Qob(g £ qo)- (3.24)
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Substituting Egs. 3.17, 3.18, 3.23, and 3.24 into Eq. 3.22 and then performing inverse
Laplace transformation of the resultant equation, one obtains the time-dependent

density variation 6p(g,t) due to laser pulse irradiation:

6p(q,t) = 8(q £ qo)[—FoG,p{q,t) + QoG,r(g,t)] (3.25)
with
1 Agt\]
=LT ' —|sq®+ = .2
Gulart) = 277 | 5 (s + 2L) (3.26)
and
_ 1 I\‘,q2 kBTo ]
Y= LT L P . 2

Equation 3.25 is the exact solution to Eqs. 3.4-3.6, since no approximations have
been made yet. It gives the total density response of ISS for any given memory
function ¢r(g,t) and structure factor S(q), and can, in principle, can be solved
numerically.

Here we will take an alternative approach, which is to derive the analytical ex-
pressions of G,,(q,t) and G,r(q,t) for a single-exponential relaxation process (De-
bye model). The results are then generalized to account for complex relaxation
processes. Notice that the wavevector magnitude ¢ used in ISS experiments ranges
from about 0.05 to 70 um™! and it is in the low-¢ or hydrodynamic limit, thus only
motions on the macroscopic wavelength 27 /g need to be considered. In this ¢ — 0
limit the generalized compressibility becomes the hydrodynamic counterpart, i.e.
lim,_o kgTo/S(q) = c/v. Therefore we will replace kgTy/S(q) by cZ/v and only
consider the generalized bulk viscosity to account for structural relaxational effects

probed by ISS.
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3.3 Density Response Functions in the Debye
Model

3.3.1 Derivation of G,,(q,t) and G,r(q,t)

In the Debye approximation, the kinematic viscosity function is ¢r(q,t) = v +

vrexp(—t/Tr) and it can be identified as

e —c? R
1 = X = I8
lim ¢1(4,5) = vi+ 2o = vi + 61(4, 8). (3.28)

Here the frequency-independent part of the longitudinal kinematic viscosity v;, =
(375 +18)/ po, the relaxing part is ¢5(q,t); and c,, and ¢y are the infinite- and zero-
frequency sound speed, respectively. Under the conditions v1¢* < coq, Ty < coq,
and T'y7p < 1 (with thermal diffusivity x = T'y/q* = )/(poc,)) the dispersion

rquation A = 0 can be cast into the following form:

2
(s+Ty)(s+iwsg+T4a)(s—iwy +Ty) [s + CQCC)T ] =0. (3.29)
TR
Here
—11/2
wy = caq = Coq [D + \/D2 + (coq7R) J (3.30)
with
1 _
D = [/ ~ (coqn)”] (3.31)
and
1 c? 1 2 —ct
4= =¢* -1 1-=2 g2 0 . .32
A=59 {(VL + (v = x) + x( c%)} t50TT (@arn)? P (3.32)
re TR

A

In Eq. 3.32 we have separated the background contribution to damping, I'§, from
the part I'r which is due to the structural relaxation processes of primary interest.

From the dispersion Eq. 3.29, the response functions G,,(q,t) and G,7(q,1) can be
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calculated to the lowest order to yield

2 2.2 | 2.-2
CA9 TR+ CCa 4 -ru

G,(q,t) = i t
last) = SEREEA LTt singuy)
—2y 2
(1 - ciex”)a’m [—e—FA‘coS(wt) + e‘cgcft/m)] (3.33)
cLq?t + cher? ’
and
Gyrlg,0) = A [T = T cos(wat)] + B [e 0 - 0] (3.30)
Here

A = _FSCAtTRt ok (3.35)

2 2 .9.2 o 4.4
Cp CA CAQ TR + €oCy

K q*1R(ch — cp)
B —— i (3.36)
Cp CAQ°TR T CoCh
In G,r(q,t) we have separated the thermal diffusion mode into two terms for later
P
generalization. Equations 3.33 and 3.34 reveal qualitatively most of the features

exhibited in ISS experiments on simple and relaxing liquids.

3.3.2 Properties of G,,(q,t) and G,r(q,1)
3.3.2.1 Acoustic Mode

Both G,,(q,t) and G,7(q,t) in Eqgs. 3.33 and 3.34 contain oscillatory terms, which
represent sound propagation in the medium. Thus the acoustic frequency w4 and
damping rate I'4 can be extracted from ISBS or ISTS measurements. When w7 <
1, i.e. very short relaxation time relative to the acoustic period, Egs. 3.30 and 3.32
become c4 = ¢ and 'y = [y, + (v — 1)x]/2, respectively. Then Eqgs. 3.33 and 3.34
reduce to the ordinary hydrodynamic results for simple fluids [55], i.e. A = —«/c,
and B = 0 in G,r(q,t), while in G,,(¢,t) the amplitude of the first term is equal
to q/co and the second and third terms disappear. The acoustic mode oscillating at

frequency coq is weakly damped due to viscosity and thermal diffusion processes. In
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this limit, energy exchange between the acoustic mode and the relaxational mode can
easily occur within the acoustic oscillation period. Structural rearrangement there-
fore occurs in phase with the acoustic oscillations, and the relaxing fluid behaves like
a simple fluid. When wy7r > 1, we have ¢4y = ¢, and T'y = [y + (y—1)xc3/c%]/2.
Again the acoustic mode is weakly damped due to viscosity and thermal diffusion.
In this limit, energy exchange cannot occur and the oscillatory mode is not coupled
to the structural relaxation processes. The fluid behaves like a solid in this high-
frequency limit. In between the two limits, i.e. ws7g ~ 1, the acoustic velocity varies
between co and cw. There is an additional contribution to the acoustic damping
rate from the structural relaxation which can occur during an acoustic period.

To study structural relaxation dynamics through acoustic measurements, one

usually introduces a frequency dependence for the longitudinal acoustic modulus

M(s) = M'(s) + iM"(s). The dispersion relation
pos® + M(s)¢g* =0 (3.37)

yields the familiar expressions [62] for M(s) in terms of the acoustic frequency and

damping rate,

’ 2 _ 12

M/():’A) _ “’qurﬁ, (3.38)
"

M If:”‘) ~ 2“’;2F". (3.39)

For an elastic medium, I'y = 0. One thus gets sharp sound wave resonances at the
acoustic frequency wy and Eqgs. 3.38 and 3.39 lead to a real modulus M = M' =
po(wa/q)* = pock. For a simple liquid the viscosities and thermal diffusion introduce
a damping rate I'y = I'§ for the acoustic propagation, which yields an imaginary
part for the modulus. If the sample is a relaxing liquid, the structural relaxation then
makes additional contributions to the acoustic damping rate 'y = I'® + T'p, which
induces a frequency dependence for the modulus. That is, the acoustic modulus

increases with increasing w4 from the below “resonance” value M(watp < 1) =
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Mo = pock to the above “resonance” value M(waTr > 1) = M,, = poc%,. This
variation is connected to some spectral peak of the imaginary part M"(wa) via
Kramers-Kronig relations.

On the other hand, Eq. 3.21 yields the acoustic dispersion relation
s®+ 5 [#1(g,8)a* + T(y = 1)] + 2¢® = 0. (3.40)

Comparison to Eq. 3.37 leads to

M(s)

=s[ér(g,s) + x(v — 1)] + <2, (3.41)
or
M'(wy) = —wylm [qﬁf(q,w,,)] +c(2), (3.42)
Ilp0
M {f:’A) = wyRe [¢f(f1,w/1)] +wa v + x(y = 1)]. (3.43)

Here (—powaIm[¢f(g,w4)]) and (powsRe[¢F(g,wa)]) are the real and imaginary re-
laxing parts of the longitudinal modulus. In the Debye relaxation model they are
equal to po(cZ, — 2 )wirA/(1+witE) and po(ct, — c2)watr/(1 +w?iTE), respectively.
As expected, the imaginary relaxing part of the acoustic modulus divided by the
acoustic frequency shows a Lorentzian shape with a maximum at ws7p = 1.

Care needs to be taken to analyze structural relaxation dynamics through acous-
tic modulus, since there are contributions from viscosity and thermal diffusion as
well as the structural relaxation. One way to do the analysis is to calculate the total
acoustic modulus, by using Eq. 3.38 and 3.39, from the measured acoustic frequency
and damping rate. The structural relaxation dynamics can then be obtained by in-
cluding a linear-w-dependent term in the fitting function which, of course, contains
some relaxation function form. The other way is to split the measured acoustic
damping rate T4 into two parts, with I'E representing a background contribution
from viscosity and thermal diffusion processes, and I'p representing the structural

relaxation contribution. The structural relaxation contribution Mp(w,4) to the lon-
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gitudinal modulus can then be calculated as:

MI 2 _ I‘2

p: = w-A(;z—R—cg, (3.44)
M 2wal

pf = “’;‘2 R (3.45)

which gives directly the relaxation dynamics. For a Debye relaxation process one
obtains, by substituting I'p from Eq. 3.32 into the above equations, a Lorentzian
shape with a maximum at watp = 1 for Mpj/w,s and an increase from 0 at low
frequency to po(c?, — c2) at high fregency for the real part, as that in Eq. 3.43.

It is worthwhile to emphasize the importance of subtracting I'Z, the contribution
of the viscosity and thermal diffusion processes, from the measured total damping
rate in order to derive the structural relaxation contribution to the longitudinal
modulus. This is not always done. However, if the background contribution is
significant then the need for its subtraction is clear from inspection of Eq. 3.39.
Since I'§ /¢? is frequency-independent, the “white noise” contribution (linear in w)
is added to the imaginary part of the relaxation contribution to M(w,4). As a result,
the peak of My is pushed to a higher frequency and its shape is also changed,
especially in the high frequency wing. For example, if one inserts the damping rate
s of Eq. 3.32 for a Debye relaxation process into Eq. 3.39, one weuld not obtain
a Lorentzian shape for M"(w4)/wys as expected. The peak frequency is not 75’
either. The real part M'(w4) is also effected. Figure 3-1 iliustrates the difference
between the relaxation spectrum and total longitudinal modulus spectrum due to
the background contribution for a Debye « relaxation process. The background
contribution (dotted curve) is calculated with a damping rate I'} equal to 5 percent
of the damping rate I'p at the a peak. The total modulus spectrum (dashed curve)
shows almost no difference from the a spectrum (solid curve) from low ferquency
up close to the a peak. However, they are utterly different in the high frequency
region. Especially, there exists a minimum in the total modulus spectrum. Clearly
this minimum has a different origin as the one in the susceptibility spectrum x"(w)

of MCT described in Chapter 1. Therefore, it is important that one should subtract
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Figure 3-1: The frequency dependence of the imaginary part of the reduced acoustic
modulus for the Debye « relaxation (solid line), viscosities and thermal diffusion or
background contribution (dotted line), and the superposition of both (dashed line).
The background contribution is the result with a damping rate I'4 equal to 5 percent

of the damping rate I'p at the peak of the relaxation spectrum.
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the background contribution from the total acoustic damping rate to study the
structural relaxation dynamics, or include a linear-w-dependent term in the analysis

of the total modulus spectrum.

3.3.2.2 Mountain Mode Dynamics

The ISTS response of Eq. 3.34 consists of two parts. The first “A” term describes
the behavior of simple liquids, including glass-forming liquids at high temperatures.
In such samples, sudden spatially periodic heating at wavevector q leads to spa-
tially periodic thermal expansion which occurs on the time scale of half the acoustic
oscillation period m/wa(q). There are a transient acoustic response consisting of
damped acoustic oscillations and a steady-state density modulation which decays
due to thermal diffusion at the rate I'yy(g). These are time-domain observations of
the Brillouin and Rayleigh features in the light scattering spectrum. Besides the
acoustic and thermal diffusion modes, the most striking feature of the response func-
tion G,r(q,t) given in Eq. 3.34 is the presence of a second exponential decay mode
contained in the second “B” term, which describes the modifications to the tran-
sient acoustic behavior for viscoelastic fluids. This mode, often called the Mountain
mode, is due to structural relaxation with a decay rate of cic;°r5'. Therefore, the
structural relaxation time can be directly extracted through ISTS measurement.
Note that in ISTS signal the existence of such a relaxation mode manifests itself as
an exponential rise instead of exponential decay because of its negative amplitude.
Physically it represents slow components in the time-dependent volume response of
the sample to sudden heating.

In G,,(q,t) as given by Eq. 3.33, there also appears an exponentially decaying
mode with a decay rate of c2c;?75". It seems that the relaxation information could
also be obtained directly from ISBS measurements. However, as discussed below,
the amplitude of this mode is often too small to be detected in ISBS. In the following
section we will mainly discuss the density response function G,r(q,t) measured in

ISTS.
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3.3.2.3 Intensity Ratio and Debye-Waller Factor

An important point can be made concerning the relative amplitudes of the three
modes given in Eq. 3.34. The amplitudes of the thermal diffusion, acoustic and
relaxation mode are A+ B, — A, and — B, respectively. The ratio of the amplitudes of
the relaxation mode to the thermal diffusion mode is therefore equal to —B/(B+ A).
Similarly the ratio of the amplitudes of the relaxation mode to acoustic mode is B/A.
At high frequencies, wsTp > 1, ¢4 = ¢, and A and B become —(x/c,)(c2/c2,)
and —(x/c,)(1 — c3/c%,), respectively. The nonergodicity parameter f,_.o(T') is then
related to the relative amplitude ratio of the relaxation mode to the thermal diffusion

mode in G,r(q,t) as

o B

when wy > 7' > T'y, i.e. when all four roots of the dispersion equation 3.29 are
well separated. The left-hand side of Eq. 3.46 has been derived separately {42].

The result in Eq. 3.46 is far more general than the Debye form for the memory
function ¢r(q,t). It will be shown in the next section that it holds for any model
of the memory function and so for any form of the relaxation function as long
as the characteristic time scales of the relaxation mode, thermal diffusion mode
and acoustic mode are well separated from each other. Before proving this, we
first inspect briefly Eqs. 3.34 and 3.46. If one divides both sides of Eq. 3.34 by
the amplitude of the thermal mode A + B, then Eq. 3.46 simplv states that the
nonergodicity parameter is determined by the amplitude of the » - axation. This
is a natural result of the definition of f,_o. Therefore, it should no. uepend on any
particular relaxation forms.

For the response function G,,(q,t) given in Eq. 3.33, the ratio between the

relaxation mode amplitude to that of acoustic mode (the first term) is

1 — 2/.2
ICB _ CO/COO

= . 3.47
AR+ B G 40

It can be seen that the ratio Icg becomes zero in both the low frequency limit



(waTp < 1), and the high frequency limit (ws7g > 1). Even in the intermediate
frequency range i.e. wyTp ~ 1, Icp is much less than 1. This means that the
relaxation mode may appear only weakly in the ISBS signal. Therefore neither the
relaxation dynamics nor the relaxation strength can be obtained easily from this
feature in ISBS data. The terms in the square brackets of Eq. 3.33 can be ignored
and only the first term is left which represents acoustic oscillations. Therefore,

Eq. 3.33 becomes approximately
GPP(q) t) = Appe—FAt Sin(‘-‘)At)- (3.48)

The acoustic properties can be usei to determine structural relaxation dynamics
through the complex modulus, but generally not the relaxation streagth since the
dynamic range of acoustic frequencies is usually not sufficient for separate determi-

nation of ¢ and c,.

3.4 Generalized ISTS Response Function

Equation 3.34 can be easily generalized to more complicated relaxational dynamics

such as the KWW stretched exponential function:
G,r(q,T)= A [e"r”‘ — e Tat cos(wAt)] + B [e'r"' - e"(‘/rh)ﬁ] . (3.49)

Here we have replaced the single-exponential relaxation by a stretched KWW func-
tion with characteristic parameters 7 = 7,,c% /c2 and S, reflected in the slow rising
mode. This generalized response function G,r(q, t) exhibits thermal diffusion, acous-
tic, and structural relaxation modes as described earlier by Eq. 3.34 but now the
relaxation mode is more complex.

Concerning measurement of the relaxation mode, ISTS is just like any other
response techniques as discussed in Chapter 1. This is because at ¢t = 0 the tem-
perature grating is instantaneously produced and the field can be considered to be

constant under the condition of I'y7p <« 1. The time-dependent density response
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to the field is measured. This is obvious by examining Eq. 3.49. If one drops the
terms in the first square bracket which describes the simple liquid behavior, then

one ends up with

Gor(q,T) = B [e™T#t — e~W/R°] (3.50)

Under the condition of I'y7p < 1, one would have G,r(¢,T)/B = 1—exp[—(t/1})"]
by replacing the first exponential term by 1. This is exactly the relation as described
in Eq. 1.6 between the relaxation function and the response function.

As discussed above, the relation 3.46 stiil holds for the KWW relaxation function
in the generalized ISTS response function of Eq. 3.49. We shall now present a
mathematical proof of this statement.

We first rewrite Eq. 3.18 under the conditions vp¢? <« coq and T'y < coq as

follows:

1 s+ ¢r(q,s)q*
s+Ty  s2+s[on(q.8)g> + Tu(y — 1)) + c§¢*

_ %Gpr(q,S) — (3.51)
By setting { = tz, G,r(q,t) becomes G,r(q,). Its Laplace transform G,r(q,s)
becomes G,r(q,3)/z with 3 = s/z and G,1(q,3) denoting the Laplace transform of
G,r(q,1). For the relaxational part of #1(q,t) there exist analogous relations, i.e.
oR(q,t) = ¢¥(q,1), and ¢%(q,s) = #7(q,3)/z. When z — 0 but rescaled time { is
fixed at a finite value, the a-relaxation process is separated from other processes, i.e.
the condition for Eq. 3.46 to hold is satisfied. In this limit, substituting the above
relations into Eq. 3.51 yields (c,/k)G,r(q,3) = 1/[5 + ¢2/$R(q,3)]. By performing

the inverse Laplace transform, one obtains

EB A 7\ (;f(q? {) _ C_Pi Zﬁi’f(q,i— i’) =, N
~Gor(g,t) = e T wdh o a G,r(q,1')di". (3.52)

It follows directly from this equation that, independent of any specific model,
a quasielastic peak in the kinematic viscosity spectrum tf;f(q,dJ) causes a corre-
sponding peak of G,r(¢q,&) for the density response and vice versa. The inte-

grated intensities vg and Bc,/k of the a peaks of the kinematic viscosity spec-

67



trum g;fvf(q,tb) and density spectrum G',,T(q,d)) are given by vp = éf(q,f — 0) and
Be,/x = —(c,/£)G,r(g,1 — 0), respectively. The limit { — 0 in Eq. 3.52 leads to

the result
—-B  wg/cl
&fc, 1+4wp/cd

(3.53)

With vg = ¢, — ¢}, Eq. 3.53 is the same as Eq. 3.46 since A + B = —&/c,. Similar
results have been shown [45, 63] for BS for any shape of the relaxation spectral peak,

for example, Debye, Cole-Davidson, or KWW forms, etc.

3.5 Comparison of ISS to Rayleigh-Brillouin Scat-
tering

Light scactering spectroscopy has been applied extensively to the study of liquid-
glass transition. The underlying theoretical development [27, 64-67] on the basis of
generalized hydrodynamics (Egs. 3.5-3.6) has been largely paralleled in this Chapter,
and fits to experimental spectra have been achieved through introduction of various
memory functions [43, 45, 46]. In this section, we discuss the relationship between
BS and ISTS.

As discussed above, ISTS data show acoustic, thermal diffusion, and structural
relaxation dynamics in features closely analogous to the Brillouin, Rayleigh, and
Mountain mode contributions to BS spectra. The spectral distribution of BS in
the single-relaxation-time approximation can be obtained to the lowest order, from
Eqgs. 3.7 and 3.8 with F' and @ being set to zero. The solution for the density

fluctuations is given by

TRS? 1
p(p,s) = 6p(q) {G,,,, [% + (55 + TRVB) s+vp+(c, — )R

PRI a5

Following the same procedure as above, the contributions to the ncrmalized

spectrum from both G,, and G,r terms can be determined. The result for the

68



spectral distribution o,, from G,, is

Ton(gyw) = A T4 + X b 2bATR 55)
,w) = y — ——, {3.5!
or\4 eB (w—wa)?+T%  (wHwa)?+T% "C»‘+cgc,,“rRz \
where
cicltR? — (%, — c2)q* + A q?
ApB — 0*A R4 = 02 - A , (356)
CoCa TR™ +C€aq
et r3? 4 (2 — 2)a? — c2e il
ApC — 0“4 'R 4(_30 — 0)‘}2 - 04 'R ) (357)
CoCq TR™ T Ciq
The spectral distribution o, from G,r is
4 I4
w) = A :
1. 2y 2c2citrp—1
1—-)—— 3.58
+( Yo, Tcwz-}-cgc;"rﬁz’ (3.58)
where
1\ cle7ir52 + c2q2
Arg = — (1 — 7) 2 B (3.59)
Y/ CCa TR™ T €aq
1 4 — ct)g?
Y] €Ca TR™ +Caq

0,p + 0,7 gives the total normalized BS spectral distribution obtained by Moun-
tain [27, 65, 67). It is seen that both o,, and o, exhibit a damped sound wave and
a relaxation process, while only o, exhibits thermal diffusion. From Eqs. 3.34, 3.55,
and 3.58, it follows that the spectral distribution o,r(g,w), but neither o,, nor the
total BS spectral distribution ¢,,+ 0,7, is proportional to the real part of the Fourier
transform of the density response function G,r(¢,t) measured in ISTS. This is to be
expected since ISTS signal results from density changes induced thermoelastically
through sudden heating while the BS spectrum results from density fluctuations
induced both thermoelastically through spontaneous temperature fluctuations and
adiabatically with no significant change in temperature. This is expressed through

the initial conditions Egs. 3.9 and 3.10 which are substituted into the preceding
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thermoelastic equations of motion.

Note that the generalized hydrodynamics equations described above are for an
isotropic medium. For anisotropic molecular liquids the BS spectrum includes a
significant contribution from polarizability anisotropy, mediated primarily through
molecular orientational motion [45, 46]. However, in polarized (VV) ISTS the lon-
gitudinal motion is excited selectively, since the transient heating does not orient
molecules. The anisotropic contribution to signal is usually negligibly small by
comparison, so the above theory is still applicable for anisotropic materials.

The Debye-Waller factor can also be obtained from the BS spectrum. From
Egs. 3.55 and 3.58, when wy > 73! > Ty the integrated areas of the Rayleigh
peak, Brillouin doublets and Mountain peak are given by 1 — 1/, ¢2/(yc ), and
(1 —c2/c2,) /v, respectively. Thus

8BS _ Mountain peak integmtf—:‘d area (3.61)

q—0 —

Mountain peak area + Brillouin peaks area’

In ISTS, the sum of the Mountain and acoustic mode amplitudes is equal to the
thermal mode amplitude, so the thermal mode amplitude was used as reference to
obtain the Debye-Waller factor. In BS, however, the contribution of Gy to the
total spectral distribution changes the relative amplitudes such that the ratio of
the Rayleigh peak area to the sum of Mountain and Brillouin peak areas gives the
Landau-Placzek ratio.

In practice, determination of the Debye-Waller factor for a glass-forming liquid
over a wide range of temperatures through either ISTS or BS presents challenges.
As the sample is cooled to temperatures even well above T, the Mountain mode
response, measured by T or its inverse, shifts from picosecond to millisecond time
scales in ISTS data or from GI'z to KHz linewidths in the BS spectrum. Deter-
mination of f,_.o(T') requires that the conditions w4(q) > 7' > T'y(q) be met.
Hence, at any single scattering wavevector ¢ this will obtain over a very narrow
temperature range. In ISTS, variation of the scattering angle over a wide range

is practical so that substantial variation of ¢ is possible. In BS, this is more (if-
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ficult. For this reason, ISTS currently presents more favorable practical prospects
for determination of the Debye-Waller factor over a temperature range wide enough
to permit critical testing of mode coupling theoretical predictions concerning its
temperature-dependent behavior.

Equation 3.33 gives the response function G,,(q,t) measured in ISBS, which
includes the oscillatory part and relaxational contributions. The dynamical param-
eters such as acoustic frequency, damping rate and relaxation time are the same as
those measured in BS. But the relative contribution of each mode to ISBS is differ-
ent from that to BS. As discussed above, ISBS data permit only weak observation
of the Mountain mode, and generally cannot be used to measure the Debye-Waller
factor. In addition, there is no thermal diffusion mode in ISBS to the lowest order,
unlike in BS. (For the solutions of ISS and BS to the first order, see Appendix A.).

To close this section, we will briefly discuss the relationship between ISTS and
another light scattering technique, photon correlation spectroscopy, which has been
applied to study the dynamics of glass-forming liquids [11, 12, 68], especially at
temperatures around 7,. Thermal diffusion and structural relaxation dynamics are
observed in PCS measurements. When the structural relaxation time 7 is much
longer than the thermal diffusion time 74 = ', the structural relaxation dynamics
are determined. In homodyne detection the measured time-correlation function
C(g,t) of the scattered light intensity is related to the normalized density-density
correlation function ¢(q,t) by [11]

C(([, t) = Bl + A1¢2(q1 t)a (362)
and in heterodyne detection the relationship between C(g¢,t) and ¢(q, 1) is [12]
C(g,t) = Bz + A26(q, ). (3.63)

Here B, and B, give the background signal levels measured at long times; A; and A,

are relative amplitudes that in practice can be considered fitting parameters. Often

#(q,t) is extracted from PCS data and fit with the KWW function. ISTS and PCS
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should yield the same a-relaxation dynamics, but in practice PCS is useful at lower

temperatures and slower time scales.

3.6 Discussion

In our treatment we simply generalized the ISS response functions obtained from
the Debye model to account for complex relaxation, without attempting to derive
complex behavior through the use of a specific model for the relaxation kernel. In
mode coupling theory, models have been used which permit numerical calculation
of the relaxation function and whose results can be approximated rather accurately
by the KWW function. Here we discuss the connection between the hydrodynamics
equations for ISS and MCT.

As reviewed in Chapter 1, the starting point of MCT is a closed set of gener-
alized kinetic equations (Eq. 1.20) for the density autocorrelation function @,(t).
It assumes that the nonlinear coupling of the density fluctuations and coupling of
density fluctuations to the currents are the cause of the structural relaxation. Anal-
ysis of Egs. 1.20 then reveals many features which resemble experimental findings
for glass-forming liquids. It is easy to show that the generalized hydrodynamics
Egs. 3.4-3.6 have the same structure as MCT Eq. 1.20. To do that, we first find a

formal solution to Eq. 3.6, which reads

Tat) = — [(aresp (— A’ (t—t')) 04, )

PoCy PoCy

—1 rt g2
i / dt’ exp (— g
por Jo PoCy

Then substituting the above equation and Eq. 3.4 into Eq. 3.5, one finds the equa-

(t - t')) 6p(g,1'). (3.64)

tion for the density response ép(q,t) under conditions of ideal time and wavevector

resolution:

" : kpT Lo Y
69(a,1) + via®6i(a, 1) + o a?6p(a,) + [ d'@(q,t — ¢)67(g, )
S(q) 0



= —¢* | Fo(g) + —“2-2Q0(q) exp —_/\qt : (3.65)
¢ S(q

with the memory function

kpTh
S(q)

8(0,8) = %680, ) + 2R 1) exp (— il t) , (3.66)

PoCy

where ¢f(q,t) = ¢1(q,t) — vL is the relaxational part of the kinematic viscosity.
It is seen that the left hand side of Eq. 3.65 has exactly the same form as that of
the MCT Eq. 1.20, while the right-hand side of Eq. 3.65 is simply the driving force
exerted through pulsed excitation in ISS. The only difference is that in MCT the
last term of the memory function ®(g,t) in Eq. 3.66 which results from the coupling
between density and temperature fluctuations has been left out. This difference is
of no importance since the exponential term in Eqgs. 3.65 and 3.66 can be replaced
by 1 under the condition I'y7p < 1, and that is the condition on which all the
main results in earlier sections are based. In the spirit of MCT, therefore, one could
derive the complex relaxation dynamics for the Mountain mode in the ISS response
functions by assuming the MCT relaxation kernel of Eq. 1.21, provided that the
acoustic and thermal modes are well separated from the Mountain mode.

As for short-time dynamics, MCT predicts that there is a secondary 3 relaxation
which precedes a relaxation in time. In the “mesoscopic” time window between the
microscopic vibrational period ~ 2! and the a-relaxation time 7,, both a and 3
relaxations obey critical power laws. If one again uses the MCT relaxation kernel
of Eq. 1.21, one should find that there is a 3 relaxation feature, preceding the o
relaxation dynamics as discussed above in ISS response functions. Here we will not
get into a deeper discussion of this. Rather we will assume the MCT results without
detailed proof and generalize the ISTS response function G,r(¢,t) in accordance

with them to include the 3 relaxation contribution:

PT(Q’ t) —-rHt —FAt
e - t
( ) € 5 e COS(UJA )

~{famoe™ Y 1 b, [G(t;0) + CVa(t/t,)]} . (3.67)
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Since the B master function G(t;¢) contains the von Schweidler decay, the initial
part of the « relaxation, the final term in Eq. 3.67 must be included to avoid double
counting. Also, both sides of Eq. 3.67 have been divided by the amplitude A + B
of the thermal diffusion mode, so the amplitude of the a relaxation mode gives the
Debye-Waller factor f,_o. In practice, ISS experiments, as will be presented in the
following Chapters, do not appear to have shown evidence of 3 relaxation dynamics
in the Mountain mode because the ohservations of this mode have been on time
scales longer than that the § relaxation occurs [9, 10, 69]. However, 3 relaxation
may be observed in the complex elastic modulus spectrum measured in ISS in higher

frequency range.

3.7 Summary and Conclusions

From the foregoing analysis, we conclude that ISS response functions can be con-
structed based on the generalized hydrodynamics equations which include nonlocal
behavior in time to describe long-wavelength cooperative motions in supercooled
liquids. An ISTS measurement of the density response to laser-induced heating in
supercooled liquids contains five dynamical parameters, assuming that the structural
relaxation dynamics can be described by two parameters as in the KWW form. Two
of these are the acoustic frequency and damping rate. By measuring them at several
wavevectors, the acoustic modulus spectrum can be constructed and used to exam-
ine the high-frequency structural relaxation dynamics. The third quantity, thermal
diffusivity, can be determined accurately from the long-time decay in ISTS signal.
The other two dynamical parameters are those of the Mountain mode which de-
scribes structural relaxation dynamics on nanosecond-millisecond time scales. This
response, unlike the others, is wavevector-independent, and permits complex relax-
ation dynamics at a given temperature to be determined from a single measure-
ment at a choice of wavevector which yields good separation between the acoustic,
structural relaxation, and thermal diffusion responses. At different temperatures,

different choices of wavevector may be needed to ensure this separation.
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ISTS data also yield the relative amplitudes of the Mountain and Brillouin fea-
tures. The amplitude ratio permits determination of the nonergodicity or Debye-
Waller parameter of the mode coupling theory. ISTS measurement of f,(T') in the
low-¢ limit is complementary to neutron scattering measurement of the integrated
intensity of the « (elastic) peak to give f,(T') at large ¢. Note that in ISTS, unlike in
neutron scattering, absolute measurement of scattering intensity is not necessary for
determination of the Debye-Waller factor, since the thermal diffusion mode provides
a reference for normalization of the response function at each temperature.

We have shown that both ISTS and BS measurements provide the same infor-
mation, in principle, concerning the acoustic mode, Rayleigh mode and Mountain
mode. As discussed above and also in Refs. [45] and [46], the Mountain mode dy-
namics and amplitude are often difficult to determine unambiguously through BS
alone, due to the limited wavevector range and frequency window and the possi-
bility of B-relaxation contributions to the spectrum which may make the analysis
complicated. It is particulariy difficult to obtain reliable information about struc-
tural relaxation dynamics and the Debye-Waller factor over a wide temperature
range without the capability for recording BS spectra in a wide frequency range at
a single wavevector and with substantial variation of the scattering wavevector.

At temperatures close to and below T,, PCS measurement can yield the Moun-
tain mode dynamics (although not the Debye-Waller factor). In some temperature
region, PCS and ISTS measurements should give the same results on dynamics.
PCS is most powerful in very slow time ranges (from us to many seconds) while
ISTS is well suited for faster (ns to many ms) time scales. It is interesting to note
that the condition for the Mountain mode to be observed in PCS is opposite to
that in ISTS. In PCS, one has to go to a large wavevector so that thermal diffu-
sion 1s faster than the density-density correlation dynamics which are determined
by structural relaxation and which are relatively slow at low temperatures. In ISTS,
a small excitation wavevector has to be used to extend to low temperatures so that
thermal diffusion is slower than the structural relaxation dynamics. Limitations on

how low a wavevector (i.e. how small an excitation angle) is accessible in an ISTS
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experiment ultimately prevent measurement of structural relaxation at very low 7.
PCS measurements are needed to go to even lower temperatures.

In conclusion, ISS response functions G,r(g,t) and G,,(g,t) have been derived
based on the generalized hydrodynamics equations, and their properties have been
discussed in detail. The most important results concern the possibilities for mea-
surement of Mountain mode dynamics and the Debye-Waller factor, which can be
used to test central predictions of the mode-coupling theory, and the fundamen-
tal connection between the structure of the mode coupling and ISTS theoretical

description.
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Chapter 4

Relaxation Dynamics and

Nnonergodicity Parameter of Salol

In the rest of this thesis, we will present our ISTS experimental studies on a couple
of model glass formers. As described by our theoretical model in Chapter 3, the
ISTS data contain contributions from three modes: the acoustic, thermal diffusion,
and relaxation or Mountain modes. With the current improved ISTS system as
described in Chapter 2, the relaxation mode can be monitored in the time range
from nanoseconds to many milliseconds permitting examination of predictions for
T-dependent structural relaxation dynamics. In addition, the relaxation strength
can be obtained from the relative amplitude ratio of the relaxation mode and ther-
mal diffusion mode, which allows testing of the MCT predictions concerning the
nonergodicity parameter f,. For the acoustic mode, the frequency range covered
goes from 10 MHz to several GHz, which bridges the frequency gap between ultra-
sonic measurements and Brillouin scattering. The characterization of the acoustic
mode in this frequency window can provide valuable information for testing of the
mesoscopic dynamics predicted by the MCT.

One of the model glass formers we have studied is the organic molecule salol. We

have performed measurements at multiple excitation angles or wavevectors in order
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to characterize both the relaxation mode and acoustic mode. In this Chapter!, we
present a detailed analysis of the relaxation mode. Both dynamics and relaxation
strength are analyzed and compared to the predictions of the mode coupling theory
of the liquid-glass transition. We will leave the analysis of the zcoustic mode to

Chapter 6.

4.1 Introduction

The development of the first-principles approach of mode-coupling theory to the
liquid-glass transition, reviewed in Chapter 1, has provided quantitative predictions
for complex structural relaxation dynamics which are assumed to result from the re-
tarded nonlinear interactions among density fluctuations. A central MCT prediction
concerns the « relaxation strength or the effective Debye-Waller factor f,(T), de-
fined as the integrated area of the « relaxation spectrum in the frequency doraain,
or equivalently, the amplitude of the a relaxation function in the time domain.
In idealized MCT where thermally activated processes are ignored, there occurs an
ergodic-to-nonergodic transition at a crossover temperature T, at which f,(T) shows
a square-root cusp. With thermally activated processes included in the extended
MCT, ergodicity below T is restored. In this case f,(T') is predicted to show similar
behavior except that the square-root cusp is somewhat smoothed over at tempera-
tures around T¢. The crossover temperature T, should be an intrinsic property of a
material and should depend on neither wavevector ¢ nor the experimental technique
used for determination of f,(T').

The predicted square-root cusp of f,(T') has been observed in several materials [2,
44, 73-75] through measurements of the integrated intensity of the « (elastic) peak
in the neutron scattering spectrum or the height of the plateau in the correlation
function ®(g,t) in neutron spin-echo experiments. Several experimental results have
been reviewed in Chapter 1. In the low-¢ limit, one way to determine f,(T) is

through the relation Eq. 1.47 by measurements of two limiting velocities ¢y and c,,

'Some of the materials in this Chapter have been published in Refs. [70-72).
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in ultrasonic experiments or Rayleigh-Brillouin scattering. However, as discussed
in Chapter 1, both techniques are insufficient for unique determination of ¢y and
teo, and thus f,_o, in a temperature range wide enough for the determination of
cusp-like behavior or the crossover temperature 7.

Analogous to neutron scattering, the other way to determine f,(T') in the ¢ — 0
limit is to measure the integrated area of the « relaxation peak in the frequency
domain or the amplitude of the corresponding feature in the time domain. This
requires that the measurement method have sufficient dynamic range to include the
entire « relaxation feature (usually several decades at a single temperature), and
that the o feature be well separated from other contributions to the frequency-
dependent or time-dependent signal. In Chapter 3 we have presented theoretical
results showing how fo(T') and T, can be determined in this manner through BS in
the frequency domain or impulsive stimulated thermal scattering (ISTS) in the time
domain. Contributions due to longitudinal acoustic waves, structural («) relaxation,
and thermal diffusion (i.e. Brillouin, Mountain, and Rayleigh modes respectively)
appear in both BS and ISTS data, in the former as spectral features resulting from
spontaneous fluctuations and in the latter as time-dependent responses to sudden
heating with short, crossed excitation laser pulses. In favorable cases, the three
features are well separated. Since the thermal diffusion and acoustic features are
strongly ¢-dependent and the Mountain mode is essentially g-independent at low ¢,
the BS or ISTS wavevector can be varied to optimize the separation of the Mountain
mode from the other features as the sample is cooled and the structural relaxation
dynamics (or relaxation spectrum) shift from fast to slow time scales (high to low
frequencies). In practice, unique determination of o relaxation dynamics and am-
plitudes is currently possible over a far wider wavevector range through ISTS than
BS, mainly because ISTS experiments at very small wavevectors (small excitation
angles) and measurements of very slow responses (out to millisecond time scales)
are not difficult.

To explore the capabilities for determination of Mountain mode dynamics, the

Debye-Waller factor f,_.o(T'), and T, and for testing of mode-coupling theoretical
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predictions, we have performed ISTS experiments on the glass-forming liquid salol.
This sample was selected for initial measurements in part because it is one of only
a few liquids for which neutron scattering determination of f,(T) at high ¢ (and
from the observed square-root cusp, a value of T}) has been reported. A baseline for
comparison to our results therefore exists. Determination of whether f,(7") values
at low ¢ (which are expected to differ substantially from those at high ¢) show the
square-root cusp predicted by MCT and, if so, whether this yields the same value
of T, ofter the possibility of a stringent test of MCT over essentially the complete
range of wavevectors.

In Sec. 4.2, we describe experimental methods. Qualitative features of ISTS
data are described in Sec. 4.3. In Sec. 4.4, data are analyzed quantitatively and
the results for the Debye-Waller factor f,_.o(T) and Mountain mode dynamics are

presented. Discussion and conclusions follows in Sec. 4.5.

4.2 Experimental Methods

Salol (phenyl-salicylate, melting point T,, = 315K, calorimetric glass transition tem-
perature T, = 218K) was purchased from Aldrich Chemical Company (nominal pu-
rity 99%) in crystalline form. The material was placed in a beaker covered with
pinholed aluminum foil and stored overnight in a 95 °C oven for dehydration. This
was important to avoid formation of ice crystals in the samples at around 0 °C.
The dehydrated liquid salol was loaded using a syringe and a 0.22 gm millipore
Teflon filter into the sample cell, which was also dried in the oven overnight. With
this procedure no crystallization occurred during the course of experiments, and the
samples could be used for months. The sample cell has movable quartz windows [76]
to minimize stress due to sample contraction upon cooling. This avoids cell window
breakage and sample cracking that otherwise may occur upon cooling through the
glass transition temperature. The sample cell was attached to the cold finger of a
closed-cycle cryostat. Temperatures were measured using a platinum KT D immersed

inside the sample, and temperature control was accurate to £0.05K. Temperature
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variations within the sample were less than 0.2 K from top to bottom, as determined
through ISTS measurement of the acoustic velocity in different sample regious. The
experiments reported here were conducted with a quasi-CW probe system as shown
in Fig. 2-2.

Data were collected with excitation angles of 1.31°, 2.17°, 3.03°, 4.68°, 7.22°,
12.25°, and 45.12°, corresponding respectively to scattering wavevectors of 0.1354,
0.2235, 0.3120, 0.4826, 0.7433, 1.260, and 4.532 um~'. The angles were measured
mechanically using a calibrated rotation stage, and are accurate to +0.05°. The cor-
responding wavevectors were determined through Eq. 2.1. For angles smaller than
10°, the relative error introduced by this method of angle measurement becomes un-
acceptably large and an alternative method for wavevector determination was used.
The acoustic velocities ¢ = wy4/q at several high sample temperatures were first
determined from ISTS measurements of the acoustic frequency w4 at large wavevec-
tors ¢. Similar measurements were then made at the lower wavevectors (smaller
scattering angles). Since the acoustic velocity at high temperature is g-independent
in our wavevector range, the lower wavevector values were then calculated. This
procedure was repeated at several high temperatures, and the uncertainties in the
smaller wavevector values were +0.0005 um~'. The wavevectors determined in this
manner yielded values of the excitation angles which were in agreement with those
measured using the rotation stage.

Data were collected upon cooling of the sample from 400K to 215K in intervals
of 5K in high and low-temperature regions and 2.5K at temperatures which showed
strong relaxation modes signals. Before recording data, the temperature was allowed
to stabilize for about 10 minutes to within £0.05K of the desired temperature.

Excitation at the highest scattering angle resulted in acoustic frequencies exceed-
ing the 1-GHz bandwidth of the detection electronics. For this angle, the acoustic
data were collected with the pulse probe system, and the relaxation and thermal
diffusion responses were recorded with the quasi-CW probe system. The two sets of

data were then combined to give the complete ISTS response at each temperature.
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Figure 4-1: ISTS data (dotted curves) and fits (solid curves) from salol at wavevec-
tor ¢ = 0.1352 pm™! at several temperatures. At all temperatures, the signal shows
damped acoustic oscillations at short times and thermal diffusion at long times. At
intermediate temperatures, an additional structural relaxation mode which mani-
fests itself as a gradual rise appears.

82



4.3 Qualitative Data Features

Typical ISTS data at high, intermediate and low temperatures at excitation wavevec-
tor magnitude ¢ = (0.1354 4 0.0005) pm ™! are displayed in Fig. 4-1. At all tempe--
atures, the data exhibit damped acoustic oscillations and a steady-state signal level
which decays due to thermal diffusion. At interinediate temperatures the steady-
state signal level is reached gradually, reflecting slow, nonexponential structural
relaxation dynamics,

At high temperatures (above 299.7K) where structural relaxation occurs on a
time scale faster than half the acoustic oscillation period 7/w4(q), the relaxing lig-
uid behaves like a normal liquid and data can be described with the first (“A”)
term only in Eq. 3.49. Following sudden, spatially periodic heating, thermal expan-
sion at the grating peaks leads to a density modulation which oscillates about the
steady-state level. After the acoustic oscillations are fully damped, the steady-state
density modulation (and ISTS signal) slowly decays through thermal diffusion. This
corresponds to the low-frequency limit discussed in Chapter 3.

As the temperature is decreased, structural relaxation slows down. When its
time scale becomes comparable to the acoustic oscillation period (i.e. the structural
relaxation spectrum overlaps the acoustic frequency), the sample can no longer reach
its steady-state response to the oscillating acoustic stress and so the sample compli-
ance at the acoustic frequency is reduced. This increase in stiffness results in a high<r
acoustic velocity, which appears in ISTS data as a higher freqv ‘ncy. Mechanical lag
between the oscillating acoustic strain and the other structural responses of the
sample also give rise to additional acoustic damping. The temperature-dependent
acoustic velocity and attenuation rate are shown in Fig. 4-2. [n addition, the slow
components of structural relaxation are observable directly in the ISTS data as a
gradual rise in signal, described by the stretched exponential term in Eq. 3.46. This
is the time-domain analog of the Mountain mode in the light-scattering spectrum.
It can be observed in ISTS data when significant structural relaxation occurs on

time scales slower than the acoustic oscillation period.
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Figure 4-2: Temperature dependences of longitudinal acoustic velocities (solid cir-
cles) and damping rates (solid squares) from fits to ISTS data at ¢ = 0.1352 um™'.
As the temperature is lowered, the sound velocity starts to deviate from co(7T') at
about 295 K due to siowing structural relaxation dynamics which overlap the acous-
tic oscillation period. The sound velocity increases to c.,(7') as the temperature is
lowered further and the structural relaxation dynamics become very slow compared
to the acoustic oscillation period. The damping rate shows a maximum when the
relaxation spectrum overlaps with the acoustic frequency at about 265K. Solid lines
are guides to eyes.
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As the sample is cooled further, the structural relaxation dynamics become sub-
stantially slower than the acoustic period. On the time scale of the acoustic period,
the sample is therefore solid-like and so displays a high acoustic velocity and low
acoustic attenuation rate. On slower time scales, the gradual volume response to
heating is observed directly. ISTS signal rises to its steady-state value, and finally
decays due to thermal diffusion. The structural relaxation dynamics, i.e. I'r and
A in Eq. 3.49, can be well characterized. Meanwhile, in the data recorded with the
1.31° scattering angle, as represented by Figs. 4-1 and 4-2, the Debye-Waller factor
can be determined from the amplitude ratio through Eq. 3.46 in the 250-238.8 K
temperature range within which the structural relaxation time I'y! is much longer
than the acoustic period but much shorter than the thermal decay time. Thus, the
condition wy > I'p > 'y for separation of the Brillouin, Mcuntain, and Rayleigh
features and for Eq. 3.46 to hold is satisfied.

At temperatures below 238.8 K, the structural relaxation dynamics become com-
parable to or slower than the thermal diffusion time at the excitation wavevector
chosen, and so the signal decays substantially due to thermal diffusion between grat-
ing peaks and nulls before the gradual rise of the Mountain mode has a chance to
reach its steady-state level to the initial temperature jump at the peaks. This makes
continued characterization of the relaxation dynamics or the Debye-Waller factor dif-
ficult. At very low temperatures, structural relaxation is substantially slower than
thermal diffusion and, as at high temperatures, the signal can be described by only
the “A” term of Eq. 3.49.

The temperature range over which structural relaxation dynamics and the Debye-
Waller factor can be determined can be increased by varying the wavevector magni-
tude ¢, since the acoustic and thermal diffusion responses are ¢-dependent while in
the range accessible to ISTS the Mountain mode is not. The range can be extended
to lower T' by using smaller wavevectors, at which the (¢*-dependent) thermal dif-
fusion dynamics can be slowed considerably to permit observation of the gradual
rise. With larger wavevectors, the (¢~'-dependent) acoustic period can be reduced

to permit observation of the Mountain mode at higher temperatures. Varying the



wavevector also permits characterization of the ¢-dependent acoustic velocities and
attenuation rates, from which relaxation dynamics on the acoustic time scales can
be deduced. In Fig. 4-3, we show the raw data (solid curves) and fits {dotted curves)
by Eq. 3.49 for temperatures from 268.7K to 240.8K collected at highest and low-
est wavevectors. It is evident from Fig. 4-3 that upon increasing temperature the

relaxation shifts toward shorter times.

4.4 Quantitative Analysis and Results

Here we present analysis of the Mountain mode dynamics and amplitudes, and
comparison of the r=sults to MCT predictions. Analysis of the acoustic response
will be presented in Chapter 6.

Since salol weakly absorbs the excitation light due to O-H vibrational overtone
absorption at 1.064 um,G,r(q,t) is the dominating term in Eq. 3.1, especially at
small ¢ due to the linear ¢g-dependence of the amplitude of G,,(¢,t). Data collected
at angles below 15° were fit to Eq. 3.3 with G,r(q,t) given by Eq. 3.49. At large ¢
corresponding to excitation angles above 15°, GG,,(g,t) in Eq. 3.48 was included in
the fits to data.

The solid lines in Fig. 4-1 represent the fits to data (dotted lines) at wavevector
q = 0.1354 um™!. The fitling parameters for acoustic velocity and damping rate
at this wavevector are plotted as a function of sample temperature in Fig. 4-2.
As discussed above, the acoustic velocity increases and the attenuation rate goes
through a maximum as the temperature is cooled. At higher wavevectors, these
changes occurred in higher temperature ranges at which the stri-tural relaxation
spectrum overlapped the higher acoustic frequencies.

The thermal decay rates I'y were determined from the long-time decays in ISTS
signal. At each temperature, they showed the expected ¢*-dependence as illustrated
in Fig. 4-4. The slope of the linear fit (I'y = Drq¢?) gives the thermal diffusivity
whose temperature depi:ndence is plotted in Fig. 4-5, which shows a smooth variation

above 238K and below about 230K, but a very rapid change between these temper-
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Figure 4-3: ISTS data (solid curves) and fits (dotted curves) by Eq. 3.49 of salol in
the intermediate temperature range collected at two different wavevectors. Signal
shows damped acoustic oscillations, and reaches a stead-state level rapidly at high
temperatures and more slowly (due to slow structural relaxation or Mountain mode)
at low temperatures. Signal decays at long times due to thermal diffusion.
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Figure 4-4: Thermal decay rates vs ¢? at four representative temperatures irom 390K
to 220K. At all temperatures, thermal decay rates show a linear ¢?-dependence. The
slope of the line determines the thermal diffusivity.
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Figure 4-5: Temperature dependence of the thermal diffusivity Dy measured in
this study, showing smooth variation above about 238 K and below 230K. As T
is decreased between these values, a rapid rise in D7 is observed. Above 215 K,
the thermal diffusivities were determined by the slopes of the linear ¢%-dependent
thermal decay rates and below 215 K, they were obtained from the measurement at
one angle, i.e. thermal decay rate divided by ¢°.

atures. This is presumably connected to the rapid drop in the value of the specific
heat ¢, measured through differential scanning calorimetry [77, 78], since thermal
diffusivity 7 is determined by A/(poc,) and the thermal conductivity A shows no
dispersion through the liquid-glass transition [79]. Note that the temperature range
of rapid variation is higher than the glass transition temperature T, = 218K at which
the specific heat, measured on very slow (many seconds) time scales, undergoes sub-
stantial change. This is because ISTS measurements of Dy are made on the time

scales of thermal diffusion across micron distances, i.e. microsecond-millisecond
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rather than many second time scales. ISTS data show changes in Dy when the
structural relaxation dynamics move through microsecond-millisecond time scales,
which occurs at temperatures higher than those at which the relaxation dynamics

reach time scales of many seconds.

4.4.1 Mountain Mode Dynamics

From fits to the data at temperatures where the Mountain mode is apparent, the
dynamic parameters ' and 3 as well as the relative amplitudes of A and B were de-
termined. To display the structural relaxation function &/¢; T') directly, the acoustic
and thermal diffusion signals, described by Eq. 3.49 and fitting parameters 'y, w4
and ['4, were subtracted from the square root of the data. The resulting relaxation
functions ¢(#; T'), whose strengths were determined by B/(A + B), are shown for
several temperatures in Fig. 4-6. To check the relaxation dynamics parameters, the
relaxation functions shown in Fig. 4-6 were fit with the stretched experimental func-
tion (dashed curves) to determine again the values of I'r and 8 which in all cases
agreed well with those from the original fits. It is evident from Fig. 4-6 that upon
decreasing temperature the relaxation dynamics shift toward longer times.

To compare the relaxation dynamics determined from differ-nt techniques, the
average relaxation times <7p> were calculated from the fitting parameters 3 and
tr = I'g'. The temperature-dependences of the dynamical parameters 3, g and
<TRp> are listed in Table 4.1. The values of 3 and 7 were determined from data
at several wavevectors wherever separation of the Mountain and other modes made
this possible. The values are determined uniquely with reasonable accuracy in the
238-281K temperature range, although at the higher temperatures in this range the
accuracy is reduced somewhat due to limitations in detection bandwidth.

The fitting parameter 3, together with the values obtained from depolarized light
scattering [9] and photon correlation spectroscopy [68] measurements, are plotted
in Fig. 4-7. The B values from this study are essentially constant at 0.52 + 0.03
in the 238.8-260.1K temperature range. This is verified in Fig. 4-8 which shows a

rescaled plot of structural relaxation functions determined from data in this range.
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Figure 4-6: Structural relaxation functions ¢(¢; T') extracted from ISTS data (solid
curves) and their KWW fits (dotted curves) of salol from 240.8 K to 270 3 K. Upon
increasing temperature the relaxation time decreases.
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Table 4.1: Fitting parameters for the structural relaxation dynamics of salol and
the average relaxation time at various temperatures.

T(K) TrR(pS) B <TR> (ps)
270.3 0.0050 0.63 + 0.07 0.007
268.6 0.0067 0.64 + 0.06 0.009
265.2 0.0149 0.68 + 0.06 0.019
263.7 0.0188 0.64 + 0.06 0.026
260.0 0.0413 0.54 £ 0.04 0.072
259.0 0.0642 0.51 £ 0.04 0.124
256.0 0.0867 0.51 + 0.03 0.165
253.6 0.1970 0.50 + 0.02 0.400
251.2 0.4285 0.48 £ 0.0! 0.915
249.9 1.291 0.54 £ 0.02 2.237
246.2 3.560  0.52 + 0.02 6.583
244.8 9.556  0.52 4+ 0.03 17.57
242.8 26.66 0.50 £ 0.02 49.57
240.8 67.09 0.50 + 0.04 134.2

The 3 values at low T determined through ISTS are in agreement with those deter-
mined through from PC5 measurements, within experimental uncertainties of the
latter. The 3 values determined through PCS, ISTS, and DLS measurements show
a sigmoidal shape with most of the variation at temperatures of around 265 K,
which will be shown below to be near the crossover temperature 1.. MCT predicts
temperature-independent a relaxation stretching above T, [9], but makes no explicit
predictions on T-dependent 3 values around and below T,. Temnperature-dependent
behavior similar to that reported here has been observed in other materials, often
with the strongest temperature dependence in the vicinity of T, [39].

In Fig. 4-9 we show the average relaxation times <7p> (T) determined from
ISTS measurements at several wavevectors, as well as the <7p> values from DLS [9]
and PCS [68]. The data from ISTS cover the gap between PCS and DLS measure-
ments and show a smooth variation between the two. The agreement between the 3
and <7p> values found from ISTS and PCS in the overlap region supports the as-
sumption in Chapter 3 that both techniques measure a similar dynamical quantity,

although the ranges of time scales differ and ISTS, but not PCS, gains access to
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Figure 4-8: The rescaled plot of the data below 260.1 K shown in Fig. 4-6. The
solid line represents a KWW master fit with 8 = 0.52.
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the acoustic response and the Debye-Waller factor. While MCT predicts a power-
law T-dependence of average relaxation time above T., its current status does not
provide a straightforward prediction of the T-dependence of <7;> below T.. We
employ a widely used Vogel-Tamman-Fulcher Eq. 1.3 to fit data in the low-T regime,
which yields Ty = 133 + 10K, Ty7r = 4790 K, and 07 = 3.0 x 107" ns. These
parameters are in accord with those obtained from dielcct ¢ measurements [3, 80]
to within experimental uncertainties. The solid line in Fig. 4-9 represents the fit
to Eq. 1.3. Although the VTF form appears to fit the low-T data very well, the
unrealistically small value of 7} = 3.0 x 107!® ns indicates that this functional form
does not correspond to a physically meaningful model of the liquid-glass transition

in salol.

4.4.2 The Debye-Waller Factor f, ((7T)

It is straightforward to obtain the nonergodictiy parameter f,_o(T) from ISTS data
where the condition wa(q; T) > I'r(T) > [y(q;T) was found to be satisfied. For
each wavevector ¢, we chose Tr(T') > 10y (¢; T) and T'p(T') < 10w, (q; T') as criteria
for determination of f,_.o(T') values through Eq. 3.46 from fitting parameters A and
B. The resulting f,_o(T) values (symbols) are plotted in Fig. 4-10 along with a
fit to the square-root cusp behavior (solid curve) predicted by MO'T, described by
Eq. 1.26. The fit yields parameters fe—o = 0.36 £0.01, hyo = 0.55 £ 0.05, and
T. = 266K + 1K. Note that f¢

s—0» Which may weakly depend on temperature,

is held to be constant for simplicity. It is seen that the nonergodicity parameter
shows a cusp at about 266K. This 7. value is in good agreement with neutron
scattering results of T, = (263 £ 7) K at ¢ = 1.5 A=! and ¢ = 1.0 A=" [75], which
confirms a ¢-independent value for 7. This result is also consistent with the previous
determination T, = (236 + 5) K from DLS [9].

Note that MCT predicts two-step relaxation dynamics: the strongly 1-dependent
a relaxation as discussed here, and a weakly T'-dependent, faster 3 relaxation. In
principle, the response function G ,r(q,t) is given by Eq. 3.67, which includes the

3 relaxation contribution. As described in Chapter 3, /3 relaxation has been found
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Figure 4-9: Temperature dependence of <7> from ISTS data at several wavevectors.
previous depolarized light scattering, and photon correlation spectroscopy. Data
from ISTS cover the gap between DLS and PCS and form a smooth curve. The
solid line represents a VTF fit to the low-T data. The fit follows the low-T data
very well. However, the fit yields an unrealistically small value of the quantity
T97F = 3.0 x 10713 ns. This indicates that VTF does not provide a useful physical
description of the temperature dependence of the average relaxation time of salol.
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Figure 4-10: Debye-Waller factor f,_.o(7T") (symbols) of salol versus T', obtained from
ISTS data at several wavevectors via Eq. 3.46. The results show a square-root cusp
at about 266K. The solid line represent a MCT fit to Eq. 1.26.
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in salol [9] and propylene carbonate [69] at all temperatures to occur on faster time
scales than those observed in the ISTS experiments reported here. £ relaxation
has been found to affect the acoustic part of ISTS signal [34], consistent with the
overlap bet"ween the B relaxation spectrum and acoustic frequencies of 1 GHz or
higher which are observed at high wavevectors. In: Chapter 6, we will present the

analysis of the 3 relaxation through acoustic modulus spectra.

4.5 Discussion and Conclusion

ISTS experimental data recorded from the glass-forming liquid salol with a quasi-
CW probe system have been presented. The data, extending over nanosecond-
millisecond time scales, permit determination of the acoustic, thermal diffusion,
and Mountain mode dynamics and the Debye-Waller factor over wide temperature
ranges. The MCT prediction of a square-root cusp in the Debye-Waller factor at a
temperature T, was confirmed. The value of T, = 266K is consistent with neutron
scattering and DLS results, which indicates the g-independence of T..

The values determined for the width of the relaxation spectrum, measured by
the stretching parameter 3, show a sigmoidal shape with most of the variation at
temperatures around T, indicating dynamical changes suggested by MCT.

ISTS provides nearly the only alternative to neutron scattering for determination
of the Debye-Waller factor and therefore for testing of the central MCT prediction
concerning its temperature-dependent behavior. Unlike neutron scattering, which
requires a multi-user experimental facility and extensive time and material commit-
ments, ISTS experiments can be conducted in a few seconds on a single laser table
with standard lasers and high time resolution. Besides, the cutoff frequency problem
encountered in neutron scattering is avoided in ISTS by collecting the data at dif-
ferent wavevectors. It is the wide wavevector range accessible to ISTS and the wide
dynamical range that make it possible for the determination of the Debye-Waller
factor and the relaxation dynamics over a wide temperature range.

The current apparatus of ISTS provides a window from ns to ms which permits
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characterization of the « relaxation mode directly in the time domain. Besides the
acoustic and thermal diffusion modes, the a relaxation strength and dynamics can
be measured whose results can be used to compare to the MCT predictions. In this
initial demonstration, measurements were made which confirmed earlier neutron
cattering resuits and showed the wavevector-independence of the Ti. value. The
results also confirmed our theoretical analysis of the ISS on glass-forming liquids
described in Chapter 3. In Chapter 5, we will extend ISTS studies onto an ionic

glass former.
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Chapter 5

The o Relaxation Dynamics and
the Debye-Waller Factor
Anomaly in Caj 4K 4(INO3)q 4

In Chapter 4 we have presented our very first ISTS experiment study of anlorga.nic
molecular glass former salol for the determination of the « relaxation strength, or
the Debye-Waller factor, as well as the relaxation dynamics. The wide dynamical
and wavevector ranges make it possible in ISTS data for the separation of the acous-
tic, relaxation or Mountain, and thermal diffusion modes in time. Thus it permits
- precise measurements of the relaxation dynamics and the relaxation strength, in
addition to the acoustic and thermal diffusion dynamics. From the temperature de-
pendence of the Debye-Waller factor, a crossover temperature T, is identified which
is consistent with other measurements. This finding, on the one hand, provides
support for the MCT idea of the dynamical crossover at a wavevector independent
temperature T,. On the other hand, it confirms our theoretical analysis of the ISS
technique described in Chapter 3. Previous experiments [33, 48-53] have shown that
ISS is a useful tool for characterizing acoustic dynamics in the MHz-GHz frequency
window. Our theoretical and experimental studies described in Chapters 3 and 4
have first demonstrated that ISTS is also a powerful tool for measuring the relax-

ation mode dynamics in a time range from nanoseconds to milliseconds and, most
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importantly, the amplitude of the relaxation mode or the Debye-Waller factor. Both
the dynamical information in this time range and the temperature dependence of
the Debye-Waller factor are crucial to the testing of MCT predictions.

For the second model system, we chose the much studied ionic glass-former
Cag4Ko6(NO3)1.4. In this Chapter! we present results of our impulsive stimulated
thermal scattering study of CKN concerning the Mountain mode dynamics and

strength.

5.1 Introduction

The ISTS experiment provides information on structural relaxation dynamics span-
ning sub-nanosecond through millisecond time scales, connecting the higher-frequency
(sub-GHz and above) regimes ordinarily studied through depolarized light scatter-
ing and Brillouin scattering with the microsecond and slower time scales examined
through photon correlation spectroscopy. Access to this temporal range permits
critical testing of MCT predictions concerning a relaxation dynamics and strength.
ISTS measurements are complementary to those of several other experimental
techniques. In terms of the range of time scales, ISTS provides access to sub-
nanosecond through millisecond regimes and therefore can complement dynamical
information obtained through polarized and depolarized light scattering spectro-
scopies (sub-GHz through several THz regimes for the latter) and photon corre-
lation spectroscopy (1076 — 10? second temporal range). DLS measurements have
permitted testing of MCT predictions of o and J relaxation scaling for several glass-
forming materials including CKN [10, 82]. PCS experiments [11, 12] have revealed
stretched-exponential « relaxation dynamics in CKN on microsecond and slower at
temperatures near the liquid-glass transition temperature T;. Impulsive stimulated
scattering measurements on CKN, conducted with an early version of the exper-
imental apparatus [34, 48], provided access to some of the intermediate temporal

range with a signal-to-noise ratio insufficient for examination of the Debye-Waller

1Some of the materials in this Chapter have been published in Refs. {72, 81].
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factor. In Chapter 4, we present an ISTS measurements on the molecular glass
former salol and demonstrate the current capabilities for reliable determination of
fo(T'), and showed the predicted temperature-dependent square-root cusp at a tem-
perature which matched the value of 7, determined through neutron scattering
measurements of f,(7T'). In addition, the a relaxation dynamics were found to be
fit well by a stretched exponential function with values of the exponent /3 that were
essentially temperature-independent except near 7., where they decreased rapidly
with temperature. These results supported the MCT picture of a change in the
diffusion mechanism at temperatures around T..

The Debye-Waller factor can be determined at high wavevectors from the inte-
grated area of the quasi-elastic feature (due to « relaxation) in the neutron scatter-
ing spectrum. In CKN, a crossover temperature T, was estimated at about 370K
through measurements of f,(7T') [2]. In addition, neutron spin-echo and time-of-
flight results [3] showed the two-step (a and J) relaxation process and the scaling
properties predicted by MCT.

In determinations of f,(T") through the integrated area of the quasielastic neutron
scattering peak, there is a cutoff frequency w, which is often given by the size of
the experimental frequency window. As discussed in Ref. [1] and in Chapter 1, the
value deduced for f, in practice depends on the precise choice of w,. If the value of
w, is too large, B relaxation processes or even phonon features may be attributed
to the o peak. If w, is too small, part of the @ peak may be omitted. The problem
becomes more serious at higher temperatures, since the « peak broadens to include
higher frequencies. When this happens, a correction is needed [73] which introduces
additional uncertainty in the f, value. Similarly in neutron spin-echo measurements,
if the a relaxation moves in the experimental window there is no obvious plateau
in the correlation function ®(q,t). As a consequence, the reading of the plateau
value, i.e. the Debye-Waller factor is difficult. In this case one needs to know the
inflection point t? at which the 3 relaxation gives way to the « relaxation. But with
the limited time range available to the measurements, it is difficult to determine t?

by itself. Sometimes one has to use the value from other measurements [75]. That is
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the case for CKN. In the first publication [2], the data f,(T) showed rapid decrease
as increasing temperature, but did not exhibit an obvious cusp at T.. Later, the
data were given a more cautious interpretation [41].

The acoustic frequency in ISTS plays a role similar to the cutoff frequency in
neutron scattering. However, the cutoff frequency problem can be avoided to some
extent in ISTS. Since the acoustic frequency is proportional to the wavevector q,
the cutoff frequency can go much higher by using large wavevectors so that the o
relaxation can still be observed at elevated temperatures. Therefore the temperature
range over which the Debye-Waller factors are determined is extended. In addition,
since the acoustic response at light-scattering wavevectors is underdamped, it is
easily identified and distinguished from the relaxational response.

In Sec. 5.2, we discuss the details of experimental arrangerrent. The experimental
data are presented in Sec. 5.3. In Sec. 5.4 we present data analysis and comparison

to theoretical predictions. Concluding remarks follow in Sec. 5.5.

5.2 Experiment

High-purity KNO3 (99.999%) and Ca(NO3),- 4H,0 (99.9995%) were purchased from
Alfa Products. The appropriate amounts of KNO3; and Ca(NOj),- 4H,0 were dis-
solved in deionized water to make a (60 mol%) KNOj - (40 mol%) Ca(NOj3), mixture.
A small amount of Na,CrOy4- 4H,0 (less than 5 x10~ mol%) was added to increase
the absorption of the 355 nm excitation pulses. The mixture was filtered with a
0.22 pm millipore filter and dried in an oven (~ 550K) for at least 24 hours. The
sample was then transferred into a 20 mm path-length cylindrical glass cell which
was preheated to about 400K. A platinum RTD was held by a copper stopper and
immersed inside the sample for temperature measurement. The sample cell was
embedded inside a copper block which was heated with resistive heaters. Another
platinum RTD was used to monitor the temperature of the copper block which was
regulated with a Lakeshore temperature controller. The entire sample assembly

was enclosed under vacuum. The sample was exposed to the vacuum environment
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through a small hole in the copper stopper of the optical cell. Before collecting data,
the sample was slowly heated up to and kept at about 560K overnight in order to
remove any residnal water. With this procedure, no crystallization occurred during
the entire course of experiments, even when the sample was cooled down to T} very
slowly and left at cach temperature for several hours.

The ISTS experiments reported here were carried out with a system similar
to that described in Chapter 2, but with a 355 nm excitation wavelength. The
excitation source is a Q-switched, mode-locked, and cavity-dumped Nd:YAG laser
which yields a 500 pJ, 1064 nm pulse of 100 ps duration at a repetition rate of up to
1 kHz. This output is first passed through a lithium triborate (LBO) crystal to yield
light at 532 nm. The green light is then mixed with the remnant 1064 nm radiation
in a B-barium borate (BBO) crystal to yield excitation pulses of approximately 10
pJ at 355 nm. The pulse is split with a 50% beamsplitter into two excitation pulses
that are cylindrically focused and crossed at an excitation angle 8g. The laser spots
are about 100 pm high and 5 mm wide at the focus. As discussed in Chapter 2 the
large width is necessary so that the laser-generated acoustic waves observed in ISTS
measurements do not leave the excitation region before they are fully damped.

The quasi-CW probe system described in Chapter 2 was employed to detect
the ISTS signal. That is, the electro-optically gated laser beam from a single-
mode argon laser at 514 nm is incident at the Bragg angle for diffraction from the
transient grating induced by the excitation pulses. Diffracted signal is directed into
an amplified fast photodiode and temporally resolved with a digitizing oscilloscope.
The digitized signal is transferred to a computer for storage and subsequent analysis.

ISTS measurements were performed with excitation angles of 2.90°, 2.01°, 1.33°,
1.09°, 0.76°, 0.75°, and 0.74°, which correspond to scattering wavevectors of 0.896,
0.623, 0.423, 0.336, 0.235, 0.232, and 0.227 um™!, rgspectively. The angles were
measured mechanically using a calibrated rotation stage with an accuracy of £0.05°.

The corresponding scattering wavevectors were determined as follows. The acoustic
velocities ¢ = wa/q at several high temperatures were first determined from ISTS

measurements of the acoustic frequencies w4 at several large wavevectors whose
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values were determined through mechanical measurement of the excitation angle
0 . Similar measurements of the velocities were then made at lower wavevectors.
Since the acoustic velocity at high temperature is g-independent in our wavevector
range, the lower wavevector values were calculated based on the velocity values.
The measurements were repeated at several high temperatures and the results were

1. Data were collected

averaged, yielding wavevector uncertainties of + 0.002um™~
upon cooling of the sample from 560K to 345K in intervals of 5K in high-temperature
regions and 2K at temperatures where the relaxation mode appeared strongly in
signals. Before recording data, the temperature was allowed to stabilize for about

10 minutes to within & 0.05K of the desired temperature.

5.3 ISTS Data

Fig. 5-1 shows typical ISTS data at ¢=0.336 pm~! and T = 388.2K. The acous-
tic, thermal diffusion and structural relaxation modes are all present. Figure 5-1A
exhibits damped acoustic oscillations at short times and the structural relaxation
mode (slowly reaching a steady-state level in signal) on a longer time scale. Fig-
ure 5-1B displays thermal diffusion dynamics which are even slower. These two
parts of the data were joined by matching the signal intensities in their overlapping
temporal region. The connected data are displayed on a logarithmic time scale in
Fig. 5-2, together with data at other temperatures at this excitation wavevector.
It is seen that the ISTS signa] reaches a steady-state level rapidly at 392.6K and
much more slowly at 367.0K, which reflects the slowing down of the structural relax-
ation dynamics. At temperatures higher than 392.6K, structural relaxation occurs
on a time scale comparable to or faster than half the acoustic oscillation period
m/wa(q) at this scattering wavevector. Further characterization of the relaxation
mode at this wavevector is not possible. Characterization of the relaxation mode
at higher temperatures was achieved with larger scattering wavevectors, at which
the acoustic frequency was higher. Figure 5-3 displays the data collected at two

higher wavevectors. As shown in Figs. 5-2 and 5-3, the lower the temperature, the
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Figure 5-1: Typical ISTS data (solid curves) and fits (dotted curves) from CKN at
388.2K at a wavevector g=0.336 um ™!, resulting from density responses to sudden
heating by the two crossed ps laser pulses. (A) Damped acoustic oscillations at
short time scales and the nonoscillatory, gradually rising signal due to structural
relaxation on longer time scales. (B) Thermal diffusion dynamics at long times.
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Figure 5-2: Data of Fig. 5-1 shown on logarithmic time scale including the acous-
tic, relaxation, and thermal diffusion modes, along with the data at several other
temperatures collected at the same ¢ = 0.336 pm~!. Upon cooling, the acoustic
oscillations become faster and the thermal diffusion rates show a very weak temper-
ature dependence. In addition, the signal reaches its steady-state level rapidly at
high temperatures and more slowly at low temperatures, the latter revealing slow
and nonexponential structural relaxation dynamics.
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Figure 5-3: Logarithmic plots of ISTS data (solid curves) and fits (dashed curves)
from CKN, collected at wavevectors of 0.623 and 0.896 pm~!.
mit characterization of structural relaxation at higher temperatures than the data
collected at smaller ¢ since the acoustic frequencies are higher. This extends the
temperature range over which structural relaxation dynamics can be determined.
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longer time scales at which the signal reaches a steady-state level, which reflects the
slowing down of the structural realxation. Below 367.0K, the structural relaxation
dynamics become comparable to or slower than the thermal diffusion rate 'y, which
prevents further characterization of the relaxation mode at this wavevector. Lower
wavevectors were used to extend characterization of the relaxation mode to lower
temperatures. Above 411.1K, the relaxation mode cannot be characterized because
the relaxation time is comparable to or shorter than half the acoustic oscillation
period at the highest ¢ reached in this experiment.

We now present detailed analyses of the a relaxation strength and dynamics,

and compare the results with MCT predictions.

5.4 Data Analysis and Discussion

Equation 3.3 with ISTS response function G, given by Eq. 3.49 yielded excellent
fits to the raw data collected at all temperatures and scattering wavevectors, as
illustrated by the dotted lines in Figs. 5-2 and 5-3. Fits to the data yielded the
dynamical parameters describing the acoustic, thermal diffusion, and « relaxation
modes as well as the relative amplitude A/B from which the relaxation strength
or Debye-Waller factor f,_o can be derived. With good temporal separation of the
acoustic, relaxation, and thermal diffusion modes, the fitting parameters were deter-
mined uniquely with reasonable accuracy. Uncertainties in each of the parameters
were determined by fixing individual parameter values progressively farther from
their best-fit values and refitting the data, letting the other parameters vary, until
adequate fits could no longer be obtained. The uncertainties determined in this
manner were supported by statistical analysis through use of the F statistic test [83,
84].

In no data were there any significant contributions to signal arising from impul-
sive stimulated Brillouin scattering, an alternative photoacoustic excitation method
used in earlier experiments on pure CKN [48] but substantially weaker than ISTS

in the doped CKN solution used for the present experiments.
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5.4.1 The Debye-Waller Factor f,_(T)

The Debye-Waller factor f,_, was determined through Eq. 3.46 by using the fit-
ting parameter A/B, which was obtained from those data in which the conditions
wa(¢;T) > Tr(T) > Ty(q;T) held. In Fig. 5-4, fy—o(T) values (symbols) ob-
tained with different wavevectors are plotted. It is evident that f,_,o(T') shows a
weak cusp-like anomaly as predicted by MCT. The solid curve in Fig. 5-4 repre-
seni:s the best fit to Eq. 1.26 with the fitting parameters f7_, = 0.575 £ 0.005,
hq—o = 0.36 £ 0.02, and T, = 378K + 2K. In the inset of Fig. 5-4, we display the
Dehbye-Waller factor obtained at a single wavevector of 0.235 um™!, and the fit to
Eg. 1.26 which gave the same crossover temperature 7, within uncertainty. This T
value is in good agreement with the results from depolarized light scattering [10,
82], neutron scattering [2], and Brillouin scattering [45]. Note that the Debye-Waller
factor in Fig. 5-4 does not show a sharp cusp anomaly at T, presumably due to
activated thermal hopping processes which are accounted for in the extended MCT
We have, for simplicity, still used Eq. 1.26 to fit f,—o(T') and to identify the crossover

temperature 7.

5.4.2 o« Relaxation Dynamics

The dynamical parameters I'g and § describing « relaxation were obtained by fitting
data at various wavevectors in the temperature range 362.7-411.1K. The average
relaxation times <7p>= (7r/B)[(1/8) (I'(z) denoting the gamma function) were
then calculated. The results are listed in Table 5.1. The temperature dependence of
<7gp> is shown in Fig. 5-5, and indicates no ¢-dependence in the wavevector range
examined. Also plotted in Fig. 5-5 are <71p> valucs determined from DLS [10]
zud PCS [11, 12]. The data in this study span the gap between DLS results at
high frequencies and PCS measurements on longer time scales, and show a smooth
variation between them. Note that <7p> values from DLS have been properly
scaled as discussed in Ref. [10]. The <7p> values from this study coincide with

those from DLS and PCS in their overlapping regions, which suggests that the three
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Figure 5-4: Temperature dependence of the Debye-Waller factor f,_.o (symbols)
determined from ISTS data at several wavevectors via Eq. 3.46. The best fit (solid
line) to Eq. 1.26 yields a crossover temperature T, = 378 + 2K.
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Table 5.1: Fitting parameters for the structural relaxation dynamics of CKN and the
average relaxation time at various temperatures. The uncertainties in temperature

are + 0.1K; in T, £8%; in 3, £0.03; and in <7p>, +10%.

T(K) Cr(ps™!) B <tR> (us)
711 456, 058 3.5 x10°°
106.1 231, 058  6.82 x10°3
4041 151, 058  1.04 x10-2
309.1 79.5 058 198 x10°2
3947  59.1 0.58  2.66 x102
392.6  43.0 0.58  3.67 x102
388.2  19.5 058  8.02 x1072
3845  9.84 058 161 x10!
3819 533 058  2.93 x10!
379.8 258 059  6.04 x10~!
3779 2.98 057 713 x10!
375.5 1.28 0.58 1.28

373.2 6.96 x10~! 0.57 2.32

370.6 3.72 x107! 0.56 4.46

367.0 9.81 x1072 0.52 19.0

364.8 6.18 x1672 0.52  30.2

362.7 1.25 x107%2 0.52 150.
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Figure 5-5: Temperature dependence of the average relaxation times <7p> from
the present ISTS, previous DLS, PCS (from Ref. [11]), and PCS (from Ref. [12])
measurements. The solid line represents a fit to Eq. 1.28, in which T, was given by
the value determined from f,_o(7T"). The fitting parameters are v = 3.3 & 0.2 and
<rp>= (0.9 £ 0.3) ps.
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measurements probe similar dynamical processes.

According to the MCT scaling prediction, the « relaxation scale T (or <7p>)
above T, is given by the power-law (Eq. 1.28) since Tp = 7,¢2,/c} and the tem-
perature dependences of 7p and 7, should be the same. A fit of <7p> (T') values
above T, to Eq. 1.28 is shown in Fig. 5-5 (solid curve) with T; fixed at the value
determined above. The data at high T' are consistent with the MCT prediction,
with values of the power-law exponent ¥ = 3.3 £ 0.2 similar to those determined
from the DLS data [82]. In the context of the extended MCT, activated hopping
processes are assumed to be responsible for moderation of the power-law divergence
at temperatures close to T,. As discussed in Ref. [29], Eq. 1.28 is not valid below
and close to T.

The stretching exponent values 8 are nlotted in Fig. 5-6, together with values
obtained from DLS [10], PCS [11, 12], and neutron scattering [2]. The values ob-
tained from this study are approximately constant with 8 = 0.58 £0.03 for 7' > T..
The 3 values obtained from ISTS, neutron scattering, and DLS, show no tempera-
ture dependence within their uncertainties from just above 378K (= T¢) to 468.2K,
yielding the value of 8 = 0.58 (dotted line in Fig. 5-6) in this temperature range
. This finding provides support for the MCT prediction of constant « relaxation
stretching above T..

As the temperature is reduced to below T, the B values deduced from this
study decrease. In a narrow range of overlap at low temperatures, they agree well
with results from PCS [12]. At still lower temperatures, two PCS studies [11, 12]
indicated somewhat different, constant values for /3 in the 351-365K and 341-359K
ranges. In any case, we may conclude from our results and those of PC5 that the
B values change significantly at temperatures near and below T,. This is consistent
with the physical picture of very different mechanisms for « relaxation above and
below T,. Experiments on a very different glass former, the organic molecular liquid
saiol presented in Chapter 4, showed qualitatively similar results.

Before closing this subsection, we briefly review a couple of previous light scatter-

ing results on CKN. One was from a frequency-domain Brillouin scattering study (83,
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Figure 5-6: Temperature dependent relaxation stretching parameters § from the
present ISTS study at several wavevectors, neutron scattering, DLS, and PCS (from
Ref. [11]), and PCS (from Ref. [12]. The dotted line represents the constant 3 value
of 0.58 above T, determined from thi- study, neutron scattering and DLS.
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86] and the other was from a time-domain impulsive stimulated Brillouin scattering
study [48]. While the former performed measurements of the acoustic frequency
and the acoustic attenuation rate as a function of temperature at two different
wavevectors, the latter mapped out the acoustic modulus spectrum by making mea-
surements at multiple wavevectors covering more than two decades of wavevector
range. Both studies suggested single exponential relaxation dynamics at high tem-
peratures and a stretched relaxation at low temperatures. The finding of single
exponential structural relaxation at any T is contradictory to the combined results
from our present ISTS study, DLS, and neutron scattering, which all show constant
stretching from about 378K to 468.2K. Although our ISTS study does not concern
the acoustic dynamics, several comments may be in order. As experimentally well
established, the relaxation dyramics in viscous liquids span more than 2 orders of
magnitude in time or frequency at a single temperature and more than 14 orders
from the melting point T, to the calorimetric glass transition 7. Therefore, one
has to examine the relaxation dynamics over a sufficiently broad range of time or
frequency scales and sample temperatures to permit reliable description of material
behavior or heuristic models. Brillouin scattering studies like the one performed on
CKN [85] only cover about two decades of frequency range, which certainly does
not permit characterization of the Mountain mode dynamics or determination of
the two limiting velocities ¢y and ¢ over a wide temperature range. In the ISBS
study, acoustic velocities and attenuation rates on CKN were determined from 50
MHz to 4 GHz. This range, including the Brillouin spectra [85], permitted adequate
elucidation of the relaxation spectrura at some temperatures, but at high temper-
atures, at which Debye relaxation dynamics were reported, the relaxation spectra
were cut off at the 4 GHz frequency which was the highest that could be observed.
However, it is particulaﬂy important to map out part of the high frequency wing
of the relaxation spectrum. This is because relaxation spectra with different func-
tional forms differ mostly in the high frequency region. They are almost identical
in the low frequency wing. Therefore the acoustic data at high temperatures where

only the low frequency wing of the relaxation peak was observed cannot be used to
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deduce single-exponential decay.

5.4.3 o« Relaxation Scaling above T,

To illustrate the « relaxation function ¢(¢;T) and its scaling directly, the acoustic
and thermal diffusion contributions to ISTS signal can be subtracted from the square
root of the data as indicated in Eq. 3.49. The results divided by A + B give the
relaxation function ¢(¢;T), which is shown in Fig. 5-7 from 411.1K to 367.0K. The
dotted curves in Fig. 5-7 represent the stretched exponential fits. The resulting
dynamical parameters I'r and B were found to be in good agreement in all cases
with those from the original fits.

Time-temperature scaling of the a relaxation function at T' > T, according to
Eq. 1.27 is shown in Fig. 5-8. The rescaled results F'(t/7g;T) versus t/7g are shown
for the relaxation functions in Fig. 5-7 except those at the lowest two temperatures
(well below T.), with 73! = T values determined from the fits. All the experimental
data from 375.5K to 411.1K fall on a stretched exponential master curve (solid curve)
with 8 = 0.58. It is not possible to scale the data below 375.5K on the same master
curve. This is consistent with the fact that the 8 values below 375.5K were found to
be significantly smaller than 0.58. Note that we have included the data at 375.5K,
since this temperature is just below T, (378.1K) and the g value is still very close

to 0.58.

5.5 Conclusions

Impulsive stimulated thermal scattering has been used to explore the a relaxation
dynamics as well as the relaxation strength, or the Debye-Waller factor f,(T'), of the
glass former CKN. A cusp-like anomaly in the temperature dependence of f,_,o(T),
rounded somewhat near the crossover temperature T, = 378K, was observed, con-
sistent with the prediction of mode-coupling theory. The value of T, is in good
agreement with results from neutron scattering and DLS studies, which indicates

the ¢g-independence and technique-independence cf this result.
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Figure 5-7: Structural relaxation functions ¢(¢;T') of CKN from 367.0K to 411.1K,
extracted from ISTS data shown in Figs. 5-2 and 5-3 (solid curves) and their
stretched exponential fits (dotted curves).
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The « relaxation dynamics in the 411.1-362.7K temperature range, within which
they change from several-nanosecond to many-microsecond time scales, are described
well by the stretched exponential function. In the wavevector range of 0.227-0.896
pm~! used in this study, the relaxation dynamics are independent of wavevec-
tor. Above T, the stretching parameter shows no temperature dependence with
B ~ 0.58, in good agreement with the scaling law prediction of MCT. Below T,
B decreases with decreasing temperature. It may continue to decrease for temper-
atures below 262.7K, the lowest temperature at which the a relaxation dynamics
could be determined in our experiments. The average relaxation times well above
T. are consistent with the power-law dependence predicted by MCT.

The experimental findings in this study are consistent with the scenario for the
liquid-glass transition which emerges from mode-coupling theory. There exists a
crossover temperature T, at which the temperature dependence of the a relaxation
strength or Debye-Waller factor shows a square-root singularity. Above T, nonlinear
interactions between the density fluctuations, but not thermally activated processes,
determine the o relaxation dynamics and their temperature variation (i.e. scaling
laws and the power law divergence of the relaxation time scales). Without thermally
activated hopping, a sharp transition from an ergodic liquid to a non-ergodic ideal
glass state would occur at T.. With thermally activated processes, a relaxation
is restored at T < T. while the divergence of the relaxation time scale and the
singularity in the Debye-Waller factor are moderated. Instead of being an ideal
transition temperature, T, marks a crossover of the mechanism for a relaxation .

In summary, the predictions of mode-coupling theory tested by ISTS in this
work are well supported by the results. ISTS is well suited for determination of
the Debye-Waller factor and the crossover temperature, as well as the structural
relaxation dynamics which are characterized by direct observation as in this Chapter
and Chapter 4, or through observations of the acoustic mode which will be described
in Chapter 6. ISTS provides a wide dynamic range, extending from nanoseconds (or
less if a pulsed rather than CW probe is used) to many milliseconds, some of which

is difficult to access with other light-scattering methods. In addition, the wide range
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of scattering angles that can be used permits separation of signal contributions that
often overlap when the range is more restricted. A current experimental challenge is
extension of the method to shorter time scales and to both higher and lower acoustic
frequencies, with the objective of elucidation of relaxation dynamics (including the

faster 3 relaxation) over wider time and temperature ranges.
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Chapter 6

Structural Relaxation in Salol

from Acoustic Dynamics

6.1 Introduction

As reviewed in Chapter 1, in a mesoscopic frequency window, the so-called g-
relaxation regime, there is predicted to be a common [-correlator G(t) for cor-
relation functions @xy () of any variables X and Y as long as they couple to the
density fluctuations. The time and temperature dependences of ¢xy(t) are given
by the B-correlator G(t) in leading order. It has been shown [82, 87] that in the
glass former Cag 4Ko6(NO3)1.4, G(t) derived from DLS spectra provides a consistent
description of neutren scattering data. '

Structural relaxation in glass formers induces a frequency dependence of the
elastic moduli M(w). Thus one can obtain structural relaxation information by
studying the frequency-dependent behavior of M(w). Since the elastic modulus is
the autocorrelation of a stress tensor component which is coupled to the density
fluctuations through the Navier-Stokes Eq. 3.5, the frequency dependence of the
acoustic modulus M”(w) in the B-relaxation regime should follow the corresponding
B-susceptibility spectrum of G(¢): x"(w) = wG"(w) = w f5° cos(wt)G(t)dt, which
is common for any susceptibility spectrum x"(w) like that from DLS or neui;fon

scattering. So far to our knowledge there has been no such comparison reported.
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This is partly because mechanical measurements in the §-relaxation window (from
MHz to GHz above) are difficult. Over the last several years it has been shown
that an optical technique, impulsive stimulated light scattering including ISTS and
ISBS, is applicable to the study of the elastic properties in liquids and amorphous
materials [33, 48-53]. From ISS measurements of acoustic frequencies and damping
rates, the complex elastic modulus spectra were constructed in the 10 MHz -10 GHz
range to examine relaxation dynamics in this range.

As described in Chapter 3, ISTS provides not only acoustic dynamics, but also
the structural relaxation function directly. Under favorable conditions it also gives
the « relaxation strength, or Debye-Waller factor, whose temperature dependence
is predicted to exhibit a square-roct cusp at a crossover temperature T, within
the MCT. In Chapters 4 and 5, we have presented ISTS experiments on the glass
formers salol and CKN and analysis of the structural relaxation mode concerning
its dynamics and strength. In this Chapter, we shall present the second part of our
ISS studies on glass former salol: characterization of the acoustic mode dynamics
and comparison of the acoustic modulus spectra with the MCT predictions.

Salol is a fragile liquid in Angell’s strong-fragile classification scheme [88]. It
has been the object of numerous studies including ISTS described in Chapter 4,
dielectric spectroscopy [5], DLS [9, 82], neutron scattering [75], and photon correla-
tion spectroscopy [68]. In particular, the susceptibility spectra of salol from DLS [9,
82] were compared with MCT. The B-susceptibility spectra x”(w) were obtained in
their experimental spectral window of sub-GHz to 4 THz and extrapolated to even
lower frequencies. According tc MCT, the derived S-susceptibility x”(w) should
show the same frequency dependence as any other susceptibility spectra, including
the acoustic modulus M"(w) or compliance J”(w). A comparison M"(w) or J"(w)
to the results obtained from DLS measurements is therefore possible.

This Chapter is organized as follows. In Sec. 6.2, the experimental methods ars
discussed. Section 6.3 describes the qualitative features of ISTS data. The acoustic
modulus and compliance spectra are presented in Sec. 6.4. In Sec. 6.5 the analysis

and comparison to theoretical predications and DLS spectra are shown. Finally the
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results are discussed in Sec. 6.6.

6.2 | Experimental Methods

We used the excitation system with short R pulses as pump sources as described in
Chapter 2 and employed two alternate probe systems to detect the material excita-
tions. For excitation angles 8 smaller than 13°, at which the acoustic frequencies
are within the bandwidth of the fast photodiode and transient digitizer, the quasi-
CW probe beam was used. For fg above 13°, the acoustic frequencies are high so
that the pulse probe system was used to collect the acoustic data. Other details of
the experimental setup and sample preparation have been described in Chapters 2
and 4.

To map out the frequency dependence of the acoustic modulus M(w,) over a
wide frequency range, data were collected with 20 excitation angles g from 0.5°
to 45°. The angles and the corresponding wavelengths are listed in Table 6.1. The
wavelengths corresponding to the angles above 10° were determined through Eq. 2.1
with the angle g measured mechanically using a calibrated rotation stage. For
angles smaller than 10°, the wavelengths are determined in the way described in
Chapter 4.

Since salol weakly absorbs the excitation light due to O-H vibrational overtone
absorption at 1.064 pm, ISTS is the dominating excitation mechanism, especially at
small g. Therefore the signal is primarily contributed by G,r(q,t) given by Eq. 3.49.
Only at large wavevectors must the G,,(q,t) (Eq. 3.48) contribution to signal be

included.

6.3 Qualitative Features of ISS Acoustic Data

Figure 6-1 shows typical ISTS data at various temperatures with an excitation
wavevector magnitude ¢ = 0.7433 pm~!. On the left-hand side are displayed

damped acoustic oscillations at short times and on the right-hand side are exhibited
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Figure 6-1: ISTS data (solid curves) and fits (dotted curves) to Eq. 3.3 with G ,r(g, 1)
given by Eq. 3.49 of salol at wavevector ¢ = 0.7433 um™! at several temperatures
recorded with the quasi-CW probe system. The short time acoustic oscillations
are shown in the left-hand side and the long time thermal diffusion dynamics are
displayed in the right-hand side. In the intermediate temperature range, ISTS signal
slowly reached the steady-state level and even slower at lower T, which reveals slow
and nonexponential structural relaxation dynamics.
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Table 6.1: Summary of excitation angles fg and their corresponding grating wave-
lengths used in ISTS experiments on salol.

Angle 0  Wavelength Angle 0  Wavelength

(degrees) (um) (degrees) (pm)
0.50 123.3 3.85 15.81
0.87 70.19 4.52 13.58
1.23 46.47 5.12 11.74
1.47 41.20 7.22 8.453
2.10 29.08 8.65 7.061
2.13 28.02 10.30 5.922
2.62 23.21 12.25 4.995
3.05 20.13 19.50 3.149
3.45 17.63 37.90 1.640
3.73 16.44 44.93 1.393

longer-time dynamics including the structural relaxation mode (slowly reaching a
steady-state level in signal) and the thermal diffusion mode. Note that the acous-
tic data are shown only up to 0.5 ps for clarity. The features of all three modes
change as the sample temperature is reduced. The acoustic frequency w, increases
with decreasing temperature and the acoustic damping rate I' 4 reaches a maximum
at about 270.9 K. The relaxation mode, which manifests itself as a gradual rise
in signal, appears only in the intermediate temperature range and becomes slower
as T is decreased. The thermal decay rate monotonically increases with lowering
temperature and shows a rapid increase around 241K at this q.

These changes occur because structural relaxation dynamics dramatically slow
down upon cooling. At high T', relaxation occurs on a time scale faster than half
the acoustic oscillation period 7/w4(q), so local liquid structure adiabatically fol-
lows the acoustic oscillations. Following sudden, spatially periodic heating, thermal
expansion at the grating peaks leads to a density modulation which overshoots
and oscillates about the steady-state level. After the acoustic oscillations are fully
damped, the steady-state density modulation decays due to thermal diffusion. The
low-w-limit acoustic velocity ¢o and thermal diffusivity of the liquid are measured.

As T is decreased, structural relaxation slows down and the structural relaxation
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spectrum passes through the acoustic frequency. The overlap between the struc-
tural relaxation spectrum and acoustic frequency induces dispersion in the acoustic
frequency and attenuation rate. As the sample is cooled further, the structural
relaxation spectrum moves away from acoustic frequency toward lower ones. On
the time scale of the acoustic oscillations no significant structural relaxation can
occur and the sample is therefore stiffer which results in a higher acoustic velocity,
i.e. higher frequency in ISS data. Meanwhile the acoustic damping rate becomes
smaller. In addition, the sample can no longer reach its steady-state density response
to the oscillating acoustic stress. Instead, the density modulation slowly rises to its
steady-state value and finally decays through thermal diffusion. This permits direct
observation of the slow components of structural relaxation, called the relaxation
mode in Chapters 3-5.

At even lower T, the structural relaxation spectrum overlaps the thermal decay
rate, which results in dispersion of the thermal diffusion mode. For the lowest
temperatures, close to T}, the relaxation spectrum shifts to frequencies below even
the thermal diffusion rate. Structural relaxation is then frozen on the experimental
time scale, so the relaxation mode does not appear in ISTS data. The sample
behaves like a solid. The high-w-limit acoustic velocity ¢, «nd thermal diffusivity
of the solid-like sample or glass are obtained.

For all wavevectors, data exhibit the same T-dependent trends, but at differ-
ent wavevectors the acoustic dispersion and attenuation maxima occur at different
temperatures. The larger the wavevector, the higher the temperature for the great-
est acoustic dispersion and damping rate maxima. The same is true for the rapid
change of thermal diffusion rate. Since wy ox ¢ and 'y ox ¢?, the large ¢ means
high acoustic frequency w4 and fast thermal diffusion rate I'y. As sample tempera-
ture decreases, the structural relaxation spectrum which shifts to lower frequencies

therefore overlaps with the higher w4 or 'y first, then the lower one I'yy.
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6.4 Acoustic Dynamics

By employing the Levenberg-Marquardt nonlinear least-squares algorithm, we have
fitted the data to Eq. 3.1 with G(q,t) = G,r(q,t) given by Eq. 3.49 for 0 < 15°,
and the other data are fitted with G(q,t) = G,r(q,t) + G,p(q,t) where G,,(q,t)
is given by Eq. 3.48. From the fitting parameters, the acoustic dynamics, thermal
diffusion dynamics, and relaxation dynamics and strength in the intermediate T
range were obtained. In Chapter 4, we have presented the characterization of the
relaxation mode dynamics and strength and the comparison of the results to MCT
predictions. In addition, the thermal diffusion dynamics have been presented. Here
we describe detailed analysis of the acoustic mode dynamics and comparison of the
longitudinal acoustic modulus spectra with MCT predictions and depolarized light

scattering spectra.

6.4.1 Acoustic Parameters

In Fig. 6-2, the acoustic frequency w4 and damping rate I'4 are shown as functions
of temperature for ten of the twenty wavevectors used, which exhibit the features
discussed above. All the damping rate curves display a very asymmetric peak,
which is typical of relaxation-coupled behavior. The peak temperature moves to
higher T for larger q. The variation of the acoustic frequency, or acoustic velocity
shown in Fig. 6-3 is closely related to the acoustic damping data. No frequency
dispersion appears at low and high temperatures, and in the relaxation region at
intermediate T a well marked change occurs from liquid-like to solid-like values.
The liquid-like velocity from 275K to 400K follows a linear T dependence given
by ¢o(T) = 2419m/s — 3.15m/(s - K) x T K, which is represented by a solid line
in Fig. 6-3. In Chapter 4, T-dependent values of the Debye-Waller factor f, in
the low-¢ limit have been determined from the amplitude of the relaxation mode
contribution to signal. These values show a square-root cusp described by Eq. 1.26.
With ¢p and f,—0, we can derive the solid-like value ¢, through Eq. 3.46. The open
triangles in Fig. 6-3 represent the values of ¢, from 263K to 290K determined in
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Figure 6-2: Temperature dependences of the longitudinal
damping rates of salol measured at different wavevectors.

acoustic frequencies and
In all cases, the acoustic

damping rate shows a maximum and the maximum position shifts to higher tem-
perature for larger ¢q. The variation of the acoustic frequency reflects the damping

data. At the maximum of the damping rate, the acoustic
dispersion.
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this way. Note that the ¢y values (open Diamond in Fig. 6-3) used for calculating
Coo Of two lowest T were deduced through linear extrapolation. Later we will use
the two limiting velocities of ¢y and ¢, determined as described here to analyze the
acoustic modulus spectra in terms of the KWW relaxation function.

As displayed in Fig. 6-2, the acoustic frequency ws and damping rate 'y were
measured at fixed q. However, in the analysis that follows we need to examine the
acoustic velocity and damping rate as functions of acoustic frequency at constant
temperatures. To facilitate the generation of such data, we carried out spline inter-
polation for the T-dependences of the acoustic frequency and attenuation rate at
each wavevector q. The parameters for a set of temperatures common to all ¢ were
thus obtained.

Before preceding, we need one more data preparation. As discussed in Chapter 3,
the measured acoustic damping rate I'4 originates from two different processes:
structural relaxation contribution 'p and background contributions I'f. Obviously
it is I'r which is that we are interested in. Therefore we need to separate I'g from I 4.
Since at high or low T, the structural relaxation spectrum is either in a much higher
or much lower frequency range compared to the acoustic frequency, the structural
relaxation contribution to the acoustic damping rate is negligibly small and the
measured acoustic damping rate gives the background contribution. We therefor..
made an assumption that the background contribution I'g is constant or weakly and
linearly dependent on T', based on the damping rates at high and low T' at each ¢
(solid lines in Fig. 6-2). Then the difference between I'4 and I'§ gives the acoustic
damping rate I'r due to structural relaxation.

In what follows we will focus our attention not on the acoustic velocitics and at-
tenuation rates themselves but on the reduced complex acoustic modulus M(w4)/ po,
or reduced complex acoustic compliance J(wa)po = (M(wa)/po)~! [62], as functions

of acoustic frequency wy at fixed temperatures.

131



2500

0.08952 pm’!
0.2707 pm*
0.5354 pm!
1.995 pm!

4517 pm’*
C

o

2000

S ba & b ® O

v (m/s)
>

1500

l(m I 1 l 1 I 1 I 1
200 250 300 350 400

T(K)

Figure 6-3: Speed of sound versus temperature in salol at several wavevectors. The
high temperature data give the limiting velocity co which follow linear 7-dependence
(solid line). The values of ¢y at the two lowest T' are linear extrapolations. The
infinite velocities ¢,, at intermediate T are the results from Eq. 3.46 based on ¢
and the Debye-Waller factor determined in Chapter 4.
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Figure 6-4: Complex longitudinal acoustic modulus of salol at several temperatures.
(Part A) Imaginary part M"(wa)/po vs wa. (Part B) Real part M'(w4)/po vs wa.
While a peak is observed at 270K in M"(w4)/po, 2 minimum is visible at low T'.
However, the increase of M"(w,)/po as increasing wy cannot be attributed entirely
to the f relaxation since M"(w4)/po contains the contribution from the viscosities
and thermal diffusion, which alone could result in a minimum as shown in Fig. 3-1.
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6.4.2 Total Acoustic Modulus Spectra

With the help of Egs. 3.38 and 3.39, the reduced complex acoustic modulus M(w4)/po
was calculated from the acoustic parameters for a set of temperatures common to
all ¢. The results were tabulated as a function of acoustic frequency wy4. Fig. 6-4
shows the real and imaginary parts of M(wa)/po at various temperatures. While
the low-frequency side of the relaxation spectrum is observed at high T and the
high-w side is seen at low T, a peak is visible in the imaginary part M"(w4)/po
(Part A of Fig. 6-4) at intermediate T in the range of acoustic frequencies probed.
A minimum in M"(w4)/po versus wy is also observed at low T. But as discussed
in Chapter 3, this minimum is not entirely due to the crossover of the a and f
relaxation processes. There is a contribution from a linear-w-dependent term, since

M"(w4)/po displayed here is the total imaginary part of acoustic modulus.

6.4.3 Structural Relaxational Part of Acoustic Modulus

The structural relaxational part of the reduced acoustic modulus Mgr(w4)/po can be
easily obtained from w, and I'p through Eqs. 3.44 and 3.45. The real and imaginary
parts of Mgr(w4)/po at various T are plotted as a function of the acoustic frequency
wy in Figs. 6-5 and 6-6. Again, as in the total reduced acoustic modulus spectra
M"[po, we observe the low frequency wing of the relaxation spectra at high T', a
relaxation peak at about 270K, and the high frequency side at low T'. However, there
is a major difference between the spectra M"/po and MF/po at low T. That is, the
minimum in the M”/py spectrum either disappears in our experimental frequency
window or shifts to higher frequency in the Mp/po spectrum. Later we will come
back to discuss the positions of the minima.

One can also analyze the acoustic dynamics through the complex acoustic com-
pliance. Since Jpy = (M/po)~", we have a simple relation between them: Jj =
M4y /|Mg|? and J% ~ Mp/|Mg|*. From these relations the compliance spectra were
generated. As will be shown below, the spectra Jppo and Jgpo around the o relax-

ation peak are much different from Mp/p and MF/p, respectively. However, away
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Figure 6-5: The structural relaxational part of the reduced longitudinal acoustic
modulus above 270K. The imaginary part is shown in the top and the real part in
the bottom. The solid lines are fits of the data to Eq. 6.1 with the KWW relaxation
.unction. Note that the two limiting velocities ¢p and co, are fixed at the values
given in Fig. 6-3. Therefore only two parameters are left, the stretching parameter
B and the characteristic relaxation time 7. Within the experimental uncertainty,
B is found to be constant from 265K to 290K.
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Figure 6-6: The frequency dependence of the structural relaxational part of the
reduced longitudinal acoustic modulus below 263K. As shown in the bottom, the
real part Mp/p is nearly frequency independent in the acoustic frequency window
probed, except at 263K. We therefore fit the data at 263K to Eq. 5.1 with an a-
relaxation-only KWW function (solid lines), although # relaxation might already
have effects on the measured spectrum.
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from the o relaxation peak in the high frequency range both Mg/ pe and Jgpo follow
the common frequency dependence x”(w) as predicted by MCT.

6.5 Analysis of Acoustic Modulus Spectra

6.5.1 o Relaxation Peak

We first present the analysis of the acoustic modulus spectra above 263K where the
peak or the high-w wing were observed. Around the « relaxation peak, the acoustic

modulus can be expressed in terms of the relaxation function spectrum h(z) as

MR(2)/po = (€3 — ) — (c5o — cg)h(2), (6.1)

h(z) is related to the relaxation function ¢(t) such as the KWW function through

the relaxation

h(z) = /_ :° dte[—dip(t)/dt]. (6.2)

Both the real and imaginary parts of spectra were simultaneously fitted to Eq. 6.1
with the stretched exponential relaxation function ¢(t). The solid lines in Figs. 6-5
and 6-6 represent the fits. Note that with the two limiting velocities ¢y and ¢, fixed
at the values determined as described above, there are only two free parameters left:
the structural relaxation time 71, and stretching parameter 8. Wiihin experimental
error, the stretching parameter shows no T-dependence with 8 ~ 0.50 in the tem-
perature range of 263K to 290K. Above 290K, the relaxation spectra move out of
our experimental frequency window to much higher frequencies, which do not per-
mit characterization of the relaxation dynamics. Below 263K, the relaxation peak
is farther away at low frequency and only a portion of the high-w wing is observed
in Mz /po. Also, Mp/po (Part B of Fig. 6-6) is almost constant across the acoustic
frequency window probed in this T range. Therefore we have not tried to fit the
spectra with Eq. 6.1. Within MCT at low T these parts of spectra should be located

in the f-relaxation regime and should follow the B relaxation dynamics described
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Figure 6-7: Comparison between the longitudinal acoustic modulus and compliance
spectra of salol at 270K. The compliance spectrum is narrower than the modulus
spectra and peaks at lower frequency.
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by Eq. 1.45. We will present the analysis of those spectra at 7' < 263K in Sec. 6.5.2.

The compliance spectra above 263K show features similar to their counterpart
modulus spectra: a peak at 270K, low-w v;iing at higher T, and high-w side at lower
T. However, they are significantly different from each other quantitatively. 'The
difference betwcen them is exemplified in Fig. 6-7, where the real and imaginary
parts of the compliance and modulus at 270K are shown along with the fits. The
modulus spectrum is broader and has a maximum at higher frequency. The average
relaxation times < 7;> and <7 > satisfy the relaxation <7;>=<71L > M/Mp
approximately, where the average relaxation time <7>=7I'(1/8)/B8. The average
relaxation times <7;> and <7;,> are plotted as functions of temperature in Fig. 6-8,
together with those from ISTS (Chapter 4), DLS [9], and PCS [68]. While <7;>
values at 263K and 270K are approximately equal to < g > values from ISTS,
they seem to deviate from < 7gp > above 270K. This suggestion, however, needs
further experimental investigation because only part of the relaxation spectra at
these temperatures was observed. Thus there are large uncertainties for the <7;>

determined at these temperatures.

6.5.2 [(-Relaxation Regime

Figure 6-9 displays the real and imaginary parts of the reduced acoustic modulzs
MRg/po and cempliance Jrpo at temperatures below 263K. The real parts of both
modulus and compliance spectra exhibit nearly no frequency dependence at any T
except 263K where the relaxation peak is close to the experimental window. How-
ever, the imaginary parts show significant changes across our experimental frequency
range. We thus focus on the imaginary part of the spectrum. First we plot both

M4%/po and Jppo in a double log-log scale in Fig. 6-10. As can be seen, the shapes
R R

of both spectra at lower three temperatures resemble each other in the entire fre-
quency range. This is not surprising, given the relation Jj = Mp/|Mg|®. Since
|Mg|? =~ |Mp|? away from the o peak and M}, is almost frequency-independent as
shown in Part B of Fig. 6-9, one thus has Jg o« Mp. According to MCT, these

parts of the spectra are in the B-relaxation regime and can be described by the
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Figure 6-10: The imaginary parts of the reduced longitudinal acoustic modulus and
compliance of salol shown in Fig. 6-9 are plotted on the log-log scale. Except at
263K, the shapes of both spectra resemble each other in the whole frequency range.
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interpolation function of Eq. 1.45. Due to our limited frequency window, fitting of
the spectra to Eq. 1.45 is not practical. Instead, we will follow theoretical guidelines
to compare the acoustic modulus and compliance spectra with the S-susceptibility
spectra obtained from DLS, which covers a higher frequency range than ISS.

As predicted by MCT, the acoustic modulus spectrum (see Eq. 1.34), the com-
pliance spectrum, and the susceptibility spectrum from DLS can be described by
a single (-susceptibility spectrum x”(w) up to a multiplying factor. In the log x”
versus logw plot, all the spectra should overlap by shifting the spectra along the
ordinate. The B-susceptibility spectra x”(w;T) have been obtained from the depo-
larized light scattering spectra in the range sub-GHz to 5THz [82]. We therefore
plot in Fig. 6-11 the DLS spectra (thin solid curves), reduced acoustic modulus spec-
tra Mf/po (open symbols), and reduced compliance spectra Jgpo (solid symbols)
along with the B-susceptibility spectra x”(w) (thick solid curves) deduced from the
DLS susceptibility spectra, including exirapolation to lower frequencies than those
covered by the DLS spectra, at several temperatures on a log-log scale. As can be
seen from Fig. 6-11, the acoustic spectra Mp/po and Jgpo at three lower temper-

atures overlap with the low-frequency part of DLS spectra and coincide with the

predicted-B-susceptibility spectra—y”(w).—At-263K,-only part-of data-overlaps-with

X"(w), presumably because it is close to the « relaxation peak. Although only part
of the 3-susceptibility spectra was observed in Mp/po and Jgpo, which do not per-
mit determination of the minimum frequency, the results nevertheless show that the
acoustic data are consistent with (-susceptibility spectra x”(w) derived from DLS.

To overlap the spectra at each T, we have shifted Mp/po and Jppo along the
ordinate. The temperature dependences of the amount shifted, log(hprs/har) and
log(hprs/hy), are shown in Fig. 6-12. Since we are dealing with M} /po and J§po,
not My and Jg directly, we have not accounted for T-dependence of density py.
Also, as discussed in Ref. [87], the critical amplitude hprs from fitting of the DLS
spectra with the MCT predictions is temperature dependent. T-dependences of both
density po and amplitude hprs may therefore contribute to the smooth temperature

dependence of log(hprs/hn) and log(hprs/hy).
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Figure 6-11: Relaxational spectra of salol from ISS acoustic data (symbols), together
with DLS susceptibility spectra (thin lines) and the extended MCT fits (thick lines).
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DLS susceptibility spectra.
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6.6 Conclusions

Impulsive stimulated light scattering experiments have been carried out to study the

structural relaxation-of-a-supercooled-organicliquid; salol:—Longitudinal-acoustic
modes are characterized over 2 decades of acoustic frequencies from 10 MHz to sev-
eral GHz. The relaxation dynamics are analyzed through the frequency-dependent
structural relaxational part of acoustic modulus and compliance spectra, which are
constructed from the measured acoustic frequencies and modified damping rates (af-
ter subtracting the background contribution). The observed structural relaxation
parts of the acoustic modulus and compliance above 263K are fitted to the a re-
laxational spectrum described by the KWW function. Within experimental error,
the stretching parameter 3 is found to be T-independent in the range from 263K
to 290K. The spectra below 263K are found to be coincident with B-susceptibility
spectra derived from DLS up to a multiplying factor.

While our results are consistent with one of the MCT predictions that any cor-
relation functions of quantities coupled to the density fluctuations have the fac-
torization property shown in Eq. 3.29 in the 3-relaxation regime, only part of the
B-susceptibility spectra was measured in our acoustic experiment. The important 3
relaxation parts were not mapped out thoroughly and thus the minimum frequencies
could not be determined. Previous studies on salol by Brillouin scattering have been
reported [36, 46]. One was performed at a 90° scattering angle [36] and the other at
173° [46]. From these studies we can extend our acoustic modulus spectra to much
higher frequency range. However, one study did not give the width of the Brillouin
peaks [46] and the other did not cover a wide enough temperature range [36]. Thus
estimation of the background contribution to the width of the Brillouin peaks is not
possible. In the latter case, if we neglect the background contribution and calcu-
late the acoustic modulus, the data points at 253K and 263K are well above our
highest-frequency data points in Fig. 6-11 (Data were not reported below 248K.).
Therefore, more acoustic measurements in the high frequency range are needed to

test the MCT predictioné in the entire S-relaxation regime. Our study simply shows
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that the results are consistent with other measurements, but does not provide strong
new evidence in support of MCT. The most stringent test would be to map out the
acoustic modulus spectrum in the S-relaxation regime including the 3 relaxation,
to determine the power law exponents, to measure the minimum frequency and
minimum acoustic modulus, and then to compare the results with those from DLS.
Much effort in this direction is needed to elucidate the acoustic dynamics in the
B-relaxation regime.

In conclusion, we have demonstrated, by using the glass-former salol as an ex-
ample, that ISS is useful for measuring the acoustic dynamics over a range of MHz-
GHz frequencies which is inaccessible to other techniques. We have also presented
a guideline for analyzing the acoustic dynamics. The measured acoustic damping
rate contains a background contribution, which is often ignored, and a contribution
from the structural relaxation. One way to account for this, as in the present chap-
ter, is to subtract the background contribution from the measured total acoustic
damping rate and then calculate the structural relaxation part of the longitudinal
acoustic modulus spectra. The other way is to calculate the total acoustic modulus
spectra and then analyze the spectra by including a linear-w-dependent term and
a structural relaxation term in the fitting function. Through this data analysis, we
have shown that our results are in agreement with the results from depolarized light

scattering studies and the prediction of the mode coupling theory.
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Chapter 7

Orientational Relaxation and
Transverse Acoustic Wave

Propagation in Salol

7.1 Introduction

In Chapters 2-6, we have described VV impulsive stimulated light scattering from
viscous liquids. The VV ISS data of supercooled liquids as presented in Chapters 4-6
show characteristic viscoelastic features. Upon cooling, transport coefficients such
as viscosity and thermodynamic derivatives such as acoustic modulus as we have
modeled in Chapter 3 become frequency dependent. We have demonstrated that
VV ISS is very useful for studying structural relaxation in glass-forming materials.

The slowing down of structural relaxation is also manifest in depolarized light
scattering spectra. A particular signature of structural relaxation is the Rytov Dip,
i.e. a negative central line observed in the depolarized spectrum [35, 89]. It is gen-
erally explained in terms of coupling between the molecular anisotropy density and
the transverse current [90-92]. However, if the elasto-optic, Pockels constants are as-
sumed to be frequency dependent, one would obtain a Rytov Dip [93] even for point
particles with scalar polarizability [94, 95]. In the latter case for an isotropic system,

multiple scattering from density fluctuations or dipole-induced-dipole (DID) contri-
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bution is the origin of the depolarized light scattering, in addition to the contribution
from the transverse acoustic mode at low temperatures. Recently, depolarized light
scattering spectra of supercooled liquids with more than four decades of frequency
range have been recorded on a number of glass formers including salol [9], CKN [10],
propylene carbonate [69], glycerol [96], Zinc Chloride [97], o-terphenyl [98], tricresyl
phosphate and glycerol [99], and m-toluidine [100], and have been found to exhibit
many of the characteristics predicted by mode coupling theory. In order to compare
the DLS spectra directly with the predictions of MCT which concerns the density
fluctuation dynamics, the spectra for some of the materials have been interpreted as
arising primarily from multiple scattering or DID mechanism. A recent study {101}
has shown that DLS spectra in salol arise predominantly from orientational fluc-
tuations instead of DID. The question becomes why the orientational correlators
measured in DLS exhibit the same properties as the density correlators predicted in
MCT.

Features analogous to those in VH Rayleigh-Brillouin scattering have been ob-
served in time-resolved depolarized impulsive stimulated depolarized light scattering
(VH ISS) on the glass-forming liquid triphenyl phosphite [51]. The orientational
dynamics and the structural relaxation spectrum associated with the transverse
acoustic motion have been investigated ai a number of excitation wavevectors. In
this Chapter, we report preliminary results of a VH ISS study on salol. Our main
objective is to study the structural relaxation processes which couple to the shear
acoustic mode. By mapping out both the longitudinal acoustic modulus spectrum
and transverse acoustic modulus spectrum, one would obtain the compressibility
spectrum which cannot usually be measured directly. We also want to characterize
the orientational relaxation processes and compare the results with those from other

measurements.
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7.2 Experimental Procedures

The experimental setup is similar to the one with the pulse probe system (Fig.2-3) as
described in Chapter 2. There the two excitation beams, probe beam and the signal
beam are all s-polarized. Here the two excitation beams are cross-polarized. One is
s-polarized and the other p-polarized. They are crossed at an excitation angle 0 to
create a periodically changing polarization field with the wavevector ¢ determined
by Eq. 2.1. Molecular orientational motion and shear motion are excited through
impulsive stimulated Rayleigh-Brillouin scattering. The probe pulse is incident upon
the grating at the Bragg angle with p- or s- polarization, chosen to be opposite
that of the polarization of the closest excitation beam. The signal beam is cross-
polarized with respect to the probe beam. The time-dependent material responses
are monitored by recording the diffraction efficiency of the probe pulse as a function
of the delay time between the pump and probe pulses. The time delay between the
pump and probe pulses is controlled electronically as described in Chapter 2.

The salol sample was prepared as described in Chapter 4. The excitation angles
used in this study are 1.45°, 8.65°, 37.90°, 44.93°, and 54.63°, corresponding to
wavelengths of 42.04, 7.062, 1.640, 1.393, and 1.159 pm, respectively.

7.3 Preliminary Data and Analysis

The data collected at the smallest angle of 1.45° are shown in Fig. 7-1 from 340.4K
to 280.2K. At temperatures above 350K, which are not included in Fig. 7-1, the
signal contains only an instantaneous electronic response, a pulse-duration limited
spike at ¢ = 0. The nuclear response at these temperatures relaxes too fast to be
observed with long laser pulses (about 100 ps). At about 340K, a relaxational tail
appears following the ¢ = 0 peak. As the temperature is reduced, the relaxation
decay becomes slow and the intensity of the signal decreases. This is presumably
because at low temperature the sample is stiffer so that the extent of orientational

alignment induced by the impulsive excitation fields is less. Below 260K, the ori-
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Figure 7-1: VH ISS data collected at an excitation angle of g = 1.45° at high
temperatures. The intensity is shown on a log scale. The symbols represent data
at different temperatures and the solid lines are fits to the data with Eq. 7.1. Note
that the intensities for different temperatures have been rescaled to 1 according to
the electronic peak at ¢ = 0.
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entational response mcves to even longer time scales and the signal intensity is too
weak to be detected. This limits the temperature range over which the orientational
dynamics can be measured with the current laser systems. We will discuss possible
improvements in the next section.

At larger excitation angles, data at high temperatures show features similar to
those shown in Fig. 7-1. But as temperature is decreased, an additional oscillatory
feature grows in, which is due to transverse acoustic waves. The shear acéustic mode
is excited through depolarized impulsive stimulated Brillouin scattering. The ISBS
signal intensity is proportional to the square of the wavevector. This is the reason
that the shear mode is not observed in the data at small excitation angles even at
very low temperatures. This limits the range of wavevectors over which the shear
acoustic mode can be observed, unlike the case of the longitudinal acoustic mode as
described in Chapter 6, for which there is another excitation mechanism, impulsive
stimulated thermal scattering, which is efficient at any wavevector.

Figure 7-2 shows the data collected at an excitation angle of 44.93° at low tem-
peratures. Starting at about 280K, in addition to the orientational decay, the
shear mode is observed but is heavily damped. As the temperature is reduced,
the oscillatory feature becomes more obvious. At even lower temperatures, only the
underdamped shear acoustic mode excited through ISBS is observed in the data.
Due to the g2-dependence of ISBS signal intensity from the shear mode and the g¢-
dependence of the shear acoustic {requency, the transverse acoustic mode ic observed

at higher temperatures for larger excitation angles.

7.3.1 Orientational Relaxation Dynamics

For the orientational relaxation dynamics, we have employed an empirical response
function Gyg(t) to fit the data. As in the previous study [51], Gyg(t) contains
a bi-exponential decay for the orientational response and a delta-function for the

instantaneous electronic response. The scattering intensity is then,

2
I = [Gva(t)? = [Acd(2) + Are™™ + Age™/™| (7.1)
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Figure 7-2: VH ISS data recorded with an excitation angle of 8.65° at low temper-

atures. The data show the oscillatory features which represent the excited shear
acoustic mode.
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Fits to Eq. 7.1 incorporating numerical convolution over pump and probe pulses are
represented by the solid lines in Fig. 7-1. Of the two relaxation times, only the larger
one is well characterized and is found to be ¢-independent. The temperature depen-
dent behavior of this slower orientational relaxation time is shown in Fig 7-3, to-
gether with values obtained from previous studies by depolarized Rayleigh-Brillouin
scattering [35] and optical Kerr spectroscopy [102]. The three sets of data are in good
agreement in their overlap regions within their experimental errors. In Ref. [102],
an Arrhenius law was suggested for the Kerr orientational relaxation times from
280.2K to 350.2K, which seems to be supported by the data in the same tempera-
ture region from this study and Ref. [35]. However, the Arrhenius law represented
by the thick solid line in Fig. 7-3 is not obeyed if the reorientational times at the
lower temperatures from this study are included. The lowest temperature reached in
this study is 260.0K. Figure 7-3 also shows the average relaxation times from ISTS
measurements of the relaxation mode (Chapter 4), depolarized light scattering [9],
and polarized photon correlation spectroscopy [68]. The data covering more than
11 decades in time show smooth variation from 395.2K to 218.5K. Note that in the
DLS study [9], the a relaxation peaks were measured over a wide frequency range
and fitted to a KWW relaxation function. The DLS results shown in Figure 7-3 are

the average relaxation times.

7.3.2 Transverse Acoustic Dynamics

For the data at low temperatures, we have included a sinusoidal term in the fit-
ting function which accounts for the shear acoustic wave propagation. The nuclear

response function is then given by
Gvu(t) = Aye /™ + Are ™ + Age TSt sin(wst), (7.2)

where I's and wg denote the shear acoustic damping rate and frequency respectively.
Fits to the data are shown as the solid curves in Fig 7-2. Note that in fitting the

data where there is an orientational relaxation contribution, we have fixed the ori-
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Figure 7-3: Arrhenius plot of the relaxation times in salol of the orientational mode
measured in VH ISS (open triangles), the Mountain mode measured in ISTS (Chap-
ter 4, open circles), depolarized light scattering (DLS1) [9] (solid circles), depolarized
Rayleigh-Brillouin scattering (DLS2) [35] (solid triangles), the relaxational mode
observed in polarized photon correlation spectroscopy [68] (solid squares), and ori-
entational mode results from optical Kerr spectroscopy [102] (solid diamonds). The
Arrhenius law which was suggested in Ref. [102] is presented by the thick solid
line. Clearly it only describes the orientational dynamics in a narrow temperature
range. The orientational relaxation time at 260.0K from this study deviates from
the suggested Arrhenius law by more than 1 decade.



entational decay time as those determined from the data at the smallest angle in
order to reduce the number of free fitting parameters. From the best fitting param-
eters I's and wg, the shear acoustic modulus values G(ws) are determined through
the Egs. 3.38 and 3.39 with the shear acoustic frequency wgs and damping rate I'g
replacing their longitudinal counterparts. The real and imaginary parts of the re-
duced shear modulus G'(ws)/po and G"(ws)/po are plotted in Fig 7-4 as a function
of temperature for the three different wavevectors. They exhibit similar qualitative
features as the longitudinal acoustic modulus. The real part of the shear modulus
increases (from near 0) as temperature is decreased, and the imaginary part shows a
maximum at an intermediate temperature. These changes are induced by the struc-
tural relaxation whose spectrum sweeps across the shear acoustic frequency from
high frequency at high temperatures to low frequency at low temperatures. Due to
the limited shear acoustic frequency range probed, we are not able to quantitatively

characterize structural relaxation coupled to the shear motion in the current stage.

7.4 Discussion

Orientational relaxation dynamics and transverse acoustic wave propagation are
studied by impulsive stimulated depolarized light scattering. As it stands now, the
study is incomplete both theoretically and experimentally. On the theoretical side,
a model for the response function Gyg(t) is needed to interpret the VH ISS data
on glass-forming liquids. On the experimental side, emphasis should be placed on
extending the method to longer and especially to shorter time scales. Depolarized
light scattering spectra from salol [9, 82] from sub-GHz to THz have shown power-
law dependences {a and f relaxations) of the orientational relaxation dynamics,
which are consistent with the MCT descrip.ions of the liquid-glass transition. Since
it still remains to be shown that the orientational correlations exhibit the same
properties as the density correlators, more experimental results would help to resolve

this issue. To do this will require the use of multiple laser systems. For very fast
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Figure 7-4: Real part G'(ws)/po (Part A) and imaginary part G”(ws)/po (Part B) of
the shear acoustic modulus as a function of temperature for three wavelengths. The
data show typical glassy behavior as for the longitudinal acoustic modulus discussed
in Chapter 6.
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librational and orientational dynamics, one must use femtosecond/subpicosecond
lasers as excitation and probe sources. By using picosecond/nanosecond lasers, the
dynamic range can be extended to microseconds or longer. Combination of the data
collected with different systems yields orientational dynamics on fs to many us time
scales, which allows theoretical predictions to be critically tested. This is similar to
the data collection of depolarized light scattering, in which different interferometers
and spectrometers are used to resolve the dynamics in different frequency regions.-
The information content of ISS data is in principle identical to that of the DLS
spectra. In some cases, however, there should be advantages of the time-resolved
ISS method over DLS in the frequency domain. The short-time dynamics with
vibrational character, so-called librational motion or Boson peak in glass, can be
observed directly in the time domain [103, 104], while it is difficult to discern any
vibrational mode in DLS. In addition, there are more combinations of different
polarizations of the excitation and probe beams in ISS than those in depolarized
light scattering. Therefore one can use different polarization combinations of the
pump and probe pulses to probe different diclectric tensor components and possibly
to separate contributions from shear, orientational, and other processes [103, 104].

We have characterized the shear acoustic mode for three different wavevec-
tors. Clearly it is necessary to measure shear acoustic dynamics at more excitation
wavevectors in order to extract the temperature and frequency dependences of the
structural relaxations that couple to the shear motion. The results can then be

compared to those from the longitudinal acoustic dynamics measurements.
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Chapter 8

Conclusions and Suggestions for

Future Research

8.1 Summary

In this thesis, we have reported both theoretical and experimental studies of time-
resolved VV/VH impulsive stimulated light scattering on glass-forming liquids. We
have developed a theoretical understanding of the viscoelastic properties measured
in VV ISS experiments. We have investigated structural relaxation in two different
kinds of glass formers. The experimental results have been compared with the
predictions of the mode coupling theory of the liquid-glass transition.

In Chapter 3, we have presented a theoretical model for VV ISS on viscous lig-
uids. By using the generalized hydrodynamics equations we have derived the density
response functions to the impulsive heating (ISTS) and impulsive electrostrictivi:
force (ISBS). There are three modes in the ISTS response function including the-
acoustic mode, thermal diffusion mode, and relaxation or Mountain mode. The’.
ISBS response function primarily contains only one mode which is the acoustic
mode. Characterization of the relaxation mode in ISTS gives the structural re-
laxation dynamics and the relaxation strength, or Debye-Waller factor, in the low
wavevector limit. The latter is one of the important parameters specifying a relax-

ation, and its temperature dependence is predicted in MCT to show a square-root

161



cusp at a crossover temperature. ISTS provides an alternate pathway to neutron
scattering for measurement of the Debye-Waller factor and thus for testing of one
of the central predictions of MCT.

Both ISTS and ISBS provide the same acoustic dynamics. When its spectrum
overlaps the acoustic frequency, structural relaxation induces the greatest acoustic
dispersion and yields a maximum in the acoustic damping rate. If the structural
relaxation spectrum is well above or belew the acoustic frequency, the sample be-
haves eitlier like a normal liquid or like a glass, and the zero-frequency velocity
¢o or infinity-frequency velocity ¢ is then measured. Therefore by studying the
acoustic dynamics either from ISTS or ISBS, one can obtain structural relaxation
dynamics information. Normally one introduces a frequency dependent longitudii...i
acoustic modulus, which can be constructed as a function of the acoustic frequency
from the acoustic parameters measured at multiple wevevectors. We have outlined
a basis for the acoustic data analysis. The acoustic damping rate comes from the
structural relaxation contribution and the background contribution from viscosities
and thermal diffusion processes. The latter is present at any temperature from the
liquid state to the supercooled state to the glass state, while structural relaxation
makes a contribution only when its spectrum overlaps with the acoustic frequency.
Therefore care has to be taken to analyze the acoustic modulus spectrum. One can
either include a linear-w-dependent term, which represents the contribution of the
viscosities and thermal diffusion, plus a relaxation function in {a.: ‘ﬁtting function
to the total acoustic modulus spectrum. Alternatively, one can .:'f.tract the back-
ground contribution first from the measured total acoustic damping rate to obtain
the structural relaxational part of the acoustic damping rate, and then calculate the
structural relaxational part of the longitudinal acoustic modulus.

The acoustic, thermal diffusion, and structural relaxation modes shown in ISTS
data are closely analogous to the Brillouin, Rayleigh, and Mountain peaks, respec-
tively, which appear in Rayleigh-Brillouin scattering spectra. Concerning the dy-
namics, the individual modes are related to each other through Fourier transfor-

mation. Therefore, they provide the same dynamical information in principle. The
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ISTS and BS data differ in the amplitude ratios between the three modes, but again
in principle the same information, from which the relaxation strength can be de-
termined, may be obtained. However, in practice, the dynamic window and the
wavevector range accessible to Rayleigh-Brillouin scattering are limited, especially
at very small wavevectors. Due to the strong temperature dependence of the Moun-
tain mode dynamics, the relaxation dynamics and strength cannot be determined
over a wide temperature range.

There is a fundamental similarity between the structure of the theoretical for-
malism describing MCT and ISS. This indicates a mapping of the results of ISS
measurements onto the MCT par%meters. The examination of a-relaxation dynam-
ics and strength reflected in the Mountain mode and acoustic behavior influenced by
parts of the @ and B relaxation spectra presented in this thesis represents some, but
not all, of the possibilities for testing of MCT through ISS measurements. Extension
of the temporal and wavevector ranges accessible to ISS will enlarge the scope of
our critical testing of MCT.

In Chapters 4 and 5, we have reported experimental studies of VV ISS on an
organic molecular liquid salol and an ionic salt mixture Cag 4Kp6(NO3),4. The data
show all the features discussed in our theoretical model in Chapter 3. Of all three
modes including the acoustic, thermal diffusion, and structural relaxation modes,
we have particularly characterized the structural relaxation mode concerning its dy-
namics and strength. When the three modes are well separated from each other
in time, the relaxation mode dynamics and its strength or the Debye-Waller fac-
tor are determined. By collecting data at a wide range of wavevectors that allows
all three modes to be separated in time in different temperature ranges, we are
able to determine the relaxation mode dynamics and strength over a wide tempera-
ture range. The temperature dependences of the Debye-Waller factors f,—.o of salol
and CKN both show a square-root cusp at their crossover temperatures 7,. The
values of 7, determined are consistent with those from neutron scattering studies.
These findings support the MCT prediction that there is a dynamic crossover at a

g-independent temperature T,. The relaxation mode dynamics for both salol and
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CKN are well fitted to a stretched exponential (KWW) function at all temperatures
determined in our studies. In both cases, the relaxation dynamics as well as the
Debye-Waller factor show no ¢g-dependence in the wavevector range we used, which
is essentially in the ¢ — 0 limit. The stretching parameters 3 which specify the
structural relaxation spectral width show significant changes around 7,.. However,
the values of B are nearly constant at well above T, and well below T.. By com-
bining the results from neutron scattering, depolarized light scattering, and photon
correlation spectroscopy, these trends are seen to extend to even higher and lower
temperatures. The stretching parameters 3 for salol and CKN from all four experi-
ments show sigmodial shapes with most of the variation at temperatures of around
T., indicating dynamical changes suggested by MCT. The average relaxation times
from our studies on salol and CKN cover the gap between PCS and DLS measure-
ments and show smooth variations between the two. The <7g> and S values from
ISTS are found to be in agreement with those from PCS in the overlapping region,
which supports the assumption in Chapter 3 that both techniques measure a similar
- dynamical quantity.

The results shown in Chapters 4 and 5 have thus provided support of the MCT
predictions. They have also supported our thecretical treatments of VV ISS on
relaxing/nonrelaxing liquids as presented in Chapter 3.

In Chapter 6 we have reported a detailed analysis of the acoustic mode in sa-
lol and a comparison of the results to the susceptibility spectrum obtained from
depolarized light scattering. The longitudinal acoustic waves are characterized by
VV ISTS in the 10 MHz - several GHz acoustic frequency range through the use
of a wide range of wavevectors. By following the outline given in Chapter 3, the
structural relaxational part of the longitudinal acoustic modulus spectra and the
compliance spectra are obtained. The spectra at high temperatures are consis-
tent with an empirical description of structural relaxation dynamics in terms of a
stretched exponential relaxation function with exponent Sy = 0.50 for the modulus
spectra and S = 0.55 for the compliance spectra. At low temperatures, the imag-

inary parts of modulus spectra Mf(w;T) and compliance spectra Jp(w;T') show
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the same frequency dependence, while the real parts are essentially constant across
the acoustic frequency window probed. In log-log plots, the spectra Mg(w;T) and
Ji(w;T) can be rescaled by shifting them along the ordinate to overlap with the
B-susceptibility spectra x”(w;T) predicted by the extended MCT, which are based
on susceptibility spectra measured by DLS at high frequencies. Although M (w;T)
and J§(w; T) overlap with the DLS susceptibility spectra only in a small frequency
region, the results nevertheless are in support of the MCT prediction: all the sus-
ceptibility spectra x%vy(w; T) for any variables X and Y which couple to the density
fluctuations follow the same frequency dependence as the (-susceptibility spectra
X"(w; T) in the mesoscopic region.

In Chapter 7 we have presented preliminary results of a VH ISS study on sa-
lol. The VH ISS experiment provides orientational relaxation dynamics and shear
acoustic wave propagation properties. Nonexponential orientational decay is ob-
served at high temperatures. As the temperature is lowered, orientation relaxation
slows down and the signal intensity decreases. Upon further cooling, the data show

an oscillatory feature in addition to the orientational decay. Finally the orienta-

tional relaxation is so slow and its intensity is so low that only an oscillatory feature' -

is observed in the data. The oscillatory feature represents transverse acoustic wave
propagation in the medium. It is only seen in the supercooled liquid state when the
structu:ral relaxation dynamics are comparable to or slower than the oscillation pe-
riod of the shear wave, so that the sample shows viscoelastic behavior or effectively
behaves like a solid or a glass on the time scale of the acoustic period. Similar to
the longitudinal acoustic mode, the transverse acoustic mode shows dispersion when
the structural relaxation spectrum overlaps the shear acoustic wave frequency. Due
to the limited frequency range available, we are not able to characterize the shear

acoustic mode dynamics over a wide T range.
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8.2 Suggestions for Future Research

This work has provided a comprehensive study of the viscoelastic properties of glass-
forming liquids by VV/VH impulsive stimulated light scattering. Our theoretical
model for VV ISS on viscous liauids and subsequent experimental studies on a couple
of model glass formers have demonstrated the capability of ISTS for characterization
of the Mountain mode dynamics, determination of the Debye-Waller factor f;..o(T')
and crossover temperature T¢, and testing of mode coupling theory predictions. This
method can be extended to other glass formers to measure the Debye-Waller factor
and determine the structural relaxation d);namics. The temperature dependence
of the Debye-Waller factor directly shows whether MCT applies. Since the current
mode coupling theory reviewed in Chapter 1 is not expected to apply to glass formers
with strong chemical bonds, it is interesting to see in which samples the MCT does
not apply and if there is any correlation between the temperature dependence of the
Debye-Waller factor and the strong/fragile classification scheme [88].

We have generalized, based on the MCT approximation, the ISTS response func-
tion G,1(g,t) to include B relaxation as given in Eq. 3.67. Therefore one should be
able to observe the 3 relaxation directly in ISTS data. However, as we have shown
in Chapters 4 and 5, the ISTS response function G,r(qg,t) given in Eq. 3.49 includ-
ing a relaxation only provides excellent fits to the data collected in both salol and
CKN. This is because in our current system, the fastest time scale accessible for
characterization of the relaxation mode is on the order of nanoseconds, which does
not permit direct obscrvation of the (subnanosecond) 8 relaxation. To detect f
relaxation directly, one must extend the method to shorter time scales. This is pos-
sible now with femtosecond laser pulses as excitation and the streak camera which
has a time resolution on the order of ps as detector.

We have also shown that the longitudinal and transverse acoustic mode dynamics
can be probed in VV/VH ISS experiments, from which the structural relaxational
part of the acoustic modulus spectra can be constructed. We have presented an

acoustic data dnalysis for salol following an outline given in Chapter 3. The current
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experimental challenge is to extend the acoustic measurements to lower and, most
importantly, higher acoustic frequencies. As we have shown in Chapter 6, the data
in the high frequency region are much needed to elucidate whether there is a j
relaxation contribution to the acoustic modulus and compliance spectra and, if there
is, to determine the minimum frequency and minimum acoustic modulus values.
This will permit testing of the power-law frequency dependences in the relaxation
spectra predicted by MCT.

We have reported preliminary results of orientational relaxation dynamics in
salol by VH ISS experiments. Much effort is needed to explore the capability of
this time-resolved depolarized light scattering technique. First of all, a theoretical
understanding of the light scattering mechanism is needed in order to give precise
interpretation of the data. In Chapter 7, we fitted the data with an empirical bi-
exponential function and we have also pointed out that the data can be fitted with
a stretched exponential function. Secondly, one has to be able to collect the data
over a very wide temporal range, from fs to gm time scales, in order to unambigu-
ously determine the orientational relaxation dynamics. This would involve using
multiple laser systems. One could use femtosecond lasers to detect the orientational
relaxation dynamics in the fs-ns region. For the ns-ps dynamics one would use
picosecond lasers or nanosecond lasers. By combining the two or more data sets,
one would obtain the orientational relaxation function over more than 6 decades of
time, which would then permit precise characterization of the e and f relaxations
dynamics as reflected in orientational motion.

In conclusion, the work presented in this thesis has further increased our un-
derstanding of the viscoelastic behavior of the glass-forming liquids through time-
resolved light scattering. It has demonstrated that ISS is a useful tool for studying
tne ancient but still unresolved problems of the liquid-glass transition. It has also
been shown that the complex materials examined here may be described by current
theoretical models. This work, in the meantime, has brought to our attention the
need for extending the dynamical range to both shorter and loager time scales and

wavevectors. We hope that the work presented in this thesis will encourage others
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to work toward this direction.
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Appendix A

The First Order Solutions for ISS
and Rayleigh-Brillouin Scattering

In this appendix, we give ISS response functions and the Rayleigh-Brillouin spectrum
to first order in v1¢?/coq and I'y/cq. For simplicity, we will consider ordinary
hydrodynamics equations for simple liquids. The spectral distribution for BS is

then given by

(1-1/4)2ly | 1 [( L4 T4 ]

o(g,w) = w? 4+ T +'_y— w—wo)2+I‘§+(w+wo)2+P31

FA X 1 —-(w-—-—wo) w + wp ]
Pl b . (Al
e [‘700‘12 e ( 7)] l(w “wo)? + 1% (w0 + wo)? 4 I (A1)

where the central or Rayleigh peak (the first term) arises from fluctuations at

constant pressure and corresponds to the thermal diffusivity mode, and the two
Brillouin doublets (next two terms) centered at twy = *coq of half width T'y =
[ve + (v — 1)x]q%/2 result from fluctuations at constant entropy and correspond to
the acoustic modes. The last two terms give the first-order solution, whose ampli-
tude is by several orders of magnitude smaller than that of the Lorentzians. These
terms yield s-shaped curves centered at +wp and cause a slight pulling of Brillouin
peaks towards the central peak. The two terms are consequences of the initial con-

dition imposed on the system: the density correlation function must have a zero
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derivative at t=0 [64].
For ISBS and ISTS, the response functions to the first order are

Gop(g,t) = Eq; {.I;’i_%.;l:_l_)_ [e_r”t — e Tat cos(wot)] + e Tat sin(wot)} (A.2)

and

G,r(g,t) = —ci {e"r”‘ —eTat [cos(wot) + % sin(wot)l } : (A.3)

p

Notice that the real part of the Fourier transform of the term in sin(wpt) gives
the last two terms in Eq. A.1 up to a proportionality constant, while the thermal
diffusion term and the acoustic modes correspond to the Rayleigh line and Brillouin
doublets in BS. It follows therefore from Eqs. A.1 - A.3 that both response functions
G,s(g,t) and G,r(q,t) are related to the BS spectral distribution through Fourier
transformation although there are different relative contributions for each mode. To

first order, BS is very similar to ISBS and ISTS in terms of the thermal diffusion and

sound-propagation modes. Butin practice; there-are some-differences:—As-discussed
above, the last two terms in Eq. A.l cause a weak asymmetry in the Brillouin peak
in BS spectrum, which induces a slightly peak frequency shift to the center from
twy = *coq. If one fits the spectrum to Eq. A.1 without the last two terms, the
peak frequency thereby determined is then smaller than true value of wy. In ISS,
the additional oscillatory term does not alter the frequency or damping rate but
only introduces a phase shift. Fitting the data to the response functions with or
without the first-order correction yields the same values for the acoustic frequency
and damping rate.

Also, from Eq. A.1 - A.3 it is seen that ISTS, not ISBS is more or less the same
as BS in terms of overall information content. In both G,r(q,t) and o(q,w), the
thermal diffusion mode and acoustic mode are dominating terms, and the term in
sin(wpt) or the last two terms in Eq. A.1 are small. In ISBS, the opposite is true. The
thermal mode and additional oscillatory term cos(wegt) are too small to be detected.

In conclusion, ISTS, but not ISBS in practice provides equivalent information
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as Rayleigh-Briilouin scattering. Both of them contain the Rayleigh mode, acoustic
mode for simple liquids, and an additional Mountain mode for complex liquids. The

dynamical parameters of these three modes from ISTS and BS are the same. The

only difference between ISTS and BS lies in the relative amplitudes of three modes.
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