Implementing a Verified FTP Client and Server
by
Jennifer Ramseyer
S.B., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 2016
(© Jennifer Ramseyer, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author ..o
Department of Electrical Engineering and Computer Science
May 20, 2016

Certified Dy . ...
Dr. Martin Rinard

Professor

Thesis Supervisor

Accepted Dy . ..o
Dr. Christopher J. Terman
Chairman, Masters of Engineering Thesis Committee



Implementing a Verified FTP Client and Server
by

Jennifer Ramseyer

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

I present my implementation of an FTP: File Transfer Protocol system with GRASShop-
per. GRASShopper is a program verifier that ensures that programs are memory safe.

I wrote an F'TP client and server in SPL, the GRASShopper programming language.
SPL integrates the program logic’s pre- and post- conditions, along with loop invari-
ants, into the language, so that programs that compile in GRASShopper are proven
correct. Because of that, my client and server are guaranteed to be secure and correct.

[ am supervised by Professor Martin Rinard and Dr. Damien Zufferey, a post-doctoral
researcher in Professor Rinard’s laboratory.

Thesis Supervisor: Dr. Martin Rinard
Title: Professor



Acknowledgments

I am grateful to Professor Rinard, for his help and advice throughout my project,
along with his encouragement and enthusiasm. As Prof. Rinard would say, “Be
brilliant!” I have tried.

Many thanks to Damien Zufferey, for his invaluable help with GRASShopper
and my FTP implementation. His knowledge of the intricacies of GRASShopper is
incredible and indispensable.

I would also like to thank David Stingley for his collaboration on the SNTP code.
Thanks to all of Professor Rinard’s group for their fun Wednesday lunches and advice
on navigating the perils of graduate school.

I am grateful to Damien and Mark Ramseyer for their advice and edits on the
many drafts of this thesis.

I thank also all my friends at MIT for making my five years here a wonderful
experience.

And of course, four thousand, two hundred and ninety-nine thanks to my Pickle
family, for their friendship and support all these years. Without them, I’d never have
been inspired to explore computer science in the first place.

Finally, many thanks to my family—Norma, Mark, Geoff, Eli, and Pichu, for their
love and support all these years. Thank you for fostering my enthusiasm for the world

for as long as I can remember.



Contents

Background

1.1 GRASShopper . . . . . . . . . . .

1.1.1
1.1.2
1.1.3
1.2 TCP

SPL . . .
Specification Language . . . . . .. .. .. ... ... . ....

Compiling to C . . . . . . . . ...

1.3 FTP: File Transfer Protocol . . . . . . . . . . . . . . ... ... ...

2 Problem

2.1 Memory Safety . . . . . . ..

Previous Work

3.1 GRASShopper. . . . . . . . ..

3.2 Other

4 My Work
4.1 SNTP

Work . . .

4.2 Wrapper for C Library . . . . . . .. ... ... .. ... .. ...
4.3 FTP Implementation . . . . . . . ... ... ... ... ... ...

4.3.1
4.3.2
4.3.3
4.3.4

Setting Up the Data and Command Connections . . . . . . .
Required Commands . . . . . . ... ... ... ... .....
How the FTP Client Works . . . . . .. ... ... ... ...
How the FTP Server Works . . . . . ... ... ... .....

10
10
10
11
12
12
13

15
15

16
16
17



4.4 Usage Instructions . . . . . . . .. ..o
4.5 GRASShopper Guarantees . . . . . . . . . . . .. .. .. .......
4.6 Program Logic Guarantees . . . . . . . . .. ... .. ... ... ..
4.6.1 Server Guarantees . . . . . . . ... ...
4.6.2 Client Guarantees . . . . . . . . . .. .. ... ...
4.6.3 Code Setup . . . . . . . . . .
4.7 Problems and Solutions . . . . . . .. .. ...
4.7.1 Bugs in GRASShopper . . . . . . .. .. ... ..
4.7.2 Bugsin C Wrappers . . . . . . . .. .. ...
4.7.3 Bugs Not Checked by GRASShopper . . . . . . ... .. ...

Future Work

5.1 Extensions to my FTP System . . . . . . ... ... ... ... ....
5.2 Possible GRASShopper Features . . . . . . ... ... .. ... ....
5.3 Additional Tests . . . . . . . . ...

Conclusion

SPL code
A1 Full SPL functions . . . . . . . . . . . .

A.2 Function Verification Wrappers . . . . . . . . ... ... ... ....

C code

B.1 GRASShopper Compiled Ccode . . . . . . . ... ... .. ... ...
B.2 Linked-In C Wrapper Function Implementations . . . . . . . . . . ..
B.3 Helper Script . . . . . . ...

49
49
50
o1

53

57
57
92



List of Figures

1-1 The code to copy a byte array, written by myself, David Stingley (an-
other MEng student), and Damien Zufferey. Lines 5 and 6 provide
memory safety guarantees, while lines 7 and 8 show functional correct-
ness. Lines 15 to 17 are the loop invariants, which are the pre- and
post- conditions of the loop. &*& is the separating conjunction, which
states that array a and array b are allocated in disjoint areas of the

heap. . . . .

13

1-2  The pre- and post- conditions required for the procedure accept_incoming_

1-3  An example of a loop invariant in the server.spl code. . . . . . . . ..

4-1 Linking in C files to GRASShopper-outputted code . . . . . . . . ..
4-2  The order in which the FTP commands are sent by the client.

4-3 The build script to compile the GRASShopper C files to object files .
4-4 How to upload and download afile . . . . .. ... ... ... ... ..
4-5 Various ways to connect the client to the server . . . . . . .. .. ..
4-6 The first loop in the server, and its invariants . . . . . . . . ... ..
4-7 The loop invariants for the second loop in the server. . . . . . .. ..
4-8 The program logic for the ALLO helper functions. . . . . .. ... ..
4-9 The program logic for the STOR helper functions. . . . . ... .. ..
4-10 The program logic for the SIZE helper functions. . . . ... .. ...
4-11 The program logic for the RETR helper functions. . . . . ... .. ..

14
14

29



4-12

4-13

4-14

4-15

4-16

The pre- and post- conditions for is_quit, the helper function for the
QUIT command. This function checks whether or not the command is
QUIT. It guarantees that the cmd array passed in is a byte array both
at the start and end of the program, and that it is of length 5 at the
start and end of the program. The program is guaranteed to return a
boolean, indicating whether or not the command is QUIT. . . . . ..
The pre- and post- conditions for uploadFile, the main helper func-
tion used to upload a file from the client to the server. GRASShop-
per requires that both the command and data file descriptors be valid
(greater than or equal to zero) at the start of the program. GRASShop-
per also insists that the filename be a byte array at the beginning and
end of the function. The client adds the pre-condition that the file-
name’s length must be less than or equal to 65535 — 6. The client
sends STOR [filename] over the command connection to the server.
Since the maximum length of an array is 65535, and the client adds 6
characters in the STOR command, the client caps the filename length
at 65535 — 6. GRASShopper also requires that the function return a
boolean indicating the success of the upload. . . . .. .. ... ...
The guarantees on the client’s main download helper function. The
client requires that the filename be a byte array at the start and end of
the function, and that the function return a boolean. The client also
requires that the command and data file descriptors be valid (greater
than or equal to zero) at the start of the program. . . . . . ... ..
The SPL and C code to convert an integer into its corresponding charac-
ter value. First I wrote the pre- and post- conditions for the function in
SPL, and then wrote the corresponding C implementation. At compile
time, I link in the C file with the build script. . . . . . ... ... ..
A screenshot of a file “potato.txt” with the file’s intended contents,
“potate”, with the resulting unwritten memory nonsense written after

S

38

40

41

45



4-17 A screenshot of “potato.txt” with the file’s intended contents, “potate”.
Since the array is allocated to the proper size before writing, the server

does not write any nonsense. . . . . . . ... ... ...



List of Tables

4.1 Distribution of lines of code in my client and server. Note that here I
only count the code in client.spl and server.spl, and not in any of files

included by client.spl and server.spl. . . . . . ... .. ...



Chapter 1

Background

I am supervised by Professor Martin Rinard and Damien Zufferey, a post-doctoral
researcher in Professor Rinard’s lab. My project is to implement utility programs,
such as the File Transfer Protocol (FTP), in GRASShopper. GRASShopper [PWZ14|
is a program verifier which uses separation logic [Rey02] to analyze programs that
access and change the heap [PWZ13]. It is written and maintained by Zufferey,
Thomas Wies of NYU, and Ruzica Piskac of Yale University. GRASShopper uses Z3,
a SMT solver provided by Microsoft Research [dMBO0S].

1.1 GRASShopper

I use GRASShopper to compile my programs! to C. To use GRASShopper, I wrote
my programs in SPL, the GRASShopper language. I present an overview of SPL, the
GRASShopper input and specification language, along with an explanation of how

GRASShopper compiles to C.

1.1.1 SPL

SPL is a C-like language, but with simpler syntax. See Figure 1-1 for a sample SPL

program. It treats memory-accesses like Java, in that there are no allocations to the

1Code accessible at: https://github.com/JaneEyre446/grasshopper

10



stack and no function pointers. All arrays and structs are stored on the heap, and
are passed only by reference. All arrays have a length field, which is set on allocation
and cannot be changed. Unlike Java, SPL integrates the function specifications into
the core language, allowing the functions to be verified [Zuf16|. SPL allows the writer
to specify the desired pre- and post-conditions and loop invariants for the program,

which z3 uses to verify the program.

1.1.2 Specification Language

GRASShopper is a program verifier which uses Hoare logic [Hoa69| and separation
logic [Rey02| to reason about a program’s partial correctness. In the following, I give
a short introduction to the mechanism used by GRASShopper. A more comprehen-
sive explanation can be found in “The Calculus of Computation,” by Bradley and
Manna [BM07|. In GRASShopper, every method is annotated with pre- and post-
conditions and loop invariants. A pre-condition is an assumption put on a program’s
inputs. Similarly, a post-condition is a property that is proven true of the outputs
of the program, given the preconditions. A loop invariant is a property that each
iteration of the loop fulfills. As an example: in various parts of my program I require
that all arrays have the desired size and type, that different arrays point to different
memory locations when copied, and that flags and other values are in the desired
range. By having these conditions, I ensure that there are no invalid array accesses,
that arrays contain values of all the same type, that all values are in the desired
range (if one exists), and various other useful conditions. These conditions make the
program secure and verifiable. I can guarantee conditions put on packets, as in § 4.1.
If the program verifies, then GRASShopper will translate it into C, which one can
compile with gcc.

Each function in GRASShopper has pre-conditions specifying constraints on the
inputs to the functions, and post-conditions guaranteeing the state of the variables
and the return value once the function terminates. Please see Figure 1-2 for an
example of GRASShopper’s pre- and post- conditions.

For every loop in GRASShopper, I also must provide loop invariants, as in Fig-

11



ure 1-3. A loop invariant is a condition that is true at the beginning of each iteration

of the loop.

1.1.3 Compiling to C

GRASShopper can output C code. Once a program has passed GRASShopper’s
verification checks, I can specify the optional -compile [C filename] flag, and
GRASShopper will translate my SPL code into C. I can compile that code and link
in other C files to produce an executable. Alternatively, I can also write function
specifications in SPL, verify them with GRASShopper, and output C stubs for those
functions. At C-compilation time, I can link in the C implementation for those func-
tions. That way, I can use functions in the standard C library without necessarily
implementing them in SPL. Those linked-in functions are part of our “trusted code

base” (see § 4.2).

1.2 TCP

TCP, the “Transmission Control Protocol,” is a standard for sending data between
two machines over the internet [ISI81]. Under TCP, the first computer sends a packet
to the second computer. The second computer must acknowledge — “ack” — the receipt
of each packet, and send this ack back to the first computer. If the first computer
does not receive an ack for a given packet within the time limit, then it must resend
that packet. With this “ack” system, TCP helps prevent data loss when sending over
the internet. If a packet is lost, the first machine will notice it never received an ack,
and will resend it.

TCP implements First-In, First-Out (FIFO) channels. My FTP client and server
communicate using TCP. TCP ensures that no packets are dropped while sending
files. A user wants to be sure that the whole file was sent, and TCP’s ack system

helps provide that security.

12



include "byte array.spl";

procedure copyByte(a: Array<Byte>)
returns (b: Array<Byte>)
requires byte array(a)
ensures byte array(a) &+«& byte array(b)
ensures a.length = b.length
ensures forall i: Int:: i >= 0&& i < a.length = a[i] = Db[i]

b := new Array<Byte>(a.length);
var i := 0;

while (i < a.length)

invariant i >= 0 && i <= a.length && a.length = b.length
invariant byte array(a) &+& byte array(b)
invariant forall j: Int:: j >= 0&& j < i = a[j] = b[j]
b[i] = a[i];
i= 14 1;

}

return b;

Figure 1-1: The code to copy a byte array, written by myself, David Stingley (another
MEng student), and Damien Zufferey. Lines 5 and 6 provide memory safety guar-
antees, while lines 7 and 8 show functional correctness. Lines 15 to 17 are the loop
invariants, which are the pre- and post- conditions of the loop. &*& is the separating
conjunction, which states that array a and array b are allocated in disjoint areas of
the heap.

1.3 FTP: File Transfer Protocol

FTP, the "File Transfer Protocol," allows users and programs to send files from one
machine to another|PR85]. In an FTP system, there is one server and one (or many)
clients. The client connects to the server, and once connected, can upload or download
files from the server. There are two modes of connection to the server: anonymous
and username/password. In an anonymous system, the client can login without a
username or password (or with password “anonymous”). In a username and password
system, the client needs to have an account on the server, and log in to the server
with that account’s username and password. I implement an anonymous login system

for my FTP server. The client and server are connected over two channels, one being

13




~N O UL W N

~N O O W N~

procedure accept_ incoming file(dataFd: Int, filename: Array<Byte>,
allo size: Int) returns (res:Int)

requires dataFd >= 0
requires allo size >= 0
requires allo size <= 65535
requires byte array(filename)
ensures byte array (filename)
ensures res >= —1
Figure 1-2:  The pre- and post- conditions required for the procedure

accept_incoming_ file.

while (cmdFd < 0)
invariant cmdFd >= -1
invariant socket addr 4 (cmdAddr)
invariant tempCmdFd >= 0

cmdFd := connectMeCommand (tempCmdFd, cmdAddr) ;
}

Figure 1-3: An example of a loop invariant in the server.spl code.

a data connection and the other a command connection. The client and server send
file contents over the data connection, and commands over the command connection.
The commands are sent as plaintext, while the data are sent as binary. The client
can inquire about the files on the server, upload files from the client computer to the
server computer, or download files from the server to the client computer.

FTP is often used to transfer files from one computer to another or to store files
on a remote computer cluster. Anonymous login FTP is often used for downloading

software updates.

14




Chapter 2

Problem

C, one of the industry standard languages, does not provide memory safety or program
logic guarantees. Because of that, there have been many critical security bugs [Cod,
Dat15, Mic03, Kno07] in the news which could have been avoided, were C to be a

safer language.

2.1 Memory Safety

A language is memory safe if memory can only be accessed when valid. Memory is
valid if it has been allocated and not yet deallocated. Memory safety also guarantees
that no memory is accessed after it has been freed and that the program cannot write
to memory outside the allocated memory. A memory safe program can only access
an array’s memory within the bounds that are explicitly allocated. In programs that
are not memory safe, a program can access memory outside the bounds of allocated
memory, and can leak memory if it is not freed. Memory leaks make programs run
slower over time, as the memory is never freed. A hacker can exploit a memory unsafe
program by reading memory outside the allocated bounds for important details, as
in the Heartbleed bug [Cod]. GRASShopper is memory safe, so all memory that is
allocated is freed, and all memory accesses must be within the specified bounds, and

no memory or pointers are accessed after being freed.

15



Chapter 3

Previous Work

There have been many papers and programs written about program verification. I
focus on GRASShopper, the program verifier I used for my thesis, and mention many

other systems.

3.1 GRASShopper

GRASShopper is a program verifier written by Ruzica Piskac (of Yale University),
Thomas Wies (of New York University), and Damien Zufferey (of MIT CSAIL).
GRASShopper guarantees memory safety for all programs, and functional correctness
for some data types |[Zuf16]. For use with GRASShopper, Piskac et al. have developed
SPL, a programming language that supports separation logic and first-order logic as
specification in the language [PWZ14]. GRASShopper uses Microsoft’s z3 [dMBO§]
as a verification backend. If the program fails to verify, GRASShopper points out
where and why the constraints are unsatisfied, greatly simplifying the debugging
process [PWZ14].

One feature I find invaluable in my thesis is that GRASShopper can compile to C.
Given an SPL program, GRASShoppper can verify it, and convert it to C code. With
this C code, I can compile it to an executable using gcc (or some other C compiler)
and run it. I can also link in other C code, and even verify SPL methods that use C

code (see § 4.2) |Zufl6]. Since my end goal of my thesis is to output a usable FTP

16



client and server, I relied on being able to produce an executable.

3.2 Other Work

A similar project by Microsoft Research, Dafny [Leil0|, offers much of the same func-
tionality as GRASShopper. Dafny is designed to work with Microsoft Visual Studio
and outputs .NET executables, while GRASShopper can work on any system, and is
able to output C code which can be used in any C project [Leil0]. GRASShopper can
also link in other C files to be compatible with other code and libraries. Also from
Microsoft Research, IronFleet is a verification system intended for larger systems than
Dafny. IronFleet is used to prove correctness on large distributed systems [HHK™15].
Microsoft Research has also written IronClad, a system used to make verifiably secure
applications, on an end-to-end verified and secure system [HHL'14].

Another system is Verifast [JSPT11|, by Bart Jacobs et al. It is similar to
GRASShopper, in that it is a verifier for Java and C programs. Facebook has also
produced a static analysis program, called “Infer” [Fac|. Infer reads the specified code
and points out possible bugs in the code. Unlike GRASShopper, it does not verify
the correctness of the code, but helps to find problems in code before it is released to
the general public. Jahob [BKW™07]|, is a program verifier for Java. Viper [MSS16],
from ETH Zurich, is an intermediate verification language. Viper is an infrastruc-
ture which accepts programs written in several languages for verification. The user
can also add backend verification and analysis tools, all of which can be run through

Viper.

17



Chapter 4

My Work

I implemented an FTP client and server in GRASShopper. I detail the implementa-
tion process for the client and server, the guarantees they provide, and the additional
helper wrappers I wrote. I also give instructions for how to run the programs, and

describe some problems I solved throughout the process.

4.1 SNTP

Before implementing F'TP, I needed a better grasp of how GRASShopper worked. To
that end, I implemented SNTP: the Simple Network Time Protocol [Mil06]. I worked
with David Stingley, another MEng student in Professor Rinard’s lab, on the SNTP
code for a client. Stingley changed projects after the SNTP project, so the FTP code
is my work, with help from Damien Zufferey. I wrote the SNTP code with Stingley
to better understand GRASShopper before tackling a larger program like F'TP.

SNTP is used to synchronize system time on computers [Mil06]. Each computer
queries a time server on the internet, which sends back the current time. The com-
puter then uses the returned time to calculate and correct the system time.

My implementation of an SNTP client relies on file input/output instead of net-
working calls. Instead of reading packets from the time server, it reads dummy packets
from a file on the computer. By porting the SNTP client to GRASShopper, I am

able to say that my SN'TP client is verifiable, i.e., that is has safe memory accesses,

18



fulfills the given pre- and post-conditions, and has no memory leaks [PWZ14].

My version of the SNTP client is modeled off of an implementation of SNTP
written in Go [lub14|. I ported it to SPL, and added the appropriate pre- and post-
conditions. As the main point of the SNTP project was not to figure out how to write
an SNTP client, but instead to figure out how to use GRASShopper, porting it is
a reasonable design decision. Please see the Appendix or my GitHub for our SNTP
client implementation at time of writing.

When David and I wrote the SN'TP client, we had not yet written the wrapper to
the socket library. Therefore, our version reads mock packets from a file instead of
querying the network time server on the internet. It is a simpler implementation for
testing purposes. The next step would be to have it query the time server [Hanl5|
and read actual packets. I would need to have it call UDP networking functions in-
stead [Pos80]. However, since the purpose of the SNTP code was to learn GRASShop-
per, I switched to working on FTP instead, as it is more technically challenging and

useful.

4.2 Wrapper for C Library

GRASShopper compiles to C. For utility functions that are not defined within the
GRASShopper files but are part of the standard C library, Zufferey and I provide pre-
and post- conditions for those function stubs in a GRASShopper file. GRASShopper
uses the stub specifications to verify the functions. When compiling the generated C
code, one can link in other C files containing implementations for the function stubs.
Zufferey and I used this feature to write the file I/O, console, and networking code,
which I then use in the FTP and SNTP code. When compiling the generated C code
for the FTP client and server, I link in a file containing implementations of these
calls. GCC links the files and produces an executable that one can run.

By linking in other C files, we assume that those C functions are correct. If this
subset of “assumed correct” programs is small, then that is an acceptable assumption

to make for the trusted code base. Most programming languages are built off of some

19



core subset of syscalls or functions in other languages, along with the compiler (in
my case, GCC). I also include z3 and GRASShopper as part of the trusted code base.
This trusted code base should be as small as possible.

For both SNTP and FTP, I needed file input and output (file I/O) functions
like open, close, read, etc. Rather than implement those functions directly in
GRASShopper, which would have have required adding many more capabilities to
GRASShopper which is out of the scope of an MEng thesis, I used GRASShopper’s
linking capabilities. As part of the SNTP code, Zufferey and I implemented file I/0
functions in GRASShopper. I wrote function stubs in SPL for the functions, with
pre- and post- conditions, and then Zufferey and I implemented the wrappers to the
functions in the standard C library, as in Figure 4-1. In most cases, we simply had
the GRASShopper call the relevant C standard library function, but sometimes we
had to handle edge cases. One such edge case was to check whether or not the file
name string was null-terminated or not, before trying to open the file. GRASShopper
carries the length of each array. Thus, I can use the length to mark the end of the
string instead of the null character. As a result, I need to check how the filename is

represented as a string before opening the file.

4.3 FTP Implementation

For F'TP, I needed to write both a client and a server. This client and server connect

over two channels: the command connection and the data connection.

4.3.1 Setting Up the Data and Command Connections

An FTP client and server connect on two different ports. One port is used for send-
ing commands and command responses back and forth (the “command” or “control”
connection), and the other is used for sending file data back and forth (the “data”
connection). According to the FTP standard, the server command connection should
be over port 21, and the server data connection should be over port 20. The client

command and data connections are, by default, both over the same port, which can

20



N O O = W N~

[\

procedure gread(fd: Int, buffer: Array<Byte>) returns (nbr: Int)
requires fd >= 0
requires byte array(buffer)
ensures byte array(buffer)
ensures buffer = old (buffer)
ensures buffer.length = old(buffer.length)
ensures nbr >= —1 && nbr <= buffer.length

(a) The GRASShopper function stub for gread, the function to read from a file. Here,
GRASShopper requires that the gread function returns an integer. GRASShopper also
requires that, at the start of the function, the file descriptor be greater than zero, and the
buffer be an array of bytes. GRASShopper ensures that at every return point of gread, the
buffer is still a byte array, the buffer has not been modified from the original buffer passed
in, and the length of the buffer has not changed. GRASShopper alsos ensure that the return
value, nbr, be greater than or equal to -1 and less than or equal to the length of the buffer.

int gread (int fd_ 2, SPLArray charx buffer) {
return read (fd 2, buffer—>arr, buffer—length);

}

(b) The C implementation for gread. Here, gread takes a file descriptor and a character
array as inputs, and passes them to the C standard library function, read.

Figure 4-1: Linking in C files to GRASShopper-outputted code

be any port [PR85|. Since those ports are privileged ports, I use port 4444 as the
command port for both the client and server, and port 4440 for the data port for

both client and server.

4.3.2 Required Commands

The standard FTP implementation has many different commands, but I reduced
the library down to the eight commands I deemed essential. In many cases, the
client checks for one of several acceptable command responses from the server, even
though the server only sends one predetermined response. I accept many replies so
that my client will be usable after slight modification with servers other than my
implementation (see § 5.3). For a diagram showing in what order these commands

are used, please see Figure 4-2

21




PORT [number]

v

USER [username]

v

PASS [password]

For Upload woad

ALLO [size] SIZE [filename]
STOR [filename] RETR [filename]
QuIT

Figure 4-2: The order in which the FTP commands are sent by the client.

ALLO [size]

The client sends ALLO [size], where [size] is a file size, to the server, so the server
knows what size of file to allocate on the server. It is used during upload.

If the server receives a valid size, it replies 200, meaning “Command okay” [PR85].
If the server receives an invalid size, it replies 552, which means “Requested file action

aborted” [PR85].

PORT [number]

The client sends PORT [number] to tell the server what port to open as the data
connection. The server does not reply, but connects to the port specified by the

client.

STOR [filename]

The client sends STOR [filename] to tell the server that it would like to upload
[filename]. The server replies with either 200 or 150. 200 means “Command okay”,

and 150 means “File status okay” [PR85]. In my implementation, the server sends

22



150, and the client checks for 200 or 150. Then, the server receives the file contents.
If it succeeds, it replies with 250 (“Requested file action okay, completed” [PR85]).
If it fails, it sends 550 (“Requested action not taken. File unavailable” [PR85]). The
client checks for any of 200, 226 (“Closing data connection. Requested file action
successful” [PR85]), or 250.

SIZE [filename]

The client sends SIZE [filename] to the server to ask for a the size of the file.
The server replies with 213 [filesize] if the file exists and is accessible, and 550

otherwise. The client checks for 213.

RETR [filename]

The client sends RETR [filename] to tell the server it would like to download [filename].
The server replies with 150. The client checks for 150 or 200. Then, the server sends
the file contents. If it fails to send, the server replies with 550. If it succeeds, it replies

with 250. The client checks for any of 200, 226, or 250.

USER [username]

The client sends USER [username] to the server to login. The client checks for
any of 200, 230 (“User logged in, proceed” [PR85|), 234 (“Security data exchange
complete” [Sup09]), or 331 (“User name okay, need password” [PR85]). The server
replies with 331, as it never uses the username. My system supports anonymous

login.

PASS [password]

The client sends PASS [password] to the server to login. The client checks for any
of 200, 202 (“Command not implemented, superfluous at this site” [PR85]), 230, or
234. The server replies with 230 if the password is correct and 530 (“Not logged in”)

otherwise.

23



QUIT

The server does not reply to a QUIT message, as the client has already disconnected.

4.3.3 How the FTP Client Works

For all sockets used in the client and server, I open them with the flags PF_INET,
SOCK_STREAM, and IPPROTO_TCP. I need PF_INET to indicate I am using [Pv4 internet
protocol, SOCK_STREAM since I am streaming data, and IPPROTO_TCP since I am using
TCP.

Initially, the client asks the user via the command line whether she would like to
upload or download a file. The client reads the user’s response from the command
line. Next, the client sets port 4444 as the port for the command connection to the
server. The client asks the user for the IP address of the server using the command
line, and opens a socket and connects to that IP. The client saves the file descriptor
of the socket as the command connection.

The client then needs to set up the data connection over port 4440. With the
client’s IP address, the client opens a socket, binds to the socket, and listens for an
incoming connection from the server. The client sends PORT 4440 to the server over
the command connection, and accepts the incoming connection from the server. Now
that the server has connected, the client saves the file descriptor of the socket as the
data connection.

Once connected, the client needs to authenticate to the server. It sends USER
Potato over the command connection to the server. (My system supports anonymous
login, so the client can put whatever it wants for the username.) The server sends
back a response, and if it is okay (see § 4.3.2), the client sends PASS anonymous to
the server over the command connection. My system is an anonymous login system,
so the password is “anonymous.” The server sends a reply, and if it is okay, then the
client continues.

Next, the client asks the user for the filename of the file she would like to upload

or download. The client prints input the filename: onto the command line, and

24



then accepts the user’s response as the filename. If the filename is less than 100
characters long, and greater than one character long, the client null-terminates the
filename and uses it. If it is not within those bounds, the client rejects it and shuts
down.

Here the client takes one of two routes: upload a file or download a file.

Upload

In order to upload, the client measures the size of the file to upload. Then, it sends
the size of the file to the server over the data connection, using the ALLO [size]
command. Provided that the client receives an acceptable response, the client opens
the file with the O_CREAT and O_RDONLY flags. O_CREAT ensures that if the file does
not exist yet, a blank file is created. 0_RDONLY opens the file in read-only mode. The
client reads the file into an array A.

Next, the client sends the STOR [filename] command to the server over the
command connection. If the response is okay, the client sends array A to the server
over the data connection. The server responds, and if it is okay, the client closes the
file. If the amount of data sent to the server over the data connection is the same as

the size of the file, the client has successfully uploaded the file.

Download

In order to download a file, the client needs to know the size of the file. It asks the
server for the size of the file using the SIZE [filename] command over the command
connection. The server sends back the size of the file. If the size is valid (greater than
0, and less than or equal to the maximum size of an array, 65535), the client allocates
an array B of the appropriate size and sends a request to download the file to the
server: RETR [filename] over the command connection. If the server sends back
the appropriate response code, the client receives the incoming file data into array B
over the data connection. The client receives the server response over the command
connection. If the client received at least zero bytes, then it opens file [filename]

with the O_TRUNC, O_CREAT, and O_WRONLY flags. The 0_TRUNC flag indicates that if

25



the file already existed, it will be wiped on opening so the client can overwrite the
file. T use the O_CREAT flag to create the file if it does not already exist. And the
0_WRONLY flag opens the file in write-only mode.
Finally, the client writes the data from array B into the file, and closes the file.
After upload or download, the client closes the data connection. Then, it sends
the QUIT command to the server over the command connection, indicating its plan to

disconnect. The client closes the command connection and returns 0.

4.3.4 How the FTP Server Works

The server uses “localhost” as its IP address, since to it, it is running locally. It
computes the address of localhost on port 4444, the command connection. It then
opens a socket and binds the address to it. Next, it waits for the client to connect
to it. While waiting, it listens for a connection and accepts the connection once it
arrives.

After the client connects, the server sets up the data connection. It receives the
client’s PORT [number] message, and opens a socket. It computes the client’s address
on port [number], and connects to the client at that address.

The server then receives the client’s username and password over the command
connection. Since I am using anonymous login, the server ignores the client’s user-
name. If the client sends “anonymous” as the password, the server accepts the client
connection, and sends back a “success” reply.

After confirming the authentication, the server loops, accepting responses until it
receives a QUIT request or a bad packet. It can receive any (multiple) of the commands

below:

ALLO

If the server receives the ALLO [size] command, it parses the size sent and saves it.
If no size is specified, or if the size is less than one or greater than 65535, the server

sets the saved size to be 65535, sends an “invalid size” response over the command

26



connection, and breaks out of the loop.
If the size is in bounds, it saves the size, sends a “size okay” response over the

command connection, and keeps looping.

STOR

If the server receives the STOR [filename] command, it checks to see if it has a valid
size stored from the ALLO command. If so, then it receives the file over the data
connection. If it receives no data, the server exits the loop and replies “fail” on the
command connection. Once it has the file data, the server opens a file, writes the
data, and closes the file. If that succeeds, it replies “okay” on the command connection
and continues looping. (If it fails, it replies “fail” on the command connection and

exits the loop).

SIZE

If the server receives the SIZE [filename] command, the server opens the file, sends
back its size over the command connection, and keeps looping. If that fails, it sends

back an error on the command connection and exits the loop.

RETR

The server receives the RETR [filename] when the client asks to download the file.
The server opens the file, reads it into and array, and sends that array back to the
client on the data connection. If any of those steps fail, it sends a “fail” response back
on the command connection and exits the loop. If they all succeed, the server sends

back an “okay” response and continues looping.

QUIT

If the server receives a QUIT message, the server notes that the client disconnected

with no errors and exits the loop.

27



Bad Packet

If the server receives any message that is not one of ALLO, STOR, SIZE, RETR, or QUIT,
it replies with “bad packet” and breaks out of the loop. The server does not know
what to do with this request, so it closes its connections and returns -1.

After the loop, the server closes the command and data connections. If the server
received a QUIT message, it returns 0. If it exited the loop for any other reason, it

returns -1.

4.4 Usage Instructions

I ran most of my code on my 2014 MacBook Pro running OS X El Capitan, which has
8 gigabytes of memory and a 2.8 GHz Intel Core i5 processor. When I temporarily
exceeded the computational power of my laptop, I borrowed a 2015 ThinkPad running
Ubuntu 14.4, with and 2.8 GHz Intel Core i7 processor and 20 gigabytes of memory.
I only needed to use the ThinkPad for two weeks, until I resolved a bug that caused
GRASShopper to require a large amount of my computer’s memory (see § 4.7.1 for
details on that bug).

All code is available for download at: https://github.com/JaneEyre446 /grasshopper

To download it, open a Terminal window and run:
git clone: https://github.com/JaneEyre446/grasshopper.git

To run it, install Microsoft’s z3, version 3.2 or later (available from [dMBO08]), as
well as OCaml, version 4.01 or later (available via the computer’s package manager).

Once those are installed, cd to the grasshopper folder and run: ./build.sh

To compile the FTP files, run

./ grasshopper.native —v tests/spl/ftp/server.spl —bitvector —nostratify
—nomodifiesopt —compile ftpCcode/ftpServer.c

to compile the server, and

./ grasshopper.native —v tests/spl/ftp/client.spl —bitvector —nostratify
—nomodifiesopt —compile ftpCcode/ftpClient.c

28



0O 3 O O i W N+~

to compile the client!. The above commands verify the SPL code, and then compile
it to C code. For the SPL and C code, please see the appendices.

To compile and run the client and server, cd to the “ftpCcode” directory and run
the build.sh file, shown in Figure 4-3. When debugging, I passed in the optional -g
flag to enable debug mode. On Linux machines, I needed to pass in the -std=gnu99

in order to use the proper version of C.

gce —c ${1} ../lib/console.c —o console.o

gce —c ${1} ../lib/file.c —o file.o

gce —c ${1} ../lib/socket.c —o socket.o

gce —c ${1} ../lib/makeStr.c —o makeStr.o

gce —c¢ ${1} ftpClient.c —o ftpClient.o

gce —c ${1} ftpServer.c —o ftpServer.o

gce ${1} console.o file.o socket.o makeStr.o ftpServer.o —o ftpServer
gce ${1} console.o file.o socket.o makeStr.o ftpClient.o —o ftpClient

Figure 4-3: The build script to compile the GRASShopper C files to object files

Open two terminal windows. There are two executables in the “ftpCcode” direc-
tory: ftpServer and ftpClient. Copy ftpServer to a different directory and run
it

./ ftpServer

Go back to the other window and run the client as:

./ ftpClient

Follow the prompts to upload or download a file, as in Figure 4-4. To run it locally,
pass in the local IP or pass in “localhost” (see Figure 4-5). If running the client on
one computer and the server on another, pass in the IP of the server (as in Figure
4-5a. 127.0.0.1 is the IP of localhost, but the client will work for remote servers as

well, given their IP.).

'T needed to increase the memory limit for my Terminal

29




-+ test git:(master) x ./ftpServer
» test git:(master) x JJ

(a) The server
+ TtpCcode git:(master) » ./ftpClient
upload (u) or download (d):u
Enter IP of server:127.0.0.1
input the file name:tomato.txt
+» ftpCcode git:(master) x JJ

(b) Uploading using the client
+ ftpCcode git:(master) » ./ftpClient
upload (u) or download (d):d
Enter IP of server:127.0.0.1
input the file name:tomato.txt
» ftpCcode git:(master) x [J

(c¢) Downloading using the client

Figure 4-4: How to upload and download a file

+ TtpCcode git:(master) » ./ftpClient
upload (u) or download (d):u

Enter IP of server:127.0.0.1

input the file name:tomato.txt

+» ftpCcode git:(master) x JJ

(a) Pass in the IP of the server

+ ftpCcode git:(master) x ./ftpClient
upload (u) or download (d):u

Enter IP of server:localhost

input the file name:tomato.txt

+» ftpCcode git:(master) x |J

(b) Pass in “localhost”

Figure 4-5: Various ways to connect the client to the server

30



4.5 GRASShopper Guarantees

My FTP system provides several guarantees. Some guarantees come from GRASShop-
per itself, while others come from the pre- and post- conditions I added to the program.

GRASShopper itself guarantees memory safety for all data types. For each mem-
ory access, GRASShopper generates a formula that encodes the memory access and
the state of the heap. z3 uses that statement to prove the memory access is valid [Zuf16].
For a definition of memory safety, see § 2.1. GRASShopper provides functional cor-
rectness for some data types, but not for arrays. Having functional correctness for
arrays would be useful, as then GRASShopper could guarantee that the contents of
an uploaded or downloaded file were not changed while sent. In order to prove func-
tional correctness, GRASShopper would need to have an annotation preserving the
state of the network, so GRASShopper could save the state of the file before and after
upload. Currently, GRASShopper has no concept of the network, since annotations
only extend to the bounds of the method. Thus, GRASShopper can only guarantee
that the size of the file sent or received is the same as the original file’s size, and
cannot guarantee that the contents are the same. As arrays are already slow to pro-
cess, Zufferey has decided to focus on speeding up arrays before adding functional
correctness [Zufl6|. Please see section § 3.1 for more details.

The FTP client and server make use of many arrays, which I would like to be
memory safe. C itself provides no memory safety, so even with only memory safety,
GRASShopper gives a large advantage. Thus, GRASShopper promises that my FTP

client and server are memory-safe.

4.6 Program Logic Guarantees

I prove FTP-specific guarantees with program logic (see section § 1.1.2 for an expla-
nation of program logic).
All code is available in the Appendix. The code for the socket and console guar-

antees and functions were written by Damien Zufferey. As I use his code in my thesis,

31



I include them for completeness.

For the socket, console, and file code, Zufferey and I provide the guarantees in
GRASShopper. Since GRASShopper can compile to C, we wrote the implementations
of the functions in C, which I link in at compilation using the build script in Figure 4-3.

Please see the Appendices for the guarantees on those functions.

4.6.1 Server Guarantees

At a high level, GRASShopper guarantees that the server returns an integer greater
than or equal to -1. My program returns -1 upon failure at any point in the server
process. If the upload or download is successful, my program returns 0.

Before any return, the server frees all memory that is currently allocated, and
closes all file descriptors.

First, the server sets up the command and data file descriptors to communicate
with the client. Please see Figure 4-6 for the loop invariants when setting up the
command connection. If the server receives an invalid address or a bad file descriptor,
it fails and returns -1. If the setup succeeds, it continues.

If the client has invalid credentials to log in to the server, the server fails and
returns -1.

After the client has connected and has a valid username and password, the server
loops, accepting commands from the client and sending back responses. See Figure 4-
7 for the loop invariants on that loop. The invariant for this loop is that both the
data and command file descriptors are greater than or equal to zero.

In the loop, the server receives many commands from the client, all of which are

verified.

ALLO

The client sends the ALLO command to tell the server the size of the incoming file.
If no size is specified, the server sends an “invalid size” response and exits the loop.

If the size is less than 1 or greater than 65535 (the maximum size of an array in

32



N O O~ W N~

while (cmdFd < 0)
invariant cmdFd >= -1
invariant socket addr 4 (cmdAddr)
invariant tempCmdFd >= 0

cmdFd := connectMeCommand (tempCmdFd, cmdAddr) ;
}

(a) The loop invariants for the first loop in the server. In this loop, the server sets up the
command connection to the client. These loop invariants guarantee that, at the beginning
of each loop iteration, the file descriptor for the command connection is greater than or
equal to —1, the address of the command connection is of type socket_addr_4, and that
the temporary command file descriptor is greater than or equal to zero. The only thing
to change in the loop should be the command file descriptor, cmdFd. However, in order to
compile, GRASShopper required invariants for cmdAddr and tempCmdFd. Inside the loop, the
server calls the connectMeCommand, which has pre- and post- conditions on the temporary
file descriptor and the command address. In order to satisfy those conditions, GRASShopper
needed loop invariants for those variables.

procedure connectMeCommand (cmdFd: Int, cmdAddr: SocketAddressIP4)
returns (res: Int)
requires socket addr 4 (cmdAddr)
requires cmdFd >= 0
ensures socket addr 4 (cmdAddr)

ensures res >= —1
{
var listening := glisten (cmdFd, 10);
if (!listening) {
return —1;
}
var connFd := accept4d (cmdFd, cmdAddr);
return connkFd;
}

(b) The connectMeCommand function. This function connects the server to the client over
the command connection. It requires that the file descriptor passed in be greater than or
equal to zero. It also requires and ensures that the address used for the connection be a
socket address.

Figure 4-6: The first loop in the server, and its invariants

33




o

O O3 U e WN =

while (!iQuit)
invariant cmdFd >= 0
invariant dataFd >= 0

(a) The above loop processes all the commands sent by the client, and quits if it receives the
QUIT command, or a bad request. The loop invariants guarantee that at the beginning of each
iteration, the command and data file descriptors are valid (greater than zero). GRASShopper
needs the file descriptors to be valid in order to send and receive data and commands.

var iQuit := false;
var properQuit := false;
var allo_size := 65535;

while (!iQuit)
invariant cmdFd >= 0
invariant dataFd >= 0

{
var request := new Array<Byte>(150); // it needs to be so big to hold the filename
var recd := tcp_ recv(cmdFd, request);
var typeCom := copy_ byte slice(request, 0, 4);
var final := process_string (typeCom);
var filename := copy byte slice(request, 5, (request.length —1));

free (request);

if (is_allo(final)) {

allo_size := allo_help (cmdFd, filename);

if ((allo_size < 1) || (allo_size > 65535)) {
allo_size := 65535;
free(final);
iQuit := true;

else if (is_stor(final)) {
if ((allo_size < 1) || (allo_size > 65535)){
free (filename); -
free(final);

iQuit := true;
else {
var temp := store_help(cmdFd, dataFd, filename, allo_size);

if (temp) {
free (filename);
free(final);

iQuit := temp;
¥
else if (is_size(final)) {
var temp := size_help (cmdFd, filename);

if (temp) {
free (filename);
free(final);

iQuit := temp;

}
else if (is_retr(final)) {
var temp := retr help(cmdFd, dataFd, filename);
if (temp) {
free (filename);
free(final);

iQuit := temp;

else if (is_quit(final)) {
properQuit := true;
iQuit := true;
} else {
var badPacket := new Array<Byte>(4);
badPacket := "500";
var sent := tcp_send(cmdFd, badPacket, 4);
free (badPacket);
iQuit := true;
//something we did not expect

free (filename);
free(final);

(b) The full context for the loop. The server receives commands from the client, and replies.
It also sends and receives file data. To do so securely, GRASShopper needs the loop invari-
ants to guarantee that the file descriptors will be valid at all stages of loop execution.

Figure 4-7: The loop invariants for the second loop in the server.

34




[\

D O = W N

GRASShopper), the server sends an “invalid size” response and terminates execution.
Figure 4-8 shows the program logic for the ALLO helper functions.
If the size is valid, the server sends a “request okay” response, saves the size, and

continues the loop.

procedure is_allo(cmd: Array<Byte>) returns (is: Bool)
requires byte array(cmd) &+& cmd.length =— 5
ensures byte array(cmd) &+& cmd.length =— 5

(a) The pre- and post- conditions for is_allo, a helper function for ALLO. This function
checks whether or not the command is ALLO. It guarantees that the cmd array passed in is a
byte array both at the start and end of the program, and that it is of length 5 at the start
and end of the program. The function is guaranteed to return a boolean.

procedure allo help (cmdFd:Int, sizeB: Array<Byte>) returns (allo_ size:
Int)
requires byte array(sizeB);
ensures byte array(sizeB);
requires cmdFd >= 0;
ensures allo size >= —1;
ensures allo size <= 65535;

(b) The pre- and post- conditions for allo_help, the main helper function for ALLO. It
requires that the command file descriptor be valid (greater than or equal to zero), and that
sizeB, the array containing the size of the file, is a byte array. The post conditions guarantee
that sizeB is still a byte array at the end of the program, and that the returned size (the
size of the file to be allocated) is an integer between —1 and 65535. 65535 is the maximum
size of the file, and —1 indicates an invalid file size.

Figure 4-8: The program logic for the ALLO helper functions.

STOR

The client sends the STOR command to tell the server that it wants to upload a file.
If the server has received a invalid size for this file from ALLO, or has not received an
ALLO command, then it exits the loop.

If the server has a valid size for the file, then it tries to receive the file. If it receives
no data or cannot open a new file to store the incoming file, it sends a “bad request”
reply and exits the loop. Next, it tries to write the incoming data to a file. If it
cannot write, it sends a “bad request” reply and terminates. If it succeeds in writing

the file, it sends a “success” response and continues the loop.

35




W N =

~N O UL W N

procedure is_stor(cmd: Array<Byte>) returns (is: Bool)
requires byte array(cmd) &+& cmd.length — 5
ensures byte array(cmd) &x& cmd.length =— 5

(a) The pre- and post- conditions for is_stor, a helper function for STOR. This function
checks whether or not the command is STOR. It guarantees that the cmd array passed in is a
byte array both at the start and end of the program, and that it is of length 5 at the start
and end of the program. The function is guaranteed to return a boolean.

procedure store help (cmdFd: Int, dataFd: Int, filename: Array<Byte>,
allo size: Int) returns (fail: Bool)
requires cmdFd >= 0;
requires dataFd >= 0;
requires allo size >= 1;
requires allo size <= 65535;
requires byte array(filename);
ensures byte array(filename);

(b) With the pre-conditions set for stor_help, the major STOR helper function, GRASShop-
per guarantees that both the data and command file descriptors are valid (greater than or
equal to zero), and that the size of the file to be allocated is a legitimate file size (greater
than or equal to 1, and less than or equal to 65535). GRASShopper also ensures that the file
name to be stored is a byte array at the beginning and the end of the program. GRASShop-
per also requires that the function returns a boolean value indicating the success of the
program

Figure 4-9: The program logic for the STOR helper functions.

36




)

w

SIZE

The client sends the SIZE command to ask the server what is the size of the file the
client wants to download. If the file does not exist on or cannot be opened by the
server, the server sends an “error” response and exits the loop. If the server can open
and calculate the size of the file, it sends back the size of the file in the response and
continues the loop.

Please see Figure 4-10 for the pre- and post- conditions on the SIZE helper func-

tions.

procedure is_size(cmd: Array<Byte>) returns (is: Bool)
requires byte array(cmd) &+& cmd.length =— 5
ensures byte array(cmd) &+& cmd.length = 5

(a) The pre- and post- conditions for is_size, a helper function for SIZE. This function
checks whether or not the command is SIZE. It guarantees that the cmd array passed in is a
byte array both at the start and end of the program, and that it is of length 5 at the start
and end of the program. The function is guaranteed to return a boolean.

procedure size help (cmdFd: Int, filename: Array<Byte>) returns (fail:
Bool)
requires cmdFd >= 0;
requires byte array(filename);
ensures byte array(filename);

(b) The program logic statements for size_help, the main helper function for SIZE. The
program requires that the filename be a byte array at the start and end of the program, and
that the command file descriptor be valid (greater than or equal to zero) at the start of the
program. size_help is guaranteed to return a boolean value reporting the success of the
function.

Figure 4-10: The program logic for the SIZE helper functions.

RETR

The client sends the RETR command when it wants to download a file from the server.
The server tries to send the file to the client. If it cannot open, compute the size of,
or read the file, or cannot send back the file, it sends an “error” response and exits the
loop. Otherwise, it sends the file to the client and continues the loop. See Figure 4-11

for an explanation of the pre- and post- conditions for the RETR helper functions.

37




W N =

QU W N

[\

procedure is_retr(cmd: Array<Byte>) returns (is: Bool)
requires byte array(cmd) &*& cmd.length =— 5
ensures byte array(cmd) &+& cmd.length =— 5

(a) The pre- and post- conditions for is_retr, a helper function for RETR. This function
checks whether or not the command is RETR. It guarantees that the cmd array passed in is a
byte array both at the start and end of the program, and that it is of length 5 at the start
and end of the program. The function is guaranteed to return a boolean.

procedure retr help (cmdFd: Int, dataFd: Int, filename: Array<Byte>)
returns (fail: Bool)
requires cmdFd >= 0;
requires dataFd >= 0;
requires byte array(filename);
ensures byte array(filename);

(b) The pre- and post- conditions for retr_help, the major helper function for RETR. It
requires that both the command and data file descriptors be valid (greater than or equal
to zero), and that the file name be a byte array at the beginning and end of the function.
GRASShopper also requires that the function return a boolean, guaranteed by GRASShop-

per.

Figure 4-11: The program logic for the RETR helper functions.

QUIT

The client sends a QUIT response when it is done uploading or downloading a file and
would like to disconnect. Upon receipt of a quit message, the server notes that it

received the message and exits the loop. I illustrate the program logic for QUIT in

Figure 4-12.

procedure is_quit (cmd: Array<Byte>) returns (is: Bool)
requires byte array(cmd) &*& cmd.length =— 5
ensures byte array(cmd) &+& cmd.length =— 5

Figure 4-12: The pre- and post- conditions for is_quit, the helper function for
the QUIT command. This function checks whether or not the command is QUIT. It
guarantees that the cmd array passed in is a byte array both at the start and end
of the program, and that it is of length 5 at the start and end of the program. The
program is guaranteed to return a boolean, indicating whether or not the command
is QUIT.

38




Bad Packet

If the server receives any message while in the loop that is not one of the above
messages, it sends a “bad packet” response and exits the loop. In this case, the server
has received a message that it does not know how to handle, so it exits the loop and
shuts down.

Upon exiting the loop, the server closes all file descriptors. If it has received a

QUIT message, it returns 0. Otherwise, it returns -1.

4.6.2 Client Guarantees

GRASShopper guarantees that the client will return an integer greater than or equal
to -1. It returns 0 on success. First, the client asks if the user would like to upload
or download a file. If the user inputs something else, the client returns -1 and quits.
Otherwise, the client asks for the IP address of the server. If the user inputs an invalid
IP address, the client returns -1 and quits. If the user types a valid IP address, the
client sets up the connections to the server. If these connections fail, the client quits.
If the client successfully connects, it tries to authenticate to the server. If it fails to
authenticate, it returns 4 and quits. If it is successful, the client asks the user to
input the filename of the file to upload or download. If the filename is invalid, the
client returns 5 and quits.

At this point, the client calls one of two helper functions: upload or download.

Upload

For uploading a file, the client requires that the filename byte array length be less
than or equal to 65529, and that the command and data file descriptors be greater
than or equal to 0. Upon completion, it guarantees that the filename array is still a
byte array. It promises to return a boolean.

First, the upload program computes the size of the file. If the file size is less than
zero or greater than 65535, it returns false.

Next, it sends an ALLO command to the server, along with the size of the file. If

39



QU = W DN =

it fails to send, or if the server sends back a failure response, it returns false.

If that succeeds, it opens and reads the file. If it fails to open or read the file, it
returns false.

The upload program then sends the file. If the server response is invalid (not one
of 200, 226, or 250), the upload program returns false. Otherwise, it closes the file.
If the amount of sent data equals the size of the file, the upload program returns true.
If not, then it returns false. Please see Figure 4-13 for the program logic statements
written for the major file upload helper function. The program logic statements for

the other upload helper functions are in the Appendix.

procedure uploadFile (cmdFd: Int, dataFD: Int, filename: Array<Byte>)
returns (success: Bool)
requires cmdFd >= 0 && dataFD >= 0
requires byte array(filename) &+& filename.length <= (65535 — 6)
ensures byte array(filename)

Figure 4-13: The pre- and post- conditions for uploadFile, the main helper function
used to upload a file from the client to the server. GRASShopper requires that both
the command and data file descriptors be valid (greater than or equal to zero) at the
start of the program. GRASShopper also insists that the filename be a byte array
at the beginning and end of the function. The client adds the pre-condition that the
filename’s length must be less than or equal to 65535 — 6. The client sends STOR
[filename] over the command connection to the server. Since the maximum length
of an array is 65535, and the client adds 6 characters in the STOR command, the client
caps the filename length at 65535 — 6. GRASShopper also requires that the function
return a boolean indicating the success of the upload.

Download

The download function requires that the filename be a byte array and ensures that
it is still a byte array upon completion. It also requires that both file descriptors be
greater than or equal to zero. It promises to return a boolean.

If the filename array length is less than or equal to 0 or greater than or equal to
65529, it returns false.

Then, the download function calculates the size of the file to download from the

server. If the size is less than zero, it returns false.

40




QU = W N =

The download function asks the server to send it the file via a RETR request. If
the server replies with 200 or 150 (success), then execution continues. If not, the
download program returns false.

The download program receives the file data. If the received data is less than zero,
the download function returns false.

After receiving the file data, the download program receives the server response.
If the response is 200, 226, or 250, (okay), the function continues. If not, it returns
false.

Next, the download program opens and writes the file corresponding to the file-
name. If it cannot open or write the file, it returns false. But, if it succeeds in writing
the file, it closes the file descriptor and returns true.

If upload or download returned false, the client closes the file descriptors and
returns 6. Otherwise, it closes the data file descriptor. If that fails, it returns 22. If
not, it continues and sends a QUIT message to the server.

See Figure 4-14 for the program logic statements in the client’s download helper
function. The program logic statements for the rest of the download helper functions

are in the Appendix.

procedure downloadFile (¢cmdFd: Int, dataFD: Int, filename: Array<Byte>)
returns (success: Bool)
requires cmdFd >= 0 && dataFD >= 0
requires byte array(filename)
ensures byte array(filename)

Figure 4-14: The guarantees on the client’s main download helper function. The
client requires that the filename be a byte array at the start and end of the function,
and that the function return a boolean. The client also requires that the command
and data file descriptors be valid (greater than or equal to zero) at the start of the
program.

After Upload or Download

The client does not check if the server receives the QUIT message. The client sends the
QUIT message because it is good practice. Either way, the client closes the command

file descriptor and shuts down. The server does not reply to a QUIT message. If

41




Number of Lines Server | Client
Comments 10 32
Pre-conditions 30 22
Post-conditions 20 16
Return Requirements 17 12
Loop Invariants 5) 0
Execution Instructions 373 308

Table 4.1: Distribution of lines of code in my client and server. Note that here I
only count the code in client.spl and server.spl, and not in any of files included by
client.spl and server.spl.

I allowed multiple clients to connect to a server, or for the client to send or receive
multiple files, then each client would need to send a QUIT message, as the server would
need a way to tell when the client has finished sending and receiving files. However, [
only allow one client to connect to the server, and to only upload or download one file,
so the QUIT command is not strictly necessary. Next, the client closes the command
file descriptor. If it fails to close, the client returns 21. Otherwise, the client returns
0 on success.

Above, I give the end-to-end guarantees on the client and server. For detailed

guarantees on each function used, please see the Appendices.

4.6.3 Code Setup

I spent the first semester of my thesis researching program verification and learning
how to use GRASShopper via the SNTP code. I spent January through mid-April
writing the FTP code, and mid-April through May writing my thesis.

In my FTP code, I wrote execution instructions, commends, and verification con-
ditions. Please see Figure 4.1 for a distribution of how much of the code I wrote was
conditions versus actual execution instructions.? For the purposes of analyzing how
long each section took, I will treat time spent writing comments as trivial. Between

the lines of actual code (“Execution Instructions”) and verification conditions (“Pre-

2The “Comments” section is an estimate, as some comments are on th