
Autotuning Divide-and-Conquer Matrix-Vector
Multiplication

by

Payut Pantawongdecha

S.B., C.S. M.I.T., 2015

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2016

Copyright © 2016 by Payut Pantawongdecha. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole and in part in

any medium now known or hereafter created.

Author:
Department of Electrical Engineering and Computer Science

May 2016

Certified by:
Professor Charles E. Leiserson

Thesis Supervisor
May 2016

Accepted by:
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee
May 2016

Autotuning Divide-and-Conquer Matrix-Vector
Multiplication 1

by

Payut Pantawongdecha

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of Master of

Engineering in Electrical Engineering and Computer Science

Abstract

Divide and conquer is an important concept in computer science. It is used ubiq-
uitously to simplify and speed up programs. However, it needs to be optimized,
with respect to parameter settings for example, in order to achieve the best perfor-
mance. The problem boils down to searching for the best implementation choice
on a given set of requirements, such as which machine the program is running on.
The goal of this thesis is to apply and evaluate the Ztune approach [14] on serial
divide-and-conquer matrix-vector multiplication.

We implemented Ztune to autotune serial divide-and-conquer matrix-vector mul-
tiplication on machines with different hardware configurations, and found that Ztune-
optimized codes ran 1%-5% faster than the hand-optimized counterparts. We also
compared Ztune-optimized results with other matrix-vector multiplication libraries
including the Intel Math Kernel Library and OpenBLAS.

Since the matrix-vector multiplication problem is a level 2 BLAS, it is not as com-
putationally intensive as level 3 BLAS problems such as matrix-matrix multiplica-
tion and stencil computation. As a result, the measurement in matrix-vector multi-
plication is more prone to error from factors such as noise, cache alignment of the
matrix, and cache states, which lead to wrong decision choices for Ztune. We ex-
plored multiple options to get more accurate measurements and demonstrated the
techniques that remedied these issues.

Lastly, we applied the Ztune approach to matrix-matrix multiplication, and we
were able to achieve 2%-85% speedup compared to the hand-tuned code.

This thesis represents joint work with Ekanathan Palamadai Natarajan.

Thesis Supervisor: Professor Charles E. Leiserson
Title: Edwin Sibley Webster Professor in Electrical Engineering and Computer Sci-
ence

1This research was supported in part by NSF Grants 1314547 and 1533644.

Acknowledgments

I would like to express my sincerest gratitude to my adviser, Professor Charles
E. Leiserson, for his guidance and support over the past years. Despite his busy
schedule, he has been giving useful advice and ensuring that I was on track to a
fruitful goal. He has been not only an admirable mentor but also an aspiring aca-
demic role model. The opportunity to follow in his footsteps has been an honor for
me. I would like to extend my thanks to graduate student mentor and colleague,
Ekanathan, for working with me to achieve the results presented here. He has given
numerous pieces of advice, without which this thesis would not have reached com-
pletion.

I would like to thank all my friends at MIT who share good and bad times with
me, and make years at MIT one of the most memorable moments in my life.

Lastly, my accomplishment today is only possible because of the support from
my loving family. I would like to thank mom, dad and sister–Jeerawan, Tanakorn,
and Raktapa–for always being by my side.

Contents

1 Introduction 9

2 Tuning Matrix-Vector Multiplication 19

3 Ztune 27

4 Improving Tuning Time 39

5 Improving Reliability 45

6 Comparison to Existing Approaches 63

7 Results on Matrix-Matrix Multiplication 65

8 Future Work 69

A Appendix 71

7

CONTENTS

8

1 Introduction

Improving performance is one of the most crucial objectives in code development.

We often employ the same set of codes in contexts that may be vastly different,

but variations in factors ranging from machine specifications to the nature of the

computational problem can influence the performance of a program. Under new

circumstances, the program might benefit from using an alternative implementation

strategy, which is the developer’s task to identify.

We can think of this objective as a search problem over choices of all possible

implementations. Traditionally, we can find the best implementation choice using

various approaches. One example is trial and error based on prior knowledge of

the algorithms and computer architectures, but this iterative approach can become

tedious and labor-intensive. Moreover, performance is not portable, which means

that the best implementation for one machine might not yield the best performance

on another. Developers would have to hard-code the programs on each individual

machine to achieve the optimal result–an inefficient and arduous process, especially

for commonplace codes that are going to be used in millions of machines.

Sorting is an example of algorithms whose performance depends on the choice

of implementation. Two of the most popular sorting algorithms are insertion sort,

which rearranges the numbers one-at-a-time, and merge sort, which divides the

9

1. INTRODUCTION

array into halves before recursively sorting the subarrays and merging the results.

In theory, merge sort has an asymptotic running time of O(n log n), which is faster

than insertion sort’s O(n2). In practice, however, insertion sort may run faster on

small arrays because it does not have the extra recursive function-call overhead that

merge sort needs. The preferred choice among these two sorting methods would

therefore depend on the array size.

Figure 1.1 shows a piece of code in stl algo.h from the gcc library that has the

cutoff of 15; insertion sort is used for arrays of size smaller than or equal to 15, or

merge sort will be run otherwise. This number 15 was hard-coded, presumably for

the best performance on computers from decades ago. The best cutoff for today’s

computers can be a lot bigger due to improvements in factors such as processing

speed, memory size, and architecture optimizations that may benefit insertion sort.

As a consequence, this code will run merge sort in some cases for which insertion

sort would perform better. Such discrepancies between the optimal and the actual

implementation choices prevent programs from achieving their full potential.

The inefficiency, as exemplified by the sorting problem, calls for a more power-

ful means of determining the optimal implementation choice. This quest has led

to an effort to automate the searching process, which culminates in program auto-

tuners. A program autotuner generally searches for the best implementation choice

within the search space and can tune for each machine individually. Specifically,

when programs are ported from one machine to another, autotuners determine the

most suitable implementation in the new context and ensure that the programs still

achieve the best performance. Because autotuners already take into account the

characters of the programs and the machine’s hardware configurations, code devel-

opers would not need to re-examine these factors later on. Autotuners can be easily

employed by anybody and obviate the need for the original program developer to

10

1. INTRODUCTION

gcc/blob/master/libstdc++-v3/include/bits/stl algo.h

2762 /// This is a helper function for the stable sorting routines.
2763 template <typename _RandomAccessIterator , typename _Compare >
2764 void
2765 __inplace_stable_sort(_RandomAccessIterator __first ,
2766 _RandomAccessIterator __last , _Compare __comp)
2767 {
2768 if (__last - __first < 15)
2769 {
2770 std:: __insertion_sort(__first , __last , __comp);
2771 return;
2772 }
2773 _RandomAccessIterator __middle = __first + (__last - __first) / 2;
2774 std:: __inplace_stable_sort(__first , __middle , __comp);
2775 std:: __inplace_stable_sort(__middle , __last , __comp);
2776 std:: __merge_without_buffer(__first , __middle , __last ,
2777 __middle - __first ,
2778 __last - __middle ,
2779 __comp);
2780 }

Figure 1.1: Hard-coded optimization for stable merge sort with constant 15 in
std::stable sort.

be present during the re-tuning process.

Divide and conquer is a type of program that can take great advantage of pro-

gram autotuners because its search space is relatively limited and explicit. The most

common pattern in divide and conquer is to first break a problem into smaller sub-

problems; when the size of each subproblem becomes sufficiently small, we then

execute a more straightforward code called the base case to solve it. Divide and

conquer, like merge sort, is usually most beneficial for large-sized problems, but

might slow down codes for smaller problems because of several reasons such as ex-

tra recursive function-call overhead. Figure 1.2 shows an example of a divide-and-

conquer matrix-matrix multiplication code with the base-case cutoff at 64, which is

optimized for AWS1. 1

The goal of this thesis is to study how to autotune serial divide-and-conquer
1Machine specifications can be found in Appendix A.

11

1. INTRODUCTION

SQUARE-MATRIX-MULTIPLY-RECURSIVE(A, B, C, n, row size)
1 if n ≤ 64
2 SQUARE-MATRIX-MULTIPLY-BASE-CASE(A, B, C, n, row size)
3 else partition A, B, and C into four n/2× n/2 matrices:
4 A11, A12, A21, A22, B11, B12, B21, B22, C11, C12, C21, C22.
5 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A11, B11, C11, n/2, row size)
6 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A12, B21, C11, n/2, row size)
7 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A11, B12, C12, n/2, row size)
8 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A12, B22, C12, n/2, row size)
9 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A21, B11, C21, n/2, row size)

10 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A22, B21, C21, n/2, row size)
11 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A21, B12, C22, n/2, row size)
12 SQUARE-MATRIX-MULTIPLY-RECURSIVE(A22, B22, C22, n/2, row size)
13
SQUARE-MATRIX-MULTIPLY-BASE-CASE(A, B, C, n, row size)
1 for i = 1 to n
2 for j = 1 to n
3 for k = 1 to n
4 C[i · row size + j] += A[i · row size + k] · B[k · row size + j]

Figure 1.2: Matrix-matrix multiplication pseudocode where A, B, C are square matrices of a
power-of-two size with the assumption that they are stored in row-major order.

matrix-vector multiplication. We choose this topic because considerable research

has already been done on Basic Linear Algebra Subprogram (BLAS) level 3 problems

such as matrix-matrix multiplication, while studies into BLAS level 2 problems such

as matrix-vector multiplication are still lacking.2 We also focus on the serial version,

in which the programs use only one thread on a single-core processor, because au-

totuning parallel codes would introduce complications such as difficulty in time

measurement and work scheduling nondeterminism that could confound our re-

sults. In the following subsections, we summarize the existing approaches and the

Ztune approach to tuning.

2More information on BLAS can be found in [9, p. 13].

12

1. INTRODUCTION

Existing Approaches

There are several existing methodologies that can be used to tune programs. In the

first so-called model-based approach, we build a model that describes the problem

we are trying to tune. Based on this model, we can unequivocally determine the

most suitable implementation choice that will yield the optimal result. The extent of

performance improvement is limited by our ability to construct a reasonable model.

This is not always achievable because it may be difficult to build or it may not com-

prehensively address every aspect of the problem. We demonstrate the use of a

model to hand-tune matrix-vector multiplication in Chapter 2.

The next two approaches–exhaustive search and later developed heuristic search–

are used in application-specific autotuners. An exhaustive autotuner tries every

possible implementation and therefore will always find the most suitable choice,

but it can take a large amount of time to iterate through the whole search space

[7, 6, 19]. A heuristic autotuner, on the other hand, uses heuristics and machine

learning to help determine an optimal choice, although this might not be the best

possible outcome within the search space. [1, 3, 4, 5, 11, 12, 13, 18].

There are two other non-autonomous strategies for improving performance of

a related problem, matrix-matrix multiplication, that are also worth consideration.

The first strategy, tiling [17, 16], divides the multiplying matrices into submatrices

whose size fits exactly in cache. Tiling requires knowledge of the cache size; as

a consequence, the result will be specific to only one machine. It also introduces

a few tuning parameters for multilevel cache environments as well as several lev-

els of nested loops. The second strategy, cache-oblivious matrix-matrix multiplica-

tion [8], divides the matrices along the largest dimension and recurses in a typi-

cal divide-and-conquer fashion independently of cache size. Cache-oblivious algo-

13

1. INTRODUCTION

rithms, in contrast to tiling, use an optimal amount of work and automatically per-

form well in multilevel cache environments without any knowledge of hardware

parameters.

Contributions

This thesis is the result of joint work with Ekanathan Palamadai Natarajan. We

apply the Ztune routine, originally developed in [14], on matrix-vector multiplica-

tion. Contrary to the popular trend in the field, which was leaning toward heuristic

autotuners, Ztune was designed to be a domain-specific exhaustive autotuner. It

searches for the best divide choice at each step of the matrix-vector multiplication

recursion; i.e., at every step, Ztune determines the best option among

1. dividing the multiplying matrix and the resulting vector by row,

2. dividing the multiplying matrix by column and the multiplying vector by row,

or

3. executing the base case, i.e., a nested loop.

The divide choice for each subproblem is then stored in its corresponding node. Af-

ter identifying all the optimal choices, we build a plan, which is a tree node for the

original problem. When we execute matrix-vector multiplication, we walk from the

root of the plan down to the leaves, following the best implementation choices as

established by Ztune. We discuss Ztune and how we apply it to matrix-vector mul-

tiplication in more detail in Chapter 3. We then employ supplemental techniques to

reduce Ztune’s running time in Chapter 4.

Although applying Ztune to matrix-vector multiplication was rather straightfor-

ward, there were several obstacles that would have prevented us from obtaining

14

1. INTRODUCTION

the optimal result. In particular, attempts to reduce the tuning time caused Ztune

to output a suboptimal program as a result of inconsistent cache states, inconsis-

tent cache alignments and noise in the measurement. We discuss these issues and

provide additional techniques to improve Ztune’s reliability in Chapter 5.

Hand-Tuned Ztune Otune

Machine Runtime Runtime Tuning Time Speedup Runtime Speedup

AWS1 2.707 2.635 0.119 1.03 2.665 1.02
AWS2 2.655 2.603 0.197 1.02 2.598 1.02

C9 3.302 3.245 0.010 1.02 3.243 1.02

Figure 1.3: Running times (in seconds) of hand-tuned, optimized Ztune, and Otune imple-
mentations of matrix-vector multiplication of size 25000× 100000. Each value is the geo-
metric mean of 10 repeated runs. The Speedup columns refer to the ratios of running times
Hand-Tuned/Ztune and Hand-Tuned/Otune. The Tuning Time column is the time Ztune uses
for tuning. Otune is given 60 seconds.

The overall results of applying Ztune to matrix-vector multiplication are shown

in Figure 1.3. We ran all tests on 3 different machines, and their hardware con-

figurations are described in Appendix A. We are showing the results of only one

representative problem size since the magnitude of the speedups turned out to be

comparable regardless of the input size. We hand-tuned the problem using a cache-

based model described in Chapter 2. The hand-tuned code gave reasonably good

performance and we used it as the baseline for all future comparisons. The findings

in this thesis support the hypothesis that hand-tuned codes do not always give the

best performance, further highlighting the benefit of autotuners.

Ztune-optimized codes ran 1%-5% faster than the hand-optimized counterparts.

The Tuning Time column shows that Ztune tuned extremely quickly and usually

finished tuning within a small fraction of the time needed to execute the problem

itself. We also used OpenTuner [2] to implement an autotuner called Otune that op-

timized the row size and the column size cutoffs for the base-case execution, and

15

1. INTRODUCTION

was given 60 seconds to tune. Ztune and Otune yielded roughly the same perfor-

mance speedups, but Ztune finished tuning within one second whereas Otune often

took more than 10 seconds to reach its optimal cutoffs.

Thesis Organization

This thesis has 7 chapters in addition to this introduction:

Chapter 2 describes the matrix-vector multiplication problem and builds a “model”

for hand-tuning, which we use as the baseline for comparing all future performance.

We also state the assumptions about the matrix-vector multiplication problem that

apply throughout this thesis.

Chapter 3 describes the Ztune algorithm and its method of estimating the exe-

cution cost. We also estimate the tuning time of basic Ztune and outline methods

to implement Ztune’s helper functions for specific uses on matrix-vector multiplica-

tion.

Chapter 4 describes the application of two strategies, equivalence and divide

subsumption from [14], to improve Ztune’s tuning time. We also demonstrate that

when using these strategies, Ztune returns a suboptimal plan as a result of a reduced

tuning time and other possible factors.

Chapter 5 investigates why Ztune gives a suboptimal plan and provides a few

strategies to resolve the issue.

Chapter 6 compares the performance of Ztune-optimized codes with other matrix-

vector multiplication libraries including the Intel Math Kernel Library and Open-

BLAS.

16

1. INTRODUCTION

Chapter 7 applies Ztune with equivalence and divide subsumption to the matrix-

matrix multiplication problem. We show that under certain circumstances, Ztune

can yield an usually large speedup.

Chapter 8 suggests ways to improve on our work and Ztune in the future.

Finally, Appendix A describes the detailed specifications of the hardware that we

use for our experiments.

17

1. INTRODUCTION

18

2 Tuning Matrix-Vector Multiplication

Matrix-vector multiplication is a common problem in computer science. In this

chapter, we explain the general characteristics of matrix-vector multiplication, as

well as the divide-and-conquer strategies to execute it. We also state the assump-

tions about the problem, along with the notations that we use in this thesis, for con-

sistency. Lastly, we describe a tuning “model” based on cache as a foundation for

hand-tuning the problem. This model suggests that dividing the vectors in a certain

way will accelerate the code–a hypothesis that we verified experimentally.

Figure 2.1 gives a quick revision of matrix-vector multiplication. Each element in

the resulting vector is simply the dot product between the corresponding row of the

matrix and the multiplying vector.

y1
y2
...

ym

 =

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn

x1
x2
...

xn

Figure 2.1: Matrix-vector multiplication y = Ax, where yi = ∑n

j=1 aijxj for i = 1, . . . , m.

Matrix-vector multiplication can be computed using the base-case nested loop,

shown as MATRIX-VECTOR-MULTIPLY-BASE-CASE in Figure 2.2. Alternatively, it

19

2. TUNING MATRIX-VECTOR MULTIPLICATION

can be solved with a divide-and-conquer approach, which carries out one of the

following actions at each step of the recursion:

1. dividing the multiplying matrix and the resulting vector by row,

2. dividing the multiplying matrix by column and the multiplying vector by row,

or

3. executing the base case, i.e., a nested loop.

Note that dividing the matrix down to 1 × 1 submatrices would impair rather

than improve performance in practice because the extra function-call overhead would

exceed the cache advantage of divide and conquer. A base-case cutoff is required to

avoid such a scenario. Figure 2.2 shows a serial divide-and-conquer matrix-vector

multiplication code that only executes the base case on a 1× 1 submatrix. We may

change line 1 to

1 if m ≤ 64 and n ≤ 64

to execute the base case whenever both dimensions of the matrix go below 64. If

either dimension is larger than 64, the code divides the matrix along the bigger

dimension.

Assumptions

Before moving forward, we dedicate this section to describing the general assump-

tions upon which this thesis is based.

• We focus on the serial version of divide-and-conquer matrix-vector multipli-

cation, which means that we use only one thread on one processor core to

execute the whole program. Whenever we mention a matrix-vector multipli-

cation problem, we refer to it in a divide-and-conquer context, as outlined in

Figure 2.2.

20

2. TUNING MATRIX-VECTOR MULTIPLICATION

MATRIX-VECTOR-MULTIPLY-RECURSIVE(A, x, y, m, n, column size)
1 if m ≤ 1 and n ≤ 1
2 MATRIX-VECTOR-MULTIPLY-BASE-CASE(A, x, y, m, n, column size)
3 elseif m > n // divide by row
4 f = bm/2c
5 MATRIX-VECTOR-MULTIPLY-RECURSIVE(A, x, y, f , n, column size)
6 MATRIX-VECTOR-MULTIPLY-RECURSIVE(
7 A + f · column size, x, y + f , m− f , n, column size)
8 else // divide by column
9 f = bn/2c

10 MATRIX-VECTOR-MULTIPLY-RECURSIVE(A, x, y, m, f , column size)
11 MATRIX-VECTOR-MULTIPLY-RECURSIVE(
12 A + f , x + f , y, m, n− f , column size)
MATRIX-VECTOR-MULTIPLY-BASE-CASE(A, x, y, n, column size)
1 for i = 1 to m
2 for j = 1 to n
3 y[i] += A[i · column size + i] · x[j]

Figure 2.2: Matrix-vector multiplication pseudocode for computing y = Ax, assuming that
the matrix and the vector are stored in row-major order. The parameter column size is the
original column size, and m, n are the row size and the column size of the matrix, respec-
tively.

• We assume that matrices and vectors always start in DRAM when they are

allocated on the heap for the first time and we have not accessed it yet, and are

not stored in L1, L2 or L3 cache.

• Matrices and vectors are stored in row-major order; i.e., each element in the ar-

ray is located in memory following the previous element from the same row.

The first element on each row is located after the last element from the previ-

ous row. Examples are given in Figure 2.3.

• We use double as the data type for values in matrices and vectors. The size of

double is 8 bytes for our machine architectures and compilers.

• All machines that we use have a cache line of 64 bytes, and hence exactly 8

consecutive elements of type double from a matrix or a vector can fit in one

21

2. TUNING MATRIX-VECTOR MULTIPLICATION

cache line.

• The first element of the matrix and the vector is cache-aligned. Specifically, its

address in memory is a multiple of 8.

• We assume that the dimensions of all input matrices and vectors are multiples

of 8 for consistency and for simplicity of the analysis. This means that the

start of each matrix row is cache-aligned. (Despite such specific requirements

of this assumption, our approach is still generalizable because we can always

pad any arbitrarily-sized matrix or vector into multiples of 8.)

• In the context of matrix-vector multiplication, we use m to denote the row size

of the multiplying matrix (and hence the size of the resulting vector), and n

to denote the column size of the multiplying matrix (and hence the size of

the multiplying vector). The variable m is also called the first dimension of the

problem, and n the second dimension.

• Speedup of an implementation means the ratio

the running time of the hand-tuned version
the running time of the implementation

,

unless stated otherwise. Greater speedup indicates better performance.

• We define the top-left corner of a matrix to be coordinates (0, 0). The first

and the second coordinates increase as we move along rows and columns,

respectively. The bottom-right coordinates are exclusive; i.e., the bottom-right

coordinates of an m× n matrix are denoted (m, n), not (m− 1, n− 1). We also

use this notation to specify a submatrix. For example, a submatrix may start

at coordinates (8, 16), inclusive, and end at (12, 24), exclusive. We call this

submatrix (8, 16, 12, 24).

22

2. TUNING MATRIX-VECTOR MULTIPLICATION

• A matrix A′ is a submatrix of A if and only if A′ is the first argument to the

call of MATRIX-VECTOR-MULTIPLY-RECURSIVE from Figure 2.2 at some point

during the execution of well-defined MATRIX-VECTOR-MULTIPLY-RECURSIVE

with A as the first argument and a special condition that it nondeterministi-

cally divides by row or column instead of having deterministic check in line 3

and 8. A submatrix of A is not defined as a matrix that can be obtained by

removing a collection of rows and columns from A. A subvector of a vector is

defined similarly.

• A matrix-vector multiplication problem y′ = A′x′ is a subproblem of a matrix-

vector multiplication problem y = Ax if and only if A′, x′, y′ are the first, sec-

ond, and third arguments to the call of

MATRIX-VECTOR-MULTIPLY-RECURSIVE at some point during the execution

of well-defined MATRIX-VECTOR-MULTIPLY-RECURSIVE with A, x, y as the first,

second, and third arguments and a special condition that it nondeterministi-

cally divides by row or column instead of having deterministic check in line 3

and 8.

A[12]⇒

A[0] A[1] A[2]
A[3] A[4] A[5]
A[6] A[7] A[8]
A[9] A[10] A[11]

A[mn]⇒

A[0] A[1] · · · A[n− 1]

A[1 · n + 0] A[1 · n + 1] · · · A[1 · n + (n− 1)]
...

...
A[(m− 1) · n + 0] A[(m− 1) · n + 0] · · · A[(m− 1) · n + (n− 1)]

Figure 2.3: Examples of matrices in row-major order.

23

2. TUNING MATRIX-VECTOR MULTIPLICATION

How to Hand-Tune Divide-and-Conquer Matrix-Vector Multiplica-

tion

Matrix-vector multiplication makes the most use of caching if the size of the vector

fits exactly in cache. This is because, unlike in matrix-matrix multiplication, there is

no temporal locality in the matrix–each element in the matrix is used only once. On

the other hand, each element of the multiplying vector is used repetitively to com-

pute the resulting vector, suggesting that the vector can take advantage of caching.

The effect of cache on performance will be particularly evident when the vector is

large.

Using the above “model,” we hypothesize that the multiplying vector should fit

in cache to take the greatest advantage of it. We therefore keep dividing the vector

in half until the size of the subvectors just fits in cache, and then execute the base-

case. There is no use dividing it any further; not only would this not increase cache

performance, but it could also slow the program down by adding extra function-call

overhead. We tested this hypothesis using following experiment. We used machines

that had a 32KB L1 cache, which could store 4096 doubles. We ran three implemen-

tations of a 1000× 3000000 matrix-vector multiplication:

1. The first implementation was a straight nested loop.

2. The second implementation executed the base case when the size of the multi-

plying vector was smaller than 4096–the cache size. (While there might not be

enough space to store both a row of the matrix and the multiplying vector of

size, say, 4095, we found that using a smaller cutoff in the range of 1024-4096

yielded similar results.)

3. The third implementation executed the base case when both dimensions of the

matrix were smaller than 64. This represented the over-dividing scenario.

24

2. TUNING MATRIX-VECTOR MULTIPLICATION

Machine Nested Loop n < 4096 m, n < 128

AWS1 3603.32 3260.27 6660.81
AWS2 3635.51 3234.35 6764.46

C9 5205.75 4110.46 9938.36

Figure 2.4: Running times (in milliseconds) using three different choices of base-case cutoff
when multiplying a matrix and a vector of size 1000× 3000000. Each value is the minimum
of 5 repeated runs.

Figure 2.4 corroborates our claim: the second implementation, with the base-case

cutoff corresponding to the cache size, performed the best. We therefore conclude

that the hand-tuned divide-and-conquer matrix-vector multiplication implementa-

tion is to divide the multiplying vector until it just fits in cache. We will use this

result as the baseline against which we compare all future Ztune performance.

25

2. TUNING MATRIX-VECTOR MULTIPLICATION

26

3 Ztune

The primary autotuner strategy that we employ in this thesis is Ztune, which was

originally described in [14]. We dedicate the first part of this chapter to explaining

Ztune, describing its tuning mechanisms, and outlining a method to evaluate its

performance with the cost function. We also estimate the theoretical cost for tuning

and set goals to improve it in the next chapter.

In this first part, we describe how Ztune works and how it correctly captures the

program running time. We borrow notations from [14], and readers can find more

details there.

Ztune is a domain-specific exhaustive autotuner that we apply to matrix-vector

multiplication. In the original paper by Natarajan et al., Ztune was applied to stencil

computation problems, but here we adapt it to matrix-vector multiplication prob-

lems. Ztune either identifies the best divide choice or decides to execute the base

case for each problem Z by building a plan. A plan is an ordered tree of plan nodes

where the root node corresponds to the input problem. Each plan node z contains

information about how to execute that specific problem; i.e., z contains:

• z.choice: the divide choice for z. In the context of matrix-vector multiplication,

there are only three choices: division by row (of the matrix, and row of the re-

sulting vector), division by column (of the matrix, and row of the multiplying

27

3. ZTUNE

vector), or execution of the base case (also known as nested-loop multiplica-

tion).

• z.cost: the running time for z following z.choice. This value accounts for all the

time spent from the start to the end of the execution if we follow z.choice.

• z.children: the list of Z’s children in case the choice is to divide, or NIL for

the base case. Suppose the best divide choice for problem Z is to divide it into

subproblems Zc1 , Zc2 , . . . , Zckc
. Then, z.children will be the list of zc1 , zc2 , . . . , zckc

where zci is the plan node for Zci . In the context of matrix-vector multiplica-

tion, a child of Z is a multiplication between a submatrix and a subvector. The

list z.children has either exactly two elements from dividing a problem along a

dimension, or nothing for the base case.

There are four helper functions in the ZTUNE pseudocode in Figure 3.1:

• LOOKUP(Z): returns the plan node z for Z, or NIL if empty.

• CHOICE(Z): returns the set of possible divide choices for Z.

• BASE-CASE(Z, z): executes the base-case code on Z.

• INSERT(Z, z): inserts the plan node z for Z into the lookup table.

The actual implementation of these functions varies depending on the problem and

the programmer. This subsection only touches upon some of these functions, but

we will describe their specific use for matrix-vector multiplication in greater detail

in a later section.

As a means to evaluate performance, we hereby discuss how Ztune measures

cost, i.e., the time used to execute the code on a machine. Getting accurate cost is usu-

ally tricky in divide-and-conquer codes because we need to account for function-call

and function-return overhead. Ztune nonetheless is able to measure cost accurately.

28

3. ZTUNE

To demonstrate this, let us first define the following notations that Ztune uses for a

timer:

• TIC(): starts the timer

• TOC(): stops the timer and returns the elapsed time since the last TIC().

By placing TIC() and TOC() at appropriate places, we will be able to obtain the cost

of the process in between.

ZTUNE(Z)
1 call-cost = TOC()
2 z = LOOKUP(Z)
3 if z == NIL
4 Allocate plan node z
5 z.cost = ∞
6 z.children = NIL.
7 for each choice c ∈ C
8 TIC()
9 Divide Z using choice c into kc subproblems Zc1 , Zc2 , . . . , Zckc

10 rec-cost = TOC()
11 for i = 1 to kc
12 TIC()
13 (zci , call-costci) = ZTUNE(Zci)
14 ret-costci = TOC()
15 rec-cost += call-costci + zci .cost + ret-costci
16 if rec-cost < z.cost
17 z.cost = rec-cost
18 z.choice = c
19 z.children = [Zc1 , Zc2 , . . . , Zckc

]
20 BASE-CASE(Z, z)
21 INSERT(Z, z)
22 TIC()
23 return (z, call-cost)

Figure 3.1: ZTUNE pseudocode from [14].

These functions enable ZTUNE to capture the total cost of solving a problem Z

using any specific divide choice. The total cost comprises four portions that we

ought to take into account:

29

3. ZTUNE

BASE-CASE(Z, z)
1 TIC()
2 execute base-case
3 base-cost = TOC()
4 if z.cost ≥ base-cost
5 z.cost = base-cost
6 z.choice = −1 // base case
7 z.children = NIL

Figure 3.2: BASE-CASE pseudocode from [14].

1. The cost to solve the problem itself. This is the cost to execute a plan or to solve

problem Z, stored in z.cost.

2. The cost to divide the problem into subproblems. This is the cost of executing

line 9 in Figure 2.2. In the context of matrix-vector multiplication, this cost

accounts for dividing along a dimension and calculating the locations of the

submatrices and the subvectors.

3. Function-call cost. For example, the cost of recursively calling MATRIX-VECTOR-

MULTIPLY-RECURSIVE or MATRIX-VECTOR-MULTIPLY-BASE-CASE in Figure 2.2.

This cost does not include the execution cost of the rest of the function.

4. Function-return cost. The cost of callee function return. For example, the cost

when MATRIX-VECTOR-MULTIPLY-RECURSIVE or MATRIX-VECTOR-MULTIPLY-

BASE-CASE in Figure 2.2 exits and returns to the caller. This cost does not

include the execution cost prior to the return.

In line 2 of Figure 3.1, Ztune calls LOOKUP(Z) to check whether it has already

evaluated Z before and if so, it will use the recorded data. If not, Ztune has to evalu-

ate Z by examining all divide choices and measuring their running times, as shown

in line 7. In our case of matrix-vector multiplication, there are only two choices:

dividing along the rows or diving along the columns of the matrix. Ztune mea-

sures the cost of dividing Z using a specific choice c, and stores this cost in rec-cost in

30

3. ZTUNE

line 10. The variable rec-cost is reused as the total cost for each divide choice to poten-

tially be later stored in z.cost. Ztune then executes the subproblems Zc1 , Zc2 , . . . , Zckc
,

taking into account the call cost and the return cost to each ZTUNE(Zci), and adds

the overall cost to rec-cost in line 15.

We now describe how Ztune measures function-call and function-return costs.

We assume that the caller always calls TIC() right before calling ZTUNE. We place

TOC() at the beginning of ZTUNE to measure the function-call cost, which we assign

to call-cost in line 1. The value call-cost is then returned in line 23 along with its plan

node z. Similarly, we place TIC() right at the end of ZTUNE in line 22, and the caller

is responsible for calling TOC() after ZTUNE ends to measure the function-return

cost, which we assign to ret-cost. Lines 12-14 show an example of how the caller

wraps ZTUNE(Zci) with TIC() and TOC(), effectively measuring the call cost and

the return cost of ZTUNE(Zci). In line 15, call-cost returned from ZTUNE is added to

rec-cost to penalize recursive function calls, and similarly ret-cost in line 14 is added

to rec-cost to penalize recursive function returns.

The variable rec-cost therefore represents the total cost of a specific divide choice

c, consisting of the costs to divide Z and to call, execute and return ZTUNE on all

of Z’s children. In lines 16-19, Ztune compares this newly obtained rec-cost with the

cost of the best possible divide choice so far, z.cost. If the new choice performs better,

Ztune then updates z.cost, z.choice and z.children.

After Ztune has tried all divide choices, it evaluates the base case by calling BASE-

CASE. The function BASE-CASE simply calls TIC(), executes the base-case nested

loop, and finally calls TOC(). Ztune updates the plan node z if performance im-

proves.

31

3. ZTUNE

Application to Matrix-Vector Multiplication

This section narrows the application of Ztune down to the matrix-vector multipli-

cation problem. We will give specific details on implementing routines such as

LOOKUP(Z) and INSERT(Z, z).

Let us first investigate the most basic case where LOOKUP(Z) and INSERT(Z, z)

are not utilized, which means we have no lookup table. In this case, we define the

functions as follows:

1. LOOKUP(Z): always returns NIL.

2. INSERT(Z, z): does nothing.

Theorem 3.1. Basic Ztune with no lookup table has O(m2n2) tuning time.

Proof. Let T(m, n) be the time Ztune with no lookup table uses to tune an m × n

matrix-vector multiplication problem. Ztune has to spend cmn on evaluating the

base case of this problem, where c > 0 is a constant. It then divides the matrix by

row or by column and recursively calls ZTUNE on the subproblems. Therefore, we

have the following recurrence:

T(m, n) = 2T
(m

2
, n
)
+ 2T

(
m,

n
2

)
+ cmn.

We will prove that T(m, n) = O(m2n2) by the substitution method. We want to show

that T(m, n) ≤ dm2n2 − cmn holds for all m, n ∈ Z+, for an appropriate choice of

the constant d > 0, by induction on m + n.

For m + n = 2, it is clear that m = n = 1, and T(1, 1) is a constant. The inequality

holds for an appropriate choice of d. Next, assume that for all m, n ∈ Z+ such that

32

3. ZTUNE

m + n < K, the inequality T(m, n) ≤ dm2n2 − cmn holds. For any m + n = K, we

have:

T(m, n) = 2T
(m

2
, n
)
+ 2T

(
m,

n
2

)
+ cmn

≤ 2
(

d
(m

2

)
2n2 − c

m
2

n
)
+ 2
(

dm2
(n

2

)
2 − cm

n
2

)
+ cmn

= dm2n2 − cmn.

The induction is complete and we conclude that T(m, n) = O(m2n2).

Theorem 3.1 shows that basic Ztune with no lookup table has O(m2n2) tuning

time, which is O(mn) factor larger than the matrix-vector multiplication time. The

large tuning time is due to the fact that Ztune is wasting resources re-tuning the

subproblems that it has already tuned. While having no lookup table saves space

usage, the resulting tuning time is too large.

To improve tuning performance, let us make the first attempt to use a lookup

table. A subproblem of a matrix-vector multiplication is defined by a submatrix

multiplying a subvector equal to a subvector. A subproblem can in fact be identified

by the location and the shape of its submatrix alone, and the two subvectors are

determined automatically. Therefore, we can specify a submatrix by a triplet (row

size, column size, starting location). We then build a map M between a triplet and a

plan node z and utilize M in the following helper functions:

1. LOOKUP(Z): uses the row size, column size, and starting location of Z as a key

to find its plan node z in M.

2. INSERT(Z, z): inserts a map between a triplet (row size, column size, starting

location) and z into M.

33

3. ZTUNE

However, implementing such a map without a helper library can be challenging.

We will provide an alternative approach that has the same functionality as a map:

a lookup table. A simple way to build a lookup table for an m × n matrix-vector

multiplication problem is to create a three-dimensional array where the index of the

first dimension specifies the row size, the index of the second dimension specifies

the column size, and the index of the last dimension specifies the location of the

top-left corner of the submatrix.

The index of the first dimension runs from 0, 1, . . . , m− 1, representing the sub-

matrix row size of 1, 2, . . . , m. The index of the second dimension similarly runs from

0, 1, . . . , n− 1. Since we use row-major ordering, the top-left corner can be specified

by a single number rather than two dimensional coordinates, and thus the index of

the third dimension runs from 0, 1, . . . , mn− 1. The original problem, for example,

is stored at index (m− 1, n− 1, 0). To construct a plan after ZTUNE finishes, we use

the data at index (m− 1, n− 1, 0) to define the root node z of the plan, and then we

recursively visit z.children and build the tree of plan nodes. The lookup table is no

longer needed after the plan is complete.

This lookup table is simple but extremely inefficient. The three-dimensional array

for a 1000× 1000 matrix-vector multiplication problem would require 1000× 1000×

1000000 = 1000000000000 (1 trillion) slots, which would be too big to fit in memory,

and we might be better off without a lookup table. This problem underscores the

need for a better approach.

We can reduce the size of the lookup table by realizing the fact that the first

and the second dimensions do not need to run all the way from 0, 1, . . . , m− 1 and

0, 1, . . . , n− 1. Since we divide the matrix along the row or the column in half when

executing, there are only certain submatrix sizes that we will encounter. For in-

34

3. ZTUNE

stance, if m = 18, then the only possible submatrix row sizes are 1, 2, 3, 4, 5, 9, 18,

and we will never encounter 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17.

The following theorem, which we borrow from [14], can be used to determine the

size of the lookup table.

Theorem 3.2. Consider the following program:

DIVIDE-TWO(s, k)

1 Repeat k times:

2 Nondeterministically assign s = bs/2c or s = ds/2e

3 return s.

Let n and k be positive integers. Then, DIVIDE-TWO(n, k) returns either
⌊
n/2k⌋ or

⌈
n/2k⌉.

Proof. First, we will prove the following lemma.

bx + yc ≥ bxc+ byc

dx + ye ≤ dxe+ dye

Let x = a1 + b1 and y = a2 + b2, where a1, a2 ∈ Z and 0 ≤ b1, b2 < 1. Then,

bx + yc = ba1 + b1 + a2 + b2c

≥ a1 + a2

= bxc+ byc.

The second inequality can be proven similarly.

Next, we will prove the theorem by induction on k.

Base Case: k = 0, the return value of DIVIDE-TWO(n, 0) is n, which is equal to⌊
n/20⌋.

35

3. ZTUNE

Inductive Step: Suppose calling DIVIDE-TWO(n, l) returns a value r, which is ei-

ther
⌊
n/2l⌋ or

⌈
n/2l⌉. Note that DIVIDE-TWO(n, l + 1) nondeterministically returns

br/2c or dr/2e.

From the induction hypothesis, we have

r ≥
⌊ n

2l

⌋
r
2
≥ 1

2

⌊ n
2l

⌋
≥ 1

2

(⌊ n
2l+1

⌋
+
⌊ n

2l+1

⌋)
(from the lemma)

=
⌊ n

2l+1

⌋
⌊ r

2

⌋
≥
⌊ n

2l+1

⌋
.

Similarly, we can show that ⌈ r
2

⌉
≤
⌈ n

2l+1

⌉
.

Therefore, DIVIDE-TWO(n, l + 1) returns either br/2c or dr/2e, which is equal to

either
⌊
n/2l+1⌋ or

⌈
n/2l+1⌉, and the induction is complete.

Theorem 3.2 shows that we will only encounter submatrices of row sizes

m,
⌊m

2

⌋
,
⌈m

2

⌉
,
⌊m

22

⌋
,
⌈m

22

⌉
, . . . , 1

and column sizes

n,
⌊n

2

⌋
,
⌈n

2

⌉
,
⌊ n

22

⌋
,
⌈ n

22

⌉
, . . . , 1.

There are only Θ(log m) row sizes and Θ(log n) column sizes, so the first and

the second dimensions of the lookup table only need Θ(log m) and Θ(log n) slots

respectively, down from m and n. The size of the three-dimensional lookup table

36

3. ZTUNE

now reduces to Θ(mn log m log n), which is substantially smaller than before despite

still requiring a large memory.

Theorem 3.3. Basic Ztune with a lookup table has Θ(mn log m log n) tuning time.

Proof. For any matrix, Ztune spends constant time dividing it into subproblems and

recursively calling ZTUNE on the subproblems. It spends the majority of the tuning

time, in regards to this particular matrix, evaluating the base case. Therefore, we

will find the time spent evaluating the base case.

Based on the fact that we have Θ(log m) row sizes and Θ(log n) column sizes,

there are Θ(log m log n) possible submatrix sizes. All submatrices of one specific

size fit in the original matrix with no overlap. Therefore, for each size, we spend

Θ(mn) time in total on the base case, giving the overall tuning time of Θ(mn log m log n).

We also provide an alternative proof. Consider any element in the original ma-

trix. How much time does Ztune spend on this element? We may answer the ques-

tion by finding the number of distinct submatrices that contain the element. Let us

begin by considering only the first dimension. In the original matrix, the indices of

the rows are in the range [0, m). We use the term “segment” to denote a range of

indices. When we divide the matrix by row, the element must be in either the top or

the bottom submatrix; i.e., the element belongs to a new smaller segment, either the

top [0, m/2) or the bottom [m/2, m). Since we can divide by row at most Θ(log m)

times, there are Θ(log m) different row segments that may contain the element. Sim-

ilarly, there are Θ(log n) different column segments that may contain the element.

The combination of a row segment and a column segment defines a submatrix that

Ztune encounters during the tuning process. Since there are Θ(log m log n) com-

binations of row and column segments, there are Θ(log m log n) submatrices that

contain a particular element. Ztune spends Θ(1) on an element executing the base

37

3. ZTUNE

case of a submatrix, so it spends Θ(log m log n) on the element over all submatrices.

Since there are mn elements, the tuning time is Θ(mn log m log n).

From Theorem 3.3, the tuning time (and space) of basic Ztune is Θ(mn log m log n),

which is substantially smaller than before, but still not as satisfying as it can be. The

tuning time is a factor of Θ(log m log n) larger than the matrix-vector multiplication

time, and the space usage for the lookup table is also Θ(log m log n) times larger

than the space to store the matrix. Cutting down the row and the column sizes is

clearly not enough. We also need to reduce the tuning time and memory usage to

an acceptable level. One problem that could arise from working with faster codes,

however, is that noise would have a bigger influence on time measurements, which

could potentially mislead the tuner to pick a suboptimal plan. Our goal in the next

two chapters is to improve the tuning time while arriving at the optimal plan.

38

4 Improving Tuning Time

The previous chapter concludes that basic Ztune needs too much memory to store

the lookup table and takes too long to tune. We utilize Ztune’s pruning properties–

equivalence and divide subsumption, which are originally described in [14], to pro-

vide improvements. These two concepts dramatically reduce the tuning time, which

can become as small as 1/10000 of the time used to compute the multiplication it-

self. Shorter tuning times, however, come at the expense of accuracy in cost mea-

surements. A suboptimal plan may appear to be much faster than it actually is, and

the tuner wrongly picks this plan over the optimal one. We will inspect the causes

of this problem and propose solutions to improve Ztune’s accuracy and reliability

in the next chapter.

Equivalence

The equivalence (EQ) property [14] is intuitive. It states that matrix-vector multipli-

cation problems of the same size have the same cost and the same optimal plan.

Equivalence allows us to evaluate one matrix of a particular size and generalize the

result across all matrices of the same size, resulting in a massive decrease in tun-

ing time. The number of dimensions of the lookup table decreases from three to

two as we can forgo the third dimension that specifies the starting location of the

39

4. IMPROVING TUNING TIME

submatrices. In other words, all submatrices having the same size (as specified by

the first and the second dimensions) will have the same cost and the same plan

node regardless of their starting position. The size of the lookup table now becomes

Θ(log m log n), reduced from the previous Θ(mn log m log n).

Hand-Tuned Ztune with EQ Speedup Tuning Time with EQ

8.35 8.17 1.02 46.60

Figure 4.1: Running times (in seconds) of hand-tuned and basic Ztune with EQ implemen-
tations of matrix-vector multiplication of size 75000× 100000 on AWS2. Each value is the
geometric mean of two runs. The Speedup column refers to the ratio of running times Hand-
Tuned/Ztune with EQ. The Tuning Time with EQ column is the time Ztune with EQ uses for
tuning.

Theorem 4.1. Ztune with EQ has Θ(mn) tuning time.

Proof. The submatrix row sizes are values in the set

M =
{

m, bm/2c, dm/2e,
⌊
m/22⌋, ⌈m/22⌉, . . . , 1

}
and column sizes are values in the

set N =
{

n, bn/2c, dn/2e,
⌊
n/22⌋, ⌈n/22⌉, . . . , 1

}
. Using the EQ property on each

submatrix of size a × b, we spend Θ(ab) on running the base case and storing its

plan node in the lookup table. Therefore, the tuning time is

∑
a∈M

∑
b∈N

Θ (ab) = Θ

(
∑

a∈M
∑

b∈N
ab

)

= Θ

(
4

log m

∑
a=0

log n

∑
b=0

2a2b

)

= Θ

(
4

log m

∑
a=0

2a
log n

∑
b=0

2b

)

= Θ(16mn)

= Θ(mn).

40

4. IMPROVING TUNING TIME

The tuning time of Ztune with EQ is Θ(mn) from Theorem 4.1, which is asymp-

totically the same as the time to multiply the matrix and the vector itself, and is

better than basic Ztune’s Θ(mn log m log n). Figure 4.1 shows that we are now able

to tune a 75000× 100000 matrix-vector multiplication in 46.60 seconds whereas the

running time of the multiplication itself is 8.35 seconds. This is an upgrade com-

pared to basic Ztune alone, which takes over one hour just to tune a much smaller

1000× 1000 problem.

Divide Subsumption

Ztune spends the majority of its tuning time executing and evaluating the base case,

which is pointless if the choice is certainly to divide. We can speed up Ztune by

pruning unnecessary base-case evaluations using the divide subsumption (DS) prop-

erty [14]. The DS property states that if all subproblems choose to divide (rather

than to execute the base case), then executing the base case cannot be the optimal

choice for the current problem. To put it another way, if every child of a problem

Z chooses to divide, then Z itself must also choose to divide, and thus we can skip

evaluating the base case on Z to reduce tuning time. We replace BASE-CASE(Z, z)

in line 20 of the ZTUNE pseudocode (Figure 3.1) with DIVIDE-SUBSUMPTION(Z, z)

from Figure 4.2.

DIVIDE-SUBSUMPTION(Z, z)
1 measure-base = FALSE
2 for z′ ∈ z.children
3 if z′.choice == −1 // child chooses base-case
4 measure-base = TRUE
5 if measure-base
6 BASE-CASE(Z, z)

Figure 4.2: DIVIDE-SUBSUMPTION, modified from [14].

41

4. IMPROVING TUNING TIME

In the context of a matrix-vector multiplication problem, we first evaluate the

cost of dividing by row and by column. For the choice with the lower cost, we then

check if both of the subproblems choose to divide further as their optimal choice. If

so, we skip the base-case evaluation on the original multiplication.

The base-case evaluation is often the most time-consuming part of Ztune on

matrix-vector multiplication. Skipping this step can therefore reduce the tuning

time massively. Figure 4.3 shows that Ztune’s tuning time decreases from 46.60 sec-

onds when using EQ alone (Figure 4.1) to only 0.015 seconds when combining both

EQ and DS–a thousand-fold acceleration. Moreover, the tuning time is only 1/1000

of the multiplication time itself.

Hand-Tuned Ztune with EQ + DS Speedup Tuning Time with EQ + DS

8.35 8.15 1.02 0.015

Figure 4.3: Running times (in seconds) of hand-tuned and Ztune with EQ + DS implemen-
tations of matrix-vector multiplication of size 75000× 100000 on AWS2. Each value is the
geometric mean of two runs. The Speedup column refers to the ratio of running times Hand-
Tuned/Ztune with EQ + DS. The Tuning Time with EQ + DS column is the time Ztune with
EQ + DS uses for tuning.

The significant speedup of the tuning time comes at the cost of inaccurate mea-

surements. We have tried over 300 different matrix-vector multiplication problems

and noticed that the actual cost of a Ztune-optimized code may exceed that of the

hand-tuned code by a factor of 2. For example, Figure 4.4 shows that the Ztune-

optimized code for a 20000× 75000 matrix-vector multiplication problem on AWS2

is 2.1 times more costly than the hand-optimized counterpart. Such an anomaly

appears only sporadically; we have to repeat Ztune with EQ + DS several times to

witness one bad result. We also find that Ztune’s predicted cost, which can be de-

rived from z.cost, does not always match the actual cost. The strategies to shorten

the tuning time seem to impair Ztune’s ability to consistently pick the optimal choice

42

4. IMPROVING TUNING TIME

and to accurately measure the cost.

Size AWS1 AWS2 C9

20000× 75000 0.49 0.47 0.60
35000× 25000 0.63 0.61 0.98
85000× 40000 1.01 0.50 0.97

Figure 4.4: Worst speedup ratio of running times Hand-tuned/Ztune, repeated 10 times for
different sizes. Ztune uses EQ + DS properties.

Despite these issues, we will continue to incorporate EQ and DS in Ztune because

of the immense reduction in the tuning time. In the next chapter, we will investigate

what can go wrong with EQ and DS that consequently damages Ztune’s reliability,

and propose slight modifications to our strategies to fix this issue.

43

4. IMPROVING TUNING TIME

44

5 Improving Reliability

Equivalence and divide subsumption tremendously lower Ztune’s tuning time, but

they also compromise the accuracy in time measurements and hence cost evalua-

tion. A bad choice might appear to be much less costly than it actually is, so Ztune

might mistakenly pick this choice as the preferred plan. Execution of this subopti-

mal plan causes Ztune to underperform hand-tuning. This chapter investigates the

factors that impair Ztune’s accuracy: noise in the measurement, cache states during

the execution, and cache alignment of the matrix and the vector. We then propose

a few solutions to minimize the inconsistency arising from these causes, and make

sure that Ztune reliably achieves the optimal plan and has a short tuning time.

Noise

Noise in the measurements can come from many sources such as I/O interrupts,

CPU/memory usage, CPU temperature, clock function delay, hyperthreading and

turbo-boost. In Figure 5.1, we measured the running times of the nested-loop execu-

tion of a 2000× 2000 matrix-vector multiplication, repeated 20 times. The running

times varied from 4.6 to 5.9 milliseconds on AWS1, and from 4.1 to 5.0 milliseconds

on AWS2. This variability in the running time was observed even though these

machines were quiescent, and hyperthreading and turbo-boost were disabled.

45

5. IMPROVING RELIABILITY

Machine Mean Min Max Variance

AWS1 5.572 4.627 5.923 0.381
AWS2 4.772 4.100 5.018 0.197

C9 5.202 5.180 5.244 0.015

Figure 5.1: Statistics of running times, in milliseconds, of nested loops on 20 runs of matrix-
vector multiplication of size 2000× 2000.

Noise is especially critical in Ztune with EQ and DS because the error can prop-

agate from a child to its ancestors. Suppose we have a large matrix-vector multipli-

cation problem, such as that of size 100000× 100000. Ztune recursively tunes the

subproblems until it gets to a 48× 48 submatrix, which is just one tiny component

of the entire multiplication. It evaluates the base-case cost of this submatrix and ob-

tains a false running time that is much shorter than what it is supposed to be. Ztune

records this underestimated cost in the lookup table, which affects the decision of

all of its ancestors. To make matters worse, the implementation of EQ means that

an inaccurate measurement in one submatrix will be copied over to all other sub-

matrices of the same size. One small error may jeopardize the accuracy of the whole

plan.

Unfortunately, there is not much we can do to eradicate noise, but we can sup-

press it to the minimum. Some of the measures that we take include making sure

that the machine is in a quiescent state (i.e., no other jobs are running and no other

users are using the machine) and turning off features such as hyperthreading and

turbo-boost. As stated earlier, the running times will still vary even when these

measures are in place (Figure 5.1).

46

5. IMPROVING RELIABILITY

Cache State

An inconsistent cache state during tuning or execution may also impair Ztune’s

ability to measure costs correctly. Recall that A, B, C are stored in row-major order.

Consider Figure 5.2 where we tune a 4× 4 matrix-vector multiplication, A× B. By

calling ZTUNE(A × B), Ztune evaluates the division of A by row and by column,

and then evaluates the base case. Let us closely examine what happens to the cache

state of A during this process. Suppose Ztune divides A by row and recursively

calls ZTUNE(A[0 : 8]× B[0 : 2]) and ZTUNE(A[8 : 16]× B[2 : 4]). At the end of both

recursive calls, the base case is executed on A[0 : 8]× B[0 : 2] and A[8 : 16]× B[2 : 4],

so the CPU reads A[0 : 8] and A[8 : 16] in from memory, and they are now stored

in L1 cache. When ZTUNE later proceeds to evaluate the base case for A × B, the

whole matrix A is already stored in L1 cache. As a result, Ztune underestimates

the base-case cost of A× B, because the CPU does not have to spend time reading

matrix A from DRAM.

A[0] A[1] A[2] A[3]
A[4] A[5] A[6] A[7]
A[8] A[9] A[10] A[11]

A[12] A[13] A[14] A[15]

B[0]
B[1]
B[2]
B[3]

 =

C[0]
C[1]
C[2]
C[3]

Figure 5.2: Matrix-vector multiplication diagram demonstrating inconsistent cache states
when assuming EQ.

Figure 5.3 shows the base-case statistics of running Ztune with EQ and DS on a

35000× 40000 matrix-vector multiplication. The optimal choice for most submatri-

ces, according to Ztune, is to recursively divide the matrix down to 273× 20 and

273× 19 submatrices and execute the base case. Ztune predicts the total time spent

nested-looping on these 273× 20 matrices to be 376.48 milliseconds (computed from

47

5. IMPROVING RELIABILITY

z.cost× count) but the actual execution takes 1037.29 milliseconds, nearly thrice the

prediction. Moreover the 273× 20 base-case running times vary from 0.005 to 0.057

milliseconds. This statistics shows that the predicted base-case cost does not truly

represent the actual base-case cost. We hypothesize that this variation arises from

the inconsistency in cache states during tuning and execution (noise is another fac-

tor, but there is nothing we can do to solve it).

Base-Case Size Count Actual Min Actual Max Predicted Total Actual Total

273× 20 78336 0.005 0.057 376.48 1037.29
273× 19 69120 0.004 0.042 321.96 712.88

17× 1250 21504 0.023 0.047 438.66 538.30
35× 625 7168 0.022 0.044 151.28 182.41

Figure 5.3: Statistics of base-case execution using Ztune with EQ + DS on matrix-vector
multiplication of size 35000× 40000 on AWS1. Base-Case Size is the size that gets executed
as the base case in the plan (i.e., it is not divided further). Count is the number of times
each base-case size is executed. Actual Min and Actual Max are the minimum and the
maximum of the running times of the actual base-case execution. Predicted Total is the
predicted total running time spent on computing all base-case executions of a particular
size. The prediction is based on z.cost of a plan node. Actual Total is the total running time
from the actual execution. All running times are in milliseconds.

We suggest two solutions to remedy the inconsistency in cache states. The first

is to randomize the location of the submatrix when evaluating the base case (RAN).

Specifically, instead of evaluating the base case on a submatrix by calling BASE-

CASE in line 6 of Figure 4.2 right away, we randomly pick a new submatrix of the

same size within the original matrix to call BASE-CASE on. What we want to achieve

from this strategy is to eliminate the bias on cache being warm rather than cold. It is

highly likely that we have a cold cache because the randomized submatrix can fall

anywhere within the original matrix, especially if the former is much smaller than

the latter. Randomization allows us to consistently evaluate a submatrix that is not

yet in cache, avoiding the cache-state problem.

48

5. IMPROVING RELIABILITY

We also consider the benefit of randomizing subvector locations, but we avoid it

for the following reason. In a matrix-vector multiplication, we likely read in each

element of the matrix once from DRAM and there is no temporal locality, so we

must account for cold misses on the submatrix when evaluating a subproblem. On

the other hand, there is temporal locality in the vector since we reuse its elements

multiple times. We choose to preserve this temporal locality by not randomizing

subvector locations when tuning.

2-DIVIDE-SUBSUMPTION(Z, z)
1 measure-base = FALSE
2 for z′ ∈ z.children
3 if z′.choice == −1 // child chooses base-case
4 measure-base = TRUE
5 else
6 for z′′ ∈ z′.children
7 if z′′.choice == −1 // grandchild chooses base-case
8 measure-base = TRUE
9 if measure-base

10 BASE-CASE(Z, z)

Figure 5.4: 2-LEVEL DIVIDE-SUBSUMPTION, modified from [14].

The second solution does not solve the problem at its cause–the cache state–but

raises the robustness of divide subsumption. We define n-level divide subsumption

(nDS) as follows: if all subproblems choose to divide down to n levels, then ex-

ecuting the base case cannot be the optimal choice for the current problem. The

original DS property from Chapter 4 skips evaluating the base case on a problem

if all of its immediate children choose to divide, so it is a 1-level divide subsump-

tion. Figure 5.4 shows a 2-level divide subsumption pseudocode that checks both

the children and the grandchildren of Z.

The motivation behind this strategy is that in our experience, Ztune with EQ

alone does not introduce noticeable inaccuracy but Ztune with EQ + 1DS does, sug-

49

5. IMPROVING RELIABILITY

gesting that the reliability problem may arise from a shallow DS. Deepening the

level of DS ensures that any error in the measurement cannot cause the ancestors to

prematurely rule out the base case from the optimal choice. Only when the children

choose to divide at multiple levels can we be sure that we can prune the base-case

evaluation. However, increasing the depth of DS means that we have to evaluate

more base cases, which increases tuning time. We need to find a good balance: the

fewest levels of DS that avoid inaccurate measurements.

Cache Alignment

The EQ property assumes that two submatrices of the same size share the same cost,

but this assumption may fall apart especially when the submatrices have different

cache alignments.

Consider Figure 5.5 in which two submatrices have the same size but different

starting positions. Recall that a 64-byte cache line can store 8 doubles. The top row

of submatrix (24, 24, 30, 30) is cache-aligned; i.e., the top-left element is stored in the

first location of a cache line and the remaining elements follow. Therefore, when we

read the top-left element of (24, 24, 30, 30), the rest of its row is automatically stored

in L1 cache. However, the top row of submatrix (0, 12, 6, 18) is not cache-aligned; its

top-left element is not stored in the first location of a cache line. When we read

the top-left element of (0, 12, 6, 18), we only store (0, 12), (0, 13), (0, 14), (0, 15) in

L1 cache (along with (0, 8), (0, 9), (0, 10), (0, 11)), and we need to fetch (0, 16)(0, 17)

from DRAM later.

Even though the two submatrices share the same size, the base-case execuation

time on the cache-aligned (24, 24, 30, 30) will presumably be smaller than that of

(0, 12, 6, 18) because of the number of cold misses. This violates the EQ property.

50

5. IMPROVING RELIABILITY

We need to make sure that whenever we assume EQ between submatrices, they not

only share the same size but also have the same cache alignment.

Figure 5.5: Submatrices that have different cache alignments.

We hereby describe two methods to enforce the same cache alignments among

equivalent matrices. The first is to divide the problem into the largest smaller power

of 2 (P2) instead of into halves. The motivation behind this approach comes from

the fact that we never observe an anomaly when using Ztune with EQ + 1DS to tune

matrix-vector multiplication of power-of-2 sizes.

Figure 5.6 shows a 24× 24 matrix-vector multiplication, which we would nor-

mally divide along the rows or the columns in half down to 12. In P2, however, the

largest power of 2 that is smaller than 24 is 16. We therefore divide the rows or the

columns from 24 into 16 and 8. In an actual implementation, one only needs to re-

place f = bm/2c and f = bn/2c in line 4 and line 9 of Figure 2.2 with f = 2blog(m−1)c

51

5. IMPROVING RELIABILITY

Figure 5.6: P2 division strategy.

and f = 2blog(n−1)c respectively. One might worry that the lookup table would need

extra slots to accommodate new row and column sizes. Fortunately, Theorem 5.1

implies that the number of possible row sizes and column sizes remains O(log m)

and O(log n), unchanged from basic Ztune with EQ. The size of the lookup table

therefore also remains unchanged.

Theorem 5.1. Consider the following program:

52

5. IMPROVING RELIABILITY

DIVIDE-POW-TWO(s)

1 while s > 1

2 Let r be the largest power of 2 that is smaller than s

3 Nondeterministically do exactly one of the following:

4 1. s = r

5 2. s = s− r

6 3. return s

7 return s

Let n be a positive integer. There are O(log n) distinct values that DIVIDE-POW-TWO(n)

can return.

Proof. Let k be the number of digits in the binary representation of s. Then, k =

O(log n). Let us observe the following facts:

1. If s is not a power of 2, option 1 in line 4 replaces s by maintaining only the

highest set bit in s and disregarding the rest of the bits. If s is a power of 2, it

shifts s to the right by 1 bit.

2. After option 1 is executed, s will always be in the form 10 . . 02, which is also a

power of 2.

3. If s is not a power of 2, option 2 in line 5 replaces s by taking away the highest

set bit of s .

4. If s is a power of 2, option 2 has the same effect as option 1, and we disregard

option 2. After this point, the program can either choose option 1 or return, so

s will always be a power of 2.

5. If s has been through option 1, it is a power of 2, and hence we disregard

option 2.

53

5. IMPROVING RELIABILITY

Next, let us consider three cases that can happen during DIVIDE-POW-TWO(n):

1. We never modify n. There is one possible outcome, the original n itself.

2. The last modification to n comes from option 1. Then n is in the form 10 . . 02.

Since n always decreases in each iteration, there are only k possible values of

such a form that do not exceed the original n.

3. the last modification to n comes from option 2. From facts 4 and 5, the value n

before the last modification is not a power of 2, and n has never been through

option 1, which implies that n has been through option 2 only. In other words,

we have repeatedly taken away the highest set bit in n and returned. Since

we can take away the highest set bit at most k times, there are only k possible

outcomes.

From the three cases, there are at most 1 + k + k = 2k + 1 = O(log n) possible

values of DIVIDE-POW-TWO(n).

How does P2 enforce the same cache alignment among equivalent matrices? It

makes sure that the starting location (the top-left element) of each submatrix is al-

ways the first element in a cache line. In the original matrix, the top-left element

is always cache-aligned. Suppose we divide by column into the left and the right

halves using P2. The top-left element of the left half is still cache-aligned because it

is the same as that of the original matrix. Since the column size of the left half is a

power of 2, the offset between the top-left elements of the left and the right halves is

a multiple of 8; therefore, the top-left element of the right half is also cache-aligned.

We can recursively apply this argument to the subproblems to show that all subma-

trices are cache-aligned.

What if the row size of the left half is smaller than 8? We assume that dividing

the problem down to submatrices whose row size or column size < 8 is never an

54

5. IMPROVING RELIABILITY

optimal option. These submatrices would be so small that there would be no use di-

viding to that extent. As a result, we only consider the cases in which the submatrix

dimensions are greater than 8.

In conclusion, P2 makes sure that all submatrices are cache-aligned in the sense

that their starting position, i.e., the top-left element, is always the first element in

a cache line. Some might argue that dividing by powers of 2 is unorthodox, so we

propose an alternative approach that would work with dividing in half, which is

more common.

The second strategy is to impose a new condition onto EQ. The original EQ

assumes that two submatrices of the same size will have the same cost, but this

premise is broken when their cache alignments differ. A simple fix to this problem

is, roughly speaking, to assume EQ between two matrices only when

1. they have the same size, and

2. they share the same starting column.

Figure 5.7 illustrates this strategy with submatrices of size 6× 6. The blue matri-

ces with solid lines (0, 12, 6, 18), (24, 12, 30, 18), (36, 12, 42, 18) start at the same col-

umn 12 and are considered equivalent to one another, but not equivalent to the red

matrices with dashed lines (24, 24, 30, 30) and (24, 36, 30, 42) which start at columns

24 and 36 respectively.

This intuitive idea eliminates the issue of cache alignments–equivalent submatri-

ces must start from the same column and hence must have the same cache align-

ment. Nevertheless, it comes at the cost of longer tuning times. We now have to

recompute the base-case cost for the submatrices that have the same size but start at

different columns. Experimental results suggest that the damage is greater than the

benefit. In Figure 5.8, we try to tune a 75000× 100000 matrix-vector multiplication

55

5. IMPROVING RELIABILITY

Figure 5.7: Assuming EQ only when submatrices start at the same column. The blue matri-
ces with solid lines are considered equivalent to one another, but not equivalent to the red
matrices with dashed lines.

on AWS2. Ztune with EQ + 1DS takes 0.015 seconds, while Ztune with this idea

and 1DS takes 56 seconds. We are doing much worse than before in terms of tuning

speed, so we will further refine this idea.

EQ EQ + 1DS EQ on same column + 1DS CA + 1DS

46.601 0.015 56.551 0.095

Figure 5.8: Tuning times (in seconds) of different Ztune implementations of matrix-vector
multiplication of size 75000× 100000 on AWS2.

Since we care more about cache alignment rather than the starting column of

the matrix per se, we can relax this requirement slightly. The key is to realize that

submatrices that start at different columns may still share the same alignment. We

therefore assume EQ between two submatrices only when

56

5. IMPROVING RELIABILITY

1. they have the same size, and

2. they share the same cache alignment; i.e., their starting elements are located at

the same position in a cache line.

This is our formal second strategy to tackle the cache alignment issue. We call this

strategy CA. Figure 5.9 shows submatrices of size 6× 6. The blue matrices with solid

lines (0, 12, 6, 18), (36, 12, 42, 18), (24, 36, 30, 42) start at the columns which have the

same cache alignment (starting columns are 4 mod 8) and are considered equiva-

lent to one another, but are not equivalent to the red matrices with dashed lines

(18, 0, 24, 0) and (24, 36, 30, 42) which start at different columns modulo 8.

Figure 5.9: Assuming EQ only when submatrices start at the same position in cache. The
top-left label of each submatrix indicates its starting column. The blue matrices with solid
lines are considered equivalent to one another, but not equivalent to the red matrices with
dashed lines.

CA is tremendously faster than the previous idea because it avoids evaluating

same-sized submatrices for every different starting column. We only need to eval-

57

5. IMPROVING RELIABILITY

uate same-sized submatrices at most 8 times because there are 8 possible starting

positions in cache. Because of this reason, the tuning time of Ztune with CA + 1DS

should theoretically be around 8-fold slower than that of Ztune with EQ + 1DS. Our

experimental results are somewhat in line with these speculations. In Figure 5.8,

where we tune a 75000× 100000 matrix-vector multiplication on AWS2, Ztune with

CA + 1DS takes only 0.095 seconds. This is over 500 times faster than the previous

idea, and about 6 times slower than the 0.015 seconds of Ztune with EQ + 1DS. It

is still very fast compared to the multiplication time itself, which is about 8 seconds

according to Figure 4.3.

Combinations that Work

We have described many techniques to make Ztune fast and reliable. We first em-

ploy equivalence (EQ) and divide subsumption (1DS) to shorten Ztune’s tuning

time. Ztune + EQ + 1DS, however, suffers from two cache-related problems for

which we propose the following solutions:

1. We tackle the issue of inconsistent cache states with randomization (RAN) and

n-level divide subsumption (nDS).

2. We address the issue of inconsistent cache alignments by dividing into the

largest smaller power of 2 (P2) and by imposing an additional cache-alignment

requirement on equivalence (CA).

We have tried several different combinations by picking two strategies, each of

which solves one aspect of the cache problems, and appending them onto Ztune +

EQ + 1DS (except for the first combination that does not include a strategy to resolve

the issue of inconsistent cache states). The top four candidates that perform the best

are

58

5. IMPROVING RELIABILITY

• EQ + 1DS + P2

• EQ + 2DS + P2

• EQ + 1DS + P2 + RAN

• CA + 1DS + RAN.

Note that for CA + 1DS + RAN, we do not let the randomization space of the

starting location be anywhere in the original matrix, but we limit it to the loca-

tions that would share the same cache alignment as the original submatrix (i.e., the

original submatrix and the randomized submatrix have the same starting location

mod8).

We test each configuration on 300 different m× n matrix-vector multiplications,

where m ∈ {5000, 10000, . . . , 75000} and n ∈ {5000, 10000, . . . , 100000} as long as

they fit in memory. We examine the worst-case speedup from each configuration as

a measure of robustness: if it is robust, it should not cause a large negative speedup

within these 300 trials.

Machine EQ+1DS+P2 EQ+2DS+P2 EQ+1DS+P2+RAN CA+1DS+RAN

AWS1 0.49 0.95 0.97 0.91
AWS2 0.48 0.97 0.95 0.88

C9 0.57 0.95 0.96 0.92

Figure 5.10: Worst speedup ratio of running times Hand-tuned/Ztune for each imple-
mentation from running 300 matrix-vector multiplications of size m × n where m ∈
{5000, 10000, . . . , 75000} and n ∈ {5000, 10000, . . . , 100000}, excluding the sizes that do not
fit in the memory of the machine on which this operation is tested.

The results in Figure 5.10 suggest that all of the above configurations are robust

except for EQ + 1DS + P2, which have a 1% chance of anomalies yielding around

0.50 speedup. This is expected, considering that we do not include any strategy

59

5. IMPROVING RELIABILITY

to tackle the inconsistent cache state issue. Although these anomalies are quite in-

frequent, we consider them unacceptable and regard this configuration as a fail-

ure. The worst-case speedups for the other three configurations are only about 0.91,

and their average speedups are good. We attribute the small negative speedups to

noise in the measurements for which we do not have a solution. We consider these

three strategies robust and we will evaluate their performance in the next subsec-

tion.

We have also tried other configurations, but they either are not robust or take too

long to tune, so we do not mention them here.

Results after Improvements

The previous subsection has established three heuristics that can tune matrix-vector

multiplication reliably: EQ + 2DS + P2, EQ + 1DS + P2 + RAN and CA + 1DS +

RAN. We can now closely inspect different aspects of their performance.

We first examine their tuning times. All of these strategies tune really fast. For a

25000× 100000 matrix-vector multiplication on AWS2, the nested loop takes around

2,650 milliseconds while the three strategies only take 26.22, 36.49 and 91.54 millisec-

onds (Figure 5.11). From the data, it turns out that EQ + 1DS + P2 + RAN tunes the

fastest, followed by EQ + 2DS + P2 and CA + 1DS + RAN. The fastest tuning time

is only four-fold faster than the slowest one, and is as much as 100 times faster than

the nested loop.

We next look at the performance of these heuristics. We run each heuristic on five

repeats of a 25000× 100000 matrix-vector multiplication and compute its speedup

compared to that of the hand-tuned version. The average speedups vary from 1.00-

1.04.

60

5. IMPROVING RELIABILITY

Machine EQ+2DS+P2 EQ+1DS+P2+RAN CA+1DS+RAN

AWS1 70.19 28.79 106.95
AWS2 26.22 36.49 91.54

C9 34.55 26.24 73.40

Figure 5.11: Average tuning time of running times (in milliseconds) Hand-tuned/Ztune
for robust implementations from five repeated runs of matrix-vector multiplication of size
25000× 100000. The average is computed using the geometric mean.

Machine EQ+2DS+P2 EQ+1DS+P2+RAN CA+1DS+RAN

AWS1 1.03 1.03 1.01
AWS2 1.02 1.03 1.01

C9 1.01 1.02 1.00

Figure 5.12: Average speedup ratio of running times Hand-tuned/Ztune for robust imple-
mentations from five repeated runs of matrix-vector multiplication of sizes 25000× 100000.
The average is computed using the geometric mean.

By comparing tuning times and speedups among different heuristics in Figures 5.11

and 5.12, Ztune with EQ + 1DS + P2 + RAN not only tunes the fastest but also gives

the best speedup of 1.02-1.03. We therefore regard this strategy as the “optimized”

Ztune for matrix-vector multiplication. To summarize, the best strategy for matrix-

vector multiplication is to run Ztune with

• Equivalence

• 1-level divide subsumption

• Dividing into the largest smaller power of 2.

• Randomized submatrix location for the base case.

Lastly, we give an experimental result on the base-case statistics of applying

Ztune with EQ + 1DS + P2 + RAN on a 35000 × 40000 matrix-vector multiplica-

tion. The resulting plans differ between different Ztune runs, and Figure 5.13 shows

the base-case execution statistics of one of the plans. This particular plan results in

61

5. IMPROVING RELIABILITY

Base-Case Size Count Actual Min Actual Max Predicted Total Actual Total

256× 4096 1224 1.097 1.232 1325.78 1374.05
32× 3136 1088 0.105 0.135 118.39 118.23

184× 40000 1 7.807 7.807 7.79 7.81

Figure 5.13: Statistics of base-case execution from using Ztune with EQ + 1DS + P2 + RAN on
matrix-vector multiplication of size 35000× 40000 on AWS1. Base-Case Size is the size that
gets executed as the base case in the plan (i.e., it is not divided further). Count is the number
of times each base-case size is executed. Actual Min and Actual Max are the minimum and
the maximum of the running times of the actual base-case execution. Predicted Total is the
predicted total running time spent on computing all base-case executions of a particular
size. The prediction is based on z.cost of a plan node. Actual Total is the total running time
from the actual execution. All running times are in milliseconds.

a 1.03 speedup compared to the hand-tuned version. Comparing this plan to that of

Ztune with EQ + 1DS in Figure 5.3, we can see a clear improvement in the accuracy

of the predicted time. Values in the Predicted Total and Actual Total columns in

Figure 5.13 are close to each other, showing that Ztune with EQ + 1DS + P2 + RAN

is able to achieve accurate measurements.

62

6 Comparison to Existing Approaches

Optimized Ztune always performs at least as well as the hand-tuned codes at matrix-

vector multiplication. In this chapter, we take it a step further and compare Ztune

to the well-established BLAS libraries, which include the Intel Math Kernel Library

(MKL) and OpenBLAS. Ztune is, not surprisingly, still slower than both MKL and

OpenBLAS. These libraries are able to attain superior performance because they per-

form optimization at a lower level that is beyond the scope of this thesis. We also

compare optimized Ztune to an implementation of OpenTuner and find that both

have roughly the same performance.

Machine Ztune MKL OpenBLAS

AWS1 1.04 1.89 2.04
AWS2 1.03 1.82 1.89

C9 1.11 1.16 2.13

Figure 6.1: Average speedup ratio of running times Hand-tuned/Ztune for EQ + 1DS + P2 +
RAN from 5 repeated runs of matrix-vector multiplication of size 10000× 100000, compared
to speedups from the Intel Math Kernel Library and OpenBLAS. The average is computed
using the geometric mean.

Figure 6.1 compares the speedup of optimized Ztune with that of the DGEMV rou-

tines from the Intel Math Kernel Library and OpenBLAS on a matrix-vector multi-

plication of size 10000× 100000, repeated 5 times. The DGEMV routines clearly give

a much greater speedup, which is not surprising because these routines incorporate

63

6. COMPARISON TO EXISTING APPROACHES

low-level optimizations that are beyond the scope of this thesis.

Machine Ztune Otune

AWS1 1.03 1.02
AWS2 1.02 1.02

C9 1.02 1.02

Figure 6.2: Average speedup ratio of running times Hand-tuned/Ztune for EQ + 1DS + P2
+ RAN from 10 repeated runs of matrix-vector multiplication of size 25000× 100000, com-
pared to speedups of Otune. Otune is given 60 seconds. The average is computed using the
geometric mean.

We then compare optimized Ztune with the implementation Otune of the Open-

Tuner framework [2]. Otune optimizes the row and the column size cutoffs for base-

case execution, and is given 60 seconds to tune. We then use those cutoffs, which are

different for each machine, to replace the value in line 1 of the divide-and-conquer

matrix-vector multiplication code in Figure 2.2. Otune timeout is set at 60 seconds

to find the cutoff parameter. Figure 6.2 shows that optimized Ztune and Otune have

similar performance speedups. Both implementations yield 2%-3% speedup.

64

7 Results on Matrix-Matrix Multiplica-

tion

This thesis has focused heavily on the application of Ztune in matrix-vector multipli-

cation. In this chapter, we translate our findings to a related problem, matrix-matrix

multiplication. The program is similar to Ztune for matrix-vector multiplication,

except with an additional dimension. We first describe a strategy that tunes fast and

is reliable, before moving to square matrices of power-of-two sizes. Interestingly,

these power-of-two-sized matrices suffer from conflict misses when tuned with a

typical divide and conquer with a constant cutoff [10, 15]. Ztune does not suffer

from the same problem and is able to give dramatic improvements in computation

speed.

Ztune with EQ + 1DS has reliability issues when run on matrix-vector multipli-

cation, but it does not have any issue with matrix-matrix multiplication because

the latter is more computationally intensive and less prone to small errors in the

measurement. Therefore, we use Ztune with EQ + 1DS on matrix-matrix multipli-

cation.

We first implement the hand-tuned version of divide-and-conquer matrix-matrix

multiplication by recursively dividing along the largest dimension until we execute

65

7. RESULTS ON MATRIX-MATRIX MULTIPLICATION

Machine Hand-Tuned Ztune Speedup Tuning Time

AWS1 83.47 79.85 1.04 0.35
AWS2 79.72 76.48 1.04 0.16

C9 147.41 146.75 1.01 0.13

Figure 7.1: Running times (in seconds) of hand-tuned and Ztune with EQ + 1DS imple-
mentations of matrix-matrix multiplication of size 5000 × 5000 × 5000. Each value is the
geometric mean of 5 repeated runs. The Speedup column refers to the ratio of running
times Hand-Tuned/Ztune. The Tuning Time column is the time Ztune uses to tune.

the base case. We choose the base-case cutoff by trying different cutoffs for the

first, the second and the third dimensions, and choose the one that gives the best

performance. We find that using the cutoff size 64 for all three dimensions gives a

reasonably good performance and we use this implementation as our baseline.

Figure 7.1 shows the results of Ztune with EQ + 1DS on matrix-matrix multipli-

cation of size 5000× 5000× 5000, geometrically averaged from 5 repeated runs. We

achieve a 1.01 average speedup on C9, and up to 1.04 on AWS1 and AWS2. The

tuning time is fast as expected, only 1/500 of the time used to run the hand-tuned

version of matrix-matrix multiplication.

Size Hand-Tuned Ztune Speedup Tuning Time

512× 512× 512 109.24 82.90 1.32 9.44
1024× 1024× 1024 992.31 654.56 1.52 10.04
2048× 2048× 2048 8099.72 5259.37 1.54 12.50
4096× 4096× 4096 65132.70 45275.70 1.43 21.35

Figure 7.2: Running times (in milliseconds) of hand-tuned and Ztune with EQ and DS im-
plementations of multiplication between square matrices with power-of-two sizes on AWS2.

We observe much greater speedup on power-of-two matrix sizes. Figure 7.2

shows that we are able to achieve up to 1.54 speedup on AWS2 on different power-

of-two matrix sizes. It is well known that multiplying power-of-two matrices suf-

fers heavily from cache conflict misses [10, 15] and hence requires a very lengthy

66

7. RESULTS ON MATRIX-MATRIX MULTIPLICATION

running time. Ztune does not suffer from conflict misses, which results in a large

speedup.

67

7. RESULTS ON MATRIX-MATRIX MULTIPLICATION

68

8 Future Work

There are several interesting concepts based on Ztune to be explored. The first sug-

gestion is the application of Ztune on parallel divide-and-conquer matrix-vector

multiplication and matrix-matrix multiplication. There are complications in mea-

suring time and how the computer schedules parallel jobs, which are beyond the

user’s control. We can still compute the work and the span of a Ztune plan and find

the optimized parallelism based on the work and the span.

The second suggestion is to extend Ztune to any general divide-and-conquer

problem. Currently, Ztune is applied to serial matrix-vector multiplication and se-

rial matrix-matrix multiplication in this thesis, and serial stencil computations in its

original paper [14]. However, it will be interesting to investigate whether we can

achieve a general divide-and-conquer autotuner based on Ztune where users can

feed in a piece of code, specifying the recursive parts and the base-case parts, and

the Ztune-based autotuner outputs the best plan to execute.

69

8. FUTURE WORK

70

A Appendix

Machine Specifications

The specifications of the hardware that we use for experiments are shown in Fig-

ure A.1. Machines with AWS in their name are virtual cloud servers provided by

Amazon Web Services. The machine C9 is a cloud platform provided by MIT Com-

puter Science and Artificial Intelligence Laboratory.

AWS1 AWS2 C9
Manufacturer Intel Intel Intel
CPU Xeon E5-2666 v3 Xeon E5-2666 v3 Xeon X5650
Clock 2.90GHz 2.90GHz 2.67GHz
Turbo Boost Disabled Disabled Disabled
Processor cores 16 36 12
Sockets 1 2 2
L1 data cache/core 32KB 32KB 32KB
L2 cache/core 256KB 256KB 256KB
L3 cache/socket 25MB 25MB 12MB
DRAM 30GB 60GB 48GB
Compiler ICC 13.1.1 ICC 13.1.1 ICC 13.1.1
Operating system kernel Linux 3.13.0 Linux 3.13.0 Linux 3.13.0
Operating system Ubuntu Server 14.04.3 Ubuntu Server 14.04.3 Ubuntu 14.04.4

Figure A.1: Specifications of the machines used for benchmarking. Turbo-boost is disabled
for reliability of time measurements.

71

APPENDIX A. APPENDIX

72

Bibliography

[1] ANSEL, J., AND CHAN, C. PetaBricks: Building adaptable and more efficient

programs for the multi-core era. XRDS 17, 1 (2010).

[2] ANSEL, J., KAMIL, S., VEERAMACHANENI, K., O’REILLY, U.-M., AND AMA-

RASINGHE, S. OpenTuner: An extensible framework for program autotuning.

Tech. Rep. TR-2013-026, MIT CSAIL, 2013.

[3] CHRISTEN, M., SCHENK, O., AND BURKHART, H. Patus: A code generation

and autotuning framework for parallel iterative stencil computations on mod-

ern microarchitectures. In IPDPS (2011), IEEE, pp. 676–687.

[4] ŢĂPUŞ, C., CHUNG, I.-H., AND HOLLINGSWORTH, J. K. Active Harmony:

Towards automated performance tuning. In SC (2002), ACM/IEEE, pp. 1–11.

[5] DATTA, K., MURPHY, M., VOLKOV, V., WILLIAMS, S., CARTER, J., OLIKER,

L., PATTERSON, D., SHALF, J., AND YELICK, K. Stencil computation optimiza-

tion and auto-tuning on state-of-the-art multicore architectures. In SC (2008),

ACM/IEEE, pp. 4:1–4:12.

[6] FRIGO, M. A fast Fourier transform compiler. ACM SIGPLAN Notices 34, 5

(May 1999), 169–180.

[7] FRIGO, M., AND JOHNSON, S. The design and implementation of FFTW3.

Proceedings of the IEEE 93, 2 (2005), 216–231.

73

BIBLIOGRAPHY

[8] FRIGO, M., LEISERSON, C. E., PROKOP, H., AND RAMACHANDRAN, S. Cache-

oblivious algorithms. In FOCS (1999), IEEE, pp. 285–297.

[9] GOLUB, G. H., AND VAN LOAN, C. F. Matrix Computations. Johns Hopkins

University Press, 1989.

[10] GUSE, M., AND RISTOV, S. Performance gains and drawbacks using set as-

sociative cache. JNIT, Journal of Next generation Information Technology 3 (2012),

87–98.

[11] KAMIL, S., CHAN, C., OLIKER, L., SHALF, J., AND WILLIAMS, S. An auto-

tuning framework for parallel multicore stencil computations. In IPDPS (2010),

IEEE, pp. 1–12.

[12] KAMIL, S. A. Productive High Performance Parallel Programming with Auto-

tuned Domain-Specific Embedded Languages. PhD thesis, University of California,

Berkeley, 2012.

[13] MOURA, J. M. F., SINGER, B., XIONG, J., JOHNSON, J., PADUA, D., VELOSO,

M., AND JOHNSON, R. W. SPIRAL: A generator for platform-adapted libraries

of signal processing algorithms. Int. J. of High Perf. Comp. Appl. 18, 1 (2004),

21–45.

[14] NATARAJAN, E. P., DEHNAVI, M. M., AND LEISERSON, C. E. Autotuning

divide-and-conquer stencil computations. Unpublished manuscript, 2016.

[15] RISTOV, S., AND GUSE, M. Achieving maximum performance for matrix mul-

tiplication using set associative cache. Proceedings of the IEEE (2012), 542–547.

[16] RIVERA, G., AND TSENG, C. Tiling optimizations for 3D scientific computa-

tions. In SC (2000), ACM/IEEE, pp. 32:1–32:23.

74

BIBLIOGRAPHY

[17] SONG, Y., AND LI, Z. New tiling techniques to improve cache temporal locality.

In PLDI (1999), ACM, pp. 215–228.

[18] VUDUC, R., DEMMEL, J. W., AND YELICK, K. A. OSKI: A library of automati-

cally tuned sparse matrix kernels. In J. of Phys. (2005), vol. 16, p. 521.

[19] WHALEY, R. C., AND DONGARRA, J. Automatically tuned linear algebra soft-

ware. In SC (1998), ACM, pp. 1–27.

75

	Introduction
	Tuning Matrix-Vector Multiplication
	Ztune
	Improving Tuning Time
	Improving Reliability
	Comparison to Existing Approaches
	Results on Matrix-Matrix Multiplication
	Future Work
	Appendix

