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Abstract

Femtosecond pulse shaping methods are developed in which a single
ultrashort optical pulse is transformed into a shaped ultrafast optical
waveform with a specified time-dependent profile, such as a multiple-pulse
sequence. The technique involves the spectral filtering of spatially-
separated frequency components using a spatially varying mask. Liquid
crystal (LC) spatial light modulators (SLM) are used as computer-
controlled masks allowing high-fidelity programmable waveform-
generation. For the case of two SLMs used together, independent
specification of temporal amplitude and temporal phase profiles is possible.
Amplification and control over time-dependent polarization profiles is also
demonstrated. In conjunction with experimental efforts, a methodology
for user-specified waveform generation and a theoretical analysis of spatial
effects accompanying temporal shaping are also performed.

The chemical motivation behind femtosecond pulse shaping is the
development of capabilities for more versatile and detailed optical
manipulation over molecular and material systems. Experiments are
demonstrated in which excitation with shaped multiple-pulse waveforms
permit control over multiple electronic coherences (in atomic potassium
vapor) and lattice vibrational trajectories (in crystalline quartz) along one
and two dimensions, the latter case including motions of ions in crystals
along elliptical, circular, and other two-dimensional trajectories.
Combined temporal and spatial shaping of ultrafast optical waveforms is
also demonstrated. This is essential for the manipulation of propagating
material responses, and some possibilities are presented.



Results suggest that large-amplitude lattice displacements can be
produced in solid-state systems through shaped waveform excitation that
circumvents sample dam.age. To this end, a derivation of the impulse
responses of non-dispersive optic phonons and dispersive phonon-
polaritons with anharmonic potentials is presented. This is important since
large-amplitude lattice displacements will sample anharmonic regions of
the lattice potential energy surface. The results show that anharmonic
contributions to the response can be observed and isolated, if optical
grating excitation is used and diffraction from material responses at spatial
harmonics of the grating is detected.

Thesis Supervisor: Dr. Keith A. Nelson
Title: F.ofessor of Chemistry
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Chapter 1:
Introduction

1.1 MULTIPLE-PULSE FEMTOSECOND SPECTROSCOPY

The development of femtosecond lasers and spectroscopy during the

1980s permitted a revolution in our ability to observe natural events on
previously inaccessible time scales. The elementary motions of nature
including lattice vibrations in crystalline solids, intermolecular motions
("collisions") in liquids, and molecular vibrations were first observed
directly in the time domain. Collective and molecular rearrangements
which involve these motions, including phase transitions, liquid-state
structural relaxation, and chemical reactions were also examined in detail.
Femtosecond spectroscopy has since broadened into wide-ranging areas in
chemistry, physics, biology, and materials science.

While femtosecond spectroscopy seeks direct optical observation of
ultrafast processes with the aim of understanding them, a related but
distinct effort seeks optical control over ultrafast processes with the dual
aims of improved understanding and production of new states of matter,
either transient or long-lived, including some with possible practical
applications. Can ultrashort pulse sequences be used to induce ultrafast
switching between different crystalline phases or domain orientations? Can
phase-controlled waveforms be used to control chemical reaction
pathways? Can irradiation of a sample by a complex series of pulses
produce a simpler response, more amenable to interpretation and
understanding, than irradiation by a single pulse? These questions illustrate
the objectives of multiple-pulse femtosecond spectroscopy. These objectives

are not novel in their own right: photolithography, optical data storage,
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and photon echo measurements are among the many examples of optically
induced rearrangements and multiple-pulse excitation. What is dramatically
different from earlier efforts is the degree of control which can be exerted
over the irradiation field itself, on the fastest accessible time scales.
Through femtosecond pulse shaping, it is now possible to generate
sequences of many femtosecond pulses, each one of which has a specified
amplitude, time of arrival, and optical phase. In general, complex
waveforms with specified amplitude and phase profiles can be generated.
This opens up extraordinary possibilities for manipulation of behavior of
materials and isolated molecules with the objectives mentioned above.

Another crucial development, partly preceding and partly in parallel
with those introduced above, has been in the theoretical effort to guide
experimentation in coherent waveform spectroscopy and optical control [1-
5]. Many of the central control objectives, especially those involving
chemical reactivity, were first formulated theoretically. Some of the first
theoretical schemes involving femtosecond pulses dealt with two-pulse
"pump-dump” sequences [1] in which absorption of the first pulse initiates
wavepacket propagation on a bound excited electronic potential energy
surface (PES) and the second pulse, which could be phase-related as well as
optimally timed, projects the wavepacket back down to a reactive part of
the ground-state PES (or up to a reactive part of a higher-energy PES).

Theoretical treatments have since greatly evolved. One approach has
been the use of optimal control theory [2] determine the ‘optimal’
excitation waveform to bring a system into a prescribed quantum state.
This method is based on a calculus of variations to minimize deviation
between the specified and observe response. Problems including

incomplete information about the Hamiltonian and robustness of the
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solution have been treated. Recently a procedure has been formulated for
determination of the optical field that produces a transient state that, to first
order, shows the best possible overlap with a specified objective state [3].
This procedure gives the globally optimal solution within linear response
(i.e. the weak-field limit) and permits the focus of attention to be placed
not on waveform design but on whether the objective is in principle even
possible.

Theoretical and experimental developments in optical control based
on time-domain femtosecond pulse shaping have taken place in parallel
with complementary efforts employing multiple narrowband (cw ard
quasi-cw) waveforms. Considerable theoretical effort has been devoted
toward the exploitation of interferences between single-photon and
multiple-photon quantum pathways to control molecular reactivity [4].
These efforts provided guidance for experimental demonstrations of optical
control over photoionization yields [6] and the trajectories of photoexcited
electrons in semiconductors [7].

Similarly, most if not all of the "quantum control” experiments in
the time domain reported to date have been in the nature of demonstrations
of principle. As such, many have involved rather simple waveforms, i.e.
two phase-related pulses, chirped pulses, or several pulses without optical
phase control. Control has been demonstrated in this fashion over atomic
and molecular electronic coherences [8,9], molecular wavepacket dvnamics
[9,10], and collective vibrational and electronic responses in ionic crystals
[11] and multiple quantum wells [12-13]. Several experiments involving
more extensive control over the ultrashort optical field have also been
reported. In one, involving the pulse shaping methods described herein,

phase-controlled waveforms were generated and used to manipulate the
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Kepler orbits of highly excited atomic Rydberg states [14]. In others,
involving relatively simpler "chirping” (i.e. time-ordering of the frequency
components) of a single pulse, enhanced electronic population transfer was
demonstrated [15], and the wavepacket dynamics of excited-state motion of
meiecules in gases and solutions were controlled [16-17]. Very recently,
phase-controlled chirping of femtosecond pulses has been used to influence
unimolecular photodissociation yields in gas-phase molecuies [18] by
enhancing overlap with the dissociative potential after controlled
wavepacket propagation on an intermediate potential.

The first spectroscopic application of femtosecond pulse-shaping,
involved multiple-pulse excitation of coherent lattice vibrations through
impulsive stimulated Raman scattering (ISRS) (19-20]. In ISRS, an
ultrashort excitation pulse is used to exert a sudden ("impulse") force on
those Raman-active vibrational modes whose vibrational periods are longer
than the pulse duration. This sudden driving force results in coherent time-
dependent vibrational oscillations. Figure 1a shows time-dependent
coherent scattering intensity from the molecular crystal a-perylene
following excitation with a pair of nonresonant 70-fs pulses ir: a grating
geometry. The large signal at t=0 corresponds to the nonrescnant
electronic response that arises only when the excitation and probe puises
are temporally overlapped in the sample. In this sample, several low-
frequency lattice vibrational modes are excited coherently and their
oscillations go in and out of phase following excitation, producing a
characteristic "beating" pattern observed in the signal following the
nonresonant electronic response at t=0. An excitation pulse sequence,
shown in Fig. 1b, whose inter-pulse separation is timed to match the

vibrational period of a selected vibrational mode, has also been used.
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Figure 1: a) ISRS data from a-perylene crystal driven by single femtosecond pulses. The
inset shows the relative signal intensities of the electronic "spike" and the vibrational
response; b) Cross-correlation of a sequence of femtosecond pulses with a repetition rate of
2.39 THz (419 fsec between pulses). c) ISRS data from a-perylene driven by the pulse

train shown in b). Selective amplification of an 80-cm-1 phonon mode is achieved.
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Figure 1c shows the results of multiple-pulse excitation.. The signal in Fig.
lc shows an instantaneous nonresonant electronic response to each pulse in
the excitation pulse sequence, as well as a response associated with a single
coherently excited vibrational mode. This vibrational response builds up
during the excitation pulse sequence and persists long after the end of the
pulse sequence. Use of a properly timed multiple-pulse excitation sequence
permits selective amplification of one lattice vibrational mode and
discrimination against the other modes.

The results of a similar experiment on the ferroelectric crystal
LiTaO3 are shown in Fig. 2 [21]. In this noncentrosymmetric crystal, the
polar lattice vibrational mode is both Raman and infrared active. The
coherent oscillating dipole produced by the vibrating ions couples to
electromagnetic radiation, and the mode that is excited is a coupled lattice
vibrational/electromagnetic mode called a phonon-polariton mode. This
coupled excitation, whose wavelength and orientation (i.e. wavevector) are
determined by the interference pattern formed by the crossed excitation
beams, propagates through the crystal at the speed of far-infrared
radiation. The possibility of further amplification of this sort of
propagating excitation is discussed herein. In the present case, multiple-
pulse excitation permitted lattice vibrational characterization at low
temperatures despite photorefractive effects, arising from two-photon
absorption, which restricted the peak single-pulse intensity to levels too low
to yield reproducible signals in ISRS experiments with just one excitation
pulse. Multiple-pulse excitation circumvents sample damage through
reduced intensity of any one pulse below the photorefractive damage
threshold, and provides amplification of the coherent vibrational response

sufficient to yield a detectable signal level [21].
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Multiple Pulse ISRSData in LiTaOg3 at 40K

-
-

— v—r Y L g
) SENEAJNNEL S SIS S S S | T | 7T

8 -6 -4 -2 0 2 4 6 8 10 12
probe delay (psec)

Figure 2: The upper trace shows ISRS data from LiTaO3 at 40K driven by a pulse train
whose cross-correlation is shown in the lower trace. The time separation between the
pulses is chosen to be 507 fsec to resonantly amplifies the phonon-polariton of 66-cm-1 at
a wavevector of 2320 cm-1.
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Both of these examples illustrate how a tailored excitation waveform
can be used to induce a selected material response while suppressing other
responses. In solid-state systems, large-amplitude lattice displacements
generated by ISRS with shaped waveforms might induce or assist chemical
reactions or solid-state rearrangements. Recent suggestions and
computational simulations affirm this possibility for ferroelectric domain
switching in particular [22-24].

These experiments motivated the continuing efforts toward
femtosecond pulse shaping and multiple-pulse femtosecond spectroscopy
described in this thesis. Crucial to further progress are technological
efforts to generate tailored optical excitation fields in a manner compatible
with an automated ultrafast spectroscopy system. Such advances in
femtosecond pulse shaping are the subject of chapter 2, and represent a
sizable part of this work. We describe the generation of programmable
ultrafast optical waveforms which have temporal features as short as the
duration of an input femtosecond puise (typically 70 fsec) and a temporal
range of about fifty times this duration, but otherwise can be specified with
arbitrary temporal amplitude and temporal phase profiles. This set-up
describes the current state of the art in this field. Chapter 3 continues the
discussion on femtosecond pulse shaping, providing a theoretical discnssion
of the spatial effects that necessarily accompany temporal pulse shaping.

In chapter 4 results are described in which phase-related multiple-
pulse sequences generated by our pulse shaping apparatus are used to
control coherences of a three-level electronic system in potassium vapor in
an automated fashion. These results, in conjunction with the non-resonant
multiple-pulse experiments on a-perylene and lithium tantalate,

foreshadow experiments in which phase-related multiple-pulse sequences
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are used to control both electronic and vibrational coherences. In chapter
5, an experiment on crystalline quartz is described which further expands
optical control possibilities by demonstrating control over multi-
dimensional vibrational motion using multiple excitation pulses with
differing polarizations.

Pulse shaping methods can also be expanded to include simultaneous
temporal and spatial shaping of optical excitation waveforms. These
developments, which are described in chapter 6, indicate new possibilities
for manipulation of propagating excitations which can be irradiated by
different, independently specified time-dependent waveforms as they move
through different regions of a sample.

Finally in chapter 7, in anticipation of the larger amplitude lattice-
displacements produced by shaped optical excitation waveforms, the
impulse responses for dispersive (polariton) and non-dispersive (optic
phonon) lattice modes in an anharmonic potential are calculated. Isolation
of the anharmonic contribution to the response by excitation at one
wavevector and observation at higher harmonics of that wavevector is
analytically described. Characterization of lattice anharmonicities could
provide guidance for the generation of interesting effects such as non-

linear lattice responses and soliton formation.
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Chapter 2:

Programmable Femtosecond Pulse Shaping
Using Liquid Crystal Spatial Light
Modulators

The majority of work in this chapter is published in:

1. M. M. Wefers, K. A. Nelson, Opt. Lett. 18, 2032 (1993)

2. M. M. Wefers, K. A. Nelson, Opt. Lett. 20, 1047 (1995)

3. M. M. Wefers, K. A. Nelson, J. Opt. Soc. Am. B. 12, 1343 (1995)

2.1. INTRODUCTION

Femtosecond optical pulses have produced a revolution in
spectroscopy as well as many exciting possibilities in optical
communications. Recently there has been growing interest in the
generation of shaped femtosecond waveforms for a variety of applications.
As described in the previous chapter, there is a substantial amount of
literature on the application of ultrafast optical to 'mode selective
chemistry', which expands the context of spectroscopy to emphasize
detailed optical control over chemical events [1-8]. Applications to high
speed optical communication [9], all-optical switching [10], and soliton
propagation in fibers [11] have also been demonstrated. Clearly the ability
to synthesize specified optical waveforms offers considerable possibilities
throughout the field of ultrafast optics.

Though some pulse shaping techniques have been deveioped that
modulate waveforms directly in the time domain [12,13], and some
emerging techniques involving holography have been reported [14-16], the

majority of femtosecond pulse shaping efforts have involved the linear
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filtering of spatially dispersed frequency components [17-20] as pioneered
by Weiner, Heritage, and co- workers at Bellcore. Typically, optical
frequency components are spatially dispersed within a simple lens and
grating apparatus (figure 1). The dispersed frequency components are
focused onto a spatially varying ‘mask’. The mask attenuates (or retards)
some components and allows other components to pass unaffected. The
filtered frequency components are recombined, producing the shaped wave
form. The mask patterns were originally etched onto glass substrates using
microlithography techniques [20]. This provides excellent spatial
resolution, but since the patterns are permanently etched there is no
possibility for flexible, on-the-spot generation of new waveforms. A
major advance was the use of a liquid crystal (LC) spatial light modulator
(SLM) as a mask [21,22] as demionstrated by Weiner and co-workers. The
pixels of the LC SLM can be individually addressed, so the mask becomes
programmable and can be used to iteratively improved a specified
waveform or can be changed to produce a new waveform. The liquid
crystal mask demonstrated originally was used to variably retard the
dispersed frequency components, i.e. as a 'phase’ mask. This was used to
generate waveforms with linear, quadratic, and cubic spectral phase sweeps
as well as a temporal odd pulse and various types of pulse trains [21,22].

We have reported the use of two liquid crystal SLMs to manipulate
both spectral phase and amplitude using only commercial components
[23,24]). Subject to the available bandwidth of the input pulse and the
spatial resolution of the mask, this allows for the production of arbitrarily
shaped temporal wave forms. Waveforms as long as 2.9 psec with features
as short as 70 fsec, including a variety of pulse trains with specified

intensity and/or phase profiles, could be generated. Numerical algorithms

22



e

Grating Lens Mask Lens Grating
a¥ O\
N — \ | =
~ )
o

Figure 1. The '4f pulse shaping apparatus. A grating angularly disperses an ultrashort
pulse, and a lens collimates and focuses the laterally dispersed frequency components onto
different regions of a spatially varying mask. The mask attenuaies or retards selected
frequency components. A subsequent lens and grating recombine the spectrally filtered
light, producing a shaped waveform in the time domain.
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were written to take into account the specific characteristics and
limitations of the optical system, so that the user need only specify the
desired waveform and not the detailed mask pattern. Recently we have
improved the fidelity of waveforms requiring two LC SLMs by increasing
the number of pixels and reducing the size of inter-pixel gaps in the
individual LC SLMs and by combining two improved masks into a single
device with improved alignment [25]. With these improvements
waveforms such as phase-related multiple-pulse sequences have been used
to demonstrate automated multi-dimensional optical srectroscopy [26]
which is discussed in chapter 4. Examples of shaped femtosecond
waveforms produced by these methods are shown in figure 2.

The possibility of using a programmable acousto-optic modulator
(AOM) in place of the LC SLM has also been reported [27]. In principle
such a device can produce a continuous mask filter without inter-pixel
gaps. A single AOM device should enable manipulation of both spectral
amplitude and phase.

In this chapter, femtosecond pulse shaping with liquid crystal spatial
light modulators is reviewed. In the sections 2 through 6, theoretical
considerations are addressed. We rigorously analyze the pulse shaping
operations including the effects of the gaps between adjacent pixels of the
LC SLM, the discrete nature of the mask, and diffraction off one or two
masks. The emphasis is to set up a formalism that clearly describes the
experimental impact of different pulse shaping set-ups. Since two LC
masks are required to manipulate both spectral amplitude and phase, a
particular concern is whether the two masks should be used within a single

telescope (4-f arrangement) or whether the frequency components should

24



a)

g /\/\'/\7\ | | e

0.8f 5
f [
20.6r | .
7] ;
S ]
2 |
!

o.2l» ‘/ 1
ok . . ]
-3 2 -1 0 1 2 3

time in psec
b)
1 T T T i T L} L) v

0.8+ i
2061 .
2
-]
€04F 8

0.2F 4
91 -0.8 -0.6 0.4 0.2 0 0.2 04 0.6 0.8 1

time in psec

1.5

time in psec

Figure 2. Examples of shaped ultrafast waveforms generated from a 70-fse< input pulse
with our improved puise shaping apparatus and measured by cross-correlation with an
unshaped reference pulse. (A) 800-fsec optical square pulse. Structure on the top of the
square pulse follows from the limited bandwidth of the input pulse. (B) Phase-related
equal-amplitude three pulse sequence. (C) Phase-related five pulse sequence. The desired
waveform for (C) is given by the dashed curve. In all cases manipulation of both spectral
amplitude and spectral phase is required to produce the desired waveforms.
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be dispersed and filtered twice within two telescopes (8-f arrangement) as
in figure 3. Our goal is to evaluate effects that limit the fidelity of the
shaped waveform, and to determine methods that optimally compensate for
these effects in such a way that a user need only specify a desired temporal
waveform and not formulate detailed mask patterns. In sections 7 through
11, practical considerations are addressed and our results with various
experimental arrangements are illustrated. These results indicate that
versatile generation of high-fidelity waveforms is now possible enabling
new spectroscopic applications.

In section 2, the filters produced by a series of one or two LC masks
and polarization optics in various arrar.gements are presented. It will be
shown how two LC filters can be combined to provide independent control
over optical retardation and attenuation.

In section 3, the temporal response resulting from a discrete filter
within the grating and lens apparatus is derived. It is shown thai the
temporal resolution of the shaped waveform is limited by the bandwidth
available in the input pulse and that the spatial resolutior. of the mask limits
the temporal range of the shaped waveform. Furthermore the discreteness
of the masks produces replica waveforms outside this temporal range. All
of these results were previously reported by the Bellcore researchers
[20,22]. However, we also explicitly include the contribution from inter-
pixel gaps and perform the derivation in a discrete formalism. The gap
contribution reproduces the input pulse at zero time with an amplitude
proportional to the gap size. This feature can interfere with time-
coincident parts of the desired waveform, leading to significant waveform

distortion. The discrete formalism describes the output waveform in terms
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Figure 3. The '8f pulse shaping apparatus. In this case two 1:1 telescopes are placed
between parallel gratings so that angularly dispersed frequency components are focused
and filtered twice.
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of the spectral filters of the individual pixels, and can be easily extended to
the modeling of waveforms generated using two masks. The discrete
formalism is also employed in section 6 in determination of the appropriate
mask patterns for user-specified waveforms. In section 3 we also
reproduce an ea:lier calculation [31] by the Bellcore researchers which
solves for the gaussian spatial mode of the output waveform after spectral
filtering by a single mask. The mask pattern diffracts the input pulse into
different spatial modes, each with a different temporal profile. It is
assumed that an aperture will retain only the gaussian spatial mode of the
output beam. In this case the output waveform includes a broad gaussian
teruporal moduiation that helps to remove the replica features produced by
discrete Fourier sampling.

1 section 4 an expression for the space-time profile of a waveform
shaped through filtering of spatially separated frequency components is
derived. One fascinating result is that the output waveform shaped by a
single mask undergoes a time-dependent transverse spatial shift (25,28).
Rather than shaping the waveform along its propagation axis (z-axis), it is
shaped along an axis in the x-z plane. The slope of this time dependent
shift depends inversely on the angular dispersion produced by the grating.
This result is valid even for continuous masks without gaps and therefore
applies to pulse shaping with acousto-optic modulators (AOMs) as well as
LC SLMs. If the is mask displaced from the focal plane of the lens pair,
the output waveform acquires a small divergence that also depends linearly
on time. This effect is explored more generally in chapter 4.

In section 5, the space-time profiles for waveforms shaped by two
masks in a 4-f or 8-f arrangement are presented using the methods of

section 4. These results describe the cases in which the combined spectral
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filter for the two masks can be approximated by the product of the
individual masks. Under this assumption, two LC SLMs can be considered
as a single mask capable of independently filtering both amplitude and
phase. It is shown that for an optimally aligned 8-f arrangement the
combined spectral filter is given exactly by the product of the two
individual LC SLMs. In general the separation of two masks and their
displacement from the focal plane(s) of the lens pair(s) produce variations
in spectral path length as light is diffracted by the individual masks. This
modifies the effective spectral filter produced by the pair of LC SLMs. It
is shown that for the temporal profile of the gaussian spatial mode of a
waveform shaped by a pair of LC SLMs which filter orthogonal light
polarizations these effects can be eliminated. The temporal profiles for the
gaussian spatial mode of the output waveform for 4-f and 8-f arrangements
are also presented.

In section 6, a practical method is presented to determine the
appropriate mask patterns for user-specified waveforms. Simulations
illustrate that for most circumstances one can consider two LC SLMs as
equivalent to a single mask capable of an arbitrary spectral filier. Under
such circumstances it is shown that one can easily generate user-specified
waveforms. Alternatively an iterative algorithm is presented that can
determine appropriate mask patterns for spatially separated masks even
with significant misalignment (such as lack of pixel registration).

In section 7, we review our initial experimental results using one LC
SLM in a 4-f set-up for phase-only filtering and two LC SLMs in an 8-f
set-up for the first demonstration of programmmable phase and amplitude
filtering [23]. In section &, the generation of high-fidelity programmable

waveforms with an improved pulse shaping set-up is described. This set-up
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provides the current state of the art for ultrafast optical pulse shaping. In
section 9 it is shown that pulse shaping using LC SLMs can be used to
generate waveforms with shaped time-dependent polarization profiles. In
section 10, we briefly describe amplification of these shaped waveforms in
a regenerative amplifier. Finally, in section 11 we discuss characterization
of shaped waveforms and prospects for their iterative improveiuent.
Throughout the chapter the following mathematical conventions will
be used. Fourier transform pairs and discrete Fourier transform pairs (for

a sequence of length N) will be described respectively as follows:

F(k, 0) = (2m) " L[ f(x,)e X~ gt (1)
£(x,t)=(2m) ! [[ Fk, 0)e KX~ gkda @)
1 Nl 1 N-I .
A, = W jEOB j exp(i2njn/N) <& B i= -\/_NnEOAn exp(—i2mjn/ N)
(3)

where F(k,o) is the Fourier transform of f(x,t) and Ap is the discrete
Fourier transform of Bp. Convolution of two functions f(x) and g(x) to

give h(x) will be defined as:

h(x) =f(x) ® g(x) = jdx’f(x - x")g(x") 4)

—00

The z-axis will be the propagation direction for the beam. The x-axis will

define the orientation of the mask pattern and the direction along which the
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optical frequency components are dispersed by the gratings. The y-axis
will be along the height of the individual pixels of the mask. The temporal
profile e(t) of waveforms will be described independent of their optical

carrier frequency @. so for example the unshaped pulse ein(x,t) entering

the pulse shaping apparatus will be described as:
e (X, t) = f(x)e;, (1) exp(idt) (5)

where ejn(t) is the temporal envelope and f(x) is the spatial profile.

2.2. LIQUID CRYSTAL FILTER
The LC SLM consists of a thin (5-20 m) nematic liquid crystal

layer sandwiched between two silica substrates. The two substrates are
coated with indfum tin oxide (ITO) which is optically transparent but
electrically conductive. One substrate acts as a ground plate while the
second is patterned with a linezir array of N evenly spaced, equal sized
electrodes which define the pixels of the SLM. The LCs are rod-like
molecules that have a variable birefringence. They tend to align
themselves with an applied electric field, so that their birefringence is
voltage dependent and can be controlled independently at each pixel. The
regions of LC between the patterned electrodes cannot be controlled and
are referred to as 'gaps'. In these 'gap' regions the LCs behave, ignoring
fringing fields, as though there is zero applied voltage so that the filter for
the gap regions is assumed to be constant across the array.

We will define the axis along the SLM array as the x-axis, the axis
across the LC thickness will be the z-axis (light propagation direction), and

the axis along the individual pixels will be the y-axis. The LC SLM can be
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fabricated with the long axes of the LCs aligned along any axis in the x-y
plane. This LC alignment axis will be defined as the c-axis. As a voltage
is applied across the individual pixels the LCs tilt from the c¢-axis toward
the z-axis in the c-z plane. For light propagating along the z-axis this
produces a variable index of refraction for the polarization component
along the c-axis and a constant index of refraction for the polarization

component orthogonal to the c-axis. The difference in retardance A¢ for

these orthogonal polarizations is given by:
A¢ = wAn(V)l/c (6)

where An(V) is the voltage-dependent birefringence, V is the applied

voltage, @ is the angular frequency of the light, c is the speed of light in a
vacuum, and 1 is the LC layer thickness._

For light polarized along the c-axis, the LC SLM acts as a variable
phase retarder or 'phase’ mask, producing a filter B for pixel 'n' given
by:

B, = exp(iA(b(Vn )) (phase mask) (7

Typically LC SLMs used as phase masks have the LCs aligned (at zero
applied voltage) along the y-axis (c=y). Weiner and co-workers at
Bellcore showed that if instead the LCs are aligned along the x-axis (which
is along the array), then the LCs near the pixel edges are affected by
adjacent fields and are not properly controlled [22].

If the alignment of the LCs (c-axis) is at 45 degrees from the

polarization of the incident light, then the LC filter is a polarization
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rotater. For incoming light polarized along the x-axis and the c-axis given

by x+y, the filter for pixel 'n' is given by:
B, = exp(i Ap(V,,)/2)[ & cos(AP(V,)/2) + i§ sin(Ag(V,,)/ )] @

If a polarizer that is crossed (y-axis) or parallel (x-axis) to the incident
polarization is placed after the LC SLM, the resultant filter can attenuate
incident light producing an 'amplitude' mask. So for crossed polarizers,

the fiiter for pixel 'n' is:

B, =exp(iA¢(V,))exp(i Ap(V,)/2)sin(A¢(V,,)/2) (amplitude mask)
9

Equation 9 shows that an amplitude mask also imparts an attenuation-
dependent phase retardance. Weiner and co-workers showed that by
configuring a single LC SLM as an amplitude mask, measurement of the
voltage-dependent attenuation allows one to calibrate a given LC SLM and
determine A¢(V) .

To produce a filter capable of independent control of retardance and
attenuation, two LC SLMs are required. In our original demonstration [],
two LC SLMs with LCs aligned along the y-axis were used and each was
placed within a separate telescope in an 8-f iens and grating pulse shaping
apparatus (figure 3). The highly dispersive gratings preferentially
diffracted x-polarized light, so half-waveplates and polarizers were used to
configure the first LC SLM as a 'phase’ mask and the second LC SLM as an
‘amplitude’ mask, producing an arbitrary spectral filter. Note that the

33



phase mask needs to correct for the retardance imparted by the amplitude
mask.

For two LC SLMs combined into a single device and placed in a '4-f
arrangement there is no room for intermediate polarization optics between
the two masks. This practical problem arises since each mask should be as
close as possible to the (single) focal plane and because sandwiching of a
polarizer between two masks in a single structure could result in
considerable heating and phase distortion due to absorption of light of the
unwanted polarization. To produce an arbitrary filter in this case, the
alignment of the LCs in the two masks could differ by 45 degrees. The
first mask would have LCs aligned along the y-axis, again acting like a
phase mask, while the second mask would have L.Cs aligned at 45 degrees
from the y-axis so that when followed by a polarizer along the x-axis, it
acts like an amplitude mask. For this arrangement the incident light must
be y-polarized.

The filter for both of these '4-f' and '8-f' set-ups would be given by:

B, = exp(iA(p(l))cxp(i A¢(2) /2) sin(A¢(2) /2) (10)

where the superscripts denote the first or second mask and the pixei-

dependent voltage for the retardances A¢(i) (Vn(i)) has been implicitly

included.

Alternatively, an arbitrary filter could be produced by combining
two LC SLMs whose LCs differ in alignment by 90 degrees. This would
produce independent retardances for orthogonal polarizations. If the LCs

for the two masks were respectively aligned at -45 degrees and +45 degrees
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from the x-axis, the incident light were polarized along the x-axis, and the
two LC SLMs were followed by a polarizer aligned along the x-axis, the

filter in this case for pixel 'n' is given by:
B, = exp(i(Aqb(l) + A¢(2))/2) cos((A(b(l) - A¢(2) )/2) (11)

where the dependence on the voltage for pixel 'n' is again implicitly
included. In this case neither mask acts alone as a phase or amplitude
mask, but the two in combination are capable of independent attenuation
and retardance. Furthermore, since the respective LC SLMs act on
orthogonal polarizations, light filtered by one mask is unaffected by the
second mask. In section 5 we show that this eliminates multiple-diffraction

effects of the two masks.

2.3. TEMPORAL RESPONSE FROM PULSE SHAPING

2.3.1 Grating and lens apparatus
To filter dispersed frequency components using spatially varying

masks, one needs to image the focused spectrum of the ultrashoit pulse
onto the masks. For a single mask, this is most easily accomplished by a
pair of gratings and lenses configured in a '4f' arrangement where f is the
focal length (shown in figure 1). This set-up has been studied in detail by
Martinez as a way to produce positive group velocity dispersion (GVD)
(29-30). The first grating angularly disperses the frequency components of
the ultrashort incident pulse. The grating is placed in the back focal plane
of a subsequent lens, so that the lens collimates the spatially separated
frequency components and focuses the individual frequency components

onto the spatially varying mask placed in the front focal plane of the lens.
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The mask is in the back focal plane of a second lens (so that the lens pair
form a telescope around the mask) which collimates the individual
frequency components and bends them toward a second antiparallel grating
which is in the front focal plane of the second lens. The second lens and
grating thus recombine the spectrally filtered pulse yielding a 'shaped’
pulse in the time domain.

A second mask can either be placed immediately behind the first
mask or in the focal plane of a second lens pair. In the latter case the two
gratings and four lenses form an '8f arrangement as shown in figure 3. In
the former case, the second mask is displaced from the focal plane of the
telescope and so the spectrum it filters is not perfectly in focus. We will
study the impact of this in section 5. In the latter case the spectrum is
imaged and filtered twice and the gratings are placed parallel rather than
anti-parallel.

For a mask consisting of a linear array of evenly spaced pixels it is
important that each pixel sample a frequency range of the same magnitude
so that linear sampling is maintained. First order diffraction off a grating

is given by:
A =d(sin@; +sin64) (12)

where A is wavelength, d is the spacing between grating lines, and 0; and

84 are angles of incidence and diffraction respectively. The first lens

directs the diffracted frequency components from the first grating along
parallel paths toward the first mask. The lateral displacement x of a given

wavelength component A from the center wavelength component A(

immediately after the lens is given by:
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x=f x tan[83 (M) =64 (Ao)] (13)

Expanding x as a power series in angular frequency ® gives:

2
x=f 2B (co—m)+la 92d (@-)% +... (14)
00 |- 2 do 0=0
where
39d =2mc
AZ] R , (15)
0w |,y @ dcosB, (D)

c is the speed of light, and @ is the central carrier frequency of the input
pulse.

Usually the expansion is terminated after the linear term, so that the
frequency components are laterally dispersed linearly across the masks.
However for very broad bandwidth pulses, this assumption may break
down. Subtle second-order dispersion effects have noticed experimentally
by Weiner and co-workers [20]. In general the ratio of the second order

term to the first order term is:

2nd Order Term =_((D-m)|:1+ Atan B4 ] (16)

1st Order Term 0] 2dcosOy

For a central wavelength at 800 nm, with the mask accommodating the
spectrum of a 60 fs pulse, the second order term is about 5 percent of the
first order term at the edges of the mask. For pulse durations of less than

20 fsec it may be necessary to design the mask such that its pixels become
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physically smaller near its edges so to account for the quadratic term of the
angular dispersion from the grating. For the remainder of this analysis we
will assume that the frequency components are linearly dispersed across the

mask, according to:

—2ncf

x(w) = 5
@ dcosOy (W)

(0 - ) =o(0 - B) 17

Equation 17 describes the transverse position of the spatial center of
frequency component ®. For the '4f and '8f arrangements, these central
positions remain constant throughout each telescope. However the spatial
profile of each individual frequency component is focused by the first lens
onto the mask and then recollimated by the second lens so that the spatial
width of each component changes within each telescope.

Note that for a properly aligned set up, there is no path length
variation (no group velocity dispersion (GVD)) for the different frequency
components since the refraction in the achromatic lenses compensates for
the path length variation arising from the angular dispersion. Therefore in
the absence of a mask, a pulse will emerge unaltered by the apparatus.
However, positive and negative GVD can be introduced by moving the last
grating away from the front focal plane of the last lens. It is clear from
ray optics that this will introduce a quadratic variation in optical path

length P(®) which is equivalent to GVD:

P(w) = P(@)[1 - a( - o)’ | (18)
where
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o 1(98a
2| dw

2
2m2c?
=T 4.2 2 (19)
=0 @ d” cos” B4 (®)

This can be used to compensate for GVD arising from different optical
elements including the liquid crystal mask which are contained in the
grating and lens set-up. This strategy is used routinely in ultrafast optics

for GVD compensation and pulse compression [29-30].

2.3.2 Fourier transform of the mask pattern and the 'shaped’ waveform
Ignoring spatial (diffraction) effects, the mask pattern m(x) filters
the dispersed input spectrum E;, (Q) as follows:

E gut (%, ©) = g(X)Ej, (Q)m(0€2) (20)

where Ein(®) is the fourier transform of ejn(t), g(x) is the spatial profile
of the input pulse, and Q = ® — ®. The mask can manipulate the amplitude
profile of E;, (€2) through attenuation and the phase profile of E;, (€2)
through retardation (varying optical path length) of selected frequency
components. The mask filter cannot introduce any new frequency
components, so temporal features in the shaped waveform are limited by
the bandwidth available in the input pulse. Unless one is willing to throw
away energy from the center of the pulse spectrum, this implies that the
features of the shaped waveform cannot be shorter than the bandwidth
limited input pulse. It is assumed that the lateral dispersion of the lenses
and gratings is such that the mask can accommodate the entire bandwidth of
the input pulse. The shaped waveform in the time domain is given
(ignoring spatial effects) by the inverse fourier transform of equation 9,

whose envelope is given by the convolution of the input pulse envelope
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ein(t) with the inverse fourier transform of m(a€) Even taking into
account spatial effects, it is clear that the fourier transform of the mask
pattern will be directly related to the shaped waveform.

The mask filter m(x) is given by:

X
N/2-1 (Bnd(x - nW)) ® SqU(E) +
mx)=d(x-xo)® X

n=-N/2 (B g0(x—(n+ 1/2)W)) ® Squ((l —xr)w)

2D

where w is the distance between the centers of pixels (which includes the

-

gap spacing), X is the displacement of the center of the middle pixel (n=0)

of the mask from the @ =@ central frequency component, r is the pixel

width divided by the pixe] width plus gap width, N is the total number of
pixels on the mask, B, is the filter for pixel n, By is the filter for the

gaps, and d(x) denotes the Dirac delta function. Note that B; are

necessarily less than or equal to one. The square function squ(x) is defined

as:
squ(x) = {1 for |x| < yz , 0 for|x|> Vz} (22)

To simplify the calculation of M(k), the fourier transform of m(x),
we assume that the pattern defined by the N pixels of the SLM repeats
infinitely for x — teo. Though the mask has a finite width, this
simplification is justified if the dispersed frequency spectrum fits on the
actual width of the array. This is because there will be no contributions to

the shaped waveform from regions of the masks on which no frequency
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components are incident. Even if the spectrum of the input pulse does not
completely fit on the mask, the equations still obtain as long a spectrally
windowed input pulse is substituted for the original input pulse.

With this assumption, M(k) is given by the fourier transform of a

modified equation 10 in which the sum is extended to *e= and the N length

pattern for B, is repeated infinitely. The result is

g _ ) -
Smf,c;kW)( ZArem(n,N)a(k_n&%)J t
Mo =eplikno) L - I (23)
sinf(I-rkw]( & ‘aof, _2_11:_)
-Bg — kn;—m( 1) a(k n— }

where rem(n,N) gives the remainder of n/N and A, is the discrete fourier

transform of the N length sequence B;.

Each dispersed frequency component incident on the mask has a
finite spot size associated with it. This 'blurs' the discrete features of the
mask and gives rise to diffraction. To exploit the spatial resolution of the
mask, the incident frequency components should be focused to a spot size
comparable to or less than the pixel width. If the spot size is too small,
replica waveforms arising from discrete fourier sampling will be
unavoidable. If the spot size is too big the 'blurring’ of the mask will give
rise to substantial diffraction effects.

To study this effect we reproduce a derivation by Thurston and co-
workers at Bellcore [31], in which the shaped waveform is expanded into
transverse gaussian-hermite spatial modes. The assumptions in this
derivation are that the spatial profile of the input pulse is gaussian, that the

mask is exactly in the focal plane of the lens pair, and (most importantly)
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that only the gaussian transverse spatial mode of the shaped waveform is
retained. Light that is diffracted off the mask into higher order spatial
modes is assumed to be removed by the spatial filtering of a subsequent
aperture. We will drop this assumption and study more carefully the light
diffracted out of the gaussian spatial mode in section 4.

The amplitude A(w, x,y) of the field as a function of angular

frequency and position in the masking piane can be expressed as:

A(®,x,y) = Ejp (Q)m(x)ugg (x — 0, y) (24)

where ug(x,y) is the spatial profile of a transverse spatial gaussian mode

with spot size w, in the focal plane of the lens pair:

1
Ugo(x,y)= (Z/RW%)E exp(—(x2 + yz)/w%) (25)

A(w, x,y) is now expanded in transverse hermite-gaussian modes

Umn (X,).

A®,%,Y)= T A pn(@um (x — o€, y) (26)

m,n

If only the gaussian spatial moce is retained after the mask, the spectral

content of the shaped waveform will be given by Agg(®). Sclving for

A go(®) using the orthogonality of the gaussian-hermite modes gives:
1

Ago(®) = (2/nw3)5 E(Q) T m(x) exp(—z(x —aQ)? [wd )dx 27)

—00
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The inverse fourier transform of A yo(®) thus gives the temporal profile

of the shaped output waveform:

eout (X, ¥,1) = g (%, y) exp(iwt)e;, (1) ® (M(-t/ o) x g())]  (28)

where M(k) is given by equation 23 and g(t) is defined as:

gt)= exp(—-wgtz/Saz) (29)

Thus the effective temporal response of the mask filter, taking into account
diffraction, involves a gaussian envelope that further modulates equation
23.

Combining the results of equations 23, 28 and 29 gives the following

result for the profile of the temporal profile of the gaussian spatial mode
eggt(t) of the shaped waveform:

eon (1) =Y Ce;n (t+ ) (30)

where

) 2
an—lﬂ—exp(i nxon)exp[_(nwon) /2]
7n Nw Nw

. (rmn /N . ((1=r1)mn
X {A rem(n,N) Sl“("ﬁ“) +90,rem(n,N)Bg -n" Sln(——]}

N
(3D
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1=270 0 . and J,; is the Kroenecker delta function.

The spectral bandwidth of the incident pulse is assumed to fit on the
mask, so T is necessarily smaller than the incident pulse width of the input
light. The shaped waveform is thus given by the superposition of evenly
spaced input pulses with varying complex amplitudes. This formalism
easily lends itself to computation (especially for the case of two miasks)

since the coefficients C, are determined discretely and they (along with the

input pulse) completely determine the shaped waveform.

2.3.3 Features of the shaped waveform

2.3.3 a. Single ideal mask
The implications of the derivation in the previous section will now
be described. It is instructive to begin with the ideal case in which we have

a single mask with negligible gaps (r=1) which is aligned with the center of

the dispersed frequency spectrum (x¢=0). For this case we have:

_ sin(nn/N) _(nwon)z/
Ch =Arem(n,N) (nn/N) exp( WwN 2 (32)

Because 7 is smaller than the input pulse width, adjacent pulses in equation

30 can interfere, and so equation 30 can describe an arbitrary temporal

waveform as long as its temporal features are no shorter than the input

pulse. However only the middle N coefficients of C,, are uniquely

specified by the mask pattern, so the shaped pulse is only controlled for a

time interval defined by:
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—N1/2=-0n/w<t<Nt/2=0n/w (33)

Outside this time window (whose width is related to the smallest feature of
the mask), replica waveforms are produced. The entire waveform is also
modulated by the sinc function in equation 32. These features follow
directly from the sampling theorem for fourier transforms [32]. If the
spot size for the dispersed frequency components is infinitesimal, the
replica waveforms would persist unavoidably for a significant duration
under the sinc envelope. Instead the finite spot size {or each frequency
component blurs the discrete features of the mask, and this modulates the
shaped waveform with the gaussian envelope in equation 32. The fast
rolloff of the gaussian envelope can remove the replica waveforms. This
means that the spatial extent of the incident frequency components smooths
out the discrete features of the mask. The time window for the sinc
envelope is related to o/ w (total frequency per pixel) while the gaussian
envelope is related to wq /w (the ratio of spot size to pixel width). For
removal of the replicas, the temporal length of the shaped waveform must
not only fit within the time window specified by the sinc envelope, but also
be short enough that its replica waveforms are far enough in the tails of the
gaussian envelope. Note that field amplitude removed by the gaussian
envelope corresponds to light that is diffracted into higher order spatial
modes. The results described by equations 30, 32 and 33 have been
previously derived in a slightly different formalism by Weiner and co-
workers [20,22].

Even though 'arbitrary' waveforms can be produced by

superposition (and interference) of the N evenly spaced pulses (with

complex amplitudes given by C,) according to equation 30, it is sometimes
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easier to consider pattern sequences with lengths different than the number
of pixels N on the mask (including those with p>N since .he mask
accommodates the spectral bandwidth of the input pulse). If p is the
number of features in the designed sequence, then the output waveform
will be the superposition of p evenly spaced input puises (with complex
amplitudes) within the time window given by equation 33. In designing the
shaped waveform the time window can be discretized arbitrarily. All the
results from equation 23 onward still hold for N=p.

For p sraall enough that the pulses do not interfere, a pulse train is

produced with a frequency given by wp/2na . For pulse trains with

irregular timings or frequencies that are non integral values of w/2na, p

must be large enough to discretize the desired time points, and the

amplitudes of unwanted pulses specified to be zero. The p-length pattern

B, should be applied to the mask as follows: if the center pixel of the
mask is pixei 0, then pixels 0, 1, 2, ... correspond to B(, B1, B2, ... and
pixels -1, -2, -3, correspond to Bp-1, Bp-2, Bp-3, ...with the pattern
repeating for p<N.
2.2.3.b. Effects of gaps

With an ideal mask, the effects of discrete sampling and diffraction
from pixel edges must still be accounted for as described above. The
impact of the gaps between adjacent pixels on a real mask will now be
discussed. Recalling equation 31, we see that the first term corresponding
to the active pixels is similar to equation 32 except that the sinc envelope is
broadened and lessened in amplitude. This is to be expected, since the
mask still samples new angular frequency components every w /o but each
pixel only modulates a fraction rw /o of the light at each angular

frequency. Since the sinc envelope is broadened the replica waveforms are
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somewhat more apparent. The second term in equation 31 is the
contribution of the gaps to the mask's temporal response. Since the iilter
in each gap is assumed to be the same, the gaps simply reproduce the single

input pulse at time zero with a reduced complex amplitude given by
(1-r)B,. This input pulse is also reproduced as replica waveforms every

*2rno/w outside the pulse shaping time window. If the spot size for the

dispersed frequency components is comparable to the pixel spacing then
these replicas should be largely removed by the fast rolloff of the gaussian

envelope resulting from diffraction. Thus the zero-time coefficient C( for

equation 30 is modified to include the contribution of the gaps:

Co=rAq +(1- 1B (34)

Note that both Ay and B g are in general complex and so the two terms
may interfere. For small r this effect can be compensated by choosing A
appropriately.

2.3.3.c. Centering of the dispersed spectrum on the mask
The effect of a lateral shift x in the position of the mask relative to

the center of the dispersed spectrum will now be considered. One expects
that a shift in a frequency filter gives rise to a temporal phase sweep. The
first part of equation 31 describes such a phase sweep. This effect neeas to
be accounted for if one wants to produce waveforms or pulsetrains with
well defined and pre-specified phase relationships. It also might be
advantageous to use this effect to produce phase relationships between
pulses which could not be produced with only a phase mask. In any case, it
is crucial to know the relative lateral alignment of the mask array to the

dispersed spectrum. In practice this can be done by monitoring the power
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spectrum of the shaped pulse as various pixels are used to attenuate the
spectrum.
2.3.3.d. Phase and amplitude modulation

For a mask filter that manipulates both spectral phase and amplitude,
desired waveforms (subject to the available time window and temporal
resolution) can be generated simply by choosing a mask pattern whose
inverse discrete fourier transform compensates for the sinc and gaussian
envelopes and for the gap contribution at t=0 to give the desired
coefficients C,,. Note that only the relative values of C, can be specified
since the mask can cnly attenuate (and not create) spectral components.
2.2.3.e. Summary and illustration

The features discussed in this section are summarized in figure 4,
assuming a mask with seventy 100-pum pixels separated by 15-um gaps, a
75-fsec input pulse, and a spot size at the mask of 85 pm. For purposes of
illustration, we have assumed that the single mask is capable of independent
phase and amplitude modulation. Figure 4a shows a desired waveform
consisting of four equal-amplitude phased-locked pulses. The dashed curve
shows the time window available for arbitrary pulse shaping. Figure 4b
shows the modifications in the output which result due to the effects of
discrete frequency sampling and finite gaps between the pixels. Discrete
sampling results in replica waveforms outside the temporal range that is
under arbitrary control. The dashed curve shows the sinc envelope which
modulates the pulse amplitudes, also as a result of discrete frequency
sampling. Pulses associated with the gap contribution are also apparent at
times -4 psec, 0, and 4 psec. Figure 4c indicates additional modifications to
the waveform associated with diffraction effects of the mask. Diffraction

effects result in modulation of the waveform shown in figure 4b with a
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Figure 4ab. An illustration of the effects of pulse shaping using a discrete frequency filter
with gaps. See text for details. Figure 4a shows a desired shaped waveform. The dashed
curve gives the time window associated with the spatial resolution of the mask. Figure 4b
shows the effects of discrete fourier sampling and gaps between pixels on the desired
waveform, if these effects are not compensated for in the design of the mask pattern.
Replica waveforms appear, and the waveform is modulated by a sinc envelope function
(dashed curve). Additional features associated with the gaps appear in the center of the
desired waveform and the replicas.
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Figure 4cd. An illustration of the effects of pulse shaping using a discrete frequency filter
with gaps. See text for details. Figure 4c includes the effects of diffraction, which yields a
gaussian temporal modulation (dashed curve) of the waveform. Figure 4c shows the
waveform produced by simply using the discrete fourier transform of the desired waveform
as the frequency filter. Figure 4d shows the output waveform produced by the mask when
the effects described above are compensated for according to the prescription in section 4.
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gaussian temporal envelope (dashed curve in figure 4c). The gaussian and
sinc temporal envelopes lead to substantial reduction of the replica
waveforms. In summary, use of the discrete Fourier transform of the
desired waveform as the frequency filter yields the output given in Fig. 4c.
Better results can be obtained by modifying the mask to compensate for the
effects of discrete sampling, gaps, and diffraction. Figure 4d shows the
best approximation to the desired waveform which can be generated by a
mask with the assumed characteristics, through use of an appropriately
modified pattern. A prescription for appropriate pattern design will be
described in section 6. Note that the figure plots amplitude and not
intensity, so that the total energy in the replica pulses is very small.
Currently available masks have smaller (2-3 um) gaps and more
pixels. The reduction in gap size results in comparable reduction in the
amplitude of the unwanted feature at t = 0 and its replicas. This may
appear to essentially eliminate such features, but if the desired waveform
includes a feature at t = O then the interference effects may still be
significant and should be accounted for in the design of the mask pattern.
An increase in pixel number results in a comparable relative increase in the
temporal range which can be controlled. If a desired waveform extends
over the same fraction of the range as that illustrated in Fig. 4, the replica

amplitudes will be the same.

2.4. DIFFRACTION OF THE SPATIAL PROFILE OF THE SHAPED
WAVEFORM
2.4.1 General Considerations

The derivation by Thurston and coworkers reproduced in section 3.2

shows that the spatial extent of the frequency components incident on the
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mask filter will affect the temporal profile of the shaped waveform. As the
spot size of the incident frequency components becomes larger, more light
is diffracted out of the gaussian spatial mode and the gaussian envelope
modifying the temporal profile of the shaped waveform becomes
narrower. In this section we derive the complete space-time profile of the
shaped waveform. We will see that light diffracted into higher order
spatial modes still adds coherently to the shaped waveform and cannot be
simply removed by spatial filtering with an aperture. In particular, it will
be shown that filtering of spatially separated frequency components within
the grating and lens apparatus shapes the waveform not along the
propagation z-axis (temporal profile) but along an axis in the x-z plane.
This implies that there is a transverse spatial shift that varies linearly along
the temporal profile of the shaped waveform. The variation in the space-
time profile as the mask is displaced from the focal plane will also be
derived.

These theoretical results explain some peculiar experimental
observations both in our laboratory and that of the Bellcore researchers.
In the Bellcore experiments, waveforms whose intensity profiles were
supposed to be symmetric were observed to be asymmetric. The
asymmetry varied depending on the size of an aperture used to spatially
filter the shaped waveform and on the position of the mask relative to the
focal plane [20]. In our own lab, we have made similar observations. We
have also noticed that this asymmetry appears to vary directly with the
position of the doubling crystal used to measure the shaped waveforms by
non-collinear cross-correlation with an unshaped reference pulse. This

observation is consistent with the hypothesis that the shaped waveform has
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a space-time dependence which affects its overlap and phase-matching with
the reference puise in the doubling crystal.

The derivation will combine the earlier result for the fourier
transform of a discrete mask pattern (equation 23) with the formalism of
Danailov and Christov [33]. The electric field will be expressed both in
time and frequency domains and also in position and wavevector domains
to be distinguished by the notational conventions e(x,t), E(x,®), e(k,t),
and E(k,®). The following three properties will also be used: 1) From
fourier optics it is known that the transverse spatial profile in the from
focal plane e(x,z =f) of a lens of focal length f, situated at position z=0, is
related through a fourier transform to the transverse spatial profile in the

back focal plane of a lens e(x,z =—f). In particular:
e(x,z=—f)=f(x) = e(x,z=f) = F2nx /Af) (35)

where f(x) and F(k) are a fourier transform pair and A is the wavelength
of the light. This property will be used repeatedly to determine the spatial
characteristics of the spectrally filtered pulse. 2) Under the paraxial

approximation, if E(k,z = 0) is the fourier transform of the spatial
transverse profile of the field at z=0, its profile in wavevector space at

=Z( is given by:

E(k,z=2¢)=E(k,z=0) exp(—i %‘% k2 ) (36)

3) As derived by Martinez [30] (under the assumpticn of linear dispersion),

the transfer function for a grating is given by:
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E(X,®) gra1ing = by E;y (0%, @) exp(i72x) (37)

where 8 =cos(8;)/cos(84), Y=2n/@dcos(84), £ =w— @, 6j and 64
are the angles of incidence and diffraction respectively, and d is the grating
line spacing.

The multipliers bj are multiplicative constants that take into account
reflection and absorptive losses, and also normalize the waveform energy

for the different mathematical operations.

2.4.2 Space-time profile of a waveform shaped using a single mask
Figure 1 illustrates the single mask in the 4-f pulse shaping

apparatus. Let the mask be displaced from the focal plane by a dist» e z().
The input waveform is assumed to be separable in time and space with a

collimated gaussian spatial profile of spot size a:

ein (X, ) = e, () exp(idt) exp(- x2/ a2) (38)

Applying equation 37, immediately after the first grating one has:

2

E;(x,0)=bE;,(Q) exp(— §-i— x2 + iyﬂx) (39)
a

where Ejn(o) is the temporal fourier transform of the input pulse envelope
ein(t). The spatial profile of the beam in the focal plane of the lens pair is
given by the spatial fourier transform of equation 39 according to equation

35. To propagate the beam so as to account for a displacement of the mask
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position from the focal plane, an expression ror the field amplitude in
wavevector space is needed so one can apply equation 36. The field

amplitude at the focal plane in wavevector space is given by the double

fourier transform of equation 39 and the substitution x = kAf/27 giving:

_ MY, . LA
E,s(k,m)=bE;, (Q)exp[-—(z—nz) k2 —1%%] (40)

Equation 40 will now be used to propagate the field a distance z( to the

displaced mask. In position space the mask profile is multiplied by the
field amplitude so in wavevector space the mask profile is convolved with

the field amplitude according to the product theorem for fourier

transforms. The field amplitude is then propagated a distance —z( back

into the focal plane of the lens pair. After the mask and in the focal plane

one has:

— — A ZoA

E4(k,0) = b| B (k, 0)exp| —i-2=k2 | ® M(k) |exp| +i 2= k% | (41
4m 4am

Recall that the fourier transform of the mask pattern (equation 23) can be

expressed as:

hoid 27
= Yy I k—-n—
M(k) 2. c,ﬂ(k an) 42)

n=-—oco

with
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Carrying out the convolution in equation 41 gives:

y A
{(BO izt Y 2x)

Ch exp{ (( na) ym Jkk n ]

E; (k, ®) = b3E;, (Q) E xexp[—iﬂ%f{(k—nﬂ)]

n=—oo NW
Zoh
xexp( 20 kz)
47

/
(44)

The spatial profile of the electric field immediately before the second
grating is determined by inverse spatial fourier transformation of equation

44 followed by a spatial fourier transformation according to equation 35:

( 2 \ 2
Cp exp{ (6—+mﬁi— (x—n%f—-) :l

a A W
=, » A
E4(x,@) = by E;y (Q) XexP‘_“’Qy(" "X/E;]

n=—oo

[
X exp in——z-%_—kzj
. U A

(45)
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The inverse transfer function of equation 37 is used to describe the action
of the second grating (which is anti-parallel to the first grating), so that the

output electric field amplitude after the pulse shaping apparatus is given by:
E,, (x,0)=bsE,(x/5,0)exp(i2x/ ) (46)

Taking the inverse temporal fourier transform of equation 46 gives the

shaped output waveform:

( 2 )
C, exp(—in' 59-2& (%) }ein (t+n7)
> w
cou(uO b 31 o |
n=—oo xexp[-— ———zi—] exp(ian—O(-’i)x)
\ a ofw\N J
47)

where T = YAf /Nw (which is the same as the previous definition in
section 2.2), and ¥ = OAf /Nw.

Calculation of the temporal profile for the gaussian spatial mode
(with spotsize a) eggt (2) of the shaped waveform from equation 47 gives

the following result:

o 2 2f 2 :
00 ' n X Aa 20
e (1) = chem(t-rn’t)exp ——i—(z) L1+(———X2W2N2-)

n=—oo

(48)



The gaussian envelope modulating the shaped waveform in equation 48 is
identical to that calculated section 2.2, except that the dependence of the
spot size on the position of the mask relative to the focal plane is made
explicit.

For the case of zy =0, which means that the mask is exactly in the
focal plane of the lens pair, the space-time profile in equation 47 simplifies

to give:

0 2
€our (X, 1) = exp(idt) Z Cpein (t +NT)EXp —(—x——’;i) (49)
a

n=-—oo

This is a very significant resuit since it shows that even for a perfectly
aligned spectral filtering set-up, the output waveform is both temporally
and spatially shaped, and this spatial shaping cannot be simply removed by
spatial filtering with an aperture. Equation 49 shows that the shaped
waveform is a superposition of equally spaced input pulses as discussed
earlier, but it also shows that each input pulse that is displaced in time is
also transversely displaced, and the greater the displacement in time the
greater the displacement in space. In particular replica waveforms, arising
from tke discrete sampling of the mask filter, are always present in the
shaped wavetorm but are displaced away from the central gaussian spatial
spot. An aperture can remove the distant replicas but pulses within the
apertured light are still displaced spatially from one another.

Figure 5 shows the space-time electric field amplitude for a
simulation of a shaped waveform designed to consist of three evenly spaced
pulses of equal intensities. The simulation assumes an available time

window of 10 psec. Since the three pulses occupy about 6 psec of this,
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replica pulses outside the time window are apparent. The striking feature
of the waveform is the transverse displacement of the different pulses. In
principle there are additional replica pulses (of reduced intensity) that
would continue to be further displaced transversely as they are further
displaced from the temporal origin of the unshaped pulse. Clearly the
contributions of these different pulses to the gaussian spatial transverse
mode of the shaped waveform are reduced as they are displaced in time.
Thus the removal of replicas effectively consists of diffracting them away
from the central portion of the desired waveform. Nonetheless even the
three pulses comprising the desired waveform have a time-dependent
transverse displacement. Note that the plots are of field amplitude and not
field intensity so there is still relatively little energy in the replica pulses.

The slope of the this time-dependent lateral shift is given by:

ox/ot = -y /T =—cdcos(6;)/A (50)

which for typical parameters (d=1800 lines/mm gratings, A=800 nm) is
about 0.15 mm/psec. Equation 50 shows that this slope depends only on the
angular dispersion produced by the grating. Jowever the impact of this
lateral shift is measured relative to the spot size of the unshaped incident
pulse. Spatially large input pulses produce a very tightly focussed
spectrum on the mask, minimizing diffraction, so that less light is
diffracted away from the gaussian spatial mode. For example, if in figure
5 the spotsize of the individual pulses is made larger, the time-dependent
transverse shift is less emphasized.

To determine the maximum transverse displacement J in the

desired part of the shaped waveform recall that the shaped waveform is
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Figure 5. A contour plot of the spatio-temporal amplitude profile of a shaped waveform.
The desired waveform consists of three evenly spaced pulses with equal intensities. Since
the desired waveform uses more than half of the 10-psec time window given by the spatial
resolution of the mask, weak replica pulses outside this time window are apparent.
Diffraction from the mask linearly shifts the spatial positions of the different pulses as a
function of time. This is a general feature of the shaping of ultrafast waveforms through
filtering of spatially dispersed frequency components.
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only controlled within the time window given by —NT/2 <t < N7/2, so

that the transverse displacement in this time window is given by:

Z = N7|ox/o| = Af |w (51)

For typical experimental parameters (A=800nm, w=100pm, and f=20cm)

X = 1.6mm, which is not negligible for comparable spot sizes. Replicas

are tranversely shifted by a magnitude exceeding ¥ /2.

If the mask is displaced from the focal plane, the wavefronts of the
incident frequency components have some curvature. Equation 47 shows
that this results in a linear spatial phase sweep across the individual pulses
whose superposition produces the shaped waveform and that there is a

small phase modification to the coefficients cpn. This spatial phase sweep

. Zg n . . e
exp| i2n ———x | is equivalent to a shift in transverse wavevector space of

ofw N

2n Zon and implies that the propagation direction of the shaped

ofw N

waveform slightly changes along its temporal profile. Thus for a mask
filter displaced from the focal plane the time-dependent transverse shift is
accompanied by a time-dependent shift in propagation direction. In figure
5, this would be illustrated by a slight tilt in the phase fronts of the
different pulses. The slope of this tilt would increase in absolute magnitude
as pulses are displaced further from t=0. As shown by equation 48, this
implies that more light is diffracted away from the gaussian spatial mode.

An estimate of the magnitude of this 'temporal divergence' p can be

determined by comparing the difference Ak , between the shift in

transverse wavevector at opposite ends cf the pulse shaping time window
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(n=-N/2 and n=+N/2) to the magnitude of the propagation wavevector
k, =2m/A :

Al_(- Zol
tan(p) = =+ =
k, &w

(52)
For typical parameters and z)=5Smm, equation 52 gives p=200 prad. This
is the angular difference in propagation direction between the opposite
temporal ends of a shaped waveform that fills the pulse shaping time
window. Replica pulses outside this time window have an angular
divergence whose magnitude exceeds p/2. For large propagation distances

this effect may become significant.

2.5. PULSE SHAPING TWO MASK
2.5.1 General Considerations

It is clear that generaticn of arbitrary temporal waveforms requires
a spectral filter that can manipulate both amplitude and phase
independently, so two LC SLMs need to be incorporated into the pulse
shaping set-up. What needs tc be determined is under what circumstances
can the combined spectral filter associated with two LC SLMs simply be
given by their product. In this case the two LC SLMs can be treated as a
single mask with independent control over spectral attenuation and spectral
retardation. Clearly if there were no spatial separation between the two
masks the combined filter is given by their product and one can apply the
LC filters described in section 1. However for separated masks diffraction
effects will manifest themselves as the light field propagates between the

masks.
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In our initial demonstration of pulseshaping using two LC SLMs
[23], the SL.LMs were placed within separate telescopes of an 8-f
arrangement as in figure 3. An aperture was placed between the second
and third lens (where the separated frequency components are recombined)
with the assumption that this would retain only gaussian spatial mode of
light shaped by the first mask. Under such an assumption the combined
frequency filter is not given by the product of the two masks because the
gaussian envelope given by equation 29 modulates the temporal response of
the individual masks.

Alternatively the two SLMs couid be placed back to back in a single
telescope of a 4-f arrangement (figure 1). However the physical size of the
SLM devices including the windows makes it impossible for both masks to
be inside the focus of the lens pair. One mask will necessarily by displaced
from the focal plane and the spatial profile of light diffracted off the first
mask will change as it propagates through the space between masks.

In this section we will give the electric field space-time amplitude
profiles for waveforms shaped by two LC SLMs in both the 4-f and 8-f
arrangements. The temporal profile for the gaussian spatial mode of the
shaped waveform will also be given. Derivation of these results follows
aleng exactly the same path as the calculation in section 4, and will not be
presented here. The dependence on the position of the masks relative to the
focal plane(s) will be described explicitly. The equations which follow can
be used to model the tolerances of different pulse shaping arrangements.
Some simulations are shown in section 6.

It is also important to distinguish the case in which the orientations
of the LCs in the two separate SLMs differ by 90 degrees and there are no

intermediate polarization optics to couple them. In this case the two LC
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SLMs operate on orthogonal polarizations and the output waveform is
given by the superposition of two waveforms with orthogonai
polarizations, each shaped by a single phase mask. A subsequent polarizer
can be used so that the two masks combine to produce a filter that
independently manipulates spectral amplitude and spectral phase (equation
11 in section 1). The individual masks will still be affected by
displacements from the focal plane (as described in section 4). However,
there will be no multiple diffraction by the two masks. In particular, light
diffracted by one mask out of the gaussian spatial mode cannot be
diffracted back into the gaussian spatial mode by the second mask. This is
not the case for a pair of masks coupled to the same polarization, which
will generate a temporal profile that will manifest path-length variation
associated with multiple diffraction.

It will be shown that properly aligned masks in an 8-f arrangement
produce a shaped waveform whose space-time profile is given exactly by a
spectral filter that is the product of the two separate masks. The same is
true for the temporal profile of the gaussian spatial mode of a waveform
shaped by properly aligned masks (with some finite separation) that
manipulate orthogonal polarizations. In all cases, the time-dependent
transverse spatial shift described in section 4 for a single mask is still

present.

2.5.2 Two_masks in an '8-f arrangement

For two separated masks that filter non-orthogonal polarizations
within the '8-f' grating and lens apparatus (figure 3), with the masks
(D
0

displaced by distances z;’ and 282) away from the respective focal planes

of the two telescopes, the field amplitude of the shaped waveform is:
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where the superscripts denote the first or second mask respectively, and the

other parameters are as defined in section 4.
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(54)

These results are derived assuming that there is no aperture between the

second and third lenses (unlike in our initial experiments), so light
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diffracted by the first mask into higher order modes is retained. Equation

54 shows that the shaped waveform has properties identical to those

produced by a single mask (equation 47) except ¢, = X cfll,)+ ncf}%) :

n’=—oo
This describes exactly a single mask whose spectral filter is given by the
product of the two separated masks (with the second mask inverted as a
result of the telescope). Even though the first mask diffracts the incident
pulse into higher order spatial modes, the frequency filter for the spatially

separated masks is given exactly by their product. This result obtains

because in the case of 28) = zf)z) =1z the spatial profile immediately after

the first mask is exactly imaged onto the second mask except for the
inversion x — —x which can be accounted for by also inverting the mask
pattern.

The temporal envelope for the gaussian spatial mode associated with

the space-time profile given by equation 53 is:

cg)c?,)ein (t+(n-n"))
(I __ Q)
eout(t)= Z TXCXP M 2 -2 (
n=-—oo w N
n’=—oo
2 2 \2(, M @ )2
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(55)
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Again under the condition zgl) = 282) =z, equation 55 simplifies to give a
result identical to the single mask result in equation 48, with

< () .
Cp = ’Z cg,ang,).

n =-—oo

2.5.3 Two masks in a '4-f arrangement.
For two masks that filter non-orthogonal polarizations, situated back
to back within a '4-f' grating and lens apparatus (figure 1), the space-time

electric field profile is given by:
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(56)

where the first mask is displaced from the focal plane by a distance of z
and the second mask is placed a fixed distance Z in front of the first. This
expression has terms similar to those of equation 53. However for
practical considerations (in particular due to the finite size of the SLM
devices) this expression usually requires Z # 0, meaning that there is a

minimum separation between the two masks which therefore cannot both
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be in the focal plane. The temporal envelope for the gaussian spatial mode

of the waveform described by equation 56 is given by:

cgl)c;%)ein (t+(n+n’)) exp[in% ;nz )
m 00
eont()= X | 2 >
ont n=—oo X2 N2 Tha? zg(n+n’)+Zn’ 2
n/=—oo | X €EXPY =" (n+n")° + 55
2a W N

(57)

With the first mask in the focal plane (z0=0), equation 56 only partially

simplifies to give:

( 2
€jp (t +Tn)exp —(X—ZX)
a
. oo - N2 )
€out (%, 1) = exp(idit) I | ROJRE) exp(_mﬂ(n_) J >
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(58)

A neater expression does not result for the symmetric case of zg =-Z/2.

For small separations the spatial periods in the second sum are small
compared to typical spot sizes so the spatial variation from this sum should
be negligible and we can replace x in this term with ny giving the

following expression:
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Equations 56-59 shows that the combi:ied spectral filter in this case is not
given exactly by the product of the individual masks but includes terms that
account for path-length variations as diffracted light propagates between
the two masks. Tie parameter 27‘,/ w? is indicative of the magnitude of
this effect measuring the degree to which the spatial profile of each
frequency component changes between the two masks. If this parameter is
small then the combined spectral filter of the two masks is given
approximately by the product of the individual mask filters. Otherwise,
the appropriate mask patterns for a desired waveform must be determined
by numerically inverting equation 57. Such a method is described in

section 6.

2.5.4 Two masks that filter orthogonal polarizations
Here we consider the case described in section 1, consisting of two

masks with [.Cs aligned along axes at 45 degrees and -45 degrees in the x-
y plane, followed by a polarizer aligned along the x-axis. The incoming
polarization is also aligned along the x-axis and can be decomposed into

components of equal amplitude polarized at 45 degrees. Each mask will
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appear uniform for one polarization and will provide a variable retardance
across its array for the other polarization. Because the orthogonal
polarizations only see one mask pattern there is no multiple diffraction.
Afer the polarizer following the pair of masks, the field is given by the
sum of the two orthogonal fields.

The space-time profile of the shaped waveform produced using two
masks in a '4-f' arrangement is given by the sum of two expressions
describing thcz{neld produced by a single mask (equation 47) with

1

paramsters z,’ and cg), where 1 denotes the first or second mask:

,

2
X—n
€ip (t +nT, exp(— g——;—i&]
o | 20, M )
€out (X, 1) =exp(i®dt) X 1 (l) exp| — 02 (—-) exp 127c———(—)x
n=-—oo W N }
. )
(2P e
+c$12) exp| —in (——) exp 121t ( )x
\ L w2 N ofw

(60)

The coefficients cg) are those produced by a phase-only filter in
expression (43) and in the case of an '8-f' apparatus cﬁ,z) must be replaced
with cg_zg to account for the spatial inversion by the second telescope.

The temporal envelope for the gaussian spatial mode of the shaped

wvaveform described by ¢quation 60 is given by:
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Equation 60 and 61 shows that the combined frequency filter for two
masks which filter orthogonal polarizations and have some finite separation
is not in general given by the product of the individual mask filters.

If the respective displacements of the two masks from the focal plone
are equal and opposite 282) = —z(()l) =Z/2, equation 61 simplifies to give:

w [, (2) 2.2 2 )2

cy/ +c¢ n TAa
e ()= ¥ |[B—0|e;,(t+nT)exp ___Xz I+| ——— 222\.
N=—oco 2 23 2x w°N }

(62)

Equation 62 is identical to equation 48 which describes the temporal

envelope for the gaussian spatial mode of a shaped waveform produced by
a single mask, except that ¢, = (cg,l) + c$12)) /2, and zg =z /2. This shows

that with respect to the gaussian spatial mode of the shaped waveform, two
masks that filter orthogonal polarizations and have some finite separation
between them can be positioned so that the combined spectral filter for the

two masks is given by the product of the individual mask filters.
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2.6 SPECIFYING TEMPORAL PROFILES

2.6.1 Single mask with independent phase and amplitude control

In this section, we present a systematic prescription to generate
specified temporal profiles for shaped waveforms. Ideally one would have
a single mask with infinite spatial resolution, no gaps, and the capability to
independently filter both spectral amplitude and spectral phase. Thus if the
desired waveform were h(t) (implicitly including the optical carrier

frequency), the appropriate mask filter m(x) would be given by:

m(x) = H(- x/a)/ E;,(x/o. — @) (63)

where H(w) is given by the temporal fourier transform of h(t). Since the
mask can only filter existing frequency components the absolute value of
m(x) is always less than or equal to one, and so equation 63 shows that the
desired waveforin has temporal features and a carrier frequency limited by
the bandwidth available in the input pulse. Otherwise the desired
waveform can be arbitrary.

Even with such an /deal mask, since we are filtering spatially
separated frequency components, the diffraction results described in section
4 still obtain. Thus the waveform produced by the mask filter m(x) in

equation 63 is given by:
e(x,t) = h(t)f(x —1d/y) (64)
where f(x) is the spatial profile of the input pulse. The temporal profile of

the gaussian spatial mode of e(x,t) in equation 64 is modified by a gaussian

temporal envelope as described in sections 2.2 and 3.2. For the remainder
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of this section we will assume that it is this temporal envelope of the
gaussian spatial mode egf,’, () of the shaped waveform that is to be
specified.

In the more realistic case of an impixellated mask with N discrete
pixels such as an LC SLM, the output waveform shaped by the pulse

shaping apparatus (as derived in section 2.2) is given by:
00 B oo
€out (t) - 2 Cnein (t + ’D’l) (65)

where the coefficients Cp are given by equation 31 and are only
independently specified by the N pixel filters Bn for —N/2<n< N/2.
Other values of n correspond to replicas. Within this time window
arbitrary waveforms can be be produced for the appropriate values of the
coefficients Cp, though the temporal resolution of the desired waveform is
still limited by the bandwidth of the input pulse. In appendix A, the
appropriate values for Cp are determined for an arbitrary waveform.

To determine the appropriate mask pattern Bn which produces the
desired values Cp, one must recall equation 31. Rather than Bp being
specified by the inverse discrete fourier transform of Cp, it should be
given by the inverse discrete fourier transform of Cp after compensation
for the gap contribution, the sinc envelope resulting from discrete
sampling, and the gaussian envelope resulting from diffraction by the
mask. If the mask filter Bp is capable of both amplitude and phase
manipultion then this is trivial. Bp should be given by the inve se discrete

fourier transform of Ap, where Ap is given by:
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T‘Cn - ao’nt(l -r)
A, = : 5
sin(rnn) exp{_(nwon) /ZJ
g wN

for the desired values of Cp for =N /2 < n < N/2, and for n determined
self-consistently so as to normalize the desired waveform such that [B | <1.

(66)

Note that the subscripts n are labelled such that the filter BQ corresponds to
the pixel on the mask on which the central carrier frequency @ is incident.
For r=1 (no gaps or negligible gaps) equaucn 66 simplifies and Ap needs
only to be scaled for the gaussian and sinc envelopes.

The above prescription was used to determine the correct mask
pattern to compensate for gaps and pixellation in the generation of figure
4d (as described in section 3.3e). Recall that the desired waveform
consisted of four equal-amplitude phase-locked pulses spanning 2 psec and
was generated with a hypothetical mask consisting of 70 100-um pixels and
15-pm gaps. Within the 4-psec time window the desired waveform is
easily produced. However outside this time window low-amplitude replica
pulses are necessarily produced as well.

The replicas become larger as the temporal extent of the desired
waveform occupies more of the time window — NT/2 <t < N7 /2.

Both the desired waveform and the replicas are modulated by the sinc and
gaussian envelopes. The sinc envelope modulates the temporal profile of
the output waveform across its entire transverse spatial profile. As derived
in section 4, the output waveform undergoes a time-dependent transverse
spatial shift along its temporal profile as a result of diffraction. The
gaussian envelope reflects the fact that this transverse spatial shift removes

light amplitude away from the central gaussian spatial mode. To reduce
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the amplitude of replica pulses, the spot size of the frequency components
incident on the mask can be made larger, thus narrowing the gaussian
envelope. This is equivalent o making the spot size of the input pulse
smaller, thus increasing the relative magnitude of the transverse spatial
displacements. Thus the replica amplitudes in the temporal profile of the
gaussian spatial mode of the output waveform can be made very small by
narrowing the gaussian envelope, but the absolute energy (across the entire
transverse spatial profile) is only modulated by the sinc envelope.

In practice, if one generates waveforms that occupy only a third of
the available time window, the largest replica will have an amplitude about
one fifth of the desired waveform's amplitude and within the central
gaussain spatial mode (with wo=w) the amplitude of the largest replica is

about one twelfth of the desired waveform's amplitude.

2.6.2 Two Mask Filtering and Iterative Improvement of the Shaped

Waveform

A single LC filter cannot independently control retardation and
attenuation, but as shown in section 2, when two LC filters are combined
the product of their filters can provide independent control. In the case of
two LC SLMs with some finite separation, the combined filter is not
necessarily given by the product of the individual masks because the
propagation of light diffracted by the first mask pattern will result in a
modified spatial profile incident on the second mask. In section 5, the

exact space-time profiles of light shaped by two spatially-separated masks
were calculated. Determination of the apppropriate mask patterns B,(,') for

a specified waveform given by the coefficients Cp would require the

inversion of equations 55, 57, 61. In general this would have to be done
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numerically. However the temporal modifications resulting for the
separation of the two LC SLMs and some misalignment with respect to
their displacements from the focal plane(s) are in general small. In
practice, it is best to assume that the two LC SLLMs do approximate a single
device capable of independent control over spectral amplitude and spectral
phase. In section 5 it was shown that this is exactly true for two properly
positioned masks in an '8-f arrangement and also true for the temporal
profile of the gaussian spatial imnode of a waveform shaped by two
orthogonal LC SLMs with some finite separation in a 4-f arrangement.

To generate user-specified waveforms one implements the
prescription in the previous section to determine the mask filter for a
single mask Bp for the desired coefficients Cp. The appropriate filters for
the individual masks B,(,i) are then determined according to section one so
that their product equals the hypothetical single mask pattern Bp.

Figure 6 illustrates a simulation of the temporal amplitude of the
gaussian spatial profile of a waveform shaped by two LC SLMs (with 128
95-um pixels and 5-um inter-pixel gaps) that filter orthogonal
polarizations in a 4-f apparatus. The desired waveform consists of three
pairs of equal amplitude pulses with the relative amplitudes of the three
pulse pairs given by the ratio 2:4:3. The six pulses each have the same
optical phase. The spot size of individual frequency components in the
focal plane is specified as 80 pm. The masks are separated by S mm and
the first mask is displaced from the focal plane by +1 cm. Figure 6a gives
the amplitude of the shaped waveform for a mask without any
compensation (Apn=Cp). The gap term at t=0 and the modulation of the
pulse amplitudes is clearly evident. Figure 6b shows the amplitude of the

shaped waveform using equation 66 to determine Ap. The spotsize wo
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Figure 6. Simulations of the time-dependent amplitude profile of the gaussian spatial mode .
of a waveform shaped using two LC SLMs that filter orthogonal polarizations in a 4-f
apparatus. The masks are displaced by 1 cm and 1.5 cm from the focal plane. The desired
waveform consists of three equal-amplitude pulse pairs with relative amplitude 2:4:3.
Figure 6a gives the output waveform for a mask pattern derived by discrete sampling of the
fourier transform of the desired waveform, without compensation for impixellation, finite
gap effects, and diffraction. Figure 6b gives th.e output waveform for a mask patiern
determined according to equation 66.
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used in the gaussian envelope (equation 29) is tnat of an individual
frequency component incident on the first mask. Figure 6b shows that the
desired wavefom can be produced with excellent fidelity. The somewhat
noisy baseline results from the finite separation between the two masks and
the displacement of the combined device from the focal plane. However
the mask separation and displacement from the focal plane are relatively
large compared to the placements that can be acheived experimentaily.
Therefcre the assumption that the two LC SLMs can combine to produce
an arbitrary spectral mask filter given by the product of their individual
mask patterns seems well within experimental tolerances.

An exception to this is the gap contribution at t=0 for LC SLMs that
do not filter orthogonal polarizations and thus produce multiple
diffraction. Because the effective pixel width of the gaps is very small,
diffraction by these features is manifested for shorter propagation distances
as predicted by the size of the parameter 'z')»/ w2 (as discussed in section
5.3) where w is replaced by the gap width.

Figure 7 shows a simulation of the temporal amplitude of a
waveform shaped by two LC SLMs configured as a phase and amplitude
masks (masks that filter non-orthogonal polarizations) in a 4-f
arrangement. Unless otherwise stated, the parameters for the simulation,
such as the desired waveform, are the same as in figure 6. The two mask
filters are specified such that their product is given by the inverse discrete
fourier transform of Cp, and so the gap and envelope contributions to the
output waveform are not being explicitly compensated for. The two masks
are positioned symmetrically about the focal plane with a separation of 0-
mm, 3-mm, and 3-cm, for figures 7a, 7b, and 7c respectively. While the

baseline noise increases with mask separation, the gap term at t=0 actually
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Figure 7a-d. Simulation of the time-dependent amplitude profile of the gaussian spatial
mode of a waveform shaped using two LC SLM:s that filter non-orthogonal polarizations in
a 4-f apparatus and that are positioned symmetrically about the focal plane. The masks are
separated respectively by 0 mm, 3 mm, 3 cm, and 3 cm, in figures 7a-d. The desired
waveform is the same as in figure 6. The mask pattem for figures 7a-c are determined by
discrete sampling of the fourier transform of the desired waveform. In figure 7d the mask
pattern was determined by using the iterative algorithm described by equation 67.
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disappears with increasing mask separation. This occurs because the
frequency components incident on the gaps of the first mask do not reach
the gaps of the second mask as effectively when the mask separation is
large.

Implementation of the prescription in section 6.1 would not correctly
compensate for the gap contribution in this case. Nonetheless the
waveforms in figures 7a-7c are close to the desired waveform. This
suggests that the filter given by Apn=Cp is a reasonable initial guess which if
needed, can be followed by iterative imporvement of the fidelity of the
generated waveform. This is the starting point we have used in in
generating a numerical algorithm to derive the appropriate mask patterns
for a desired waveform that is not produced with sufficient accuracy by the
previous prescription.

For the 'jth' guess A,(,j ), the mask filters B,(,l), B,(,?’) for the two LC

SLMs are determined such that their product is given by the inverse
discrete fourier transform of A,(,’ ). The coefficients C',(lj ) for the output

waveform given by equation 65 are then determined according to equations

55, 57, or 61, depending on the experimental arrangement. To improve
the guess for A,(,J ), the values for C,(lj ) are compared to the desired

coefficients C,,, and the next guess A,(,J *1 is determined according to:

. . _cW
AGHD Z AW En=Ci (67)
P

The initial guess is usually given by A,(lo) = C,, and the parameter p is

typically 4. We have found that this algorithm usually converges within

about 20 iterations and can compensate for some systematic misalignment.
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Figure 7d shows a simulation of the temporal amplitude of wne
gaussian spatial mode with the filters for the twc LC SLMs determined
according to this algorithm and with the two masks separated by 3cm as in
figure 7¢. The waveform noise in the baseline is both smoothed and
reduced in intensity in comparison to the waveform in figure 7c.

A more dramatic example of the implementation of this algorithm is
given by the simulation illustrated in figure 8. In this case the registration
of the two masks is off by 30-um. Clearly the assumption that the two
combined LC SLMS are equivalent to a single mask capable of an arbitrary
filter is no longer valid in this case. The desired waveform is identical to
that of figures 6 and 7. The two LC SLMs are configured to iilter
orthogonal polarizations and are situated symmetrically about the focal
plane of a 4-f pulse shaping apparatus with a separation of 3-mm. Figure
8a shows the temporal profile of the gaussian spatial mode of the waveform
shaped with mask filters determined according to An=Cpn. The lack of
registration considerably degrades the fidelity of this waveform. Figure 8b
shows the waveform produced after 20 iterations of the algorithm
described by equation 67. The resulting waveform reproduces the desired

one with excellent fidelity.

2.6.3 Single Phase Mask
There has been a significant amount of work by Weiner and

coworkers on shaped waveforms using prefabricated inasks that manipulate
only the spectral phase [34,19]. In these works the pixel widths can be
varied but usuvally involve only binary filters. For example, pulse trains of
varying repetition rates have been produced by binary valued phase-only

filters made from etched silica substrates in which different repetition rates

82




1

0.9
0.8
0.7
0.6
-‘éo.s
“04
0.3
0.2
0.1

a)

T

¥

L

W

0 1
time in psec

b)

T ]

.

|

<

0

%

-3

-2

-1

I |

time in psec

|

2 3 4

Figure 8. Simulation of the time-dependent amplitude profile of the gaussian spatial mode
of a waveform shaped using two LC SLMs with a separation of 3 mm that filter orthogonal
polarizations in a 4-f apparatus. The tw- masks are positioned symmetrically about the
focal plane but are laterally translated from one another by 30 pum (i.e. they are no longer in
register). The desired waveform is the same as in figures 6 and 7. The mask pattern for
figure 8a was determined by discrete sampling of the fourier transform of the desired
wavcform and assuming that the masks were equivalent to a single device capable of
manipulating both spectral phase and amplitude. The mask pattern for figure 8b was
determined according to equation 67. This illustrates that iterative improvemer’ . f the
output waveform can correct for the lack of registration between the two masks.
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correspond to different pixel widths. In contrast, a single LC SLM has
fixed pixel widths but is capable of gray-scale retardation.

A variety of shaped pulses can be produced with a single liquid
crystal mask configured as a phase mask. The shaped waveform is s.ill

given by equations 43, 47, and 48, except now A is no longer arbitrary,

since its discrete fourier transform must be given by:

B, =exp(i9, ) where 0 <@, <2x (68)

General spectral phase manipulation such as linear, quadratic, and
cubic phase sweeps will produce the desired output waveform along with
the superposition (and possible interference) of the gap contribution. As
the phase manipulation begins to produce temporally cxtended or displaced
puises, replica wave forms will also contribute to the output wave form.
For very large phase sweeps (ones that produce waveforms outside the
available time window), the sampling of the discrete pixels will be
insufficient and the replica waveforms will interfere with the desired wave
form. Because the frequency filter is no longer arbitrary, temporal
amplitude and phase for the shaped waveform cannot both be specified.
For many applications, pulse trains witnout specified phase relationships
may be useful (7). For this reason we tried to produce optical waveforms
with specified temporal intensity profiles but aroitrarv temp.oral phase
profiles from a single phase mask.

In this case we must find the spectral phase filier exp(i(pn) whose
inverse discrete fourier transform has a square modulus that approximates

the desired intensity of the pulse sequence:
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2
desired | 2 1 N2-1 )
Iy =|An|" == 3 exp(ipy)exp(i2nnk/ p) (68)
Px=—N/2

Note that since only the amplitude of A, is specified, we do not control the

interferences between the superposition of input pulses. Thus we will only
try to specify waveforms that consist of temporally separated input pulses.
To do this the pattern length p (which specifies the number of pulses that
are evenly spaced in the time window) must be small enough that the pulses
are separated from each other or that the amplitudes of pulses that would
interfere are speciried to be zero. As p increases it becomes increasingly
difficult to find a phase-only filter in which many of the elements of A |
are zero, since we lose the degree of freedom associated with letting the
temporal phases of those elements vary.

To produce a series of evenly spaced pulses, for example, we can

specify a mask such that:

I, =|A|* = inverse discrete fourier transform of B,,|* = constant  (69)

The pixel width and hence the size of the time window is fixed but the
number (equal to the length of the filter pattern) of evenly spaced pulses
within the time window is integrally varied. The repetition rates F of the

generated pulse trains are given by:

F=n—_ (67)
2o
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where n is integral and gives the length of the pattern sequence. Thus
generation of pulse trains with various repetition rates is possible with a
phase-only mask. Clearly if n is too small, there are too few pulses in the
train, and if n is too large the pulses in the train begin to interfere with
each other. Changing the angle of the gratings or changing the focal
lengths of the lenses in the apparatus will both change o and so will also
change the available frequencies for the pulse trains, but these adjustments
are not made routinely.

The gap contribution will still contribute to the pulse at t=0. This
interference can be controlled by adjusting the overall phase of the shaped
waveform to add a constant retardation across the spectrum. More
complicated pulse trains in which the intensities of different pulses are
changed and some pulses eliminated can be made. Again the task is to find
some sequence whose length discretizes the time window appropriately and
whose phase-only filter satisfies equation €5.

We have used simulated annealing algorithms [35] and simple tnverse
fourier transform algorithms to determine the phases ¢, that best satisfy
equea*ion 65 for a variety of waveforms. These were used to generate the
mask filters for the phase-only waveforms which included pulse trains with
variably repetition rates from 1.10 THz to 3.95 THz with 0.22 THz
intervals. The overall intensity envelope of the pulse train ccnld also be
manipulated, and flat-topped and 'descending' pulse trains were also
produced. Experimental measurements of these waveforms will be shown

in the next section.
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2.7. INITIAL PULSE SHAPING EXPERIMENTS
Our original pulse shaping experiments employed LC SLMs

purchased commercially from Meadowlark Optics. The SLM pixel array

is 2-mm high by 8-mm across with seventy 100-micron pixels and 15-
micron gaps between adjacent pixels. The liquid crystals are driven by a 2
kHz bipolar square wave varying between 0 and 10 volts. The long axis of
the liquid crystals are initially aligned along the y-axis and twist in the y-z
plane toward the z-axis with an applied voltage. As before our convention
is that the pixel array is aligned along the x-axis and that light propagates
along the z-axis through the thickness of the LC layer. Therefore for light
polarized along the y-axis (usually perpendicular to the table), the SLMs act
as phase masks.

The first test was to reproduce results from Weiner and co-workers
in which a single LC phase mask was used to impart simple patterns such as
linear, quadratic, and cubic spectral phase sweeps, as well as binary
patterns [21,22]. A 4-F grating compressor as illustrate previously in
figure 1 was employed with the addition of two half-wave-plates that
sandwiched the modulator. The first wave-plate rotated the x-polarized
light which is preferentially diffracted by the gratings to y-polarized light
sc that the mask could manipulate spectral phase. This rotation is then
reversed by the second waveplate thereby optimizing the throughput of the
apparatus. Gratings with 1800 lines/mm and 12-cm lenses were used. In
subsequent experiments employing two SLMs in an 8-F set-up, 1200
lines/mm gratings were used, in both cases the mask aperture could
accommodate the bandwidth of the 70-fsec input pulse and the pulse width
was not broadened when traversing the apparatus with a uniform mask

pattern. The input pulse was derived from Ti:Sapphire mode-locked
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oscillator operating at 800-nm and 76 MHz with 1 W of average power. In
this and subsequent sections, the intensity profile of the shaped waveform
are generally characterized by standard cross-correlation techniques which
is described in Section 11.

Figure 9 show experimental cross-correlation measurements of
shaped waveforms for some simple mask patterns. Figure 9a shows
temporally shifted pulses resulting from linear spectral phase of different
magnitudes. Temporal shifted pulses have less intensity than the unshaped
pulse as a result of diffractive losses from the gaps between the pixels.
Figure 9b shows the an 'odd or zero-amplitude' pulse in which half the
spectrum undergoes a pi phase shift. Because of the finite-duration of the
probe pulse performing the cross-correiation, the observed signal at t=0 is
non-zero though the actual intensity of the odd-pulse should be zero at t=0.
Figure 9¢ shows the characteristic cross-correlation measurement of a
pulse following a cubic spectral phase sweep. Such manipulation can be
useful in ultrafast pulse recompression.

To show that a single phase mask can also generate more complicated
waveforms, the algorithms previously described in section 6 were used to
generate ulse trains with specified intensity profiles. Figure 10 show
three pulse trains with varying repetition rates which were generated using
phase-only filters. Pulse trains with repetition rates from 1.10 to 4.39 THz
in 0.22 THz intervals were easily produced. Figure 11 show additional
pulse trains in which the phase filter has been modified to generate flat-
topped and descenciing sequences of pulses. In these case replica pulses are
visible (though with small intensity) near +/- 4 psec.

These results show that very complicated waveforms can be

produced using a single phase mask. Nonetheless, many features of the

89



p
(- -] -
1

T=285 fsec

intensity

e o
(-,
1

&S
i

e ﬂ T=325 fsec

| ) T=651 fsec
2 0.6- ?

- uL/\J\ HULULL

Figure 10: Cross-correlation measurements of multiple-pulse waveforms shaped using a
single mask for phase modulation. The repetition rate of the pulse train can be varied by
the phase-only spectral filter. The number in the insets give the repetition period.

90



a) | : '
0.8 | . Flattopped
o Pulse Train
= 0.6
7]
S
§ 0.4-
0.2
0 \ |A JIA U \ ’ U l AI_'A_* J\IA 4
-6 -4 -2 0 2 4 6
b) 1
0.8 Flattopped
.*? 0.6; { H Pulse Train
g
‘é‘ 0.4-
02! !
0':—'—‘-# Y T T L T m\‘-
-6 -4 -2 0 2 4 6
c) 1 ]
0.8- Descending
o ) Pulse Train
= 0.6 ’
g
:‘5 0.4-
0.2 } ,
0 1 ot Y T l I \A ’l/\\?.s
-6 -4 -2 0 2 4 6
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waveforms are not specified. For the case of the pulse trains, the optical
phase relationship between subsequent pulses is fixed but unspecified. This
parameter must be aliowed to vary to generate the desired temporal
intensity profile given a fixed spectral amplitude profile. If the
independent filtering of both spectral amplitude and spectral phase is
possible, arbitrary temporal profiles can be specified subject to bandwidth
limitations and the spatial resolution of the mask as discussed in section 3.

As discussed in section 2, independent filtering of both spectral
amplitude and phase is possible if two LC SLMs are employed. Our initial
set-up with two masks is shown in figure 12. Half-waveplates and
polarizers were used to configure the first mask as an amplitude mask for
the incoming x-polarized light and the second mask as a phase mask. As
described in section 2, the amplitude mask is accompanied by a variable
phase retardance that must be compensated by the second phase mask. The
polarizers nearest to the two gratings are actually redundant and were
placed to guarantee good polarization purity.

Figure 13 show experimentally generated waveforms with shaped
temporal amplitude and phase profiles. Figure 13a shows a 550-fsec
optical square pulse and figure 13b shows a temporally-displaced 350-fsec
optical square pulse. Figure 13c shows a three-pulse sequence in which the
timing and optical phase relationships have been specified. None of these
waveforms could be produced using either a single phase or amplitude
mask. The dashed curve in all three cases indicate the anticipated
waveform assuming optimal alignment and calibration. The time window
for this set-up is only 2.9 psec since 1200 lines/mm gratings were used.

(For the phase-only filtering results using 1800 lines/mm gratings, the time
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window was about 4 psec). In each case replica waveforms can be seen
outside this time window.

The results clearly show the desired waveforms and indicate that
simultaneous control over the temporal amplitude and temporal phase
profile of shaped waveforms is possible using LC SLMs. However the
results are far irom optimal. The number of pixels on the mask could be
increased and the gap size reducea. Complications also arise since the two
masks need to be exactly in register with each other as well as being
properly positioned in the focal planes of the two telescopes. Fucthermore
the various polarization optics need to be correctly aligned with the long

axes of the LCs on the respective masks.

2.8. H'GH FIDELITY PROGRAMMABLE PULSE SHAPING
2.8.1 Generation of high-fidelity waveforms

The domiriant factors that limit the range of specified optical
waveforms are limitations in temporal resolution according to the available
spectral bandwidth of the input pulse (which also restricts the optical
carrier frequency of any waveform feature), limitations in temporal range
according to the spatial resolution of the mask, and temporal’y varying
transverse spatial profiles resulting from diffraction off the discrete mask
pixels. These effects are present even for the ideal case of a single mask
capable of arbitrary spectral filtering. Assuming that one is only
concerned with the gaussian transverse spatial mode of the shaped
waveform, only the temporal envelopes resulting from discrete sampling
and diffraction into the gaussian mode and a small correction for the gap
contribution at t=0 need to be compensated for as described in section 6.1.

For appropriate arrangements, replica waveforms arising from the discrete
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sampling are diffracted away from the gaussian transverse spatial mode and
so do not contribute significantly.

In practice, even for cases with two masks it is best to consider only
these factors as illustrated by the simulations in section 6. The LC device
described in section 8 only have inter-pixel gaps of 2-3 microns with
approximatel; 100-micron pixel widths, so the gap contributions become
very small. For small gaps it is sometimes best to ignore the gaps
altogether when determining the appropriate mask filters, especially for the
case of two spatially separated masks that filter non-orthogonal
polarizations in a 4-f arrangement (as discussed in section 6.2).

More critical practical concerns are accurate alignment and
calibration of the two LC SLMs. As shov. n in figure 8b, inappropriate
registration between the two masks seriously degrades the fidelity of the
anticipated waveform. Significant degradation can also cccur if the
polarization of the incident light and the relative orientations of the LCs in
the two SLMs are not matched properly. This reduces the possible
extinction of the dual LC filter, and makes it difficult to produce the
desired attenuation and retardance for the combined filter. R.:iative
displacement of the LC SLMs should also be optimized though this is less
critical.

In our initial pulse shaping attempts using two LC SLMs (section 7),
the masks were placed in an 8-f arrangement and a series of polarization
optics were used within the grating and lens apparatus to configure the first
mask as a phase mask and the second mask as an amplitude mask. Such a
set-up should in principle produce high-fidelity shaped waveforms, but in
practice proper alignment is very difficult. The two masks must be aligned

such that their pixels are in register and the lenses must be aligned properly
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The input pulse has a duration of 75 fsec at 800 nm.
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parallel to the LCs. The two SLMs are separated by 2.2 mm, but
simulations in section 6.2 show that the small separation between the two
masks is negligible especially since the two masks filter orthogonal
polarizations.

The individual LC SLMs contain 128 97-um pixels with 3-pum inter-
pixel gaps. The larger number of pixels increases the effective resolution
of the spectral filter, expanding (to about 6.5 psec) the temporal range over
which the shaped waveform can be controlled and reducing the relative
amplitude of replicas arising from discrete Fouler sampling. The reduced
gap size leads to proportionally reduced transmission of unfiltered light.

The resulting device is effectively equivalent to a single mask capable
of independent control over both attenuation and retardance and with gap
contributions that are small enough to be negiected. Since the registration
and angular orientation of the two masks are optimized (along with the
attached polarizers) during fabrication, the user need only positicn the
device within the focal plane of the grating compressor. In addition, either
SLM in the combined unit will independently attenuate light so that the two
masks can be calibrated within the pulse shaping apparatus. Calibration of

the device is described in Appendix B.

2.8.3 Experimental Results
Figure 15 shows cross-correlation measurements of five-pulse

sequences generated by the apparatus. The timings, amplitudes, and optical
phase relationships between pulses have been specified. The fidelity is far
superior to the results of the previous section. The long-time scan in
figure 15c also shows that replica waveforms at long times are no longer

detectable. Figure 16 show examples of optical square pulses of various
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Figure 15: Cross-correlation measurements of shaped waveforms produced by the new
pulse shaping apparatus. Five-pulse sequences with specified timings, amplitudes, and
optical phase relationships. The last plot shows that, unlike previous efforts, replica
waveforms at long times are very weak.
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Figure 16: Cross-correlation raeasurements of shaped waveforms produced by the new
pulse shaping apparatus. Optical square pulses of varying durations. Some intensity
structure on the top of the square pulse is a necessary consequence of limited bandwidth.
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durations. Some structure on the top of the square pulse is a necessary
consequence of the limited bandwidth in the input pulse.

Pulse sequences in which the pulses themselves have been shaped are
also possible. Figure 17 shows three pulse sequences in which in addition
to specifying the timing, amplitude, and phase relationships between pulses,
the individual pulses have been ‘chirped’ to varying degrees. Chirping of a
pulse means that optically carrier frequency under its intensity envelope
varies from blue to red or red to blue at a specified rate. For the cases
illustrated in figure 17, each pulse contains identical bandwidth so that the
more a pulse is chirped the longer its duration.

Figure 18 again shows multiple-pulse waveforms in which the
timing, amplitude, and phase-relationship between pulses have been
specified. These waveforms consist of eight and ten pulses respectively and
were used to test the fidelity of the pulse shaping apparatus. As the desired
waveform becomes more complex, imperfections in alignment and
calibration will more clearly manifest themselves. The dashed curves in
the figure show the desired intensity profiles and it can be seen that at
about ten features the experimentally generated results begin to differ from
the desired results. Nonetheless these results show profound improvements
in the fidelity, complexity, and versatility of the waveforms that can be
produced. While it is unclear what the waveforms in figure 18 might be
applied to, we emphasize that they were produced through a simple
computer-controlled interface in which the user simply specifies a desired

pulse sequence.
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Figure 17: Cross-correlation measurements of shaped waveforms produced by the new
pulse shaping apparatus. Multiple-pulse waveforms in which the profile of the individual
pulses has also been modified. In this case, some pulses are temporally broadened by
‘chirping', producing an instantaneous carrier frequency that varies linearly with time
through the duration of the pulse. The dashed curve gives the desired intensity profile.
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2.9. SHAPING QF TIME-DEPENDENT POLARIZATION PROFILES

In this section, we show that spectral filtering by the LC masks can
also produce waveforms with specified time-dependent polarization
profiles. Though we have emphasized that two LC SLMs are required to
produce an arbitrary desired waveform, an arbitrary optical waveform
actual involves specification of the temporal amplitude and temporal phase
profiles for not a single polarization but two orthogonal polarizations.
This in turn requires independent control over spectral attenuation and
retardance for these two polarizations. We will show that this is actually
possible if four LC SLMs are employed. This could also be done if an
input pulse is split into two pulses which are shaped by two separate pulse
shapers as described in the previous section and the two resulting
waveforms, one of which has had its polarization rotated 90 degrees using
a subsequent waveplate, are recombined with interferometric accuracy.
However such an apparatus would clearly be quite cumbersome.

Shaping of the polarization protile is possible because the LC masks
themselves do not attenuate light, rather they produce a tunable
birefringence which is used to rotate the polarization of light. It is the
polarizers that follow the LC masks that attenuate light. For example, if x-
polarized light incident on the dual-mask device described in the previous

section, the filter Bp for pixel 'n' is given by:
B, = (exp(iAgb(l) )(x +y)+ exp(iA¢(2) )(x - y)) / 2 (72)

where A¢(i) is the voltage-dependent birefringence of the 'ith' LC SLM in

terms of retardance. Proper specification of the two birefringences results

in a filter capable of independent control over the amplitude and phase for
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either the outgoing x-polarized light or y-polarized light, but not both.
The subsequent polarize - is used to retain only the desired polarization. If
that polarizer is removed, light is spectrally shaped along two orthogonal
polarizations yielding a time-dependent polarization profile. Again since
the spectral filter can only be specified for one of the polarizations, the
time-dependent polarization profile is not arbitrary. Figure 19a shows the
cross-correlation measurement of a phase-related pulse pair generated with
the dual-mask device. If the same mask pattern is used, but y-polarized
light is retained rather than x-polarized light, the shaped waveform is
given by figure 19b. We can call this the 'conjugate’ waveform for light
polarized orthogonal to our desired waveform, its profile is fixed by
specification of the x-polarized waveform. The circles in figure 19 give
the theoretical waveforms based on equation 72.

To control the temporal profiles of both polarizations, four LC
SLMs can used. For example, if the current device containing the two
polarizers and two LC SLMs (as described in the previous section) were
foilowed by two more LC SLMs with their LCs respectively aligned at 45

and 90 degrees to the x-axis, the filter By for pixel 'n' would be given by:

B, = cos((A9V - 49P) 2)exp(i (89" + 49®) /2)

X [x cos(A¢(3) /2) +y sin( A¢(3) /2) exp (iAq) @) )] 73)

which provides an independent arbitrary filter for both polarizations. Note
that the diffraction efficiency of the gratings, which is usually polarization-

sensitive, also needs to be considered.
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In the current arrangement, the composite LC SLM device can
produce an arbitrary spectral phase filter for orthogonal polarizations. To
demonstrate the generaticn of waveforms with controlled polarization
profiles, the first and second LC SLMs were respectively patterned with a
linear and cubic spectral phase sweep. The second polarizer was replaced
with a waveplate that rotates the polarization by 45 degrees so that light
with a linear spectral phase sweep remains othogonally polarized to light
with a cubic spectral phase sweep upon being diffracted by the second
grating (which has a polarization-dependent diffraction efficiency). The
intensity profiles for orthogonal polarizations of the shaped waveform are
shown in figure 20. As expected, the linear phase sweep displacer the input
pulse from t=0 and the cubic phase sweep produces a 'ringing' of the input
pulse toward negative times. As desired, the two waveforms have
orthogonal polarizations. The poor diffraction efficiency of the 1800
line/mm grating for the y-polarized 800-nm light is reflected in the
reduced amplitude of the temporally displaced pulse. Less dispersive
gratings would make the diffraction efficiency of the grating more
comparable for the two orthogonal polarizations. Note that the optical
phase relationship between the two waveforms is specified and the

waveforms would interfere coherently if they overlapped temporally.

2.10. AMPLIFICATION OF SHAPED WAVEFORMS

The throughput of the pulse shaping device depends on four factors:
1) diffraction efficiency of the gratings (typically 80-90% each) 2)
throughput of the polarizers when the mask is set for maximum
transmission attenuation (typically 80-85% for the pair) 3) attenuation of

the spectral components to yield the desired waveform 4) diffraction light
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into higher order spatial modes by the mask pattern. In the absence of any
shaping factors 1 and 2 results in a throughput of about 60%. Factors 3
and 4 depend on the specific form of the desired waveform. For example,
the spectral filter for an arbitrary N-pulse sequences can attenuate the total
spectral energy by as much as (N-1)2/N2. Also as discussed in section 3 and
4, the longer the temporal extent of the desired waveform, the more light
is lost due to diffraction by the mask into higher order spatial modes.
Given these considerations, it might be worthwhile to amplify the
shaped waveform in a regenerative amplifier in which case the output
energy is relatively insensitive to the energy of the input seed waveform.
Amplification of sub-femtosecond pulses usually involves chirped pulse
amplification (CPA) [36]. In CPA, a mode-lockzd seed pulse is temporally
stretched to many thousands times its bandwidth-limited pulse duration by
passing the pulse through an optical network of gratings and lenses (called
a stretcher) in which variation in the accumulated optical path lengths of
the different frequency components resuits in a large quadratic spectral
phase sweep and hence a temporally lengthened pulse duration. Because
the seed pulse duration into the regen is long, the peak intensity remains
small during amplification and damage is avoided. After optimizing the
gain from regen, the amplified pulse is passed through a second network of
gratings and lenses (called a compressor) which reverses the quadratic
phase sweep of the first network, yielding an amplified and temporally
compressed pulse. There has been interest in using pulse shaping methods
to help compensate for higher order spectral phase distortions introduced
by the amplifier and misalignment of the stretcher and compressor [21]
which left uncompensated lengthen the amplified pulse duration. Each step

of the CPA process manipulates frequency components in the same way as
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our pulse shaper and the output remains coh2rant. Therefore the spectral
filtering imparted by a pulse shaper onto a seed pulse should be -¢tained
during amplification. FFurthermore the seed pulsc 71 be precompensated
to account for effects such as gain narrowing in the amplifier [37]. One
concern however, is that the seed pulse have sufficient bandwidth after
shaping so that it can still be stretched to a long enough duration to avoid
peak intensity damage during amplification.

Figure 21 show some preliminary attempts at amplification of shaped
input waveforms. Figure 21a shows the cross-correlation of an
unamplified 800-fsec square pulse (dotted) along with the auto-correlation
of the experimental amplified square pulse (dashed) and the anticipated
autocorrelation based on the unamplified waveform (solid). Figure 21b
shows the cross-correlations of an unampified (solid) and amplified
(dashed) phase-locked equal intensity three-pulse sequences. The
broadening of the individual pulses in the amplified waveform is similar to
that of an unshaped pulse and reflects a partially misaligned stretcher and
compressor and not some inherent limitation. Measurement of the
amplified spectrum does show however, that for our amplifier the output
spectrum is slightly red-shifted which will effect the carrier frequency and
associated phase-relationships between pulses.

An important consideration in time-resolved spectroscopy
experiments is that by amplifying a shaped seed waveform, and amplified
unshaped reference pulse cannot be split off from the amplified output. It
is for this reason that an auto-correlation of the amplified square pulse in
figure 21a was measured rather than a cross-correlation. Though figure
21b appears to be a cross-correlation measurement, it is also an

autocorrelation measurement of the amplified waveform, since again it is
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Figure 21: Autocorrelation a) and cross-correlation b) of amplified and unamplified
waveforms. Figure 21a shows the cross-correlation of an unamplified 800-fsec square
pulse (dotted) along with the auto-correlation of the experimental amplified square pulse
(dashed) and the anticipated autocorrelation based on the unamplified waveform (solid).
Figure 21b shows the cross-correlations of an unampified (solid) and amplified (dashed)
phase-locked equal intensity three-pulse sequences.
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impossible to split off an unshaped but amplified reference pulse. In this
case, the unamplified three-pulse sequence was recombined with a
temporally displaced unshaped unamplified reference pulse using a beam
splitter and a delay line. The resulting waveform was a actually a four-
pulse sequence with the fourth pulse delayed by many hundreds of psec.
Though this fourth pulse could be produced by the pulse shaping apparatus,
the spatial resolution of the mask would not be sufficient to displaced the
fourth pulse to such a large extent. This recombined waveform can then be
amplified. Figure 21b is thus a portion of the autocorrelation measurement
in which the fourth pulse of one arm overlaps with the three pulse-
sequence of the second arm yielding something equivalent to a cross-
correlation measurement. Such a method could also be used in
spectroscopy experiments as long as the dynamics of interest completely
relax during the time between the shaped waveform and the additional
reference pulse. Otherwise the pulse shaper must be used after

amplification despite its losses.

2.11 CHARACTERIZATION OF SHAPED WAVEFORMS

Both the shaped and unshaped waveforms described in this thesis
have temporal features that are much shorter than response times of the
fastest detectors. Characterization must be performed by correlation
techniques with similarly short optical field. A standard technique in
ultrafast science is cross-correlation by second harmonic generation [38].
The non-collinear version of this technique was employed throughout this
section to characterize shaped waveforms. The technique is illustrated in
figure 22, two optical fields with intensities I1(t) and I2(t) are focused non-

collinearly onto the same spot on a second harmonic crystal. A delay
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Figure 22: Schematic of cross-correlation method used to characterize shaped waveforms.
Details are in the text.
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line is used to introduce a controllable temporal separations between the
two fields. Doubled light will emerge from either arm independent of the
delay between the two fields. However, when the two fields temporally
overlap in the crystal, doubled light will also emerge along the direction
that bisects the two arms, this light intensity is called the cross-correlation

signal and is proportional to:

Signal(t) e [ I (1)1, (t - 7)dt (74)

where 7 is the delay tiinie introduced by the delay line. If one of the fields
is very short (for example an unshaped reference pulse), the cross-
correlation signal gives the intensity profile of the other field. If the two
fields are identical the signal is called the autocorrelation signal. By
assuming a functional form for an unshaped pulse (for example gaussian)
the actual pulse intensity profile can be deconvolved from the
autocorrelation signal. This characterized unshaped pulse can then be used
as the reference plilse in a cross-correlation measurement of a shaped pulse
so that the deconvolved signal gives the intensity profile of the shaped
waveform.

Characterization of the phase profiles of ultrashort waveforms are
more complicated. Though we have not explicitly measured the temporal
phase profiles of the waveforms shaped by our apparatus, the apparatus is
capable of manipulating both spectral amplitude and phase. Since these
combine to produce the desired temporal intensity profile, which is
subsequently confirmed by the cross-correlation measurement, it is
assumed that they combine correctly to produce the desired temporal phase

profile. In addition to the cross-correlation measurement, we can also
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measure the spectrum of the shaped waveform, this equivalent to
rechecking the calibration of the LC device across its array for a particular
pattern. Though simultaneous information about the temporal and spectral
intensity profiles of waveform do not uniquely specify its complex
amplitude in either domain (for example the sign of the quadratic spectral
phase sweep in a chirped pulse remains ambiguous), it is assumed that the
experimental waveform is close enough to the desired waveform that other
waveforms with equivalent spectral and temporal intensity profiles can be
ruled out. Therefore measurement of the anticipated cross-correlation
profile along with an accurate calibration of the dual-LC-mask device
should be sufficient in practice to confirm the generation of the desired
waveform.

Nonetheless there has been emerging optical techniques that can
unambiguously characterize the complex amplitude profile of optical
waveforms [39-41]. One technique is termed frequency-resolved-optical-
gating or FROG. In FROG, an auto-(or cross-)correlation measurement
based on a higher-order non-linearity (usually a Kerr gate) is frequency
resolved yielding a unique two dimensional data set. Algorithms have been
developed to convert this datza set to the complete electric field profile.
FROG has been successfully used in characterizing higher-order phase
distortions in temporaily broadened pulses after chirped pulse amplification
[42]. We tried to use FROG on shaped waveforms, however practical
problems arise since very small temporal features need to be resolved over
a large temporal range, unlike the case of temporally broadened (typically
by a factor of less than 5) single pulses. The two dimensional data set
becomes too large for algorithms to converge in a reasonable time. In

practice FROG techniques are very good at aiding the recompression of
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amplified pulses to their bandwidth-limited pulse duration, but are ackward
for more complicated waveforims.

Complete characterization of the shaped waveform is also possibie if
a completely characterized reference pulse is available. Such a reference
pulse could be characterized by FROG or simply by it spectrum if its pulse
duration appears bandwidth-limited. In this case, spectral interferometry
could be used, in which the shape waveform eg(t) an reference pulse er(t)
(which are derived from the same source) are recombined
interferometrically with a controllable delay T, and the combined spectrum

is measured. The signal in this case is given by:

Signal(t,0) < |E, (@) +|E,(0)|" +2Re{E; (0)E,(0)exp(ior)}

(75)

where ® is angular frequency and Er(w) and Eg(®) are the Fouler
transforms of eg(t) and er(t). Since Er(®) is known, the delay T can be
varied to given the complex amplitude of Eg(®) thereby completely
characterizing the shaped waveform.

Since the LC masks are programmable, the fidelity of the shaped
waveform can be iteratively improved if its profile is characterized. To
account for systematic limitations (e.g. gaps), misalignment, and imperfect
calibration, the algorithm described in section 6.2 could be implemented,
though rather than calculating the output waveform (which would require
complete knowledge of all pulse shaping parameters) the output waveform
would be measured experimentally. The mask filters would then be

iteratively improved according to equation 67. Based on the impressive

117




results illustrated in section 8, such efforts are probably unnecessary for

must practical situations.

APPENDIX 2A: GENERAL FORMALISM FOR SHAPED WAVEFORMS
Subject to a limited time window and temporal features no shorter
than the bandwidth limited input pulse, the possible 'arbitrary’ wave form

envelopes that can be produced by the N pixel mask are given by:

N-1
€ desired (1) = €j (1) ® ana(t—Tn) (A1)

n=0

where —NT/2<T, <Nt/2.

The input pulse can be placed at various times T, (within the time
window) with a complex amplitude H,, and the resulting superposition
produces the output waveform. Placing more than N input pulses in the
desired output waveform is redundant because of the limited time window
and the temporal width of the input pulse.

To show the equivalence of the waveform described by equation Al
and the waveform described by equation 65 within the time window
—N71/2<t< Nt/2, we will fouler transform the two expressions:

N-1 N/2-1

E;y (@) Y H, exp(ioT,) =E;, (@) Y,C,exp(iont)  (A2)
n=0 n=-N/2

Since the spectrum of the input pulse is assumed to on the mask, we can

remove the term E;, (@) from the above expression and require the

equivalence only over the range givenby - /T <@ <7 /T. The
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appropriate coefficients C, can then be determined easily by multiplying
both sides by exp(—iwtn’) and integrating over ® in the range
~w/t<w<rm/t: |

1 /T

2n-n/t

N
Cy { Y H, exp(ioT, )} exp(—iwtn o (A3)

n=0

Thus the arbitrary wave form described by equation 65 is equivalent to

equation Al.

APPENDIX 2B: CALIBRATION OF DUAL LIQUID CRYSTAL MASK

Recall from section 2, that the complex amplitude filter for pixel n
on the dual-LC-mask device (including the polarizers) described in section

8, is given by:
B, =exp(i(A0® +49?) 2) cos((ag™" — 29 2) ®n

where A(P(i)(V,fi)) is the voltage-(V)-dependent birefringence for pixel n

on the ith mask. To perform a calibration of the masks, attenuation is
measured as a uniform voltage is varied across each of the masks. In
practice we have found that the response acioss each mask is uniform so
that different pixels on the same mask do not need to be calibrated
individually. If the voltage across the second mask is fixed at zero, while
the voltage across the first mask is scanned, and then vice-versa, the

following functions f1(V(1)) and f2(V(2)) can be determined:
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fl(v(l)) — A¢(1)(V(l))— A¢(2)(V(2) — 0) (B2)
fz(v(z)) = A¢(1)(V(1) — O)—- A¢(2)(V(2)) (B3)

Note that £1(0)=f2(0) which we will define as the constant f). Based on
these calibration files, one wants to determine the voltages required to

produce the desired filter. In comparison with B1, the desired filter can be
specified by @ 45 and @ pplinuge Where:

B jesirea = €Xp(i ¢ phase )COS(¢amplitude ) (B4)

Since the expressions B2 and B3 can be inverted, the problem reduces to
expressing f1 and f2 in terms of @ ;5 and @gpmppirge- This can be

accomplished because we can add a voltage-independent constant to ¢ phase

without physically changing the spectral filter across the array. This is
because it is only the relative differences in phase between pixels that

contribute to the shape of the output waveform. Setting this constant equal
to —A¢(l)(V(l) = O) we can write the following expressions:

h (V(l)) - ¢phase t ¢amplitude + fo (BS)
f (V(z) ) = _¢phase + ¢amplitude (B6)

Using the calibration curves for f] and f2, the current voltages can be

determined to produce the desired complex amplitude filter.
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Chapter 3
Space-Time Profiles of Shaped Ultrafast
Optical Waveforms

The work in this chapter is published in:
M. M. Wefers, K. A. Nelson, J. Quan. Elec. 32, 161 (1996)

3.1 INTRODUCTION

In this chapter. a completely general derivation for the space-time
profiles of ultrafast optical waveforms shape by filtering of spatially
separated frequency components is presented. Closed form expressions for
the space-time impulse response functions are given for the cases of single
and double passes through a pulse shaping apparatus. For a single pass and
a short unshaped pulse, diffraction by the mask filter gives rise to a
translational spatial shift in the desired electric field profile that varies
linearly with time along the shaped waveform. The result was determined
for some specific cases in the previous chapter but in fact is completely
general, and applies to frequency-domain pulse shaping with either
continuous or discrete mask filters. It is also shown that double passing the
apparatus does not generally reverse this effect but rather introduces
further space-time coupling such as a time-varying spotsize.

The generation of arbitrarily shaped optical waveforms is of great
interest in a number fields including coherent control spectroscopy [1-4]
and optical communications [5-6]. Though some pulse-shaping techniques
have been developed for modulation of waveforms directly in the time

domain [7], and other emerging techniques based on holography have been
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introduced [8-10], the majority of pulses shaping efforts have involved the
filtering of spatially separated frequency components [11-20].

In this frequency-domain technique a grating and lens (or focussing
reflector [15]) is used to image the frequency spectrum of an ulirashort
pulse onto a spatially varying mask. The mask filter can retard (vary the
optical path length of) or attenuate different frequency components, i.e. a
phase or amplitude mask can be used. The spectrally filtered frequency
components are then recombined with a second lens and grating, yielding a
'shaped’ waveform in the time domain. If the gratings, lenses, and mask
are each separated by the focal length of the lenses, the apparatus is in a '4-
f' arrangement and is dispersion free [21] so that the output pulse would be
unchanged for a uniform mask. Prefabricated substrates were originally
used as masks [12-15]. More recently liquid crystal (LC) spatial light
modulators (SLM) [16-19] and acousto-optic (AO) modulators [20] have
been used as programmable masks to permit computer-controlled
generation of ultrafast waveforms.

The pulse shaping process depends o the spatial separation of
different frequency compenents at the mask, where selective spectral
manipulation takes place threcugh the different absorption or retardance
properties of the separate mask regions. However each individual
frequency component has a finite spatial extent at the mask, and so the
different spatial regions of a single component may encounter different
optical properties. This results in spatial shaping of individual frequency
components. For example, differences in retardation of nearby mask
regions can produce variable deflection of nearby spatial regions of a
single frequency component, and for impixellated masks such as LCD

masks, diffraction will occur at the pixel edges. Thus the masking
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procedure results in shaping of the both spectral and spatial profiles of the
incident optical pulse. We will generally use the term "diffraction" to
describe any spatial shaping arising from the spatially varying pattern of
either continuous or discrete masks.

This effect has been noticed both experimentally and theoretically.
In the pioneering pulse-shaping efforts of Weiner and co-workers [12-
17,22], it was shown that the temporal extent of shaped waveforms
depended not only on the spatial resolution of the mask filter but also on
the spatial extent of the focussed frequency components incident on the
mask. Under the assumption of a gaussian spatial profile for the input
pulse, it was shown theoretically that the temporal profile of the gaussian
spatial mode of the output waveform is modulated by a gaussian envelope
that depends on the spot size of an individual frequency component at the
mask [21]. Parts of the shaped waveform which fall outside this ime
window are diffracted into higher-order spatial modes which are
presumably removed by spatial filtering. In the Bellcore experiments an
aperture was used to perform this function. Nonetheless, it was observed
that experimentally generated waveforms (THz-frequency sequences of
evenly spaced ultzashort optical pulses) whose intensity profiles were
expected to be symmetric in time according to the spectral filter of the
mask were sometimes asymmetric [13-14]. The asymmetry seemed to
depend on the distance of the mask from the focal plane of the lens pair and
on the size of the aperture.

We have made similar observations. In particular, we noticed that
the asymmetry in the intensity of a pulse train measured by non-collinear
cross-correlation with an unshaped reference pulse varied systematically

with the position of the mixing crystal which is used for the cross-
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Figure 1: Experimental cross-correlation measurements of a pulse train produced by a
single pass through the pulse shaping apparatus with a particular mask pattern. Figures la
and 1b are measurements of the identical waveform, but with the doubling crystal used to
perform the cross-correlation displaced along the direction of beam propagation by 300

pum. Note the higher cross-correlation intensity at early times in figure 1b.
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correlation, as shown in figure 1. Figures la and 1b illustrate cross-
correlation measurements of an identically prepared waveform under
identical conditions except for the position of the doubling crystal along the
propagation direction of the beams, which differed by 300 um. The
earlier or later parts of the cross-correlation signal are seen to be favored
depending on the mixing crystal position. This observation is consistent
with the hypothesis that the shaped waveform has a space-time dependence
which in this case affects the spatial overlap and phase-matching with the
reference pulse in the doubling crystal.

A theoretical expression for the space-time profile of a waveform
produced by frequency domain pulse shaping has been presented by
Danailov and Christov [23] for the case of an input pulse which separable
and gaussian in space and time. However the result is not in closed form
and it is difficult to interpret deviations from the desired waveform for
arbitrary mask patterns. Recently Paye and Migus [24] have described
space-time operations using generalized space-time Wigner functions and a
pulse shaper as a specific example. The formalism can easily be extended
to more complicated systems. However, results for the pulse shaper were
only presented for a single mask pattern and general features for arbitrary
mask patterns are once again difficult to interpret.

The results of this chapter show that for the usual case of an
ultrashort unshaped input pulse, the shaped waveform has the temporal
profile expected based un the spectral filtering of the mask, but its spatial
profile also undergoes a time-varying translational shift. Rather than

producing a shaped waveform described by:

€shaped (x,1) = €shaped (1)g input (x) (1)
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where x is the direction along which the mask is patterned and the spectral
components of the pulse are dispersed, g(x) is the spatial profile of the
input pulse and e(t) is the shaped waveform based on the frequency filter,

the output waveform is described approximately by:

€ shaped (x,t) = €shaped (g input (x +vr) (2)

where v describes the time-dependent shift of the shaped waveform. It will
be shown that the time-dependent shift parameter v depends only on the
angular dispersion produced by the grating. We first identified this result
in a general paper on pulse shaping using one or two liquid crystal spatial
light modulators [25]. Among other results, it decribed this space-time
shift for the case of a separable input pulse with a gaussian spatial profile
and a mask pattern consisting of a linear array of pixels. In this chapter,
results are derived in a simple manner that yields the space-time shaping
for arbitrary mask patterns and arbitrary input pulses.

Results are also presented for the case in which the pulse shaping
apparatus is double-passed. In analogy to double-passed pulse stretchers
used for chirped pulse amplification [26], it might be anticipated that
double passing the pulse shaper will make the shaped waveform separable
in space and time. It will be shown that this is only true for very simple
mask patterns (such as those that produce a linearly chirped pulse) and that
in general double-passing the pulse shaper can introduce significant
deviation from the desired waveform.

In section 2, we derive the impulse response function and the

parameters that determine the space-time coupling for the single-passed

128




pulse shaper. In section 3, we illustrate this result for a practical pulse
shaping set-up with a number of particular mask patterns including those
that generate pulse trains and those that could be used for pulse
recompression. In section 4, the impulse response function for the double-
passed pulse shaper is presented along with results for particular mask
patterns. In section 5, we discuss the practical impact of these results on
the generation of shaped waveforms. The absolute lateral shifts for
practical mask systems with nearly continuous or discrete patterns are

estimated.

3.2. ANALYSIS FOR SINGLE PASS
3.2a. Impulse response derivation

The electric field is represented in either position or wavevector
space (x,k) and either time or frequency space (t,w), as distinguished by
the notations e(x,t), E(x,®), e(k,t), and E(k,®). The following

convention will be used for Fourier transforms:

F(k, ) = (21) L[] £(x,1)e D) gy gy 3)
Foun=2m) " [ Fik,w)e =D grgq

The derivation follows a formalism similar to the treatment by Danailov
and Christov [23], which exploits the Fourier transform relationship
between the spatial electric field profiles in the object plane and image
planes of a lens. For a lens of focal length f placed at z=0, the spatial

electric field profiles in the two focal planes are related according to:
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E(x,z=-f)=E(x) © E(x,z = f)=~2n/Af - EQ2mx/ Xf)
4

where E(x) and E (k) are a Fourier transform pair. To study cases in

which the mask(s) are displaced from the focal plane [25], one could simply
propagate the electric field away from the focal plane according to

equation 5

E(k,z)=E(k,zg) exp(—-i(z — 29 )Ak? /4717) (5)

The pulse shaping apparatus and reference frame are shown in figure
2. The apparatus consists of a 1:1 telescope sandwiched within a pair of
anti-parallel gratings. The lenses and gratings are separated by distance f
and the two lenses by 2f, where f is the focal length of the lenses. The
mask is placed in the focal plane of the lens pair, where the grating and
lens have optimally separated the different frequency components. The
propagation direction of the beam is given by the z-axis and the transvere
coordinate is given by the x-axis as labelled in figure 2. The apparatus is
uniform along the y coordinate so we do not to consider this coordinate
explicitly. The possibility of double passing the apparatus (illustrated
within the dashed box) will be discussed in section 4.

The electric field incident upon the pulse shaping apparatus
(immediately prior to the grating) is defined in the slowly varying

envelope approximation as:

e1(x,t) = ejp (x,t)exp(i@r) (6)
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Figure 2: Schematic illustration of a pulse shaping apparatus based on the filtering of
spatially separated frequency components. A grating and lens image the spectrum of an
ultrashort pulse onto a spatially varying mask. A second lens and grating recombine the
spectrally filtered pulse yielding a shaped waveform in the time domain. The x-axis
specifies the transverse spatial profile of the electric field. The electric field profile ej(x,t)
or Ej(x,w) at different points in the apparatus is given by the expressions derived in section
2. The dashed box illustrates the case in which the apparatus is double-passed (with a
vertical offset). The calculations in the text assume negligible separation between the mirror
and the second grating.
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where @ is the optical carrier frequency and e;, (x,t) is the space-time

envelope for the input optical pulse. In many cases e;,(x,?) is separable

in space and time.
Following the results of Martinez [27], the electric field immediately

after the grating in frequency and position space is given by:

E5 (x,0)=+/B-Ej;, (Bx,2) exp(i7€2x) ©)

with B=cos(0;)/cos(64), Y=2m/®d cos(B4 ), and Q=w—BT, where
E;, (x,®) is the temporal Fourier transform of the input pulse envelope
e;,(x,t), 6j and 6 are the angles of incidence and diffraction
respectively, and d is the grating line spacing.

The electric field profile in the focal plane of the lens is given by the
spatial Fourier transform of equation 7 with the substitution k=27x/fA ,

where f is the focal length of the lens and A is the center wavelength of the

input field. The electric field is then multiplied by the mask filter m(x) to

give:
E3(x,0)= 21t/ BAf -Ejp (270x/ BAf +1Q2/ B.Q)m(x)  (8)

where E;, (k,®) is the spatial Fourier transform of Ej,, (x,®).

To determine the electric field profile immediately before the second

grating, a spatial Fourier transform of equation 8 is taken, again with the
substitution k=27x/fA, giving:

E4 (x,0)=([27B | Af )| E;, (= Bx’, Q) exp(—i7K2x")
-MQnr(x—-x") Af)dx’

9)
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where M(K) is the spatial Fourier transform of the mask pattern m(x).
Again following Martinez, the inverse transfer function of the
second grating (which is anti-parallel to the first) gives the electric field

profile after the grating as:
Es5(x,0)=A/1/B-E4(x/ B,w)exp(i x/ B) (10)

Substituting equation 9 into 10 gives:

Es(x,0)=(~21/BAf)[ E;, (—x, Q) .
-exp(i¥(x — x")/ B)M(27(x — x")/ BAf )dx’

Taking the inverse temporal Fourier transform of equation 11 yields the
electric field profile of the output waveform in the position and time

domains:

es (x,t)=(1/ A «/ﬁ) exp(itt)
| [ E;(—x", QM (27(x - x")/ BAf) (12)
-exp(iQ(r +y(x - x’)/ B))dQdx’

Performing the integration over  and using the convolution theorem for
Fourier transforms in equation 12 gives the final expression for the shaped

waveform:

es(x,t) = exp(iwt)j ein(—(x—x"),t—1")g(x",t")dx’dr’  (13)
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where g(x,t) is the impulse response function for the single-pass pulse

shaper (not including the image inversion imparted by the telescope which
is given by the negative sign in the argument of e;,(x,?)) and can be

expressed as:
g(x,t)=(~2r/ BAf )M(270x/ BAf )5 e+ 1/ B) (14)
or equivalently as:

g(x,0)=(27 [ YAf \M(=27t/ YAf )&{x+ Bt 7). (15)

where 8(x) is the Dirac delta function. Equation 13 can also be written in

wavevector and frequency space by taking its Fourier transform:

Es(k,w) = E;,(—k, Q)G (k,Q) (16)

where G (k, ) is the impulse response function in wavevector and

frequency space:

G (k,Q)=m(-Af (yo+Pk)/27) a7

3.2b. Limiting cases

The important result in equations 13-15 is that the space-time
coupling in the shaped output waveform is entirely given by the delta

function in equations 14 and 15. The size of this coupling is given by the

parameter ¥/ B which equals:
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¥/ B=2/(cd cos(6;)) (18)

where c is the speed of light, d is the grating line spacing, A the center
wavelength, and 9j the angle of incidence onto the grating. Hence this
parameter is entirely described by the angular dispersion imparted by the
grating which subsequently produces the transverse dispersion in the
masking plane.

In the limit that the grating behaves as a simple mirror (d very
large), 7/ B becomes zero and equations 13 and 14 simplify to give:

es (x.1)=(~2r/ BAf ) exp(iat)
[ ein(~(x = x7), )M (270x/ BAf )dx”

(19)

This corresponds to the case of spatial filtering [28], and for an input

envelope whose spatial and temporal dependences are separable, i.e.
e, (x,t) = fi, (x)h;, (t), only the spatial profile of the input waveform is

shaped:

es(x,0)=(~27/ BAf ) exp(itdt)hy, (¢)
| fin(=(x = x")M(270x/ BAf )dx”

(20)

In the opposite limit of highly dispersive gratings ¥ / B becomes very
large, and for a separable input envelope only the temporal profile of the

input waveform is shaped:
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es(x,1) = fi, (—x)(N27/YAf ) exp(iton)
[ By (e = YM(=27' | YAf )t

(21)
For most practical cases ¥/ B is not so large that one can ignore the

time argument in the delta function of equations 14 or 15. Thus combining

equations 13 and 15 gives:

es (x,0)=(~27 [YAf ) exp(i@r)

Jem(=(x+ B’ 1Y)t —t"M(=2m" [ YAf )dt’ @

If the temporal duration of the input envelope e;,(x,?) is given by 7;,,

and the spatial extent of the shortest spatial feature of e;, (x,?) is given by

Xin»> then under the condition:
Xin>>TinBlY (23)

equation 20 can be simplified by replacing t' with t in the spatial argument
of e;,(x,t) giving:

es(x,t)=(~27 [YAf ) exp(itdt)
Jei(—(x+1B1y)t—t")M(=2m" /YA )dt’

(24)

Equation 24 shows that the effect of spatial diffraction on the

temporal profile of the shaped waveform is to introduce a shift in the
spatial profile that varies linearly with time with a slope given by —f8/7% .

For the case of a separable input envelope we have:
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es(x.1)= fin(—(x +1B17))(N27/YAf ) explitor) o5
[ hy, (¢ =t M(=2m" [ yAf )dt’

With the exception of the transverse spatial shift, equation 25 is
identical to equation 21. Equation 21 corresponds to the case where the
spectrum of the input pulse is perfectly resolved onto the mask filter m(x)
and so the spatial profile of individual frequency components are not
diffracted by the mask pattern. However because individual frequency
components focussed onto the mask do have some finite spatial extent,
diffraction modulates the space-time profile of the shaped waveform
according to equation 25. The waveform is shaped not along the z-axis
(i.e. in time) exclusively but rather in the x-z plane along an axis given by
slope Az/ Ax=—c7y/ B. The condition in equation 23 implies that this
slope gives rise to negligible displacement along the x-axis for individual
features of the shaped waveform that are comparable to the input pulse

duration.

3.3. PRACTICAL EXAMPLES FOR THE SINGLE PASSED
APPARATU

Most current eiforts of experimental ultrafast waveform generation
involve input pulses of 20-100 fsec duration with the center wavelength in

the visible to near-infrared spectral region. To consider an approximate
value for —f3/ Y, we consider an apparatus congisting of 1800 lines/mm

gratings aligned at Littrow angle (9,- = Gd) for a center wavelength of
800 nm. Using equation 18 gives —f3/7 equal to -0.145 mm/psec. This

slope is inversely proportional to the number of lines on the grating and
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would be larger if less dispersive gratings are used accomodate the broad
bandwidths of very short pulses (20 fs) on finite mask apertures. In
practice the input pulses are also separable in space and time with spotsizes
of about 2 mm. Under these circumstances the condition of equation 23 is
easily satisfied and equation 25 is valid. In this limit (which is the usual
case in practice), the effect of diffraction is completely summarized by a
linear time dependence in the transverse spatial position of the temporally
shaped electric field amplitude, regardless of the mask pattern.
Nonetheless we will now illustrate the space-time profile of the
shaped waveform for some particular mask patterns. For simplicity we

will assume that the input pulse envelope can be described as:

e, (x,t)= exp(—azt2 ) exp(—x2 / A? ) (26)

with a=2x 1013 s-1 (fwhm pulse duration of 59 fs) and A=1.5 mm (fwhm
spotsize of 1.76 mm). In addition to the previously specified parameters
we take f (focal length of the lenses) to be 15 cm.

First we consider a mask consisting of a slit of width w separated

from the center of the mask by x(, where the slit width is much smaller
than the total width of the spectrum imaged onto the mask. This is
equivalent to saying that the spectral amplitude is constant across the slit

width. Solving equation 25 gives:

es(x,t) = exp(—(x +1tB/ y)2 / Az)exp(i(w —2mxo [VAf )t)
-sin(~mwt/YAf ) /mt

(27)
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This set-up is essentially a monochromator with the slit selecting a small
portion of the spatially separated spectrum. Equation 27 shows that the
temporal profile consists of a broad sinc envelope with a shift in optical
carrier frequency. However in addition to this expected temporal profile
there is a time varying shift in the spatial profile of the waveform. Figure
3 iliustrates the space-time intensity profile of a waveform described by
equation 27 for w=100 um. The sinc envelope has a pulse width of about 8
psec and there is a spatial shift of about 1 mm over this duration. The
pulse duration along a particular spatial coordinate is shorter than the pulse
width of the sinc envelope because of the time-dependent spatial shaping.
This reflects the fact that frequency components that were centered outside
the slit width in the mask plane may still partially contribute to the output
waveforin because they have a non-infinitesmal spatial extent. This result
may impact attempts to determine the local spectral phase profile of an
ultrashort waveform by measuring the temporal shifts in cross correlation
measurements of the waveform shaped as above with a short reference
pulse [29]. The spatial shift illustrated in figure 2 can make these cross-
correlation measurements somewhat ambiguous as illustrated in tigure 1.
Now we consider a mask pattern in which the desired waveform
consists of a multiple pulse sequence. In this case the mask pattern would

be given by:

m(x) = ZC,, exp(i27k,, x) (28)
n
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Figure 3: The theoretical space-time electric field intensity profile of a waveform shaped
by a single pass through the pulse shaping apparatus. The mask consists of a single
narrow slit and the input pulse is short and unshaped. The parameters for the simulation

are described in the text. A time-dependent spatial shift in the shaped waveform is clearly
evident.
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For such a mask pattern, the solution to equation 22 is straightforward, and
it is not necessary to use the approximate expression given in equation 25.

Solving equation: 22 for this mask pattern gives:

es(x,t) = exp(i@) Y c, e:xp(—a2 (t-7, )2 )
" (29)

'exp(—(x + Xn)z/Az)

where T, = YAfk, and X, = BAfk, . Equation 29 shows that pulses are

temporally displaced as desired but are accompanied by a corresponding
shift in spatial position. These time-dependent shifts in the transverse
positions of the respective pulses is identical tc the slope described in
equation 25. Had the shaped waveform been determined according to
equation 25 rather than the exact expression of equation 22, there would be
a linear time-dependent spatial shift across the individual profiles of the
pulses in addition to the relative shifts in their central position. This spatial
shift would be equal to 8/ay (~7 wm) which is negligible compared to the
spotsize (~2 mm), and thus the two results are essentially equivalent. The
condition imposed by equation 23 holds, and implies that results
determined according to equation 25 (or equation 24) accurately describe
the spatial profile of the shaped waveform to within /a7y . Figure 4
illustrates the space-time intensity profile for a multiple-pulse sequence
described by equation 29 produced by a mask pattern consisting of evenly
spaced slits of width w (100 pm) separated by distances L (800 ptm) and an

input pulse given by equation 26. The desired waveform in this case is a
train of evenly spaced pulses separated by YAf /L (1.03 psec) under a sinc
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Figure 4: The theoretical space-time electric field intensity profile of a multiple-pulse
waveform shaped by single-passing the pulse shaping apparatus. The parameters for the
simulation are described in the text. A time-dependent spatial shift in the shaped waveform
is clearly evident.
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envelope given by sin(zwt/yAf)/(nLt/YAf) [17,25]. The time-dependent

transverse shifts in the central position of the pulses is clearly apparant.
We now consider a mask pattern consisting of a quadratic phase

sweep:

m(x) = exp(ié‘zxz) (30)

A quadratic spectral phase sweep produces a ‘chirped’ pulse in the time
domain. This is a pulse with a temporally broadened (or 'stretched")
envelope and an instantaneous carrier frequency that varies linearly with
time under that envelope. We consider the case in which the input pulse is
given by equation 26 and is short enough to satisfy equation 23, and also
that the quadratic phase sweep stretches the pulse to a duration much longer
than the bandwidth-limited pulse duration. This last assumption is

equivalent to the condition a >> d where d = /YAfE. Solving equation

13 under these conditions gives:

es(x,t) o< exp(i(w -d 2t)t) exp(—d 42 / a2)

: exp(— (x +1B/y)° /A?')

(31)

The anticipated ‘chirped’ temporal profile is present in equation 31, but
again the spatial profile of the overall electric field amplitude has a
transverse shift that varies linearly with time. Figure 5 illustrates the
space-time intensity profile of a 59 fsec pulse that is stretched to about 6
psec (d=2x1012 s-1). Since the instantaneous carrier frequency of the

chirped pulse varies linearly with time and the waveform undergoes a
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Figure 5: The theoretical space-time electric field intensity profile of 2 waveform shaped
by single-passing the pulse shaping apparatus. The mask consists of a quadratic phase
sweep and the input pulse is short and unshaped. The genera.ed waveform is a temporally
as well as spatially chirped pulse.
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time-dependent spatial shift, the frequency content of the waveform
(described by equation 31) has a linear dependence on both space and time.
So in this example the red frequency components are shifted both to
positive times and negative transverse positions by the pulse shaping
apparatus. The effect of a mask consisting of a quadratic phase sweep is
equivalent to displacing the position (while maintaining the angular
alignment) of the second grating. This displacement means that the
different frequency components are not exactly overlapped spatially when
incident on the second grating. Instead their spatial centers are linearly
dispersed along the grating. The second grating collimates the different
frequency components and the displacement imparts a quadratic path length
variation but because the different frequency components are not exactly
overlapped the waveform has both a temporal and spatial chirp.

These three examples illustrate that the time-dependent electric field
amplitude is shaped both in space and time by the pulse shaping apparatus.
Since the temporal amplitude of the shaped electric field depends on the
spatial coordinate, it follows that the spectral amplitude also depends or the
spatial coordinate. This is clearly illustrated by the spatial chirp in the
third example. Each example is a specific case of equation 25 and results
physically from the spatial diffraction of individual frequency components
by the mask pattern that occurs in addition to the spectral filtering.

In the examples studied above we have assumed that the input pulse is
both short and bandwidth-limited. However, one of the applications of
frequency-domain pulse shaping is recompression of ultrashort pulses [16-
17]. In cases where the input pulse is not bandwidth-limited but still short
enough to satisfy equation 23, the appropriate mask filter can still

completely recompress the input pulse according to equation 25. The
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explicit time-dependent spatial shift in equation 25 is negligible because of
the short duration of the fully recompressed pulse. However, if the
duration of the uncompressed input pulse is long enough that equation 23 is
no longer satisfied, no mask pattern will completely recompress the input
pulse. This is because spatial diffraction of individual frequency
compenents by the mask pattern will be large enough that the frequency
content of the input pulse cannot be perfectly overlapped in both space and
time. In this limit equation 25 is not valid and we must use the more
general expression given by equation 22. We now consider the case where
the input pulse envelope is chirped to many times its bandwidth-limited

pulse duration and is given by:
e, (x,t)= exp(—(a2 —ib® )t2 ) exp(—- x? / A? ) (32)

with b >> a. The expression for the optimally compressed pulse envelope

in this case would be:
ecompressed (x’ t) o< exp(—b4t2/a2 ) exp(— -762/142 ) (33)

The compressed pulse duration is assumed to be short enough to satisfy
equation 23. We now solve equation 22 for the case where the pulse

shaping apparatus is used to impart the appropriate quadratic spectral phase
sweep to compress equation 32 to equation 33 (setting & = 7/ YAfb in

equation 30):
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es(x,t) < exp(i@t) exp(—b4t2/a21"2)exp(—xz/Aze)

-exp(i2xtb”y(T> -1) /AT )

(34)

1/2
where I" = (1 +(B/ }aA)z) . Note that satisfying equation 23 is

equivalentto I' =1 . Equation 34 shows that both the spotsize and pulse
duration are larger by a factor of I than those of the optimally
compressed pulse in equation 33. Furthermore there is a phase term that
varies linearly with xt. This phase term corresponds to linear lateral
dispersion (spatial <hirp) in the frequency content of the shaped waveform,
just as in the case of the bandwidth-limited input pulse considered

previously. The slope of this dispersion with respect to transverse position
is given by 2b27(r'2 - 1) /ﬂl" 2 . This means that the quadratic spectral

phase sweep produced by the mask to temporally recompress the pulse is
necessarily accompanied by spatial diffraction which produces a spatial
chirp. As in the previous example of the bandwidth limited input pulse, the
mask pattern is equivalent to the displacement of the second grating. In
this case the path length variation compensates for the temporal chirp in the
input pulse but the accompanying spatial chirp produces imperfect
recompression of the broad bandwidth pulse.

Pulse shaping by the displacement of the second grating (rather than
use of a mask pattern) is quite common for stretching (chirping) and
compression of ultrashort pulses. It is found that by double passing the
apparatus the spatial chirp is removed and the quadratic spectral phase
sweep is doubled. Hence in the particular case of a mask consisting of a

quadratic phase sweep, double-passing the apparatus reverses the space-
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tirne coupling resulting from diffraction. In the following section we will
explore the impact of double passing the pulse shaping apparatus for more
general mask patterns.

In appendix 1, the exact solutions to equation 22 are given for the
two cases of a variably chirped input pulse and a mask consisting of a
variable quadratic phase sweep. From the expressions, the limiting cases of

equations 31 and 34 follow.

4.D LE-PASSING THE PULSE SHAPER

To double-pass the pulse shaper a mirror is placed shortly after the
second grating normal to the propagation direction of es(x,?), so that the

beam retraces its path through the pulse shaper. The double-passed output

emerges before the first grating and propagates in a direction opposite to
e1(x,t) (as illustrated within the dashed box in figure 2). We will define

the electric field amplitude after double passing the pulse shaper as
ee(x,2). For simplicity we ignore the effects of propagation between the

second grating and the mirror. Following the same procedure as in section
2a, the electric field amplitude for eg(x,?) can be easily derived and is

given as:

eg(x,t) = exp(i&)‘t)j e, (x—x',t = 1")g "0 (x* ")dx'dt’ (35)

where gdouble (x,?) is the impulse response function for the double-passed

pulse shaper and is given by:
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g% (x,1)=(r/ 1B(A)" )My (~7(Be + )/ Af1B)
- My (~m(Br - m)/ AfB)

(36)

The subscripts on M(k) (the spatial Fourier transform of the mask pattern
m(x)) denote the first and second passes respectively. Unless the mask
pattern changes on a very fast (nanosecond) timescale, we usually have
m;(x) = m,(x) = m(x). Note that for the special case of m,(x) =1
(uniform mask pattern) equations 35 and 36 reduce to equations 13 and 15
with the exception that eg(x,f) = e5(—x,t) to account for the image
inversion resulting from the second pass through the lens pair.

The impulse response function can also be written in wavevector and

frequency space:

Eg (k,®) = Ej, (k, Q)G ¢ (k,Q) 37)

and

G P71 (e, ) =my (-2 (Y2 - Bk)/27)

(38)
ma (=2 (12 + k) 2)

Equations 36 and 38 show that double passing the pulse shaping
apparatus still generally couples the space-time dependence of the output
electric field amplitude. The coupling also appears to be more complicated
than that of the single pass. However if we consider the particular case of a

mask pattern consisting of a quadratic phase sweep (Equation 30) we see
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that the expressions for G ““? (k, ) and g%“** (x,t) become

uncoupled. Substituting equation 30 into equation 38 gives:
G double (k@) = exp(i2(§lfy / 271:)2 w? ) : exp(iZ(ZjAfﬁ / 27r)2 k2 )(39)

Equation 39 shows that G “°“?* (k, ) is separable, so that if the input

pulse is separable in space and time the output pulse will also be separable.
The frequency-dependent part of G double (k,) shows that the quadratic

spectral phase sweep is simply doubled as a result of the double pass. The
wavevector dependent part of G double (k,®) corresponds to the spatial
propagation of the input pulse by a distance z = —22(5[3)2 / 7. For the

parameters chosen in the example illustrated by figure 3 this distance is
about 41 mm. Unless the input pulse were tightly focussed when incident
on the first grating, the effect of this propagation distance on the spatial
profile of the output waveform would be negligible. Thus with the double
pass, only the temporal profile of the input waveform is shaped and pulses
can be temporally stretched or compressed without spatial aberrations.
General inspection of equation 38 show that only simple masks
consisting of exponential or gaussian patterns will uncouple the space-time

coordinates in a similar manner when the apparatus is double-passed. For
mask patterns other than these, the expression for G double (} ®) or

equivalently for gdouble (x,t) are not generally separable. However, both
expressions are symmetric with respect to a change of sign in the
wavevector or spatial coordinate. This means that for any mask pattern if

the spatial profile of the input waveform is symmetric about x=0, then the
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spatial profile of the shaped waveform when double-passed through the
apparatus is also symmetric about the x=0 plane.

Reconsidering the mask pattern consisting of a single open slit of
width w displaced from the center of the mask by a distance x(, the

impulse response function gdouble (x,) when the apparatus is double

passed is:

gdouble (x t) = (2yB/m) sin(mw(Bt + yx)/2BYAf)/(Bt + 1) (49)
-sin(mw(Bt - x)/2BYAE) /(B - vx)
Note that taking x=0 in equation 40 shows that the impulse response
function is now proportional to the square of a temporal sinc function
(though with an argument that ‘s half the value as that in equation 27). If
diffraction is ignored, double passing the mask should leave the spectral
filter unchanged for the case of a slit and the temporal impulse response
should be linearly rather than quadratically proportional to a sinc function.
Figure 6a illustrates the space-time electric field intensity profile for the
input waveform described by equation 26 which is double-passed through a
mask with a slit of width 100 um. The waveform is now symmetric about
x=0, but has a pulse duration that is broader than one would expect if
diffraction were ignored or even if the apparatus were only single-passed
for an identical mask (figure 3). Figure 6b illustrates the total time-
dependent intensity profile (integrated over transverse position) for the
waveform generated by double-passing (dashed curve) and single-passing
(solid curve) the pulse shaping apparatus. For this mask pattern, the
waveform shaped by a single pass gives rise to a time-dependent transverse

shift but otherwise leaves the time-dependent intensity profile unchanged,
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Figure 6: a) The theoretical space-time electric field intensity profile of a waveform
produced by double-passing the pulse shaping apparatus. The mask consists of a single
narrow slit which is identical to that illustrated in figure 3, and the input pulse is short and
unshaped. ©) The total titne-dependent intensity profile for the double-passed waveform
illustrated in a) (dashed curve) and the single-passed waveform illustrated in figure 3 (solid
curve). The diffraction effects from the second pass change the total time-dependent
intensity profile.
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so the solid curve in figure 6b also describes the intensity profile in the
limit of no diffraction. In addition to illustrating the different temporal
profiles, figuie 6b shows that the total energy in the waveform that is
produced by double-passing the apparatus is reduced. Since the waveform
is spatially shaped upon the first pass through the mask, additional energy
is removed upon the second pass through the mask.

If we return to mask patterns that produce multiple-pulse seguences,
similar space-time aberrations become apparant. For a mask pattern
described by equation 28, the shaped electric field amplitude when the

apparatus is double-passed is given by:

eg (x,1) = exp(imt)

ZZCC,, ein(X=(n = Xw )t = (T, +7,0)) @D

where as before T, = YAfk, and ). = BAfk,. Thus the overall

amplitude profile is given by the superposition of many pulses that are
displaced both temporally and spatially. We return to the example in
section 3 of a mask pattern consisting of evenly spaced slits of width w
(100 um) separated by distances L (800 jtm) and an input pulse giver by
equation 26. Ignoring diffraction, such a mask, when single-passed, will
produce a sequence of evenly spaced pulses under a sinc envelope as
described by:

e (x,1) = exp(it) Y. cpei, (x.2—7p) (42)

n
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with 7, = nYAf/L and ¢, = sin(mnw/L)/(nn) [17,25]. As in the case
of a mask consisting of a single slit, double-passing this mask should leave
the shaped waveform unchanged if diffraction effects are ignored for both
passes. In section 3, it was shown that when diffraction is taken into
account and the apparatus is single-passed, the pulses undergo a spatial shift
that varies linearly with time, so that the 'x' in the spatial argument of the

input pulse in equation 42 is replaced with x -+ ¥, where ¥, =nBAf/L.

For the double-passed apparatus the output waveform is correctly given by
equation 41 with the definitions for ¢,,, ¥,,and T, just specified. Figure
7a gives the calculated space-time electric field intensity profile for such a
waveform. The pulse train is now symmetric about x=0 but the time-
dependent amplitudes for the pulses are no longer given by c,,.

To compare the relative intensities of the pulses, we integrate over
the transverse coordinate to get the total time-dependent intcaisity profile of
the waveform and then consider the envelope function that weights the total
intensities of the puises in the pulse train (for example, the envelope
function would be a constant for a trair: of pulses with equal intensities).
Figure 7b illust-ates the envelope function for the pulse train produced by
single-passing (solid curve) and double-passing (dashed curve) the
apparatus with the mask pattern described previously. As in the case of the
single-slit mask pattern, the solid curve also gives the total intensity profile
for the waveform in the limit of no diffraction since the time-dependent
spatial shift resulting from the single pass does not change the total time-
dependent intensity profile. The envelope functions for the single and
double-pass cases are different and as in the case of thc single slit mask
pattern, the total energy in the waveform produced by double-passing the

apparaius is reduced. The dashed-dotted curve in figure 7b illustrates the
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Figure 7: a) The theoretical space-time electric field intensity profile of a waveform
produced by double-passing the pulse shaping apparatus. The mask consists of a series of
evenly spaced slits ©nd the input pulse is short and unshaped. The waveform produced by
single-passing this mask pattern was illustrated in figure 4. In the limit of no diffraction the
waveforms produced by single or double-passing the apparatus with this particular mask
are pulse trains with identical amplitude envelopes. b) The total time-dependent intensity
envelope functions that weight the intensities of the pulses in the waveform produced by
double-passing (dashed curve) and single-passing (solid curve) the apparatus. The dash-
dotted curve gives the intensity envelope (normalized to the magnitude of the dashed curve)
along the x=0 coordinate of the waveform illustrated in a).
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normalized intensity envelope function along the x=0 spatiai coordinate of
the waveform produced by double-passing the apparatus (figure 7a).
Figure 7b shows that the pulses in figure 7a have a time-dependent spotsize
(which is larger near t=0 and smaller away from t=0) since the dashed-
dotted curve is smaller than the dashed curve at t=0 but larger at times
away from t=0. The amplitudes of the different pulses can no longer be
mearingfully specified since their spotsizes are varying.

If the spatial shifts are ignored in equation 41, then the interferences
in the double summation will generate the temporal profile anticipated by
simply squaring the perfectly resolved spectral filter. However because of
the spatial shifts in the sum, the interferences in the double sum are not

fully realized. For example consider the case where the desired waveform
consists of four pulses at times (—27,—7,T,27) with complex amplitudes
(—w/f, 4i,4i,—2 ) , and the waveform is to be produced by double-passing

the apparatus. The mask pattern is determined by ignoring diffraction
effects and taking the square root (since the mask will be double passed) of
the appropriate spectral filter. Figure 8 illustrates the space-time intensity
profile of the shaped waveform for such a mask pattcrn. The input
waveform is given by equation 26 and T =4 ps. The value beneatl each
pulse gives its relative intensity along with its relative intensity in the
desired waveform (which would be produced in the limit of no diffraction)
in parenthesis. Figure 8 shows that the intensities of the pulses differ from
those of the desired waveform, including a non-zero intensity at zero time.
This reflects the fact that the spatial shifts produced by diffraction in
equation 41 produce imperfect cancellation of the electric field amplitude

at zero time. Note that figure 8 shows only the intensity effects of double-
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Figure 8: a) The theoretical space-time electric field intensity profile of a waveform
produced by double-passing the pulse shaping apparatus. The desired waveform consists
of pulses with complex amplitudes (—«/-2_ , 41,41, -2 ) at times (—21’ ,—T,T,2T )
with 1=4 psec. The mask pattern is determined by ignoring diffraction effects, and as a

result the relative intensities of the peaks (listed on the contour plot) differ from the desired
values (listed in parenthesis on the contour plot).
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passing. The temporal phase profile of the generated waveform will also
be affected.

These examples show that double-passing the pulse shaping apparatus
does not generally reverse space-time coupling in the shaped waveform and

can produce complicated space-time profiles.

3.5. PRACTICAL IMPACT AND PROSPECTS

The derived impulse respense functions (equations 15 and 36) for
both the single and double passed apparatus clearly show that pulse shaping
operations generally shape and couple the temporal and spatial profiles of
the output waveform. As mentioned in the first section, this follows from
the fact that spatially separated frequency components incident on the mask
have a finite spatial extent across the mask pattern. The mask therefore
filters both the spectral and wavevector components of the input pulse. It
follows that the temporal and spatial extents of the impulse response
functions vary inversely with the size of individual mask features. The
relative mapping of the mask pattern onto the spectral and wavevector
profiles of the input pulse is given by the pararneter /3, which as shown
in equation 18 is proportional to the angular dispersion produced by the
grating. The resulting frequency and wavevector-dependent filter is
imparted onto the input pulse. Clearly if the filter is relatively constant
over either the wavevector or frequency content of the input pulse then
there is no shaping in the respective coordinate (nor its conjugate variable).
Hence the limiting case of purely temporal shaping occurs when the
wavevector content of the input pulse is small (equivalent to a large input

spot size) and the angular dispersion produced by the grating is large.
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As pointed out in section 2c, in most practical cases ¥ /B is not large

enough to completely ignore the effects of spatial shaping. In most cases
(single pass, short input puise) equation 25 is a reliable expression for the
space-time profile of the shaped waveform. Also, in practice the length of
the mask filter is fixed such that after angular dispersion and focussing, the
entire spectrum fits onto the mask. Since the temporal extent of the shaped
waveform is limited by the spatial resolution of the mask features
[13,17,25], we can estimate the maximum lateral displacement % in the
center of the waveform over this temporal extent. If the spatial resolution
of the mask is given by o, the temporal range T of the shaped waveform is

given by T =7YAf/0 (derived in appendix 2). Hence the maximum lateral

displacement ¥ is given by

ﬁﬂf

x=T-B/v|= (43)

Equation 43 gives a simple measure of the lateral shift resulting from
single-pass space-time shaping in terms of practical parameters. To exploit
the spatial resolution of a given mask (and to produce temporally extended
waveforms) and to minimize the effect of diffraction, the spotsize of the
input pulse should be large compared to ) . This is true for both the
single and double passed apparati.

Many masks used in practice (etched substrates, LC SL.Ms) are
impixellated devices that discretely approximate a desired spectral filter
function. The discreteness produces a response function that includes the
desired response function as well as temporally displaced replicas of it (at

multiples of T for a pixel size 6) under a sinc modulation envelope [25,30].
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It has been argued that the replicas arising from the discreteness of a mask
can be largely ignored since the finite spot sizes of frequency components
imaged onto the mask "blurs" the physically discrete mask, producing a
smooth frequency filter. The results of section 2 tell us that for a single
pass apparatus, the low-intensity replicas produced at long times by discrete
sampling are present but undergo larger spatial shifts than those of the
desired waveform. In practice the replicas are undesirable and can be
largely removed by spatial filtering if the spatial separations between the
replicas and the desired waveform are large compared to the input spotsize.
This imposes an additional constraint on the temporal range of desired
waveforms, since the spotsize should be large compared to the spatial shifts
within the temporal extent of the desired waveform but small compared to
the spatial shifts of the replicas.

Section 4 showed that double passing the pulse shaping apparatus
does not generally reverse the space-time coupling in the output waveform.
For example we can consider the overall time-dependent intensity profile

of a short separable waveform I(t) shaped by a single passing the apparatus.

2 .
OVEr X gives:

Using equation 25 and integrating |e5 (x,1)

16) = [les (0 dx < [ By, (1~ )M (-2 g |

(44)

This result is identical to the one obtained in the limit of no diffraction, it
gives the overall intensity profile of the desired waveform. However this
result does not generally hold true fcr a waveform shaped by double
passing the apparatus because the spatial shaping now yields a more

compiicated result than a linear time-dependent spatial shift. The total
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time-dependent intensity profile can be different than the desired one as
clearly illustrated in the examples of section 4. Furthermore if a discrete
mask is used in a double-pass apparatus, the replica waveforms that are
produced at long times and with large transverse displacements after a
single pass will be spatially translated back toward x=0 and can interfere
with the spectral filtering used to produce the desired waveform near t=0
during the second pass. Hence the replicas at long times cannot be removed
by spatial filtering and the desired waveform near t=0 is perturbed. This
makes double-passing a discrete mask an extremely unattractive option for
most high-fidelity pulse shaping.

In general the shaped waveform produced by either single or double
passing the pulse shaping apparatus can be expanded into Hermite-Gaussian
modes with time-dependent amplitudes. If some spatial filter operation
could retain only a single one of these spatial modes (e.g. the gaussian
spatial mode), the resulting waveform would be separable in space and
time. The mask pattern could be chosen to compensate for this filtering so
that the desired temporal amplitude is produced within the selected spatial
mode [25]. Unfortunately spatial filtering with a simple aperture does not
produce a gaussian spatial mode. However this may be possible by
propagating the shaped waveform through a single-mode fiber which can
only support a gaussian mode [6,31]. Similarly, regenerative amplification
of the shaped waveform in a cavity which only supports a gaussian mode
should also make this possible [32]. Note that for some applications, such
as repetitive excitation of propagating phonon-polaritons modes [33], it
might be possible to exploit the coupled spacc-time shaping produced by

the pulse shaping apparatus.
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In conclusion, we have derived the impulse response functions for

single and double passed pulse shaping apparati based on the filtering of

spatially separated frequency components to properly examine the role of
diffraction on the spatial shaping of the output waveform. For the
practical case of a short input pulse, the waveform produced by the pulse
shaping apparatus has the desired temporal profile except that the spatial
profile of the waveform undergoes a spatial shift that varies linearly with
time. This space-time coupling is not generally reversed by double-passing

the apparatus.

APPENDIX 1
Here we present the exact solution to equation 22 for a variably
chirped input pulse given by equation 32 and a quadratic phase mask given

by equation 30. The result is:

es(x,t) o< exp(i@t)exp(—(O g —i©,)/A) (Al)

where

R
A2
+d2(a%d? — b2 )P — (ofv)? d?(b? - d?)x? (A2)

0 =(¢/v)*(b*(a® +¢*)-a?(b? —a))(x — vi)?
-d*(a(a? +c?)+ b2 (b7 - a?)) (A3)

- (c/v)2 d® (az +c? )x2
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A= (a2 +c2)2 +(b2 —d2)2 (Ad)

and v=—B/y, d =n/YAfE, c =v/A, with a, b, and A describing the
duration, chirp, and spotsize of the input puise respectively as described in
equation 32 for ihe input pulse.

Equation 31 is derived from A1 for the case b=0 and a>>c,d.

Equation 34 is derived from Al for the case b=d and a<<b.

APPENDIX 2
Here we show the relationship between the spatial resolution of the
mask and the temporal range over which a waveform czn be shaped. From

Fourier analysis [29], if m(X) has features as short as g, the range in
wavevector space Ak of M(k) is given by:

Ak=2m/0c (AS)
From equation 15, we see that the temporal impulse response function for

the mask is given by M(—21tt/ YAf ) Combining this result with equation

AS gives the temporal range T of the effective spectral mask filter as:

T=vyAf/c (A6)
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Chapter 4

Automated Multi-Dimensional Optical
Spectroscopy: Control over Electronic
Coherences in Atomic Potassium Vapor

The work is this chapter is published in:

1. M. M. Wefers, H. Kawashima, K. A. Nelson, J. Chem. Phys. 102, 1995
2. H. Kawashima, M. M. Wefers, K. A. Nelson, Annu. Rev. Phys. Chem.
46, 627, 1995

4.1 INTRODUCTION

In this chapter the automated generation of ultrafast optical
waveforms, described in the chapter 2, will be demonstrated by using two-
and three- pulse sequences to control electronic coherences ia atomic
potassium vapor. These clectronic cohererices will be sensiiive to the inter-
pulse delays and phase relationships and give rise to a macroscopic
observable. frequency-resolved fluorescence. Waveform parameters such
as number of pulses, inte” pulse delay, and inter-pulse phase relationships,
are scanned in an automated fashion as fluorescence is monitored. From an
operational point of view, the experiment demonstrates that optical pulse
shaping techniques approach the level of multiple-pulse multidimensional
NMR: a spectroscopic vbservable is monitored while (RF or optical)
wavzform parameters are varied, following the computer-guided
instructions of a user who need not be intimat:ly familiar with the
technology of waveform generation.

There are a number of differences between this experiment and the

multiple-pulse experiments on molecular and ionic crystals [1,2] described
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in the first chapter which also utilized pulse shaping techniques. First,
prefabricated masks were used so that the apparatus was not automated and
the desired waveforms needed to be known prior to the experiment and
changing of the shaped waveform required manual changing of the masks.
Second, phase-only masks were used so that the phase-relationships between
adjacent pulses in the sequence could not be specified. This was
unimportant in those experiments since the optical carrier frequency of the
waveform was not resonant with any transitions. Rather, ground-state
vibrational motion was induced through non-resonant impulsive stimulated
Raman scattering which depends only on the intensity profile of the shaped
waveform. In this experiment on potassium vapor, the optical carrier
frequency of the shaped waveform is near resonance creating electronic
coherences whose form will depend on both intensity and phase profiles of
the shaped waveform. Arbitrary excited-state preparations can be specified
demoristrating a simple example of quantum control. With the current
versatility of the pulse shaping apparatus, experiments on more
complicated systems are possible in which both electronic and vibrational
coherences are simultaneous!y controlled. Specific schemes and examples
are described in the end of the chapter.

Other researchers have used ultrashort phase-locked pulse-pairs to
manipulate electronic coherences in atoms [3], molecules [4], and quantum
well heterostructures [5]. Phase-locked pulse-pairs have also been used to
separate real and imaginary contributions to time-resolved photon-echo
responses [0,7]. In all of these experiments, phase-locked pulse-pairs were
produced by recombining identical pulses with interferometric accuracy
(the temporal delay is stabilized to much less than an optical period).

Hence for a particular phase relationship, the pulse delay can only be
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varied in steps that are integral numbers of optical periods. In contrast,
our pulse shaping apparatus is capable of continuously scanning both the
optical phases and delays between pulses. This distinction becomes
important when the number of optical cycles within the individual pulses
becomes small. Furthermore, our pulse shaping apparatus easily allows for
the generation of more than two phase-related pulses or more generally an

arbitrary optical waveform.

4.2 THEORETICAL DESCRIPTION

The 4s to 4p transition in atomic potassium vapor is split by spin-
orbit coupling to yield 4°P,,, at 769 nm and 4°P,,, at 766.5 nm. This
splitting is well within the 12-nm bandwidth of a 70-fsec pulse (the
duration of pulses from our oscillator) centered between the two
resonances. The shapcd waveform hence interacts with a three-level

system whose two excited levels are optically coupled with the ground state

4’S,,,. The dipole moment for the transition to 4*P,,, is larger than that to
4?p,,, by a factor of +/2. Note that Doppler broadening and hyperfine
splittings are manifested only 02 slower time scales than those of this
experiment.

The electric field of a multiple-pulse sequence produced by the

pulse-shaper can be described as follows:

eshaped(t)*_'eiwotzAnew" gt —1p) (D
n

where @ is the optical carrier frequency, g(t) is the amplitude envelope

for the unshaped pulse, and A, t,,, and ¢,, are the amplitude, temporal
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position, and optical phase respectively of the nth pulse in the sequence.
The overall phase is not specified uniquely.

Assuming that the bandwidth associated with the unshaped pulse
equally covers both resonances and in that we are in the weak-field regime
(so that first order perturbation theory applies), the amplitude for excited

state j is

[(A;T,+0,
RS WIPLLML 2)
n

where suffices j = 1, 2 represent 4°P,, , 4°P,,, respectively, Aj the

detuning of the carrier frequency @q from the resonance.

The total fluorescence intensity emitted from the system following

excitation by a sequence of pulses specified by the set of delays and phases

(7,9,) is
I(7;,¢;) =< |Cl(Ti’¢i)|2 +|62(Ti’¢i)|2 3)

In our experiments, the total fluorescence (or frequency-resolved
fluorescence from either one of the levels) is measured as the excitation
waveform characteristics ('L‘i,¢i) are varied continuously, under computer
control. The total fluorescence can be compared to the prediction given by
equation 3.

As a an example of a simple control objective, a two-pulse sequence
may be devised that exclusively populates only one of the two excited .iate

levels. The first pulse excites coherences between the ground and both of

the excited state levels. After a time ¢t =Ty /2, where
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Ty; =27/ (wy — wy) is the beat period given by the difference between

the resonance frequencies ®; and ®5, the two coherences are exactly out

of phase with one and other. Hence if the optical phase of the second pulse
is chosen to constructively interfere with one coherence its interference
with the other coherence is necessarily destructive.

If instead two phase-related pulses are separated by T , the full
period associated with the excited-state splitting, the coherences excited by
the first pulse are back in phase with each other at the time of the second
pulse. In this case, if the second pulse interferes constructively with one
coherence it also does so with the other coherence and similarly for
destructive interference.

Other control objectives may be to produce a pair of coherences
whose relative amplitudes and phases can be specified arbitrarily, or to
produce selected coherent states at particular times. Such objectives would
be difficult to achieve using combinations of narrowband excitation
frequencies tuned to the resonances. Three or more pulses may be required
in the waveform depending on the type and number of intermediate states

involved.

4.3 EXPERIMENTAL APPARATUS AND RESULTS

70-fsec, 767.4-nm pulses from a titanium:sapphire laser operating at
76 MHz were shaped by the liquid crystal pulse-shaping apparatus
described in chapter 2 section 8. The shaped waveforms have a total energy
of approximately 0.5 nJ. The total energy was kept constant as relative
delays and phases were scanned during spectroscopy measurements. The
shaped pulse sequences were then directed through a spectroscopic quartz

cell containing atomic potassium. The temperature of the cell was
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a)

figure 1: Frequency-resolved potassium fluorescence intensity measured as a function of

optical phase difference between two pulses separated by 288 fsec (figure 1a) and 576 fsec

(figure 1b). The stars (circles) correspond data points with the monochromater set at 766.5
nm (769 nm). The solid curves correspond to the best sinusoidal fits through the data.
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maintained at 590 K. The amount of potassium in the cell was so small that
optical density effects were negligible. The emitted fluorescence was
collected at a 90-degree angle from the excitation beam path by a
photomultiplier tube, and a low-resolution monochromater was used to
help eliminate scattered light and resolve the two resonances.

Figure 1 shows the frequency-resolved fluorescence from the
potassium cell when excited by two pulses separated by 288 fsec (figure 1a)
and 576 fsec (figure 1b), as a function of the phase difference between thc
two pulses. These separations correspond to Ty /2, To(the beat period)
respectively. The stars (circles) correspond to the fluorescence measured
with the monochromater set to 766.5 nm (769 nm) and the solid lines are
best sinusoidal fits to the data. As anticipated, the data show a sinusoidal
deper.dence on the optical phase difference between the pair of pulses. The
signal of the 766.5 nm resonance is approximately twice that of the 769 nm
resonance which follows from their respective dipole moments. The two
sinusoids are out of phase with one another in figure 1a, demonstrating that

pulses separated by T,; /2 with the correct optical phase difference can

selectively populate one of the excited-state levels. This is in contrast to
pulses separated by T; (figure 1b) which maximize (or minimize)
population in both excited state levels simultaneously when the optical
phase difference between the pulses is chosen appropriately. More
generally, depending on the delay time and phase difference chosen, any
choice of relative phases and amplitudes of the two coherences can be
realized.

Figure 1 shows raw data that are not corrected for background
signal from scattered light or the imperfect resolution between the two

resonant frequencies by the monochromater. To make a more quantitative
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Phased-Locked Pulse Pairs with Different Delays

_>,’ 1 T T T T 1 1 T

@

G 0.5 .
’§ 1 1 1 L 1 1

-800 -600 -400 -200 0 200 400 600 800
time in fsec

% 1 T T T v T
g ost .
'§ 1 e 1 A 1 | 1

0 200 400

800 -600  -400  -200 600 800
time in fsac
g 1 L) T T L] 1 L) L]
Il /\ /\ -
.E - 1 N A 1 "
-§00 -600 -400 .200 0 200 400 600 800
time in fsec
’> 1 0] T L] T L T T
fos /\ /\ -
'§ 1 1 L F 1 1 1
S0 T e00 400  -200 0 200 400 600 800
time in fsec

figure 2: Cross-correlation measurements of some of the phase-related two pulse
sequences generated in an automnated fashion and used to excite the potassium sample.
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figure 3: Total potassium fluorescence intensity measured experimentally (a) and
predicted theoretically (b) as a function of the relative delay (288-864 fsec) and optical
phase (0-2pi radians) of a two-pulse sequence. The experiment and theory agree with a
standard deviation of 0.6% across the two-dimensional manifold.
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comparison to the theoretical predictions described in the previous section,
the experiment was repeated but instead the total fluorescence was
measured over a two-dimensional manifold of pulse sequences whose
relative delay and phase were scanned. Figure 2 shows cross-correlation
measurements of some of these excitation waveforms. A small constant
background term was subtracted from the two-dimensional data set which
was then compared to the theoretical predictions without any free
parameters. Figure 3 shows the experimental results and the results
predicted by egs. 2-4. The agreement between the two is excellent, with a
standard deviation of 0.6% across the manifold.

Experiments with three phase-related pulses were also carried out. In
this case, up to four parameters (two relative delays and phases) could be
scanned by the pulse-shaping apparatus. For purposes of tractable display,
we chose to fix the delays and vary the phases. Figure 4 shows cross-
correlation measurements of some of these excitation waveforms with the
pulse arrival times fixed at -450 fsec, 0 fsec, and 300 fsec and the optical
phase differences varied between 0 and 2p radians. Since only the phase
relationships are varied, the cross-correlation measurements appear to be
almost identical. However the coherent excitation produced by these
waveforms is very different despite their similar intensity profiles. Figure
5 shows the total measured and predicted fluorescence intensities as the two
sets of phase-relationships are varied. Again the agreement between the
two results is excellent, with a standard deviation of 1.9% across the two-

dimensional manifold.
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3 Pulse Sequences with Variable Phases used for K Vapor Data
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