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Abstract

In this thesis, I extend private messaging systems by designing multi-party private
messaging models and contribute to the implementation of a distributed private mes-
saging system. Private communication is of increasing interest yet current state-of-
the-art adopted solutions are inadequate in providing both scale and privacy. Most
current communication methods leak metadata or are susceptible to traffic analysis in
spite of end-to-end encryption. Vuvuzela is a foundational private messaging system
helps reconcile these two concerns. This project builds on Vuvuzela by introducing
three group messaging models. These models tradeoff support for multi-party mes-
saging with network bandwidth and latency. Additionally, this work describes the
implementation and evaluation of key aspects of a distributed private messaging sys-
tem, Stadium. This new system scales to more users while keeping server costs down
to promote the adoption of private messaging as a more feasible practice.
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Chapter 1

Introduction

Private communication over the Internet has become of increasing interest over the

years. Users such as freelance reporters or whistleblowers require privacy in their

communication and current systems to not provide an adequate guarantee. While

information can be encrypted to prevent the uncovering of message data, metadata

is still attached to such communications. metadata can include which users are com-

municating with one another and at what times they may be communicating, and

metadata can be discerned by header inspection or traffic analysis. Recently, officials

at the NSA have even stated that “if you have enough metadata you don’t really need

content” [39] and “we kill people based on metadata” [25]. Thus protecting metadata

in communications is a critical step to ensuring that communication is private.

Previous private messaging systems lacked the ability to handle a large number

of clients or were computationally expensive. Vuvuzela, a scalable private messaging

system, reconciles these two issues and this project builds on its foundational work.

1.1 Motivation

To motivate the need for private messaging consider a whistleblower, Alice, who

wishes to expose corruption within her corporation or organization. If she wishes to go

public with this information to a journalist, Bob, she would want her communications

to be secure. If it can be determined that Alice is communicating Bob, then it raises
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suspicion that Alice may have leaked the information to Bob, even if the contents of

her communications are never revealed. In fact, over a series of messages a stronger

and stronger case can be constructed to incriminate Alice by analyzing the traffic

patterns between Alice and Bob.

There is an ethical concern on both sides of private messaging. From the per-

spective of law-enforcement, private messaging is a bane to its ability to perform its

duties. In particular, collective security is undermined when privacy, a personal good,

is used for malicious activity. In this regard, surveillance of communication is essen-

tial to preventing the “bad guys from winning” [38]. On the other hand, from the

perspective of privacy advocates and surveillance studies, private messaging is critical

to personal freedom. Surveillance is seen as an instrument of power and privacy is

to be seen as a social good. Mass surveillance leads to uniformity and a subdued

population and alters individual behavior leading to fear and lack of freedom. Con-

sequences of creeping surveillance include corporate and government interests as well

as vulnerability to hackers [38].

This work does not take a stance on the ethical framing of private messaging,

but rather addresses from a technical angle in order to raise the awareness of the

discourse. The author’s intent is for fair and good use of the technical work presented

here and hopes that this work will contribute to the dialogue in a positive way.

1.2 Contributions

This thesis presents two main contributions:

1. The design and analysis of a multi-party or group private messaging system.

This contribution examines extensions to the Vuvuzela system that would allow

for communication to exist in more than just a bidirectional channel. This anal-

ysis paves the way for greater utility in private messaging systems as multi-party

communication is often required for communication to be practically useful. The

main result shows that while group messaging can exist, there is a notable per-

formance penalty as a result of trying to conceal the multiple parties in the
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conversation. Future work looks to investigate whether performance can be

improved by alternative designs or by analyzing other tradeoffs that could be

taken.

2. The implementation and analysis of a distributed private messaging system,

Stadium [45]. The author, in conjunction with other Stadium contributors,

helped developed a system that would allow a Vuvuzela-style private messaging

system to scale to more users and reduce the network burden that a single

server had to undertake to allow the private messaging system to operate. The

author’s contribution was largely in the implementation and testing of such a

system. Future work aims to achieve better performance of Stadium by better

parallelizing its operations in attempt to reduce the computational complexity

a single server has to undertake.

15
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Chapter 2

Background and Overview

Private messaging is not an entirely new line of research. Current private messaging

systems exist but are largely unable to protect metadata for a large number of users.

One class of private messaging systems provide strong privacy guarantees. Dis-

sent [47] and Ripose [11] are communication and computationally expensive requiring

broadcasts of messages or intensive cryptographic operations such as Private Infor-

mation Retrieval (PIR) [40]. These systems have only supported 5,000 users [47]

or on the order of hundred messages per second [11] making them impractical for

widespread use.

Another class of systems are more scalable. Tor [15] and other mixnet designs

[8] suffer from traffic analysis or timing attacks. Furthermore, these systems require

large numbers of users to support privacy guarantees. In addition, adding cover traffic

to attempt to mitigate some of the security flaws in these systems make them more

expensive and the tradeoff for privacy is still not fully achieved as adversaries can

monitor traffic over time and active disrupt the network [2, 21, 13, 29].

Vuvuzela [46], is a scalable private messaging system resistant to traffic analysis

that attempts to reconcile the current drawbacks of scalability and privacy. Vuvuzela

provides a bidirectionally messaging framework allowing two parties to communicate.

It provides differential privacy so long as there exists one honest server in the system.

Furthermore, Vuvuzela can scale to millions of users and support tens of thousands

of messages per second. In addition, Vuvuzela protects users even when adoption of
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the system is small; thus, an adversary’s ability to detect communication patterns is

limited despite the number of users in the system.

This thesis uses Vuvuzela as a basis for both the multi-party private messaging

models as well as developing a distributed private messaging system, Stadium [45].

2.1 Vuvuzela

For the purposes of this work, the author briefly outlines the Vuvuzela system and

highlights (key terms presented emphasized with italics) the important parts that are

relevant to the discussion in this project. The author encourages the reader to read

Vuvuzela [46] in order to gain a better understanding of the system that this work

extends.

At a high level, a client first submits a message to an entry server in a given round

and then the Vuvuzela system proceeds on the server-side. Vuvuzela takes the user

messages and routes them through a chain of servers, of which at least one is honest.

The user messages are deposited in mailboxes or dead drops which are simply buckets

for exchange such that the messages can be swapped and routed back to the recipient.

In order to protect the communication patterns of the users, Vuvuzela provides three

main functionalities. First, Vuvuzela uses a mixnet in order to shuffle messages in

the network so that the ordering of messages is not associated with users. Second,

Vuvuzela uses constant-bandwidth protocols which ensures that clients are sending

messages at a same rate with encrypted messages of the same size so that a message

appears the same to any eavesdropping adversary. Third, Vuvuzela incorporates cover

traffic or noise so as to ensure that an adversarial server who has the ability to tamper

with the network gleans negligible information about the communication patterns in

a given round.

It is important to note, however, that a persistent adversary can, over multiple

rounds of the Vuvuzela system, build evidence of communication patterns. To ad-

dress this, Vuvuzela incorporates differential privacy [16, 17] which is formalization

of “plausible deniability”. Simplistically, given the observable outcome of a commu-
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nication round a user, Alice, can claim that her actions could just have likely been

represented been some other possible action with a near equivalent probability. The

composition of differential privacy over multiple rounds allows Alice to construct a

cover story that could represent Alice’s long term actions that may be different from

her true actions.

Vuvuzela is split into two protocols: a dialing protocol and a conversation proto-

col. The dialing protocol allows users to initiate conversations with one another and

relies on invitation messages. The conversation protocol is the mainstay of the Vu-

vuzela system and provides a mechanism for users who are already in a conversation

with one another to exchange messages. Both proceed in a similar manner to the

high level introduction presented above.

2.2 Goals

The goal of this research work is to extend Vuvuzela to support multi-party pri-

vate messaging as well as improve the scale and cost-efficiency of Vuvuzela with a

distributed private messaging system.

With regard to privacy, a strong adversary, one who can observe and tamper with

the entire network except for some stated number of honest servers, should not be able

to distinguish between one possible user communication behavior and another valid

communication behavior, even after interfering with the system. Thus, the system

we investigate must be resilient to an adversary temporarily blocking network traffic

from a client, altering messages passed within the system, or accessing stateful or

stateless information on a server.

For formality, we provide the definition of differential privacy and refer the reader

to [17] for additional reading. This definition will be used later in our analyses.

Definition 2.2.1 (Differential Privacy). A randomized algorithm 𝑀 is (𝜀, 𝛿)-differentially

private for adjacent pairs of inputs 𝑥 and 𝑦 if, for all sets of outcomes 𝑆, Pr [𝑀(𝑥) ∈ 𝑆] ≤

𝑒𝜀 · Pr [𝑀(𝑦) ∈ 𝑆] + 𝛿
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For brevity, the threat model is not described in this work but is largely identical

to that of Vuvuzela’s threat model [46]. A slightly different model is presented with

respect to the distributed private messaging system, Stadium [45], and the reader is

encouraged to view those works for a more holistic picture.

2.2.1 Multi-party Private Messaging Goals

We briefly list some additional privacy goals associated with the multi-party or group

private messaging framework. For our purposes a group consists of at least 2 users.

In particular, we wish to obfuscate the following observables:

∙ An adversary should not be able to determine whether a given user is part of a

group or not.

∙ An adversary should not be able to determine the size of a group.

∙ An adversary should not be able to determine the number of groups a user is

part of.

∙ An adversary should not be able to determine whether or not a user has sent a

message to or received a message from a group.

In addition, we list some design goals we wish to keep in mind when comparing

multi-party private messaging models.

∙ Latency - we should optimize for less latency between when any user in a group

sends a message and a all other members receive it.

∙ Efficiency - we aim to keep communication overhead and network bandwidth

to a minimum and limit cover traffic or noise in the system.

∙ Integration - we aim to provide simple integration and extension of the Vu-

vuzela system with little added complexity.
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2.2.2 Distributed Private Messaging Goals

We briefly list some additional goals associated with the distributed private messaging

framework.

∙ Scalability - we aim to support more users in a distributed system.

∙ Cost-efficiency - we strive to reduce the cost barrier that is required for an

individual to run a server in the system.

∙ Simple Implementation - our goal is to have a simple implementation of this

new system that also provides an easy interface for clients.

With respect to distributed private messaging, this work largely concerns the im-

plementation aspects and focuses on the author’s contributions to the collaboratively

developed system.
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Chapter 3

Multi-party Private Messaging

Multi-party or group private messaging is a natural but non-trivial extension to bidi-

rectional communication models. Multi-party messaging is common in insecure sys-

tems such as Internet Relay Chat (IRC) systems or Group Texting. There are some

schemes that provide end-to-end encyption and can scale to large numbers of users

such as Off-the-record (OTR) messaging [6, 26], TextSecure [44], Telegram [28], and

Whatsapp [43]. Though such systems may offer end-to-end encryption of messages

or be served over a Tor-like network, methods such as traffic analysis or packet in-

spection and modification can undermine the security of the communication. This

project seeks to provide private messaging which is resistant to such traffic analysis

or packet alteration and provide the communicating parties plausible deniability that

they were engaged in a conversation. The extension is non-trivial because crypto-

graphic primitives are designed largely for two-party communication [22] and adding

more users into a given conversation provides an adversary more degrees of freedom

in designing an attack.

The contribution of this thesis is to present an extension to Vuvuzela that would

allow it to support multi-party communication and analyze the cost and overhead

of such a system. The author provides a description of a multi-party Vuvuzela that

could serve as a basis for implementation and evaluation.
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3.1 Security goals

Informally we provide the following security guarantee. For some given user, let’s

say Alice, an adversary should not be able to distinguish between any of Alice’s

possible communication patterns for many message exchanges. In particular, with

a multi-party messaging framework we wish to conceal not only whether Alice is

communicating and whom she is speaking with at a given point but also how large

a group she is communicating with if any at all. A more formal definition of this

security goal is provided in Vuvuzela [46].

In addition, a user should be able to take part in multiple groups of varying sizes

and still should be equally protected.

3.2 Designs and Analyses

This thesis presents three possible approaches to solving the multi-party communica-

tion problem, and discusses the implications of each technique. The first is a broadcast

based approach where each party maintains the bidirectional model of Vuvuzela but

instead communicates with all other parties in the group. The second is a chaining

approach in which a group is chained together in a ring and messages are forwarded

along. The third is a more intricate approach involving a shared-mailbox between

each of the parties in the group.

To simplify our discussion of the designs and presentation of the analysis we

introduce several terms and notation. A group, 𝑔, consists of multiple unique users

and the upper bound for a group size in a system is given by 𝐺. We will use users

Alice, Bob, Charles, Dan and Frank as default user names and Eve as an adversary

name.
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3.2.1 Broadcast Model

Design

The Broadcast Model as depicted in Figure 3-1 is a fairly simple solution to the multi-

party messaging problem. If Alice wishes to form a group with Bob, Charles, and

Dan, then she would first use a modified Vuvuzela dialing protocol to send invitations

to Bob, Charles and Dan. This modified dialing protocol allows for a list of users in

the group such that in Bob’s invitation he knows that Charles and Dan are also part

of the group as well. Conversation rounds are similar to that of Vuvuzela except when

sending messages to a group, now Alice must send independently to Bob, Charles,

and Dan through two distinct Vuvuzela conversations. Alice can now form an two

member group with just Frank and communicate in a similar manner.

Figure 3-1: Broadcast Model Interaction Schematic. Orange is a group of 4 users
and Blue is a group of 2 with a single user overlapped within groups. The bidirectional
arrows indicate a standard Vuvuzela two-party protocol.

Analysis

The security of this design is underpinned by the underlying Vuvuzela protocol in

place. First, with the dialing protocol is extended from Vuvuzela now to include a

list of users (such as a list of public keys of the users) in the group. Vuvuzela already
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hides the observable variables in the dialing protocol by using fake invitations, a

mixnet, and adding cover traffic; thus, the extended dialing protocol is also secure.

With regard to the conversations, Vuvuzela already provides differential privacy

to Alice’s communication and so she can communicate with Bob, Charles, and Dan

at the same time and independently without providing any link that Bob, Charles,

and Dan are part of the four-party group. In the reverse style, when Alice receives a

message from Bob, Charles, or Dan she is also protected from any information leak-

age. Finally, when Alice instantiates a conversation with Frank, this is yet another

standard Vuvuzela protocol and so no information is leaked. Ultimately, to an adver-

sary such as Eve, the only difference for the this Broadcast Model compared to the

original Vuvuzela is that all invitation messages are now larger.

Discussion

In this Broadcast Model, Alice may have to wait multiple rounds in order to send

messages to all participants in the group due to the fact that Alice is limited in the

number of messages she can send in a given round (in the original Vuvuzela a client

sends only 1 message per round, which is what is used our discussions). In particular,

for a group of size 𝐺, we expect the latency for a message to propagate to all clients

to be 𝑂(𝐺). Alice must also handle all the delivery of messages herself by starting

a Vuvuzela protocol with the other |𝑔| − 1 members, where |𝑔| ≤ 𝐺 is the number

of members in her group 𝑔. Due to this, the client communication complexity grows

𝑂(𝐺).

Thus the Broadcast Model adds both latency and places a higher communication

burden on a single user when sending messages. However, the communication burden

is amortized across all users in a group when considering both sending and receiving

messages and each user equally likely to send messages. In addition, the invitation

download batches consume more bandwidth as the messages are of larger sizes now.
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3.2.2 Chaining Model

Design

The Chaining Model or a Ring Model as depicted in Figure 3-2 aims to reduce the

communication burden that Alice must face when sending messages. If Alice wishes

to form a group with Bob, Charles, and Dan, Alice will use a modified Vuvuzela

dialing protocol to send an invitation to just one of the other members. In particular,

a cycle or ring is formed 𝐴 → 𝐵 → 𝐶 → 𝐷 → 𝐴 (where 𝐴 is Alice, 𝐵 is Bob, 𝐶

is Charles, and 𝐷 is Dan), such that messages are forwarded along the cycle. Bob

receives Alice invitation message and sends one to Charles with the chain included

and so on. Thus, once Dan has received the invitation he need not forward it to Alice

as she was the head of the chain or cycle, in this case we call the originator of the

group, the leader. When any of them wish to send a message, they will simply use

the established Vuvuzela conversation protocol with the next member of the chain

and forward along messages they receive to the next member on the chain until the

original sender is reached. Alice can also form a two member group with Frank by

sending a chain of 𝐴 → 𝐹 → 𝐴.

Analysis

The security of this design follows from the original Vuvuzela protocol. First, the

dialing protocol is extended from Vuvuzela to allow for additional data in the invi-

tation message, in particular the members of the group in a chained manner (such

as a ordered list of public keys of the users). Vuvuzela already hides the observable

variables in the dialing protocol by using fake invitations, a mixnet, and adding cover

traffic; thus, the extended dialing protocol is also secure.

The conversation scheme is also similar to the standard Vuvuzela in that each link

in the chain is merely a Vuvuzela protocol and the fact that each user is chained reveals

no additional information. Messages now however must contain information about

the originator or a forward-count such that the message is forwarded the appropriate

number of times. As Alice is protected by differential privacy her communication
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Figure 3-2: Chaining Model Interaction Schematic. Orange is a group of 4 users and
Blue is a group of 2 with a single user overlapped within groups. The unidirectional
arrows indicate a standard Vuvuzela two-party protocol, however users only forward
messages in a single direction and receive in a single direction.

with Bob who in turn has differential privacy when communicating with Charles

and so on. An adversary, Eve, cannot discern that Bob is part of the group also

including Alice, Charles, and Dan as Bob is able to deny receiving messages from Alice

and sending messages to Charles or Dan. To an adversary, this is merely multiple

Vuvuzela protocols occurring where sizes of groups nor members of groups cannot

be determined. Ultimately, the only difference to an adversary is that invitation

messages are larger for all users.

Discussion

In the Chaining Model, Alice has to wait multiple rounds to receive messages from

a participant in her group. In general, for a group 𝑔 of size |𝑔| ≤ 𝐺, on average

Alice must now wait |𝑔|/2 rounds to receive a message or in general 𝑂(𝐺) in terms of

receiving message latency. While she can send messages in a single round, she must

wait |𝑔|−1 rounds to ensure that each member of the group has received her message.

Finally, in terms of communication cost, Alice’s message only costs her a single round

of message sending and forwarding is similar.
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Figure 3-3: Chaining Model Latency for Various Group Sizes. Increasing the bound
on the group size 𝐺 increases the latency for all users in the group to have received
a message from any other member. The latency numbers are extrapolated from
Vuvuzela’s experimental results for varying the number of users the system supports.

Figure 3-3 shows the how the latency grows the number of users in the system with

various group sizes. In particular, the latency represent the amount of time required

for all members of a group to successfully propagate and receive any messages that

were sent. The numbers are extrapolated from the Vuvuzela experimental data. There

is a clear tradeoff between handling larger group sizes and the end-to-end latency of

the system. For instance, the original two-party Vuvuzela system requires 37 seconds

to handle 1 million users, where as the extended systems require 74, 111 and 148

seconds to support three-party, four-party, and five-party private messaging systems

respectively.

Thus the Chaining Model adds latency but does a better job of distributing the

communication burden across all users even if users do not send messages with the

same probability. In addition, the invitation download batches consume more band-
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width as the messages are of larger sizes now. Note that we could add some bidirec-

tionality to model by allowing messages to be forwarded in both directions, however,

for simplicity this approach is not presented.

3.2.3 Shared Mailbox Model

Design

The Shared Mailbox Model as depicted in Figure 3-4 is a more intricate model that

aims to reduce the latency that exists in both the Broadcast and Chaining models.

If Alice wishes to form a group with Bob, Charles and Dan, Alice will use a modified

Vuvuzela dialing protocol to send an invitation to both Bob, Charles and Dan. For

each group, there will be a designated leader who starts the group conversation by

sending a invitation message with a shared secret key 𝑠 to each other user as part of

the encrypted invitation message along with a list of users in the group. Thereafter

they communicate using a shared dead drop or mailbox location as determined by the

original Vuvuzela as 𝑏 = 𝐻(𝑠, 𝑟) where 𝑏 is the dead drop location, 𝐻 is a standard

cryptographic hash function, 𝑠 is the shared secret key, and 𝑟 is the round number.

For a group 𝑔 of size |𝑔| ≤ 𝐺, a client will submit |𝑔| − 1 messages into the system

in order to send a message. The mailboxes themselves perform the exchanges and

clients then download the appropriate number of messages. In this system, however,

in order to obfuscate the sizes of the groups that individuals are in, we add additional

cover traffic such that access counts for 1 to 𝐺 are covered with noise.

Analysis

The security of this design follows from the original Vuvuzela protocol with some

minor adjustments. The leader is required to be trusted in the group so the shared

secret, 𝑠, is common to all parties in the conversation. This isn’t a large departure

from the original protocol in which a conversation is initiated when the recipient party

acknowledges the invitation sender’s request. Vuvuzela hides the observable variables

in the dialing protocol by using fake invitations, a mixnet, and adding cover traffic;
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Figure 3-4: Shared Mailbox Model Interaction Schematic. Orange is a group of 4
users and Blue is a group of 2 with a single user overlapped within groups. In this
model the modified Vuvuzela protocol allows more than 2 users to access a mailbox
thus access counts for a mailbox vary from 1 to 𝐺. Noise is added so that the access
counts are sufficiently protected against traffic analysis and adversarial tampering.

thus, the extended dialing protocol is also secure.

The conversation protocol now requires further analysis as the noise messages

added in the system add further complexity to the design. We wish to ensure a

differentially private messaging system and so we identify and minimize the number

of observable variables. Similar to the original protocol, we now have access counts

to the size of 𝐺 and so we must consider observable access counts of 𝑚1,𝑚2, . . . ,𝑚𝐺.

Table 3.1 details how these observable variables change with 𝐺 = 3. From the tabular

formulation we can see that max |∆𝑚𝑖| = 𝐺− 𝑖 + 1. for each 𝑖.

We now show that by adding noise to the 𝑚𝑖 with a Laplace distribution with

parameters 𝜇, 𝑏 capped below 0 provides differential privacy.

Theorem 3.2.1. Consider the algorithm 𝑀 that adds noise
⌈︀
max

(︀
0,Laplace(𝜇

𝑖
, 𝑏
𝑖
)
)︀⌉︀

to 𝑚𝑖. Then 𝑀 is (𝜀, 𝛿)-differentially private with respect to changes of up to 𝐺−𝑖+1

in 𝑚𝑖, for 𝜀 = 𝐺(𝐺+1)(𝐺+2)
6𝑏

and 𝛿 =
∑︀𝐺

𝑖=1
1
2

exp
(︁

𝐺−𝑖+1−𝜇/𝑖
𝑏/𝑖

)︁
.

Proof. We use Lemma 3 from [46] to prove this claim. If we consider an algorithm

𝑀(𝑥) that add noise 𝑁 ∼ ⌈max (0,Laplace(𝜇, 𝑏))⌉ to value 𝑥 ≥ 0, then 𝑀 is (𝜀, 𝛿)
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Alice’s real action
Idle Conv with b,c Conv with b

Conv with c
Conv with d

A
lic

e’
s

C
ov

er
St

or
y

Idle 0,0,0 -3,0,+1 -3,+2,0 -1,+1,0
Conv with b,c +3,0,-1 0,0,0 0,+2,-1 +2,+1,-1
Conv with b, Conv with c +3,-2,0 0,-2,+1 0,0,0 +2,-1,0
Conv with d +1,-1,0 -2,-1,+1 -2,+1,0 0,0,0
Conv with x,y +3,0,-1 0,0,0 0,+2,-1 +2,+1,-1
Conv with x, Conv with y +3,-2,0 0,-2,+1 0,0,0 +2,-1,0
Conv with z +1,-1,0 -2,-1,+1 -2,+1,0 0,0,0

Table 3.1: Difference in Access Counts for Group Size 3. Each cell contains the
tuple (∆𝑚1,∆𝑚2,∆𝑚3) which is the difference in access counts of 𝑚𝑖 for 𝑖 ∈ {1, 2, 3}
between Alice’s real action and cover story. 𝑏, 𝑐, and 𝑑 are other users currently
conversing with Alice, 𝑥, 𝑦, and 𝑧 are users not conversing with Alice.

differentially private with respect to changes of up to 𝑡 in 𝑥 for parameters 𝜀 = 𝑡/𝑏

and 𝛿 = 1
2

exp
(︀
𝑡−𝜇
𝑏

)︀
.

We have that an adversary can observe all 𝑚𝑖 and that we add noise separately to

each of them with Laplace distribution parameters of (𝜇/𝑖, 𝑏/𝑖) for 𝑚𝑖. |𝑚𝑖| changes

by at most 𝐺− 𝑖 + 1 when we modify the action of one user in one round. Thus, the

overall scheme provides composed privacy parameters of

𝜀 =
𝐺∑︁
𝑖=1

(𝐺− 𝑖 + 1) × 𝑖

𝑏
=

𝐺(𝐺 + 1)(𝐺 + 2)

6𝑏
(3.1)

and

𝛿 =
𝐺∑︁
𝑖=1

1

2
exp

(︂
𝐺− 𝑖 + 1 − 𝜇/𝑖

𝑏/𝑖

)︂
(3.2)

We then wish to know how this system performs under multiple rounds of com-

munication where the adversary can perturb each round. This scenario is known as

adaptive composition in differential privacy. If we denote 𝑘 as the number of rounds

of communication.

Theorem 3.2.2. Consider the algorithm 𝑀 that adds noise
⌈︀
max

(︀
0,Laplace(𝜇

𝑖
, 𝑏
𝑖
)
)︀⌉︀

to 𝑚𝑖 over 𝑘 Vuvuzela rounds. Then 𝑀 is (𝜀′, 𝛿′)-differentially private with respect

to the actions of one user in these rounds with the parameters.
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𝜀′ =
√︀

2𝑘 ln (1/𝑑)𝜀 + 𝑘𝜀 (𝑒𝜀 − 1) and 𝛿′ = 𝑘𝛿 + 𝑑

for any 𝑑 > 0, where 𝜀 and 𝛿 are given in Theorem 3.2.1.

Proof. Direct application of Theorem 3.20 in [18].

Discussion

In the Shared Mailbox Model, Alice no longer has to wait only one round to receive

messages from any participant in her group. However, in terms of communication

cost, for a group 𝑔 of size |𝑔| ≤ 𝐺, Alice must send |𝑔| − 1 messages increasing the

network cost in this extended Vuvuzela system.

We can then see how the differential privacy parameters perform for various values

of 𝐺 in the shared mailbox model in Figure 3-5.

Figure 3-5: Shared Mailbox Model Differential Privacy Parameters for Various
Group Sizes. Increasing the bound on the group size 𝐺 decreases the plausible deni-
ability parameters (left) and also decreases the zero probability circumstance (right).
Number of rounds, 𝑘, varies from a thousand to a million rounds.

The parameter 𝜀′ describes the plausible deniability that Alice has and quantifies

describes the multiplicative change in the probability of each outcome given Alice’s

actions. Specifically, if Eve suspects with 𝑝𝑝𝑟𝑖𝑜𝑟 = 50% that Alice is part of some
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group 𝑔, then using Bayes’ Law Eve’s posterior belief that Alice is part of that group

is 𝑝𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 67% for 𝜀′ = ln 2 and 𝑝𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 75% for 𝜀′ = ln 3. This application is

described in further detail in [18].

The parameter 𝛿′ covers the case where events have zero probability under some

actions and not under others. For instance, if there are zero access counts to the

variable 𝑚𝑖 then we know that no group of size 𝑖 ≤ 𝐺 exists over the 𝑘 rounds.

Keeping a low 𝛿′ is important to ensure that those events are unlikely.

3.3 Discussion

Ultimately, each of the models for a multi-party private messaging system presented

above has different tradeoffs. For the Broadcast Model the network bandwidth is

large for a single user as each client must broadcast their messages to all other parties

when attempting to send a message. Furthermore, this method adds latency if all

else is kept the same since a user must wait multiple rounds to dispatch its queued

messages. For the Chaining Model the network bandwidth is amortized overall since

when a client sends a message the other clients will participate in forwarding that

message and so a single user need not consume their own network bandwidth for

sending messages. However, on average each user will still have to participate in

forwarding messages of other clients within their group making the overall bandwidth

the same as the Broadcast Model. The latency of this system is necessarily large

since a user must wait a number of rounds for a message to be sent around the chain

which scales with the number of users in the group. Finally, the Shared Mailbox

Model attempts to reconcile the latency issue by introducing more noise into the

system. Users may communicate with all others in their group within a single round,

however, the network bandwidth remains the same overall since each user must receive

a copy of the message being sent.

A challenge posed is to come up with a model that reduces the network bandwidth

required in the system while still protecting privacy. The problem is that each user

should still receive a copy of the message sent in a group conversation, and attempts
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to reduce this replication must also be concerned with possible linking of two or more

users together within a group.
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Chapter 4

Distributed Private Messaging

Distributed Private Messaging is an attempt to improve the efficiency of current

private messaging frameworks. In particular, Vuvuzela can be expensive for a single

server as all messages in the system must pass through its server. A distributed

system aims to distribute the load that servers must handle as part of the overall

system, in this case the number of messages handled. The consequence is that it

allows smaller machines to be servers or equivalently cut the cost of running a server

and also allow the system to scale to more users.

Stadium is a distributed metadata-private messaging system addresses these con-

cerns by scaling the work of the private messaging system across multiple servers [45].

The author contributed to Stadium with some design choices and largely with imple-

mentation and evaluation of the system. As part of this thesis, the author describes

the contributions made and where it fits into the distributed private messaging sys-

tem. For a complete understanding of the system, however, the reader is encouraged

to read [45].

4.1 Overview

Stadium introduces a verifiable parallel mixnet design. The mixnet design is similar to

Vuvuzela in that messages in the system are mixed together by a network of servers

deposited in dead drops or mailboxes and then returned back to the clients. The
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parallel mixnet [23] aspect arises in that multiple paths through the network can

exist as clients choose random chains of servers and the processing of the messages in

a round is performed in parallel. Finally, the verifiable aspect of Stadium occurs in

both the distribution of messages from one server to another server as well as when

shuffling messages [7] to hide any information from the original ordering of messages.

Stadium assumes some fraction of honest servers such that, with high probability,

a selected chain contains at least one honest server.

4.2 Implementation

Stadium is implemented largely in Go in under 3000 lines of code and also contains

C++ code for cryptographic operations such as the verifiable shuffling [4] which uses

the NTL library [42] and python code for handling Merkle Tree operations.

The author is responsible for implementation of parts of the the communication

pipeline, verifiable distribution, noise generation, and prover-verifier shuffling testing

framework in the Stadium system.

4.2.1 Communication Pipeline

The communication pipeline consists of several phases. Noise is added into the system

and clients submit messages to servers. The messages are then mixed and verified in

a first mixing phase, distributed and verified, mixed and verified in a second mixing

phase, and finally deposited into mailboxes. The messages then are returned back to

the clients through the chain of servers. A server processes message batches which

are a list of encrypted messages and associated onion-encrypted metadata as well as

message parcels which are subsets of the message batches delivered to the next server

in the chain and distribution pipeline.

Stadium’s Go implementation includes a server whose responsibility is to handle

these multiple phases. The author is responsible for implementing the techniques

used for passing message batches and parcels through the system. In addition, the

author implemented the functionality to return messages back to the user by first
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performing exchanging messages at the mailboxes followed by using the state of the

servers to delineate the path back to the client.

4.2.2 Noise Generation

Noise plays an important role in the system by obfuscating the access counts of mail-

boxes and providing the necessary cover traffic such that an adversary cannot isolate

and attack user messages. The author implemented the functionality to generate

noise for both single and double access counts by producing fake messages to prop-

agate through the system. In order to provide the necessary privacy guarantees, the

number of noise messages is important and so the author implemented a sampling

method for a Laplace distribution to obtain a random number of noise messages that

fits the necessary privacy requirements. The Noise Generation procedure is imple-

mented entirely in Go.

4.2.3 Merkle Tree Verification

Verifiable distribution is an important aspect of Stadium in order to protect against

malicious servers. In particular, a server may attempt to undermine the privacy of

the system or an individual user by removing, altering, or duplicating messages in

the system. Servers audit other servers during the distribution process in order to

protect against the aforementioned malicious behavior. In order to do so, each server

maintains a Merkle tree of the messages passing through the server. Thus after a

distribution phase, a recipient server can check with each of the forwarding servers

that all messages received are indeed from some forwarding server and furthermore

that all messages sent have indeed been received by some receiving server. Merkle

trees allow for quick verification of these large message batches in an efficient manner.

Stadium’s implementation uses an internal python server to construct and store

Merkle trees and the Go server provides a wrapper to access this Merkle server to

construct trees, obtain Merkle roots, and verify paths.

An extension to this approach is to have forwarding servers send the hash value
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of the message parcel (a subset of the message batch it uses) to the recipient server.

The recipient servers then simply need to ensure that the hash values are consistent

with their received message parcels.

4.2.4 Prover and Verifier Shuffling Testing Framework

The author is responsible in part for developing a testing framework used for deter-

mining the efficiency of the prover and verifier components of the verifiable shuffling

procedure. This involved writing python code to launch C++ servers that would

perform the interactive prover-verifier procedure.

4.3 Evaluation

Stadium provides a more scalable and efficient alternative to Vuvuzela as determined

by a series of evaluations. The author is responsible in part for benchmarking various

modules within the system as well as testing the Stadium system end-to-end. In order

to generate the necessary performance numbers that would represent a realistic use of

Stadium, the author evaluated the system using Amazon Web Services (AWS) Elastic

Cloud Computing (EC2) instances [41]. The machines we deploy run 64-bit Linux

kernel with an Ubuntu 14.04 LTS operating system and Go 1.6. In all our experiments,

all machines run on servers all in the same availability zone; in a realistic system

these servers will be running across various data centers and geographic regions.

However, since network latency has less effect on the overall latency of Stadium as it

is computational bound, we do not consider the additional network latency effect in

our analysis.

4.3.1 Prover and Verifier Experiments

The verifiable shuffling procedure is a heavy computational task that serves as the

bottleneck of the Stadium system at small to moderate scales. The servers are com-

putational bound and so by benchmarking the computational speeds of the prover
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and verifier in the shuffling procedure we can obtain an idea of the latency and per-

formance of the Stadium system. The number of provers and verifiers chosen in each

of the experiments reflects the size of the chain in the configuration and subsequently

the number of prover or verifier instances that need to be generated. A parameter

sweep is used to determine optimal configuration sizes and the resulting latency of

the end-to-end system.

Number of Messages
Provers 32768 65536 131072
12 15.81 33.44 86.77
10 13.70 28.13 72.49
8 10.85 23.53 59.80
6 8.477 18.15 45.36
4 6.991 13.38 32.76
3 5.975 11.62 26.57
1 4.674 9.252 18.49

Table 4.1: Prover Computational Benchmark. Each cell shows the maximum num-
ber of seconds required for a prover to process the corresponding number of messages
with the associated number of provers on a single c4.8xlarge machine.

In Table 4.1 we have the results of an experiment varying the number of prover

instances on a single c4.8xlarge Amazon EC2 VM with 36 Intel Xeon E5-2666v3

cores, 60 GB of RAM, and 10 Gbps of network bandwidth. The verifier is an iden-

tical 36-core machine that participates in the other half of the interactive proof and

verification. In addition, we vary the number of messages involved in the interactive

proof. In Figure 4-1, we can see the general trend that as we increase the number

of provers on a single machine they compete for computational resources and time

increases. Similarly, as the increase the number of messages as part of the interactive

proof we can see that the duration increases. Both of these trends are as expected.

These results are then used to design a configuration with a target latency.

In Table 4.2 we have the results of an experiment varying the number of verifier

instances on a single c4.8xlarge Amazon EC2 VM with 36 Intel Xeon E5-2666v3

cores, 60 GB of RAM, and 10 Gbps of network bandwidth. The prover instances,

whose runtimes are not presented above, are 4 different machines: c4.8xlarge (36

cores), c3.8xlarge (32 cores), c4.4xlarge (16 cores), and c3.4xlarge (16 cores).
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Figure 4-1: Prover Computational Benchmark Graph. The graph shows an increas-
ing trend in the number of seconds required for a prover as the number of messages
increases with select prover counts fitted with a linear regression line.

Number of Messages
Verifiers 32768 40960 49152 57344 65536 81920 98304 114688 131072
72 13.85 17.45 18.56 24.66 24.52 34.10 38.98 52.64 52.87
60 15.02 – – – 21.37 – – – 57.37
48 12.08 13.42 16.35 17.34 21.05 28.81 34.54 40.50 45.10
36 10.25 – – – 20.33 – – – 39.57
24 8.499 – – – 16.16 – – – 36.89
12 6.678 – – – 12.89 – – – 25.80

Table 4.2: Verifier Computational Benchmark. Each cell shows the maximum num-
ber of seconds required for a verifier to process the corresponding number of messages
with the associated number of verifier on a single c4.8xlarge machine.

By varying the prover machines, the performance of the verifier is more realistically

modeled and performance is improved as the interactive sessions are staggered by a

natural jittering since the prover machines perform their computations as differing

speeds. In addition, we vary the number of messages involved in the interactive proof.

In Figure 4-2, we can see the general trend that as we increase the number of verifiers

on a single machine they compete for computational resources and time increases.

Similarly, as we increase the number of messages as part of the interactive proof we
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can see that the duration increases. Both of these trends are as expected. These

results are then used to design a configuration with a target latency.

Figure 4-2: Verifier Computational Benchmark Graph. The graph shows an increas-
ing trend in the number of seconds required for a verifier as the number of messages
increases with select verifier counts fitted with a linear regression line.

4.3.2 Multicore Experiments

Since the verifiable shuffling procedure is a heavy computational task we examine how

adding more cores to the prover and verifier changes the baseline computational time

required. We use two c4.8xlarge Amazon EC2 VMs with 36 Intel Xeon E5-2666v3

cores.

Cores Prover Time Verifier Time
36 21.07 19.51
20 34.56 21.63
10 35.09 21.88
5 57.13 24.67

Table 4.3: Multicore Computational Benchmark. Each cell shows the number of
seconds required for a single verifier and single prover to process 150K messages both
running on a c4.8xlarge machine.
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In Table 4.3 we have the results of an experiment varying the number of cores

used in the interactive prover-verifier protocol. We use a fixed number of messages

at 150K. In Figure 4-3, we can see the general trend that as we increase the number

of cores the computational time decreases as expected. However, if we continue to

increase the number of cores the tradeoff for computational gain diminishes. Thus a

tradeoff between the cost of using a more powerful machine and the latency benefit

we achieve is realized.

Figure 4-3: Multicore Computational Benchmark Graph. The graph shows a down-
ward trend in the number of seconds required for both a prover and verifier as the
number of cores increases. The prover and verifier are both fitted with a linear re-
gression line.

4.4 Discussion

Stadium successfully distributes the server load of Vuvuzela across multiple servers

and allows for scaling to more users. The tradeoff however is that latency is increased

due to the verifiable procedures and in particular the shuffling that is required. In

addition, compared to Vuvuzela each server now handles less of the overall network
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bandwidth and so the cost of deploying a server is cheaper. This in turn would allow

Stadium to be more deployable in a Tor-like setting where “only 5% of relays offer

more than 100 Mbps of bandwidth and none offer more than 1 Gbps” [45, 33].

The author’s contributions in implementing the system also include parallelizing

some of the communication and verifiable processes. However, the system can be

further optimized by parallelizing more of the shuffling procedure. For figures on the

scale that Stadium is able to reach and a more detailed explanation of the system the

reader is encouraged to look at [45].
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Chapter 5

Related Work

We briefly discuss some related work and describe how the multi-party private mes-

saging extension to Vuvuzela and Stadium fit into these contexts.

5.1 Secure Messaging

Secure messaging that offer end-to-end encryption like Off-the-record (OTR) mes-

saging [6, 26], TextSecure [44], Telegram [28], and Whatsapp [43] only encrypt the

content of the message. These systems still leak metadata such as which users are

communicating and how frequently. For instance, Pond [27] states that “seeks to

prevent leaking traffic information against everyone except a global passive attacker”.

The multi-party private messaging extension to Vuvuzela presented here along with

Stadium both protect against metadata even with a global passive adversary.

5.2 Anonymous Communication Systems

Anonymous communication has been around with Chaum’s original work on mixnets

[8]. However, these previous systems do not protect against traffic analysis and pro-

vide scalability at the same time. Mixnet-style systems [8, 14, 19] such as Crowds

[35], Freenet [10], Alt.Anonymous.Messages [24], and onion routing [15, 34] can scale

to millions of users but are susceptible to a strong adversary [12, 21, 31, 2, 36].
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Other systems provide strong security guarantees but do not scale well. Herbivore

[37] and Dissent [47] can handle groups of thousands of users whereas Riposte [11]

can scale to millions of users but requires limits throughput of the system. Private

information retrieval (PIR) systems [9] such as Pynchon Gate [40] are computational

expensive requiring quadratic computation in the number of users.

The multi-party private messaging extension to Vuvuzela presented here along

with Stadium can protect against traffic analysis and scale well. The multi-party

private messaging system is better bounded in its scale by the size of groups permitted.

5.3 Cover Traffic

Mixnet and onion routing systems have used cover traffic or noise to make traffic

analysis harder [5, 19, 29]. The multi-party extension to Vuvuzela and Stadium

minimize the amount of noise by reducing the number of variables the adversary

observes, which allows the noise costs to not dominate the system.

5.4 Differential Privacy

Several systems use differential privacy to provide privacy guarantees. Unlike PINQ

[30] and AnoA [3] the systems presented here allow for deviation from protocol as well

as composition of privacy over multiple rounds as described by Danezis [13]. However,

his work does not attempt to reduce information leakage over hundreds of thousands

of rounds.

5.5 Verifiable Mixnets

Stadium incorporates verifiable distribution and shuffling so that audits can be make

to identify deviant servers. Verifiable shuffle has been discussed in other privacy-

related contexts such as voting schemes [7, 32, 20, 4, 1]. In this work, we apply the

verifiable procedures for private messaging.
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Chapter 6

Future Work and Conclusions

This project explored the area of private messaging and detailed contributions in

multi-party private messaging as well as distributed private messaging. In this last

section we first examine some additional work that can be done to improve the private

messaging systems discussed and then concludes by describing the overall contribution

of this thesis.

6.1 Future Work

First with regard to multi-party private messaging, there are several open questions

and development tasks that remain.

∙ Does there exist a private messaging design that permits messages to be dis-

tributed to all parties, but not replicated to the number of users in a group?

This would greatly reduce the network cost associated with the proposed multi-

party messaging schemes.

∙ Implementing the proposed models, and in particular the Shared Mailbox Model,

is an important step to first evaluate the system and then determine the prac-

tical usefulness of group messaging.

Next with regard to distributed private messaging, there are several development

tasks that remain.

49



∙ Creating a client interface for the system that would allow users to submit

messages into the Stadium system. At the moment, servers create user messages

for evaluation purposes.

∙ Deploying the system in a larger configuration. At the moment, the system has

only been deployed in a 9 server configuration. To achieve the scale of users and

cost-efficiency having the system deployed and evaluated at a more expansive

configuration is necessary.

∙ At the moment, Stadium lacks fault-tolerance properties which make it suscep-

tible to mount a denial of service attack or corrupt the system. To make the

system practically useful, one would need to design a more robust Stadium that

can withstand these attacks as well as common machine failures.

6.2 Conclusions

In conclusion, private messaging is an important and challenging line of research

in computer systems. There is an increasing real-world demand for such systems as

metadata of communications, rather than content itself, is more open and susceptible.

This thesis project expands on the work of Vuvuzela [46], a private messaging system

resistant to traffic analysis, by extending the system to provide the ability for multi-

party communication or group conversations as well as distributed private messaging.

This work presented three models for multi-party private messaging and analyzes

the tradeoffs of each approach. A key aspect of this contribution is that it easily

extends the current Vuvuzela system reducing the need to design an entirely new

system. Analysis of the models show that the cost of these multi-party systems grows

exponentially with the number of users in the group. Thus, the feasibility of these

models is limited to smaller group. Furthermore, the privacy guarantees of these

group-based systems is worse for larger group sizes. Ultimately, there is more work

that can be done to further improve the efficacy and security of multi-party messaging

systems.
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This work also discusses contributions made towards a distributed private mes-

saging system. Stadium [45] is a system similar to Vuvuzela that scales to more users

and reduces the cost-burden that a single server has to face in the private messaging

system by integrating a distributed server-side communication framework. The au-

thor’s contribution in implementing part of the system as well as benchmarking and

evaluating parts of the system paves the way for designing an optimal distributed

system. Stadium demonstrates the practical usefulness of private messaging and pro-

vides strong privacy guarantees while protecting against more vectors of attack by

introducing verifiable procedures. There are several ways to further improve Stadium

to make the system more useful to users including fault tolerance and improved client

interaction.

In summary, this thesis contributes to the literature of private messaging. The

author urges the reader to consider privacy as one of the goals in their own commu-

nication behaviors. In addition, the author hopes this technical work will contribute

to public discourse in the area of private communications.
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