
An Embedded Device for Real-Time Noninvasive

Intracranial Pressure Estimation

by

Jonathan Martin Matthews

B.S., Massachusetts Institute of Technology (2015)

Submitted to the
Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c� Jonathan Martin Matthews, MMXVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016
Certified by. .

Thomas Heldt
Hermann L.F. von Helmholtz Career Development Professor

Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Master of Engineering Thesis Committee

2

An Embedded Device for Real-Time Noninvasive Intracranial

Pressure Estimation

by

Jonathan Martin Matthews

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Monitoring of intracranial pressure (ICP) is key in many neurological conditions for
diagnosis and guiding therapy. Current monitoring methods are highly invasive,
limiting their use to the most critically ill patients. Based on a previously developed
approach to noninvasive ICP estimation from cerebral blood flow velocity (CBFV)
and arterial blood pressure (ABP) waveforms, I have implemented the algorithm on
an embedded device (LPC4337 microcontroller) that can produce real-time estimates
of ICP from noninvasively-obtained ABP and CBFV measurements. I have also
fabricated a medical device prototype complete with peripheral interfaces for ABP
and CBFV monitoring hardware and display and recording functionality for clinical
use and post-acquisition analysis. The current device produces a mean estimate
of ICP once per minute and can perform the necessary computations in 410 ms, on
average. Real-time estimates of noninvasive ICP differed from the original batch-mode
MATLAB implementation of the algorithm by 0.34 mmHg (RMSE). The contributions
of this thesis take a step toward the goal of real-time noninvasive ICP estimation in
a variety of clinical settings.

Thesis Supervisor: Thomas Heldt
Title: Hermann L.F. von Helmholtz Career Development Professor

3

4

Acknowledgments

I would like to thank Professor Thomas Heldt and Dr. Andrea Fanelli for supervising

the thesis and for the wise advice, indispensable mentorship, and wonderful friendship

along the way.

I would also like to thank Gavin Darcey, David Lewis, and John Sweeney at the

MIT Cypress Engineering Design Studio for their guidance and time in assisting me

with the fabrication of the device.

This work was supported in part through a research grant from Maxim Integrated

Products to the MIT Medical Electronic Device Realization Center.

5

6

Contents

1 Introduction 11

1.1 An Intracranial Pressure Primer . 12

1.1.1 Physiology . 12

1.1.2 Pathophysiology . 13

1.2 Measurement Methods . 13

1.2.1 Pressure-sensor catheter . 14

1.2.2 Noninvasive ICP estimation 15

1.3 A Real-Time Embedded Device Implementation 16

1.4 Thesis Structure . 17

2 Background 19

2.1 A Dynamic Model of Cerebrovascular Space 19

2.1.1 The Ursino-Lodi model . 20

2.1.2 The Kashif model . 21

2.2 Estimating Intracranial Pressure . 23

2.2.1 The estimation algorithm . 23

2.2.2 Obtaining measurements of ABP and CBF 25

2.2.3 Locating heartbeat onset times 27

2.2.4 ABP and CBFV signal alignment 27

2.3 The importance of implementation 28

3 Methods 31

3.1 A Strategy for Real-Time Estimation 32

7

3.2 Core Tools . 33

3.2.1 Hardware . 33

3.2.2 Development suite . 33

3.2.3 Porting and profiling . 35

3.3 Implementation . 36

3.3.1 Building the data pipeline . 36

3.3.2 Porting to C++ . 36

3.3.3 Memory optimization . 37

3.3.4 Peripherals for real-time estimation 39

3.3.5 Housing . 41

4 Results and Discussion 43

4.1 Comparing to Batch-Mode . 43

4.2 Memory Usage . 47

4.3 Performance . 48

4.4 Final Device Specifications . 48

5 Contributions and Future Work 51

5.1 Contributions . 51

5.2 Future Work . 51

5.2.1 Nexfin ABP as a proxy for MCA ABP 52

5.2.2 Sliding estimation . 52

A ABP and CBFV Alignment Implementation 53

B Continuous Memory Manager Implementation 59

C Plotting ABP and CBFV on the LCD 67

8

List of Figures

1-1 A schematic depicting the production, circulation, and reabsorption of

cerebrospinal fluid (CSF). Figure taken from [6]. 12

1-2 A fluid-filled catheter can be inserted into one of several spaces in the

cranial vault to invasively estimate ICP. Figure taken from [6]. 14

1-3 The assembled medical device prototype for real-time noninvasive ICP

estimation. 18

2-1 The Ursino-Lodi lumped-parameter model of blood and cerebrospinal

fluid flow through the cerebrovasculature. Figure adapted from [15]. . 20

2-2 The slow rate of CSF production and reabsorption are fully neglected

in the Kashif model. Figure adapted from [15]. 21

2-3 The fully simplified RC electrical circuit representation of the cere-

brospinal fluid space. Figure adapted from [4]. 22

2-4 Doppler ultrasound technology is used to measure the velocity of blood

flow through vessels in the body. Figure taken from [11]. 25

3-1 A block diagram of the available peripherals on the NXP LPC4337

microcontroller. Important blocks are highlighted, including the built-

in SRAM, ADCs, GPIOs, SD controller, USB controller, and debug

interface. Figure adapted from [12]. 34

3-2 The NGX LPC4330-Xplorer board was used for the medical device

prototype. Figure taken from [13]. 35

3-3 A data acquisition cart was built to acquire ABP and CBFV signals

from the Nexfin and TCD probe for the first trial. 40

9

3-4 The messy innards of the medical device prototype. An enclosure,

fabricated out of black acrylonitrile butadiene styrene (ABS, makes it

much more user-friendly. 41

4-1 ICP estimation results from data obtained at Addenbrooke’s Hospi-

tal, Cambridge University. Top plot: comparison of ICP estimates

produced by the sliding and non-overlapping batch-mode implementa-

tion to those produced by the real-time implementation on the MCU.

Middle plot: ABP waveform. Bottom plot: CBFV waveform. 44

4-2 ICP estimation results from 20 minutes of data obtained in real-time.

Top plot: comparison of ICP estimates produced by the sliding and

non-overlapping batch-mode implementation to those produced by the

real-time implementation on the MCU. Middle plot: ABP waveform.

Bottom plot: CBFV waveform. 45

4-3 The C++ implementations generated through MATLAB Coder re-

quired more memory than was available on the LPC4337. Optimization

of these implementations brought the total memory usage to under 100

kB for all steps. 47

4-4 The assembled medical device prototype for real-time noninvasive in-

tracranial pressure (ICP) estimation. Shown in Figure 1-3, but also

here for convenience and closure. 49

10

Chapter 1

Introduction

A 52 year-old woman is eating dinner with her family when she suddenly experiences

a severe headache and collapses to the ground. Her husband calls for an ambulance,

and the woman is taken to the hospital where, after CT imaging, she is diagnosed

with a subarachnoid hemorrhage. As she undergoes surgery and is treated with

medication, one of the most important physiological parameters for her physicians

to monitor is her intracranial pressure. If the pressure rises too high, her brain can

become dangerously deprived of blood, putting her at further risk in her already-

critical condition.

In this chapter, you will learn about intracranial pressure, its importance in neu-

rocritical care, and, most importantly, the techniques by which it can be measured.

You will also learn about the advantages and disadvantages of each measurement

method that have collectively motivated the design and implementation of the med-

ical device prototype that is the focus of this thesis. By the end of this section, you

will also understand how the thesis fits into a larger effort in the field of noninvasive

intracranial pressure measurement to provide safer and more robust healthcare for

patients like the woman above.

11

1.1 An Intracranial Pressure Primer

1.1.1 Physiology

Intracranial pressure (ICP) is the hydrostatic pressure of cerebrospinal fluid (CSF).

CSF surrounds the brain and fills the cerebral ventricles, mechanically and chemically

supporting the tissue (Figure 1-1). It is produced by epithelial cells in the choroid

plexus and slowly circulates through the ventricles and subarachnoid space, eventually

draining into the venous bloodstream. Because the CSF resides, in part, in a fluid

column in the spinal cord, ICP is affected considerably by gravitational effects. In

a healthy person, normal ICP measured in the ventricles can vary between 7 mmHg

and 15 mmHg when lying down and is around �10 mmHg when standing [2].

Figure 1-1: A schematic depicting the production, circulation, and reabsorption of
cerebrospinal fluid (CSF). Figure taken from [6].

The Monro-Kellie hypothesis states that the volumes of CSF, brain tissue, and

intracranial blood are constant [5]. Because of the rigidity of the skull, an increase in

the volume of one compartment has to come at the expense of the volume occupied

12

by the other two and possibly an increase in ICP. The change in volume of CSF is

determined by the difference between the rate of CSF production and drainage into

the blood, so that in steady-state these rates are equal to one another and the volume

of CSF is maintained constant. If the rate of production is increased, the volume of

CSF will increase, in turn increasing ICP, and vice-versa for a decrease in the rate

of production. As another consequence of the Monro-Kellie hypothesis, ICP depends

upon the volume of the brain tissue and cerebral vasculature: as blood is pumped

through the vessels in the brain, the compliant cerebrovasculature pulses with the

heartbeat, rhythmically compressing the CSF and introducing a pulsatile component

into the ICP waveform.

1.1.2 Pathophysiology

A significant increase in ICP can have a large impact on the adequate delivery of

blood to brain tissue. Cerebral perfusion pressure (CPP) is the pressure gradient

that drives the flow of blood through the capillaries of the brain and is defined as

the difference between the upstream pressure and effective downstream pressure. The

upstream pressure corresponds to the mean arterial blood pressure (MAP) while the

effective downstream pressure is determined by ICP, as it is greater than the venous

blood pressure at the level of the brain (this is the flow limitation effect of a Starling

resistor) [15]. If compensatory mechanisms are impaired, ICP increases and CPP

decreases, limiting the flow of blood to brain tissue. The decrease in perfusion is

normally met with autoregulatory vasodilation, which has the result of increasing

cerebral blood volume, further increasing ICP. The reduction of flow of blood to

brain tissue deprives the tissue of oxygen and nutrients and often leads to ischemia

and death if untreated.

1.2 Measurement Methods

The impact that ICP has on cerebrovascular health makes it imperative that physi-

cians have a reliable method for measuring ICP in patients with conditions such as

13

brain tumor, cerebral edema, intracranial hemorrhage, and hydrocephalus among oth-

ers. It is also often important to measure a patient’s ICP during their recovery from a

neurosurgical procedure, as an elevated ICP can indicate bleeding or infection. Here,

I will discuss the methods used to measure or estimate ICP, as well as the advantages

and disadvantages of each technology.

1.2.1 Pressure-sensor catheter

Figure 1-2: A fluid-filled catheter can be inserted into one of several spaces in the
cranial vault to invasively estimate ICP. Figure taken from [6].

The clinical gold standard for ICP measurement is the direct surgical insertion

of a fluid-filled catheter into the ventricular space (Figure 1-2). A hole is drilled

through the skull and the intraventricular catheter threaded (blindly) through the

brain tissue into one of the lateral ventricles where it makes direct contact with the

CSF. These catheters are also often placed to drain excessive CSF and relieve pressure

when ICP is elevated. Alternatively, a pressure-sensitive probe can be placed in the

14

brain parenchymal space and measure the pressure of the brain tissue. Though both

the intraventricular and parenchymal pressure probes provide measurements of ICP,

the insertion procedures are highly invasive, carrying with them the risk of bleeding,

infection, and damage to vital brain structures. These risks have motivated the

development of noninvasive methods for estimating ICP (nICP).

1.2.2 Noninvasive ICP estimation

nICP estimation focuses on using physiological signals that can be obtained in a

minimally invasive fashion, such as arterial blood pressure (ABP), cerebral blood

flow velocity (CBFV), or intraocular pressure (IOP), as surrogates for ICP [9].

ABP can be measured either through the insertion of a pressure-sensing fluid

catheter into an artery or through the vascular unloading technique [14]. In the

vascular unloading technique, an air cuff is secured around one of the fingers and the

volume of the finger is measured with a plethysmograph. As blood pulsates through

the finger, a computer system measures changes in the plethysmographic data and

applies a pressure through the air cuff to keep the volume of the finger constant. The

externally applied pressure corresponds to ABP.

CBFV is measured through transcranial Doppler ultrasound (TCD), which mea-

sures the Doppler shift in ultrasound waves applied through the skull as they reflect

off of the red blood cells (mostly) moving through arteries.

IOP is measured through applanation tonometry whereby an external pressure is

applied to the eye until the corneal surface is flattened; this “applanation” pressure

corresponds to IOP.

The set of approaches towards noninvasive ICP estimation that use these physio-

logical signals can be divided into two overall classes. Methods in the first class are

learning-based, identifying patterns between ICP and physiological variables that can

easily be measured noninvasively. These methods require a large training dataset of

invasive ICP measurements of patients with a wide range of pathologies and physi-

ologies to be useful. The second class of algorithms involves applying physiologically-

motivated models to mechanistically relate noninvasively-measured signals to ICP.

15

One such method is based on a model of blood flow through the central retinal artery

whereby the intracranial segment of the artery is compressed by ICP and the extracra-

nial segment is compressed by IOP [10]. ICP can then be estimated by applying an

external pressure to the eye until features of the CBFV waveform are the same in

both segments.

The device described in this thesis is based on the Kashif algorithm for noninvasive

ICP estimation, which is of the physiologically-motivated class of approaches [4]. The

Kashif algorithm is based on a lumped-parameter model of blood flow through the

cerebrovascular system and uses ABP and CBFV measurements at the middle cerebral

artery (MCA) to estimate the mean ICP. A detailed description of the algorithm

will be presented in Chapter 2. The algorithm has previously been implemented in

MATLAB on a desktop computer. This runs in "batch-mode", acting on patient data

after they have been recorded. This is nonideal in the clinical scenarios described in

Section 1.1.2 in which transient ICP changes are immediately relevant and clinically

actionable.

1.3 A Real-Time Embedded Device Implementation

This thesis presents a microcontroller-based medical device prototype (Figure 1-3)

that applies the Kashif algorithm to ABP and CBFV signals acquired in real-time to

produce an estimate of mean ICP once every 60 seconds and can perform the necessary

computations in less than one second. The estimates from the device differed from

the batch-mode MATLAB implementation with a RMSE of 0.34 mmHg. The device

is housed in a sleek enclosure that can be connected to the analog signal outputs

from standard ABP and CBFV measurement hardware. ICP estimates, as well as

the ABP and CBFV signals, are displayed on an LCD screen on the front panel and

are also saved to a SecureDigital (SD) card within the device. The device is powered

by a USB port that also provides serial streaming of ICP estimates to a computer.

The embedded device offers the advantages of low cost and size as well as product

modularity over a general-purpose computer, and is a key next step towards an ideal

16

clinical application.

1.4 Thesis Structure

The next chapter describes a lumped-parameter model of the cerebrospinal and cere-

brovascular fluid spaces and the steps of the Kashif algorithm to estimate ICP. The

structure of the batch-mode implementation and its strengths and weaknesses are

also discussed.

Chapter 3 focuses on the detailed implementation and testing of the device, and

also enumerates and explains the software and hardware tools that were used. I also

mention the challenges that were encountered during the device development.

Chapter 4 presents the performance of the device including comparison to the

batch-mode implementation and invasive ICP, the speed and memory usage of the

algorithm, and the physical specifications of the final assembled prototype device. I

also discuss the advantages and limitations of the device based on these results.

In Chapter 5, I review the contributions of the thesis to the field of noninvasive

ICP estimation and briefly discuss the possible next steps for the project.

17

Figure 1-3: The assembled medical device prototype for real-time noninvasive ICP
estimation.

18

Chapter 2

Background

An accurate noninvasive method for estimating intracranial pressure (ICP) could have

a tremendous impact on lowering the risk of neurocritical monitoring and could benefit

a much larger patient population as a diagnostic tool for hemorrhagic or ischemic

stroke, traumatic brain injury, hydrocephalus, and brain tumors [4]. The Kashif

noninvasive ICP estimation algorithm is motivated by a model of cerebrovascular

physiology that relates ICP to arterial blood pressure (ABP) and cerebral blood flow

velocity (CBFV). In this chapter, you will learn in detail about this physiological

model, the steps of the Kashif algorithm, and the batch-mode implementation of the

algorithm in MATLAB that is the foundation upon which this thesis builds.

2.1 A Dynamic Model of Cerebrovascular Space

The cranial vault contains the vasculature, brain tissue, and cerebrospinal fluid (CSF).

As mentioned in the last chapter, these compartments are dynamically coupled due

to the Monro-Kellie doctrine as well as the flow of fluid from one compartment to

another. Ursino and Lodi [15] and others have developed models to simulate this cou-

pling and the associated dynamics. Kashif reduced such bigger models to a minimal

physiological model and used it to estimate ICP [4].

19

2.1.1 The Ursino-Lodi model

The Ursino-Lodi model [15] of the cerebrovascular space focuses on the relationship

between the compartments of the cerebral vasculature, brain tissue, and the CSF

space in a lumped-parameter framework (Figure 2-1). Blood enters the skull with a

certain cerebral blood flow (CBF, or q) and pressure (P
a

). The arteries and arterioles

are represented with both capacitive (C
a

) and resistive (R
a

) components, correspond-

ing to the compliance of and pressure drop across these vessels. Arterial capacitance

and resistance vary with time due to changes in vascular smooth muscle tone. These

changes are caused by autoregulatory and autonomic control responses to maintain

an appropriate perfusion of the brain with blood.

Figure 2-1: The Ursino-Lodi lumped-parameter model of blood and cerebrospinal
fluid flow through the cerebrovasculature. Figure adapted from [15].

In the capillary beds, the CBF encounters a further pressure drop (across R
pv

) to

cerebral venous pressure (P
v

). As well, CSF filtrate is secreted from the capillaries,

namely in the choroid plexus in the four cerebral ventricles, into the CSF space. This

secretion is physiologically driven by active transport mechanisms, but the model

represents it through passive, hydrostatically-driven mechanisms. CSF fills the ven-

tricles, cisterns, subarachnoid space, and sulci of the brain and exerts a hydrostatic

pressure on the surrounding tissues that is ICP (or P
ic

). The brain tissue also has an

elastic property, represented in the lumped-parameter model as a capacitor (C
ic

).

20

CSF is steadily reabsorbed into the circulatory system through cerebral veins at

venous sinus pressure (P
vs

) where it joins the venous blood flow exiting the cere-

brovasculature. Importantly, ICP is greater than P
v

. This has the consequence of

collapsing the cerebral veins and producing the Starling resistor effect of flow limita-

tion through a collapsible tube. The effective downstream pressure of the capillaries

is then determined by ICP instead of systemic venous pressure; this phenomenon is

represented in the model by replacing P
v

with ICP (P
ic

).

2.1.2 The Kashif model

Kashif et al. developed a simplified version of the Ursino-Lodi model for the purposes

of estimating ICP from (1) ABP at the level of the cerebral vasculature and (2) CBF

through the middle cerebral artery (MCA) [4]. They determined that the processes of

CSF production from the choroid plexus and reabsorption into the venous system are

much slower than that of blood flow through the cerebrovasculature. The CSF pro-

duction and reabsorption flows (q
f

and q
o

) in the Ursino-Lodi model can therefore be

neglected over the course of tens to hundreds of cardiac cycles and the corresponding

pathways can be treated as open circuits over these time scales (Figure 2-2).

Figure 2-2: The slow rate of CSF production and reabsorption are fully neglected in
the Kashif model. Figure adapted from [15].

This simplification leaves two parallel pathways through the model, one purely

21

resistive and one purely capacitive, which can be further simplified to a single RC

circuit (Figure 2-3): a source voltage p
a

(t) and current q(t) represents the instan-

taneous ABP and CBF waveforms, respectively, through the MCA; a single resistor

(R) represents the overall effective resistance of the cerebral vasculature; and a sin-

gle capacitor (C) represents the effective compliance of both the vasculature and the

brain tissue. ICP consequently represents the pressure surrounding the vasculature

and brain tissue downstream of the microcirculatory resistance (R).

Figure 2-3: The fully simplified RC electrical circuit representation of the cere-
brospinal fluid space. Figure adapted from [4].

Kirchoff’s current law for the model gives an expression linking the measurements

q(t) and p
a

(t) to ICP (t) and the model parameters R(t) and C(t) as

q(t) =
p
a

(t)� ICP (t)

R(t)
+ C(t)

d(p
a

(t)� ICP (t))

dt
(2.1)

Here, R and C are time-varying parameters that depend on a number of physiolog-

ical factors, including autoregulation and autonomic activity. The Kashif approach

assumes that they are constant over a small enough estimation window. ICP is

also not a constant value, as explained briefly in the first chapter; the Monro-Kellie

22

doctrine implies that the morphology of the ICP waveform will be similar to that

of the ABP waveform. Additionally, ICP can vary because of mismatches in CSF

production and reabsorption and because of other space-filling lesions.

The Kashif approach simplifies Equation 2.1 by considering only the mean ICP,

which is assumed to be constant at the mean value of ICP (t) within a sufficiently

small estimation window. Equation 2.1 can then be reduced to

q(t) =
p
a

(t)� ICP

R
+ C

dp
a

(t)

dt
(2.2)

which is the basis for the Kashif algorithm.

2.2 Estimating Intracranial Pressure

2.2.1 The estimation algorithm

The algorithm is broken down into three steps: (1) estimating C, (2) estimating R,

and (3) using the estimated C and R to solve for ICP . The first step takes advantage

of the rapid upstroke in ABP during systole. At this point, the capacitive current,

C dp

a

(t)
dt

, is large compared to the resistive current. The flow in the model can be

approximated to be determined mainly by the compliance pathway as

q(t
upstroke

) ⇡ C
dp

a

(t)

dt
|
t=t

upstroke

(2.3)

Equation 2.3 can be integrated over the range [t
b

, t
e

], the time window bordering

the systolic ABP upstroke

[p
a

(t
e

)� p
a

(t
b

)]C =

Z
t

e

t

b

q(t)dt (2.4)

to solve for C. As q(t) and p
a

(t) are susceptible to noise, artifact, and interference,

this calculation is carried out over many heartbeats in an estimation window typically

of size 60 beats, to produce a system of equations each of the form of Equation 2.4.

The least-squares-error solution Ĉ can be obtained as an estimate of C from this

23

system of equations.

The second step begins by considering the flow through the resistive branch of the

model,

q̂
R

(t) =
p
a

(t)� ICP

R
= q(t)� Ĉ

dp
a

(t)

dt
(2.5)

which can now be calculated using our estimate Ĉ and finite differencing of p
a

(t).

Based again on the assumption that mean ICP is constant throughout the estimation

window, R can be computed by considering two time instants t1 and t2 so that

ICP = p
a

(t1)�Rq̂
R

(t1) (2.6)

ICP = p
a

(t2)�Rq̂
R

(t2) (2.7)

and thus

[q̂
R

(t2)� q̂
R

(t1)]R = p
a

(t2)� p
a

(t1) (2.8)

This can be applied for any time points t1 and t2; however, they are selected to

minimize the noise sensitivity of q̂
R

(t) and hence maximize q̂
R

(t2)� q̂
R

(t1) by locating

the minimum and maximum points in the ABP waveform (maximizing the right-hand

side). Similar to the first step, Equation 2.8 is computed for every heartbeat in the

estimation window to produce a system of equations that can be used to produce a

least-squares-error solution R̂ as an estimate of R.

Lastly, the mean p
a

(t) and q̂
R

(t) over the estimation window can be used together

with the estimate R̂ to produce an estimate of mean ICP as

dICP = p
a

(t)� R̂q̂
R

(t) (2.9)

Through these three steps, the Kashif algorithm estimates mean ICP from ABP

and CBF waveforms over estimation windows sufficiently small to assume constant

mean ICP and constant effective lumped resistance and compliance of the cerebrovas-

24

culature, brain tissue, and CSF space.

2.2.2 Obtaining measurements of ABP and CBF

Strictly following the parameters of the model, the inputs to the Kashif algorithm

are ABP at the level of the MCA, and CBF into the MCA. These measurements are

impossible to obtain directly through noninvasive techniques, especially ABP at the

MCA. Instead, the more easily obtainable ABP at a peripheral artery and cerebral

blood flow velocity (CBFV) through the MCA are used as proxy measurements for

the true ABP and CBF at the MCA [4].

Figure 2-4: Doppler ultrasound technology is used to measure the velocity of blood
flow through vessels in the body. Figure taken from [11].

Transcranial doppler ultrasound (TCD) is a widely used technology for measur-

ing CBFV (Figure 2-4). An ultrasound probe emits sound waves through the skull

and into the brain tissue and vasculature that reflect off of tissue interfaces with an

amplitude proportional to the difference in the acoustic impedances of the tissues.

These echoes are detected by a transducer that is next to or the same as the emitter.

The time at which the echo is detected after emission will therefore correspond to

the depth of the tissue interface. Static tissue boundaries produce reflections but no

shifts in the ultrasound frequency. A moving target, however, will produce a shift in

frequency according to the Doppler principle. The magnitude of the received signal

25

will depend on scattering and absorption, but on the angle of insonation — ideally

this will be along the velocity vector of the material (i.e. ✓ = 0).

The left and right MCAs run normal to the sagittal plane in the brain and so these

vessels can be probed by placing a TCD transducer near the temples. By locating

an ideal insonation angle and measuring the amplitude, travel time, and Doppler

frequency shift of the ultrasound echoes, the MCA can be located and the CBFV

through the vessel can be determined.

The relationship between the blood pressure waveform at the radial artery and at

the MCA has not been completely characterized. We expect there to be morphological

differences between the peripheral and MCA ABP waveforms. These differences have

not been experimentally established, but would be expected based on the compliance

and resistance of the vasculature and reflections of pressure waves in vessels of different

sizes and muscle tone states as well as reflections off of vessels in branching sites.

Furthermore, the peripheral and MCA pressure waves differ by the relative time

of arrival of the pressure waveform. The Kashif algorithm does not compensate for

morphological differences, but does attempt to (approximately) correct for the timing

differences [4] (see Section 2.2.4).

Peripheral ABP can be measured by inserting a catheter into the radial artery

and connecting it to a pressure transducer. This method is the gold standard for

continuous blood pressure measurement. A sphygmomanometer is commonly used

to measure systolic and diastolic blood pressure, but it does not produce an actual

waveform of the blood pressure signal. Arterial catheterization allows for the accurate

determination of the blood pressure waveform, however it brings along the risk of

bleeding, infection, and possible nerve damage [3]. Alternatively, the arterial blood

pressure waveform can be collected noninvasively using the volume-clamp method of

a Finapres-type device, as described earlier.

The TCD probe and Nexfin vascular unloading technology together afford contin-

uous and noninvasive measurements of CBFV and peripheral ABP that are related

to the CBF and ABP at the MCA for use in the Kashif ICP estimation algorithm.

26

2.2.3 Locating heartbeat onset times

Equation 2.4 and Equation 2.8 in the Kashif algorithm need to be carried out on a

per-heartbeat basis for each heartbeat in the estimation window. In order to do so,

the ABP and CBFV waveforms need to be segmented into individual heartbeats. The

open-source PhysioNet wabp algorithm, originally developed by Zong et al., detects

the onset times of ABP pulses based on the first derivative of the continuous ABP

signal [17].

In wabp, the ABP signal is low-pass filtered with a cut-off frequency of 16 Hz to

suppress high-frequency noise and then passed through a slope sum function (SSF)

— a sliding windowed sum of the positive first derivatives of the ABP signal — to

selectively enhance the systolic upstroke. A threshold is applied across the SSF signal

to locate the pulse windows; onset points are then identified within each window as

the crossing point of 1.0% of the maximum of the SSF signal within that window. The

threshold is updated to be 60% of the maximum of the SSF signal in the previous

pulse to adapt to changes in mean arterial pressure and pulse pressure over time.

The detected onset points are passed to the Kashif algorithm and used to segment

the ABP waveform into windows corresponding to each heartbeat.

2.2.4 ABP and CBFV signal alignment

Another key necessity for running the Kashif algorithm is that the ABP and CBFV

signals must be properly aligned. Because CBFV is measured at the MCA and

ABP is measured at the radial artery, the delay between the two waveforms due to

the difference in the distance that the blood pressure wave travels must be taken into

account. There are also time delays that are intrinsically part of the signal acquisition

pathways for both CBFV and ABP. The Nexfin and TCD monitor carry out distinct

measurement algorithms that differ in efficiency and run on processors with different

speeds. These factors produce a considerable time-shift between the two signals that

can be observed in the raw output from the Nexfin and TCD.

The signal realignment process to compensate for these time shifts focuses on the

27

alignment of the heartbeat onsets times in the ABP and CBFV waveforms. First, the

wabp algorithm is run on the CBFV signal to locate the heartbeat onset times, which

are then individually paired to their closest onset times in the unaligned ABP signal.

Then, the heartbeat window durations are computed for both signals according to

the onset times that have been paired. Letting D
ABP

[n] and D
CBFV

[n] represent

the duration of heartbeat n in the ABP and CBFV signal, respectively, and with N

representing the total number of heartbeat durations, the quality of the alignment is

calculated as

S(D
ABP,k

, D
CBFV

) :=
1

N

N�1X

i=0

|D
ABP

[i� k]�D
CBFV

[i]| (2.10)

The ideal alignment (or lag) K is determined by considering a set of alignments

obtained by shifting ABP relative to CBFV by k heartbeats and computing

K = argmin
k

(S(D
ABP,k

, D
CBFV

)), k 2 [�5, 5] (2.11)

This corresponds to the alignment that produces the least average absolute dif-

ference in heartbeat durations between the ABP and CBFV signals.

Applying this alignment procedure will compensate for any delay between the ABP

and CBFV signals and make the heartbeat onset times in both waveforms precisely

line up with one another. This alignment may not be reflective of the true ABP and

CBFV dynamics at the MCA, however, as the compliance of the vasculature will cause

the CBFV upstroke to occur slightly after the ABP upstroke. Preserving this delay

during alignment is an ongoing area of research in the group. For the purposes of the

implementation discussed in this thesis, the above heartbeat alignment procedure is

used.

2.3 The importance of implementation

Kashif et al. implemented the algorithm in a MATLAB script that runs in batch

mode on pre-recorded ABP and CBFV data. The script assumes that the recorded

28

signals are already aligned and that the ABP corresponds to the pressure at the level

of the MCA. This script is a batch-mode implementation, which produces estimates

of mean ICP from data that has been recorded at a hospital and transferred onto

a computer. The batch-mode implementation has been tested by referencing ICP

estimates to ICP measurements recorded invasively with a parenchymal probe and

demonstrated a mean error of 1.6 mmHg, which is smaller than the normal 2-3 mmHg

fluctuations in ICP due to respiration and cerebrovascular volume pulsatility [5].

While the batch-mode MATLAB implementation has performed well, it is nonideal

in clinical scenarios where sudden changes in ICP are immediately relevant. It is

useful for analysis of ICP trends, but it cannot be used for monitoring. Invasive ICP

probes are used for monitoring critically ill patients and so a substitute noninvasive

solution must be built with a real-time application in mind. The remainder of this

thesis describes the design and implementation of a new incarnation of the Kashif

algorithm on a microprocessor platform that can produce a mean estimate of ICP

once per minute from data acquired in real-time, taking a step towards the goal of

real-time noninvasive continuous ICP estimation in a variety of clinical settings.

29

30

Chapter 3

Methods

As detailed in the last chapter, the Kashif algorithm produces noninvasive estimates

of intracranial pressure (ICP) by:

1. reading arterial blood pressure (ABP) and cerebral blood flow velocity (CBFV)

waveforms,

2. time-aligning the two signals to account for physiological delays and processing

times during data acquisition,

3. detecting heartbeat onset times with the wabp algorithm, and

4. computing mean ICP through estimating R and C for each data window.

In this chapter, you will learn about how the MATLAB batch-mode implemen-

tation of this procedure was ported to a microprocessor platform and modified to

produce estimates once per minute from data acquired from a patient in real-time.

You will also learn about the design and fabrication of a complete medical device

prototype that interfaces with a TCD monitor and Nexfin ABP measurement system

and reports both the current estimated ICP on an LCD display for monitoring and

records the estimates on an SD card for later analysis.

31

3.1 A Strategy for Real-Time Estimation

The batch-mode implementation slides a 60-heartbeat-wide estimation window across

prerecorded ABP and CBFV waveforms, producing an ICP estimate for each win-

dow along the way. To do so, wabp is run on the fully-collected waveforms, taking

advantage of the entire signal to adapt the heartbeat onset threshold. In a real-time

implementation, ABP and CBFV data need to be collected and processed on-the-fly

and shifted into the estimation window. Once the window is filled, wabp and the

Kashif algorithm can be run to produce a single ICP estimate. As the algorithm

runs, the next window will be filled with new samples.

The size of the estimation window is determined by a balancing of several factors

— namely the reliability of heartbeat onset detection, available memory on the micro-

processor, sampling frequency, the minimum estimation frequency that will be useful

to a physician, and a tradeoff between fast response time (small windows) and noise

averaging (large windows). The shorter the estimation window, the less reliable the

detected heartbeat onset times will be due to the adaptive nature of wabp. Likewise,

the shorter the estimation window, the higher the variability of the ICP estimates

will be as less data is inherently averaged in the least-squares estimation steps. On

the other hand, a shorter window will take up less memory on the microprocessor and

produce ICP estimates more frequently for clinical use. A lower sampling frequency

may not fully capture the smaller features of the waveforms and may even introduce

aliasing at frequencies lower than 30 Hz. At the same time, a higher sampling fre-

quency will take up more microprocessor memory. Physician collaborators at Boston

Medical Center suggested that ICP estimates presented at least once per minute —

and hence an estimation window of about 60 seconds will suffice for neurocritical care

monitoring.

32

3.2 Core Tools

Before detailing the implementation, I will briefly enumerate and describe the set

of core tools that were used in developing the embedded device prototype. This

digression is to define many of the terms and provide foundational knowledge that

will be used in the later sections.

3.2.1 Hardware

The NXP LPC4337 microcontroller unit (MCU) [12] was selected for its large SRAM

capacity, processor speed, and available peripherals (Figure 3-1) and also due to

compatibility with a related project in the Microsystems Technology Laboratories

at MIT involving novel TCD technology [7]. The MCU is based on a 200 MHz

ARM Cortex-M4/M0 dual-core processor unit and features 136 kB of on-chip static

random-access memory (SRAM), a high-speed universal serial bus (USB) controller,

a SD card interface, 164 general-purpose input/output (GPIO) pins, and two 10-bit

analog-to-digital converters (ADCs) that can sample at up to 400 kHz. The 136 kB of

RAM is spread out across five distinct locations — one 40 kB block, two 32 kB blocks,

and two 16 kB blocks [12]. There is also 1 MB of flash memory built into the MCU

for possible longer-term storage, however the removable SD card is preferentially used

for this purpose so that saved data is easily accessible for analysis on a computer.

The NGX LPC4330-Xplorer board (Figure 3-2) is a breakout board for the LPC4337

MCU with a large set of peripherals, importantly featuring an on-board microSD card

slot, USB port, and 10-pin Joint Test Action Group (JTAG) header for debugging

[13]. All of the unused digital and analog inputs and outputs are broken out to head-

ers, which allowed for rapid development and prototyping. The LPC-Link 2 board

was used to program and debug the MCU.

3.2.2 Development suite

LPCXpresso is the integrated development environment (IDE) standard for LPC

MCUs [8]. The IDE is Eclipse-based, but is used for C/C++ application and library

33

Figure 3-1: A block diagram of the available peripherals on the NXP LPC4337 mi-
crocontroller. Important blocks are highlighted, including the built-in SRAM, ADCs,
GPIOs, SD controller, USB controller, and debug interface. Figure adapted from [12].

development. As well, the platform can be used for free for code sizes up to 256 kB,

which is more than enough for programming the 136 kB of SRAM on the LPC4337.

C++ was selected as the implementation language for the device, primarily for the

organizational advantages of object-oriented programing that offer easier modular

development and testing than C.

LPCXpresso is packaged with LPCOpen, an open-source platform that provides

simple access to the basic libraries for controlling the LPC4337, such as setting the

system control unit (SCU) and GPIO registers to select digital pin functionality.

LPCOpen is written in C, however the libraries can still be leveraged in a C++

34

Figure 3-2: The NGX LPC4330-Xplorer board was used for the medical device pro-
totype. Figure taken from [13].

application. LPCOpen also comes with several example projects, including an SD

and USB controller as well as a demonstration of ADC polling and interrupt handling.

These example projects and libraries were used extensively in the development of the

embedded device.

3.2.3 Porting and profiling

MATLAB scripts and functions, namely the batch-mode implementation of the nICP

algorithm, can be easily ported to a C++ program through the MATLAB Coder

tool. MATLAB Coder supports nearly all of the MATLAB language and produces

efficient and readable C and C++ source code. However, the generated code is not

optimized for a microcontroller implementation where memory is scarce. A major

step in the device implementation process was to reduce the memory usage of the

ported algorithm. To assess memory usage, the Valgrind memory management suite

35

was used [16]. In particular, Valgrind’s massif heap profiler tool can measure peak

usage of dynamically allocated memory, which was helpful in minimizing the ported

algorithm to fit into MCU memory.

3.3 Implementation

The process of implementing the ICP estimation algorithm on the embedded device

consisted of several major subtasks, which I will enumerate and describe here.

3.3.1 Building the data pipeline

To become familiar with developing on the LPC4337 and the core tools for the im-

plementation process, a basic data pipeline was built that consisted of loading ABP

data onto the board through USB streaming, running the wabp algorithm, and then

writing the detected heartbeat onset times to an SD card.

A Python script was written to encode prerecorded ABP data (collected at 50

Hz) from Addenbrooke’s Hospital in Cambridge University and to send 60 seconds of

the waveform over a USB virtual communication port (VCOM). The LPCOpen USB

library was imported for loading the data onto the board. As each sample is received,

it is shifted into a buffer in RAM; once the necessary 3,000 samples are collected, the

buffer is passed to wabp.

MATLAB Coder was used to port a MATLAB implementation of wabp to C++.

The generated code required 1.8 MB of RAM, far exceeding the 136 kB available

on the LPC4337, and so needed to be optimized to fit into MCU memory — this

optimization process will be discussed in Section 3.3.3. The heartbeat onset times

were then written to a microSD card using the LPCOpen SD/MMC library.

3.3.2 Porting to C++

Three scripts were ported from MATLAB to C++ — wabp, the Kashif algorithm

(getICP), and a preprocessing script (preprocess) that upsampled the Adden-

36

brooke’s Hospital data from 50 Hz to 125 Hz. The first step in porting the MATLAB

scripts to C++ was to clean up the existing codebase by removing unused variables

and code blocks and commenting unclear steps. As well, the files were modified to be

in a functional format instead of a script format and reorganized so that all arrays

were preallocated, as MATLAB Coder does not handle dynamic growth of arrays

(which was used throughout the original getICP script).

MATLAB Coder was then used to generate C++ functions for each script using

default settings except for specifying “NXP Cortex-M4” as the selected hardware.

This selection helps MATLAB Coder to define the data type sizes and endian-ness

among other parameters that will be appropriate for the target system. To ensure

that the generated code performed correctly, test rigs were built to compare the

results obtained through the C++ implementation to those obtained through the

original MATLAB implementations. These test rigs were also useful for ensuring

correctness while the code was iteratively modified to minimize memory usage. All

of the generated functions were tested on a PC using GCC for building and GDB for

debugging before being implemented on the MCU.

The signal alignment procedure discussed in the last chapter had been imple-

mented in MATLAB, though the script was simple enough to be manually ported to

C++. The C++ implementation is listed in Appendix A.

Lastly, the data pipeline was modified to stream 60 seconds of CBFV data across

USB VCOM in addition to ABP and record the estimated ICP for that window on

an SD card.

3.3.3 Memory optimization

The C++ implementations of wabp and getICP that were generated from MATLAB

required 1.8 MB and 348 kB of RAM, respectively, which far exceeds the available

memory on the MCU; preprocess required only 92 kB of RAM. As mentioned,

the LPC4337 features a total of 136 kB of SRAM. There are many inefficiencies in

memory usage that were manually reduced to fit the code into the board’s memory.

The greatest memory inefficiency in the generated implementations is that mem-

37

ory is rarely reused. Large allocations are requested to store temporary workspace

data even when memory that was allocated earlier is available and no longer be-

ing used. Remedying this issue was straightforward, though tedious, by manually

changing the C++ files to reuse workspace memory whenever possible. As well, the

real-time approach allows for many array sizes to be reduced; for example, it is now

assumed in both wabp and getICP that the maximum number of heartbeats possible

in the 60-second window is, somewhat arbitrarily, 250 beats. Any further heartbeats

in excess of 250 will be ignored, though an estimate will still be produced for that

window. Additional optimizations included using single-precision floating-point vari-

ables instead of double-precision variables and performing operations in-place at the

cost of speed whenever possible.

Another difficult memory-related challenge arises when considering that the MCU’s

SRAM is spread out over 5 separate memory locations in block sizes of 40 kB, 32 kB,

32 kB, 16 kB, and 16kB. Some of the allocated arrays are over 30 kB large but cannot

span more than one RAM block. Because of this, the arrangement and packing of

allocations becomes especially important. Embedded devices by design do not run an

operating system and so there is no built-in virtual memory management or caching

that would make this task simple. A lightweight software interface was developed to

provide virtual contiguous memory access to the separate memory blocks, allowing for

tight packing of allocated space and for the large arrays to be accessed even when span-

ning two or even three RAM blocks. The core of the tool is the ContinuousMemory

object, which maintains base references and sizes of all five RAM blocks on the MCU.

When memory is “allocated”, a CMemPointer object is created to point to a base

location in the ContinuousMemory virtual memory space. When a CMemPointer

is dereferenced, the ContinuousMemory object determines the physical location of

the virtual address in the SRAM blocks and provides access to that location. The

C++ implementation of this lightweight interface is included in Appendix B.

38

3.3.4 Peripherals for real-time estimation

The data pipeline described in Section 3.3.1 uses USB VCOM to send a single 60-

second window of prerecorded data to the MCU. Real-time estimation involves contin-

uous acquisition of data on-the-fly and so this pipeline needed to be modified slightly.

While signal alignment and the wabp and getICP functions are being executed on

an estimation window, the next window needs to be collected. Peripheral interrupt

handlers can be enabled on the LPC4337 that run a specified function whenever a

peripheral triggers a particular event. Custom code was appended to the end of the

built-in USB interrupt handler to process bytes as they are received, package them

into ABP and CBFV samples, and shift the samples into the estimation window

buffer.

As well, the real-time device must interface with the TCD monitor and Nexfin to

acquire ABP and CBFV signals as they are measured. The TCD monitor and Nexfin

both have analog output ports that report CBFV and ABP by supplying voltages

at 9 mV per cm/sec and 10 mV per mmHg, respectively. The interface pipeline was

designed in two iterations: (1) streaming real-time data over USB VCOM through

a computer interfacing with the TCD monitor and Nexfin analog outputs and (2)

interfacing with the TCD monitor and Nexfin analog signal outputs directly and

digitizing them with the ADCs built into the LPC4337.

For iteration (1), a computer was connected to a National Instruments Data Ac-

quisition System (NI-DAQ) and loaded with a LabVIEW virtual instrument (VI)

that sampled from the NI-DAQ ADCs connected to the TCD monitor and Nexfin at

125 Hz (Figure 3-3). The VI handles digitizing the analog signal outputs from both

devices, scaling and plotting the signals as ABP and CBFV on-screen, recording the

signals to a file, and streaming the signals to the LPC4337 at 125 Hz. As well, the VI

reads in the ICP estimates sent back from the device and displays them on-screen.

For iteration (2), the built-in ADCs were set up to operate in interrupt mode at the

minimum sampling rate of 73 kHz. A counter in the ADC interrupt handler lowered

this effective sampling rate to append samples to the estimation window buffer at

39

Figure 3-3: A data acquisition cart was built to acquire ABP and CBFV signals from
the Nexfin and TCD probe for the first trial.

125 Hz. In both iterations, the preprocess function was not needed as data was

supplied at the wabp-native 125 Hz.

ICP estimates also need to be presented to the physician as they are produced.

An Adafruit 2.8" thin-film-transistor liquid-crystal display (TFT LCD) was used to

display the most recent ICP estimate [1]. The LCD has its own built-in controller

and memory and can be programmed through 4-pin Serial Peripheral Interface (SPI).

To lighten the load on the LPC4337, an Arduino Nano was used to control the LCD.

Eleven GPIO pins on the LPC4337 were configured to output mode and connected

to digital inputs on the Arduino. Estimated ICP is encoded to an 11-bit number

and presented on the GPIO pins. This binary encoding is then decoded back to a

floating-point value on the Arduino and presented on the display. A custom plotting

function for the LCD was also written to display the ABP and CBFV waveforms on

the LCD display and is included in Appendix C.

40

Figure 3-4: The messy innards of the medical device prototype. An enclosure, fab-
ricated out of black acrylonitrile butadiene styrene (ABS, makes it much more user-
friendly.

3.3.5 Housing

The embedded device is truly a medical device prototype and so packaging the device

and peripherals in a custom casing was desired. The casing was made out of black

acrylonitrile butadiene styrene (ABS) that was thermoformed into a box shape. Holes

for the LCD, USB port, and BNC analog input jacks for the TCD monitor and Nexfin

were cut with a laser cutter. A clear acrylic panel was secured in front of the LCD for

protection and hot glue applied to the BNC jacks to make attachment easier through

the rotational locking mechanism. As well, two additional BNC jacks were attached

and wired to the input jacks as “passthroughs” to allow other devices to use the TCD

monitor and Nexfin analog signals. The SD card is available for use after long-term

data collection by opening the case (Figure 3-4).

41

42

Chapter 4

Results and Discussion

The medical device prototype described in the last chapter was tested on ABP and

CBFV data from a traumatic brain injury patient at Addenbrooke’s Hospital in Cam-

bridge University as well as data recorded in real-time from a volunteer subject. ICP

estimates were compared to those obtained by running the batch-mode implementa-

tion on the same dataset. This chapter includes these results together with analysis of

the memory usage, performance, and physical specifications of the final assembled de-

vice. As well, I here examine how these results reflect the limitations and advantages

of the device and discuss the future avenues of research that they suggest.

4.1 Comparing to Batch-Mode

In the first trial dataset, obtained from Cambridge University, 17 minutes of archived

radial artery ABP and CBFV data were used from a comatose traumatic brain injury

patient (Figure 4-1, middle and bottom). The patient was in the intensive care unit

for the duration of the recording. The archived waveforms were streamed to the

device to simulate a real-time recording. In the second dataset, 20 minutes of ABP

and CBFV data were collected from a volunteer subject using the Nexfin and a TCD

monitor (Figure 4-2, middle and bottom), streamed in real-time to the device, and

saved to the SD card along with the computed ICP estimates. The subject was calmly

sitting upright in a chair for the duration of the experiment.

43

Figure 4-1: ICP estimation results from data obtained at Addenbrooke’s Hospital,
Cambridge University. Top plot: comparison of ICP estimates produced by the sliding
and non-overlapping batch-mode implementation to those produced by the real-time
implementation on the MCU. Middle plot: ABP waveform. Bottom plot: CBFV
waveform.

44

Figure 4-2: ICP estimation results from 20 minutes of data obtained in real-time.
Top plot: comparison of ICP estimates produced by the sliding and non-overlapping
batch-mode implementation to those produced by the real-time implementation on
the MCU. Middle plot: ABP waveform. Bottom plot: CBFV waveform.

45

To compare the real-time approach to the batch-mode approach, the ICP estimates

were compared to ICP estimates obtained by running the MATLAB batch-mode

algorithm on the same waveforms. The real-time ICP estimates differed from the

batch-mode estimates by a root-mean-square error (RMSE) of 0.63 mmHg and a

mean-absolute-percentage error (MAPE) of 2.87% in the Cambridge trial (Figure 4-

1, top) and by a RMSE of 3.03 mmHg and a MAPE of 4.93% in the 20-minute trial

(Figure 4-2, top). In the 20-minute trial, the ICP estimates were regularly above 40

mmHg and appeared unstable, reaching as high as 80 mmHg and as low as 30 mmHg

within less than one minute. The poor quality of these estimates is most likely due to

the unreliability of the ABP and CBFV waveforms, which can be seen to be unstable

themselves.

The discrepancy between the estimations produced by the two implementations is

largely due to the difference in estimation windows. In the batch-mode algorithm, a

60-beat window is slid across the prerecorded dataset, one heartbeat at a time; in the

real-time algorithm, 60 seconds of data are collected and then processed to produce

a single ICP estimate. The least-squares regression steps in the Kashif algorithm are

handling different systems of equations in the two approaches, which can produce

different estimates of R and C. To verify this, the batch-mode algorithm was run

using non-overlapping windows of 60 seconds and compared to the real-time estimates.

The ICP estimates differed by an RMSE of 0.05 mmHg and MAPE of 0.13% in the

Cambridge trial and by an RMSE of 0.49 mmHg and MAPE of 0.36% in the 20-minute

trial.

The remaining discrepancy is entirely attributed to wabp. wabp is run on the

entire dataset at once in the batch-mode implementation (in both the sliding and

non-overlapping runs) but is run once per 60-second window in the real-time imple-

mentation. As discussed, wabp is an adaptive algorithm, and so having access to the

full 17- and 20-minute waveforms will produce different results than those produced

from the windowed 60-second waveforms. By running the batch-mode algorithm with

heartbeat onsets computed on 60-second non-overlapping windows, the ICP estimates

produced are precisely equivalent to the estimates produced by the LPC4337.

46

Figure 4-3: The C++ implementations generated through MATLAB Coder required
more memory than was available on the LPC4337. Optimization of these implemen-
tations brought the total memory usage to under 100 kB for all steps.

4.2 Memory Usage

The C++ implementations of the preprocess, wabp, and getICP scripts gen-

erated by MATLAB Coder, respectively, required 92 kB, 1.8 MB, and 348 kB of

memory. Because the LPC4337 has 136 kB of available SRAM, the latter two imple-

mentations were optimized to use as little memory as possible. After the optimization

process, wabp and getICP respectively required 87 kB and 90 kB of RAM (Figure

4-3).

As discussed in the last chapter, the major memory efficiency boosts were achieved

through reusing allocated memory, constraining array sizes based on reasonable phys-

iological parameter ranges, and performing operations in-place at the cost of speed.

While this approach was successful in the end at fitting the code onto the board,

other possible approaches include using other memory stores on the LPC4337 and

LPC4330-Xplorer board or developing on a different MCU with more memory. Con-

straining memory usage to only SRAM (instead of perhaps the SD card or on-board

flash memory) simplified memory management, as additional software and compu-

tational time would be needed to save waveforms and workspace data and retrieve

47

them on-the-fly.

4.3 Performance

The wabp, and getICP scripts generated by MATLAB Coder respectively took, on

average, 10 ms and 19 ms to process 60 seconds of 125 Hz ABP and CBFV data

on a computer with a 2.5 GHz processor. The memory-optimized implementations,

respectively, took, on average, 13 ms and 27 ms to complete the same task. This

increase in processing time is a result of the use of in-place operations to conserve

memory at the cost of speed. The total runtime of the ICP estimation procedure took

52 ms, on average, on the computer. The computer’s processor is 12.5 times faster

than the Cortex-M4 on the LPC4337, and one might therefore expect an upper-bound

MCU runtime of around 650 ms was expected. The MCU took 410 ms, on average,

to compute each ICP estimate. As the computer also uses time-sharing and memory

caching, it was predictable that the MCU would perform considerably faster than the

upper-bound runtime. An ICP estimate can therefore be computed after collecting

60 seconds of ABP and CBFV data at 125 Hz with less than a second of processing.

This opens up the future possibility for a sliding-window real-time implementation of

the ICP estimation algorithm to produce continuous nICP estimates.

4.4 Final Device Specifications

The final assembled device prototype (Figure 4-4) measures 21cm x 15.2cm x 5.3cm

and weighs 330g. It features a backlit LCD screen that displays the estimated ICP

as well as the ABP and CBFV waveforms obtained through analog inputs to two

BNC jacks on the front panel. These BNC jacks are passed through to two more

BNC jacks so that other devices have access to the TCD monitor and Nexfin analog

signals. The device is powered at 5V by a USB-B supply, which can also be connected

to a computer to read streaming ICP estimates. The device produces an estimate of

mean ICP once per minute and can perform the necessary computations in less than

48

a second. ICP estimates are also saved to an SD card inside of the device casing.

Figure 4-4: The assembled medical device prototype for real-time noninvasive in-
tracranial pressure (ICP) estimation. Shown in Figure 1-3, but also here for conve-
nience and closure.

49

50

Chapter 5

Contributions and Future Work

5.1 Contributions

This thesis has contributed to the endeavor of developing a reliable, noninvasive, and

real-time method for measuring intracranial pressure by

• porting the Kashif algorithm to a microprocessor platform and optimizing it for

real-time ABP and CBFV waveform acquisition

• fabricating a medical device prototype complete with peripheral interfaces for

TCD and ABP monitoring hardware and display and recording functionality

for clinical use and post-acquisition analysis

• verifying that a real-time windowed approach performs comparable to the batch-

mode MATLAB implementation of the Kashif algorithm.

These contributions take a clear step toward the goal of real-time noninvasive ICP

estimation in a variety of clinical settings.

5.2 Future Work

While the performance of the device has demonstrated the successful application of

the Kashif algorithm to a real-time microprocessor-based application, there are several

areas that need to be expanded upon to improve its clinical usefulness.

51

5.2.1 Nexfin ABP as a proxy for MCA ABP

A key input to the Kashif algorithm is the ABP at the level of the MCA, which is

impossible to measure through noninvasive techniques. The Nexfin produces nonin-

vasive measurements of ABP at a finger artery and so the pressure waveform must

be transformed to represent the pressure at the MCA. This transformation involves

the height difference between the finger and the MCA, morphological differences due

to a number of physiological factors (see Section 2.2.2), and a time delay due to both

the difference in the arrival time of the pressure wave as well as delays in the signal

acquisition pathway (such as Nexfin processing time). Of these, only a simple align-

ment procedure has been implemented in the current device to match the heartbeat

onset times of the ABP and CBFV waveforms. The alignment procedure should be

improved and implemented on the device to preserve the physiological delay between

MCA ABP and CBFV due to vascular compliance. The relationship between the

ABP at the finger artery and the MCA should be more fully characterized and the

corresponding transformation should also be implemented on the device.

5.2.2 Sliding estimation

The testing results of the real-time implementation on the device highlighted the dif-

ference between ICP estimates produced with a sliding window and those produced

with non-overlapping windows. The device can run the computations necessary to

carry out the Kashif algorithm in less than one second, and so there is a possibil-

ity for implementing a sliding window approach on the device. As ABP and CBFV

waveforms are obtained, the samples would be shifted into the LPC4337 buffers and

the estimation procedure carried out as fast as possible. This approach would allow

the device to produce estimates at a rate more similar to that of invasive ICP mea-

surement techniques and perhaps be more useful to a physician for neurocritical care

monitoring.

52

Appendix A

ABP and CBFV Alignment

Implementation

The MATLAB implementation of the signal alignment procedure discussed in Section

2.2.4 was manually ported to a C++ implementation.

#define LAGS_TO_TEST 10

int d i s t ance (uint16_t a , uint16_t b) {

return abs ((int) a � (int)b) ;

}

void zero (int16_t ⇤⇤ s i gna l , int l ength) {

for(int i = 0 ; i < length ; i++) {

(⇤ s i g n a l) [i] = 0 ;

}

}

int getMedian (int16_t⇤ data , int s i z e) {

std : : vector<int16_t> to_sort (data , data+s i z e) ;

s td : : s o r t (to_sort . begin () , to_sort . begin ()+s i z e) ;

return to_sort [to_sort . s i z e () / 2] ;

}

53

int getMinDi f ferenceLag (int16_t⇤ ibd_abp , int16_t⇤ ibd_cbfv , int

num_ibds) {

int16_t a_medianIB = getMedian (ibd_abp , num_ibds) ;

int16_t b_medianIB = getMedian (ibd_cbfv , num_ibds) ;

float min_corre lat ion = �1;

int min_lag = 0 ;

for(int l ag = �LAGS_TO_TEST/2 ; l ag <= LAGS_TO_TEST/2 ; l ag++) {

int ibd_a_start , ibd_b_start = 0 ;

if(l ag < 0) {

ibd_a_start = 0 ;

ibd_b_start = �l ag ;

} else if(l ag > 0) {

ibd_a_start = lag ;

ibd_b_start = 0 ;

}

int t o t a l = 0 ;

int n = 0 ;

for(int index = 0 ; index < num_ibds�abs (l ag) ; index++) {

if(abs (ibd_abp [index+ibd_a_start]�a_medianIB) <=

((float) a_medianIB) ⇤1 .5 &&

abs (ibd_cbfv [index+ibd_b_start]�

b_medianIB) <= ((float)

b_medianIB) ⇤1 . 5) {

t o t a l += abs (ibd_abp [index+ibd_a_start]�

ibd_cbfv [index+ibd_b_start]) ;

n++;

}

}

float c o r r e l a t i o n = (float) t o t a l /(float)n ;

if(min_corre lat ion < 0 | | c o r r e l a t i o n < min_corre lat ion)

{

54

min_corre lat ion = c o r r e l a t i o n ;

min_lag = lag ;

}

}

return min_lag ;

}

int a l i gn_s i gna l s (int num_abp_beats , uint16_t ⇤⇤ abp_onsets , int

num_cbfv_beats , uint16_t ⇤⇤ cbfv_onsets ,

uint16_t⇤ abp_align , uint16_t⇤ cbfv_al ign) {

int16_t ⇤ couples_abp = new int16_t [num_abp_beats] ;

int16_t ⇤ couples_cbfv = new int16_t [num_abp_beats] ;

z e ro (&couples_abp , num_abp_beats) ;

ze ro (&couples_cbfv , num_abp_beats) ;

int j = 0 ;

uint16_t abp_start = (⇤ abp_onsets) [0] ;

uint16_t cbfv_start = (⇤ cbfv_onsets) [0] ;

// Find the closest beat for each beat

for(int beat_number = 0 ; beat_number < num_abp_beats ;

beat_number++) {

uint16_t abp_onset = (⇤ abp_onsets) [beat_number] �

abp_start ;

// Find the closest beat:

int min_distance = d i s t anc e (abp_onset , (⇤ cbfv_onsets) [0]

� cb fv_start) ;

int c lo s e s t_index = 0 ;

for(int partner_index = 1 ; partner_index <

num_cbfv_beats ; partner_index++) {

int new_distance = d i s t ance (abp_onset , (⇤

cbfv_onsets) [partner_index] � cb fv_start) ;

55

if(new_distance < min_distance) {

min_distance = new_distance ;

c l o s e s t_index = partner_index ;

}

}

uint16_t c l o s e s t_onse t = (⇤ cbfv_onsets) [c l o s e s t_index] �

cb fv_start ;

// Resolve competitions for a particular beat

if(beat_number == 0 | | c l o s e s t_onse t != couples_cbfv [j

�1]) {

couples_abp [j] = abp_onset ;

couples_cbfv [j] = c l o s e s t_onse t ;

j++;

} else {

uint16_t compet i tor1 = abp_onset ;

uint16_t compet i tor2 = (⇤ abp_onsets) [beat_number

�1] ;

int d i s tance1 = d i s t anc e (competitor1 ,

c l o s e s t_onse t) ;

int d i s tance2 = d i s t anc e (competitor2 ,

c l o s e s t_onse t) ;

if(d i s t ance1 > d i s tance2) {

couples_abp [j �1] = compet i tor2 ;

} else {

couples_abp [j �1] = compet i tor1 ;

}

}

}

for(int i = 0 ; i < num_abp_beats ; i++) {

couples_abp [i] += abp_start ;

couples_cbfv [i] += cbfv_start ;

56

}

int couples_length = j ;

for(int i = 0 ; i < couples_length ; i++) {

couples_abp [i] = couples_abp [i +1]�couples_abp [i] ;

couples_cbfv [i] = couples_cbfv [i +1]�couples_cbfv [i] ;

}

int d i f f e r en c e s_ l eng th = couples_length �1;

int beat_lag = getMinDif ferenceLag (couples_abp , couples_cbfv ,

d i f f e r en c e s_ l eng th) ;

int16_t o f f s e t = 0 ;

⇤abp_align = 0 ;

⇤ cbfv_al ign= 0 ;

if(beat_lag < 0) {

o f f s e t = ((int16_t) (⇤ abp_onsets) [0]) �((int16_t) (⇤

cbfv_onsets) [�beat_lag]) ;

} else {

o f f s e t = ((int16_t) (⇤ abp_onsets) [beat_lag]) �((int16_t) (⇤

cbfv_onsets) [0]) ;

}

o f f s e t += 1 ;

if(o f f s e t < 0) {

⇤ cbfv_al ign = �o f f s e t ;

for(int i = 0 ; i < num_cbfv_beats ; i++) {

(⇤ cbfv_onsets) [i] = (int16_t) (⇤ cbfv_onsets) [i] +

o f f s e t ;

}

} else {

⇤abp_align = o f f s e t ;

for(int i = 0 ; i < num_abp_beats ; i++) {

57

(⇤ abp_onsets) [i] �= o f f s e t ;

}

}

return beat_lag ;

}

58

Appendix B

Continuous Memory Manager

Implementation

A lightweight framework was used to provide virtual contiguous memory access to

the separate RAM blocks on the LPC4337.

class ContinuousMemory {

public :

/

*

Constructor. Creates a new instance of a ContinuousMemory.

*

Arguments:

*

capacity (int) -- the maximum number of memory blocks

that can be added.

*

/

ContinuousMemory (int capac i ty) {

capac i ty = c ;

num_memories = 0 ;

memories = new float⇤ [c apac i ty] ;

s i z e s = new uint16_t [capac i ty] ;

}

virtual ~ContinuousMemory () {

delete [] memories ;

delete [] s i z e s ;

}

/

*

AddMemory. Adds a memory block to the continuous memory.

59

*

Arguments:

*

memory (float

*

) -- a pointer to an allocated block of

memory.

*

size (uint16_t) -- the size of the allocated memory

block in bytes/4.

*

Returns:

*

bool -- True if the memory was successfully added. False

otherwise.

*

/

bool AddMemory(float⇤ memory , uint16_t s i z e) {

// If we are at capacity, we cannot add more memories.

if(num_memories >= capac i ty) {

return false ;

}

// Add the new memory.

memories [num_memories] = memory ;

s i z e s [num_memories] = s i z e ;

num_memories++;

return true ;

}

/

*

Set. Sets a 4-byte value in the continuous memory space.

*

Arguments:

*

address (uint32_t) -- the address of the memory location in

the continuous memory space. Valid addresses are from 0 to

GetTotalSize().

*

value (float) -- the value to write into the memory location

.

*

Returns:

*

bool -- True if the address was valid and the write

completed successfully. False otherwise.

*

/

bool Set (uint32_t address , float value) {

// Locate the memory in which the address falls.

60

for(uint8_t memory = 0 ; memory < num_memories ; memory++)

{

if(address >= s i z e s [memory]) {

// Still looking...

address �= s i z e s [memory] ;

} else {

// Found it!

memories [memory] [address] = value ;

return true ;

}

}

// The address is too large.

return false ;

}

/

*

Get. Retrieves a 4-byte value in the continuous memory space.

*

Arguments:

*

address (uint32_t) -- the address of the memory location in

the continuous memory space. Valid addresses are from 0 to

GetTotalSize().

*

Returns:

*

float -- The value found in the memory location. Will

return 0 if the memory location was not found.

*

/

float Get (uint32_t address) {

// Locate the memory in which the address falls.

for(uint8_t memory = 0 ; memory < num_memories ; memory++)

{

if(address >= s i z e s [memory]) {

// Still looking.

address �= s i z e s [memory] ;

} else {

// Found it!

return memories [memory] [address] ;

}

61

}

// The address is too large.

return 0 ;

}

/

*

SetArray. This function serves the same purpose as the native

memset() method, setting a block of memory to a particular

value.

*

Arguments:

*

start_address (uint32_t) -- the first address in

continuous memory space to set to value. Valid addresses

are from 0 to GetTotalSize().

*

value (float) -- the value to write into the block of

memory

*

size (uint32_t) -- the number of 4-byte locations in

which to write value. This will set start_address->

start_address+size to value.

*

Returns:

*

bool -- True if the address was valid and the write

completed successfully. False otherwise.

*

/

bool SetArray (uint32_t start_address , float value , uint32_t s i z e

) {

// Call Set() on each address from start_address to

start_address+size.

for(uint32_t addr = start_address ; addr < start_address+

s i z e ; addr++) {

if (! Set (addr , va lue)) {

return false ;

}

}

return true ;

}

62

/

*

Copy. This function serves the same purpose as the native

memcpy() method, setting a block of memory to a set of

values.

*

Arguments:

*

dest (CMemPointer

*

) -- a pointer to a valid CMemPointer

object that represents the starting address into which to

write copied data.

*

src (CMemPointer

*

) -- a pointer to a valid CMemPointer

object that represents the starting address of data to copy

.

*

size (uint32_t) -- the number of 4-byte locations to

copy.

*

Returns:

*

bool -- True if the address was valid and the write

completed successfully. False otherwise.

*

/

bool Copy(CMemPointer⇤ dest , CMemPointer⇤ src , uint32_t s i z e) (

CMemPointer⇤ dest , CMemPointer⇤ src , uint32_t s i z e) {

for(uint32_t num = 0 ; num < s i z e ; num++) {

if (! dest�>Set (num, src�>Get (num))) {

return false ;

}

}

return true ;

}

/

*

GetTotalSize. Retrieves the total number of 4-byte (float)

locations in the continuous memory.

*

Returns:

*

uint32_t -- The total number of 4-byte (float) locations

added to the continuous memory.

*

/

uint32_t GetTotalS ize () {

uint32_t sum = 0 ;

for(uint8_t memory = 0 ; memory < num_memories ; memory++)

{

63

sum += s i z e s [memory] ;

}

return sum ;

}

private :

int num_memories ;

int capac i ty ;

float⇤⇤ memories ;

uint16_t⇤ s i z e s ;

} ;

class CMemPointer {

public :

/

*

Constructor. Creates a new instance of a CMemPointer.

*

Arguemnts:

*

memory (ContinuousMemory

*

) -- a pointer to a valid

ContinuousMemory object that manages the continuous memory

space to which

*

this CMemPointer will point.

*

start_address (uint32_t) -- the address of this pointer

in continuous memory space.

*

/

CMemPointer (ContinuousMemory⇤ memory , uint32_t star t_addres s) {

s t a r t = start_addres s ;

mem = memory ;

}

/

*

Get. Retrieves a value in the memory space indexed from the

starting address of this CMemPointer object. This serves the

same

*

purpose as array indexing:

*

*

float

*

temp = new float[100];

*

cout << temp[3];

64

*

*

CMemPointer

*

ctemp = new CMemPointer(memory, 0);

*

cout << ctemp->Get(3);

*

*

Arguments:

*

address (uint32_t) -- the address (indexed from the

starting address of this CMemPointer object) to retrieve.

*

Returns:

*

float -- The value in the retrieved area of memory.

*

/

float Get (uint32_t address) {

return mem�>Get (s t a r t+address) ;

}

/

*

Set. Writes a value in the memory space indexed from the

starting address of this CMemPointer object. This serves the

same

*

purpose as array indexing:

*

*

float

*

temp = new float[100];

*

temp[3] = 20.14;

*

*

CMemPointer

*

ctemp = new CMemPointer(memory, 0);

*

ctemp->Set(3, 20.14);

*

*

Arguments:

*

address (uint32_t) -- the address (indexed from the

starting address of this CMemPointer object) to write.

*

data (float) -- the value to write into memory.

*

Returns:

*

bool -- True if the address was valid and the write

completed successfully. False otherwise.

*

/

bool Set (uint32_t address , float data) {

return mem�>Set (s t a r t+address , data) ;

}

65

// Accessor method for the CMemPointer start_address.

uint32_t GetStart () {

return s t a r t ;

}

// Accessor method for the ContinuousMemory to which this

CMemPointer points.

ContinuousMemory⇤ GetMemory () {

return mem;

}

private :

uint32_t s t a r t ;

ContinuousMemory⇤ mem;

} ;

66

Appendix C

Plotting ABP and CBFV on the LCD

A simple plotting function was implemented on an Arduino Nano based on the

adafruit graphics library [1] to display ABP and CBFV waveforms on the LCD dis-

play.

void d i sp l ayP lo t (bool drawTitle , S t r ing text , int text_s ize , uint16_t

co lo r , int x , int y , int width , int height , float plot_min , float

plot_max , float⇤ values , int num_values) {

uint16_t text_width = text . l ength () ⇤ t ex t_s i z e ⇤ 6 � 1 ;

int16_t cursor_x = (int16_t) (width � text_width � 7 + x) ;

int16_t cursor_y = (int16_t) (y + 15) ;

if(drawTit le) {

t f t . s e tTextS i z e (t ex t_s i z e) ;

t f t . setTextColor (c o l o r) ;

t f t . s e tCursor (cursor_x , cursor_y) ;

t f t . p r i n t (t ex t) ;

}

int p l o tL e f t = x ;

int plotRight = width + x ;

int plotTop = cursor_y + text_s i z e ⇤8 + 5 ;

int plotBottom = y + height �10;

int plotWidth = plotRight�p l o tL e f t ;

int plotHe ight = plotBottom�plotTop ;

67

t f t . f i l l R e c t (p lo tLe f t , plotTop , plotWidth , p lotHe ight +1, ILI9341_BLACK

) ;

for(int i = 0 ; i < num_values ; i++) {

float value = va lue s [i] ;

int xPos = i ⇤ ((float) plotWidth) / ((float) num_values) + p l o tL e f t ;

if(va lue < plot_min) value = plot_min ;

if(va lue > plot_max) value = plot_max ;

float a = ((float) p lotHe ight) /(plot_min�plot_max) ;

float b = plotTop + ((float) p lotHe ight) /(1 � (plot_min/plot_max)) ;

int yPos = a⇤ value + b ;

t f t . drawPixel (xPos , yPos , c o l o r) ;

}

}

68

Bibliography

[1] adafruit. https://www.adafruit.com, May 2016.

[2] M. Czosnyka and J.D. Pickard. Monitoring and interpretation of intracranial
pressure. Journal of Neurology, Neurosurgery, & Psychiatry, 75:813–821, 2004.

[3] E.E. Frezza and H. Mezghebe. Indications and complications of arterial catheter
use in surgical or medical intensive care units: analysis of 4932 patients. Amer-

ican Journal of Surgery, 64(2):127–31, 1998.

[4] F.M. Kashif, G.C. Verghese, V. Novak, M. Czosnyka, and T. Heldt. Model-based
noninvasive estimation of intracranial pressure from cerebral blood flow velocity
and arterial pressure. Science Translational Medicine, 4(129):129–44, 2012.

[5] B. Mokri. The Monro-Kellie hypothesis: applications in CSF volume depletion.
Neurology, 56(12):1746–8, 2001.

[6] J. Noraky. A spectral approach to noninvasive model-based estimation of in-
tracranial pressure. Master’s thesis, Massachusetts Institute of Technology, 2014.

[7] S.J. Pietrangelo. An electronically steered, wearable transcranial doppler ultra-
sound system. Master’s thesis, Massachusetts Institute of Technology, 2013.

[8] NXP Semiconductor. LPCXpresso Platform. https://www.lpcware.com/lpcxpresso,
May 2016.

[9] D. Popovic, M. Khoo, and S. Lee. Noninvasive monitoring of intracranial pres-
sure. Recent Patents on Biomedical Engineering, 2:165–79, 2009.

[10] A. Ragauskas, V. Matijosaitis, R. Zakelis, K. Petrikonis, D. Rastenyte, I. Piper,
and G. Daubaris. Clinical assessment of noninvasive intracranial pressure abso-
lute value measurement method. Neurology, 78(21):1684–1691, 2012.

[11] Motueka High School. http://learningon.theloop.school.nz/moodle/file.php/8

/Waves/blood_flow.jpg, May 2016.

[12] NXP Semiconductor. LPC435x/3x/2x/1x Product Data Sheet.
http://www.nxp.com/documents/data_sheet/LPC435X_3X_2X_1X.pdf, May
2016.

69

[13] NGX Technologies. LPC4330-Xplorer Quick Start Guide.
http://shop.ngxtechnologies.com/product_info.php?products_id=104, May
2016.

[14] J. Truijen, J.J. van Lieshout, W.A. Wesselink, and B.E. Westerhof. Noninva-
sive continuous hemodynamic monitoring. Journal of Clinical Monitoring and

Computing, 26(4):267–8, 2012.

[15] M. Ursino and C.A. Lodi. A simple mathematical model of the interaction
between intracranial pressure and cerebral hemodynamics. Journal of Applied

Physiology, 82(4):1256–69, 1997.

[16] Valgrind. http://www.valgrind.org, May 2016.

[17] W. Zong, T. Heldt, G.B. Moody, and R.G. Mark. An open-source algorithm to
detect onset of arterial blood pressure pulses. IEEE Computers in Cardiology,
30:259–262, 2003.

70

