
SensorChimes: Musical Mapping for Sensor Networks toward

Augmented Acoustic Ecosystems

by

Evan F. Lynch

Submitted to the

Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2016

Copyright 2016 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Author

Department of Electrical Engineering and Computer Science
January 29, 2016

Certified by

Prof. Joseph A. Paradiso, Professor of Media Arts and Sciences, Thesis Supervisor
January 29, 2016

Accepted by

Dr. Christopher J. Terman, Chairman, Master of Engineering Thesis Committee

SensorChimes: Musical Mapping for Sensor Networks toward

Augmented Acoustic Ecosystems

by

Evan F. Lynch

Submitted to the Department of Electrical Engineering and Computer Science

on January 29, 2016, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

SensorChimes aims to create a new canvas for artists leveraging ubiquitous sensing and data collec-
tion. The Tidmarsh Living Observatory Initiative, which is documenting the transformation of a
reclaimed cranberry bog with a large-scale sensor deployment, provides an opportunity to explore
data-driven musical composition based on large-scale environmental sensor networks.

This thesis presents a framework that facilitates musical mappings for such sensor networks. A
library of C-externals called ChainFlow for the graphical programming language Max/MSP that
provides an interface to real-time and historical data for large sensor deployments was designed
and implemented.

This thesis envisions musical mapping for sensor networks as a tool for augmenting presence and
telepresence in real and virtual worlds, by adding to the acoustic ecosystem. Physical processes are
manifested as musical ideas rendering an ambient display. The ChainFlow library along with spa-
tial audio techniques were used to create immersive musical compositions that are complemented
by a graphical 3D virtual world. These works, driven by the sensor network deployed at Tidmarsh,
are presented as case studies in augmented presence through musical mapping.

Thesis Supervisor: Joseph A. Paradiso
Title: Professor of Media Arts and Sciences

Acknowledgements

I would like to acknowledge the help and support of my advisor, Joe Paradiso, and the members of

the Responsive Environments Group at the MIT Media Lab. Particularly, I thank Spencer Russell,

Gershon Dublon, and Brian Mayton for helpful technical discussion and advice. I thank Nan Zhao

and Juliana Cherston for their insights and thoughts about musical mapping and Jie Qi for insights

about being a graduate student at the Media Lab. Additionally, I would like to thank composers

Ricky Graham and Evan Ziporyn for jumping at the opportunity to collaborate and contributing

to the core of this project. Thanks also to Daniel Manesh and Nick Joliat for conversations and

thoughts. Finally, many thanks to all my friends and to my family, especially my mother who

helped copy edit and listened to me complain about the structure of my writing.

2

Contents

1 Introduction 9

1.1 Musical Mapping Composition Framework . 10

1.2 Augmented Acoustic Ecosystems . 11

1.3 Tidmarsh Farms and the Living Observatory . 11

1.4 Project Overview . 12

2 Motivation and Prior Art 15

2.1 Presence . 15

2.2 Acoustic Ecology . 16

2.3 Telepresence . 17

2.4 DoppelLab . 18

2.5 Auditory Display for Spatial Data and Sensor Networks 18

3 ChainFlow 21

3.1 Max/MSP . 21

3.2 ChainAPI . 22

3.3 Building an Interface in Max/MSP . 23

3.4 Site Abstraction . 23

3.5 Space Abstractions . 25

3.6 Time Management . 26

3.6.1 Real-time and Pseudo-Real-time . 26

3.6.2 Sequences of Historical Data . 27

3

3.6.3 Time Formatting . 28

3.6.4 Semantic Parameter Mapping . 29

4 Virtual Sonic Environment 31

4.1 DoppelMarsh . 33

4.2 Immersive Sound in Max/MSP . 34

4.2.1 Device Voice . 35

4.2.2 Spatializer . 35

4.2.3 Polyphony Handler . 35

4.3 Client Bundling and Deployment . 37

4.3.1 Installation Deployment . 37

4.3.2 Web Deployment . 38

4.3.3 Onsite Deployment . 38

5 Case Studies 39

5.1 Case Study 1: Parametric Mixing . 39

5.1.1 Parametric Mixing . 40

5.1.2 Dynamix Interface . 41

5.1.3 Discussion and Future Work . 44

5.2 Case Study 2: Effects-Chain Mapping . 45

5.2.1 Texture/Timbre Space . 45

5.2.2 Mapping From Correspondences . 46

5.2.3 Discussion and Future Work . 46

5.3 Case Study 3: Mapping Historical Data . 48

5.3.1 Discussion and Future Work . 48

6 Conclusion and Future Work 49

A ChainFlow Objects 55

A.1 Externals . 55

A.1.1 [chain.site] . 55

A.1.2 [chain.info] . 56

4

A.1.3 [chain.device] . 56

A.1.4 [chain.time] . 57

A.1.5 [chain.metric] . 57

A.1.6 [chain.zone] . 58

A.1.7 [chain.data] . 58

A.1.8 [chain.map] . 59

A.2 Abstractions . 59

A.2.1 [chain.browser] . 59

A.2.2 [chain.cache] . 59

A.2.3 [chain.timerange] . 60

A.2.4 [chain.itertable] . 60

5

6

List of Figures

3.1 The [chain.map] object uses the UI portion of the Max SDK to present a map of

the associated site. Each dot represents a sensor device which can be selected with

a mouse click. The blue arrow is a virtual “listener” position that can be set with a

message. 24

3.2 The [chain.itertable] abstraction combines an instance of [chain.data] with

an graphical interface for iterating through stored data. 27

3.3 Semantic Parameters Interface. Each of these sliders corresponds shows the local

conditions at a selected device projected onto a “semantic” axis. These sliders are

moved to follow real conditions or can be moved by the composer to simulate con-

ditions in the process of composition. 29

4.1 Within Tidmarsh, sensor nodes communicate low-level messages to a base station

connected to the internet which relays to a server at the lab. These messages

are parsed and posted to the ChainAPI server over HTTP. The DoppelMarsh and

Max/MSP clients interface with ChainAPI and communicate with each other over

OSC. 32

4.2 Virtual Tidmarsh . 33

4.3 Virtual Sonic Environment Overview. Many instances of the device voice patch are

managed by [chain.zone] which follows the virtual player position in Unity. Each

device voice generates a signal based on a mapping from device-specific data, global

data, and a parametric software defined instrument. This signal is spatialized based

on the player’s virtual position. 34

7

4.4 Polyphony Handler . 36

4.5 Three different physical deployment scenarios. 37

5.1 The Dynamix interface consists of a graph view, axies list, track list, and parameters

list. A cursor position in the parameter space is set by the five sliders in the axies

list. The graph visualizes each Gaussian distribution as an ellipse in two selected

axies. The boundary of the ellipse is an isocontour of the distribution projected onto

the shown axies at the hyperplane specified by the cursor position of the non-shown

axies. The value of the isocontour is set by the “Threshold” parameter. The position

of a selected track in the parameter space may be adjusted graphically or with the

parameters pane. 42

5.2 These four graphs highlight a few parts of the mapping that makes The Bog Blues.

The top two graphs show that the rhythmic feel of the piece varies from a fast and

anxious on the cold end of the temperature spectrum to slow and relaxed on the

warm end. Major tracks are kept on the bright side of the illuminance spectrum

and minor tracks on the dark. The lower two graphs show that the many melodic

voices each take a small region of the deviation space. For example, if a device is

exceptionally warm (two to three standards of deviation above the mean for the

site), the “guitar high” melodic line can be heard. If it is exceptionally cold, the

“guitar slow” melodic line is heard. 43

5.3 Ricky Graham’s Interface. Each row corresponds to a sensor device at Tidmarsh.

The first column is temperature, the second is pressure, and the third is illuminance.

The three tables of each row drives a granular synth patch. 47

8

Chapter 1

Introduction

The modern world is increasingly documented not only by our writing, recording, and collective

memory, but by the many sensors that are embedded in ubiquitous devices. Modern sensor tech-

nology allows for efficient collection of these data at a large scale. Our ability as humans to use this

wealth of information is constrained by the physical limitations of human sensory perception and

the limitations of the interfaces that mediate it. This thesis focuses on how these data can be lever-

aged for new forms of musical composition, envisioning a synthesis of electronic music composition

and ubiquitous sensing toward augmented acoustic ecosystems.

This thesis presents a composition framework consisting of several tools that integrate into existing

systems with the dual goal of facilitating artistically meaningful interactive music and facilitating

auditory display driven by environmental sensor networks. While the framework is general, a sensor

network deployed in a wetland in southern Massachusetts called Tidmarsh is the impetus and focal

point of the exploration. This thesis contributes both the composition framework and specific

patterns of musical mapping demonstrated through case study works by collaborating composers

both inspired and driven by Tidmarsh.

The main components of this framework are ChainFlow and DoppelMarsh. ChainFlow is an inter-

face developed for this project that endeavors to make it easy to route any real-time or historical

data from a sensor network to any point in the graphical programming environment Max/MSP,

9

allowing for quick realization of mapping ideas with a minimum of work and expertise.1 Doppel-

Marsh is a virtual replica of Tidmarsh created with the Unity game engine as part of a related

project [24]. In the musical works presented in this paper, the virtual environment is leveraged to

render an immersive virtual exploration of the wetland with spatialized musical mappings.

1.1 Musical Mapping Composition Framework

Musical mapping is the process of designing and implementing the relationship between a non-

audio input signal or collection of data and a musical audio output. Much work has been done

on the problem of musical mapping in the realm of instrument design for performance. With an

electronic instrument, unlike an acoustic instrument, the input device which the musician plays

is decoupled from the mechanism for producing sound. The connection between the two can be

any programmable mapping. The input can be mapped linearly or non-linearly to the fundamental

parameters of sound such as pitch, volume, and timbre, or to more abstract musical parameters such

as rhythm, tempo, affect, style, harmony, etc. This project is concerned with a slightly different

kind of musical mapping where the input is collected from the environment rather than produced

by a performer. The goal of mapping for a performance instrument is generally to recreate the

performer’s conceived gesture and expression with sound [7]. In contrast, environmental data lacks

a performer’s expression and conception, so the goal is now to skirt the boundary between “musical

mapping” and what might be better termed “data sonification”—to generate sound that renders

data as a kind of audio “visualization” or “auditory display.” Along this boundary, a musical idea

is created via the elucidation of a physical or environmental process through sound, a compositional

technique which composer Polansky calls ‘manifestation’ [27].

One of the great challenges with a project aiming to create a composition framework is determining

the correct scope and the right constraints. Which constraints on the composer’s creative control are

liberating and which stifling? What interface is developed and directed enough to be a meaningful

step up from starting with nothing while at the same time general enough to not be found irrelevant

and discarded when the creative process takes an unexpected turn? These are the questions the

1Max/MSP: https://cycling74.com/products/max/

10

designs in this thesis are motivated by and evaluated with.

1.2 Augmented Acoustic Ecosystems

When an observer enters a space, some aspects of their environment are obvious—sound is audible,

reflected light is visible, a light breeze is palpable. However, many phenomena remain imperceptible

because we do not have appropriate biological sensors to detect them, they are too large or small,

they change on timescales that are too long or short, or they are beyond our reach. How “present”

we are in an environment relates not to how much we know abstractly about the environment but

to how much we feel about the environment. This project aims to augment our “presence” by

providing additional information about the environment through the acoustic medium, expanding

the scope of information that we can readily and immediately intuit.

The windchime, a prehistoric wind sensor that makes music, inspires this project. Windchimes are

augmentations to the acoustic environment that mechanically couple wind speed and direction to

sound. A “composer” decides what material to make the chime out of, which pitches the chime

should play, and the geometry of the chimes, crafting a space of musical expression that the wind

will then actuate. The basic envelope and structure of local wind can be gleand from the music

made by the chimes. This project reimagines, generalizes, and augments this concept in the digital

domain with electronic sensors that measure many parameters, electronic music composition, and

virtual reality.

1.3 Tidmarsh Farms and the Living Observatory

Tidmarsh is a 577 acre wetland restoration project in southern Massachusetts, the largest current

restoration project in the state, into which we have installed a large environmental sensor network

as part of the Living Observatory Initiative [24]. It was a cranberry bog until 2010, when the

restoration of its wild ecology began. The Living Observatory Initiative aims to document ecological

processes in the wetland as it undergoes a ten year restoration process. The scale of the Tidmarsh

sensor deployment is large, with many sensors distributed across a large area. It represents a

11

testing ground for ideas that require this kind of rich data that will be available everywhere in

the near future, and is the focal point of a variety of ongoing investigations ranging from data

visualization and augmented reality, to innovative ways of studying environmental processes and

change [8]. While the landscape is reshaped and the wild ecology restored, sensors monitor the

transformation.

The sensor network at Tidmarsh consists of dozens of battery powered nodes designed by Respon-

sive Environments RA Brian Mayton, which form a low-power mesh network built on the IEEE

802.15.4 specification [24]. Each device measures environmental parameters including tempera-

ture, humidity, illumination, and pressure, and is designed to be extensible so that other sensors

of interest (such as soil moisture, wind, gas levels, etc.) can be easily added. Live audio is also

streamed from various sites in the wetland. The data are relayed to a base station via a wireless

mesh network, where they are uploaded to a remote server. From this server, historical data can

be browsed, and the live data can be streamed as they are collected. Sensor updates arrive on

approximately thirty second intervals to keep the energy usage of the battery-powered nodes at a

minimum.

With descriptions, it is difficult to capture the essence of the space which is palpable to a visitor.

The site is extremely dynamic across seasons. In the morning in spring, a chorus of birds begin

chirping, and in the evening, the frogs take over from the birds. On a bright summer morning,

the air is crisp and smells of wet earth, and there is an overwhelming sense of greenness and life.

Recording everything that is happening in a place like Tidmarsh is still the realm of science fiction,

but the dense sensor network at Tidmarsh is step forward.

1.4 Project Overview

SensorChimes integrates several existing tools and systems and a novel composition interface to

experiment with musical mapping for the network of environmental sensor nodes deployed at Tid-

marsh. Some of these components are specific to this site, such as the deployment of sensor nodes

themselves, while other components could be reused for other sites or applications. The “product”

of this integration is an application that runs on a client machine that renders both a graphical

12

and sonic display.

The first main contribution is a low-level and general interface to sensor network data for Max/MSP

called ChainFlow described in Chapter 3. ChainFlow provides an interface to real-time and his-

torical data for each device on the site, as well as basic analysis of the spatial variation of the

parameters measured at the site. ChainFlow and Max/MSP together form a powerful musical

mapping interface, the design of which is discussed in depth. However, this thesis focuses on a few

specific designs that were implemented using ChainFlow.

A system was created to render an immersive sonic environment with each sensor device at Tid-

marsh generating an audio voice. The implementation of this virtual sonic environment is discussed

in Chapter 4. In summary, a different musical audio signal is generated for each sensor device based

on the environmental conditions local to that device together with aggregate features calculated

across groups of devices. Then, all of these signals are delivered to the listener simultaneously,

each spatialized to sound as if emanating from the devices themselves. The listener moves around

the virtual space and explores the different signals and by consequence the underlying environ-

ment.

The immersive sonic environment discussed in Chapter 4 is only one layer of the mapping; it

leaves the all important audio generation from device-local data unconstrained. Chapter 5 of

this thesis presents three case studies that look at a different strategies for accomplishing this

device voice generation and mapping: parametric mixing, effects-chain mapping, and historical

data mapping.

13

14

Chapter 2

Motivation and Prior Art

There are many works of music and sound art inspired by or driven by the natural world. Im-

mersive sound and musical mapping are broadly researched fields. This chapter will discuss the

most relevant prior art which motivates this project, focusing on Acoustic Ecology, presence, and

telepresence. Then, relevant prior works related to auditory display, low-power sensor networks,

and interfaces for musical mapping will be presented.

2.1 Presence

In “Composing perceptual geographies”, Maryanne Amacher references the emerging “technolo-

gies of presence” that allowed for immersive experiences that function at a very basic perceptual

level. In previous decades, technologies like amplifiers, loudspeakers, spatialized audio, DSP, etc.

provided the means to author immersive sonic experiences that leverage presence like Amacher’s

pioneering “Music For Sound Joined Rooms” [1]. “Public Supply” and “Drive in Music,” two in-

stallations by another pioneering composer Max Neuhaus, augmented specific locations with sound

to accentuate their perceptual characteristics, using the sound and space itself as an expanded

instrument [18].

Recent developments, particularly sound spatialization techniques and the advent of ubiquitous

sensing devices and cheap, low-power wireless networks provide an opportunity to go a step further:

15

to augment our perception through immersive sound and image in a dynamic way that responds

to the environment itself. In “3-D Sound for Virtual Reality and Multimedia,” Begault points out

that spatialized 3D audio can contribute greatly to immersivity, and as a display of information,

provide fast and fluid attention shifting in comparison to visual displays, providing “situational

awareness” [2]. Lombard and Ditton define presence as “the perceptual illusion of non-mediation ”

[20]. With 3D audio, new axies of presence measured by sensor networks can perhaps be presented

with this illusion.

2.2 Acoustic Ecology

In a discussion of music sourced from a wetland, it would be remiss to ignore Acoustic Ecology.

The term comes from composer R. Murray Schafer and has a philosophical connection to the work

of John Cage. It is a philosophy that “suggests that we try to hear the acoustic environment as

a musical composition and further, that we own responsibility for its composition” [35]. In recent

history, expanded technology and recording techniques such as bioacoustics have created new niches

for musicians and artists studying the natural world and the term “Acoustic Ecology” has broadened

it’s meaning beyond the academic school of thought that coined it. Works like David Dunn’s “The

Sound of Light in Trees” and John Bullit’s “Earthsound”1 record the imperceptible and make it

audible “achieving a deeper understanding of how sound and our sensory modality of hearing are

unique organizing forces within human society, and our physical/ecological environment.” David

Dunn contrasts this new concern to the more traditional role of the composer in western art

music, to “express” the self through compositional acumen [10]. In contemporary practice, both

concerns are frequently present, and some have pointed out the connection between sonification

and romanticism [32].

Related to Acoustic Ecology is the art of emulating natural soundscapes with synthetic and manipu-

lated sounds. Works like Wendy Carlos’ “Sonic Seasonings” and Apostolos Loufopoulos’s “Bee” are

inspired by and evoke phenomena of the natural world in profound ways [3, 21]. Other artists, like

Jana Winderen, have made music concrete using detailed field recordings of the natural world [26].

1Earthsound: http://www.jtbullitt.com/earthsound/

16

While these works do not use real-time sensing or sonification, they set a high bar for composition

that seeks to evoke and transform nature. It is hoped that this project will facilitate sensor-aware

compositions that achieve the same resonance.

Where this project transcends Acoustic Ecology is its embrace of non-audible “sensory modalities”

that can only be understood by the human through mediation. Previous works that use non-audible

data in the context of ecological consideration are numerous. Matthew Burtner’s “Iceprints” uses

the sound of melting glaciers and a century of data marking the extent of Arctic ice in a composition

for piano and electronics.2 Marty Quinn’s “Climate Symphony” makes prosaic use of sonifications of

climate-related data on huge timescales including chemical analysis of ice cores, ice sheet movement

and change, and solar intensity [28]. These works make use of static data sets rather than real-time

sensing. Sturm’s “Pulse Pulse” is an eight-channel composition constructed from sonifications of

data from 14 buoys in the Pacific Ocean [33]. While these sensors provide real-time data that is

spatial in nature, the composition itself is a fixed construction and does not consider the spatial

distribution of the buoys. This thesis presents musical compositions that are driven in real-time

and focus on the spatial as well as temporal variation of environmental parameters.

2.3 Telepresence

In Maryanne Amacher’s first works, an installation series called “CITY-LINKS” begun in 1967,

she pioneered the use of telepresence in art. In these works, sound from disparate locations were

transmitted to an exhibition space in real-time over telephone lines. Distant spaces were brought

together in a small space to be experienced synchronously, inviting perception beyond the walls of

the exhibition, inspiring simultaneous presence in all these spaces [17].

Echoing Amacher’s work, this project records the soundscape of Tidmarsh in real-time with nu-

merous microphones. In “Cricket Radio,” Himmelman suggests that we are unaware of the sounds

of nature and encourages us to go out into the world, collect, and listen to night-singing insects

[15]. In our contemporary world, many do not have frequent opportunity to connect to the spaces

and sounds of the natural world. One can tune into the birds, frogs, and crickets at Tidmarsh from

2Iceprints: http://matthewburtner.com/iceprints/

17

anywhere on earth. These audio streams can be used and blended into a musical composition with

sonification elements driven by the environmental sensors, which add extra dimensions of telepres-

ence. These audio streams from the wetland were presented as part of a project called ListenTree

which used transducers attached to the roots of trees to create an audio-haptic display that blends

into the natural environment [9].

2.4 DoppelLab

DoppelLab is a 3D cross-reality representation of the MIT Media Lab populated with visual repre-

sentations of sensor devices located throughout the lab and spatialized audio streams from micro-

phones distributed throughout the lab [16]. DoppelLab is the predecessor and namesake of Doppel-

Marsh and builds on a variety of projects at the MIT Media Lab dealing with ubiquitous sensing

and cross-reality [19]. It began the process of imagining spatialized sonification of non-audible data

in a cross-reality virtual environment, but stopped short of building a platform for composers to

realize music. SensorChimes is a logical next step, building a versatile system for exploring both

sonification and composition with a new sensor deployment and 3D environment.

2.5 Auditory Display for Spatial Data and Sensor Networks

Sonifications are already present in our world, from the classic Geiger counter which blips for each

detected ionizing particle, to most recent work like SensorTune which uses sonification to assist

with setting up a wireless sensor network like the one at Tidmarsh [6]. However, auditory display

for spatial data, especially data collected over a wide area, is an inherently difficult problem which

has been researched much less. Nasir et. al. provide a good review of strategies for handling

spatial data in sonifications focusing on the synergy between spatialization of sound and spatial

data [25].

A recent project from our lab called Quantizer is a musical mapping framework for compositions

based on calorimeter data from the ATLAS experiment at CERN [4]. The data associated with a

collision event in the Large Hadron Collider are energy deposit distributions across the geometry

18

of four layers of detectors. Compositions produced with Quantizer took a several approaches to

handling the spatial nature of the data. One sweeps across the geometry of the distribution over

time. Another uses spatialization to “approximate the sensation of the listener’s head position at

the center of the detector,” with synthesized sounds following approximate particle trajectories.

The data collected at Tidmarsh are of a very different nature, each sensor measures only one value

(not a distribution), and the real-time rate of variation of the parameters is much slower than the

extremely short-duration collisions at the LHC.

19

20

Chapter 3

ChainFlow

ChainFlow is a low-level interface for working with data from a sensor network in the graphical

programming language called Max/MSP, built on top of ChainAPI. The goal of the ChainFlow

interface is to make it easy to route any data from ChainAPI to any point in a Max patch to allow

for quick realization of mapping ideas with a minimum of work and expertise. Real-time sensor

updates from specified devices, aggregate measures over multiple devices, and historical time-series

data can all be pulled into Max. ChainFlow is designed to stand on its own and be a fairly general

tool for integrating a sensor network into Max/MSP, agnostic to both its ultimate use and the

specifics of the site. However, it incorporates a number of objects that were designed to facilitate

the specific patterns of mapping that are described in later chapters. This chapter gives a brief

background in Max/MSP and ChainAPI, and then discusses ChainFlow. A complete description

of the objects in ChainFlow is presented in Appendix A.

3.1 Max/MSP

Max/MSP is a well-respected visual programming language for media, owned and distributed by

Cycling ’74, which is in common use by electronic musicians and composers [23]. It was chosen as

the composition interface for this project over some alternatives like SuperCollider or Chuck because

of its accessibility to artists that lack a background in software engineering or experience with text-

21

based programming, and because of its polished graphical interface which makes it appropriate for

building listener-facing interactive interfaces [34, 5].

To understand the discussion related to Max/MSP it is important to now define a few terms. A

Max/MSP graphical program or subprogram is called a “patch.” An “object” is an abstraction

which is defined by its attributes and methods and is represented in the patch as a rectangle with

“inlets” and “outlets.” For example a [sum] object might output the sum of a sequence of numbers

from its outlet when it receives that sequence at its inlet. The patch routes information from object

outlets into other object inlets in the form of “messages” which are scheduled as they happen in

one thread, or in the form of “signal” buffers which are scheduled in a thread constrained to run at

a chosen signal rate. These routes are represented in the patch by lines or “cables.” The methods

of an object define its behavior when it is created, destroyed, and when it receives a message at

one of its inlets.

3.2 ChainAPI

ChainAPI is an HTTP/WebSocket API developed by Russell et. al to provide a common interface

for accessing data and metadata from sensor networks in the absence of broadly adopted standards

[31]. It is built on top of HAL/JSON and follows the principles of REST [13, 22]. For SensorChimes

and other projects related to Tidmarsh, ChainAPI provides strong separation between the sensor

network that produces data and the client applications that consume it. This allows the sensor

network to be developed independent of applications that use it. Additionally, the ChainAPI

abstraction layer means that applications built on top of it, like ChainFlow, can easily be reused with

a different sensor deployment or system that implements ChainAPI. A client talks to a ChainAPI

server instance over HTTP. When available, ChainAPI exposes websocket connections for real-time

data updates.

ChainAPI is quite flexible, but for this project, it is organized around three abstractions: “site,”

“device,” and “sensor.” The “site” is the broad wrapping abstraction that carries a collection of

devices and metadata—Tidmarsh is a “site.” Each “device” corresponds to a physical device or

node of the sensor network that has a single position in space, a unique identifier, and carries a

22

collection of sensors. Each “sensor” corresponds to one of the sensors physically attached to a

device and carries the name of the metric that it measures plus the timestamped data that have

been collected by that sensor.

3.3 Building an Interface in Max/MSP

The first version of ChainFlow was implemented entirely in Max/MSP’s visual language as a series

of “patches.” Because Max does not have built-in objects for connecting to websockets or for

making HTTP requests, an external server written in python communicated with the ChainAPI

server and relayed information to Max over OSC1. Although functional, there were a number of

downsides to this approach. First, the OSC bridge complicated the interface and subverted the

goal of making a convenient and flexible interface that would be easy to reconfigure. Second, it

proved very difficult to implement more complicated operations like querying, resampling historical

data, caching recent values, and maintain spatial metrics on recent sensor readings; these were left

to the python server which necessitated an increasingly complex OSC interface and increasingly

complicated OSC message routing in Max. Third, having an external python process running made

the system less portable.

The second version of ChainFlow takes advantage of the Max SDK, which provides a way for

developers to integrate their own objects into Max written in C. Implementing ChainFlow as a

collection of C-externals means web transactions and other complex operations are implemented in

C-code (and thus not directly present in the patches), simplifying the interface.

3.4 Site Abstraction

ChainFlow is built on a master/worker pattern. The master [chain.site] object is associated

with the ChainAPI “site” abstraction. For this thesis, the site is universally Tidmarsh, but any

chain-compatible site can be used. When the [chain.site] object loads, it requests a summary

of the site from ChainAPI, including the list of devices and sensors and the URL for the websocket

1Open Sound Control: http://opensoundcontrol.org

23

stream of real-time update events if they exist. It can then start a process to pull from a websocket

stream or query historical data and broadcast sensor updates as they arrive to any attached worker

objects described below. The [chain.site] object saves cached data and metadata in a SQLlite

database in memory.2

Each master object is instantiated with a “name” attribute. Worker objects are also instantiated

with a “name” attribute and attach to an existing [chain.site] of the same name. If no such

[chain.site] exists, the worker object exists in an unattached state until it finds a [chain.site]

to attach to. When a [chain.site] gets destroyed, attached worker objects detach.

Site-wide state, including websocket connections, cached data, and metadata, must be saved some-

where in memory, ideally without redundancy. The master/worker paradigm saves this state only

in a single [chain.site] object which other objects can still access and modify. The usual Max

paradigm would have that state be propagated to other objects via messages through the outlets

and inlets. By maintaining a connection between master and worker objects in C-code, the amount

of patching required to integrate the various objects in ChainFlow is reduced significantly.

Figure 3.1: The [chain.map] object uses the UI portion of the Max SDK to present a map of the
associated site. Each dot represents a sensor device which can be selected with a mouse click. The
blue arrow is a virtual “listener” position that can be set with a message.

The most basic worker object is [chain.info] which provides access to the metadata stored in

the associated [chain.site] including the list of devices and metrics. Additionally, it can return

the nearest n devices from a selected point in order of distance, which can be useful for finding a

device near a point of interest. Figure 3.1 shows the [chain.map], a UI object that presents a map

2SQLite: https://www.sqlite.com

24

of the sensor devices at the associated site. Each device appears as an orange dot, and the position

of a virtual listener represented by a blue arrow can be set.

3.5 Space Abstractions

The [chain.device] object provides an interface to all sensor metrics measured at a given point by

a physical device. These metrics can also be normalized against the mean and standard deviation

of the entire site. Each instance of [chain.device] carries it’s own location as Latitude/Longitude

coordinate pair and in Unity meters in the X-Z plane in a manner consistent with the coordinate

system of DoppelMarsh. These meter coordinates are useful for determining distances and are used

throughout the internals of ChainFlow.

The [chain.zone] object is designed to statically manage the list of devices that are within a

circular “zone,” specified by center point and radius, as the center point and radius vary. The

“zone” is specified with an “enter” and an “exit” radius. If the zone moves such that a device

that was formerly outside the “enter” radius is now within the “enter” radius, that device is added

to the list and the object outputs added [device name]. If the zone moves such that a device

that was formerly inside the “exit” radius is no longer, the device is removed from the list and

the object outputs removed [device name]. Setting the “enter” radius inside the “exit” radius

provides hysteresis which prevents oscillation between adding and removing a device when it is

very close to the boundary. This object is used in the implementation of the immersive sonic

environment.

The [chain.metric] object provides a more general interface for a specified metric which provides

access to its value and measures on its spatial variation across all of the devices that measure it.

For each [chain.metric], a metric is selected and a circular zone around point p with radius r is

specified. Then, the object can return a number of things:

1. The proximal or bilinear interpolation of the metric at p based on near devices

2. The mean value of the metric for the devices within the r of p

3. The standard deviation of the metric for the devices within r of p

25

4. The deviation of the interpolated value of the metric at p from the mean within r

5. The max value of the metric among the devices within r of p

6. The min value of the metric amoung the devices within r of p

7. The median value of the metric among the devices within r of p

Importantly, using the proximal interpolation, provides a way to retrieve the sensor reading for the

selected metric that is most relevant to the chosen point in space. With this interface, even if a

metric is only measured by a few devices in the site, the best guess for the metric at a any point is

still returned.

3.6 Time Management

The marsh undergoes changes on many timescales at once. There are daily cycles, weather patterns

changing day to day, seasonal changes month to month, and climate change from year to year. Any

and all of these timescales of change could be interesting for an artist to realize in music.

3.6.1 Real-time and Pseudo-Real-time

Each [chain.site] instance has a clock, which can either run in “real-time” following the system

clock, or in “pseudo-real-time” specified by a chosen rate in historical seconds per second and

a starting point in the past. In both modes, the site object notifies attached workers when an

update from a sensor (real or historical) is received. When running in “pseudo-real-time,” the

[chain.site] instance starts two threads and a priority queue. The first thread looks ahead into

the future-past and makes HTTP requests to ChainAPI for events which it puts into the priority

queue. The second thread consumes the priority queue as the historical clock advances past the

earliest event in the queue.

26

3.6.2 Sequences of Historical Data

The site-wide clock is useful for mapping patterns that use the instantaneous state of the environ-

mental conditions (now or in the past) to determine musical characteristics. However, mapping

patterns that consider the trajectory of an environmental parameter over the course of a period

of time for determining musical characteristics on a timescale require access to series of historical

data. To facilitate this kind of pattern, the [chain.device] object implements a data method,

which fetches a sequence of measurements for a chosen metric from a chosen start time to a chosen

end time. For large time spans, this can be an enormous number of data points, so the behavior

can be modified to return only one point per chosen interval. The data point in each interval can

be determined by linear interpolation around the interval boundaries or by averaging the points in

each interval.

Requests to ChainAPI for large data sets are not currently well optimized and there is no caching

system in place at the ChainAPI level, so ChainFlow includes its own object [chain.data] for

saving a requested data sequence to disk so that it need not be re-requested. A convenient abstrac-

tion, [chain.cache], will make a specified data request only if a file containing that data is not

available that it will then write.

Data in ChainAPI are not necessarily sampled periodically, and each have a potentially arbitrary

timestamp. The [chain.data] abstraction also provides an interface for resampling a data se-

quence on a specified fixed interval via linear interpolation.

Figure 3.2: The [chain.itertable] abstraction combines an instance of [chain.data] with an
graphical interface for iterating through stored data.

27

The [chain.itertable] pictured in Figure 3.2 provides a means of visualizing and iterating

through a sequence of historical data.

3.6.3 Time Formatting

When handling time-series data, it is important to establish a consistent representation of time.

All time-series data in ChainAPI are stored in ISO formatted strings with the UTC timezone. This

format is usefully human-readable; however, it does not easily afford mathematical operations. In

ChainFlow, time is consistently represented in seconds since the UNIX epoch (UTC) with possi-

bly a floating point partial second. With the exception of the [chain.time] object, objects in

ChainFlow use the seconds since UNIX epoch format in inputs and outputs to make it easy to

perform mathematical operations in seconds on the message within Max/MSP. The [chain.time]

object provides a parse method and a format method to go back and forth between the two

representations.

To make it more convenient to specify a time range for a historical series request, two addi-

tional abstractions were created. The [chain.tdparse] abstraction converts human-readable time

deltas into seconds. For example, “1day 1hour 1min 4sec” would be converted to 90,064. The

[chain.timerange] abstraction converts a human-readable time range specification relative to

“now” or “mdnt” (the most recent midnight) to a start-end pair of seconds since the UNIX epoch.

These specifications can come in three forms: “last [timedelta]”, “next [timedelta]”, or “from [time]

to [time].” A few examples are presented:

• last 4hour - range spanning the previous four hours

• next 3hour 2sec - range spanning from now until three hours two seconds in the futre

• from now -1day to now - range spanning from yesterday at this time to now

• from mdnt -1day to mdnt - range spanning from the midnight that began yesterday to the

midnight that began today

28

Figure 3.3: Semantic Parameters Interface. Each of these sliders corresponds shows the local
conditions at a selected device projected onto a “semantic” axis. These sliders are moved to
follow real conditions or can be moved by the composer to simulate conditions in the process of
composition.

3.6.4 Semantic Parameter Mapping

An experimental composition interface, shown in Figure 3.3, was created by adding a “seman-

tic” mapping layer between the sensors and the instrument. This is a site-specific abstraction

implemented with ChainFlow. Rather than presenting the composer with the raw or analytic en-

vironmental parameters (temperature in degrees, illuminance in lux, temperature deviation, etc.),

the composer is presented with “semantic” parameters, each on a 1 to 128 scale.

For a metric like temperature, most people have an intuitive sense of what the raw data means.

However, for measurements like illuminance and humidity, these semantic parameters can be rea-

soned about more intuitively than the raw data. For this experiment, the semantic parameters and

the equations of raw parameters that define them were authored. Future work could experiment

with generating this first layer of mapping to semantic parameters through principle component

analysis or dimensionality reduction from user input.

29

30

Chapter 4

Virtual Sonic Environment

At the marsh, one sensor will be less illuminated because it is in the shadow of a tree. Another

sensor will read more humid because it is shrouded in mist from the nearby pond. Much of the

interest in collecting data from many sensors scattered across an environment is capturing the

spatial variation across the environment. The sense of being present in one part of the marsh

vs. another is reflected in these variations, and a good musical mapping should manifest these

variations. Interactivity can make a musical mapping or sonification much more convincing [14].

Exploration of space is an obvious candidate for interaction with a sensor-augmented space. This

chapter will describe the high level picture of how interfaces and systems are integrated to render

a sensor-driven immersive virtual environment that is both graphically and musically active.

At a high level, SensorChimes follows a client-server architecture. Figure 4.1 gives an overview of

the entire system. The “server” is Tidmarsh, the sensors deployed there, and the ChainAPI server

that provides access to sensor measurements. The “clients” are DoppelMarsh and Max/MSP with

ChainFlow.

31

Figure 4.1: Within Tidmarsh, sensor nodes communicate low-level messages to a base station
connected to the internet which relays to a server at the lab. These messages are parsed and
posted to the ChainAPI server over HTTP. The DoppelMarsh and Max/MSP clients interface with
ChainAPI and communicate with each other over OSC.

32

Figure 4.2: Virtual Tidmarsh

4.1 DoppelMarsh

DoppelMarsh, an experiment in resynthesized-reality, is a “cross-reality sensor data browser con-

structed using the Unity1 game engine to experiment with presence and multimodal sensory ex-

periences” created by Gershon Dublon and Brian Mayton [24]. It presents a virtual rendering of

the marsh with real-time sensor readings visualized as floating numbers above the sensor nodes

pictured in Figure 4.2. In the future, graphical elements that more subtly blend into the scene

will visualize sensor readings. The user controls the position of the camera using controls com-

mon to first-person video games. This virtual position and direction are sent to Max/MSP over

OSC2 so that audio generation that is contingent on the player position is synchronized with the

graphical display. Previous versions of DoppelMarsh have integrated both the live audio streams

from Tidmarsh and a hard-coded sonification of the temperature and humidity data composed by

Responsive Environments RAs Spencer Russell and Gershon Dublon.

1Unity: https://unity3d.com/5
2Open Sound Control: http://opensoundcontrol.org/

33

4.2 Immersive Sound in Max/MSP

Figure 4.3: Virtual Sonic Environment Overview. Many instances of the device voice patch are
managed by [chain.zone] which follows the virtual player position in Unity. Each device voice
generates a signal based on a mapping from device-specific data, global data, and a parametric
software defined instrument. This signal is spatialized based on the player’s virtual position.

A system was created to render an immersive sonic environment with each sensor device at Tidmarsh

generating an audio voice. A different musical audio signal is generated for each sensor device based

on the environmental conditions local to that device. These signals are delivered to the listener

simultaneously, each spatialized to sound as if emanating from the device. The listener moves

around the virtual space and explores the different signals and the underlying environment.

In Max, the environment patch is broken down into three parts: device voice, spatializer, and

polyphony handler. Each component is described below.

34

4.2.1 Device Voice

The device voice is the composition in some sense. Each device will contribute a voice to a chorus

of nearby devices, the device voice patch determines this voice. A [chain.device] object is used

to access real-time data for the specified device. The device voice patch is responsible for using that

input along with aggregate features to produce an audio signal output. A few strategies for the

musical mapping that makes these devices sound are explored in the case studies that follow.

4.2.2 Spatializer

Audio spatialization refers to the practice of processing an audio signal to give the impression that

it is incident on the listener from a particular direction at a particular distance. The spatializer

processes the device voice for spatialization using the High Order Ambisonics (HOA) library for

Max/MSP from CICM to encode the signal of a device voice patch on the spherical harmonics

based on the displacement of the device from the listener.3 Spatialization itself is not the focus of

this thesis, and we currently use a very simple spatialization model that does little to characterize

the space with reverb and distant-dependent filtering. A more complicated model could give a

stronger sense of immersive presence in the space, and improvements along these lines will be made

in the future.

4.2.3 Polyphony Handler

The polyphony handler maintains a set of spatializer objects to which it assigns devices that are

relatively near the listener. It uses a combination of the [chain.zone] object and Max/MSP’s

built in [poly~] object to instantiate a number of unassigned spatializers and assign and reassign

them to nearby devices as the listener’s position moves around.

3HOA: http://www.mshparisnord.fr/hoalibrary/en/

35

Figure 4.4: Polyphony Handler

36

4.3 Client Bundling and Deployment

Initial demonstrations were deployed as an installation with a dedicated computer, display, and

sound system that remote visitors were invited to use. With a keystroke, the user could switch

between different real-time musical conceptions of the marsh. However, to reach a broad audience,

a web deployment was devised. In the future it may be possible to attempt an onsite deployment

for visitors of Tidmarsh to enjoy.

4.3.1 Installation Deployment

Figure 4.5: Three different physical deployment scenarios.

Several installation types have been imagined, diagrammed in Figure 4.5. For the first installation,

the computer ran both the Max/MSP and DoppelMarsh clients simultaneously. The user sat in front

of the display wearing headphones and used the keyboard to navigate through the virtual world.

As the user moved around the virtual space, the Max/MSP client followed the virtual position via

OSC and used binaural spatialization to make a convincing immersive sonic environment consistent

with the graphical experience.

The first demonstration was limited to a single user. To make a larger installation that could be

viewed by multiple people at once, six speakers were set up in a hexagon. The display remained

37

the same, with just a single user controlling the virtual location of the camera. However, sound

was spatialized using high-order ambisonics using the six speaker channels so that anyone in the

ring of speakers could listen.

A proposed installation that has not yet been put into to practice would make use of a fairly large

space and a large number of omnidirectional speakers. These speakers would be arranged in the

space following the arrangement of sensor devices at Tidmarsh. The DoppelMarsh client would not

be used, and spatial exploration would instead occur in the very real space filled with speakers. A

computer running the Max/MSP client would route a signal to each speaker for each mapped node

at Tidmarsh. Each of these installation deployments is diagrammed in Figure 4.5.

4.3.2 Web Deployment

Deploying this project to the web was a necessary step to reach a large audience without having

a dedicated space to deploy an installation. Embedding Unity in the browser is difficult and not

currently supported by all major browsers and embedding Max/MSP in the browser is currently

impossible, so the web deployment was achieved by publishing a downloadable application. The two

clients (DoppelMarsh and Max/MSP) were bundled together as a client application with a wrapping

application written in Objective-C for Mac OS X. The user can switch between compositions with

a keystroke.4

4.3.3 Onsite Deployment

In the future it may be possible to deploy SensorChimes onsite at Tidmarsh using a mobile version

of the auditory display combined with a head tracking system. An onsite deployment would build

on “HearThere,” a project by Russell et. al. presented at the 7th Augmented Human International

Conference [30].

4http://resenv.media.mit.edu/sensorchimes/

38

Chapter 5

Case Studies

5.1 Case Study 1: Parametric Mixing

This study a piece written by the author entitled The Bog Blues. We call the pattern of mapping

at it’s core “parametric mixing.” In the overall picture, parametric mixing functions as a process

for generating audio from device-local conditions to integrate into the Virtual Sonic Environment

as described in Chapter 4.

This piece is constructed from looping improvised acoustic passages performed on cello, guitar,

bass, and drum. The layers of sound emulate the many layers of narrative that unfold in a complex

ecosystem like Tidmarsh. Many distinct tracks for each instrument were recorded with consistent

meter and harmonic rhythm. By design, these tracks were composed to produce a range of moods

and perceived energy levels when layered on top of each other in different mixes while maintaining

aesthetic consistency.

Each device in the virtual environment adds a voice which is a mix of these tracks. For each device,

the weights which determine the mix are mapped from the sensors readings of that device.

39

5.1.1 Parametric Mixing

“Mixing” is simply the process by which audio signals are linearly combined. Mixing occurs in

performance, recording, and production settings where different voices, parts, instruments, etc.

are layered, each gained appropriately to achieve a desired combined signal. A large amount of

variation in the musical character of a recording can be achieved by varying the mix of voices. The

idea behind parametric mixing is to create a composition which is designed to take that variation to

the limit by supplying many different voices that are wildly different in character but aesthetically

cohesive, and then to mix these voices together in myriad ways parameterized by other input. In

this case reacting to sensor measurements at Tidmarsh. Composition of a parametric mixing piece

consists of two tasks: creation of the many tracks to be mixed, and specification of the parametric

mapping which determines the mix. Two strategies for the second task were attempted with The

Bog Blues presented below.

Mixing Specification Version 1: Stochastic Mixing

The recorded tracks were split into groups: all arco cello tracks, all drum tracks, etc.. The final

mix would be formed from one track from each group. Periodically a stochastic process would

select one track from each group, with the option to select no track for some groups, based on a

predetermined mapping and the current environmental conditions. Starting from the next looping

point, those tracks would be mixed together at equal gain. The predetermined mapping worked as

follows. Each track was associated with a vector of sensor values. From each group, the selected

track was randomly chosen with a distribution weighted by the Cartesian distance between the real

conditions as measured by the sensors and the vector associated with each track.

Stochastic mixing by this strategy exhibited a number of undesirable characteristics. First, assign-

ing a vector to a track to make it more likely to be in a particular region of the parameter space

frequently produced unexpected results and proved to be a non-intuitive tuning problem. Second,

because the tracks were selected in a binary way, there was no way to smoothly transition from

one mix to another. Since the mix would only update at looping points, there was a notable lag

between changing conditions and changing mix.

40

Mixing Specification Version 2: Distribution Mixing

The second version solved the short-comings of the first by using smoothly varying gains on each

track rather than binary weights.

The mapping is specified by a max-one axis-aligned multivariate Gaussian distribution in the ab-

stract parameter space defined by the sensors of a single device. This parameter space should not

be confused with the physical space in which the many devices are distributed that is also at play in

this composition. For example, for “The Bog Blues,” a five-dimensional parameter space consisting

of temperature, illuminance, deviation temperature, deviation illuminance, and deviation humidity

is used, so each track is associated with a five-dimensional Gaussian specified by it’s center and

covariance matrix in this five-dimensional space. The Gaussians were restricted to axis-aligned (i.e.

diagonal) covariance matrices for ease of implementation.

The mix of tracks for a given point in this five-dimensional space is the linear combination of the

tracks, each weighted by the evaluation of its respective Gaussian distribution at the relevant point.

This can be thought of as a zeroth-order spatialization of the tracks in the parameter space heard

from the perspective of a listener in the space.

For example, if the environmental conditions are exactly the mean of the Gaussian associated with

a particular track, that track will be included in the mix with weight 1.0. If the conditions are

exactly the mean of the Gaussian except that the temperature is off from the mean by a standard

of deviation, the track will be included in the mix with weight 1/e.

This mapping strategy means that each track is confined to a specified region of the parameter

space. Two tracks that clash aesthetically can be confined to disjoint regions, and the Gaussian

roll-off means that smooth transitions occur as long as the conditions change continuously.

5.1.2 Dynamix Interface

Dynamix is a graphical interface created to illustrate and experiment with the distribution-based

parametric mixing pattern described in Section 5.1.1. The interface, implemented as a web ap-

plication with ReactJS and as a native application with Electron, is presented in Figure 5.1 [29,

41

Figure 5.1: The Dynamix interface consists of a graph view, axies list, track list, and parameters
list. A cursor position in the parameter space is set by the five sliders in the axies list. The graph
visualizes each Gaussian distribution as an ellipse in two selected axies. The boundary of the ellipse
is an isocontour of the distribution projected onto the shown axies at the hyperplane specified by
the cursor position of the non-shown axies. The value of the isocontour is set by the “Threshold”
parameter. The position of a selected track in the parameter space may be adjusted graphically or
with the parameters pane.

42

Figure 5.2: These four graphs highlight a few parts of the mapping that makes The Bog Blues. The
top two graphs show that the rhythmic feel of the piece varies from a fast and anxious on the cold
end of the temperature spectrum to slow and relaxed on the warm end. Major tracks are kept on
the bright side of the illuminance spectrum and minor tracks on the dark. The lower two graphs
show that the many melodic voices each take a small region of the deviation space. For example,
if a device is exceptionally warm (two to three standards of deviation above the mean for the site),
the “guitar high” melodic line can be heard. If it is exceptionally cold, the “guitar slow” melodic
line is heard.

43

11]. A list of tracks appears on the left side, and each associated Gaussian is shown on a graph on

the right. The graph is the full n-dimensional parameter space projected onto two selected axies.

Above the track list is a list of axies where the shown x and y axies can be selected. A value for

each remaining “hidden” axis can be specified with a slider. Each Gaussian is presented as an

ellipse whose boundary is the isosurface of the Gaussian at a specified threshold projected onto the

hyperplane specified by the values of the hidden axies. This interface allows visualization of the

mix specification despite the potentially high dimensionality of the parameter space.

5.1.3 Discussion and Future Work

The Bog Blues is an experiment in making parametric music with instrumental samples rather

than more traditional approaches, which might drive harmony-aware sound synthesizers to produce

stochastic melodies based on parameters. Parts of the mapping for the final version are presented

in Figure 5.2. A few criteria were determined for evaluating the success of this experiment. A good

mapping should exhibit:

1. Interest Correspondence - the interesting features of a data set (things that ground its se-

mantic interpretation) should manifest in the salient features of the music it generates

2. Consistency - data sets with related semantic interpretations should generate related music

3. Well Ranged - the scale of variation of a data set should map closely to the scale of musical

variation

4. Responsiveness - changes in data should be reflected in music quickly; too much latency makes

intuition much harder to develop

As parametric music, The Bog Blues excels at all of these criteria. By design, exceptional environ-

mental conditions are interpreted as more exceptional version of the piece. The mapping exhibits

smooth transitions between regions of the parameter space so similar conditions always produce

similar music. The Dynamix interface makes it easy to see if the specified mapping will be active

and interesting across the regime of the parameter space which the environment is likely to fall

in. And, parametric mixing is essentially an instantaneous reflection of the parameters. Does The

44

Bog Blues give an intuitive sense of the environmental conditions at Tidmarsh; does it achieve

augmented presence? The language of music is by no means universal, and every individual’s ex-

perience with the piece will be different. However, in demonstrating the piece in the 3D virtual

environment, after a few minutes, I found myself navigating through the world looking for a par-

ticularly humid region by ear despite the humid data being presented as floating text above each

sensor. This demonstrates that it achieves this goal at least to some degree and the parametric

mixing strategy has potential.

5.2 Case Study 2: Effects-Chain Mapping

This study is a collaboration with Evan Ziporyn, an accomplished composer and clarinetist. Fol-

lowing a tradition dating at least to Camille Saint-Saëns and Sergei Prokofiev, he generated looping

tracks of clarinet textures inspired by the birds and frogs of the marsh. The idea behind the piece is

to layer and process these textures through various effects to create a large parameterized timbral

space. An “instrument” abstraction that produces this texture exposes a set of adjustable param-

eters that are mapped to linear combinations of semantic parameters as described in Section 3.6.4.

The piece is integrated into the virtual environment by generating a chorus of these “instruments,”

each spatialized to emanate from sensor device.

5.2.1 Texture/Timbre Space

The sound space is parameterized by the following effects:

• Reverb

• Overdrive Distortion

• Layers – Determines how many of the clarinet layers are active.

• Pitch-locked playback speed – Determines how fast the layers playback. The timeshift is

offset by a pitchshift to keep the pitch locked to selected ratios of the original. When the

timeshift is great enough, the pitchshift will jump to the next approved ratio somewhat like

the gears in a car.

45

• Whistle Interference – This effect introduces highly peaked noise around the most present

frequency in the underlying tracks.

5.2.2 Mapping From Correspondences

With this piece, we devised a procedure for mapping the semantic environmental parameters to the

instrument parameters of this parametric music based on training examples. First, a set of semantic

parameters are randomly selected. Then, the composer or mapper is given the opportunity to adjust

the instrument parameters until the sound is most reminiscent of the conditions represented by the

random semantic choice. The semantic parameters and instrument parameters are recorded as

a “correspondence pair,” and the process is repeated until enough “correspondence pairs” have

been recorded to specify a full-rank linear transformation from the semantic parameters to the

instrument parameters. Future work could experiment with a machine learning approach to this

process which might be more flexible or more robust to noise.

5.2.3 Discussion and Future Work

This composition, another experiment in parametric music, is still a work in progress. The timbre

space Ziporyn and I created is still in its first incarnation, and in the future, we hope to experiment

with a broader range of DSP effects as well as more source material. However, in its current state,

it is still dynamic enough that a mapping from environmental parameters feels responsive and is

interesting to listen to.

In the future, we intend to add an interface along the lines of Harmonix’s “The Axe,” which allows

the user/listener to improvise an arpeggiated melody on top of the texture in a harmonic and

timbre space adjusted by real-time sensing.1

46

Figure 5.3: Ricky Graham’s Interface. Each row corresponds to a sensor device at Tidmarsh. The
first column is temperature, the second is pressure, and the third is illuminance. The three tables
of each row drives a granular synth patch.

47

5.3 Case Study 3: Mapping Historical Data

Ricky Graham, an accomplished guitarist and computer musician, was interested in working with

data from Tidmarsh’s history and developed an interface that allows a listener/improviser to select

data ranges to iterate through driving his own granular synthesis patch. This interface, presented

in Figure 5.3 encourages exploration of how data sets can drive timbral and temporal changes in

electronic music. Using this interface, a piece was created based on the contour which barometric

pressure, humidity, and illuminance take over the course of a day on the full-moon. This piece was

presented at the Fall 2015 Media Lab Member’s Event and will appear as a research presentation

at SEAMUS 2016 [12].

5.3.1 Discussion and Future Work

A new version of this piece is in progress which will be presented within the virtual environment.

For various points across the wetland, real-time as well as historical data on multiple time scales

will be used simultaneously to drive Graham’s synthesis patches. Data from the last minute, hour,

and day can all be used to drive different layers of the composition which are then spatialized to

emanate from the sensor devices and specific regions of the wetland.

1The AXE: http://www.harmonixmusic.com/past-games/

48

Chapter 6

Conclusion and Future Work

In the contemporary world, the rate at which we collect and generate data and information vastly

outpaces our ability to process and interpret it. Spaces are increasingly instrumented with sensors,

but the insights that we might gain from these data remain mostly untapped. The technologies

that mediate our access to digital information give us only small glimpses into this world of dense

data. We need powerful new paradigms to render these data interpretable. On the path to these

new paradigms, these data present themselves as a canvas for the contemporary artist. We cannot

yet walk through a marsh and internalize everything we can measure with sensors about the world

around us as easily as we can feel the warm rays of sun on our skin and the moist soil beneath

our feet. However, music that speaks to these experiences, which reacts to these data, is a step

toward a world where data is interpreted incidentally. In the near future, this project could break

out of the confines of the virtual world and make a showing onsite at Tidmarsh, a real auditory

augmentation using the head tracking presented by Russell and Dublon [30].

The potential for music creation along the lines of the pieces presented in this thesis is large and

mostly unexplored. The primary goal of this project was to create a framework with which to

create musical compositions. The process of using this framework in novel ways to create music is

only beginning. The case studies presented here represent only the specific inspirations of a few

individuals. It is hoped that ChainFlow will be adopted by or inspire more composers interested

in the vision of this project who will take it in their own unique directions.

49

ChainFlow is a good first draft of a versatile interface for sensor networks in Max/MSP. Within

minutes of thinking of a musical mapping idea, a prototype can be put together in Max which

implements it with real data streams. The device and metric abstractions provide a convenient

interface for real-time data, historical data, and aggregate features. However, there are many

next steps. The next iteration should consider a the drawbacks of ChainFlow. First, ChainFlow

is (obviously) only useful within Max/MSP which makes web deployment (almost a necessity in

our time) very difficult. A similar tool could be built for Pure Data which would open up a

new realm of portability because of the open-source nature of Pure Data and the libpd C library,

which makes it possible to build Pure Data patches into other projects and products.1 Second, the

limits of ChainFlow have not been tested and significant optimization may be required to handle

substantially larger deployments.

Each metric measured at Tidmarsh can be thought of as a scalar or vector field which has been

sampled by each device. ChainFlow attempts to reconstruct this field by interpolating between the

samples with the [chain.metric] object. However, this object only returns the interpolated value

at a a single point and there is no interface to acquire a representation of the entire field at once.

Future work could investigate the musical mapping potential of this kind of field representation.

1Pure Data: https://puredata.info

50

Bibliography

[1] Maryanne Amacher. Composing Perceptual Geographies. Course/Workshop Introduction/Description.

2006.

[2] Durand R Begault et al. 3-D sound for virtual reality and multimedia. Vol. 955. Citeseer,

1994.

[3] Wendy Carlos. Sonic Seasonings (Libreto del CD). 1998.

[4] Juliana Cherston. Quantizer. http://resenv.media.mit.edu/quantizer. 2016.

[5] ChucK. https://chuck.cs.princeton.edu. accessed January 2016.

[6] Enrico Costanza et al. “SensorTune: a mobile auditory interface for DIY wireless sensor net-

works”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.

ACM. 2010, pp. 2317–2326.

[7] Paul Doornbusch. “Composers’ views on mapping in algorithmic composition.” In: Organised

Sound 7 (2002), pp 145–156.

[8] Gershon Dublon and Joseph A Paradiso. “Extra Sensory Perception”. In: Scientific American

311.1 (2014), pp. 36–41.

[9] Gershon Dublon and Edwina Portocarrerro. “ListenTree: Audio-Haptic Display in the Natural

Environment”. In: (2014).

[10] David Dunn. “Acoustic ecology and the experimental music tradition”. In: American Music

Center, New Music Box (2008).

[11] Electron. http://electron.atom.io/. accessed January 2016.

[12] Ricky Graham. “Sonifying Tidmarsh Living Observatory”. Society of Electro-Acoustic Music

in the United States. 2016.

51

[13] HAL: Hypertext Application Language. http://stateless.co/hal specification.html. accessed

January 2016.

[14] Thomas Hermann and Andy Hunt. “The importance of interaction in sonification”. In: (2004).

[15] John Himmelman. Cricket Radio. The Belknap Press of Harvard University Press, 2011.

[16] Nicholas Joliat, Brian Mayton, and Joseph A Paradiso. “Spatialized anonymous audio for

browsing sensor networks via virtual worlds”. In: (2013).

[17] Paul Kaiser. “The Encircling Self: In Memory of Maryanne Amacher”. In: PAJ: A Journal

of Performance and Art 36.1 (2014), pp. 10–34.

[18] Brandon LaBelle. “Background Noise: Perspectives on Sound art”. In: Second Edition. Blooms-

bury Publishing USA, 2015. Chap. Ch. 10.

[19] Joshua Lifton et al. “Metaphor and manifestation—Cross-reality with ubiquitous sensor/actuator

networks”. In: IEEE Pervasive Computing 3 (2009), pp. 24–33.

[20] Matthew Lombard and Theresa Ditton. “At the Heart of It All: The Concept of Presence”.

In: Journal of Computer-Mediated Communication 3.2 (1997), pp. 0–0. issn: 1083-6101. doi:

10.1111/j.1083-6101.1997.tb00072.x. url: http://dx.doi.org/10.1111/j.1083-

6101.1997.tb00072.x.

[21] Apostolos Loufopoulos. Bee. 2010.

[22] Mark Masse. REST API design rulebook. ” O’Reilly Media, Inc.”, 2011.

[23] Max/MSP. https://cycling74.com/products/max/. accessed January 2016.

[24] Brian Mayton et al. Tidmarsh Living Observatory. http://tidmarsh.media.mit.edu/.

[25] Tooba Nasir and Jonathan C Roberts. “Sonification of spatial data”. In: (2007).

[26] Alison Pezanoski-Browne. “The Tragic Art of Eco-Sound”. In: Leonardo Music Journal 25

(2015), pp. 9–13.

[27] Larry Polansky. Manifestation and Sonification. The Science and Art of Sonification, Tufte’s

Visualization, and the ‘slippery slope’to Algorithmic Composition. An Informal Response to

Ed Childs’ Short Paper on Tufte and Sonification; with additional commentary by Childs,

2002. 2002.

[28] Marty Quinn. “Research set to music: The climate symphony and other sonifications of ice

core, radar, DNA, seismic and solar wind data”. In: (2001).

[29] React. https://facebook.github.io/react/. accessed January 2016.

52

[30] Spencer Russell, Gershon Dublon, and Joseph A Paradiso. “HearThere: Networked Sensory

Prosthetics Through Auditory Augmented Reality”. In: Proceedings of the 7th Augmented

Human International Conference. ACM. 2016.

[31] Spencer Russell and Joseph A Paradiso. “Hypermedia APIs for sensor data: a pragmatic

approach to the web of things”. In: Proceedings of the 11th International Conference on

Mobile and Ubiquitous Systems: Computing, Networking and Services. ICST (Institute for

Computer Sciences, Social-Informatics and Telecommunications Engineering). 2014, pp. 30–

39.

[32] Volker Straebel. “The sonification metaphor in instrumental music and sonification’s roman-

tic implications”. In: Proceedings of the 16th international conference on auditory display,

Washington. 2010.

[33] Bob L Sturm. “Pulse of an ocean: sonification of ocean buoy data”. In: Leonardo 38.2 (2005),

pp. 143–149.

[34] SuperCollider. https://supercollider.github.io. accessed January 2016.

[35] Kendall Wrightson. “An introduction to acoustic ecology”. In: Soundscape: The journal of

acoustic ecology 1.1 (2000), pp. 10–13.

53

54

Appendix A

ChainFlow Objects

The following is a summary of each object and patch that makes up ChainFlow.

A.1 Externals

A.1.1 [chain.site]

This object corresponds to the ChainAPI “site” abstraction. In addition to maintaining the con-

nection to the ChainAPI “site” and caching data and metadata, this object also maintains a clock

which can be locked to realtime or advance at a chosen speed from a point in history.

Attributes:

name (string) name of site

url (string) url to ChainAPI site to connect to

include nonactive (bool) whether to include devices that do not have recent data

Methods:

load request site summary from ChainAPI URL.

start connect to websocket and begin updating sensor readings

start [start] [scale] begin updating workers with historical data from time start

at scale seconds per second.

55

A.1.2 [chain.info]

Attributes:

name (string) name of site

Methods:

metrics outputs list of all metrics measured at the site

devices outputs list of all included devices present at the site

near [x] [z] [r] outputs list of all devices within r meters of (x,z)

nearest [x] [z] [n] outputs list of n devices nearest (x,z)

A.1.3 [chain.device]

Attributes:

name (string) name of site

device name (string) name of device

autoupdate (bool) object outputs on update events

deviation (bool) object outputs data normalized by site meand std

historical interval (int) if > 0, device will only output at most one value per interval

in historical data

historical downsample rule

(string)

mean: value per historical interval by averaging. interp:

value per historical interval by interpolation.

Methods:

bang outputs current sensor values

metric [s metric name] outputs current value for specified metric

metrics outputs list of metrics measured by this device

location outputs device location in Unity meters

geoLocation outputs device location in Latitude Longitude

data [s metric name] [i

start] [i end]

outputs list of data from specified sensor from start time to

end time according to downsample rule and interval.

56

A.1.4 [chain.time]

Attributes:

name (string) name of site

Methods:

parse [timestamp] outputs unix timestamp corresponding to ISO formatted

string

format [unix] outputs an ISO formatted string corresponding to unix

timestamp

now outputs current local time at UTC

historical now outputs historical “now” as set for attached site at UTC

tod [seconds] outputs current time of day at UTC shifted by seconds

historical tod [seconds] outputs time of day at UTC shifted by seconds for historical

A.1.5 [chain.metric]

Attributes:

name (string) name of site

metric name (string) name of metric

measure (string) interpolation, mean, median, max, min

radius (string) radius of zone (all site if 0)

interp (string) interpolation type from (proximal, bilinear)

pos x (float) x-coord of center point of zone

pos z (float) z-coord of center point of zone

autoupdate (float) whether should output when dependent sensor updates

Methods:

bang outputs value of specified measure at specified point for spec-

ified metric

57

A.1.6 [chain.zone]

Attributes:

name (string) name of site

enter (float) radius for devices entering zone

exit (float) radius for devices exiting zone

pos x (float) x-coord of center point of zone

pos z (float) z-coord of center point of zone

A.1.7 [chain.data]

Attributes:

name (string) name of site

interval (float) resampling interval (0 for no resampling)

normalize (bool) normalizes data to 0-1 scale

savefile (string) file to load on object load and to save to on autosave

autosave (bool) saves to savefile on set

Methods:

bang output resampled data

set [data..] save data received from [chain.device] in memory

read [filename] read data from file on disk

write [filename] write data to file on disk

58

A.1.8 [chain.map]

Attributes:

name (string) name of site

pos x (float) listener x-coord

pos y (float) listener y-coord (not represented)

pos z (float) listener z-coord

ang azi (float) listener azimuthal angle

ang ele (float) listener elevation angle (not represented)

Methods:

mouse click outputs selected device name

A.2 Abstractions

A.2.1 [chain.browser]

This object is a wrapper around [chain.device] which incorporates an instance of [chain.info]

to present UI elements for selecting device name and metric.

A.2.2 [chain.cache]

Attributes:

name (string) name of site

cache dir (string) directory in which to save cache files

Methods:

cache [device] [metric]

[start] [end]

looks for cache file for requested data; if it is missing, makes

query and saves cache file; outputs path to cache file

59

A.2.3 [chain.timerange]

Attributes:

name (string) name of site

tz (int) timezone to measure midnight from in seconds from UTC

Methods:

from [time] to [time] formats start, end pair for specified time range

last [time] formats start, end pair for specified time range ending now

next [time] formats start, end pair for specified time range beginning

now

A.2.4 [chain.itertable]

This object is a wrapper around [chain.data] which presents a UI table of resampled data. A

range of the data may be selected and an interal metronome can be used to iterate through the

data.

60

