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Abstract

The rise of code reuse attacks has been devastating for users of languages like C
and C++ that lack memory safety. We survey existing defenses to understand why
none are generally applicable, focusing our attention on the Code Pointer Integrity
(CPI) defense. We show that while CPI is hard to implement securely on modern
architectures, it is based on the promising idea of storing metadata on memory. We
also introduce Taxi (Tagged C), a set of hardware modifications that aim to prevent
code reuse attacks by storing small amounts of memory metadata known as tags in
hardware. Our reference implementation prevents several classes of code reuse attacks
without losing compatibility with the C memory model and provides valuable insight
into how tagged architectures can be used to enforce security properties on existing
code.
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Chapter 1

Introduction

Memory corruption is a problem dating back at least to the 1970’s [7]. The design of

the popular C programming language makes it particularly vulnerable to attacks on

memory, as it aims to provide programmers with expressiveness similar to assembly

with as little overhead or management as possible. In line with this philosophy, C

and similar languages like C++ do not provide memory safety, making programmers

liable for much of their own memory management. In particular, programmers are

responsible for preventing memory violations like buffer overflows [43].

This is not a responsibility that should be taken lightly. In C, introducing memory

violations is easy as it only requires a single mistake. Consider Listing 1.1:

1 #include <stdio.h>
2

3 int main(void) {
4 char buf[64];
5

6 gets(buf);
7 printf("You said: %s \n " , buf);
8 return 0;
9 }

Listing 1.1: A simple C program with a buffer overflow vulnerability.

This program uses the gets function to accept input from the user into a buffer

and then outputs it to the console using printf. Despite its brevity, this program
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frame pointer

return address

buf[62]

buf[63]

buf[60]

buf[61]

b

&system()

a

d

d

e

gets()

Figure 1-1: Diagram of stack before and after control flow redirection.

contains an easily exploitable buffer overflow: the gets function will accept input

that is longer than the size of our buffer and happily overwrite memory adjacent to

it. Because our buffer is stored on the stack (which may also hold the return address

of the main function) this overflow can be utilized to redirect control flow. This

situation is pictured in Figure 1-1.

The simplest way to fix this code is to replace the gets function with one that is

aware of the buffer it’s using, like fgets. Then, our simple C program may look like

Listing 1.2.

1 #include <stdio.h>
2 #define BUFSIZE 64
3

4 int main(void) {
5 char buf[BUFSIZE];
6

7 fgets(buf, BUFSIZE, stdin);
8 printf("You said: %s \n " , buf);
9 return 0;

10 }

Listing 1.2: Our simple C program but no longer vulnerable.

Using fgets neutralizes our buffer overflow at the cost of having to choose and

keep track of the size of our buffer. C contains a number of commonly-used functions
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that copy data into a buffer that also require knowledge of its size (like snprintf,

strncpy, memcpy, and even system calls like read), and while this is not a problem

for small programs, requiring programmers to correctly determine buffer sizes means

that small mistakes can leave the program and possibly the entire system vulnerable.

A great example of such a vulnerability was the recent OpenSSL buffer overread

known as Heartbleed [2]. This vulnerability, located in code parsing input from the

network to handle the TLS heartbeat extension, relies on trusting the network to

provide the length of its input. This length is then used as a buffer size argument for

both a custom malloc and a custom write function. Because this length does not

have to match the actual length of the input, malicious users can provide a length

that allows reading up to 64 kilobytes of resident memory remotely.

As OpenSSL is widely used for providing SSL/TLS security throughout the world

the impact of this bug was significant: major websites like Yahoo were affected,

and many popular operating system distributions like Debian and Ubuntu were also

vulnerable [45]. Some popular websites recommended that their users change their

passwords following the vulnerability’s disclosure. Like our simple C program, fixing

Heartbleed was a straightforward task of inserting a few bounds checks. Nonetheless,

despite OpenSSL’s status as a well-maintained open-source project, the Heartbleed

vulnerability was present in its source code for over two years before it was discovered.

Clearly, memory corruption attacks must be stopped. After an analysis of ex-

isting defenses, this thesis proposes a new hardware defense to a class of memory

attacks called code reuse attacks. In Chapters 2 and 3 we explore the history of

memory corruption attacks, tracing a path from buffer overflows to Return Oriented

Programming (ROP) and other modern code reuse attacks. A diverse set of defenses

have been proposed and implemented against these attacks, ranging from defenses

that impose memory safety on C programs to heuristic-based defenses that try to

prevent widely deployed exploits. All of these defenses require security, performance,

and compatibility trade offs and none so far has proven generally applicable. Despite

this fact, in Chapter 4 we identify the Code Pointer Integrity (CPI) [34] defense as a

promising example of the role secure metadata can play in protecting memory.

15



In Chapter 5 we describe tagged architectures, which expand memory in hardware

to include small amounts of metadata called tags. In Chapter 6 we introduce Taxi, a

new hardware defense based on tagged memory. Taxi protects data that can regulate

control flow like return addresses through minimal modifications to an existing ar-

chitecture. By assuring the integrity of this data, Taxi deterministically detects and

prevents many classes of code reuse attacks. In Chapter 7 we show the effectiveness of

Taxi’s guarantees on a modified RISC-V [8] instruction set simulator, demonstrating

that tagged memory policies can be practical for many programs. We conclude in

Chapter 8 with an outline of potential future work.
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Chapter 2

Background

2.1 Early Memory Corruption Defenses

2.1.1 Stack Canaries

Some basic steps have been taken by developers of operating systems and compilers

to counter the threat of buffer overflows. A very basic form of protection against

buffer overflows on the stack is the use of canaries, or known values placed in memory

that are checked before certain control flow transfers occur. In practice, canaries are

often used on a program’s stack to prevent return address corruption. In this case,

a canary may rest between a buffer and a return address on the stack, and unless

an attacker is able to overwrite the return address without changing the value of the

canary a memory corruption attempt is detected and the program may exit.

The gcc compiler has had this protection available since version 4.1, which was

released in 2005, although community versions of gcc providing this functionality

have existed since at least 1997. Unfortunately, memory vulnerabilities often allow

attackers to read stack canaries, negating their protection. They also do not prevent

against buffer overflows that occur on the heap, and thus should not be considered a

strong defense.
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2.1.2 Non-executable Memory

The observation that programs executing code on the stack (or even the heap) can be

an indication of successful code injection is one of the driving factors for the return

of non-executable memory. The existence of separate memory for code and data is

an architectural debate that goes back to the original Harvard and Von Neumann

architectures, but was made possible at page granularity on the 64-bit version of the

x86 processor through the addition of the “NX” (AMD) or “XD” (Intel) bit to page

table entries. An operating system with this bit available can configure memory like

a user program’s stack or heap regions to be non-executable. Additionally, this bit

can be emulated in software, as many kernels for 32-bit x86 processors without such

hardware do [60]. In the context of preventing code injection, non-executable memory

at page granularity is known as Write xor Execute (because it allows for memory that

is not writable and executable) and as Data Execution Prevention (DEP).

DEP has become an effective tool against many attacks involving buffer overflows

as it provides protection against most code injection attacks. Its hardware imple-

mentation also means that its protections come at a low space and performance cost:

one bit of data for an entire page of memory that a hardware MMU can check ef-

ficiently. By raising the bar for attackers considerably, DEP has become one of the

most effective defenses against memory corruption that currently exist.

2.1.3 Address Space Layout Randomization

With DEP in place, an attacker cannot use a buffer overflow to inject code into a

program and run it. Attackers are not prevented however from directing a program

to execute code already in its text segment or in a loaded library. This means that

attackers can overwrite return addresses on the stack with addresses of powerful

functions like the system call wrappers provided in the C runtime library, performing a

return-to-libc attack. Address Space Layout Randomization (ASLR) aims to defend

against this attack by randomizing on startup the base location of program sections

like the stack and heap. Under ASLR, attackers wishing to use program addresses

18



must first determine them at runtime, often through guessing [61]. Some fine-grained

variants even permute the order of individual functions [32].

ASLR, like DEP, significantly raises the bar for attackers trying to perform a mem-

ory corruption attack. Unfortunately, on 32-bit and narrower architectures ASLR

does not provide strong security: many implementations provide low amounts of ad-

dress entropy (commonly 16 bits) which can be brute-forced in a matter of minutes

[50]. On 64-bit architectures, ASLR makes attacks more difficult but is still suscep-

tible: a single memory disclosure vulnerability can reduce the work an attacker must

perform to finding the offset of the desired function instead of its absolute address. In

the presence of side-channels, memory disclosure vulnerabilities can also be manufac-

tured out of existing buffer overflows [26]. Many implementations of ASLR also do not

re-randomize memory locations when a process calls fork, which makes web servers

that fork off worker processes especially vulnerable. Variants of ASLR with larger

entropy by design and other code diversification defenses also can come with modest

performance penalties, like Position-Independent Executables, which can require the

use of a register to hold the program base address [58].

It is also notable that defenses like DEP and ASLR impose limitations on pro-

gram design, like the avoidance of executing code on the stack or reliance on specific

program addresses for functionality. While many programs do not use these features,

DEP and ASLR conceptually provide safety by restricting a programmer’s feature

set, an approach that requires more than just changes to existing code: it requires

modifications to the contract that languages and operating systems have established

with long-existing programs. Like the responsibility to manage memory, these re-

quirements create more opportunities for bugs, and must be weighed against the

safety they provide. As an example, DEP complicates implementation of dynamic

(Just-In-Time) compilers.
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2.2 Code Reuse Attacks

Because DEP is such an effective and widely available solution for preventing code

injection attacks, attackers have had to become creative with using code already

present in a program binary or loaded library for malicious purposes. As mentioned

in Section 2.1.2, DEP does not prevent so-called return-into-libc attacks where at-

tackers call a powerful function in the C runtime library like a system call wrapper.

As Shacham [49] notes, were this the only problem with DEP attackers would be

limited to calling libc functions one at a time. This could make constructing attacks

difficult if dangerous functions like system, which can be used to launch a shell with

full system access, were removed. In this case, the maintainers of libc variants would

face a large responsibility for the safety of C programs in general.

Return-into-libc attacks are not the only form of what can be called code reuse

attacks. C and C++ do not require functions to be entered at their entry points:

return addresses, function pointers, and other control flow data like C++ virtual table

pointers are completely free to point to arbitrary instructions. A memory corruption

attack that exploits this property is called a Return Oriented Programming (ROP)

attack; there are many ROP variants.

2.2.1 Return Oriented Programming

As originally described by Shacham [49], ROP attacks rely on short series of instruc-

tions called “gadgets” that end in return instructions. Gadgets typically perform small

tasks like pushing a value onto the stack or popping a value into a specific register and

have very few side effects. On x86 variants, attackers can execute gadgets sequen-

tially by placing their addresses next to each other on the stack and using the ret

instruction that ends each gadget to transfer control to the next gadget. The limits

of attackers with access to the source code of a program then are only dictated by

what instructions are present in the program and any loaded libraries. If we imagine

gadgets as assembly in a strange computer, only a modest set of them is required for

attackers to have a Turing-complete language.
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"/bin/sh"

gadget address

gadget address

0x3B

buffer

syscall;
ret;

pop $rax;
pop $rdi;
ret;

0x0

xorl $rsi, $rsi;
pop $rdx;
ret;

gadget address

frame pointer

Figure 2-1: Simple ROP attack that makes a system call.

An example of a ROP attack that makes a system call to launch a shell is provided

in Figure 2-1. In this figure, an attacker uses three gadgets. The first allows the

attacker to load the system call number for exec into $rax and its first argument, a

path to a shell, into $rdi. The second zeroes out exec’s other two arguments, while

the third makes the actual system call.

ROP attacks are more expressive in architectures with variable-length instructions,

as attackers are not necessarily limited to interpret a program’s instruction stream

as intended. In fact, the x86 instruction set is extremely dense: even a random byte

stream can be interpreted as a sequence of instructions with high probability [49].

As mentioned in Section 2.1.3, ASLR does not prevent attackers from using gad-

gets discovered through a memory disclosure vulnerability, when there is low address

entropy, or after certain operations like fork. Because DEP and stack canaries only

effectively prevent code injection, ROP attacks are very possible even with commonly-

adopted security techniques.
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2.2.2 Other Variants of ROP Attacks

Jump Oriented Programming

Code reuse attacks do not always require the use of return instructions. In Jump

Oriented Programming (JOP), Bletsch, et al. describe a ROP variant that uses indi-

rect jump instructions in place of return instructions [10]. JOP relies on a dispatcher

gadget responsible for jumping to functional gadgets, taking the place of the stack in

a traditional ROP attack. Instead of returning, each functional gadget jumps back

to the dispatcher gadget, which then calculates the address of the next functional

gadget. Because JOP does not depend on the stack for control flow, it can be more

flexible than a ROP attack to perform with a heap buffer overflow. In short, JOP

demonstrates that ROP-style attacks cannot be completely defended against by sim-

ply using compilers that avoid the use of return instructions: ROP attacks are a

fundamental problem in C-like languages. Checkoway, et al. also describe a version

of JOP that uses a similar “update-load-branch” scheme [15].

Sigreturn Oriented Programming

Signals are a powerful tool used in Unix-based operating systems to deliver messages

to programs asynchronously. When a signal is delivered by the operating system to

a running process, the operating system typically saves the running process’s context

on its stack and calls the registered signal handler for that signal (or ignores the

signal if no handler has been registered). To restore the original program context,

many operating systems like Linux configure signal handlers to transparently call a

special sigreturn system call in place of executing a return instruction. This allows

the original process context to be restored and resumes execution.

While sigreturn is designed to be called automatically, nothing prohibits user

programs from invoking it just like any other system call, and there typically is no

kernel verification that a sigreturn call is from a signal handler that is returning.

Thus, as Bosman and Bos show in [11], it is possible for an attacker to create a

fake process context on the stack and manipulate a program to call sigreturn. In
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fact, sigreturn Oriented Programming (SROP) is in some ways easier to perform

than ROP, as it only requires the location of the sigreturn gadget which makes the

system call. This location, together with control over the instruction pointer, the

stack pointer, and knowledge of the address of exploit code, is enough to launch a

successful SROP attack on a vulnerable program.

In many kernels surveyed by Bosman and Bos, including Linux prior to version

3.3 on 64-bit x86, the sigreturn gadget lives in an area of memory not affected by

ASLR, thus making its address static for the entire operating system distribution. To

make matters worse, some versions of Linux place code to handle some time-sensitive

system calls like time in a location of memory called the vsyscall page. This page

is mapped into a static address in the user program’s memory at startup, providing

attackers with predictable, easy to find code to use as gadgets. This includes a system

call and return gadget which simplifies many attacks. SROP is of course possible even

on operating systems without static addresses for syscall or sigreturn gadgets.

Bosman and Bos also describe how to use SROP to leave a backdoor presence on a

remote system and how to circumvent code signing on mobile devices. Like ROP with

sufficient gadgets, SROP is Turing-complete, and shows us that ROP-style attacks

are not confined to user programs (even in practice). They are much more difficult to

protect than thought before, as all processes on Unix-based systems with just minor

memory violations can be vulnerable.

Just-In-Time Return Oriented Programming

The Just-In-Time ROP technique (JIT-ROP) addresses the rise of defenses that rely

on fine-grained address randomization like certain ASLR variants [52]. While quite a

complicated technique in practice, JIT-ROP relies on ASLR’s fundamental weakness

to memory disclosure vulnerabilities. In a program with a memory disclosure vulner-

ability that allows access to a single function pointer, JIT-ROP is able to discover

code addresses by disassembling the page containing that function pointer at runtime.

JIT-ROP then recursively searches the set of memory pages it knows about for more

code addresses. This way, JIT-ROP can discover large amounts of code in programs
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that have already been subject to address space randomization. Then, by applying

exploit techniques like gadget discovery and Just-In-Time compilation of exploit code

at runtime, JIT-ROP is able to launch traditional ROP payloads.

JIT-ROP leverages common software engineering paradigms to wreak havoc on

programs that use strong randomization-based defenses. In particular, programs that

emphasize high code coverage may facilitate attacker discovery of large amounts of

code at runtime in the presence of memory disclosures. Calls to system libraries can

potentially reduce security even further, as they may expose runtime addresses of

useful functions for attackers like LoadLibrary and GetProcAddress on Windows.

In summary, JIT-ROP reveals limitations of randomization-based defenses like

ASLR, especially on large or dense programs. While possible countermeasures like

runtime code re-randomization can be employed, JIT-ROP shakes any remaining

confidence that ROP attacks are impractical to deploy on heavily-fortified systems.

2.2.3 Counterfeit Object-Oriented Programming

Counterfeit Object-Oriented Programming (COOP) is a code reuse attack that lever-

ages semantics of the C++ programming language to achieve the expressiveness of

ROP [47]. In C++, classes may declare that one or more of their functions may

be overridden by functions in inheriting classes by designating them virtual. This

allows code to treat objects as instances of their least-derived classes, and not worry

exactly which function will be invoked at runtime (allowing dynamic dispatch). At

runtime, the correct function to invoke is found through the use of a virtual function

table (vtable) that is populated with the address of the function corresponding to the

object’s actual runtime type (i.e. its most-derived type). Each object that contains a

virtual function or derives from a class with a virtual function contains a pointer to

a such a vtable (vpointer). Virtual functions are a popular software engineering tool

as they allow a degree of modularity between units of code.

COOP uses buffer overflows to insert “counterfeit” objects with attacker-controlled

vpointers and data fields. Then, through the use of pre-identified snippets of virtual

functions called “vfgadgets”, existing vtables, and overlapping counterfeit objects, one
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can initiate a code reuse attack using only the code from existing object’s functions.

COOP relies on the existence of specific but common vfgadgets, like a “main loop”

gadget which iterates through a container of pointers to objects and invokes a virtual

function on each of them. Note however that no code or vtables are injected into the

vulnerable program. Instead, the counterfeit objects’ vpointers are crafted to point

inside existing vtables, allowing attackers to execute any existing virtual function.

Constructing a COOP attack requires significant analyses of the vulnerable pro-

gram to identify useful vfgadgets, determine viable control flow between them, and

arrange them (possibly overlapping) in memory to be inserted in the vulnerable buffer.

While the COOP authors have designed a tool to help locate useful vfgadgets, signifi-

cant human analysis is still required to generate a working attack. Attackers that can

perform this work are rewarded with yet another exploit framework that is Turing-

complete, but more automation of exploit creation is likely required before COOP

attacks become commonplace.

The use of techniques like ASLR, DEP and stack canaries can make COOP attacks

more difficult to perform, but do not conceptually prevent them. Defenses against

ROP are also not necessarily applicable against COOP, as COOP does not alter

existing return addresses or inject pointers to code. In short, COOP shows the true

power of buffer overflows: any data that can alter control flow even in a passive way

is a potential target for an attacker to modify through a buffer overflow.

2.3 Temporal Memory Vulnerabilities

The stack buffer overflow outlined at the start of Chapter 1 is an example of a spatial

memory violation. Another important class of attacks relies on temporal memory

violations like the use of heap-allocated memory after deallocation or the stack of a

function that has already returned. In C and C++, dynamically allocated memory

provides a particularly notable opportunity for memory violations as there are many

ways to violate the contracts of malloc and free (or new and delete in C++).

These include calling free on heap pointers multiple times, and the common “use-
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after-free” error, where pointers to already deallocated heap memory remain in use.

Because subsequent calls to malloc are allowed to reuse already freed memory, a

clever attacker can use these pointers to read and corrupt memory at will.

A recent example of a use-after-free vulnerability is CVE-2014-1776 [14], which

leverages a use-after-free vulnerability in recent versions of Microsoft’s Internet Ex-

plorer along with supplied JavaScript and ActionScript code to achieve remote code

execution. In this vulnerability, attackers fill the heap with many copies of their mali-

cious code (a technique called “heap-spraying”) and corrupt the saved length of a data

structure to access all of memory. Then, they look for addresses of both the Windows

ZwProtectVirtualMemory function, which attackers can use to make injected code

executable, and a stack pivot gadget, which is used in conjunction with ROP code to

set up the stack for injected code. In this attack the use-after-free vulnerability serves

a similar purpose as a traditional buffer overflow, allowing an attacker to corrupt a

data structure to access arbitrary memory.

Temporal memory violations are difficult to prevent, as C and C++ do not man-

date garbage collection or schemes to invalidate pointers after calls to free or delete.

ASLR, DEP, and canaries may make attacks based on temporal violations more dif-

ficult but do not attempt to detect or prevent the actual violation. Simple solutions

include defensive programming, like setting pointers to NULL after freeing them, and

the use of memory allocators that do not reuse memory, but these actions will not

prevent all vulnerabilities and may have drawbacks like higher memory usage.

2.4 Other Vulnerabilities

One other interesting memory corruption vector is format string vulnerabilities. In

C, functions of the scanf and printf families among others accept as arguments

strings with format specifiers that allow interpretation of subsequent arguments in

varying ways. Because C has a weak type system and these functions tend to accept

a variable number of arguments, the number of arguments passed and their types

are not checked at run-time. C also includes vulnerable format specifiers, including
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specifiers that allow reading arbitrary stack memory and writing data to function

arguments. These problems are exacerbated by the tendency of functions from the

printf family to take a format string as the first parameter, which could be under

the control of an attacker. Listing 1.1 in Chapter 1, for example, would also have a

format string vulnerability if the vulnerable buffer were provided as the first argument

to printf instead of the second. The interested reader is encouraged to take a look

at Newsham’s work on the subject [42].

C and C++ are languages ripe with opportunities for memory corruption, and

this thesis does not attempt to enumerate all of them. Without memory safety, the

possibility of new attack vectors involving memory corruption always exists. The

increasing number of attacks on C-like languages imparts an increasing responsibility

for programmers using those languages to not introduce bugs, which is not a desirable

situation for anyone.
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Chapter 3

Previous Work

Code reuse attacks are not a new phenomenon and affect a wide variety of pro-

grams. Unfortunately, there is currently no generally applicable low cost memory

safety technique. However, there are quite a few proposed and implemented attempts

at mitigating their impact on C programs. Because these solutions take very diverse

approaches to mitigating attacks they provide different levels of safety, compatibility,

and performance overheads. Naturally, programmers may find some solutions more

appropriate than others. For example, mission-critical programs may require the

highest level of security possible while being more flexible to modifying existing code

or performance penalties. Some existing code-bases may be too large to accept code

modifications, and as such would favor compatibility with existing source code or

binaries over stronger security guarantees. For some use cases, no currently available

solution may be acceptable.

This chapter outlines well-known defenses to code reuse attacks. In general, de-

fenses to code reuse attacks and memory corruption in general require users to accept

a trade-off between security, performance and compatibility with existing code. Not

every solution is designed to prevent all code reuse attacks: some are even specific to

classes of attacks.
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3.1 Memory Safety Based Defenses

3.1.1 HardBound and SoftBound

Full memory safety is the prevention of all spatial and temporal memory violations.

Techniques that provide full memory safety prevent against all of the code reuse

attacks described in Section 2.2 as well as the temporal memory violations described

in Section 2.3. (Note that memory safety does not imply prevention from information

disclosure.) Two examples of memory safety techniques are the hardware technique

HardBound [23] and its software counterpart SoftBound [40], both of which rely on

the concept of “fat pointers”. Fat pointers are merely pointers that are associated

with a base and bound. With accurate fat pointers, ensuring spatial memory safety

reduces to adding checks that ensure a pointer’s value is between its base and bound

before it is ever dereferenced (“bounds” checks).

A naive implementation of fat pointers can impose a serious memory bottleneck,

as dereferencing a pointer suddenly requires three memory accesses. Implementations

can also cause compatibility problems: C programs are very sensitive to memory lay-

out and simply storing three words of memory for a pointer in place of one would

break programs that assume the old pointer size. Fortunately, HardBound and Soft-

Bound also apply intelligent techniques to reduce the number of memory accesses

required for pointers. For example, while HardBound reserves space in virtual mem-

ory for base and bound metadata, it also reserves space for a small tag that encodes

whether a memory location is a pointer or not. Memory locations containing pointers

store their size in tags if it is a small power of two (like small C structs). On memory

accesses it may suffice to check this small tag (which can be cached separately from

other memory) instead of loading both base and bound for all pointers. HardBound

and SoftBound also both remove bounds checks when they can be proven unneces-

sary at compile time. SoftBound is very effective in practice, detecting all memory

violations in the Wilander test suite [66].

HardBound and SoftBound are able to provide provable safety guarantees with-

out breaking the common C programming model [40], including precise control over
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memory. Nevertheless, memory safety comes with a significant performance cost: the

maximum runtime overhead HardBound displays in the Olden benchmarks [46] is

over 20% [23]. SoftBound fares much worse, with an average case runtime overhead

of 67% and multiple benchmarks with over 150% overhead [40]. Programs with fewer

pointers suffer lower runtime overhead, but even the average-case overhead of 67%

can be a steep price for programs to pay for memory safety. HardBound’s signifi-

cantly smaller overhead is enticing, but its required changes to hardware prevent its

widespread adoption.

SoftBound’s optional Compiler-Enforced Temporal Safety (CETS) extension pro-

vides highly-compatible, provably-correct temporal memory safety [39]. CETS pro-

vides temporal safety through the use of a global 64-bit counter called a “key” that is

incremented on each call to malloc and also stored in the returned pointer. On calls

to free, a “lock” (whose address is also part of the pointer) is unset. Then, temporal

safety can be enforced by checking if the lock and key match. Unfortunately, CETS

protections also come at a high cost: on the SPEC2000 [55] benchmarks the worst

case runtime overhead was over 150%. CETS’ temporal safety also cannot be guaran-

teed without the rest of SoftBound, so this overhead cannot be reduced for programs

only desiring temporal safety.

3.1.2 CHERI and PUMP

Systems that are designed to enforce more comprehensive security models can easily

and totally prevent code reuse attacks. One example is Capability Hardware En-

hanced RISC Instructions (CHERI), a capability system that aims not just for exploit

mitigation, but application compartmentalization [17] [65]. Based on the 64-bit MIPS

architecture, CHERI introduces new hardware, changes to operating system kernels,

compilers, the C standard library and introduces to programmers an object-capability

programming model that allows enforcement of sets of fine-grained access policies on

arbitrary program memory. The new capability coprocessor works in tandem with

an MMU to provide intra-process memory protection at byte granularity. CHERI’s

protections are specifically designed to accommodate existing C programs and even
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common C idioms that are implementation-defined or undefined behavior according

to the C standard [17].

Like HardBound, CHERI uses a form of tagged memory to implement its secu-

rity guarantees. Its purpose, however, is not for identifying pointers or storing their

bounds. Instead, CHERI uses a one-bit tag on all physical memory to identify which

locations contain valid capabilities. Capabilities themselves are stored in a set of dedi-

cated registers. Capabilities allow much finer control of memory, including permission

bits for instruction fetching, loading and storing of data and capabilities, and access

to hardware exception registers. CHERI capabilities also include base and bound to

allow for efficient bounds checks, allowing them to take the role of HardBound’s fat

pointers. The use of a one-bit tag to mark capabilities in memory helps them become

unforgeable to attackers. Therefore, CHERI as a whole does not even need to lever-

age defenses like DEP and ASLR to effectively prevent against the spatial memory

attacks presented in Section 2.2. CHERI also includes protections against temporal

memory violations.

In Architectural Support for Software-defined Metadata Processing [24], a system

called the Programmable Unit for Metadata Processing (PUMP) is described. The

PUMP is a RISC processor with tagged memory, registers, and caches. PUMP rep-

resents the opposite extreme of the use of tagged memory: to allow for unlimited

metadata, tags in the PUMP are large enough to store memory addresses of arbi-

trarily large metadata structures. Effectively, arbitrarily large numbers of memory

policies can be enforced. Adding pointer-sized tags to all of memory does introduce

many new costs, but the PUMP is able to utilize a number of optimizations when

policies exhibit spatial or temporal locality, and policies defined by software them-

selves can be cached in hardware. The PUMP authors also show proof-of-concept

policies that enforce memory protections schemes like DEP, full memory safety, and

control flow integrity, among others.

Realistically, CHERI and PUMP are not currently viable options for most pro-

grams. While they are both highly compatible with existing C and C++ code, their

use would require programmers and users to switch to an entirely new research ar-
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chitecture, operating system, and compiler, among other components. They also rely

on RISC architectures as a base, which presents different challenges than the reigning

CISC x86 architecture. It is also difficult to ascertain exactly what runtime penalty

the use of such a system may impose on existing programs, as CHERI and PUMP

provide such a wide range of functionality. What is not difficult is identifying CHERI

and PUMP as systems that can prevent much more than memory corruption attacks

that merit future attention, both to system programmers and hardware designers.

3.2 Annotated Languages

While C appeals to programmers that do not want sources of uncontrollable overhead

like bounds checks automatically added to their programs, it makes the lives of pro-

grammers who are willing to pay for memory safety more difficult. Despite this fact,

programming instead in a language with memory guarantees like Java may be unde-

sirable or even infeasible for some programs. Annotated dialects of C like Cyclone

[30] and CCured [41] are targeted at exactly this audience, providing a mix of static

and dynamic checking that allow programmer control over memory corruption.

The Cyclone language exposes three types of pointers to provide control over

bounds checks. Fat pointers are nearly identical to fat pointers in memory safety sys-

tems, but allow code to make dynamic inquiries about their bounds. Thin pointers are

pointers without any bounds information, designed to be used as references to single

locations of memory like integers. Bounded pointers are thin pointers with statically

defined sizes, allowing programmers that use them to aid compilers in optimizing out

unnecessary bounds checks. Like C, Cyclone allows for conversions between pointer

types at will, but also allows programmers to write functions whose pointer arguments

are guaranteed at runtime to not be NULL. Cyclone also uses a a region-based memory

management system with a conservative garbage collector for heap allocations.

CCured, unlike Cyclone, is specifically designed for retrofitting existing C pro-

grams. Like Cyclone, CCured adds new types of pointers to C. SAFE pointers are

similar to thin pointers in Cyclone in that they are intended to be references to single
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values or NULL but also do not require the use of pointer arithmetic or casts. SEQ

pointers are fat pointers that allow pointer arithmetic but not casts. SAFE and SEQ

pointers are statically typed in CCured but WILD fat pointers can point to any type,

like traditional C pointers. CCured also contains a number of minor pointer types

like FSEQ pointers, which allow pointer arithmetic only with positive constants (to

save the overhead of having to save the pointer’s base), and runtime type information

pointers which serve a similar purpose to their equivalent in C++. The CCured au-

thors also make a significant effort to prove that their language facilitates development

of programs without spatial memory violations.

Cyclone and CCured provide programmers with the opportunity to write memory

safe programs without having to forgo the entire C language. The Cyclone and

CCured authors are also very upfront about the amount of changes involved in porting

C programs to their languages: the Cyclone authors noted that about 5-15% of code

required changes in a port of a popular set of benchmark programs, while the CCured

team only modified about 1% of code while porting a set of benchmarks including the

Olden and SPEC95 suites [46] [54]. Notably, the CCured authors successfully ported

a number of popular programs to the language, from programs crucial to security like

OpenSSL and OpenSSH to hardware-interfacing programs like Linux kernel drivers.

The performance impact of Cyclone and CCured is harder to measure as it depends on

how programs are ported from C, but Cyclone achieves an average of 60% overhead on

the Great Programming Language Shootout benchmark suite while CCured achieves

an average of 32% overhead on a subset of the Olden and SPEC95 benchmarks [41].

CCured also measured its estimated memory overhead, which ranged from 1% to

284%. These overheads may be acceptable for certain types of programs given the

power that Cyclone and CCured give to developers. For others, they remain too high,

especially when combined with the time required to port existing code from C.
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3.3 Intermediate Defenses

In this section, we explore a wide variety of solutions that aim to provide intermediate

levels of security for all programs. Many of these solutions are designed to “fail open”

– that is, protect as much code as possible while allowing unprotected code to run

normally. Each has inherent weaknesses that reduce security guarantees, but all are

effective for a wide variety of programs.

3.3.1 Intel MPX

Intel Memory Protection Extensions (MPX) [59] allows for hardware implementation

of fat pointers on x86 architectures. While HardBound stores base and bound meta-

data in virtual memory and uses tags to identify pointer and non-pointer memory

[23], MPX creates four 128-bit registers to store base and bound along with hardware

support for bounds directory and table structures (that are analogs of page directory

and table structures). MPX also includes new instructions to efficiently check lower

and upper bounds against pointers, which issue hardware exceptions when pointers

are found to be out-of-bounds. The first architecture with support for Intel MPX

is expected to be released later this year, so the following is an analysis of the Intel

MPX simulator’s behavior.

The CHERI authors discuss Intel MPX in a recent paper, comparing the ex-

tensions with full memory safety systems like HardBound [17]. Importantly, they

highlight the fact that while both MPX and HardBound rely on explicit hardware

instructions to handle pointer bounds, Intel MPX is designed to favor compatibility

with existing programs over security. Two design choices in particular reduce MPX’s

security guarantees. First, Intel MPX allows unchecked dereference of pointers that

have been updated without corresponding updates to their bounds. In this case,

HardBound would issue a hardware exception on dereference. Second, because MPX

metadata like bounds directories and tables are stored in separate memory, code that

modifies pointer values must update bounds data separately which can lead to race

conditions that permit out of bounds pointer dereference. In multi-threaded programs
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this can negate MPX protection all together.

Because no Intel processors equipped with MPX have been released, it is difficult

to draw any concrete conclusions about its properties, or how it will even be used

by programmers (although GCC support for MPX has already been implemented [3]).

Nevertheless, it seems that MPX will provide programmers with the ability to perform

bounds checks more efficiently than before, and choose the level of memory protection

they desire. However, in its current form MPX does not seem capable of providing

full spatial memory safety and does not address temporal memory safety.

3.3.2 Heuristic Based Schemes

Processor state during a ROP attack can look very different than during normal

execution. Recent low-overhead solutions like kBouncer and ROPecker try to identify

precisely what makes ROP code execution so different through the use of several

custom heuristics like gadget length [44] [16]. In particular, kBouncer and ROPecker

use a hardware feature of recent Intel x86 architectures called the Last Branch Record

(LBR) to inspect the previous 16 indirect branches taken on system calls. While these

tools have proven effective at preventing real-world exploits on existing binaries with

very low performance overheads, the ease with which the heuristics they rely upon can

be defeated leads to the conclusion that they do not provide strong security in theory.

This section presents an overview of these heuristics and viable attacks against them,

as originally discussed in [13] and [48].

As previously stated, kBouncer depends on the LBR to examine up to 16 previous

taken indirect branches on system calls. kBouncer aims to enforce two properties

on executing code. First, all previous return instructions stored in the LBR must

return to instructions directly after call instructions. This heuristic is based upon the

observation that many ROP gadgets use return instructions to return to places that

were not intended as return points. Attackers that wish to subvert this protection

are then limited to using call-preceded gadgets. Second, kBouncer checks the last 8

indirect branches to ensure that at least one of them does not go to code that has a

path to another indirect branch in under 20 instructions. kBouncer calls these paths
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“gadget-like”, reasoning that a series of 8 such indirect branches is likely to indicate

an ongoing ROP attack.

Unfortunately, both of these heuristics can be broken with some effort. In [13],

Carlini and Wagner outline two attacks to break kBouncer. The first involves a ROP

attack that sets up everything necessary to execute a system call but first executes a

set of gadgets to alter the LBR’s history. Only two gadgets are necessary: a history

flushing gadget which does little work but is call-preceded, and a termination gadget

that also does no work but contains at least 20 instructions before an indirect jump

along every execution path. After these two gadgets execute, a system call can be

made without detection. The second outlined attack uses only call-preceded gadgets,

passing kBouncer’s checks easily. Carlini and Wagner also show that sufficient call-

preceded gadgets to perform such attacks are very likely to be found in programs of

at least 70 kilobytes in size.

ROPecker uses a slightly different design. While also inspecting the LBR at system

calls, ROPecker uses page permissions to keep a very small working set of executable

pages. Before a page not in that set is to be executed, ROPecker ensures that there

are not 11 “gadget-like” sequences of instructions about to be executed. ROPecker

defines such a sequence as requiring 6 or fewer instructions before any path leading to

an indirect jump. Nevertheless, the two outlined attacks on kBouncer can be updated

to work on ROPecker by invoking gadgets that flush history more often and invoking

termination gadgets multiple times. In short, because gadgets that perform these

operations are present in programs of even a moderately-small size, attackers with

knowledge of the heuristic used by a particular defense can work around it.

Heuristic-based defenses are very useful for end-users, as they allow a moderate

level of protection for large amounts of existing programs without recompilation or

large overhead. Unfortunately, they do little to solve ROP in practice, as attackers

with knowledge of popular heuristics may be able to program around them. Addi-

tionally, defenses like kBouncer and ROPecker also suffer from conceptual weaknesses.

For example, Intel’s LBR is a global data structure: it is not saved and restored on

context switches, which may make ROP attacks easier. Additionally, determining
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suspicious execution using heuristics can disrupt legitimate programs [48].

3.3.3 Bounds-Checking Schemes

As discussed in Section 3.1, schemes that attempt to insert bounds checks into ex-

isting programs can carry significant performance and memory overheads. Baggy

Bounds attempts to reduce these overheads by replacing the common fat pointer

representation with a compact one-byte representation of pointer sizes [5]. Objects

allocated with Baggy Bounds are padded to the nearest power of two, which itself

can be stored in small bounds table. Then, bounds checks can be reduced to shifting

a pointer over by its stored size and a single comparison instruction instead of the

arithmetic and multiple compares required with fat pointers. Because Baggy Bounds

uses allocation sizes instead of isolating individual object sizes, it does not prevent

all buffer overflows. In particular, it is unable to detect overflows within C structs.

Baggy Bounds is able to speed up bounds checks, achieving an average of 60%

runtime overhead on the SPECint 2000 C benchmarks. In part, this is because Baggy

Bounds adds bounds checks on pointer arithmetic operations but not pointer deref-

erences. There are some notable drawbacks to this approach: in particular, Baggy

Bounds does not allow all out-of-bounds pointers to exist, which can break programs

containing out-of-bounds pointers that are never dereferenced. The SPECint bench-

marks for example required modifications to work with Baggy Bounds due to this

very issue. The use of a more compact bounds representation also results in signifi-

cant savings in space overhead, with an average of 15% overhead on the same set of

SPEC benchmarks.

Ultimately, Baggy Bounds and similar schemes that optimize bounds checks pro-

vide significant levels of security without intolerable overhead for many well-behaved

C programs. While its overhead is still significant and its changes to memory alloca-

tions possibly unworkable for heap allocation-heavy programs, Baggy Bounds repre-

sents a practical midpoint between involved solutions like HardBound and heuristic

based solutions like kBouncer.
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3.4 Control Flow Integrity and Related Defenses

Control Flow Integrity (CFI) is a technique that aims for correct program execution

rather than memory safety or integrity [4]. CFI relies on a statically generated control

flow graph (CFG) that encodes all valid control transfers between a program’s basic

blocks. This entails determining where functions are called and where they return to,

and adding checks to ensure these constraints are followed at runtime. CFI usually

assumes that DEP is in place, and only instruments indirect control flow transfers.

In theory, CFI is very resilient against ROP attacks, as they often call code rarely or

never used in typical program operation.

Unfortunately, CFI is a difficult defense to implement. This is in part because the

targets of indirect control flow data like function pointers are often difficult and in

some cases impossible to determine statically. Code that loads libraries dynamically

through functions like dlopen in libc also contributes to this problem. Another

difficult problem is the determination of what can be a very large CFG. Two early CFI

implementations, CCFIR and bin-CFI, consolidate program CFG’s by conflating all

indirect control transfers into a small number of “labels”, distinguishing only function

calls and returns [68] [69]. CCFIR also uses a third label for returns from system call

wrappers. Implementations like CCFIR and bin-CFI have over time become known

as coarse-grained CFI.

The research community has contributed much work on the effectiveness of coarse-

grained CFI [53] [29] [21]. In short, coarse-grained CFI implementations like CCFIR

use too few labels to be able to generate a precise enough CFG to prevent many

ROP attacks. Even with a precise CFG, CFI lacks context-sensitivity, and as such is

unable to determine if a function is returning to its actual caller instead of a function

that calls it elsewhere. Nevertheless, coarse-grained CFI can be implemented on

existing binaries with or without debug symbols and the ROPGuard implementation

has been included as part of Microsoft’s Enhanced Mitigation Experience Toolkit

(EMET) despite its vulnerabilities.

More recently, researchers have focused on ways of overcoming CFI’s limitations.
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Cryptographically Enforced Control Flow Integrity (CCFI) attempts to provide fine-

grained CFI using message authentication codes (MACs) for all control flow elements

[36]. In CCFI, MACs of function pointers encode their position in code, allowing

for more precise runtime indirect control flow checks. CCFI depends on recent Intel

instruction sets with primitives for AES encryption to compute MACs efficiently.

Opaque CFI (OCFI) aims to prevent against memory disclosure attacks that

weaken coarse-grained CFI defenses [38]. OCFI introduces the notion of bounds

to destination sets of indirect control flow transfers, allowing control transfers only

to addresses between the lowest and highest addresses in those sets. OCFI uses

information-hiding techniques to hide these bounds structures from attackers, and

accelerates runtime bounds checks through the use of Intel MPX. Unfortunately, the

assumption that information-hiding techniques can prevent data discovery even in

the presence of memory disclosure vulnerabilities can be a bad one [26]. Additionally,

OCFI suffers from Intel MPX’s weaknesses, like the lack of atomic updates to pointers

and MPX bounds structures.

New implementations of CFI and solutions that use similar ideas are common.

As an example, Forward-Edge CFI aims to achieve low-overhead protection by per-

forming no instrumentation of returns and depending on solutions like canaries to

protect them [63]. The Data Structure Analysis (DSA) algorithm [35] provides a

strong static analysis framework for fine-grained CFI implementations. The lack of

consensus as to the “right” version of CFI to enforce makes it difficult to evaluate its

conceptual trade-offs on security, performance, and program compatibility. Despite

this uncertainty, it is clear that CFI-based defenses merit further consideration before

hard conclusions can be made about their true value to existing and future programs.

3.5 Memory Safe Languages

A potential solution for programmers desiring memory safe code is to leave the C

language altogether. The recent rise of memory-safe languages like Rust that are

designed for systems-level programming provide the potential for programs that are
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free from code reuse attacks without requiring secondary software or new hardware

[37]. This option, of course, is not without its drawbacks, particularly the risk of

vulnerabilities in a language’s implementation of memory safety impacting programs

that use it, and the overhead involved in programming in an entirely new language.

3.6 Code Pointer Integrity

Like the techniques discussed in Section 3.1, Code Pointer Integrity (CPI) aims to

protect memory via an expanded representation of pointers that includes base and

bound [34]. Unlike those techniques, CPI aims to provide lower runtime overhead by

only protecting “sensitive pointers”. CPI defines these pointers as function pointers,

pointers to sensitive pointers, pointers to types that include sensitive pointers (like

structs), and universal pointers like char * and void * which are only protected

when they become sensitive. By enforcing this selective form of memory safety, CPI

is able to provide good security guarantees and low overheads for many programs.

Using mainly static analyses to identify these pointers, CPI instruments programs

at compile time to place and access them in an isolated region of memory called the

“safe region”. Then, whenever a sensitive pointer is dereferenced, it is first subject to

a bounds check. CPI provides spatial memory safety of sensitive pointers if the safe

region is effectively isolated from attackers. In theory, CPI can also offer temporal

memory protection, as the safe region can be used to store general metadata. For

many programs, excluding non-sensitive pointers reduces the overhead of memory

safety techniques to the point where CPI may be tolerable.

Although CPI’s more limited form of protection is still strong, and it is able to

protect against all attacks not protected by DEP or ASLR in the RIPE test suite

[66], it suffers from a number of issues that prevent it from widespread adoption.

These vary from high overhead for C++ programs that use many vtable pointers

to weaknesses in its information-hiding scheme, which can be exploited by patient

attackers through side-channel attacks [26]. CPI nevertheless is a source of good

ideas for code reuse defenses, and it is analyzed in Chapter 4.
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Chapter 4

Analysis of Code Pointer Integrity

This chapter outlines and analyzes the design, security guarantees, and overheads of

the Code Pointer Integrity (CPI) code reuse defense. CPI’s protections are affordable

and appropriate for many programs, but can be difficult to implement securely on

modern architectures. Nevertheless, CPI champions ideas that can be strengthened

in hardware schemes like Taxi, which we introduce in Chapters 6 and 7.

4.1 Design

As introduced in Section 3.6, CPI [34] is a technique that aims to defend against

code reuse attacks by moving “sensitive” pointers into a separate, hidden region of

memory called the “safe region”. All accesses to sensitive pointers are instrumented

at compile time to access the safe region. Like SoftBound [40], CPI saves base and

bound information for each protected pointer and performs bounds checks before

dereference, thereby enforcing spatial memory safety. In theory, the safe region can

be used as a general pointer metadata store, allowing CPI to potentially provide

temporal safety.

Unlike SoftBound and similar fat pointer schemes, CPI does not view all pointers

as crucial in preventing code reuse attacks. Instead, it defines “sensitive” pointers as

pointers to types that can directly influence control flow. At minimum, this must

include return addresses on the stack, function pointers, signal handler contexts,
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setjmp buffers, and pointers to aggregate types like structs that contain function

pointers. CPI goes a few steps further and and includes in their definition “universal”

pointers like char * and pointers to sensitive types. This recursive definition covers

structures like jump tables and C++ virtual table pointers, and is described by the

CPI authors as an “over-approximation” of “code” pointers.

Because code pointers make up only a fraction of pointers used in many programs,

protections limited to them can operate with significantly lower overheads. CPI

further lowers its overhead by protecting return addresses separately using a shadow

stack [34]. Unfortunately, exclusively protecting code pointers allows for considerable

attacker control over programs. In the worst case, this can permit ROP attacks.

4.2 Security Guarantees

4.2.1 Threat Model

CPI’s threat model allows an attacker full control over program memory outside of the

code segment, which is loaded into unwritable memory. This includes the ability to

read and write arbitrary memory through vulnerabilities, although executing injected

code is prevented by DEP and variants of ASLR may be present. While this is a fairly

strong attacker model, CPI notably trusts the compiler and loader to instrument and

load the program into memory correctly.

4.2.2 The Safe Region

CPI provides effective spatial memory safety of sensitive pointers only if its safe region

is isolated from attackers. Because CPI’s threat model assumes that attackers can

read and write arbitrary program memory, this is a challenging task.

The CPI prototype implementation Levee is designed to protect both 32-bit and

64-bit x86 variants. In its 32-bit x86 implementation, Levee uses an unused segment

register to hold the address of the safe region and excludes access to this region

through other segment registers by altering their segment limits. Unfortunately, while
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Figure 4-1: Memory layout of a process protected by CPI.

64-bit x86 also provides segment registers, it no longer enforces their limits, preventing

hardware isolation of the safe region. On this architecture Levee aims to protect

discovery of the safe region’s location by randomizing its base and ensuring that no

pointers into the safe region exist outside of it. The CPI authors reason that this will

force attackers to guess the location of the region, which in the presence of ASLR

requires the impractical task of guessing addresses in a 48-bit region.

This claim is not entirely accurate. While it is true that discerning a single byte

from the entire 48-bit x86-64 address space is impractical, the safe region is much

larger. In Levee, the safe region’s size is chosen to be 242 bytes and is allocated using

the mmap system call and the MAP_ANONYMOUS flag. This means that its actual location

is determined by mmap, and on systems that employ ASLR, the underlying operating

system. mmap reliably aligns memory to page boundaries and only allocates below the

stack gap.

Figure 4-1 depicts the possible locations of the safe region in memory. The amount

of entropy in the page-aligned mmap base address depends on the underlying ASLR
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implementation; as an example, the Linux kernel on 64-bit x86 allows for 28 bits.

Linked libraries are then loaded, followed by the safe region. Because the safe region

is larger than the amount of ASLR entropy available, there will be a region of memory

that will always contain part of it of size 242−(228* 𝑝𝑎𝑔𝑒 𝑠𝑖𝑧𝑒), where the page size is

determined by the operating system. For the common case of 4KB pages this region

is 242 − 240 bytes long, which spans several million pages. Therefore, attackers able

to read and write arbitrary memory can easily corrupt code pointers stored in this

region. By reading the values of those pointers, more patient attackers potentially

could discover addresses of existing code like libc.

4.2.3 Locating libc and the Safe Region

The ultimate goal for attackers trying to circumvent CPI is to override control flow.

In the presence of ASLR, attackers must first discover where useful code is located

and then overwrite a code pointer. As Figure 4-1 illustrates, discovering the runtime

location of a library like libc helps solves both of these problems, providing useful

code and making it easy to locate the safe region itself. One simple but slow method

to discover libc’s location is to use a memory read vulnerability to scan every address

upwards from the always allocated part of the safe region for the first byte of libc.

Possible Optimizations

A faster method first described in [26] relies on the observation that memory at the

minimum mmap base address is also always allocated, holding either the linked libraries

or part of the safe region. By also using the fact that the libc allocation is page-

aligned, the number of memory reads required to discover libc in the worst case can

be reduced to the ASLR entropy available (in Linux, 228).

This is not the only optimization that [26] employs. We can rely on the layout of

the safe region, which can hold up to 240 pointers using its default linear “simpletable”

layout. Because most programs have far fewer than 240 code pointers, most pages

in the safe region are entirely empty. Therefore, reading a zero page indicates that
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it most likely is not part of libc. If we believe this, in the worst case libc ends

on the memory page directly above our scan. Then, instead of scanning the next

page we can skip by the size of libc instead, reducing the number of scans we must

perform in the worst case to 228 * 𝑝𝑎𝑔𝑒 𝑠𝑖𝑧𝑒
𝑙𝑖𝑏𝑐 𝑠𝑖𝑧𝑒

, which is approximately 219. This strategy

is illustrated in Figure 4-2a.

Tolerating Crashes

Many operating system kernels do not randomize the memory layout of processes

started by system calls like fork, leaving programs that serve user requests with

new processes especially vulnerable. In this case, discovery of the address space of

a child process also provides an approximate layout of its parent. One side effect of

this is allowing attackers attempting to guess program addresses the ability to guess

incorrectly (likely crashing the child process) without disrupting the memory layout

of the parent process.

This feature allows for further optimization of our strategy to discover the address

of libc. Instead of starting our scan at the minimum mmap base address and skip-

ping by the size of libc, we can perform a form of binary search where our upper

bound address is out-of-bounds while our lower bound address is not. We initialize

our search with our lower bound as the minimum mmap base address plus the size of

linked libraries and our upper bound as the maximum mmap base address. When the

difference between these bounds is approximately the size of libc, we have discov-

ered it. This optimization reduces the number of scans required to 𝑙𝑜𝑔2 219 = 19,

significantly speeding up our attack. Figure 4-2b illustrates this strategy.

One remaining question is how to identify libc during our memory scans. A

simple method to do so when the version used by the vulnerable program is known

is to create a table of individual libc byte values. When a non-zero memory page

is discovered, scanning a few bytes in that page can then help fingerprint the exact

libc page that was located. Then, discovering the address of a desired function or

instruction is straightforward.
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Figure 4-2: libc searching strategies.

4.2.4 Constructing a Full Attack

In the presence of a memory disclosure vulnerability, we are now able to discover the

base addresses of libc and the start of the safe region. With the ability to write to

arbitrary memory, we can develop a full attack on a CPI protected program. Notably,

the memory disclosure vulnerability does not have to be direct. [26] outlines a full

attack on a CPI-protected version of the web server nginx that is able to manufacture

a memory disclosure vulnerability through the use of a non-sensitive data pointer

overwrite. This data pointer controls the number of iterations of a logging routine

that is on the path of user requests, allowing attackers to determine byte values of

arbitrary memory locations by analyzing network round trip time. This timing attack

requires precise timing measurements and isolation of the baseline network delay.

Finding the Safe Region in Practice

The optimizations for discovering libc and the safe region in Section 4.2.3 depend on

the assumption that any zero bytes discovered are within the very sparse safe region,

and not libc. If we instead find zero bytes in libc, our searching strategies will

skip over it and fail. One method of preventing this false-negative condition is to

determine whether a page is entirely zero by reading page offsets that are never or

almost never zero in libc. After experiments, we were able to find two bytes that are
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never both zero in any page of libc, providing certainty in our search but doubling

the number of accurate scans required.

Attacking the Safe Region

With the ability to write memory and the locations of libc and the safe region, we

can both determine addresses of useful code (like system call wrappers) and write

them to an existing code pointer’s value, base, and bound entries in the safe region.

Inevitably, we depend on already existing code to call the code pointer at some point

to redirect control flow. To increase our odds of a successful and timely attack we

can overwrite multiple pointer’s values, which is easy to do because each pointer’s

metadata in the safe region is adjacent to each other and is organized identically. This

does not carry the risk of crashing the victim program: the entire region has already

been mapped into memory by mmap, allowing reads and writes even to unused virtual

memory to succeed.

4.2.5 Static Analysis Weaknesses

CPI identifies pointers to protect via a compiler pass. There exist pathological cases

where code pointers may be hard to identify in this pass, as C allows pointers to

be cast in places static analysis cannot discover like dynamically loaded libraries.

CPI will fail to identify and protect these pointers. SoftBound also has theoretical

weaknesses in its static analyses but in its edge cases like casting arbitrary integers to

pointers it requires programmers to manually provide bounds to such pointers before

they can be dereferenced, thus erring on the side of caution. Because of C’s weak

type system, these issues represent fundamental weaknesses of static analysis based

solutions and may be impossible to overcome without programmer annotations.

4.2.6 Defending the Safe Region

CPI’s 64-bit x86 implementation is vulnerable because it places the safe region in the

same address space as other code, opening it up to discovery by memory disclosure
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vulnerabilities. This problem is exacerbated by the safe region’s large size, which

allows attackers to scan memory to discover its base address without causing any

crashes. There are several ways CPI can make discovering the safe region’s base

address more difficult.

The safe region could be placed at an address randomized independently of ASLR.

This would make finding the safe region involve a great deal more guesswork. Unfor-

tunately, mmap provides a limited amount of entropy in the address space available for

fixed mappings, and because of ASLR, there is no guarantee that such a safe region

would not collide with existing memory mappings.

A smaller safe region would be more difficult for attackers to discover, and could

eliminate the always allocated region of memory highlighted in Figure 4-1. However,

if the safe region were still allocated directly after the loaded libraries, our existing

scanning techniques could still be applied in the reverse direction by an attacker

with knowledge of any library address. Smaller safe regions also limit the amount of

protection available to programs.

A small, externally randomized safe region that is non-contiguous with loaded

libraries would evade all of our scanning strategies. Attackers would have to be

willing to tolerate a potentially large number of unallocated memory dereferences to

discover such a region. Nevertheless, there are viable ways to lower address entropy,

like forcing the allocation of large data structures at runtime, and the use of large

pages. This strategy is also not immediately viable, as common operating systems do

not provide non-contiguous randomized memory allocators or allow user programs to

construct this functionality in a reliable way.

Finally, the safe region could be partitioned into smaller, non-contiguous regions

surrounded by pages with no permissions. Managing these regions would be more

difficult, but making attackers have to perform multiple searches to identify the entire

safe region could be worth the overhead. This strategy is pictured in Figure 4-3. For

even further effect, these small regions themselves could be broken up into multiple

pieces separated by garbage data at the cost of more management overhead. These

strategies would also require the use of custom non-contiguous memory allocators.

50



...

safe region pt 2

linked libraries

...

libc

safe region pt 1

UNALLOCATED

UNALLOCATED

UNALLOCATED

Figure 4-3: A possible non-contiguous safe region layout.

4.3 Overheads and Compatibility

Because CPI only protects sensitive pointers, it can reduce the performance over-

head of full memory safety defenses like SoftBound to less than 10% for many pro-

grams. The CPI authors claim an average overhead of 8.4% on the C and C++

SPEC2006 benchmarks with information hiding [56], using an Intel Xeon machine

running Ubuntu 12.04 with 512GB of RAM and a 2MB system page size.

While we did not have access to a similar machine to reproduce results, we were

able to compile and run SPEC2006 on an Ubuntu 14.04 machine with 4GB of RAM

and a 4KB system page size. All benchmarks were compiled using the Levee 0.2-

instrumented clang 3.3 and the std=gnu89 flag, which the 400.perlbench bench-

mark requires to run. Table 4.1 presents our results using both the CPI default

“simpletable” and hashtable safe region layouts, while Table 4.2 presents a compari-

son on select benchmarks between our results and those claimed by the CPI authors.

4.3.1 Experimental Methodology

The precise conditions that the claimed overheads in Table 4.2 were obtained with

are unclear. The CPI team mentions that the simpletable layout with 2MB memory

pages is the most performant in their tests, but it is not clear if their results use

this setup. Additionally, no information on compiler flags passed to benchmarks
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Benchmark Language Simpletable Hashtable
400.perlbench C NT NT
401.bzip2 C 1.42% -0.35%
403.gcc C 5.99% NT
429.mcf C -6.55% -3.47%
433.milc C -0.14% 12.9%
444.namd C++ 2.51% 3.05%
445.gobmk C 2.53% 1.4%
447.dealII C++ 23.9% 24.1%
450.soplex C++ 2.28% 6.34%
453.povray C++ IR IR
456.hmmer C 2.08% 1.04%
458.sjeng C 5.2% 0.37%
462.libquantum C 12.11% 11.01%
464.h264ref C 16.02% 14.46%
470.lbm C 5.98% 5.53%
471.omnetpp C++ 94.67% 131.1%
473.astar C++ 8.39% 0.63%
482.sphinx3 C -3.59% -1.27%
483.xalancbmk C++ 67.61% NT

Average C/C++ 14.14% 13.79%
Average C 3.73% 4.16%
Average C++ 33.23% 33.04%

Table 4.1: SPEC CPU2006 Benchmark Performance. NT denotes that a benchmark
did not terminate after running for 8 hours, while IR denotes that a benchmark
completed but its output was incorrect.

Benchmark Language Measured Overhead Claimed Overhead
403.gcc C 6.0% 16%
447.dealII C++ 23.9% 3.7%
453.povray C++ IR 43%
464.h264ref C 16.0% 5.8%
471.omnetpp C++ 94.7% 44.2%
483.xalancbmk C++ 67.6% 37%

Table 4.2: Comparison of measured and claimed CPI performance overhead using the
simpletable safe region layout. Claimed overheads are estimated from Figure 3 in [34],
except 447.dealII and 464.h264ref, which come from Table 3, and 471.omnetpp,
which comes from Table 1.
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like optimizations and C/C++ standard levels are provided. The C standard we

used (GNU 1989) was required to run 400.perlbench, but its definition of function

inlining can affect performance numbers for other benchmarks.

4.3.2 Reproducibility of Results

On the whole, the performance overheads described in the simpletable column of

Table 4.1 are not radically different from the results claimed by the CPI authors: most

benchmarks have similar magnitudes of overhead. Unfortunately, several benchmarks

were nonfunctional in our tests. In particular, logical errors are introduced into the

453.povray benchmark and several benchmarks like 400.perlbench do not terminate

when run for at least 8 hours. Implementation flaws in the available version of Levee

may be to blame for this.

4.3.3 Analysis of Results

The CPI authors’ claim of low overhead holds true for many benchmarks. Only

five of the seventeen benchmarks that we observed to execute correctly had runtime

overheads of over 10%. A few benchmarks even had improved performance under

CPI: 429.mcf ran about 6.5% faster. It is difficult to conclude why this occurred

without knowledge of the benchmark’s implementation, but it is likely due to the

pointer memory locality that CPI creates: in programs that use sensitive pointers

from different sources, CPI’s safe region can effectively group them into a small region

of memory, often residing on the same page. The use of larger memory pages may

exacerbate this effect.

C++ benchmarks that use many objects with virtual functions are particularly

susceptible to high overhead. This is because a sensitive pointer to a virtual function

table exists at least once for each such object. Virtual functions are a core feature of

object-oriented programming in C++, and their overhead limits CPI’s applicability

to user programs. The CPI team’s answer to this overhead is a leaner version of CPI

called Code Pointer Separation (CPS). Programs using CPS benefit from sensitive
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pointers living in the safe region but those pointers are not subject to bounds checks.

Additionally, CPS does not include pointers to sensitive pointers in its definition of

sensitive pointers, excluding virtual function table pointers from protection. This

improves the claimed performance overhead of C++ benchmarks to well below 20%.

We do not evaluate the value of this security trade-off here, except to note that CPS

is vulnerable to attacks like Counterfeit Object-Oriented Programming [47].

A small number of benchmarks performed significantly below expectations. Out-

liers include 471.omnetpp with more than twice the runtime overhead claimed, and

447.dealII with overhead fives times larger than expected. C++ benchmarks tended

to have the highest overheads, with an average overhead of about 33%. The one C++

benchmark that we were unable to run successfully, 453.povray, was reported by the

CPI team to have 43% overhead, in line with our average.

Because it is uncertain exactly how the CPI team conducted their experiments,

there are no definitive explanations for this behavior. However, one plausible scenario

is that the increased memory usage of Levee-instrumented programs poses a problem

for our test machine, which has only 4GB of RAM available. Paging would explain the

particularly high overheads for 471.omnetpp and 483.xalancbmk, which had 36.6%

and 27.1% of memory operations instrumented [34]. Testing CPI on a machine with

a larger but realistic amount of memory would help determine if this is the case.

4.3.4 Source Code Compatibility

As described in Table 4.1, Levee 0.2 is not entirely compatible with the SPEC2006

benchmark suite. Because Levee is a prototype and the CPI team did not report

these issues, this alone may not significantly limit CPI’s generality. However, the size

of the safe region can impact the level of protection available to programs and its

overhead. To measure exactly how important this choice is, we ran SPEC2006 with

the hash table safe region layout at three different sizes: the default of 233 entries,

226, and 220. Table 4.3 presents benchmarks that failed at smaller sizes.

The Levee hash table implementation prints a “hash table full” message and aborts

if it exceeds its linear probing limit while inserting a code pointer. While in principle
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Failed at 226 Failed at 220

433.milc 433.milc
447.dealII 445.gobmk
450.soplex (IR) 447.dealII
471.omnetpp 450.soplex (IR)
473.astar 464.h264ref

471.omnetpp
473.astar

Table 4.3: SPEC2006 benchmarks that failed to complete by CPI hash table size.
Unless otherwise noted, failures were due to CPI aborting with a “table full” error.

a poor hash function could lead to this error message, the safe region was quite full in

practice, and the maximum number of concurrently present pointers in a safe region

hash table in the SPEC benchmarks was observed to be around 223 (occupying 228

bytes). Thus, a hash table with 220 entries is definitely too small for some benchmarks.

It is more difficult to explain why some benchmarks using the hash table with 226

entries failed, but implementation flaws are a likely cause. Implementation flaws most

easily explain the incorrect output of the 450.soplex benchmark under small hash

table sizes, which does not occur at the default size.

Oddly, decreasing the hash table size resulted in lower overhead for some bench-

marks. 401.bzip2, for example, performed faster as its table size decreased, and

under a hash table with 220 entries was 8.6% faster than the default size and 7.3%

faster than no CPI protection at all. Most benchmarks however only showed slight

improvement with smaller hashtables and some even saw increased overhead, like

429.mcf. Due to the failures in Table 4.3, these improvements must be understood

with the knowledge that a fully correct implementation could behave differently.

In short, Levee suffers from compatibility issues that prevent full understanding of

its performance and memory overheads. Because the number of pointers that are con-

sidered sensitive can be quite large, small safe regions can cause issues with real-world

programs. Larger safe regions are more compatible, but are easier to discover using

our information hiding attacks. While a very general technique, CPI still requires

programs to accept a trade-off involving security, performance and compatibility.

Further research and a correct implementation are required for lasting conclusions.
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4.4 Lasting Ideas

Code Pointer Integrity relies on the observation that code pointers are the ultimate

target of common code reuse attacks. By defending only these pointers, a large

amount of safety can be obtained at much lower overheads than full memory safety

defenses like SoftBound. While CPI’s current canonical implementation has its flaws,

this observation is a very valuable one and deserves to be explored further.

CPI highlights the utility of maintaining metadata on memory that is stored

separately. In CPI, this metadata is used to provide spatial safety for code pointers.

If the CPI safe region is thought as a general metadata store, it can be used to

provide additional features like temporal safety. By isolating this metadata store

effectively, strong security guarantees can be made. On 32-bit x86 for example, the

use of hardware segmentation to isolate the safe region effectively prevents the attack

outlined in Section 4.2. Hardware proves to be an effective means to isolate memory,

and metadata-based security solutions would be wise to use it when it is available.

On specialized hardware, CPI’s security guarantees can be strengthened, and its

performance overheads minimized. Nevertheless, CPI was designed to be a software

solution, and its concept of a large, contiguous safe region is closely tied to software

abstractions like virtual memory. We note that a software fault isolation version of

CPI that may provide lower performance overhead is currently pending. However,

when hardware is considered to be malleable new abstractions can be created that

better serve CPI’s security goals. One such promising abstraction is tagged memory,

where all memory consists of contents and a metadata tag. Depending on their

size, tags can encode various information. CHERI [65] uses a one bit tag that marks

pointers, while the PUMP [24] has unlimited length tags that are defined by software.

In Chapters 6 and 7, we introduce the design and implementation of Taxi, a tagged

architecture that implements fine-grained security policies that are also lightweight.

Unlike CPI, Taxi is not limited to protecting code pointers; instead, it enforces policies

on arbitrary memory. Like DEP, Taxi’s hardware nature allows for security guarantees

that are more resilient to attacks.
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Chapter 5

Introduction to Tagged Architectures

Data Tag

Data Traditional Memory

Tagged Memory

Figure 5-1: Traditional and tagged memory. The size of tags and the granularity of
memory they are applied to varies significantly.

As introduced in Section 4.4, tagged architectures logically add metadata known as

tags to all memory; this is depicted in Figure 5-1. Because the size, layout, and

content of these tags can vary significantly, tagged architectures have been applied in

systems with diverse goals and feature sets. Tagged memory provides a basis for the

code reuse defense Taxi, which is described in Chapters 6 and 7; we introduce the

concept here.

5.1 History

Tagged architectures are an old idea, having existed at least since 1957 [27]. Early

tagged machines were used for various purposes. The Rice Computer R-1 from 1959

employed two tag bits that would trap the processor when set, designed to facilitate

debugging. The IBM 7040 released in 1963 had a parity bit that could be set by
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software that was commonly used to identify uninitialized memory. A more well

known architecture was the Burroughs B5000 machine, released in 1960 [27]. The

B5000 used a single tag bit that identified the start of memory regions subject to

hardware policies defined elsewhere.

A common goal of early tagged architectures was hardware-level typing. One of

the earliest analyses of such architectures was performed by Feustel in 1972 [27]. In

his analysis, Feustel finds that machines like the Rice R-2 and the Burroughs B7500

encode the types of arithmetic data and vectors using tags. He also proposes a tagged

architecture with a fine-grained type system encoding not just the size of arithmetic

data but also its purpose. Some of the 32 pre-defined types in his system include

matrices, stacks, queues, semaphores, and even files. Feustel chose types in part by

looking at what contemporary programming languages like ALGOL, Fortran, and

PL/1 required or used often. To account for what he could not predict, Feustel also

allowed for software definition of types in his architecture.

Machines designed to run the LISP programming language also commonly im-

plemented typing in hardware. Developed starting in 1973, the MIT LISP Machine

Project formed around a 24-bit tagged architecture that assigned types to tags at

runtime. This allowed for an instruction set featuring instructions that dispatched

on the types of their operands, simplifying assembly significantly. These instructions

handled error conditions by performing logical checks in parallel. The MIT LISP

machines also implemented basic memory protections in hardware like checks on ar-

ray bounds. Knight’s well-known master’s thesis describes a 32-bit variant of this

machine known as CADR [33].

The family of Ivory processors released by Symbolics in the late 1980’s were 40-bit

tagged architectures with 6-bit tags [25]. They incorporated many of the hardware

data types suggested by Feustel but also included complex types for lists, instruction

types, generic functions, and many different types of pointers. Because pointers could

be “forwarded” to other pointers, tags could also be indirect. Unlike previous machines

that could address half-words, the Ivory family’s smallest addressable quantity was a

word, so its tags only existed on full words. Tags also assisted in hardware features
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like garbage collection.

5.2 Modern Security Research

While some early tagged systems like the CADR had security features like hardware

array bounds checking, memory safety was not a common goal. Recently, research

involving tagged architectures has gone through a resurgence, and a good deal of it

focuses on security applications. For example, [6] focuses on how tagged architectures

can help secure operating systems, including enforcing the principle of least privilege

to kernel code. The tag in this system is a full 32 bits, encoding the origin and

intended memory space for data, along with control bits.

Section 3.1.2 describes the CHERI and PUMP systems. CHERI is a capability

machine that uses a one-bit tag on all physical memory to identify valid capabilities

[65]. PUMP represents the opposite extreme, allowing for potentially unlimited length

tags that can define powerful memory policies in software [24].

In [67], Zeldovich et al. use tagged memory to enforce application-level security

policies on data. Not content to trust the operating system to manage tags, their Loki

system introduces a security monitor to do so. Together with an operating system

that can track information flow, this monitor enforces fine-grained discretionary and

mandatory access control policies on memory. Loki allows for 32-bit tags on each

32-bit word of physical memory, providing for a large number of policies that avoid

issues with virtual memory like aliasing. With the knowledge that tags can exhibit

high spatial locality, Loki also allows for tags that describe entire memory pages,

reducing memory overhead when they are not needed. Loki requires significant new

infrastructure including the creation of a permission cache and a compatible operating

system but provides key insights into how a system with large tags can provide security

to existing programs without unpleasant performance and memory overheads.

The dynamic information flow tracking scheme [57] by Suh et al. also provides

insight into how tagged memory can be used to detect memory corruption. By ef-

fectively tracking foreign input from functions like fgets, many code reuse attacks
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like ROP can be detected. This scheme uses a one-bit tag on each byte of virtual

memory, on most registers, and on disk that marks whether data is potentially mali-

cious. Like in [67], tag granularity is managed per page, here allowing tags per page,

quad-word, and byte. Similarly, separate tag caches and TLBs help improve memory

overheads. Finally, Suh et al. also provide detailed rules on how to propagate tags

through normal arithmetic, memory access, and pointer arithmetic instructions.

Recent research also describes different ways to actually implement hardware tags.

In [51], Shioya et al. describe a tag table structure that manages tags similar to

pages. Like [67] and [57], it allows tags that describe entire pages of memory but

uniquely only maintains tag information for allocated virtual memory. The tag table

has multiple levels, allowing tags to be stored at each level and compressing the

representation for tags on large regions of memory that use the same tag. This

scheme uniquely allows for tag representation to change dynamically, growing and

shrinking as needed.

5.3 Modern Implementations

Unfortunately, the successes of this security research have not translated into a pop-

ular consumer tagged architecture. There are efforts in this direction: the lowRISC

project [12] aims to provide parameterizable tagged memory on top of the open-source

RISC-V architecture [8] and has a working proof of concept. In lowRISC, users can

enforce their own security policies through tag load and store instructions.

Commercially available specialized architectures sometimes use tags for limited

purposes. Like HardBound [23], the IBM system i architecture [18] uses a one-bit tag

to identify pointers in physical memory. A one-bit tag is also used in the Intel i960

to identify memory owned by the kernel [19].

Non-tagged architectures sometimes have extra bits available for use by software.

For example, the RISC-V architecture ignores the lowest significant bit for code ad-

dresses, as all instructions are aligned to at least two bytes. This bit is still preserved

in memory and can be used by programmers for marking function pointers.
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Tagged architectures have experienced a resurgence through their applications

to security domains. They are an attractive mechanism for systems that require

compatibility with existing code in part because of their previous lack of popularity:

legacy programs that have no interaction with tags can often be run in new systems

using a default or empty set of tags. Tagged architectures are effective for creating

new program semantics without altering memory layouts expected by existing code

and are the basis for the code reuse defense Taxi described in Chapters 6 and 7.
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Chapter 6

Defeating Code Reuse Attacks with

Taxi

In this chapter, we use the idea of tagged memory described in Chapter 5 to develop

Taxi, a small set of hardware modifications that help protect against code reuse at-

tacks. Taxi expands memory to include tags, defines rules on how they are propagated

by instructions, and allows their modification by software. Unlike previous hardware

schemes that use large tags to enforce complex security policies like Loki [67] and

PUMP [24], Taxi uses small tags and aims to provide protection with as few changes

to existing hardware and software as possible. While this approach is not as well

suited to defining custom security policies in software, it allows for a simple hardware

definition of policies that efficiently prevent memory corruption.

Data Tag

64 bits 8 bits

Figure 6-1: 8-bit tags are assigned to each 64 bits of memory in Taxi.
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6.1 Use of Tagged Memory

As Taxi is a tagged memory scheme, registers and physical memory are logically

divided into data and tags. As depicted in Figure 6-1, Taxi assigns an 8-bit tag

for each 64 bits of physical memory. To preserve compatibility with programs that

expect existing memory layouts, tags are located separately from data in virtual and

physical memory.

A straightforward implementation of Taxi would use about 11% of physical mem-

ory for tags, but this can be reduced if the actual number of bits used by implemented

policies is smaller. The policies we outline in this chapter use only a fraction of these

bits and can be implemented in architectures where fewer are available.

All instructions that access or write data in registers or memory implicitly ma-

nipulate the tags associated with that data. In the worst case, this can require two

accesses to main memory, doubling the memory overhead of those instructions. To

avoid this, we employ a new caching strategy that stores tags with data in the first

two level caches, which are widened to avoid reducing their capacity for regular data.

We also create a dedicated tag cache that handles second level misses to further re-

duce the latency of tag requests. This memory hierarchy is illustrated in Figure 6-2.

To evaluate how the size of this tag cache affects its hit rate, we have simulated tag

cache behaviors at 11 sizes on the SPEC2006 benchmarks [56]. We present these

results in Section 7.4.

6.2 Processor Execution

Because the results of processor instructions can propagate to both registers and

memory, all instruction outputs must be paired with a tag. To enable efficient com-

putation of such tags, a new tag processing unit (TPU) is created. Like a typical

ALU, the TPU calculates its outputs by applying an arithmetic or logical function

determined by the current instruction opcode to its inputs. These inputs are avail-

able at the same time as ALU inputs, allowing parallel computation of ALU and TPU
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Memory

L1 Cache Tags

L2 Cache Tags

CPU

Tag Cache

Tag 
Memory

Figure 6-2: This system diagram outlines how tagged memory is laid out in Taxi.
Tags are integrated into the L1 and L2 caches. A dedicated tag L3 cache also reduces
the latency of tag requests and can be smaller than traditional caches due to a larger
cache line size to tag size ratio.

outputs. With a fast enough TPU, the additional overhead to calculate result tags

should be minimal for all instructions, as tag outputs will be available at the same

time as ALU outputs. The role of the TPU in instruction execution is presented in

Figure 6-3.

Unlike the well-defined arithmetic functions that an ALU performs, the outputs

the TPU should generate are not obvious. The policies we will explore commonly

use tags to mark data that can be used for control flow, assigning unprotected data a

zero tag value. Because this means that a zero tag value is less privileged, we choose

to implement a set of rules that allow the propagation of the least-privileged tag for

some operations. These rules are described in Table 6.1. In particular, the exclusive-

or operation is applied to the tags of inputs to addition and subtraction instructions

to allow for policies that restrict other operations on pointers. Because other ALU

operations are less commonly applied to pointers, simply taking the union of the tags

of inputs can suffice. Most other instructions like memory loads and stores behave as

expected, preserving tags when necessary.
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Result Data
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Handler Address
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Figure 6-3: This pipeline diagram outlines how tags affect processor execution in
Taxi. The dedicated tag unit allows parallel ALU and tag computation.

Operation Example Tag Propagation
Addition/Subtraction ADD RD, RS1, RS2 RD.tag = RS1.tag ⊕ RS2.tag
Other ALU operations SRA RD, RS1, RS2 RD.tag = RS1.tag | RS2.tag

XORI RD, RS1, Imm RD.tag = RS1.tag
Loads LW RD, RS1, Imm RD.tag = Mem[RS1 + Imm].tag
Stores SW RS1, RS2, Imm Mem[RS1 + Imm].tag = RS2.tag
Jump and Link (Call) JAL RD, Imm RD.tag = TAG_PC
Explicit Tag Set SETTAG RD, Imm RD.tag = Imm
Register Clear ADDI RD, R0, 0 RD.tag = 0

Table 6.1: Taxi’s tag propagation rules. Examples are written in RISC-V assembly.
Registers and memory are treated like objects with data and tag attributes. Mem[]
represents the value stored in the provided address. R0 is a constant 0 register, and
Imm represents an immediate value. TAG_PC is a special value for stored PC values.

66



The TPU is also responsible for enforcement of tag policies and does so by gener-

ating a trap when it receives unexpected input. Because Taxi’s security policies are

defined in hardware, the TPU is provided with all information required to determine

policy violations including the current instruction, the processor’s current privilege

level, and the expected tag value for its inputs. By generating a hardware trap, the

question of how exactly to deal with policy violations can be left to software, which

benefits from more information about the current state of the program and more

decision power. In Unix-based operating systems, this can be implemented using a

signal with a default handler that exits the program. With this mechanism, software

can log the exact instruction where the violation occurred, kill the offending process,

or raise a system-wide alarm.

6.3 Protection Model

In Taxi, tags are created and maintained by instructions at runtime according to a list

of hardware defined policies. This allows programs to gain protection without being

rewritten or recompiled with a tag-aware compiler. When such a compiler is present,

additional tools like instructions that manually set tags can allow for policies with

statically defined elements. In principle, Taxi can also support policies that require

an initial set of program tags to be loaded into memory with a compiled binary.

Taxi places trust in the operating system to maintain and occasionally manipulate

the tags of running programs. Because of this trust and the fact that kernels are less

suited to our security policies, Taxi only enforces policies for programs while running

in user-mode. This frees policies from concern over exceptional control flow patterns

like context switches and interrupts. Tags are still created and propagated during

kernel execution, as they may propagate to user-mode code.

The key goal of Taxi is to provide metadata that cannot be interfered with by

attackers. Because plausible attacks exist on metadata defined in software like Sec-

tion 4.2’s attack on Code Pointer Integrity’s safe region, Taxi provides its metadata

in hardware where more solid guarantees can be made. In particular, the rules on tag
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propagation in Table 6.1 cannot be altered without further modifications to hardware,

making the job of attackers wishing to write arbitrary tag values difficult. While an

explicit instruction to set tag values (settag) exists, it only applies to registers using

an immediate encoded into its opcode and is for most programs extremely rare, only

appearing in policy edge cases that are insulated through other means. Taxi’s tag

propagation rules are also atomic, preventing attacks that exploit inconsistent meta-

data states which are a problem for defenses like Intel MPX [59]. When used with

defenses like DEP, Taxi effectively defends against a large class of code reuse and

code injection attacks.

6.4 Explored Policies

Here we describe policies whose security, performance, and compatibility properties

we have explored in depth. We outline their implementations in Chapter 7.

6.4.1 Call/Return Discipline Protection

The function call and return discipline is one of the most fundamental abstractions

in computer science and is provided for by many computer architectures in the form

of explicit call and return instructions. While RISC architectures like RISC-V [8]

do not provide these instructions explicitly, they provide a generalized jump-and-link

instruction that allows for the same functionality. In either mechanism, function calls

save the address of the following instruction for later use during function return.

Unfortunately, return instructions and equivalents typically do not perform any

validation on their arguments, allowing for execution to be redirected to any valid

location. This problem is more egregious on architectures that store return addresses

on the program stack like x86 because the location of return addresses is often assumed

to be static. Even when protections like stack canaries are in use, return addresses

are high value targets for memory corruption vulnerabilities.
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Figure 6-4: Diagram of the stack layout of a vulnerable C program under Taxi. When
the gets function overflows the stack buffer buf, the corrupted return address does
not have the return address tag, causing the machine to trap when it tries to return.

Security Guarantees

Taxi makes checks on return addresses easy to perform by marking each with a unique

tag (TAG_PC in Table 6.1). If the TPU does not see this tag on a return instruction,

it will generate a hardware trap. Because all valid return addresses are created at

runtime only by call instructions, we can mark these addresses by instrumenting

call instructions. Attackers that can neither generate these tags nor inject code are

then restricted to only using return addresses that exist in the program from expected

call instructions and cannot redirect control flow through return addresses. This is

similar to the protection offered by a shadow call stack [4], but does not prevent using

return addresses out of order.

Note that nothing in this policy prevents or detects buffer overflows: buffer over-

flows that overwrite data other than return addresses will succeed unless other de-

fenses are present. This policy only prevents the actual control flow transfer required

by code reuse attacks with return addresses.

As an example, a C program that includes a vulnerable four-character buffer on

its stack is protected by the call and return discipline policy in a manner depicted

in Figure 6-4. Although the return address is successfully overwritten here, attackers
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are unable to write the return address tag required for a code reuse attack using it

to succeed, as only call instructions are able to do so. This attack will be detected

when the vulnerable function attempts to return, and a hardware trap that raises a

catchable signal will occur.

A careful reader will note that by their nature, settag instructions have the

power to write return address tags. For these instructions to be of any real use to an

attacker, they must be in a vulnerable function after a buffer overflow at compile time

and reference the correct register and immediate. This scenario is extremely unlikely,

as return address tags are created and maintained without any compiler intervention,

and settag instructions are only used in our policies in a small number of exceptional

cases outlined in this chapter.

Program Compatibility

Because languages like C and C++ are extremely dependent on a correct implemen-

tation of the call and return discipline, most programs in these languages should have

little trouble with its enforcement in hardware. One exception is kernels, which must

be able to switch program contexts at will to implement features like preemptive mul-

titasking. User-level programs also occasionally use return instructions outside of

the call and return discipline; examples include signal handlers and C++ exceptions.

In C and C++, designated signal handlers are called immediately when a signal is

received, pausing normal execution. Because this can occur at any point in code, the

values of registers including the program counter must first be saved before running a

signal handler. When signal handlers complete, the original values of registers must

be restored. Typically, this is handled by the sigreturn system call that signal

handlers call automatically. The mechanism for making this system call on Linux is

kernel code that changes the return address of the signal handler at runtime. This

procedure involves a return instruction returning to an address not generated by a

matching call and must be trusted at runtime with the settag instruction for signal

handling to function.

C++ exceptions present a situation similar to signal handlers. When a program
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throws an exception, normal control flow ceases and an exception handler is run.

Exceptions are usually implemented on modern systems with a two-phase procedure

that determines the address of a compatible exception handler and then launches that

handler by creating a return address and returning into it. For an exception handler

to function in Taxi, this return address must be trusted at runtime. Exception han-

dling code is typically provided as part of a compiler-supplied runtime library, which

Taxi must trust to not maliciously redirect control flow. This does not increase Taxi’s

trusted computing base because versions of these libraries provided by compilers, like

libgcc, are already trusted by programs utilizing C++ exceptions.

Performance Impacts

While it is difficult to evaluate the minimum performance overhead of the call and re-

turn discipline policy, tagging return addresses requires almost no changes to existing

source code and hardware instructions. The instructions that do require modifica-

tions, call and return, are augmented only to create and check for return address

tags. While even slight overhead on these instructions could slow down programs

with a large number of function calls or recursion, the TPU allows for efficient tag

determination and checking, alleviating the most practical sources of overhead. This

is especially true on RISC architectures, where jump-and-link instructions that im-

plement function calls and returns typically only operate on registers, avoiding the

need for costly memory accesses.

As this call and return policy is very simple, it seems likely that the dominant

source of overhead for programs utilizing it will be the overhead required to sup-

port tagged memory. There are more than a few simple optimizations to Taxi that

can improve its performance with return addresses. Two such optimizations are the

introduction of a tag predictor and a targeted cache replacement scheme.

In many programs, return addresses only make up a small fraction of stack mem-

ory. To speed up the TPU, a dumb but fast tag predictor that only takes into account

instruction opcodes could be introduced, allowing the TPU to provide the correct tag

value when ready. A simple prediction scheme would guess the return address tag
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for call and return and an empty tag for all other instructions. Because code reuse

attacks are exceptional conditions, a tag prediction “miss” would be fairly infrequent.

The cost of missing would also be lower than in branch predictors, as the correct tag

could be filled in when needed for most instructions. Incorrect guesses on return

instructions would be more troublesome, as they could result in unwanted control

flow transfers. Nevertheless, this would be detected when correct tag values become

available.

A cache replacement scheme for the tag cache that is aware of return address tags

can decrease their overhead by favoring the removal of zero tags. In this scheme, the

tags of return addresses can persist longer in fast memory, decreasing the likelihood

that a tag lookup delays execution of a return instruction. This is especially effective

when combined with the simple tag predictor, as it allows control flow attacks to be

detected faster without penalizing memory accesses of data with zero tags. Future

work would be required to evaluate the impacts of such a scheme on memory-intensive

programs.

6.4.2 Linearity of Return Addresses

The call and return discipline policy is a lightweight, effective, and highly compati-

ble way to use tagged memory to prevent code reuse attacks from corrupting return

addresses. By marking return addresses with unique, unforgeable tags, return in-

structions are prevented from operating with arbitrary addresses. However, this policy

does not enforce any constraints on when return addresses are used, allowing attack-

ers to “replay” existing return addresses that are not removed from memory after

use. The CFI defense suffers from a similar conceptual problem [4]. Copies of return

addresses created by a compiler or programmers could also be used maliciously, as

they also possess the return address tag.

Our approach to preventing malicious replay of return addresses is to minimize

the use of the return address tag. We do this by ensuring that only one copy of each

return address is usable at all times, a property we call linearity. When a return

address is copied to a register or memory location, we move its tag instead. The
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Operation Example Tag Propagation
Addition/Subtraction ADD RD, RS1, RS2 RD.tag = MRET(RS1.tag ⊕

RS2.tag)
Other ALU operations SRA RD, RS1, RS2 RD.tag = MRET(RS1.tag |

RS2.tag)
XORI RD, RS1, Imm RD.tag = MRET(RS1.tag)

Table 6.2: Altered tag propagation rules for the return address linearity policy.
MRET(x) denotes the result of masking out TAG_PC from x.

old return address itself persists in memory but is unusable by return instructions

due to the missing tag. When return instructions operate on a register like in many

RISC architectures, this prevents return addresses from being used more than once.

These protections can be implemented in hardware by allowing the TPU to write to

the tags of its input registers. Linearity of return addresses can also be implemented

in tag-aware compilers by inserting settag instructions directly after all copies of

return addresses, at the cost of more complicated static analyses and atomicity.

Tracking the movement of return addresses is straightforward for instructions that

copy memory but is more difficult for functional instructions like ALU operations. To

avoid having to instrument every such instruction to check for return addresses, we

instead instruct the TPU to strip all return address tags involved in these instructions.

This can be implemented efficiently by modifying the first two tag propagation rules

in Table 6.1 to first mask out return address tags from inputs. The revised rules are

presented in Table 6.2.

Together, these modifications minimize the possibility of return addresses being

used for anything other than pure storage. These restrictions do not restrict any

language features in C and C++, as those languages do not provide explicit mecha-

nisms to modify return addresses anyway. By enforcing this policy in hardware, the

possibility of our call and return discipline policy elevating the value of replay attacks

on return addresses is eliminated.
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Security Guarantees

The call and return discipline policy effectively limits the set of addresses that can

be used with return instructions to the set created by call instructions (and copies

thereof). The return address linearity policy builds on this restriction, further en-

suring that only one copy of all return addresses created by call instructions can

be used by a return instruction at a time. On architectures where return instruc-

tions operate on registers, this means that return addresses not saved after a return

can only be used once – providing a much stronger guarantee for the common case.

This guarantee can also be accomplished on architectures where return instructions

use stack addresses implicitly like x86 by manually masking the return address tag

away. In either case, enforcing linearity of return addresses prevents programs from

committing the temporal error of reusing old return addresses.

The primary motivation for this policy is the observation that in C and C++,

no stack memory is cleared after function returns. This allows stack contents from

functions that have returned to be used by their callers, despite the C standard not

providing this feature. This memory is overwritten when the existing stack grows

to use it, often on the next function call. Nevertheless, when the contents of stack

memory are sensitive this can still pose a significant security risk. An ideal solution

from a security standpoint would be simply zeroing a function’s stack as it returns.

When stacks are large or many functions are used in a program, this can require a

level of overhead prohibitive for many programs. The return address linearity policy

is a compromise between security and performance, protecting used return addresses

with constant time operations. An example of a stack layout protected by the policy

is provided in Figure 6-5.

To make enforcement of the linearity property easier to implement, we also prevent

the use of return addresses that have been manipulated by arithmetic and logical

functions as arguments to return instructions. This does limit the use of return

addresses more than strictly necessary, but the corresponding loss of functionality is

anything but significant. C and C++ do not provide portable ways to even acquire
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Figure 6-5: The impact of the return address linearity policy on a stack frame that
grows downward. Below the stack pointer lies the stack frame of a function with local
variable y that has already returned. Without stripping the tag on that function’s
return address, it remains a target for a capable attacker.

the return address of a function (although programs compiled with recent versions of

GCC can use the __builtin_return_address function), and no mechanism to alter

them is provided in the language short of reaching into memory manually, which may

not be possible on some architectures. In summary, return addresses are simply not

designed to be modified between definition and use for most programs.

Program Compatibility

The linearity policy has no effect on programs where return addresses are not modified

or moved between definition and use; we have observed this to be the common case.

Occasionally, return addresses are copied and replaced before their use, especially on

architectures that store return addresses in registers that are also used for storage

of temporary variables. In these cases, the linearity policy only introduces problems

when multiple copies of return addresses are created and the copy used with a return

instruction is not the most recently created. As further described in Chapter 7, this

situation was not observed in a wide corpus of programs.

As previously mentioned, the lack of a portable mechanism to intentionally modify

return addresses outside of function calls in C and C++ means that programs that

use modified return addresses as arguments to return instructions are rare. We were

able to find only one example of such a program; it is a pathological case that is
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nullified by compiler optimizations and is discussed in Chapter 7.

Performance Impacts

The return address linearity policy generates no additional tags and decreases the

amount of memory with nonzero tags. The modifications to the tag propagation

rules required to do so are also minor and should not create a performance bot-

tleneck. Decreased tag usage in turn can mildly improve the performance benefits

of optimizations like the simple tag predictor. In this respect, the linearity policy

provides an opportunity for increased optimization of tagged memory.

Notably, implementing return address linearity without the aid of compilers re-

quires the TPU to be able to write to its input tags when return addresses are copied.

The ease with which this can be implemented depends heavily on the architecture

that Taxi is applied to. When multiple register file read and write ports are available,

instructions that read and modify tag values in one cycle can be used to strip return

address tags. Architectures like RISC-V that copy memory through registers also

help by mitigating the need for instructions that read and write tags in memory.

When implemented with a tag-aware compiler that can intelligently insert tag

adjustment instructions when copies of return addresses are created, linearity can

be enforced without new instructions or the creation of a new pipeline stage. Such

implementations only impose overhead when return addresses are actually copied,

which is uncommon for most programs. However, software implementations may not

benefit from the atomicity of tag assignment that hardware can provide.

6.4.3 Restricting Partial Copies

While the return address linearity policy effectively prevents replay attacks, its pro-

tections can require a moderate amount of changes to hardware. To provide protec-

tion with fewer hardware modifications we introduce the partial copy policy, which

removes return address tags from partial stores of return addresses. This prevents

memory that only stores part of a return address from receiving the return address
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Figure 6-6: An attack prevented by the partial copy policy. Here the stack grows
downward, and return address linearity is not enforced. The 0xDEADBEEF address
overflowed onto the stack can be legitimized by an attacker able to store the corre-
sponding byte from an old return address.

tag. Because compilers typically move return addresses atomically, this restriction

should have no effect on legitimate control flow.

An example of an attack that the partial copy policy prevents is illustrated in

Figure 6-6. Because of tag propagation rules, attackers with the ability to copy indi-

vidual tagged bytes can legitimize return addresses inserted during buffer overflows

by using existing tagged return addresses. Here, an attacker can use the existing

0x800000EF return address to legitimize the 0xDEADBEEF address inserted during a

buffer overflow.

This is a difficult attack to perform, as it requires knowledge of the values of

previous return addresses and the ability to copy data with its corresponding tags.

Nevertheless, because the cost of preventing it is minimal, the partial copy policy is

a valuable addition to the Taxi arsenal. For more information on the specific security

and performance guarantees of this policy, see [28].

6.4.4 Data Blacklisting

The partial copy policy operates on the observation that return addresses are usually

loaded and stored all at once and thus are not touched by instructions that manipulate

data at a smaller granularity. The data blacklist policy applies this observation to all

pointers, asserting that in user-level programs sub-word level instructions primarily
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Figure 6-7: An attack prevented by the blacklist policy. Here, the stack grows down-
ward. Because the function pointer adjacent to buf was written with strcpy, any
attempt to use it as an address in hardware will trigger a trap.

act on data. It creates a new tag for non-pointer data that is subject to several

restrictions. Data with this new tag cannot be jumped to or used as an argument to

load or store instructions because such data can never represent pointers of any kind.

Non-pointer data can be used for operations involving regular data like addition and

subtraction, which are required for pointer arithmetic.

The policy of blacklisting data that has been manipulated at sub-word level pro-

vides valuable protections after buffer overflows occur. C functions that read strings

into user-provided buffers byte-by-byte like sprintf and strcpy are commonly used

to manipulate user input and thus are very vulnerable to such attacks. These func-

tions however are rarely intended to facilitate the use of user input as program ad-

dresses; as such, it is appropriate to blacklist all data passed to them. By doing so,

corruption of pointers adjacent to buffers that are manipulated with vulnerable string

functions can easily be detected, as pictured in Figure 6-7. Here, the buffer overflow

that modifies the adjacent function pointer will be detected when the function pointer

is called.

The blacklist policy does not directly protect pointers from buffer overflows in

all functions that deal with user input. Notable exceptions include memmove and

read. When it does apply, it is able to provide protections similar to taint tracking

and information flow-based solutions like [57]. Because sub-word memory accesses

on data are common, the non-pointer data tag is used frequently, negating some
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of the effectiveness of proposed optimizations to Taxi. Nevertheless, blacklisting is

compatible with most of the programs we have explored. For information on the

precise security, performance, and compatibility guarantees offered by blacklisting,

see [28].

6.5 Other Policies

6.5.1 Universal Pointer Protection

One conceptually simple policy is to create a tag for all pointers. With the help

of static analysis by a tag-aware compiler, all pointers are tagged at program start.

Then, a set of tag propagation rules that allow pointer arithmetic with non-pointers

but disallow most other operations are responsible for protecting tagged pointers.

Memory accesses and function calls that act on addresses also require their arguments

to be pointers. If correctly implemented, this policy can protect attackers from forging

return addresses, function pointers, and pointers to function pointers like C++ virtual

table pointers.

Unfortunately, determining the correct set of tag propagation rules to protect

all pointers without breaking existing programs is a difficult task and may be im-

possible. Because the C type system allows for arbitrary casts to and from pointer

types, statically tracking the movement of all pointers throughout a program to keep

their tags accurate may be infeasible, especially for large programs. Even if tags are

correctly tracked, there are many programs that use pointers in difficult-to-analyze

ways. To support dynamically loaded code under this policy, functions like dlopen

also require the ability to load tags into a running program. The level of protection

that can be achieved through a universal pointer policy may be worth the difficulty

of its implementation, but we leave such an implementation to future work.
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6.5.2 Protecting Function Pointers

To avoid the difficulties of implementing a policy that protects all pointers, we can

apply the same idea strictly to function pointers. Again, to do so, a tag-aware com-

piler will perform static analysis to identify and track the usage of function pointers

throughout a program and ensure that function pointer tags are loaded at program

initialization. The tag propagation rules necessary for function pointers are simpler

than those required for the universal pointer policy as only basic function pointer

arithmetic must be supported. When tags are properly propagated, indirect function

calls can be restricted to addresses with function pointer tags. Despite the reduced

benefits of this scheme, it can provide protections similar to CPI [34] more securely,

atomically, and at lower overhead.

6.5.3 Protecting Jump Tables

Lightweight protection of data structures that hold function pointers is also possible

with Taxi. Values of global jump tables with constant values like the Global Offset

Table (GOT) can be marked with a unique tag at program initialization. By checking

the appropriate tags when performing library function calls, attackers will be unable

to forge GOT entries. C++ virtual function table pointers can be protected with a

similar policy that also allows for tags to be copied; this allows C++ objects contain-

ing such pointers to be copied throughout memory. Implementation of either policy

requires the use of a tag-aware compiler and a way of signaling addresses to the TPU

whose tags must be checked during call instructions.

6.6 Design Exclusions

While the Taxi design outlined in this chapter provides an explicit settag instruction

that gives software control over tag values, it notably does not include a corresponding

instruction to load tags into memory. We found this instruction unnecessary to enforce

any of our implemented policies, but it will be needed by the operating system to
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serialize memory to disk during paging. Restricting the use of such an instruction in

user-level code will help make attacker analysis of runtime tags difficult and is in line

with Taxi’s goal of defending code reuse attacks by limiting code that can be reused.

Kernels that serialize tags for paging to disk also need a mechanism to move tags

efficiently. They would benefit from general purpose tagcpy and tagmove functions,

but this brings up questions over the proper purpose of the memcpy and memmove

functions in a tagged architecture. Without linearity, memory copying in Taxi affect

both data and tags. We defer analysis of this arrangement to future work.
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Chapter 7

Implementation of Taxi

In this chapter, we outline our implementation of the Taxi code reuse defense from

Chapter 6. Taxi supports a series of tagged memory policies to protect control

flow data through modifications to an existing hardware architecture, its compiler

toolchain, and its operating system. We have successfully implemented Taxi and a

subset of our policies on top of the open-source RISC-V architecture [8], and we out-

line our experiences applying those policies to a number of programs on the Linux

kernel here. We also analyze the impact of the size of Taxi’s tag cache on its miss

rate for the SPEC2006 benchmarks [56].

7.1 Methodology

We have implemented Taxi on top of RISC-V, a small but well-supported architecture.

While a version of the popular hardware emulator QEMU [9] supporting RISC-V was

available, we chose to implement our policies on the Spike instruction set simulator

provided by the RISC-V team. Despite the recent volatility of the RISC-V instruction

set specification [64], Spike is mature enough to run a variety of software on top of

the Linux kernel and is an excellent testbed for our policies. Spike also provides a

cache simulation framework to evaluate miss rates; we modify it to simulate Taxi’s

tag cache as well.

Taxi is based upon the version of spike made available on GitHub on January
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9th, 2015 [62], is known to run well on Ubuntu 14.04, and is available at https:

//github.com/riscv-mit/. Our modifications to the RISC-V gcc 4.9.2 toolchain

and Linux 3.14.29 kernel are based on the versions available from February 1st and

February 17th. Our version of spike utilizes version 2.0 of the RV64 user-level

instruction set with the M, A, F, and D extensions. To test user-level programs, we

use busybox to simulate a simple Unix-like user environment with a full file-system.

To exhaustively test the security and compatibility implications of our policies, we

have gathered a large corpus of test programs. These range from system utilities like

the bash shell and a port of the system call fuzzer Trinity [31] to the gcc compiler

“torture” tests and the CPython interpreter. As it is difficult to exhaustively test the

functionality of large programs, we also created our own test programs. Some of these

test the functionality of individual policies (like preventing code reuse attacks using

return addresses) but others showcase important C functionality and idioms that are

broken by other defenses. In particular, we provide tests for the functionality of C

idioms expressed in [17] and test the behavior of exceptions of the call and return

control flow discipline expressed in [22]. We have also put considerable effort into

expanding the debugging facilities in spike to aid understanding of how policies

influence program behavior, including significant memory tracing infrastructure. To

allow for tests that are aware of the presence of spike, we also created libspike, a

small user library.

Despite these resources, our efforts to empirically examine Taxi and its policies

face some limitations. The lack of network support in spike restricts us from testing

our policies on vulnerable tools like OpenSSL and web servers like Apache and nginx.

This is a significant limitation because in practice code reuse attacks are often per-

formed in remote settings. As it is an interpreter, spike limits our ability to analyze

the performance impacts of policies. While we can identify the increase in the number

of operations that Taxi requires a processor to perform, an implementation of Taxi

in an emulator or in hardware would allow for an analysis including data on TPU

and tag cache latencies. Despite these limitations, our spike based framework still

provides us with significant information on the capabilities of tagged memory policies.
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Data Tags

TAGS_BASE0

TAG_ADDR'='(TAGS_BASE'+'DATA_ADDR)'/'
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'

Figure 7-1: The layout of physical memory in our Taxi implementation. Because the
ratio of data to tags is constant, we can easily compute the address of tags given the
physical address of data.

7.2 Modifications to RISC-V

We augment memory in RISC-V to include tags through the use of shadow space.

This ensures that we do not have to widen the processor word size, which would

require significant modifications to the entire processor, the Linux kernel, and our

compiler toolchain. To allow for 8 bit tags, we reserve the top 1
8

of physical memory.

We add tags to registers by creating a new set of byte registers that are accessed in

conjunction with existing registers.

Read and write operations on all registers except the program counter are aug-

mented to operate on both data and tags. Operations on memory locate tags through

a new address-translation phase that determines tag-physical addresses from data-

physical addresses. This scheme, depicted in Figure 7-1, is simple to implement in

hardware and unlike CPI’s safe region makes tags inaccessible by placing them outside

of virtual memory. The security of tags in Taxi does not depend on this decision: an

alternative scheme exposing tags in a read-only region of virtual memory could also

ensure tag integrity. Deciding where to place tags can significantly impact program

performance, but given the limitations of our implementation we do not explore this

topic further. Instead, we note that address-translation schemes that determine tag

and physical addresses in parallel are likely to see the best performance.

Tag propagation is implemented by applying the rules presented in Table 6.1 to

each instruction in spike, generating traps when necessary. For processor-specific
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instructions like writing to RISC-V control registers, we write zero tags; we have not

noticed any side effects of this scheme.

We signal software on tag violations by creating a new “tag” hardware trap in

spike. To recognize this trap in hardware, the Linux kernel must be made aware

of it to generate a signal for the offending user program. For testing purposes, we

generate the SIGBUS signal whose default handler exits the program. A dedicated

operating system tag signal with a customizable handler would allow programs to

handle tag violations on demand and safely exit otherwise, functionality not provided

by the standard POSIX signals.

The changes required to the gcc toolchain required to support Taxi are mini-

mal, mostly consisting of allowing new instruction opcodes to be used inside inline

assembly. Supporting the policies outlined in Section 6.5 requires more extensive

modifications to incorporate new static analyses and allow an initial set of program

tags to be loaded in with the program binary. We leave this to future work.

Finally, to allow for per-process control of tag enforcement, we add a new processor

flag to spike that denotes “tag mode.” Tag mode is off by default but can be enabled

and disabled through a new tagenforce instruction, allowing processes to use tag

protection at will. If stored in a per-process data structure, like a RISC-V control

register or the Linux process struct, this flag can be preserved across kernel context

switches. While we have not implemented this feature, it can help reduce the effect

of policy edge cases as careful programs can simply turn tag protection off when they

intentionally violate policies.

7.3 Evaluation of Policies

7.3.1 Call/Return Discipline Protection

With the described modifications to spike, the gcc toolchain, and the Linux kernel,

enforcing the call and return discipline requires minimal code changes. As RISC-V is

a RISC architecture, it provides two jump-and-link instructions in place of dedicated
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function call and return instructions. The first, jal, jumps to an address encoded in

the instruction’s immediate and saves the original incremented program counter in

the destination register. This is used for direct function calls and unconditional jumps

when the destination register is the dedicated zero register. The second, jalr, jumps

to the address contained in the source register added to the provided intermediate

while saving the incremented program counter similarly. This instruction is used

for indirect function calls but also for returns when the destination register is the

dedicated zero register. Therefore, it is easy to determine the purpose of any jal or

jalr instruction and instrument it as such.

Our changes to the jal instruction are minimal: we simply set the destination

register’s tag to our return address tag. In practice, function calls use the RISC-V

dedicated return address register as their destination. We do not have to do any work

to avoid tagging unconditional jumps because by RISC-V convention, all such jumps

save the incremented program counter to the dedicated zero register, which accepts

all writes without performing any action. There is also no danger of reading a return

address tag from the zero register. In total, instrumenting jal requires only one line

of code to be modified.

Modifying the jalr instruction requires slightly more work, as we must apply the

return address tag on indirect function calls and verify the return address tag on

returns. Our instrumented jalr is presented in Listing 7.1. In total, instrumenting

jalr requires adding four lines of code to verify the return address tag (lines 4-7)

and modifying one line of code to set the return tag for indirect function calls (line

11). Because returns use the dedicated zero register as their destination register, we

do not have to avoid tagging on returns.

We note that the RISC-V architecture does not ensure that return addresses

created by jal and jalr instructions are stored in the dedicated return address

register. We could choose to enforce this constraint through further modifications to

the architecture and compiler toolchain, but we have not seen any situation where

gcc generates code that stores return addresses in any other register in practice. This

is not an issue for architectures with a prescribed destination for return addresses.
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1 reg_t tmp = npc; // already incremented pc value
2 // check the tag on the jump target to make sure it is ok to execute
3 // but only if RS1 is ra, the conventional return pointer register
4 if ((TAG_ENFORCE_ON) && (!(TAG_S1 & TAG_PC))
5 && (insn.rs1() == RETURN_REGISTER) && (!IS_SUPERVISOR)) {
6 TAG_TRAP();
7 }
8

9 // write the new pc value and tag
10 set_pc((RS1 + insn.i_imm()) & ~reg_t(1));
11 WRITE_RD_AND_TAG(tmp, TAG_PC);

Listing 7.1: Taxi’s instrumented jalr instruction. Here, reg_t represents an unsigned
integral type large enough to hold any 64-bit value and TAG_PC is our return address
tag. Line 10 sets the program counter’s next value to be the sum of the source register
and the instruction’s encoded immediate, aligning if necessary.

Observed Security

Despite its modest changes, the call and return discipline provides a high level of

security for return addresses. The buffer overflow in the vulnerable C program in

Listing 1.1 indeed generates a tag trap, and our more targeted exploit in Appendix A

is detected as well. We detected no false positives in our functionality test programs,

which perform system calls like fork, run sorting algorithms, and interact with the

file system. We did not receive any tag traps while running the bash shell, the chess

program gnuchess, or the CPython interpreter. The system call fuzzer Trinity noted

no problems interacting with the operating system.

Because Taxi does not detect or prevent buffer overflows, test suites like the Wilan-

der test suite [66] are not appropriate to assess the security of our policies. Real-world

exploits should be used as replacements for these tests and would provide considerable

information for a Taxi implementation with network capabilities.

Program Compatibility

In Section 6.4.1, we noted that two problematic cases for the call and return disci-

pline policy are Unix signal handlers and C++ exceptions. As expected, they both

produced spurious traps in our implementation. To allow for correct signal handling
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1 static int setup_rt_frame(struct ksignal *ksig, sigset_t *set,
2 struct pt_regs *regs)
3 {
4 ...
5 /* Create the ucontext. */
6 ...
7 err |= setup_sigcontext(&frame->uc.uc_mcontext, regs);
8 if (err)
9 return -EFAULT;

10

11 /* Set up to return from userspace. */
12 regs->ra = (unsigned long)VDSO_SYMBOL(
13 current->mm->context.vdso, rt_sigreturn);
14 ...
15 }

Listing 7.2: Initialization of signal handlers in the Linux kernel. Here, the return
address of the signal handling context regs is modified to point to the address of the
sigreturn system call.

without generating traps, we introduce a small modification to the Linux kernel.

When a signal with a designated user handler is generated, the Linux kernel normally

saves the existing program context and allocates a new context for signal handling.

To ensure that user signal handlers return to the sigreturn system call and thus re-

store the original program context, Linux in RISC-V modifies the value of the return

address register in the signal handling context. The relevant section of the RISC-V

Linux 3.14.29 port [1] is presented in Listing 7.2.

This action creates a return address outside of the two function call instructions

jal and jalr and is therefore a violation of our policy. Nevertheless, Taxi already

trusts the kernel, so we can safely allow this violation. We trust this return address

using the settag instruction as depicted in Listing 7.3. With this three-line addition,

programs with custom signal handlers function without generating any tag traps.

C++ exceptions present a more complicated situation. In line with the modern

C++ philosophy, gcc implements exceptions at zero cost to programs that do not use

them. On RISC-V, gcc implements exceptions using the two-phase method developed

for the Intel Itanium architecture [20]. In this method, the correct exception handler

is first identified when an exception is thrown. After the stack is unwound to the
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1 /* Set up to return from userspace. */
2 regs->ra = (unsigned long)VDSO_SYMBOL(
3 current->mm->context.vdso, rt_sigreturn);
4

5 /* Bless the tag of the new value of regs->ra. */
6 __asm__ __volatile__ ("settag %0, 1"
7 : "=r" (regs->ra)
8 : "r" (regs->ra));
9 ...

Listing 7.3: Trusting signal handler return addresses during initialization. We use
GNU inline assembly to force the address of sigreturn into a register, where it can
be trusted by the settag instruction. In this example, the value of TAG_PC is 1.

appropriate position, the exception handler is run with a reference to the exception

object.

The gcc toolchain handles this situation in its libgcc runtime library by starting

the exception handler through a function call to the inlined uw_install_context

function, which loads register values including the return address register and executes

a return. The infrastructure that determines the right exception handler to run also

controls the value of the return address register right before the return occurs, giving

it power over control flow. As we trust libgcc, we again safely allow a technical

violation of our policy by trusting the contents of the return address register inside

of uw_install_context as illustrated in Listing 7.4. With this one line addition,

programs that use C++ exceptions function without generating tag traps.

With modifications to support Unix signal handling and C++ exceptions, Taxi’s

call and return discipline policy is very compatible in practice, generating no tag traps

on any of our benign test programs, the SPEC2006 benchmarks, the gcc 4.9.2 torture

tests, or during our limited experiences with larger programs like CPython.

7.3.2 Linearity of Return Addresses

Enforcing return address linearity in spike requires a set of tag propagation rules that

filter out return address tags whenever possible. We provide this by implementing the

modified propagation rules presented in Table 6.2. Linearity also requires that return
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1 uw_install_context(&this_context, &cur_context)
2 {
3 addi sp, sp, 736
4 ld ra, 2024(sp)
5 ld s0, 2016(sp)
6 ...
7 fld fs11, 1792(sp)
8 settag ra, 1
9 addi sp, sp, 2032

10 ret
11 }

Listing 7.4: Trusting C++ exception handler addresses in libgcc. Here, in RISC-V
assembly, we can see that the values of registers are being loaded from a context on
the stack. As libgcc is trusted, we trust the value of the return address register
before it is used, allowing the execution of a C++ exception handler. Note that ret
is RISC-V pseudo-assembler for jalr ra.

address tags are moved when return addresses are copied. By prohibiting arithmetic

on return addresses, we only need to instrument memory loads and stores.

To prevent memory loads from creating multiple copies of return addresses with

the correct tag, we instrument all RISC-V load instructions to check for return address

tags. When a return address tag is found, load instructions must mask it out and

write the resulting tag back to memory. Note that because memory accesses can

cause page faults, load instructions must be re-entrant. Our instrumented RISC-V

double-word load instruction ld is presented in Listing 7.5. Load instructions for

smaller data sizes are instrumented in a similar way.

Likewise, memory stores must care to mask out return address tags from the origin

of data they store. In RISC-V this extra store operation is to a register, permitting

lower overhead for this operation. We present an instrumented re-entrant version of

the RISC-V double-word store instruction sd in Listing 7.6. Store instructions for

smaller data sizes are handled similarly.

Observed Security

As enforcing linearity of return address tags is only meaningful in the presence of

the call and return discipline policy, linearity in practice provides security at least as
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1 reg_t addr = RS1 + insn.i_imm();
2 tagged_reg_t v = MMU.load_tagged_int64(addr);
3

4 if ((TAG_ENFORCE_ON) && (!IS_SUPERVISOR)) {
5 // Clear TAG_PC from the memory location if present.
6 tag_t cleared_tag = CLEAR_PC_TAG(v.tag);
7 if (cleared_tag != v.tag) {
8 MMU.store_tag_value(cleared_tag, addr);
9 }

10 }
11

12 WRITE_RD_AND_TAG(v.val, v.tag);

Listing 7.5: Taxi’s instrumented ld instruction. In this example, tag_t represents
an unsigned integral type capable of holding tags. To make sure that loading tagged
return addresses does not create copies of return address tags, on Line 8 we store a
sanitized tag back to the source address if it previously was a return address.

strong as that policy. Experiments have confirmed that our linearity implementation

provides this guarantee, protecting no fewer programs from code reuse attacks using

return addresses than our call and return policy implementation. Taxi also detects

our own return address replay attack (available in Appendix A) without inducing tag

traps in bash, Trinity, SPEC2006, or any other of our own test programs.

The gcc torture tests provided one interesting false positive: the pr47237 test

uses the gcc __builtin_apply C function to transfer control to a function without

explicitly calling it. This built-in function erroneously performs a load instruction on

the return address of the program’s main function without a matching store, stripping

its tag. Because the copy of the return address is not used, this copy is spurious and

could be eliminated without breaking correctness. Indeed, we did not see this problem

when compiling with the gcc optimizer.

Program Compatibility

We note in Section 6.4.2 that only programs that copy or modify return addresses

willingly are likely to violate linearity. This includes programs that use the C setjmp

and longjmp functions for non-linear control flow, as those functions save and restore

program state (including return addresses) from the jmpbuf data structure. Because
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1 reg_t addr = RS1 + insn.s_imm();
2 MMU.store_tagged_uint64(addr, RS2, TAG_S2);
3

4 // Ensure we have only one live PC tag by clearing the PC tag
5 // from the source register.
6 if ((TAG_ENFORCE_ON) && (!IS_SUPERVISOR) &&
7 (insn.rs2() == RETURN_REGISTER)) {
8 CLEAR_TAG(RETURN_REGISTER, TAG_PC);
9 }

Listing 7.6: Taxi’s instrumented sd instruction. After storing data from the return
address register, we strip any return address tags left in the register.

register configuration is architecture-dependent, setjmp and longjmp require the use

of architecture-specific assembly despite being part of the C standard. This allows us

to introduce modifications without breaking language standards compliance.

The setjmp function saves the current execution context into a jmpbuf data struc-

ture that can be restored by calling longjmp. When a jmpbuf context is restored,

control flow resumes directly after the setjmp instruction where the program’s con-

text was saved. The actual behavior of setjmp depends on whether it is inlined.

When it is, the return address copied into the jmpbuf is from the parent function.

When setjmp is not inlined, the return address it copies refers to the instruction

after the call to setjmp. In either case, the return address must be trusted before

setjmp returns to avoid generating a spurious trap. In the inline case, this creates

a small vulnerability as the return address of the parent may be controlled by an

attacker. This can be avoided by using a load tag instruction or similar mechanism

to determine the return address tag at runtime before blessing it. On RISC-V setjmp

is not inlined, so we do not need to implement such a mechanism. The program in

Listing 7.7 helps illustrate how setjmp affects the linearity policy implementation.

The longjmp function also requires a small modification. When a user calls

longjmp to restore a previous program context, the return address inside the context

is copied into the return address register, stripping the original of its tag under lin-

earity. To be able to use a jmpbuf context multiple times, we trust its return address

after loading it. If the value of this return address is controlled by an attacker, we
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1 int useful_function(int important_number) {
2 jmp_buf context;
3 if (setjmp(context))
4 return -1;
5

6 if (important_number == 42)
7 longjmp(context, 1);
8 return 0;
9 }

10

11 void parent(void) {
12 useful_function(42);
13 useful_function(0);
14 }

Listing 7.7: An example of how return address linearity affects setjmp. If setjmp
is inlined into useful_function, the return address it will copy into context on its
first execution will be the address of line 13. Naively blessing this return address
can allow attackers to gain control over the program counter. When setjmp is not
inlined, it will store the address of line 6.

will detect it as the original tag’s value is inspected when longjmp returns.

Finally, we note that if applied to the kernel, the linearity policy would be in-

compatible with fork and related system calls. In Linux, when a process calls fork

its memory contents are duplicated into the new process. With linearity, this copy

operation strips the tag of all return addresses in the original process. One way of

maintaining linearity while allowing the kernel to perform fork would be creating a

new privileged tag copying instruction. Because we have limited tag policies to user

space this is not an issue in Taxi.

7.3.3 Restricting Partial Copies

The partial copy policy aims to protect return addresses further by not preserving

their tags on partial memory stores, eliminating attacks that carefully store only part

of a return address to acquire its tag. We implement this policy in Taxi by masking

out return address tags in all instructions that store data smaller than the word size

into memory. In 64-bit RISC-V there are six instructions that fit this description,

requiring in total only six lines of instrumentation code. A detailed analysis of the
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practical security and compatibility of restricting partial copies of return addresses is

provided in [28].

7.3.4 Data Blacklisting

By applying the observation that return addresses are usually stored and loaded atom-

ically to all pointers, the blacklist policy prevents pointers that are corrupted during

buffer overflows from being stored to, loaded from, or jumped to. This protects pro-

grams from pointers corrupted by C functions like sprintf and strcpy, which are

vulnerable to buffer overflows. In Taxi, blacklisting is enforced by creating a new

tag, TAG_DATA, and applying it to the target of all store instructions that operate on

memory smaller than the word size. The jalr instruction is instrumented to prevent

jumping to memory tagged with TAG_DATA. All load and store instructions that at-

tempt to use userspace memory with this tag as addresses generate tag traps. Finally,

a new set of tag propagation rules proliferate TAG_DATA on arithmetic instructions.

Functions that are designed to operate byte-by-byte on generic data pose problems

for blacklisting. Two examples are the memcpy and memmove functions which are

commonly used to copy structs that hold pointers. On RISC-V, only memmove

copies data at byte granularity; because spike simulates an in-order processor, we

simply turn off tag enforcement for the duration of this function.

Pointers stored in memory not aligned to the processor word size can share tag

bits with non-pointers in Taxi, which poses a problem when blacklisting. We have

only seen this situation in the 960117-1 gcc torture test case when compiled without

optimizations. This failure highlights the limitations of imposing tag structure on

unordered memory but can be largely overcome by optimizing compilers that align

data. We refer the reader to [28] for further analysis of the security and compatibility

of the Taxi blacklisting implementation.
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7.4 Cache Simulations

Throughout this chapter, we have shown that tagged memory policies are generally

applicable to real-world programs with a host of exceptions. To show that tagged

memory itself can be practical for real-world programs, we have performed simulations

of the workload of Taxi’s tag cache at various sizes on the SPEC2006 benchmarks.

All simulated tag caches are four-way set associative, use 64-byte blocks, and use a

random replacement policy. We present our findings in Figure 7-2 and Table 7.1,

including results from a simulated 256KB L2 cache for comparison.

As depicted in Figure 6-2, Taxi relies on a new tag cache to handle misses on tags

in the expanded L2 cache. To understand the role that this tag cache plays in our

memory hierarchy, we simulated 11 tag caches in spike of different sizes, observing

both the tag miss rate and the number of evicted tags written back to memory.

We compactly summarize these two measurements in our notion of “total overhead”,

which we define as 𝑐𝑎𝑐ℎ𝑒 𝑚𝑖𝑠𝑠𝑒𝑠 + 𝑤𝑟𝑖𝑡𝑒𝑏𝑎𝑐𝑘𝑠
𝑡𝑎𝑔 𝑐𝑎𝑐ℎ𝑒 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠

. Because the number of writebacks is also

a function of the number of hits to the tag cache, this number can be over 100%.

Figure 7-2 presents graphs of this overhead and tag miss rate for a subset of the

SPEC2006 benchmarks.

Initially, we reasoned that processors with large data to tag ratios would require

only small tag caches. Figure 7-2a shows that in our Taxi implementation with 64

bytes of data for each tag, tag caches smaller than 256KB have high miss rates across

the board. Benchmarks with smaller working sets like 473.astar have near zero miss

rates at this size, while our average miss rate is just over 11%. As the tag cache

grows, this rate does not improve for most benchmarks, suggesting that compulsory

and conflict cache misses dominate in larger caches. Future analyses could test this

claim by varying replacement policies.

Without precise knowledge of the latency of tag cache misses, it is hard to say

exactly what constitutes a good miss rate. To help answer this question, we can

compare tag and L2 cache miss rates. While the average miss rate of a 256KB tag

cache for SPEC2006 is 11.15%, Taxi’s 256KB L2 cache achieves an average miss rate
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(a) Tag cache miss rates by tag size for three benchmarks. Small cache sizes exhibit high
miss rates for all benchmarks. Miss rates for benchmarks like 458.sjeng never level off,
possibly indicating large working sets. Most benchmarks fare better but do not improve
significantly after 256KB; benchmarks like 473.astar are best case scenarios.
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(b) Total tag cache overhead by tag size for a different set of benchmarks. As tag cache
overhead includes both cache misses and data writebacks, it can exceed 100%. Tag caches
smaller than 128KB exhibit high overheads for all benchmarks, but average overhead is only
about 10% at 512KB.

Figure 7-2: Simulated tag cache miss rates and total overhead for select SPEC2006
benchmarks.
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Benchmark 8KB 64 256 512 1MB 4MB 512/8KB L2
400.perlbench 66.13 22.72 3.46 1.82 1.19 0.84 2.76 2.42
401.bzip2 90.78 53.39 1.02 0.09 0.02 0.01 0.09 37.54
403.gcc 63.05 26.31 5.66 1.93 0.36 0.22 3.07 5.33
410.bwaves 38.25 25.66 21.10 19.29 14.40 0.10 50.43 4.88
416.gamess 60.74 25.39 8.25 6.54 5.84 5.40 10.77 6.06
429.mcf 77.24 34.60 8.52 4.96 3.82 2.85 6.42 32.37
433.milc 71.68 54.21 12.91 0.12 0.01 0.00 0.16 40.79
435.gromacs 58.91 15.24 5.00 2.27 1.28 1.00 3.85 2.37
436.cactusADM 58.72 21.62 11.98 8.68 0.78 0.19 14.78 9.32
437.leslie3d 59.83 24.62 5.62 0.91 0.01 0.00 1.52 9.56
444.namd 56.47 23.18 9.39 6.00 3.53 1.50 10.62 0.41
445.gobmk 67.71 34.08 13.45 8.54 3.93 0.05 12.61 2.80
447.dealII 49.42 24.48 11.28 6.74 2.11 0.37 13.65 2.72
450.soplex 64.70 21.09 8.08 6.64 6.19 5.90 10.26 3.64
454.calculix 62.38 22.95 8.67 7.04 6.39 6.06 11.29 3.62
456.hmmer 63.76 25.46 10.06 8.56 7.60 7.03 13.43 0.07
458.sjeng 80.20 57.53 39.25 33.11 28.13 16.05 41.28 3.35
459.GemsFDTD 71.92 48.36 25.49 17.43 13.58 12.31 24.24 29.16
462.libquantum 64.19 28.45 11.49 9.88 9.03 8.54 15.39 0.72
464.h264ref 61.85 32.15 5.44 0.80 0.16 0.05 1.30 10.00
465.tonto 62.23 15.49 4.46 3.60 3.21 2.99 5.79 0.55
470.lbm 58.51 24.28 13.33 9.00 7.09 6.32 15.38 13.38
473.astar 89.43 41.44 0.82 0.02 0.01 0.01 0.02 10.72
481.wrf 55.67 20.98 10.52 7.70 4.66 0.79 13.83 7.10
482.sphinx3 52.32 34.88 25.38 12.97 2.24 0.25 24.79 21.25
483.xalancbmk 70.59 30.97 7.87 3.50 2.70 2.39 4.96 2.84
998.specrand 63.88 28.21 11.75 9.96 9.04 8.60 15.59 5.19
999.specrand 63.76 28.60 12.02 10.12 9.23 8.58 15.87 5.17

Average 64.44 30.23 11.15 7.44 5.23 3.51 12.29 9.76
Standard dev. 10.76 11.03 8.02 6.90 5.92 4.23 11.53 11.33

Table 7.1: Simulated tag cache miss rate (out of 100) by size for the SPEC2006 bench-
marks. All tag caches are four-way associative with 64-byte blocks. For comparison,
we list the miss rate of the 256KB, eight-way associative L2 cache with 128-byte
blocks. Note that the L2 cache has a higher miss rate than tag caches 512KB or
larger. On spike, the 434.zeusmp, 453.povray and 471.omnetpp benchmarks were
non-functional without regard to tag policy.
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of 9.76%, only about 1.4% lower. This is encouraging because caches further down in

memory naturally tend to have higher cache miss rates even at large sizes. A 512KB

tag cache is enough to beat the L2 miss rate, suggesting that large data to tag ratios

do play some role in lowering miss rates. This analysis may also extend to writebacks,

which we have observed to behave similarly in the SPEC benchmarks.

We conclude our analysis by noting that the SPEC benchmarks are designed to

test processor performance, and are not a perfect tool to analyze memory hierarchy.

There also does not seem to be a way of predicting how benchmarks should perform.

This is partly because of the lack of a language feature that carries an obvious perfor-

mance penalty like C++ virtual functions do for CPI. Nevertheless, the low standard

deviation of miss rates on the SPEC benchmarks is encouraging and provides a clear

standard for future tag cache analyses to reproduce.
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Chapter 8

Future Work

The four tag policies explored in this thesis only begin to harness the expressiveness

of policies on tagged memory. The policies outlined in Section 6.5 represent starting

points for further analyses of tagged memory, but all require a tag-aware compiler

to generate a set of starting tags for a program that are loaded into memory on

execution. We have not yet explored the modifications required for a production

compiler like gcc or llvm to support tagged memory, but extensive data flow analyses

that can function in the presence of casting are likely necessary to determine when

to manipulate tags. Even without these analyses, tag-aware compilers can assist in

policy implementation and protect important static data structures like the Global

Offset Table. The capabilities of tag-aware compilers to implement policies without

a security focus also represent an avenue of research.

The blacklist policy could be significantly strengthened when paired with a tag-

aware compiler, which through analysis or annotations could identify buffers with

contents that are never used as pointers. This would greatly expand the availability

of protection currently offered to data manipulated by C string functions, especially

for often vulnerable web servers that must read data over a socket into a buffer. The

overhead of this implementation would be minimized by statically instrumenting libc

but could also be practical with hardware support for efficient assignment of tags to

large regions of memory. This support would also be useful for quickly loading an

initial set of tags into memory on program startup.
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The Taxi implementation discussed in this thesis is capable of demonstrating

the practical security and compatibility guarantees of tagged memory policies but is

otherwise limited in its ability to simulate a real processor. A Taxi implementation

on top of a full processor emulator like QEMU [9] would be much more capable of

determining properties of hardware design like the TPU’s latency. Examination of

the impact on tag cache performance of properties like set associativity and block

size could be performed. Such an implementation would also be capable of a full,

reportable run on the SPEC2006 benchmark suite where program runtime overhead

could be measured and compared with the overhead of defenses like Code Pointer

Integrity [34].

Existing code reuse defenses could be strengthened with hardware tag policies.

For instance, CPI could strengthen its isolation of code pointers by marking them in

the initial set of tags loaded at program initialization. These tagged code pointers

would be protected from buffer overflows if their tags could not be forged by attackers.

While more complex than memory segmentation, a correct implementation would be

immune from attacks like the one presented in Chapter 4 and would be more robust

to information disclosure attacks. An implementation of Control Flow Integrity [4]

on a tagged architecture like Taxi could use a larger number of labels to distinguish

types of control flow transfers and enhance its security guarantees.

Taxi’s use of limited tagged memory makes construction of policies that prevent

other memory corruption attack vectors difficult. Proposed solutions for preventing

temporal memory vulnerabilities like the lock and key strategy from CETS [39] do

not translate well to Taxi, as they require use of very large counter values. This does

not prevent use of Taxi as a component of a software-based memory safety defense.

Although our proposed policies only explore tagging data, Taxi in principle is

also capable of supporting policies that use tags on instructions. This allows multi-

ple versions of instructions differentiated only by tag values, further expanding the

expressiveness of tag policies and the architecture itself. We hope that this expressive-

ness will foster the design and implementation of additional tagged memory policies

that can prevent broad classes of memory corruption attacks.
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Appendix A

Sample Test Programs

1 void test() {
2 int x[10];
3

4 x[12] = (0xdeadbeef); // Overwrite our return address.
5 }
6

7 int main(void) {
8 __asm__ __volatile__("tagenforce ra,1" );
9 test();

10

11 return 0; // This should not be reached.
12 }

Listing A.1: A simple buffer overflow test program, where the return address is over-
written to an invalid value. Without Taxi, this program is likely to terminate with a
segmentation fault. Under Taxi’s call and return discipline policy, this program will
instead receive a tag trap signal.
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1 #include <stdio.h>
2 #include <stdlib.h>
3

4 void b(int arg1) {
5 printf("Calling harmless function b() with argument
6 %x", arg1);
7 }
8

9 void a(int arg1) {
10 int k = arg1 & 0x0f0f0f0f;
11 b(0xaaaaaaaa);
12 if(k != 0x0e0d0e0f) {
13 abort();
14 }
15 }
16

17 void do_stuff(int arg1) {
18 int local = 0;
19 a(arg1);
20

21 // Simulate a replay attack on function a
22 int *p = &local;
23 // Setup the return address to return into a.
24 p[5] = p[-19];
25 // Setup the argument too
26 p[2] = 0x87654321;
27 }
28

29 int main(void) {
30 do_stuff(0xdeadbeef);
31

32 return 0;
33 }

Listing A.2: A program with a return address replay attack. Here, do_stuff calls
a which in turn calls b. After a returns to do_stuff, do_stuff overwrites its own
return address through pointer arithmetic to return to a. Without Taxi (on a system
with a compatible stack layout), this program will execute a twice and abort. With
Taxi’s return address linearity policy enforced, the return address altered in line 24
will not have the correct tag and a tag trap will occur when do_stuff returns.
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