
Reverse-engineering RLC Networks With In-Circuit

Measurement

by

Joshua Michael Gordonson

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2015

c○ Joshua Michael Gordonson, MMXV. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly
paper and electronic copies of this thesis document in whole or in part in any

medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

September 08, 2015

Certified by. .
Gerald Jay Sussman

Panasonic Professor of Electrical Engineering
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Reverse-engineering RLC Networks With In-Circuit Measurement

by

Joshua Michael Gordonson

Submitted to the Department of Electrical Engineering and Computer Science
on September 08, 2015, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Science and Engineering

Abstract

The hands-on side of electrical engineering is still taught using solderless breadboards.
To lower the learning curve and improve the utility of solderless breadboards, I have de-
signed and implemented a prototype that draws schematic diagrams of passive circuits that
are built on a breadboard. The system reverse engineers circuits by means of a network
sensing algorithm, which iteratively grounds and excites nodes with voltage sources, and
subsequently measures the resulting currents and voltages in the network. Both a software
simulation and a hardware implementation were built to test the network sensing algorithm.
The sofware system is capable of reverse-engineering arbitrarily sized RLC networks with
some caveats regarding high-q parallel RLC networks. The hardware system is able to ac-
curately detect resistive and capacitive networks with eight nodes, though current hardware
limitations significantly reduce the precision of measurment. The performance of the hard-
ware system was analyzed and solutions to many of the measurement issues were found. A
technique for surface-mount soldering breadboards to PCBs is presented in this thesis.

Thesis Supervisor: Gerald Jay Sussman
Title: Panasonic Professor of Electrical Engineering

3

4

For Jim Roberge

Thank you:

Gerald Sussman

Anne Hunter

Ed Moriarty

Lynn and Steve Gordonson

and countless friends

I could not have done this without your overwhelming support.

5

6

Contents

1 Introduction 13

1.1 History of Breadboards . 13

1.2 Modern Breadboards . 13

1.3 Proposed Solution . 14

2 Network Sensing Algorithm 17

2.1 Network Sensing . 17

2.1.1 Two Node Network . 17

2.1.2 Three Node Network . 18

2.1.3 N Node Network . 19

2.1.4 Element Identification . 20

2.1.5 Reconstructing the Network . 24

3 Simulation 25

3.1 NgSpice and Netlists . 25

3.2 Methods . 26

3.2.1 Generate Random Netlist . 26

3.2.2 Inserting Voltage Sources, Grounds and Probes 27

3.2.3 Run Simulation . 27

3.2.4 Print Matrix . 28

3.2.5 Write JSON . 28

3.3 Executing NSA . 28

3.3.1 Calculate 𝑍𝑛||(𝑓) . 28

3.3.2 Calculate 𝑉𝑛(𝑓) . 28

3.3.3 Calculate 𝑍𝑛𝑚(𝑓) . 29

3.3.4 Finite Difference . 29

3.3.5 Element Identification . 29

3.3.6 Network Reconstruction . 29

7

4 Hardware 31

4.1 Node Voltage Reading . 32

4.1.1 Onboard A/D converters . 32

4.2 Signal Generator . 33

4.3 Test Voltage Current Sensing . 33

4.4 High-side Switches . 34

4.5 Low-side Switches . 34

4.6 PCB Mounted Breadboard . 34

4.7 Hardware Prototypes . 38

5 Firmware 43

5.1 USB . 43

5.2 ADC . 44

5.2.1 ADC Timers . 45

5.2.2 ADC DMA . 46

5.2.3 Data Reconstruction . 47

5.3 DAC . 48

5.3.1 DAC Wavetables . 49

6 Software Control 51

6.1 Control Routine . 51

6.1.1 FFT . 52

6.2 Network Sensing Algorithm . 52

7 Results 53

7.1 Simulation Performance . 53

7.2 Hardware Performance . 54

7.2.1 Element Testing . 54

7.2.2 Network Testing . 59

7.3 Improvements . 61

7.3.1 Variable Gain Amplifiers . 61

7.3.2 Variable Sense Resistor . 61

7.3.3 Better Switches . 62

7.3.4 Better Schematic Display . 62

7.3.5 Additional Devices . 62

7.3.6 Computer-Aided Debugger . 62

7.4 Conclusion . 63

8

List of Figures

2-1 Finding 𝑅𝐴𝐵 in a two node network . 18

2-2 Finding 𝑅𝐴𝐵 in a three node network . 18

2-3 Collapsing five node network, collapsed to find 𝑅𝐴𝐸 and 𝑅𝐵𝐶 19

2-4 Example RLC Tank Circuit . 21

2-5 Finite difference of an RLC tank where R=6Ω, L=20mH, and C=500nF 22

2-6 Finite difference of an RLC tank where R=44Ω, L=1.1mH, and C=500nF 23

3-1 Three node network . 25

4-1 Simplified block diagram of hardware . 31

4-2 ADCS7476 Equivalent Input Circuit . 32

4-3 Difference Amplifier Schematic . 33

4-4 MCP6L92 Open Loop Bode Plot . 34

4-5 Resistor Divider Parasitic Capacitance . 35

4-6 Solderless breadboard plastic face with finger spring rails removed 35

4-7 Breadboard rails hand-mounted on copper clad PCB 36

4-8 3D printed finger spring jigs . 36

4-9 Top view of 36-position finger spring jig . 37

4-10 Top view of 90-position finger spring jig . 37

4-11 Fully loaded 36-position finger spring jig . 37

4-12 Front and back of PCB mounted breadboard . 38

4-13 Schematic of full hardware system . 39

4-14 Layout of full hardware system . 40

4-15 Top layer of full hardware system . 40

4-16 Bottom layer of full hardware system . 40

4-17 Top side of completed hardware system - power jack, voltage reading multiplexer,

low-side switches, and 8-pin breadboard header are visible. 41

9

4-18 Bottom side of completed hardware system - voltage regulators, A/D converters,

high-side switches, and current-sense amplifier are visible 41

4-19 8-node circuit sensing breadboard in operation . 41

5-1 ADCS7476 Serial Interface Timing Diagram . 44

5-2 Full ADC Driver with DMA . 45

5-3 ADC Chip Select Timer . 46

5-4 ADC Clock Timer . 46

5-5 ADC Clock Timer Triggers DMA2 . 47

5-6 DAC Timer Triggers DMA1 . 48

7-1 Plot of measured resistance for known resistors . 54

7-2 Driving point impedance of an open node from 1Hz to 100KHz 55

7-3 Impedance between two open nodes from 1Hz to 100KHz 56

7-4 Plot of measured capacitance for known capacitors 57

7-5 Impedance vs frequency for a 3.3𝑚𝐻 inductor, demonstrating inductive behavior

albeit noisily . 58

7-6 Impedance vs frequency for a 3.3𝑚𝐻 inductor in parallel with a 0.15𝜇𝐹 capacitor,

demonstrating LC behavior albeit noisily . 58

7-7 Schematics of 3, 4, 5, and 6-node resistor networks rendered in the browser 59

10

List of Tables

5.1 datas[0:16] . 48

11

12

Chapter 1

Introduction

1.1 History of Breadboards

The breadboard has been a staple substrate for electronic construction over the last century. At the

dawn of a growing interest in amateur radio, resourceful tinkerers used planks of wood to secure

and ruggedize their electrical handiwork. Conductive nodes, such as nails or copper rails, were

driven into the non-conductive boards, providing anchors and contact points that were electrically

isolated from the rest of the circuit. Components were soldered or wire-wrapped to the nodes, and

sometimes secured by non-energized nails or screws. This construction technique provided a lot of

artistic freedom in circuit construction, but was time consuming and required relatively heavy hand

tools such as a hammer or drill. From a performance perspective, sensitive high-frequency circuits

were infeasible due to a lack of a ground plane and long wires between components.

1.2 Modern Breadboards

The solderless breadboard is the canonical tool given to students taking introductory courses in the

field. Rather than driving nodes into arbitrary locations, component leads are inserted into contact

points arranged on a grid that allow rapid semi-rigid construction of circuits with no other tools. The

layout of a solderless breadboard is designed to be compatible with a plethora of powerful integrated

circuits - enabling complex electronic designs - but is still limited to low-frequency operation due to

the parasitic capacitance between adjacent breadboard rails. Modern solderless breadboards have

come a long way from their namesake wooden ancestors, but there is still room for improvement.

The intent of breadboarding is to physically realize a circuit. Often, this involves designing or

using a reference schematic to guide construction, but circuit improvisation is not uncommon. A

meticulous breadboarder can successfully realize a circuit without error by correctly placing compo-

13

nents and jumper wires - taking care not to introduce undesired ’parasitic’ components. However,

for the uninitiated it is difficult to justify the additional time and care required to plan and build.

Inserting components and jumper wires into contact points is straightforward, but poor contacts,

broken wires (inside insulation), and mis-inserting leads can plague designers for hours on end and

potentially destroy components. Breadboarding is a skill that is learned over time, but small errors

can lead to excessive frustration and turn students off to the field. I propose a solution to some of

the issues with the solderless breadboard.

A confident linkage between the the electrical and mechanical domains is required to construct

a circuit. On larger scales, the mechanical structures (eg. contacts, wires, components) that create

electrical circuits are visible in plain sight. It is simple and reliable, then, to determine the circuit

representation of a mechanical structure that has no hidden connections. Breadboards often obscure

connections due to their construction. The regular nature of a breadboard, a grid of contact points

arranged in rails, makes it difficult to keep track of which rail is connected to what circuit node.

When combined with the opaque nature of most components and the poor reliability of breadboard

contacts, visually verifying complex circuits on a breadboard becomes infeasible. Many of the

inherent problems with breadboards stem from this open-loop nature of breadboarding, where visual

cues are not enough to determine the electrical circuit from the mechanical structure. A symptom

of open-loop construction techniques is a mismatch between the mental model and the physical

realization of the system at hand. I seek to close this loop by designing and implementing a circuit-

sensing breadboard.

1.3 Proposed Solution

A circuit-sensing breadboard is able to reverse-engineer circuits built on it by applying test voltages

and currents and measuring the results. As a proof-of-concept, the proposed circuit-sensing bread-

board completed for this thesis is able to reverse engineer circuits composed of resistors built on a

small section of the breadboard and display a schematic of the circuit in the browser.

The circuit-sensing breadboard is composed of a hardware system that interfaces various pieces of

test equipment with eight rails on a breadboard. The system is composed of a pcb-mounted bread-

board, a voltage source, current meter, and voltage meter multiplexing board, a microcontroller

development board, firmware to control ADC sampling, AC voltage source testing, and streaming

data to a computer for analysis and display. The hardware is controlled by a circuit sensing algo-

rithm, which determines the equivalent circuit elements between any two nodes on the breadboard.

A software simulation of the hardware system verifies operation of the network sensing algorithm and

enables testing for networks larger than eight nodes. Once the circuit sensing algorithm reconstructs

the entire circuit it generates a schematic diagram of the circuit, closing the loop on breadboard

14

construction.

15

16

Chapter 2

Network Sensing Algorithm

In this chapter, a Network Sensing Algorithm that can reverse-engineer an arbitrary n-node RLC

network given access to every node is described. First, it is shown how basic circuit theory is

used to analyze and reverse engineer n-node resistive circuits. These methods are then generalized

to reverse-engineer n-node impedance networks down to the individual impedance branch circuits,

constructed from resistors, capacitors, and inductors. The impedance networks are then further

decomposed into their constituent element by method of frequency-domain analysis, at which point

the original network is fully represented and can be reconstructed.

2.1 Network Sensing

Given access to the set of nodes in an electrical network, the objective of a network sensing algorithm

is to determine the set of branches and the elements that compose them. In order to illustrate how

a network sensing algorithm operates, it is necessary to begin with a simple example and then build

in complexity.

2.1.1 Two Node Network

Take the example of a network with two nodes below:

In the case of a resistive network with two nodes, there is only one possible branch in the

network and thus one possible element to characterize. From Section 2.1, the resistance between

two nodes equal to the voltage across the nodes divided by the current through the nodes when

power is applied. Here, the resistance 𝑅𝐴𝐵 is found by placing a test voltage 𝑉𝑡 across the nodes

and measuring the resulting current, 𝐼𝑡, then taking the ratio 𝑉𝑡

𝐼𝑡
. This measurement is called the

driving point impedance 1. If there are no circuit elements between the two nodes, the driving point

1To measure a driving point impedance, a test voltage is applied between the node of interest and ground,

17

𝐴

𝑅𝐴𝐵

𝐵

+
−𝑉𝑡

𝐼𝑡

𝐴

𝑅𝐴𝐵 = 𝑉𝑡
𝐼𝑡

𝐵

+
−𝑉𝑡

𝐼𝑡

𝐵

𝑅𝐵𝐴 = 𝑉𝑡
𝐼𝑡

𝐴

Figure 2-1: Finding 𝑅𝐴𝐵 in a two node network

impedance test will find zero current in the test voltage source, resulting in an infinite resistance

between two nodes. An infinite resistance between two nodes in a circuit indicates that there are

no elements in that branch of the network. Thus, the network can subsequently be simplified by

removing that branch from the network.

2.1.2 Three Node Network

A resistive network with two nodes is simple, but provides an introduction to the methodology used

in analyzing larger networks. In the case of a resistive network with three nodes, it is insufficient to

utilize driving point impedance measurements alone, because each node has more than one path to

any other node. The ability to ground arbitrary nodes of a network greatly simplifies the process of

analyzing and reverse-engineering a network. The network-sensing algorithm relies on the ability to

shrink the effective network by conglomerating nodes into the ground node.

𝐴 𝑅𝐴𝐵 𝐵

𝑅𝐵𝐶

𝐶

𝑅𝐴𝐶

+
−𝑉𝑡

𝐼𝑡

𝐴 𝑅𝐴𝐵 𝐵

𝑅𝐵𝐶

𝐶

𝑅𝐴𝐶 −

+

𝑉𝐴

𝐴 𝑅𝐴𝐵 𝐵

𝑅𝐵𝐶

𝐶

𝑅𝐴𝐶

+
−𝑉𝑡

Figure 2-2: Finding 𝑅𝐴𝐵 in a three node network

Consider a resistive network with three nodes: A, B, and C. In order to determine the resistance

in branch AB, the driving point impedance at node A is measured with nodes B and C grounded.

This provides the resistance of the parallel combination of the branches with an endpoint at node

and the resulting current in the voltage source is measured. The driving point impedance is then computed
by dividing the test voltage by the resulting current.

18

A:2

𝑅𝐴|| = 𝑅𝐴𝐵 ||𝑅𝐴𝐶

Next, a test voltage source is applied to node B, node C is grounded, and the voltage at node A,

𝑉𝐴, is observed.

𝑉𝐴 = 𝑉𝑡
𝑅𝐴𝐶

𝑅𝐴𝐵 +𝑅𝐴𝐶
= 𝑉𝑡

𝑅𝐴𝐵 ||𝑅𝐴𝐶

𝑅𝐴𝐵
= 𝑉𝑡

𝑅𝐴||

𝑅𝐴𝐵

The branch resistance of interest, 𝑅𝐴𝐵 is calculated using the known quantities 𝑉𝑡, 𝑉𝐴||, and 𝑉𝐴.

𝑉𝑡

𝑅𝐴||

𝑉𝐴
= 𝑉𝑡

𝑅𝐴𝐵 ||𝑅𝐴𝐶

𝑉𝑡
𝑅𝐴𝐶

𝑅𝐴𝐵+𝑅𝐴𝐶

=
𝑅𝐴𝐵𝑅𝐴𝐶

𝑅𝐴𝐵+𝑅𝐴𝐶

𝑅𝐴𝐶

𝑅𝐴𝐵+𝑅𝐴𝐶

= 𝑅𝐴𝐵

This procedure is repeated for the remaining branches to determine the entire network.

2.1.3 N Node Network

A resistive network with any number of nodes can be reduced to a resistive network with three

nodes by grounding the nodes that are not of interest. The resulting network does not modify the

branch of interest, but connects the remaining branches attached to the nodes of interest in parallel.

This collapses the network into a three node network or three branch equivalent circuit. Consider

𝐴
𝑅

𝐴
𝐶

𝐶

𝑅
𝐸
𝐶

𝐸𝑅𝐴𝐸

𝑅
𝐴
𝐵

𝐵 𝑅𝐵𝐶 𝑅𝐶𝐷
𝐷

𝑅
𝐸
𝐷

𝐴 𝑅𝐴𝐸 𝐸

𝑅
𝐸
𝐶
||𝑅

𝐸
𝐷

𝑅
𝐴
𝐶 ||𝑅

𝐴
𝐵

𝐵 𝑅𝐵𝐶 𝐶

𝑅
𝐴
𝐶
||𝑅

𝐸
𝐶
||𝑅

𝐶
𝐷

𝑅
𝐴
𝐵

Figure 2-3: Collapsing five node network, collapsed to find 𝑅𝐴𝐸 and 𝑅𝐵𝐶

a resistive network with five nodes: A-E. To determine the resistance between nodes A and E,

the network is reduced to a three-node network by connecting all nodes except nodes A and E to

ground. The three resistances of the branches that remain are 𝑅𝐴𝐸 , 𝑅𝐴𝐵 ||𝑅𝐴𝐶 , and 𝑅𝐸𝐶 ||𝑅𝐸𝐷.

The reduced network is then solved using the three node network method, and this procedure is

repeated for all branches in the network.

2𝑅1||𝑅2 =
𝑅1𝑅2

𝑅1 +𝑅2
=

1
1
𝑅1

+ 1
𝑅2

19

The above thought experiment satisfies the problem at hand intuitively, but it can also be shown

mathematically.

To find 𝑅𝐴𝐵 of an n-node complete network, first the driving point impedance at node A, 𝑅𝐴|| ,

is measured with all other nodes grounded.

𝑅𝐴|| = 𝑅𝐴𝐵 ||𝑅𝐴𝐶 ||𝑅𝐴𝐷||... =
1

1
𝑅𝐴𝐵

+ 1
𝑅𝐴𝐶

+ 1
𝑅𝐴𝐷

+ ...

=
1

1
𝑅𝐴𝐵

+ 1
(1

1
𝑅𝐴𝐶

+ 1
𝑅𝐴𝐷

+...
)

= 𝑅𝐴𝐵 ||(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

To find 𝑉𝐴 from node B, the voltage at node A is measured when a test source is placed at node B

with all other nodes grounded.

𝑉𝐴 = 𝑉𝑡
(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

𝑅𝐴𝐵 + (𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

Dividing 𝑅𝐴|| by 𝑉𝐴 and multiplying by 𝑉𝑡:

𝑉𝑡

𝑅𝐴||

𝑉𝐴
= 𝑉𝑡

𝑅𝐴𝐵(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)
𝑅𝐴𝐵+(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

𝑉𝑡
(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

𝑅𝐴𝐵+(𝑅𝐴𝐶 ||𝑅𝐴𝐷||...)

= 𝑅𝐴𝐵

Finding a resistive element in an n-node network requires two measurements. The number of

branches in a complete graph with n nodes is equal to 𝑛(𝑛−1)
2 . The total number of measurements

required to reverse-engineer an n-node circuit is 𝑛(𝑛− 1).

2.1.4 Element Identification

Networks composed of elements with complex impedance can be analyzed with the same algorithm.

By replacing the test DC voltage sources with AC voltage sources, the reactance of capacitors and

inductors can be measured in addition to the resistance of resistors.

Parallel RLC Branches

To determine if there are multiple element types [in parallel] between two nodes, the impedance is

measured over a range of frequencies, and the resulting changes in impedance are measured.

The impedance of a parallel RLC ’tank’ circuit can be characterized and analyzed over all

frequencies.

𝑍𝑅 = 𝑅 𝑍𝐿 = 𝑗𝜔𝐿 𝑍𝐶 =
1

𝑗𝜔𝐶

20

2

𝑅 𝐿𝐶

1

Figure 2-4: Example RLC Tank Circuit

𝑍𝑅𝐿𝐶 = 𝑍𝐶 ||𝑍𝑅||𝑍𝐿 =
1

𝑗𝜔𝐶 + 1
𝑅 + 1

𝑗𝜔𝐿

=
𝑗𝜔𝑅𝐿

−𝜔2𝑅𝐿𝐶 + 𝑗𝜔𝐿+𝑅

𝑍𝑅𝐿𝐶 has a zero at 1
𝑅𝐿 and two poles at

−𝐿+
−
√
𝐿2+4𝑅2𝐿𝐶

−2𝑅𝐿𝐶

The plots above illustrate various RLC tank circuits where one component value changes over

several orders of magnitude. In the top-center and bottom-center plots, a decrease in resistance

drops the maximum impedance over all frequencies. In the top-left and bottom-left plots, a decrease

in inductance drops the asymptotic impedance at low frequencies In the top-right and bottom-right

plots a decrease in capacitance drops the asymptotic impedance at high frequencies. As illustrated

above, there are three regimes on the impedance vs frequency plot that divide the operation of an

RLC tank into three elements:

21

When the slope of |𝑍| vs. 𝑓 is +1, the tank behaves like an inductor with inductance

𝐿 = |𝑍|/(𝑗𝜔)

When the slope of |𝑍| vs. 𝑓 is -1, the tank behaves like a capacitor with capacitance

𝐶 = 𝑗𝜔|𝑍|

When the slope of |𝑍| vs. 𝑓 is 0, the tank behaves like a resistor with resistance

𝑅 = |𝑍|

Finite Difference Stencil

To reliably determine the regions of effective resistance, inductance, and capacitance, the slope of

the 𝑙𝑜𝑔(|𝑍𝑛𝑚|) vs. 𝑙𝑜𝑔(𝜔) is computed via the midpoint method. The midpoint finite difference

stencil takes the two points on either side of the point of interest and computes the slope between

them.

𝑍 ′[𝑛] =
1

2
(𝑍[𝑛+ 1]− 𝑍[𝑛− 1])

Figure 2-5: Finite difference of an RLC tank where R=6Ω, L=20mH, and C=500nF

In figure 2-5 the distinct regions of inductance, resistance, and capacitance are clearly visible

and easily found by setting thresholds for the finite difference. The thresholds on the region of

inductance are between 1.1 and 0.9, the thresholds on the region of resistance are between 0.1 and

-0.1, and the thresholds on the region of capacitance are between -0.9 and -1.1.

22

Figure 2-6: Finite difference of an RLC tank where R=44Ω, L=1.1mH, and C=500nF

In figure ??, the resistance is not represented in the finite difference of Z[n]. The parallel

resistance of an underdamped RLC tank is the maximum recorded impedance across all frequencies.

In a simulation, using the maximum recorded impedance is a valid solution because measurement

accuracy has a large (64-bit floating point) dynamic range, producing results that are accurate of

ideal systems. In practice, spurious noise and lack of dynamic range over measurement data can

cause poor results. Occasionally these poor results include large spikes of inaccurate impedance

readings. In this case, a practical approach would be to use the finite difference stencil where

possible and when an LC network is discovered, sample at the resonant frequency to find R. In the

case of figure 2-6, the sampling frequency would be 17KHz.

𝑓0 =
1√

2𝜋𝐿𝐶
≈ 17000𝐻𝑧

Component Value Calculation

Once the regions of the impedance plot are thresholded, the sampling frequency domains corre-

sponding to those regions are assigned to an element type [𝜔𝑟[𝑛] for R, 𝜔𝑙[𝑛] for L, 𝜔𝑐[𝑛] for C].

Then for each sampling frequency the component values are computed and averaged to filter noisy

data.

𝑅[𝜔𝑟] = 𝑍[𝜔𝑟] 𝐿[𝜔𝑙] =
𝑍[𝜔𝑙]

𝜔𝑙
𝐶[𝜔𝑐] =

1

𝜔𝑐𝑍[𝜔𝑐]

𝑅 =
1

𝑟𝑛𝑢𝑚

∑︁
𝜔𝑟

𝑍[𝜔𝑟] 𝐿 =
1

𝑙𝑛𝑢𝑚

∑︁
𝜔𝑙

𝑍[𝜔𝑙]

𝜔𝑙
𝐶 =

1

𝑐𝑛𝑢𝑚

∑︁
𝜔𝑐

1

𝜔𝑐𝑍[𝜔𝑐]

23

Where 𝑟𝑛𝑢𝑚, 𝑙𝑛𝑢𝑚, and 𝑐𝑛𝑢𝑚 are the number of sample frequencies in the R, L, and C regions,

respectively.

2.1.5 Reconstructing the Network

With a record of all of the elements and their connections in the network, the network can be

reconstructed and a schematic of the original circuit can be drawn.

24

Chapter 3

Simulation

In this chapter, a simulation of the circuit sensing breadboard is described. A simulated circuit

sensing breadboard is useful for rapid iteration of hardware topologies and validation of network

sensing algorithms. The simulator is also not limited by the hardware complexity, so simulating

circuits with more than eight nodes and elements other than resistors, capacitors, and inductors

is possible. The simulator generates random networks of resistors, inductors, and capacitors, and

proceeds to analyze, reconstruct, and draw a schematic of the network using the network sensing

algorithm.

3.1 NgSpice and Netlists

The open source software package NgSpice was used to simulate the networks and test circuits

applied to the network. NGspice operates on text files called netlists, where each component in the

network is specified on a single line. An example netlist is shown below.

−

+

𝑉𝐴

𝐴 𝑅𝐴𝐵 𝐵

𝐿
𝐵
𝐶

𝐶

𝐶
𝐴
𝐶

+
−𝑉𝑡

Figure 3-1: Three node network

threeNodeNetlist

Vt 0 B 1

25

Rab A B 10k

Cac A C 1e-6

Lbc B C 1e-3

Vcg 0 C 0

.control

op

print(v(A))

.endc

.end

The first letter of each element line designates the element to simulate:

V start stop value→ Voltage Source between start and stop nodes, value Volts [V]

R start stop value→ Resistor between start and stop nodes, value Ohms [Ω]

L start stop value→ Inductor between start and stop nodes, value Henries [H]

C start stop value→ Capacitor between start and stop nodes, value Farads [F]

Node 0 is always designated as ground, and all simulations require a ground node.

The control commands are as follows:

op → Operating Point Simulation print() → Print the relevant data passed as an argument v(N)

→ The voltage at node N i(E) → The current through element E

3.2 Methods

The NSA simulator was written in python and uses the methods below.

3.2.1 Generate Random Netlist

writeRandomNet(netlist,num,elements):

Generates num-node random graph with no self-linking nodes (symmetric matrix with zeros on

the diagonal) for each [elements] type (R,L,C). Subsequently assigns random values between two

realistic limits for each element and writes the network to netlist netlist. 1-1k ohms, 10nF-10uF,

100uH-100mH.

When writing the capacitive and inductive elements, care must be taken to prevent a DC op-

erating point simulation from failing. The infinite resistance across a capacitor and zero resistance

across an inductor are responsible for DC operating point simulation failure, and can be fixed by

including a small resistor in series with inductors and a large resistor in parallel with capacitors.

L0 1 2 1mH → L0 1 tl0 1mH Rl0

tl0 2 1e-5

C0 1 2 1e-6F → C0 1 2 1e-6F Rc0

1 2 1e8

26

3.2.2 Inserting Voltage Sources, Grounds and Probes

insertProbe2(target,nodes,groundNodes,probes,source=’DC’):

Inserts a 1V voltage source from ground to each node in [nodes], grounds each node in [groundNodes],

and adds a voltage print statement for each node in [probes]. By default, the voltage sources are

written as DC sources, but if ’AC’ is passed into the last argument the sources are written as AC

sources and the AC control statement is added.

AC dec 5 10m 10meg

Which runs a small-signal AC simulation and returns the amplitudes of the resulting voltage and

current waveforms, five sample points per decade from 10mHz to 10MHz.

3.2.3 Run Simulation

def runSim(target,results,source=’DC’):

Makes a system call to NgSpice in batch mode with netlist target and outputs the result to text

file results. The last argument indicates how to parse the resulting data, as NgSpice returns DC

data in the following format:

No. of Data Rows : 1

i(v) = -1.18295e-01

v(5) = 2.532846e-07}

and AC data is returned in this format:

No. of Data Rows : 6

mynetlist

AC Analysis Sun Aug 30 18:35:07 2015

--

Index frequency i(v)

--

0 1.000000e+00 -1.72598e+00, 3.978810e+02

1 1.000000e+01 -1.58689e-01, 3.978827e+01

2 1.000000e+02 -1.43015e-01, 3.974287e+00

3 1.000000e+03 -1.42859e-01, 3.520201e-01

4 1.000000e+04 -1.42857e-01, -4.18884e-01

5 1.000000e+05 -1.42857e-01, -4.58275e+00

mynetlist

AC Analysis Sun Aug 30 18:35:07 2015

--

Index frequency v(3)

27

--

0 1.000000e+00 1.000000e+00, 0.000000e+00

1 1.000000e+01 1.000000e+00, 0.000000e+00

2 1.000000e+02 1.000000e+00, 0.000000e+00

3 1.000000e+03 1.000000e+00, 0.000000e+00

4 1.000000e+04 1.000000e+00, 0.000000e+00

5 1.000000e+05 1.000000e+00, 0.000000e+00

DC data is returned as a dictionary with indices for the voltage source current and each node of

interest:

[’i’:i(V),’1’:v(1),’2’:v(2),..]

AC data is returned as a dictionary of lists with indices for the voltage source current and each node

of interest:

[’i’:[i(𝑉𝑓1), i(𝑉𝑓2),..., i(𝑉𝑓𝑛)], ’1’:[v(1𝑓1), v(1𝑓2),..., v(1𝑓𝑛)], ...]

3.2.4 Print Matrix

def printMatrix(m): Prints matrix m in nice command-line output. It can handle both 2-dimensional

and 3-dimensional matrices, for n-by-n matrices with lists of impedances over many frequencies.

3.2.5 Write JSON

def writeJSON(name, network,group, elem): Writes a JSON file named name.json of the n-

by-n symmetric matrix network. Three separate JSON files are written, one for each element

[resistor.json, capacitor.json, and inductor.json]. The group parameter is used when

drawing multiple schematics on one page. The elem parameter is used to specify what type of

element the network represents.

3.3 Executing NSA

3.3.1 Calculate 𝑍𝑛||(𝑓)

𝑍𝑛||(𝑓) is found by grounding all nodes except for node n and adding a voltage source to that node,

then taking the ratio of the amplitudes of the resulting current into the node of interest and the

voltage source.

3.3.2 Calculate 𝑉𝑛(𝑓)

𝑉𝑛(𝑓) is found by grounding all nodes except for nodes n and m, adding a voltage source to node

m, and measuring the amplitude of the voltage at node n.

28

3.3.3 Calculate 𝑍𝑛𝑚(𝑓)

𝑍𝑛𝑚(𝑓) is calculated by the ratio of 𝑍𝑛||(𝑓) to 𝑉𝑛(𝑓) scaled by 𝑉𝑡. In the case of this simulation, 𝑉𝑡

is one.

3.3.4 Finite Difference

𝑍𝑛𝑚 is passed through the finite-differencer, returning a list 𝑍 ′
𝑛𝑚[𝑓]. 𝑍 ′

𝑛𝑚[𝑓] is thresholded to find

the frequencies for which 𝑍 ′
𝑛𝑚[𝑓] ≈ −1, 𝑍 ′

𝑛𝑚[𝑓] ≈ 0, and 𝑍 ′
𝑛𝑚[𝑓] ≈ 1.

3.3.5 Element Identification

A list of inductances is calculated from 𝑍𝑛𝑚[𝑓] on all frequencies for which 𝑍 ′
𝑛𝑚[𝑓] ≈ −1, [𝑓𝐿].

𝐿[𝑓𝐿] =
|𝑍𝑛𝑚[𝑓𝑙]|

(𝑓𝑙)
A list of resistances is calculated from 𝑍𝑛𝑚[𝑓] on all frequencies for which 𝑍 ′

𝑛𝑚[𝑓] ≈ 0, [𝑓𝑅].

𝑅[𝑓𝑅] = |𝑍𝑛𝑚[𝑓𝑅]|

A list of capacitances is characterized from 𝑍𝑛𝑚[𝑓] on all frequencies for which 𝑍 ′
𝑛𝑚[𝑓] ≈ −1, [𝑓𝐶].

𝐶[𝑓𝐶] =
1

|𝑍𝑛𝑚[𝑓𝐶]|(𝑓𝐶)

The element lists are averaged to to filter out inaccurate data.

3.3.6 Network Reconstruction

A new matrix is written for each element type, then the matrices are written to JSON and processed

by javascript running D3 to display the final schematic.

29

30

Chapter 4

Hardware

In this chapter, hardware system design is covered. The hardware system is decomposed into its

subsystems, and the design choices, specifications, and operation of those subsystems are explained.

The hardware system is composed of a set of eight breadboard rails connected to a node voltage

reading system, a test voltage source system, a grounding system, and a 32-bit microcontroller

development board. The node voltage reading system is composed of a voltage multiplexer and an

external A/D converter. The test voltage source system is composed of an internal D/A converter,

an external buffer, a current sensing amplifier, an external A/D converter, and eight high-side

analog switches. The grounding system is composed of eight N-channel MOSFETs, handled by the

microcontroller. A simplified block diagram is below:

Figure 4-1: Simplified block diagram of hardware

31

4.1 Node Voltage Reading

An ADCS7476 12-bit A/D converter is used to measure the voltages at each node. The ADCS7476

can sample up to 1MSPS with ±1 LSB of total unadjusted error from −40𝑜𝐶 to 85𝑜𝐶 and < ±0.2

LSB of error at 25𝑜𝐶. No bits are wasted in the ADCS7476 A/D converter. Additionally, the input

circuitry to the ADC is a 100Ω resistor in series with a 26pF capacitor. This places a pole at 61MHz,

causing a .03% error at 100KHz and .3% error at 1MHz. The additional performance is well worth

the additional cost of $1.56375 in quantities of 1Ku.

Figure 4-2: ADCS7476 Equivalent Input Circuit

The ADC is connected to the common pin of a CD4051 1:8 analog multiplexer. The multiplexer

is connected to eight breadboard rails, which allows the ADC to measure the voltage on any of the

eight rails, one rail at a time.

The CD4051 has about 200Ω of series resistance and 30pF of output capacitance when its supply

voltage is 12V, which places an additional pole at 26MHz, again well above the Nyquist frequency.

So far, the voltage-reading signal chain has two poles - one at 61MHz and one at 26MHz.

4.1.1 Onboard A/D converters

Although the STM32F407 has three onboard 12-bit A/D converters, their specifications are lacking.

Each is able to sample at 2MSPS, and it’s possible to interleave them to attain a sampling rate of

6MSPS or higher if you’re willing to throw away bits. The total unadjusted error (offset error, gain

error, differential linearity error, and integral linearity error) is between ±2 LSB and ±5 LSB. With

a minimum of ±2 LSB’s of error, the lowest significant two bits in the 12-bit A/D are virtually

useless. Another specification to consider is the input circuitry to the ADC. The input circuitry

to the ADC while it’s in tracking mode looks like a 6KΩ resistor charging a 4pF capacitor. This

puts a pole at 6.6MHz, causing .3% error in measurement at 100KHz, 3% error in measurement at

1MHz, and 7% at 3MHz. When sampling at the maximum sample rate of 6MSPS, the ADC’s input

network begins to introduce significant error. Granted, it’s likely that there will be an alternative

32

bandwidth bottleneck, this is still a metric of concern. [DM00037051.pdf, pages 133-134]

4.2 Signal Generator

The STM32F407 has an onboard D/A converter that is good enough to use as a signal generator.

The onboard DAC is configured to output a cosine wavetable with a DC offset, as described in the

next chapter.

4.3 Test Voltage Current Sensing

The DAC output is buffered by half of an MCP6L92 10MHz op-amp. The onboard DAC can be

configured with an optional onboard buffer, but the buffer limits the DAC output range from 0.2V

to Vdd-0.2V. Without the onboard buffer, the DAC output impedance is 15kΩ. When configured

as a voltage buffer, the MCP6L92 has an input impedance larger than 1GΩ, resulting in no signal

attenuation.

Figure 4-3: Difference Amplifier Schematic

The buffer sources current through a 10.0Ω, 1% sense resistor, which can be switched onto any

of the breadboard rails through an array of eight high-side switches. The voltage across the sense

resistor is measured by the other half of the MCP6L92 op-amp configured as a simple difference

amplifier. Using two 10𝑘Ω resistors and two 100𝑘Ω resistors, the difference amplifier is configured

with a gain of 10.

According to the MCP6L92 datasheet, the difference amplifier should have a -3dB bandwidth

of 1MHz and plenty of phase margin driving the 100Ω- 26pF input impedance to the current sense

ADC.

33

Figure 4-4: MCP6L92 Open Loop Bode Plot

4.4 High-side Switches

The high-side switches were selected for high-voltage operation, so that any rail of the breadboard

could swing between 0 and 30V and there wouldn’t be a problem. The selected switches were Vishay

DG468 normally open analog switches. They have 9Ω resistance and 76pF of capacitance in the

on-state, 1nA of leakage current and 30pF of capacitance in the off-state. The high and low side

switches are the main limits of bandwidth due to their high amounts of input capacitance in both

on and off states.

4.5 Low-side Switches

The low-side switches have a low logic-level threshold voltage, low drain-source on-resistance, can

handle up to 30V, and are low-cost. The IRLML2803 N-FETs have an 𝑅𝐷𝑆𝑂𝑁
of about 1Ωwith a 𝑉𝐺𝑆

of 3.3V. With 10V 𝑉𝐺𝑆 , 𝑅𝐷𝑆𝑂𝑁
drops to 250mΩ. The downside of these FETs is the high 𝐶𝐷𝑆 that

comes from a wide transistor. 𝐶𝐷𝑆 is on the order of 60pF for each transistor. When combined with

the additional capacitances mentioned above, each breadboard rail has a total of 140pF to ground.

This has a significant impact on the maximum usable frequency for even moderate impedances

on the breadboard. For example, consider a 10kΩ-10𝑘Ω resistor divider. At 100kHz, the 140 pF

capacitance on each rail has 11𝑘Ω of impedance.

4.6 PCB Mounted Breadboard

Modern solderless breadboards are composed of three components: a plastic face, metal finger springs

(rails), and a foam backing. The finger springs are designed to fit snugly in the plastic face, which

34

+
−𝑉𝑡

10𝑘Ω

10𝑘Ω 140𝑝𝐹

𝑉𝑡𝑠𝑖𝑛(100𝐾𝐻𝑧)

10𝑘Ω

10𝑘Ω 11𝑘Ω

Figure 4-5: Resistor Divider Parasitic Capacitance

provides structure for the entire board. The foam backing keeps the finger springs from being pushed

out the back of the plastic face..

Figure 4-6: Solderless breadboard plastic face with finger spring rails removed

A breadboard can be mounted to a PCB by removing the foam backing and surface mount

soldering the finger springs to a PCB, then pressing the plastic face onto the mounted rails Initial

tests of this technique involved small numbers of finger springs hand-soldered one-by-one to a PCB,

using nail polish as soldermask.

35

Figure 4-7: Breadboard rails hand-mounted on copper clad PCB

The results of these tests were promising, but alignment proved to be an issue. To mitigate this,

a finger spring jig was 3d-printed to loosely hold each finger spring in precise alignment for PCB

mounting.

Figure 4-8: 3D printed finger spring jigs

The finger spring jig was designed in openSCAD and has four alignment pegs to mate with

alignment holes on a PCB. To assemble a PCB mounted breadboard, the finger spring rails are

removed from the breadboard and inserted into the finger spring jig.

36

Figure 4-9: Top view of 36-position finger spring jig

Figure 4-10: Top view of 90-position finger spring jig

Figure 4-11: Fully loaded 36-position finger spring jig

37

Once all of the rails are placed, a dot of super glue is dispensed in the center of each finger

spring, between two dots of solderpaste. The rails are then adhered to the PCB by pressing the

PCB upside-down onto the finger spring jig while the alignment pegs are properly mated with the

alignment holes in the PCB. This ensures that the array of finger spring rails are aligned with the

pads on the PCB. After about ten seconds the rails adhere to the PCB and the PCB can be carefully

separated from the finger spring jig. Finally the assembly is reflowed with hot air or in a reflow

oven, and the plastic faceplate can be pressed on.

Figure 4-12: Front and back of PCB mounted breadboard

4.7 Hardware Prototypes

A number of prototype hardware subsystems were built to test various parts of the RLC network

identifying breadboard. All of these systems were designed and built by hand at the MIT Electronics

Research Society [MITERS] facilities.

38

Figure 4-13: Schematic of full hardware system

39

Figure 4-14: Layout of full hardware system

Figure 4-15: Top layer of full hardware system

Figure 4-16: Bottom layer of full hardware system

40

Figure 4-17: Top side of completed hardware system - power jack, voltage reading multi-
plexer, low-side switches, and 8-pin breadboard header are visible.

Figure 4-18: Bottom side of completed hardware system - voltage regulators, A/D convert-
ers, high-side switches, and current-sense amplifier are visible

Figure 4-19: 8-node circuit sensing breadboard in operation

41

42

Chapter 5

Firmware

In this chapter, firmware configuration and operation is covered. The firmware is structured in three

sections - USB data reception and transmission, DAC operation, and ADC operation. The USB

subsystem receives commands from a host computer, specifying which nodes to ground, which nodes

to connect to the voltage source, which nodes to probe, and what sample frequency to use. On a

’sample’ command, the USB subsystem triggers both the DAC and ADC subsystems to operate

synchronously, accumulating AC test samples in the memory buffer. When the buffer is full, the

ADC subsystem sends the recorded data back to the host computer through the USB subsystem

and waits for the next command.

5.1 USB

Libopencm3, licensed under the GNU LGPL v3, is used extensively in this firmware. Of particular

utility, the USB subsystem relies entirely on example USB CDC ACM firmware included in the

libopencm3 library. USB CDC (Communications Device Class) ACM (Abstract Control Module) is

a USB protocol that is used to create virtual serial ports over USB. The firmware components that

implement USB-CDC-ACM are a polling routine that is the only code running in the main loop and

two callbacks - one for receiving data and one for transmitting data. The callback used to transmit

data is called after the ADC subsystem has finished sampling and sends all of the collected data

over USB. The callback used to receive data is called when the laptop sends commands over USB.

Command List

Commands are sent in sequences of characters over USBACM. The command list is as follows:

rcvBuf=[’g’,nodes] grounds all of the nodes represented by nodes. In this command, nodes

43

is an 8-bit binary representation of which nodes to ground. For example, [’g’,0x03] grounds

nodes 1 and 2.

rcvBuf=[’w’,node] connects the voltage source to node through a high-side switch. node is a

decimal representation of which node to connect to the voltage source. For example, [’w’,0x03]

connects the voltage source to node 3.

rcvBuf=[’m’,node] configures the voltage multiplexer to connect node to the A/D converter. node

is a decimal representation of which node to connect. For example, [’m’,0x03] connects the A/D

to node 3.

rcvBuf=[’s’,f0,f1,f2] configures the DAC to generate a cosine wave of frequency

(f2<<16) + (f1<<8) + f0 and configures the ADC to sample between 100 and 250 times a cy-

cle when possible, with a maximum sample rate of 500Khz. For example, [’s’,0xe8,0x03,0x00]

configures the DAC to generate a 1KHz cosine wave and configures the ADC to sample at 250KHz.

5.2 ADC

The ADCS7476 is a successive approximation ADC with an SPI interface. In operation, a master

device initiates a conversion by pulling CS low, then clocks in data using the CK line and reading

SDATA.

Figure 5-1: ADCS7476 Serial Interface Timing Diagram

The ADC firmware configures two 32-bit timers and the DMA to record data from up to sixteen

44

external ADCs. The two timers are responsible for driving the Chip Select and Clock lines on all

of the ADCs. The timing of the Chip Select line determines the sampling frequency and the Clock

line is driven at 8.4MHz. On the rising edge of each clock cycle, the DMA is triggered to sample the

data lines of each ADC. A trigger causes the DMA to store each of the 16 pin states on PORT E as

a 16-bit integer in the buffer datas.

Figure 5-2: Full ADC Driver with DMA

5.2.1 ADC Timers

Timer 5 drives the Chip Select lines. It is configured as a 32-bit up-counting timer clocked at

84MHz, uses output compare unit 1 to control pin PA0 (connected to ADC CS), and is set to run

in continuous mode. The ADC sampling frequency is controlled by the CS line, which is controlled

by the period of Timer 5. When a host computer requests an ADC trigger, it sends a sampling

frequency along with it. The appropriate CS period is calculated and assigned to the variable spd

(sampling period). Timer 5’s output compare mode 1 is set to PWM2 mode, where PA0 is low when

the counter is less than the compare value and high when the counter is greater than the compare

value. At update, Timer 5’s count value is reset to 0, so PA0 falls to 0V and initiates a conversion.

When Timer 5 counts to 145, 1.7𝜇𝑆 later, the conversion is complete and PA0 rises to 3.3V, until

the count reaches spd and the cycle starts again. Timer 5 is also configured in Master Mode and

sends a trigger signal on TRG0 at each update event. In this case, the signal on TRG0 is used to

enable Timer 1.

45

Figure 5-3: ADC Chip Select Timer

Timer 1 drives the ADC Clock lines and behaves as a 59𝑛𝑆 on - 59𝑛𝑆 off 16-shot timer. It’s

also configured as a 32-bit up-counting timer clocked at 84MHz, but it’s only enabled by the TRG0

signal from Timer 5. Like Timer 5, it uses output compare unit 1 to control an output pin, in this

case PA8. Unlike Timer 5, it’s set to run in one-shot mode with a repetition counter that is preloaded

with a value of 15. The output compare unit is set to run in PWM2 mode with fixed compare and

update registers. When Timer 1 counts to 5, the compare unit fires and PA8 goes high. When the

count reaches 10, the timer is updated, PA8 goes low, and the repetition counter decrements. The

timer continues to run, toggling PA8 and decrementing the repetition counter, until the repetition

counter reaches a value of 0. Once the repetition counter reaches 0, the next Timer 1 update disables

the timer.

Figure 5-4: ADC Clock Timer

5.2.2 ADC DMA

A DMA controller is used to store serial ADC data from up to 16 ADCs in parallel. On each clock

cycle, DMA2 takes the 16-bit integer value represented by the state of the 16 pins on PORT E and

stores it in memory. As shown in Figure 5.2, the ADC data pin is updated on a falling clock signal.

To record the state of the data pin, DMA2 is triggered to start a data transfer on every compare

event from Timer 1, which corresponds with the rising edge of the clock signal.

46

Figure 5-5: ADC Clock Timer Triggers DMA2

When Timer 5 is enabled, DMA2’s ’number of data’ [to transfer] register is set to 16000 and the

ADCs continuously sample at the sample period defined by spd. In each cycle of Timer 5, Timer

1 toggles the clock line 16 times, triggering DMA2 on each rising edge. With each DMA trigger,

DMA2’s number of data register decrements. When the register reaches 0, an interrupt fires that

disables Timer 5 and begins the data reconstruction process.

5.2.3 Data Reconstruction

Since the serial data stream from each ADC is stored sequentially, the actual A/D readings need to

be reconstructed after they are recorded. In Figure 5.1, the binary data stored in datas is examined.

Each 16-bit integer in datas contains one bit of data from each of the 16 pins on PORT E, which

connect to the data pins on the external A/D converters. Here, each letter represents the data from

a particular external ADC.

To reconstruct the data collected from ADC𝑎[0], a routine iterates through datas[0:15], sum-

ming appropriately bit-shifted 𝑏0’s.

ADC𝑎[0] = (𝑎15 << 15) + (𝑎14 << 14) + (𝑎13 << 13) + ...+ (𝑎2 << 2) + (𝑎1 << 1) + 𝑎0

To reconstruct all of the waveform recorded, the routine iterates through datas[0:16000], recon-

structing 1000 samples from each ADC.

After reconstruction, the data is sent to a host program over USB for further processing.

47

Bit Index 𝑏15 𝑏14 𝑏13 𝑏12 ... 𝑏3 𝑏2 𝑏1 𝑏0
datas[0] 𝑝15 𝑜15 𝑛15 𝑚15 ... 𝑑15 𝑐15 𝑏15 𝑎15
datas[1] 𝑝14 𝑜14 𝑛14 𝑚14 ... 𝑑14 𝑐14 𝑏14 𝑎14
datas[2] 𝑝13 𝑜13 𝑛13 𝑚13 ... 𝑑13 𝑐13 𝑏13 𝑎13
datas[3] 𝑝12 𝑜12 𝑛12 𝑚12 ... 𝑑12 𝑐12 𝑏12 𝑎12

...
...

...
...

... ...
...

...
...

...
datas[13] 𝑝2 𝑜2 𝑛2 𝑚2 ... 𝑑2 𝑐2 𝑏2 𝑎2
datas[14] 𝑝1 𝑜1 𝑛1 𝑚1 ... 𝑑1 𝑐1 𝑏1 𝑎1
datas[15] 𝑝0 𝑜0 𝑛0 𝑚0 ... 𝑑0 𝑐0 𝑏0 𝑎0
datas[16] 𝑝15 𝑜15 𝑛15 𝑚15 ... 𝑑15 𝑐15 𝑏15 𝑎15

Table 5.1: datas[0:16]

5.3 DAC

The STM32F407’s onboard DAC is used as a signal source for impedance testing. The DAC is

configured to update on a timer, and is fed new waveform values from a wavetable by DMA1.

Figure 5-6: DAC Timer Triggers DMA1

Timer 4 is configured as a 16-bit up-counting timer with period dpd, set by command over USB.

On update, Timer 4 is a master to DAC1, and triggers the DAC to output a new value. The DAC,

in turn, triggers a data transfer from DMA1, which transfers the next value in the cosine wavetable

to DAC1.

48

5.3.1 DAC Wavetables

There are three DAC wavetables, each 1000 bytes long. The first wavetable has four cycles of cosine,

the second has 10, and the last has 40. The DAC synthesizes sinusoids by taking in a sequence

of numbers from a wavetable and converting them, sequentially, to analog voltages. There are two

factors that contribute to the output sinusoid’s frequency: the rate at which the DAC takes in a

new number and the number of samples in the wavetable it takes to complete one cycle. In the case

of the first wavetable, where there are four cycles in 1000 samples, the DAC can synthesize a 1Hz

signal by converting one number every 4mS, an 0.4% of the period time-step. Had the DAC been

looking up the second wavetable, where there are ten cycles in 1000 samples, the DAC would have

needed to wait 10mS between samples, a 1% of the period time-step. Using the third wavetable, the

wait would be 40mS between samples, a 4% of the period time-step. This amount of delay in the

DAC output creates an unacceptable amount of distortion in the output signal.

Wavetables with a higher number of samples per cycle can feed lower-frequency signals at higher

sample rates. Additionally, wavetables with a high number of samples per cycle have smaller jumps

between samples, resulting in a smoother waveform. According to these observations, a wavetable

with an extremely large number of samples per cycle should be used to generate waveforms with the

smallest amount of distortion.

However, the DAC’s speed is limited by the internal system clock, and to generate sinusoids at

100KHz+, the DAC needs to be fed by a waveform with fewer samples per cycle.

49

50

Chapter 6

Software Control

In this chapter, software control of the hardware system is covered. The software that controls the

hardware system is very similar to the software simulation in Chapter 3. A control routine parses

first circuit ’experiment’ requests and configures the hardware to follow out the experiment. The

routine then analyzes the returned measurement data. Unlike in the simulation, the measurement

data is returned in the time domain rather than the frequency domain. The software transforms

the returned data to the frequency domain to calculate the magnitude of the returned waveforms.

With magnitude data, the same network sensing algorithm from Chapter 2 is used to reconstruct

the network.

6.1 Control Routine

”Just a teaspoon of sugar makes the medicine go down” - Mary Poppins

The control routine is quite self-explanatory.

def medicine(drive,chan,freq=1000,adc=0,uglist=[]):

nog=0 #a number representing nodes not to ground

for x in uglist:

nog+=(1<<x)

ser.write([’g’,0xff&(~((1<<chan)|(1<<drive)|nog))])

#ground all of the nodes whose bits are set to 1

ser.write([’w’,drive+1])

#connect the voltage source to node ’drive’

freq = int(freq)

f=[freq&0xff,(freq&0xff00)>>8,(freq&0xff0000)>>16]

#send three bytes representing the desired frequency

ser.write([’m’,chan])

51

#set the voltage multiplexer to the channel of interest, chan

ser.flushInput()

#clear everything already in the input buffer

ser.write(([’s’]+f+[adc]))

#tell the microcontroller to begin sampling

adc value of 0 is for voltage and 1 for current

a = ser.read(2000)

b = [5*((ord(a[2*x+1])<<8)+ord(a[2*x]))/1024. for x in range(len(a)/2)]

b = b[2:]

the ADC data is 10-bits per sample, but the serial channel only supports

sending 8-bits at a time, so it has to be reconstructed.

ft=fft(b)

aind=argmax(abs(ft[1:]))+1

#calculate the magnitude of the most prominent sinusoid and return it

amp = abs(ft[aind])/500

return amp

6.1.1 FFT

The normalized FFT is used to extract the amplitude data out of the measured sinusoidal voltages

and currents. Since the measured voltages and currents should be close to purely sinusoidal, the

magnitude of the FFT of those voltage and currents should be close to a delta function at the

frequency of interest. The magnitude peak value of the normalized FFT is the amplitude of the

measured sinusoidal voltages and currents.

6.2 Network Sensing Algorithm

The implementation of the network sensing algorithm in the hardware control software is identical

to that in the hardware simulator, mentioned in Chapter 3.

52

Chapter 7

Results

In this chapter, results for the simulation and hardware implementations of the RLC network iden-

tifying system are presented and analyzed. The shortcomings of the systems are addressed and

potential improvements are discussed as future work.

7.1 Simulation Performance

The performance of the RLC network identification system simulator is analyzed by its output

precision and cases in which it fails. The output precision of the simulator is quite good and can

be controlled almost arbitrarily. The precision depends almost entirely on the thresholds defined

during the finite-differencing step, as looser thresholds allow bad data to get averaged into the good

data. The cases in which the simulator fails are always cases where a relatively high resistance is in

parallel with an LC network. In these cases, the simulator reports that there is no resistor in parallel

with the LC network. The failure mode lies within finite difference stencil thresholding, where the

simulator never finds a region where the slope of the impedance vs frequency plot is zero, and in

turn the simulator decides there is no resistor. Designing a better element identifying algorithm

would make excellent future work.

The schematic renderer used to display the returned matrices as a legible schematic could use

some work as well. It is effective at creating schematics for circuits composed of resistors with only

a few nodes, but the value labeling system and lack of organization quickly gets out of hands when

the number of nodes is greater than five. There has been a fair bit of research into auto-generating

schematics from netlists, particularly from the days of discrete digital logic, such as ASG [Automatic

Schematic Generator] from Lageweg at Delft University [?] and the ASG from Jehng, Chen, and

Parng at National Taiwan University [?].

53

7.2 Hardware Performance

The hardware RLC network identification system was tested to determine its dynamic range of

operation, precision, and ability to detect RLC networks.

7.2.1 Element Testing

Resistance

A selection of resistors ranging from 33Ωto 330kΩwere analyzed with the RLC network identification

system. For each resistor, the identified resistance was recorded and plotted.

Figure 7-1: Plot of measured resistance for known resistors

From the Figure 7.2.1, the range of resistances for which the system maintains valid precision

operation is between ∼ 100 and 2000Ω. For resistances larger than 2kΩ, the system returns resis-

tances that are far smaller than the input resistance. The asymptotic portion of the curve in Figure

7.2.1 indicates a parallel resistance somewhere around 20kΩ. The blue line indicates the equivalent

resistance of each tested resistance with a parallel 20kΩresistor. This parallel resistance is not real.

Using an ohmmeter, it was verified that there is not enough leakage current between breadboard

nodes or between breadboard nodes and ground to account for 20kΩof resistance. Rather, this

measurement error is caused by the minimum non-zero signal amplitude measured on the output

of the current amplifier A/D converter. A 10-bit ADC that samples a 5𝑉 window converts every

.004𝑉 into one bit. The minimum amplitude signal produced by a 10-bit ADC sampling over a 5𝑉

54

scale has an amplitude of 4𝑚𝑉 . The test voltages applied to each node have amplitudes around

0.75𝑉 . The current amplifier has a gain of 100, so the effective current amplitude measured is 40𝜇𝐴.

0.75𝑉/40𝜇𝐴 = 18750Ω

So, the maximum possible impedance measurement from any node to ground, 𝑅𝑛|| , is 19kΩ. A

frequency sweep of the impedance of an open node, such as the one in Figure 7.2.1, demonstrates

this.

Figure 7-2: Driving point impedance of an open node from 1Hz to 100KHz

By adding a variable gain stage to the current amplifier, or a variable-sized sense resistor, the

maximum impedance measurement could be modified.

The maximum impedance measurement between two nodes, rather than just one node to ground,

is an order of magnitude higher. This is due to the procedure used in the network sensing algorithm,

where 𝑉𝑡𝑅𝑛|| is divided by 𝑉𝑚. If 𝑉𝑛 is smaller than 1, the resulting resistance 𝑅𝑛𝑚 is larger than

𝑅𝑛||

On the other side of Figure 7.2.1, for resistances smaller than 100Ωthe system returns resistances

that are far larger than the input resistance. This can be attributed to the DAC buffer current limit,

which is ±25𝑚𝐴. For a test voltage signal of ∼ 1.5𝑉 , a 60Ωresistance produces a 25𝑚𝐴 current. This

agrees with the recorded data quite well. To measure resistances smaller than 100Ωthe output buffer

could be replaced with one that has a higher output current limit. Alternatively, a variable-sized

sense resistor would also mitigate the problem.

55

Figure 7-3: Impedance between two open nodes from 1Hz to 100KHz

Capacitance

In addition to the resistors, a selection of capacitors ranging from 220𝑝𝐹 to 22𝜇𝐹 were analyzed with

the RLC network identification system. For each capacitor, the identified capacitance was recorded

and plotted in Figure 7.2.1.

The RLC network identification system can precisely measure capacitances over three orders of

magnitude, from 2.2𝑛𝐹 to 10𝜇𝐹 . On the low end of Figure 7.2.1, the parallel parasitic capacitance

is visible, which adds about 150𝑝𝐹 to the system, although this does not entirely account for the

measured capacitance. On the high end, the impedance of the capacitors at the test frequencies

drops below 50Ω, again causing the buffer op-amp to reach its output current limits and saturate.

The working range of 1𝑛𝐹 to 10𝜇𝐹 is acceptable for general purposes.

Inductance

A selection of inductors ere analyzed with the RLC network identification system to no avail. The

identification system was not able to find the inductors due to the noisy nature of the impedance

measurements that inductors were found to return.

The ’noisy’ impedance, shown in Figure 7.2.1, defeats the finite-differencing technique, and

causes it to return a large (amplitude of 20) random-looking signal. This is much larger than the

+1 output that is expected for an inductor, and causes the element identification step to fail.

In addition to recording noisy measurements while attempting to identify an inductor alone,

noisy measurements were found when attempting to identify RL, LC, and RLC parallel circuits. One

56

Figure 7-4: Plot of measured capacitance for known capacitors

would expect to find noisy inductive data in the section of the plot where the inductor dominates

and and clean capacitive or resistive data in the sections of the plot where the capacitor or resistor

dominates, but this is not the case. This issue has not been closed, yet is integral to the acceptable

operation of an RLC network identification system. Identifying and solving this problem would

make excellent future work.

57

Figure 7-5: Impedance vs frequency for a 3.3𝑚𝐻 inductor, demonstrating inductive behav-
ior albeit noisily

Figure 7-6: Impedance vs frequency for a 3.3𝑚𝐻 inductor in parallel with a 0.15𝜇𝐹 capac-

itor, demonstrating LC behavior albeit noisily

58

7.2.2 Network Testing

Resistive Networks

To verify the network identification system performed properly, complete networks of three, four,

five, and six nodes were constructed from resistors within the range of 100Ωto 1000Ω.

Figure 7-7: Schematics of 3, 4, 5, and 6-node resistor networks rendered in the browser

The RLC network identification system successfully detected all of the resistive connections in

the complete 3, 4, 5, and 6 node networks. However, many of the values were detected with more

than 5% error once the network became large. This error is produced by the nonlinear weighting

that occurs when combining resistors in parallel. As the network grows, each 𝑅𝑛|| measurement

contains more resistive elements in parallel with the branch of interest. If all of these resistive

elements are on the same order of magnitude in value (𝑅, the additional attenuation due to the

addition of another parallel resistor goes as 𝑘
𝑘+1 , if k is the current number of resistors. This causes

error in the measurement of 𝑅𝑛𝑚 to be amplified by 𝑅(𝑘 + 1)

59

𝑅′
𝑛𝑚 =

𝑉𝑡𝑅𝑛||

𝑉𝑛
𝑓𝑟𝑜𝑚 𝑆𝑒𝑐𝑡𝑖𝑜𝑛 2.1.3

=
𝑟𝑛𝑚

𝑅+𝑟𝑛𝑚

1
𝑅+𝑅𝑛𝑚

with error Δ𝑟, Δ𝑣:

𝑅′
𝑛𝑚 =

𝑉𝑡𝑅𝑛||

𝑉𝑛
=

𝑅𝑛𝑚

𝑅+𝑘𝑅𝑛𝑚
+Δ𝑟

1
𝑅+𝑘𝑅𝑛𝑚

+Δ𝑣

=
𝑅𝑛𝑚 +Δ𝑟(𝑅+ 𝑘𝑅𝑛𝑚)

1 + Δ𝑣(𝑅+ 𝑘𝑅𝑛𝑚)

If 𝑅𝑛𝑚 ≈ 𝑅, error contributed by 𝑅𝑛|| measurements is Δ𝑟𝑅(𝑘 + 1) and the error contribued by

𝑉𝑛 measurements is 1
1+Δ𝑣𝑅(𝑘+1) , both of which are scaled by the number of parallel resistances. To

improve performance in the cases where many branches connect to one node, improve measurement

precision and dynamic range. In the previous tests, the average resistance was ∼ 500Ω. Five

500Ωresistors’ equivalent parallel resistance is 100Ω, close to the lower bound on the identification

system’s dynamic range. This analysis explains the asymmetry found in many of the measured

resistance matrices, since each node had different parallel equivalent resistances, 𝑅𝑛|| .

The following data correlates to the test networks in Figure 7.2.2. Column index 𝑖 and row index

𝑗 are node numbers, the value at at index 𝑖, 𝑗 is the resistance 𝑅𝑖𝑗 .

N=3

R measured R actual

None 1.03e+03 8.55e+02 1.00e+03 8.20e+02

1.03e+03 None 7.70e+02 1.00e+03 7.50e+02

8.56e+02 7.71e+02 None 8.20e+02 7.50e+02

N=4

R measured R actual

None 1.03e+03 8.58e+02 6.42e+02 1.00e+03 8.50e+02 6.20+e02

1.03e+03 None 7.71e+02 5.20e+02 1.00e+03 7.50e+02 5.10e+02

8.63e+02 7.84e+02 None 1.04e+02 8.50e+02 7.50e+02 1.00+e02

6.46e+02 5.27e+02 1.04e+02 None 6.20e+02 5.10e+02 1.00e+02

60

N=5

R measured R actual

None 1.03e+03 8.56e+02 6.49e+02 4.91e+02 1.00e+03 8.50e+02 6.20e+02 5.10e+02

1.04e+03 None 7.81e+02 5.26e+02 1.66e+02 1.00e+03 None 7.50e+02 5.10e+02 1.60e+02

9.99e+02 8.87e+02 None 1.19e+02 2.38e+02 8.50e+02 7.50e+02 1.00e+02 2.00e+02

6.66e+02 5.31e+02 1.05e+02 None 6.55e+02 6.20e+02 5.10e+02 1.00e+02 6.20e+02

5.02e+02 1.67e+02 2.10e+02 6.54e+02 None 5.10e+02 1.60e+02 2.00e+02 6.20e+02

N=6

R

None 1.03e+03 8.65e+02 6.45e+02 4.96e+02 5.24e+02

1.04e+03 None 7.87e+02 5.28e+02 1.67e+02 7.05e+02

1.06e+03 9.65e+02 None 1.27e+02 2.55e+02 1.04e+03

8.10e+02 6.60e+02 1.31e+02 None 8.15e+02 3.11e+02

5.57e+02 1.91e+02 2.39e+02 7.67e+02 None 4.77e+02

5.19e+02 6.97e+02 8.51e+02 2.49e+02 4.12e+02 None

RC Networks

Similar results are found when measuring RC networks.

7.3 Improvements

Various improvements would be welcome future work. From design focused on individual subsystems

to topological changes, there is much to improve on this iteration of a circuit sensing breadboard.

7.3.1 Variable Gain Amplifiers

Adding a Variable Gain Amplifier to the ADC, DAC, and current sense amplifier signal chains

would enable a large increase in dynamic range of the entire system. Not only would it improve the

resolution (and thus precision) of measuring elements on the far-ends of the dynamic range, but it

would enable higher resolution captures of small signals, improving the overall utility of the device.

7.3.2 Variable Sense Resistor

Similar to the aforementioned improvement, this would improve the dynamic range and resolution

of the current measurements.

61

7.3.3 Better Switches

The switches in this system are the main contributors the high parasitic capacitance between ev-

ery node and ground. The parasitic capacitance causes undesired attenuation of signals at high-

frequencies, making This version of the circuit sensing breadboard unsuitable for even moderate-

frequency circuit design. Finding switches with lower parasitic capacitances would likely require

permitting higher 𝑟𝐷𝑆𝑜𝑛
, which is possible but requires further testing. Alternative technologies for

switches, such as relays, seem promising as they have very low parasitic capacitance and low on

resistance, at the cost of bulk.

7.3.4 Better Schematic Display

The schematic display was built on top of D3, a javascript library for graphical applications in

the browser. D3 was chosen because of its large community and available relevant example code.

In particular, Force Graph. Force graph is interesting because it could be configured to take an

arbitrary graph and simulate a kind of spring fabric between the nodes. Nodes tied together with

edges are attracted to one another, but nodes not connected repel. This action ’unfolds’ random

networks until they appear flat, with as few crossing branches as possible. Replace the branches with

resistors, capacitors, and inductors and voilia! Unfortunately, using a relatively unmodified version

of force graph in this application makes schematic display design lacking in many facets. Namely,

lack of well-placed labels, trouble with handling parallel components, lack of orientation, and lack

of visual control. Redesigning the current schematic display or designing a new one would greatly

improve the usability of the system.

7.3.5 Additional Devices

At the moment, the RLC network identification system can only identify resistor and capacitor

networks with a maximum of eight nodes. Designing a system that can successfully identify inductors

would be a huge improvement. Additionally, determining how to identify systems composed of

more complex components like diodes, transistors, transformers, and even integrated circuits is an

interesting and likely rewarding problem to solve.

7.3.6 Computer-Aided Debugger

Although the intent of this hardware system is to display a live schematic of a circuit under con-

struction, the hardware is capable of serving other purposes. Take, for example, a system that is

given the schematic of the circuit at hand. The circuit is performing unexpectedly, so the circuit

symptom is reported to the system. The system, knowing what the circuit should be, computes

how the circuit should behave. Now, since the system knows how the circuit should behave, it asks

62

the user to probe various parts of the circuit, comparing its simulation of the circuit to the actual

signals on the circuit. Mismatches in simulated and physical signals are traced to their sources, and

the bug is found. If the system were also give electrical access to every node in the circuit, it may

also be able to debug the circuit on its own. This would make excellent future work.

7.4 Conclusion

A system that draws a live schematic of a resistive circuit built on an eight-rail breadboard was

presented and analyzed. The system was decomposed into its algorithmic, hardware, firmware,

and software components, each of which were described in detail. A new method for mounting

breadboards to printed circuit boards was prototyped and presented. The performance of the overall

system was measured and analyzed, and much was learned along the way. Although RLC network

identification systems may not be feasible, realistic, or desirable, future work on this topic could

lead to some interesting and novel systems.

63

