
AUTOBAN: Secure Low-Power Body Area

Network for Real-Time Physiological Status

Monitoring
by

John H. Holliman III
B.S. in Computer Science and Engineering

Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c⃝ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Dr. Roger I. Khazan

Associate Group Leader, Secure Resilient Systems and Technology
Group, MIT Lincoln Laboratory

Thesis Supervisor

Certified by. .
Michael A. Zhivich

Technical Staff, Secure Resilient Systems and Technology Group, MIT
Lincoln Laboratory
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

AUTOBAN: Secure Low-Power Body Area Network for

Real-Time Physiological Status Monitoring

by

John H. Holliman III

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Real-time monitoring of physiological data can reduce the likelihood of injury in
noncombat military personnel and first-responders. MIT Lincoln Laboratory is de-
veloping a tactical Real-Time Physiological Status Monitoring (RT-PSM) system ar-
chitecture and reference implementation named OBAN (Open Body Area Network),
the purpose of which is to provide an open, government-owned framework for in-
tegrating multiple wearable sensors and applications. The OBAN implementation
accepts data from various sensors enabling calculation of physiological strain infor-
mation which may be used by squad leaders or medics to assess the team’s health
and enhance safety and effectiveness of mission execution. Security in terms of mea-
surement integrity, confidentiality, and authenticity is an area of interest because
OBAN system components exchange sensitive data in contested environments. In
this thesis, I analyze potential cyber-security threats and their associated risks to a
generalized version of the OBAN architecture. Using the threat analysis, I identify
security requirements for RT-PSM systems and describe the development of a secure
RT-PSM system, called the Authenticated and Trustworthy Open Body Area Net-
work (AUTOBAN) proof-of-concept implementation, that meets those requirements
using cryptographic primitives that operate efficiently on low-power embedded de-
vices. The threat analysis and proof-of-concept application, are intended to inform
the development of secure RT-PSM architectures and implementations.

Thesis Supervisor: Dr. Roger I. Khazan
Title: Associate Group Leader, Secure Resilient Systems and Technology Group, MIT
Lincoln Laboratory

Thesis Supervisor: Michael A. Zhivich
Title: Technical Staff, Secure Resilient Systems and Technology Group, MIT Lincoln
Laboratory

3

4

Acknowledgments

I would like to start by thanking Dr. Roger Khazan for allowing me the opportunity

of being part of the Secure, Resilient Systems and Technology Group at MIT Lincoln

Laboratory and making me feel welcome.

Thanks to Benjamin Fuller and Mayank Varia for providing recommendations and

much needed information about securing embedded-device systems.

Thanks to Konstantin Feldman for reviewing and pointing out issues in my code.

Thanks to the people in Lincoln’s Bioengineering Systems and Technologies Group,

Brian Telfer, Albert Swiston, and others, for helping to orient me in the physiological-

status monitoring space. I would also like to express gratitude towards Catherine

Cabrera for overseeing this work and making it possible.

Lastly, I would like to give a special thanks to Michael Zhivich, who has helped

me from the moment I started with the group, providing a sounding board for ideas,

keeping the project on track, and especially advising and editing my thesis writing.

This thesis would not have been where it is today without his help and guidance.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 13

2 Real-Time Physiological Status Monitoring System Fundamentals 17

2.1 Core Components . 17

2.2 Use Cases . 19

3 Threat Analysis 21

3.1 Analysis Methodology . 21

3.2 Adversarial Model . 22

3.3 Threats and Impact . 27

3.4 Top Ranked Threats . 28

4 Building a Secure Real-Time Physiological Status Monitoring Sys-

tem 31

4.1 Requirements for a Secure Real-Time Physiological Status Monitoring

System . 31

4.2 Existing Techniques . 33

4.3 Selecting Security Building Blocks . 36

5 AUTOBAN Proof-of-concept Implementation 51

5.1 Implementation Components . 51

5.2 Cryptographic Library . 56

5.3 End-to-end AUTOBAN Demonstration 57

7

6 Performance Evaluation 63

6.1 Evaluation Methodology . 63

6.2 Cipher Evaluation . 70

7 Optimizing and Securing the AUTOBAN Implementation 79

7.1 Performance Optimizations . 79

7.2 Correctness and Security Tests . 82

8 Conclusion and Future Work 85

8

List of Figures

2-1 Example tactical RT-PSM system overview and configuration 18

2-2 Example end-user, leader display . 19

4-1 Approaches to authenticated encryption modes 44

4-2 Description and illustration of SIV mode 49

5-1 System digram of the AUTOBAN proof-of-concept implementation . 52

5-2 AUTOBAN simulated leader display interface 54

5-3 AUTOBAN simulated attacker display interfaces 55

5-4 AUTOBAN proof-of-concept message protocols diagram 58

5-5 Example leader and squad member communication 58

5-6 Opportunistic privacy compromise attack 59

5-7 Opportunistic privacy compromise defense 59

5-8 Identity spoofing attack . 60

5-9 Replay attack . 61

5-10 Identity and replay attack defense . 62

6-1 Arduino Uno RAM operation . 67

6-2 Cipher cost and RAM performance graphs in ECB mode 73

6-3 Cipher cost and RAM performance graphs in SIV mode 73

6-4 Cipher key schedule generation costs 76

6-5 Cost of SIV mode (encryption and MAC generation) with respect to

message size . 77

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Tables

3.1 Example adversaries with associated goals and estimated capability level 23

3.2 RT-PSM system adversaries and likelihood of obtaining capabilities . 24

3.3 RT-PSM system threats, required capabilities, and threat impact. . . 26

3.4 Top RT-PSM threats based on estimated system risk 28

4.1 Options for providing data integrity 37

4.2 Options for providing authentication 39

4.3 Ciphers considered for a secure RT-PSM system 46

5.1 Key characteristics of the hub microcontroller for the AUTOBAN proof-

of-concept implementation . 53

6.1 Cipher performance evaluation using ECB mode 74

6.2 Cipher performance evaluation using SIV mode 75

11

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

The development of very low-power computing devices and wireless transceivers has

improved the landscape of physiological-status monitoring by enabling creation of

cheap, long-lasting devices that form a body area network (BAN). A BAN is a wireless

network composed of wearable computing devices. BANs are typically seen in medical

and personal fitness settings, but also have tactical military applications.

Both combat and noncombat military personnel endure tough environmental con-

ditions and physical stresses that can lead to a variety of health issues, such as hy-

pothermia, hyperthermia, musculo-skeletal injuries, hypoxia, and dehydration. It is

well documented within the armed forces that the monitoring of real-time physiologi-

cal data through an RT-PSM system can aid in anticipating the onset of these condi-

tions, improving soldier health and readiness during training and in the field [43, 20].

For instance, members of a chemical, biological, radiological and nuclear defense

(CBRND) team, who are often required to wear fully-encapsulating personal protec-

tive equipment, face significant risk of heat exhaustion which could be mitigated by

providing CBRND team leaders a means of monitoring their team members’ core

body temperatures to properly coordinate actions [55]. In addition to improving the

health and resilience of soldiers, an RT-PSM system would also increase squad leaders’

situational awareness and provide actionable intelligence for mission planning.

The need for security in the BANs specifically is receiving ever more attention

in the media and academic communities, especially with respect to medical devices

13

where the integrity and the availability of a system can be a matter of life and

death. Diabetic Jay Radcliffe, for instance, demonstrated a threat to his health

by compromising the wireless channel of his insulin pump and shutting it down [45].

The consequences of targeted adversarial attacks on BANs and tactical RT-PSM

systems can be severe. An adversary who is able to create valid messages on a

BAN’s wireless channel will cause data to be unreliable, impacting both the integrity

and availability of the system and potentially the success of the mission. A tactical

RT-PSM system would necessarily exchange sensitive health information and data

relevant to mission planning in a battlefield setting. Depending on the implementa-

tion, the system components may even interconnect to a tactical radio network. An

attack on the RT-PSM system should not be able to impact other systems. Despite

the multiple dimensions of usefulness, if the proper security mechanisms are not in-

tegrated into the design, tactical RT-PSM systems could allow for more harm than

good.

In this thesis, I present an analysis of threats to a generalization on an existing

tactical RT-PSM system architecture called OBAN. I provide a prioritized list of

threats and define a corresponding set of requirements for enhancing security and

privacy of RT-PSM systems. The analysis and threat ranking guide the development

of a proof-of-concept RT-PSM system that balances security, privacy, and utility

called the Authenticated and Trustworthy Open Body Area Network (AUTOBAN)

proof-of-concept implementation. While this work was performed in the context of

an RT-PSM system, many of the results generalize to the broader BAN and Internet

of Things (IoT) spaces where sensitive information is collected and transmitted by

low-power, computationally-limited devices.

The rest of the thesis is organized as follows. I provide relevant definitions and

assumptions about the RT-PSM system architecture in Chapter 2. In Chapter 3, I

present the risk analysis methodology and analyze threats to the system. I discuss

a path forward to address the threats identified in the analysis, present work related

to BAN security, and select appropriate cryptographic building blocks for a secure

RT-PSM system in Chapter 4. Next in Chapter 5, I describe a proof-of-concept

14

RT-PSM system constructed using the selected building blocks and explain how it

successfully thwarts a subset of the threats identified in Chapter 3. In Chapter 6, I

apply a common framework for measuring the performance of cryptographic prim-

itives on embedded devices to benchmark the selected building blocks used in the

proof-of-concept application. Next, I detail the techniques I employed to ensure the

cryptographic building blocks were implemented correctly, efficiently, and securely.

Lastly in Chapter 8, I give concluding remarks and identify directions for future

work.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

Chapter 2

Real-Time Physiological Status

Monitoring System Fundamentals

In this chapter, I define a generalized reference architecture and use cases based on

OBAN RT-PSM system [19] for the threat analysis in order to ensure that the result-

ing recommendations are broadly applicable to a range of tactical RT-PSM systems.

The primary aim of the OBAN system is to improve the health, preparedness, and

overall resilience of noncombat military personnel through real-time monitoring of

physiological data with devices capable of sustaining data collection and transmis-

sion for the duration of a mission.

2.1 Core Components

The reference RT-PSM architecture consists of the following core components:

• Sensors — Data collecting devices (e.g., electrocardiogram (ECG), core tem-

perature, load)

• Hub — A radio-enabled device that aggregates data from connected sensors

• Display or end user device (EUD) — A device that provides feedback to the

user (e.g., a squad leader or a combat medic).

Hubs and sensors are low-power, resource-constrained devices; the OBAN pro-

totype uses boards with an ATmega2560 microcontroller (16 MHz, 8-bit processor,

17

Figure 2-1: Example tactical RT-PSM system overview and configuration

Load
sensors

ECG

Body temp.
sensor

 D

Leader Setup

S

Leader

...

S S H

Team Member 1

H

H D

Key:

H - Hub
D - Display

(S) Sensor
Wireless connection

H

H

H

S

256 KB program space, 8 KB memory) and a tunable narrow-band radio for sending

data to the EUD [19]. Additionally, the hubs have microSD cards to store collected

sensor data for post-mission analysis. EUDs are Android-based smartphones and

thus are less resource-constrained than hubs; EUDs include custom radio dongles to

communicate with hubs and an application to display RT-PSM data.

Team components are provisioned and configured to work together via USB con-

nections to a configuration PC. At the beginning of a mission, multiple hubs are

paired up with one or more display devices. Each squad member is outfitted with a

hub attached to sensors. The display devices are carried by the squad leader and any

medics. Figure 2-1 shows an example system setup.

18

Figure 2-2: Example EUD display, showing status of squad members.

2.2 Use Cases

For this analysis, I consider a use case that is targeted at supporting monitoring of a

small team for the duration of a mission (3-7 days). Members of the team each have

a hub device connected to several on-body sensors. The team leader and medic each

have a display device (EUD) that gathers data from the hubs and uses that data to

generate a summary of the team’s status. Figure 2-2 shows screenshot of the OBAN

team summary application running on an EUD.

The system uses an application-level messaging protocol with distinct message

formats intended to support the target use cases. During missions, broadcast is the

fundamental communication primitive. No trust assumptions are placed on the wire-

less communication infrastructure. Adversaries can take advantage of its broadcast

nature to eavesdrop, destroy, or replay old messages. Messages do contain a cyclic

redundancy check (CRC) to protect against accidental data modification.

19

During a mission, the system allows for a three modes of operation:

Status Updates (pull). To monitor the physiological strain of specific team

members, the squad leader would use the pull-style mode of operation. During the

mission, on the squad leader’s prompting or at specified intervals, the display de-

vice would request data—in this case the Physiological Strain Index (PSI)—from the

nearby hubs. The hubs expose PSI as a virtual sensor that is calculated from heart

rate. Any hub close enough to receive the request will respond. This is the most

common mode of operation.

Notifications (push). Squad leader and medic are interested in knowing if

a squad member is entering a dangerous state that requires immediate attention.

In these cases, a hub device must push information instead of waiting for it to be

collected by query from an EUD. This mode of operation would be activated, for

example, if a squad member’s core temperature is in a dangerously high range, such

as seen with heat exhaustion or stroke. In the push-style mode of operation, a hub

sends a notification addressed to a particular EUD or group of EUDs. When the

message is received, the EUD acknowledges receipt provided that acknowledgement

was requested in the notification. A hub will continue resending a notification peri-

odically until the message is acknowledged or it sends the notification a set threshold

number of times.

Streaming. The streaming mode of operation is required if a medic is providing

medical attention to a soldier and would like access to the soldier’s health data (e.g.

ECG feed). In the stream-style mode of operation, an EUD requests that a hub send

(stream) batches of a certain type of data for a specified amount of time. The hub

responds with batches of data until the request has been fulfilled. Dropped batches

are ignored. If the EUD wants to maintain the incoming stream it will need to send

a new stream request message after the hub completes the previous stream request.

This is the least common mode of operation as transmitting is power intensive [44].

20

Chapter 3

Threat Analysis

This threat analysis considers a range of potential adversaries, their capabilities and

methods of attack, and presents a qualitative measure of the risks from such attacks,

culminating in a prioritized list of threats. While this threat analysis should be

considered qualitative, not quantitative, I endeavor to offer an approach that can be

used for a variety of adversaries, tactics, or system configurations in the RT-PSM

space.

Many of the security concerns that BANs face have been identified in [57] and

[50]; while both of these papers are not specific to tactical RT-PSM systems, they

offer detailed exploration of security concerns in the context of resource-constrained,

RF-enabled devices. Additional threats that challenge the security of the tactical RT-

PSM system, including threats to the communication interface, the device software,

and the device hardware, are identified.

3.1 Analysis Methodology

To analyze the risk presented by a particular threat I use a qualitative method based

on an approach detailed in [49], which recommends using a standard model where risk

is a function of impact and likelihood. Risk is computed as the product of impact and

likelihood, where impact is a subjective measure of the magnitude of harm that can

be expected to result from a successful attack, and likelihood is a subjective measure

21

of an adversary’s ability to obtain requisite capabilities. Impact to the reference

RT-PSM system security is computed as the maximum loss of confidentiality, data or

source integrity, or availability due to the attack. Each of these quantities is separately

estimated on a scale from 0 (no loss) to 5 (largest loss possible). To estimate threat

likelihood, I consider an adversary’s ability to obtain the requisite capabilities, his

motivation to perform an attack, and its alignment with adversary’s goals.

3.2 Adversarial Model

Following standard computer security practice, I consider adversaries that differ from

one another in goals, capabilities, and roles within the system. Specific adversaries

for this threat analysis are listed in Table 3.1.

Goals: Adversaries’ goals affect their motivation and choice of attacks. For

instance, a squad member may not wish to participate in a particular mission and

may manipulate the system to that end (e.g. fake sensor readings). A nation state,

alternatively, might be interested in increasing its situational awareness by deter-

mining presence of troops and acquiring the associated physiological data. A nation

state adversary would thus mount an attack very different in stealth and scale from

one employed by a squad member. Table 3.1 lists example goals for each adversary

considered in this analysis.

Roles: An adversary may be an outsider or an insider with respect to the

system. An insider is someone who has a legitimate role in the system’s operation,

development, or maintenance (e.g., a user, a manufacturer, a system administrator).

An outsider is an entity that comes or puts itself in contact with the system (e.g.,

civilians near troops with an RT-PSM deployment, an opposing military force, etc).

The level of access provided by a particular role plays a part in what attacks an

adversary can successfully execute.

Capabilities: Mounting attacks requires a set of capabilities, which might in-

clude the ability to receive and send RF communications, knowledge of the RT-PSM

message protocol, etc. Capabilities are a function of available resources; to describe

22

Table 3.1: Example adversaries with associated goals and estimated capability level

Adversary Example Goal Capabilities
O
u
ts
id
er
s

Script kiddie
Create personal amusement by
bragging about system
disruption

Tier I

Hacktivist
Disrupt the system or publicize
sensitive information for political
gain

Tiers II-III

Nation state
Decrease the situational
awareness of RT-PSM system
users

Tiers V-VI

In
si
d
er
s

Squad member Malingering Tiers I-II

Squad leader
Improve unit appearance by
faking physiological data

Tiers I-II

System administrator
Profit from health information
extracted from the system

Tiers III-IV

Hardware/Software supplier
Profit from health information
extracted from the system

Tiers IV-V

adversary capabilities I adopt the hierarchy presented in [8], which describes six tiers

of adversaries in order of increasing sophistication: Tier I-II attackers use exploits

written by others, Tier III-IV attackers can write their own exploits and discover

new vulnerabilities, and Tier V-VI attackers are well-funded and able to implant

vulnerabilities.

The following specific capabilities are necessary to stage attacks against the RT-

PSM system:

• Receive RF — The ability to receive transmissions on the appropriate frequen-

cies.

• Send RF — The ability to send transmissions on the appropriate frequencies.

• Receive Message —Decipher an RF transmission into a message through knowl-

edge of the application-level messaging protocol.

• Send Message —Construct a valid message through knowledge of the application-

level messaging protocol.

• Hub HW/SW Mod. — Ability to modify hardware or software on the hub

23

Table 3.2: RT-PSM system adversaries and likelihood of obtaining capabilities

Adversary Tier

Capabilities

R
ec
ei
ve

R
F

S
en
d
R
F

R
ec
ei
ve

M
es
sa
ge

S
en
d
M
es
sa
ge

H
u
b
H
W

/S
W

M
o
d
.

E
U
D

H
W

/S
W

M
o
d
.

H
u
b
C
ap

tu
re

E
U
D

C
ap

tu
re

Script kiddie I 0.1 0.2 0.1 0.2 - - - -
Hacktivist II-III 0.8 0.8 0.8 0.8 - - 0.1 0.1
Nation state V-VI 1 1 1 1 1 1 0.8 0.8
Squad member I-II 0.2 0.2 0.2 0.2 0.8 0.4 0.4 0.4
Squad leader I-II 0.2 0.2 0.2 0.2 0.4 0.8 0.6 0.6
System admin III-IV - - - - 0.8 0.8 0.8 0.8
HW/SW supplier IV-V - - - - 1 1 - -

devices.

• EUD HW/SW Mod. — Ability to modify hardware or software on the EUD

devices.

• Hub Capture — Obtain a fielded hub device.

• EUD Capture — Obtain a fielded EUD device.

Informed by these capabilities, I describe the adversary models below; please refer

to Table 3.2 for a summary.

The model for a Script Kiddie adversary implies someone with little sophistication

but with access to easily purchasable hardware and downloadable tools. Since the

radio components used in the reference RT-PSM system are readily available, and

software for parsing message data is not difficult to obtain, I believe this adversary

can obtain capabilities to send and receive messages. However, putting the whole

system together requires some effort and the motivation for this adversary is fairly

low, thus the overall likelihood is rated at 20%.

A Hacktivist adversary is similar in nature to a script kiddie. However, hacktivists

differ in having a much stronger motive, which may embolden them (though with low

24

probability) to capture a hub or EUD device. Since a hacktivist’s motivation is higher,

the corresponding likelihood of obtaining capability to send and receive messages is

rated higher as well.

The model for a Nation State adversary is an entity that is able to obtain any of

the required capabilities. Capturing hub or EUD devices may prove more difficult,

so these likelihood values are below 100%.

A Squad Member adversary is a legitimate user of the system, and thus has access

to the hardware and software running on both hubs and EUDs. This adversary’s

ability to put together a system from readily-available components may be higher than

that of a script kiddie, but the motivation is lower, so the ranking for sending/receiving

messages (independent of the device they already have) remains at 20%. Due to more

access to the system, this adversary has a higher likelihood of modifying a hub or an

EUD, or possibly obtaining one from another squad member or leader.

A Leader/Medic adversary is similar to the squad member model; however, this

adversary has greater access to EUDs, thus the corresponding change in likelihood

assignments.

A System Admin adversary is someone who is in charge of provisioning the system

for operation and thus has ample opportunity to modify hardware or software on hubs

or EUDs, as well as obtain one of these devices after field deployment.

A Hardware/Software Supplier adversary, of course, has ample opportunity to

insert malicious trojans into the hardware or software of the device they are creating.

Table 3.2 presents my estimates of the likelihood that adversaries obtain the ca-

pabilities necessary to mount attacks against the reference RT-PSM system. While

specific values in this table are certainly subjective, the relationship between adver-

saries and the capabilities they can obtain corresponds to the descriptions in the

Defense Science Board report [8].

25

Table 3.3: RT-PSM system threats, required capabilities, and threat impact.

Attack ID/Description

Capabilities Required Loss of...

R
ec
ei
ve

R
F

S
en
d
R
F

R
ec
ei
ve

M
es
sa
ge

S
en
d
M
es
sa
ge

H
u
b
H
W

/S
W

M
o
d
.

E
U
D

H
W

/S
W

M
o
d
.

H
u
b
C
ap

tu
re

E
U
D

C
ap

tu
re

C
on

fi
d
en
ti
al
it
y

D
at
a
In
te
gr
it
y

S
ou

rc
e
In
te
gr
it
y

A
va
il
ab

il
it
y

P
as
si
ve

P1. Observe presence of communication on RF frequencies used by RT-PSM system ✓ 1 - - -

P2. Observe communication patterns (e.g. query/response) to identify squad leader ✓ 2 - - -

P3. Observe unique identifiers of devices in communication contents ✓ ✓ 3 - - -

P4. Learn sensor data from communication contents ✓ ✓ 4 - - -

A
ct
iv
e

A1. Spoof query message to trigger a response; detect/locate responding devices ✓ ✓ ✓ 2 - 2 2

A2. Spoof query message to trigger a response; parse response for unique ID ✓ ✓ ✓ ✓ 3 - 2 2

A3. Spoof query message to trigger a response; parse response for sensor data ✓ ✓ ✓ ✓ 5 - 2 2

A4. Send fake response data from a particular device ✓ ✓ ✓ ✓ 4 - 2 2

A5. Send “wake up” preamble repeatedly ✓ - - - 4

A6. Send garbage messages to prevent others from receiving successfully ✓ - - - 5

F
u
ll
-S
co
p
e

F1. Modify HW/SW on hub to broadcast sensor data as desired ✓ ✓ ✓ 3 - - 2

F2. Modify HW/SW on hub to send incorrect message data in response to queries ✓ - 3 3 2

F3. Modify HW/SW on EUD to leak all collected sensor data ✓ 5 - - 1

F4. Modify HW/SW on EUD to store or display incorrect data to leader/medic ✓ - 5 5 -

F5. Learn sensor data for an individual stored on the SD card ✓ 3 - - -

F6. Learn sensor data for a group stored on the SD card ✓ 5 - - -

26

3.3 Threats and Impact

In this section, I present threats to the reference RT-PSM system and rank them

using the methodology described in Section 3.1. Table 3.3 describes the attacks on

the reference RT-PSM system and the capabilities required to mount these attacks;

it also shows how these attacks affect the security properties that inform the impact

metrics, as described below.

Specific attacks fall into three distinct classes: passive attacks that use data sent

over the wireless communications channel, network active attacks that involve read-

ing, creating, or destroying transmissions on any communications channel, and full-

scope attacks that are not limited to the communications channel and may include

software or hardware modification, device capture, etc. The attack class relates both

to necessary capabilities and the resulting impact on system security.

The Confidentiality column shows to what extent attacks are successful at exfil-

trating data from the RT-PSM system. The majority of attacks target identifying or

health-related information; consequently, most entries in this column are non-zero.

Attacks that leak larger quantities of data or more sensitive data receive higher impact

ratings.

Non-zero entries in the Data Integrity column correspond to attacks that enable

undetected modification of data. Note that certain attacks that may result in message

corruption (e.g. denial of service) are not in this group, since these issues are detected

by checking the message’s CRC checksum. On the other hand, attacks such as F1.

Individual privacy compromise and F4. Group data or source spoofing, that rely on

hardware/software modifications cannot be detected using similar techniques.

The Source Integrity column shows attacks that require or involve impersonation

of certain entities. The reference RT-PSM implementation assumes that communi-

cating entities are legitimate and use unaltered system components. The non-zero

entries correspond to attacks that take advantage of this naive assumption.

The Availability column shows how much attacks disrupt the reference RT-PSM

system. Active attacks such as A2. Privacy compromise (on demand) are shown as

27

Table 3.4: Top RT-PSM threats based on estimated system risk

Attack Adversary Risk (0-5)

A3. Privacy compromise (on demand) Nation state 5

F3. Group privacy compromise Nation state 5

HW/SW Supplier

F4. Group data or source spoofing Nation state 5

HW/SW Supplier

A6. Jamming Nation state 5

P4. Privacy compromise (opportunistic) Nation state 4

A3. Privacy compromise (on demand) Hacktivists 4

F3. Group privacy compromise Leader/Medic 4

System Admin

F6. Group privacy compromise (post hoc) Nation state 4

System Admin

A4. Identity spoofing Nation state 4

F4. Group data or source spoofing Leader/Medic 4

System Admin

A5. Battery drain Nation state 4

A6. Jamming Hacktivists 4

P4. Privacy compromise Hacktivists 3

A4. Identity spoofing Hacktivists 3

A5. Battery drain Hacktivists 3

having an effect on availability because they cause the system components to transmit

more frequently, reducing battery life; furthermore, such attacks do not respect the

medium access control scheme and might interfere with legitimate message traffic.

3.4 Top Ranked Threats

Table 3.4 presents the top-ranked threats against the reference RT-PSM system for

the adversary models. This ranking was obtained by computing risk as a product of

attack’s impact to the system (maximum value across impact columns of Table 3.3)

and attack’s likelihood (minimum value across required capabilities in Table 3.2).

The maximum impact is selected to highlight where the attack is most damaging;

28

this assumes loss of confidentiality, data integrity, source integrity, or availability

are equally damaging. The minimum likelihood is selected for obtaining required

capabilities since the likelihoods listed in Table 3.2 are often not independent (e.g.

an adversary with RF receive capability has RF send capability as well), and the

minimum likelihood represents a reasonable upper bound of the joint likelihood.

As expected, the more capable adversaries pose the most threat; however, it ap-

pears that hacktivist-level attacks can cause as much impact to the reference RT-PSM

system (in certain categories) as those mounted by a nation state. Most of the top

threats result in loss of confidentiality due to leakage of sensor data that represents

the health information of RT-PSM users; however, the ways of achieving this pri-

vacy violation vary significantly. While loss of privacy is certainly undesirable, these

threats do not by themselves render the system unusable.

Another group of top threats pertains to information integrity, enabling adver-

saries to spoof identity of sender or fake the data itself. Since integrity violations

bring into question the trustworthiness of the system, they are more worrisome than

privacy risks. For example, a leader or medic can be misled about a team member’s

health status resulting in incorrect decisions that risk the mission and the team’s

well-being.

Finally, the jamming and battery drain attacks also make an appearance. These

attacks strike at the availability of the RT-PSM system to perform its function; since

these attacks are relatively easy to mount, this risk brings the reliability of the re-

sulting system into question.

29

THIS PAGE INTENTIONALLY LEFT BLANK

30

Chapter 4

Building a Secure Real-Time

Physiological Status Monitoring

System

In this chapter, I identify an appropriate strategy for mitigating the threats identified

in Chapter 3 that will work in low-power devices without compromising the system’s

original goal of providing RT-PSM services to improve the health and resilience of

military personnel and first-responders. First, I outline the security requirements

for a RT-PSM system, based on the threat ranking in Section 3.3. Next, I describe

relevant work related to providing security to resource-limited devices. Lastly, I select

specific cryptographic primitives that best fulfill the security goals.

4.1 Requirements for a Secure Real-Time Physio-

logical Status Monitoring System

Informed by top threats discussed in Section 3.3, I would like to reduce the risk

resulting from cyber attacks to an acceptable level. In order to accomplish this, I

need to decrease the likelihood of a threat (e.g., increase the difficultly of obtaining

the necessary capabilities to mount the attack) or reduce the impact of the threat

31

(e.g., increase the reference RT-PSM system’s ability to withstand a certain attack).

To accomplish this goal, the following security requirements should be considered

during design and implementation of an RT-PSM system.

Data integrity: Data in transit between a hub and an EUD should not be cor-

rupted or modified without the ability for detection. This is required to mitigate

identify spoofing attacks (A1-A4) by significantly increasing the cost of obtaining

unauthorized Send Message capability.

Authentication and Authorization: Components should be able to verify that a

particular entity (or group of entities) created a message. This is required to mitigate

attacks that rely on spoofing identity of a system user (e.g. squad leader), who may

have privileges that other members do not (e.g. requesting status updates). This

capability would help mitigate attacks A1-A4, F2, and F4. Adding authentication

and authorization to RT-PSM system would enable revocation of privileges from

misbehaving devices, like those that result from attacks F2 and F4.

Data confidentiality: Data should be readable only by authorized components of

the RT-PSM system. Parties outside the BAN should not be able to read sensor

data in transit or from the memory or storage of a captured device. The second

requirement may be difficult to achieve given the need to store any cryptographic

keys in device memory. Encrypting the data in transit will help mitigate attacks P3,

P4, A1-A3; encrypting data at rest will mitigate attacks F5-F6.

Data freshness: Authentication and confidentiality are not enough to prevent

harm from active attacks that replay valid messages. In order to prevent replay

attacks, hubs and EUDs should be able to ascertain the freshness of received messages

by including and verifying a timestamp, sequence number, or nonce in the message.

Software integrity checking: RT-PSM systems should use code signing or other

methods of checking software integrity to ensure that software placed on hubs and

EUDs has not been tampered with to leak data or provide incorrect information to

the squad leader. Ensuring software integrity during configuration and execution will

help mitigate attacks F1-F4 that rely on tampering with software. While hardware

modifications may still be able to accomplish these attacks, they are typically much

32

more expensive to execute successfully.

Availability and Sustainability: Hubs and EUDs should always be able to send and

receive RT-PSM data. All components of our system should support data collection

for the duration of a 3 to 7 day mission. This requirement implies that cryptographic

algorithms used to ensure other requirements should not be overly expensive in terms

of required communication overhead or computational power.

These security requirements are unordered, since a precise ranking would be use

case dependent. For instance, availability may not be as important to an application

constantly streaming ECG data as it might be for an application notifying users

of exposure to hazardous chemical agents. That said, these security properties are

applicable to the majority of tactical RT-PSM systems.

4.2 Existing Techniques

In this section, I present related work to provide the necessary context for devising

an RT-PSM system that achieves the requirements given in Section 4.1.

The Setting. Although much of the research around BANs and wireless sensor

networks has been focused on making them possible and useful, an increasing number

of researchers are investigating the problem of how to provide security services and

trustworthiness to resource-constrained devices.

In two of the earlier papers on the subject [41, 44], the authors construct a se-

cure wireless sensor network built on resource-constrained devices running TinyOS.

The system aims to provide data confidentiality, data authentication, data integrity,

and data freshness. The resource-constrained sensors communicate exclusively with

a more powerful central base station. The authors evaluate several block ciphers,

including AES, and settle on running a finely tuned RC5 [46] cipher in counter mode,

due to the cipher’s small code size and high speed. For message authentication, they

use CBC-MAC [17], allowing them to reuse the same RC5 block cipher. They apply

more code reuse by using the CBC-MAC algorithm for pseudo-random number gen-

33

eration. A lot of their design decisions are relevant to a tactical RT-PSM system, but

they do not offer a complete solution for this use case. I adapt lessons learned from

their system to the RT-PSM setting.

Much of the BAN research focuses on implantable and wearable devices in the

context of modern medicine [50, 34, ?, 31, 21]. In medicine, small embedded devices

are responsible for relaying sensitive patient information or administering doses of

medication. The need for security and privacy in this domain comes as a result of

increased legislation around protecting patient information and understanding of the

consequences of an insecure system. In spite of this, the hacking of medical devices has

been (and currently is) far from the number-one risk to public health [31]. Security

mechanisms create additional opportunity for bugs and can slow down regulatory

approval [21]. Further, security mechanisms work directly against the already limited

program space and power resources. As a result, typical BAN components have

been designed to transmit unencrypted data on unauthenticated channels, allowing

eavesdropping and identity spoofing attacks.

In order to build a trustworthy system, as articulated by Burleson et al., designers

must aim to [21]:

• Consider security early in the development process (as it is difficult to retrofit)

• Encrypt sensitive information—at rest or in transit—whenever possible

• Develop a realistic threat model with realistic assumptions (e.g. adversary can

obtain source code and design documents)

• Use industry-standard source-code analysis techniques and cryptographic build-

ing blocks

The last design goal proves especially difficult to apply in practice. Cryptographic

building blocks are not available or standardized for use in the most resource-constrained

devices. Medical device manufactures do not make their source code public and the

research community has not produced any complete, widely-accepted solutions. Of

course, there are plenty of authentication and key agreement building blocks and pro-

tocols for less resource-constrained environments, such as Transport Layer Security

(TLS) or Elliptic Curve Diffie-Hellman. Unfortunately, the majority of these schemes

34

depend on cryptographic primitives that need computational power or code space at

odds with that available for most embedded device systems [52].

Work focused on porting solutions from different computing environments is widespread

in the literature. For instance, researchers have gone through great lengths to tune the

AES block cipher for lightweight applications. The best known hardware implementa-

tion of AES-128 is down to 2400 gate equivalents [42]—an impressive accomplishment1

but this is still too large and not compatible with the system components’ other goals

(e.g., low-current draw during sleep) [57, 15]. This motivates the development of

lightweight cryptographic primitives and BAN-specific authentication techniques.

Lightweight Cryptographic Primitives. Recently, the U.S. National Security

Agency (NSA) developed Simon and Speck—families of block ciphers designed for

severely resource-constrained environments and optimized for hardware and software

implementations respectively [13]. Simon and Speck require a fraction of the power

of optimized AES cores for equivalent encryption strength [15].

BAN-Specific Authentication Techniques. The SoK literature study evaluates

BAN-specific authentication techniques [50]. Some of note include:

• Biometrics — Using physiological values (e.g. ECG data) as a source of entropy

for key generation. This allows devices to take advantage of the fact that they

are situated on the same body. Unfortunately, biometrics does not help when

devices are situated on different bodies.

• Distance-bounding authentication —Establishing physical distance between two

communicating parties based on the timing delay between sent and received

messages. This provides weak authentication, but works well if adversaries are

not within a certain range.

• Out-of-band authentication — Utilizing channels like audio or visual for com-

munication. Provides authentication only if the adversary will not be snooping

1To put this in context, according to [57] the amount of power it takes certain AES circuitry to
encrypt a 29-byte packet is 10 times less than it takes a TI MSP430g2553 (an extremely low-power
micro-controller) to turn on!

35

the auxiliary channel.

• Anomaly detection — Detecting changes in behavior—e.g. resource depletion

rate, communication patterns, etc.–and responding appropriately.

Key Management. Cryptographic primitives require keys. In the OBAN system,

devices are batch provisioned before a mission. This simplifies the issue of distribut-

ing keys, allowing for keys to be pre-placed on devices. Future tactical RT-PSM

applications may not allow for pre-placement of keys. For these applications, light-

weight, usable key management and key distribution solutions, such as the Lincoln

Open Cryptographic Key Management Architecture [7], will be necessary.

Summary. One of the challenges in developing general purpose security mecha-

nisms for BANs is that compute resources, power resources, and specific use cases

differ drastically. Tactical RT-PSM system components fall somewhere between med-

ical devices and fitness trackers. Medical devices are on the extreme end of power

efficiency. A pacemaker, for instance, must last on several years on a non-rechargeable

battery [35] and in the absolute worst case a compromise of the wireless channel could

result in death. Fitness trackers on the other hand are typically recharged once per

day and in the worst case a compromise of the wireless channel would result in a

small privacy violation (see [12] for a comical illustration of this).

4.3 Selecting Security Building Blocks

This section details the security building blocks I selected to achieve the security

requirements I established in Section 4.1.2 Those requirements are:

• Data integrity

• Authentication and Authorization

• Data confidentiality

• Data freshness

• Availability and Sustainability

2Software integrity checking is not included due to time constraints and is left to future work.

36

Table 4.1: Options for providing data integrity

Security Goal
Strategies

(Unkeyed) Hash MAC Digital signature

Data Integrity (accidental) ✓ ✓ ✓
Data Integrity (intentional) - ✓ ✓

Authentication - ✓ ✓
Non-repudiation - - ✓
Entity separation - - ✓

Kind of keys required None Symmetric Asymmetric

The first step in my process of selecting mechanisms to fulfill the requirements is

to consider different ways of providing each requirement individually, which involves

looking at standard techniques and the BAN-specific techniques discussed in Sec-

tion 4.2. After coming up with various strategies for satisfying individual require-

ments, I discuss how to combine them into a single cohesive solution.

4.3.1 Data integrity

A strategy provides data integrity if it gives the system components the ability to de-

tect accidental and intentional changes in the data. There are three main options for

providing message data integrity (summarized in Table 4.1), hash, message authenti-

cation code (MAC), and digital signature, and they are distinguished by the security

goals they fulfill. The primary interest is data integrity, but it is worth mentioning

that some of the options can be used to meet other goals. There are two forms of data

integrity of interest: detecting accidental changes in data and detecting intentional

changes in data.

In the first option, hash, an unkeyed hash of the message is taken and appended

to the message. This protects against accidental changes to the message. A hash

will not protect against intentional data modification because an adversary can sim-

ply recalculate the hash after modifying the message and append it in place of the

original3. The OBAN prototype uses an implementation of this scheme called cyclic

3Although, it is worth noting that real-time modification of RF-based communications is ex-

37

redundancy check (CRC). The CRC codes used in OBAN are 2 bytes.

The second option, message authentication code (MAC), provides both forms of

data integrity and authentication (see Section 4.3.2). Authentication means that the

message recipient can be confident that a message originated from a specific sender

or group of senders. While a MAC is sometimes referred to as a keyed hash, it can

be constructed from block cipher algorithms as well as cryptographic hash functions

(e.g. keyed-hash message authentication code (HMAC) construction). In either case,

the algorithm will accept a secret key and an arbitrary-length message and output a

sequence of bits known as a MAC or tag. Both varieties of MAC algorithm can be

implemented efficiently for resource-constrained devices. Tags are not long; typically

(and depending on the implementation), the length of a tag is t bits where t − 1 is

the security level4 measured in bits (e.g., a 128-bit tag can offer 127 bits of security)

[24].

The third and last option, digital signatures, provides both forms of data in-

tegrity, authentication, and non-repudiation. Non-repudiation is not a requirement

for a secure RT-PSM system, but I mention it for completeness. Non-repudiation is

the property that the message recipient can prove to a third party that a message

originated from the sender. MACs do not provide this property because both the

sender and receiver have the same secret key and a third party would be unable to

determine whether or not the party claiming to be the recipient received the message

or created it. Digital signatures require asymmetric keys, also known as public-private

key pairs (described in [53]). Producing a signature involves hashing the message to

generate a digest and using the private key to encrypt the digest. The signature is

verified with the public key, but can only be created with the corresponding private

key, allowing for entity separation—the property that an entity’s role (e.g., message

sending) is limited by the security method. One of the most efficient means of pro-

viding digital signatures is the NIST standard (FIPS 186-4) Elliptic Curve Digital

Signature Algorithm (ECDSA) [39]. The length of an ECDSA signature is about 4t

tremely difficult. That said, there is still the issue of an adversary being able to create messages.
4At a security level of 127 bits, for instance, an attacker would need 2127 operations to discover

the secret key

38

Table 4.2: Options for providing authentication

Security Goal

Strategies

D
ig
it
al

S
ig
n
at
u
re
s

M
A
C

U
se
rn
am

e/
p
as
sw

or
d

D
is
ta
n
ce

b
ou

n
d
in
g

O
u
t-
of
-b
an

d

Z
er
o-
k
n
ow

le
d
ge

p
ro
of
s

Authentication ✓ ✓ ✓ ✓ ✓ ✓
Entity separation ✓ - ✓ - - ✓

Kind of keys required Asymmetric Symmetric Password None None Password

bits where t is the security level in bits. It is possible to implement digital signature

algorithms for resource constrained devices, but it is difficult. Signature validation on

microcontrollers, using a highly-optimized ECDSA implementation can take on the

order of hundreds of milliseconds to tens of seconds [58]. This is not acceptable for

the RT-PSM system use cases described in Chapter 2. Additionally, the public-key

based method also requires a large amount of code space and memory usage, thus

making the algorithm unsuitable for RT-PSM systems [52].

4.3.2 Authentication and Authorization

A strategy provides authentication if it allows the message recipient to confirm that

the message originated from a particular sender or group of senders. Authorization

refers to rules that determine what certain entities are allowed to do (e.g., only medics

are allow to request an ECG stream). Authentication and authorization are closely

related with authentication enabling authorization to occur. That is, authorization

has to be layered on top of an authentication scheme. The strategies considered for

providing authentication are given in Table 4.2.

The first two options, digital signatures and MACs, were discussed above with

respect to data integrity.

The next option, username/password-based authentication, refers to the strategy

39

employed by many websites on today’s internet. Websites using this strategy authen-

ticate users by requiring a password5. The password is sent from the browser to the

server over TLS-encrypted channel, hashed, and compared to a hash of the password

stored by the server when the account was created. Not storing a secret on the device

would help prevent issues that arise from a device being captured (attacks F5-F6).

Unfortunately, in a tactical RT-PSM system, it is not possible to require users to

enter passwords.

The next two options, distance bounding and out-of-band authentication, were

identified in Section 4.2 and make use of BAN-specific features. Distance-bounding

authentication works by determining the distance between two communicating par-

ties based on the timing delay between sent and received messages. This method only

works if the adversary is outside the range of the system’s radios. Furthermore, it

would require that the leader and hub devices to send multiple messages to authen-

ticate themselves [50]. For example, in the pull-style mode of operation described in

Chapter 2, the leader would request data from the squad member, the squad member

would ask the leader to repeat something6, and the leader would have to respond be-

fore the squad member will reply with the desired data. This is undesirable because it

would necessitate increased transmissions, which require power, and the development

of a more robust medium access control7. Out-of-band authentication works by utiliz-

ing channels like audio or visual for communication and is successful if the adversary

will not be snooping the auxiliary channel [50]. This method is undesirable because

it requires additional hardware for accessing the auxiliary channel and potential user

interaction.

The last option, zero-knowledge proofs, or more specifically zero-knowledge pass-

word proofs (ZKPP), provide a message sender the ability to prove to a message

receiver that they know a password without revealing any information other than

5And, the browser authenticates the website using Transport Layer Security (TLS) or Secure
Sockets Layer (SSL) which are based on public-key cryptography

6Perhaps a random value, so that a far away adversary will not be able to time messages in such
a way so as to appear nearby.

7The OBAN reference implementation relies on a simple time division multiplexing scheme that
would not support distance-bounding authentication without modification.

40

the fact that they know the password to the message receiver. The ZKPP algorithm

is described in the IEEE P1363.2 draft [4] and is considered part of the Password

Authentication Key Exchange (PAKE) family of protocols. As with distance bound-

ing, PAKE protocols require multiple messages and are very expensive. Optimized

implementations, for instance, have been shown to take hundreds of milliseconds to

run on Android smart phones [30].

4.3.3 Data confidentiality

Data confidentiality protects data from unauthorized access. That is, with a data

confidentiality mechanism in an RT-PSM system unintended message recipients, such

as attackers, will not be able to discern message contents.

There are two main options for providing data confidentiality: 1) public-key based

encryption and 2) symmetric-key based encryption.

In public-key based encryption schemes, each party has both a widely distributed

public key and a secret private key only know to the owner. Any message sender in this

system can encrypt a message with the recipient’s public key, but the message can only

be decrypted with the recipient’s private key. As suggested above in the discussion

of digital signatures, public-key based encryption schemes are not appropriate for

resource constrained devices.

In symmetric-key based encryption schemes, the same cryptographic keys are

used for both encryption and decryption. Symmetric-key encryption schemes can use

stream cipher or block cipher algorithms. In stream ciphers, plaintext is encrypted

one bit at a time using a key stream generated from the cipher. In block ciphers,

plaintext is encrypted in fixed-size blocks. For more information on stream ciphers,

please refer to the RSA technical report on stream cipher operation [47]. For more

information on block ciphers, consult Chapter 3 of Mihir Bellare’s and Phillip Rog-

away’s “Introduction to Modern Cryptography” [18]. Both stream and block ciphers

can be implemented efficiently for low-end hardware. An important difference be-

tween the two is that stream ciphers are not capable of being combined with a cipher

mode of operation that provides integrity protection or authentication.

41

There are also hybrid methods, such as Elliptic Curve Diffie-Hellman [28], which

use public-key methods to establish a symmetric key for further communication. If

key distribution in the field is required, hybrid methods might be necessary. Further

work is needed to determine their feasibility because as with ECDSA they do not

appear to be appropriate for resource-constrained devices8.

4.3.4 Data freshness

Data freshness provides message recipients the ability to determine if a message has

been received before which is necessary to prevent an adversary from recording and

then successfully replaying a message that would otherwise include a correct signature

or MAC. Nonces can be used to provide freshness. A nonce can be a random value, a

timestamp, or a counter. A message sender includes a nonce in the message and the

receiver remembers past nonces. If the receiver detects a message with a nonce it has

seen before, it discards the message. Unlike random values and counters, timestamps

would allow a receiver to determine that a message was sent recently. Although,

clock skew between devices may limit the effectiveness of timestamps. Nonces must

be combined with a data integrity mechanism, otherwise an adversary could simply

alter the nonce.

4.3.5 Availability and Sustainability

Any mechanisms for providing the security requirements detailed so far must be able

to run on the leader device and the hub devices so as to allow for data collection and

system operation to continue for the duration of a mission. The hub devices are the

limiting factor because they are the most resource constrained components in terms

of power, memory, and computational ability.

A tactical RT-PSM should be functional as much as possible over the course of

a mission. Chapter 3 described how active attacks, such as A2, Privacy compromise

(on demand), can affect availability because they cause the system components to

8The rate at which keys are distributed/changed is a determining factor here.

42

transmit more frequently, reducing battery life. In order to preserve availability, the

system must be able to filter out illegitimate message traffic quickly and efficiently.

Data integrity, authentication, and data freshness can be combined to detect illegiti-

mate traffic. Anomaly detection can be layered on top of these mechanisms to further

reduce battery loss from active attacks. That is, a device could shut off its radio if too

many invalid messages have been detected in a certain amount of time. This method

trades availability in the present for availability in the future.

4.3.6 Forming a cohesive solution

Based on the discussion above, it appears that the strategies for providing data fresh-

ness and availability are dependent on data integrity, authentication, and data con-

fidentiality. It is also apparent that cryptographic primitives are needed in order to

provide data integrity, authentication, and confidentiality. Symmetric cryptographic

primitives are the best candidates for low-cost RT-PSM implementations.

In order to provide data integrity, authentication, and confidentiality, the solution

must combine a symmetric-key based encryption mode with a MAC. This is referred

to as an Authenticated Encryption (AE) mode or Authenticated Encryption with

Associated Data (AEAD) mode. The difference between an AE mode and an AEAD

mode is that in an AEAD mode some of the data is covered by the MAC but not

encrypted. For an RF-based messaging system, an AEAD mode is more appropriate.

In order to achieve sustainability, it is important that the system does not encrypt

message headers to allow devices to filter out legitimate messages not intended for

them as quickly as possible.

In the NIST publication on EAX, an AEAD mode of operation, when motivating

the need for EAX, Bellare et al. note, “that people had been doing rather poorly

when they tried to glue together a traditional (privacy-only) encryption scheme and

a message authentication code (MAC)” [16]. Combining a confidentiality and an

authentication mode together is error prone and likely to result in something that

compromises the security properties of the encryption scheme, the authentication

scheme, or both. Due to the known difficultly of creating AEAD modes, I looked for

43

(a) Encrypt-then-MAC (b) Encrypt-and-MAC (c) MAC-then-Encrypt

Figure 4-1: Approaches to AEAD modes (Reproduced from [2])

existing options as opposed to creating a new one.

In AEAD modes, the decryption operation combines integrity verification and

source authentication into a single step. Typical approaches to AEAD modes are

shown in Figure 4-1. In AEAD mode, implementations provides the following func-

tions:

• Encryption

– Input : message (the header and payload, where the header will not be en-

crypted but will be covered by integrity protection) and a key (potentially

multiple keys depending on the AEAD implementation)

– Output : ciphertext and a message authentication code (MAC)

• Decryption

– Input : message header, ciphertext, tag, and key(s)

– Output : plaintext, and indication that the tag does or does not match the

supplied ciphertext and header

There are several AEAD modes of operation. I selected Synthetic Initialization

Vector (SIV) mode [48], which has not been standardized by NIST, but has been

standardized by the IETF in RFC 5297 [36].

SIV mode is a MAC-then-Encrypt (shown in Figure 4-1c) AEAD mode and works

by first creating a MAC by applying CMAC [24] over the message header and plaintext

payload. The MAC is then used as an initialization vector (IV) for encrypting the

plaintext payload in Counter mode. Figure 4-2 describes and illustrates this process.

44

SIV mode is described in more detail in the specification by Phillip Rogaway [48].

One of the advantages of SIV mode is that it can be based on an arbitrary block

cipher and the same underlying block cipher can be reused for encrypting and tagging.

Another advantage of SIV mode is that it is deterministic and therefore does not

require any randomness. Providing secure random values is a difficult requirement

to satisfy for an RT-PSM system because computationally limited devices often do

not have access to high-quality sources of randomness. It is possible to generate

random numbers on an Arduino, for instance, by seeding a generator with input

from an unconnected analog pin or by pre-computing a random blob with a high-

quality PRNG and storing it in flash memory. These are not robust solutions. The

first option offers a poor quality of randomness and the latter option would take up

valuable program space.

A small disadvantage of SIV mode is that it requires two distinct keys for encryp-

tion and MAC. There are two newer modes that work with just one key: HBS (Hash

Block Stealing) and BTM (Bivariate Tag Mixing) [37, 38]. The downside to these

modes, apart from being newer and having undergone less peer review as a result,

is that the modes each have their own MAC generation algorithms that cannot be

built from the block cipher used for encryption. I decided not to select them to avoid

increasing the code base and thus the flash memory requirements.

It is worth noting that SIV mode is resistant to timing-based and power-monitoring-

based side-channel attacks [36]. During decryption the tag is verified after the ci-

phertext has been decrypted (shown in Figure 4-2), so the same amount of work is

performed whether the tag is valid or invalid9. This is both a positive (in that it pre-

vents side-channel attacks) and a negative (in that it increases the potential impact

of denial of service attacks10). Also, the tag could be used to replace the CRC, but

9This requires that a secure implementation of memcmp be used for verifying the tag. The secure
implementation must take a constant amount of time to compare two tags regardless for where
the difference might be. If the memcmp routine takes a variable amount of time—for instance, by
returning as soon as a difference in the tags is detected—it will be leaking information and could
potentially be used as a vector for an attack.

10An attacker can take advantage of the fact that under SIV mode a device must first perform the
entire decryption process before it discovers a message is invalid or not. This aspect of SIV mode
can be used to amplify a denial of service attack. This risk can be mitigated by having a device turn

45

Table 4.3: Ciphers considered for a secure RT-PSM system, ordered from best to worst by
the figure of merit (FOM)

Cipher Year Block Sizesa Key Sizes Patented Figure of Merit

Speck [13] 2013 64, 96, 128
96, 128, 144,
192, 256

No 3.5

Simon [13] 2013 64, 96, 128
96, 128, 144,
192, 256

No 6.6

AES [22] 1998 128 128, 192, 256 Nob 7.2

Robin [33] 2014 128 128 No 7.3

RC5 [46] 1994 64, 128 0-2040 Yesd 8.4

LBlock [60] 2011 64 80 No 9.1

TWINE [54] 2011 64 80, 128 No 13.5

IDEA [27] 1991 64 128 Noc -

TEA [59] 1994 64 128 No -

a Only block sizes greater than 64 bytes are listed. Block sizes less than 64 bytes tended to
require keys sizes with insufficient security (e.g., less than 80 bits).

b No, but specific implementations are patented (e.g., Analog Devices, Inc. owns a patent)
c Last patented by ASCOM TECH AG, expired in 2012
d Patented by RSA Security

because decryption must precede tag verification this might not be desirable. CRCs

are short and can be verified as soon as a message is received.

Freshness. As mentioned above, freshness can be provided by including a unique

nonce in each message header. A message receiving device will only process messages

that include a nonce that differs from the nonces in past messages. Including a unique

nonce in the message header provides necessary condition that messages with identical

payloads will result in different ciphertexts11, thus preventing adversaries from using

pattern analysis and knowledge of the message protocol to discern message contents.

Block Cipher. AEAD mode requires a block cipher. Table 4.3 shows some of

the block ciphers I considered. Stream ciphers cannot be used to provide integrity

protection or authentication and were not considered.

off its radio after a certain number of invalid messages have been received in a certain time window.
11The nonce will alter the MAC which is used as the IV for Counter mode and will alter the entire

ciphertext (shown in Figure 4-2).

46

All block ciphers considered were reputed to be lightweight in nature. With the

exception of Simon, the ciphers in Table 4.3 were designed to perform well in software.

The choice of block cipher was informed in a large part by [23] and [14] which evaluate

the performance of the ciphers listed in Table 4.3 on AVR, MSP, and ARM hardware—

three widely used types of low-power microcontrollers. Table 4.3 includes the Figure

of Merit (FOM) metric for each cipher which was calculated in [23]. The FOM

represents the average performance of a block cipher in terms of RAM usage, code

size, and execution time on all of the AVR, MSP, and ARM microcontrollers.12 A

lower FOM score is better. In terms of code size, RAM usage, and execution time,

[14] finds Speck to completely dominate. And [23] finds Speck best overall (as shown

in the FOM score in Table 4.3), but slightly worse than AES in terms of execution

time.13

Speck is a family of block ciphers recently introduced by the NSA and reported,

as evidenced by the results in [14] and [23], to have excellent performance in software.

While Speck has not been standardized, its development by the NSA provides it

some legitimacy, which was an important factor in the choice of block cipher. The

performance, security guarantees, and provenance of Speck make it a good choice for

a RT-PSM system.

Key Provisioning. As mentioned above, keys will be provisioned before a mission.

One method of doing this involves deriving all keys from a single seed. The benefits

of this approach are that there is no need for a large key database and the implemen-

tation is quite simple. Given a pseudo-random function F (e.g., as described in [32])

which maps variable-length input to fixed-length output, keys can be provisioned as

F (master key, unique identifier). In a tactical RT-PSM system this scheme would

enable a combat medic to communicate with any soldier regardless of whether their

devices were provisioned at the same time, provided that the medic device is allowed

to know F and the master key. A disadvantage of this system is that it has a single

12Table 4.3 does not include a FOM for IDEA or TEA because [23] did not evaluate these ciphers.
13Although, the authors of [23] note that they compared an assembly implementation of AES to

a C implementation of Speck.

47

point of failure. If the master key is lost so is all forward and backward secrecy; the

damage extends to all missions (past and future). Key rotation can reduce this risk

by limiting the amount of data tied to a single master key. There are many ways to

do key rotation. I will suggest a simple one: at regular intervals, a new master key

can be generated and distributed to all of the provisioning machines. Past keys can

be deleted or stored securely.

To summarize, I found that an acceptable solution for providing the security

requirements in Section 4.1 is to encrypt message payloads with Speck in SIV mode

and to append the generated MAC over the encrypted payload and message header,

which includes a nonce, to the end of messages.14 Both key provisioning and key

management in general are important and warrant more development in future work.

14A CRC is also included at the end of messages and covers the message header, the encrypted
payload, and MAC.

48

Figure 4-2: Top: Definition of SIV mode. Middle: Illustration of encryption (left) and
decryption (right). Bottom: Illustration of CMAC when the final argument has n or more
bits (left) and when it does not (right). (Diagram and caption reproduced from the short
SIV specification [48])

49

THIS PAGE INTENTIONALLY LEFT BLANK

50

Chapter 5

AUTOBAN Proof-of-concept

Implementation

In this chapter, I discuss the AUTOBAN proof-of-concept implementation. The AU-

TOBAN proof-of-concept implementation is intended to demonstrate how to protect

RT-PSM systems from the threats detailed in Section 3.3 using the solution in Sec-

tion 4.3. Due to time constraints, the AUTOBAN proof-of-concept implementation

focuses on showing successful defenses against two of the main categories of the top

threats identified in Table 3.4: active attacks (A1-A4) (e.g., identity spoofing) and

passive attacks (P3,4) (e.g., opportunistic privacy compromise).

Before describing the proof-of-concept implementation and attack mitigations in

more detail, I will first briefly describe differences between the proof-of-concept im-

plementation and a standard RT-PSM system (see Chapter 2).

5.1 Implementation Components

In order to reduce development effort, the AUTOBAN proof-of-concept implementa-

tion differs from the RT-PSM system described in Chapter 2. The proof-of-concept

implementation is intended to demonstrate the applicability of the security mecha-

nisms derived in Chapter 4.3 to the specific RT-PSM use cases defined in Chapter 2.

The eventual deployment scenario would more closely mirror the OBAN RT-PSM

51

Network
(USB Connections)

Leader Display Hubs Sensors

Simulated
sensors on hubs
supply
prerecorded
ECG and PSI
data.

Figure 5-1: AUTOBAN proof-of-concept implementation overall system diagram

system. The AUTOBAN proof-of-concept implementation consists of the same core

components identified for RT-PSM systems in Section 2.1 (e.g., sensors, hubs, and

displays (or EUDs)), but differs in two important ways. First, radio-frequency based

communications are not used; the devices communicate over Ethernet or serial con-

nections. Using Ethernet or serial as the underlying network layer preserves the

broadcast nature of the RF-based communication medium of a standard RT-PSM

system. That is, all parties with a Receive RF capability can see all transmissions.

Second, simulated sensors are used in place of actual sensors. Simulated sensors on

the hub device include Physiological Strain Index (PSI) and ECG monitors. The

sensors are mocked out and use pre-recorded data that is stored in the flash memory

of the devices. Figure 5-1 provides an overall system diagram of the proof-of-concept

implementation.

The hub devices are implemented using Arduino Uno boards based on an AT-

mega328P microcontroller (described in Table 5.1). The Arduino Uno was selected

for two main reasons: first, the hardware is similar to that found in actual RT-PSM

systems, and second, the ATmega328P on the Uno comes with a bootloader, provid-

ing the ability to upload new code by USB without the need for an external hardware

programmer.

The Arduino Uno device that is used in this implementation is more resource

52

AUTOBAN OBAN reference

proof-of-concept hub implementation hub

Model ATmega328P ATmega2560

CPU 8-bit RISC 8-bit RISC

Frequency (MHz) 16 16

Registers 32 32

Architecture Harvard Harvard

Flash (KB) 32 256

SRAM (KB) 2 8

EEPROM (KB) 1 4

Table 5.1: Key characteristics of the hub microcontroller for the AUTOBAN proof-of-
concept implementation and the OBAN reference implementation

constrained than the Arduino-based Seeeduino board (described in Table 5.1) used

in the OBAN reference implementation [19]. A more resource-constrained board was

chosen to highlight the fact that the lightweight cryptographic primitives used in the

cryptographic library can work on very limited hardware.

A computer is used to simulate the leader’s EUD device. Figure 5-2 shows the

different screens in the leader display application. The interface is written in Python

and is meant to simulate the same features as the leader EUD in the OBAN demo

application (shown in Figure 2-2). The first screen (Figure 5-2a) provides a summary

of the PSI levels of the team members. The different colors indicate a squad member’s

risk for heat stroke. On the bottom of the home screen there’s a button that gives

the leader the ability to request a PSI reading from all group members. Clicking on

a box with a group member’s name opens up the individual summary screen (Figure

5-2b) which provides more details on the selected squad member’s PSI. PSI values

range between 1 (low) and 10 (high). The most recent PSI value is shown at the top

of the screen under the squad member’s name and the past history of responses is

shown in the middle of the screen. Finally, clicking on ECG tab in the individual

screen opens a new tab within the screen with a plot showing any collected ECG data

(Figure 5-2c). At the bottom of the individual screen there are buttons allowing the

leader to request a PSI update (pull mode) or to request an ECG stream (stream

53

(a) Group screen (b) Individual PSI screen (c) Individual ECG screen

Figure 5-2: Screen shots of the leader display application

mode).

The AUTOBAN proof-of-concept implementation also includes simulated inter-

faces for nation state and hacktivist attackers. The interfaces are used for demon-

strating attacks on the system. Like the leader display, the nation state and hacktivist

interfaces are also written in Python and run on a computer. Figure 5-3 shows the

screen shots of the two applications. The nation state interface (5-3a) is nearly iden-

tical to the leader display interface. This emphasizes that nation states have lot of

resources and would have no difficulties procuring Send Message and Receive Message

capabilities. The main difference between the leader display and the nation state in-

terface is that the nation state interface has no underlying keying material and cannot

decipher or create valid encrypted messages1. The nation state can, however, replay

encrypted messages that it has recorded, as will be seen later. The hacktivist is a less

sophisticated entity than the nation state and consequently has a less sophisticated

interface (Figure 5-3c) that only allows it to see all message traffic in the network.

1It can, of course, send a garbled message (e.g., A6 denial of service attack).

54

(a) Nation state individual screen

(b) Nation state replay interface (c) Hacktivist message traffic screen

Figure 5-3: Screen shots of the nation state and hacker display applications

55

5.2 Cryptographic Library

As discussed in Section 4.3.6, in order to prevent the top attacks in Table 3.4 the

best option is to use a block cipher in an Authenticated Encryption with Associated

Data (AEAD) mode of operation. The most promising block cipher and AEAD mode

based on the resource constraints of the hardware components is Speck in SIV mode

(Speck-SIV). I implemented Speck-SIV for the Arduino hub devices and the leader

display application.

The AVR chip on the Arduino makes use of the avr-gcc complier and the AVR

Libc library, allowing development in C and C++. I implemented Speck-SIV mode

in C++. It is worth noting for others developing applications for runtime-sensitive

environments, like the ATmega328P AVR chip, that care should taken to avoid un-

wanted side effects of the C++ calling conventions. Copy constructors, for instance,

which may occur on function invocation, can take up considerable time and memory.

It may be necessary to remove the possibility for these calling conventions (e.g., using

the C++11 delete keyword) or to inspect the generated assembly code.

I implemented multiple versions of the underlying Speck cipher. They are dis-

cussed in more detail in Chapter 6.2.1. The performance characteristics are also

given in Chapter 6.2.2. The version included in the proof-of-concept implementation

was designed to support the push, pull, and stream modes described in Chapter 2.2.

The Speck-SIV implementation operates on 128-bit blocks and keys. A 128-bit

key was chosen because it provides an adequate amount of security without needing

excessive amounts of storage. The 128-bit block size was chosen in order to compare

the performance of Speck with the performance of AES (Chapter 6.2.2). With a

128-bit key, Speck supports a 64-bit or 128-bit block size. AES only supports 128-bit

blocks. In general, I would recommend selecting a block size that is close to the

minimum message payload size in order to avoid extra computation on the hubs.

Larger blocks typically require more compute cycles to manipulate. This is certainly

true for the Arduino’s 8-bit processor and is evidenced in the Speck benchmarks on

the platform [58]. The keys were pre-generated and hardcoded into the Speck-SIV

56

library in order to simulate key pre-placement for each demonstration scenario. In a

real deployment, keys would be generated during the device provisioning stage before

a mission and a configuration protocol would be required to load the keys onto the

devices.

5.3 End-to-end AUTOBAN Demonstration

As mentioned above, the proof-of-concept implementation is intended to show how

an RT-PSM system can reduce the likelihood of a subset of the top threats: passive

attacks (P3,4) and active attacks (A1-A4) . In this section, I describe specifically

how the AUTOBAN proof-of-concept implementation can successfully defend against

opportunistic privacy compromise (P4) and on-demand privacy compromise (A3). I

will first motivate the defense techniques by describing successful attacks on a version

of the system that is similar to the OBAN reference implementation in that it uses

a message protocol with no security mechanisms. After the attacks are described,

versions of the system with message protocols capable of defending against the at-

tacks are presented. Overall, there are 3 versions of the AUTOBAN proof-of-concept

implementation’s messaging protocol:

1. Plain Messages — No security mechanisms (top of Figure 5-4)

2. Encrypted Messages — Payloads are encrypted (middle of Figure 5-4)

3. MAC-then-Encrypt Messages — Message payloads are encrypted and mes-

sages include a MAC over the message header and payload. (bottom of Fig-

ure 5-4)

In the Plain Message version of the protocol functioning under the pull-style use

case, the leader device requests data from a squad member in the clear and the squad

member replies in the clear. Figure 5-5 illustrates this process. This is the most

common use case and I will refer back to it exclusively throughout this section while

describing attacks. The attacks would work in a similar manner with respect to the

push and pull style use cases, but for brevity I only describe them with respect to the

pull-style use case.

57

Figure 5-4: AUTOBAN proof-of-concept message protocols diagram shown with an exam-
ple 16-byte payload

M
es

sa
ge

 P
re

fi
x

A
d
d
re

ss

In
fo

rm
at

io
n

M
es

sa
ge

 T
y
p
e

P
ay

lo
ad

 L
en

gt
h

P
ay

lo
ad

C
R

C

M
A

C
 (

ta
g)

E
n
cr

y
p
te

d

P
ay

lo
ad

M
es

sa
ge

 P
re

fi
x

A
d
d
re

ss

In
fo

rm
a
ti

on

M
es

sa
ge

 T
y
p
e

P
a
y
lo

ad
 L

en
gt

h

C
R

C

E
n
cr

y
p
te

d

P
a
y
lo

ad

M
es

sa
ge

 P
re

fi
x

A
d
d
re

ss

In
fo

rm
at

io
n

M
es

sa
ge

 T
y
p
e

P
a
y
lo

ad
 L

en
g
th

C
R

C

Message Header Message payload CRC (and MAC)

0 3115 33 49 51Size (bytes)

Mac-then-Encrypt

Encrypt

Plain

Figure 5-5: Plain Message version of system in the pull-style use case

Leader Squad Member

What’s your PSI?

My PSI is 6

time

58

Figure 5-6: Privacy compromise (P4) — Plain Message version vs. hacktivist

Leader Squad MemberHacktivist

time

R
ec

or
d

What’s your PSI?

My PSI is 6

Figure 5-7: Defense against privacy compromise (P4) — Encrypted Message version vs.
hacktivist

Leader Squad Member

Ek(What’s your PSI?)

Hacktivist

time

Ek(My PSI is 6)

E
n
cr

y
p
t

D
ec

ry
p
t

R
ec

o
rd

E
n
cr

y
p
t

D
ec

ry
p
t

Opportunistic Privacy Compromise

In the opportunistic privacy compromise attack, a hacktivist attacker is able to exploit

the broadcast nature of the communication medium and the unencrypted quality of

the message traffic in the Plain Message protocol. While hacktivists are not seen

as particularly sophisticated attackers, they are able to acquire the Receive Message

capability. In this case, the hacktivist is able to see the messages sent between the

leader and hub devices, as shown in Figure 5-6.

The Encrypted Message version of the protocol can defend against the hacktivist

attack by encrypting the message traffic between leader and squad member devices, as

shown in Figure 5-7. The leader and squad members are unable, as in Plain Message

version, to detect the presence of the eavesdropping hacktivist, but no longer need to

be concerned about the content of their messages being read. The hacktivist attacker

59

Figure 5-8: Identity spoofing (A3) — Plain Message version vs. nation state

Leader Squad Member

What’s your PSI?

My PSI is 6

time

Nation State

R
ec

or
d

F
o
rg

e

will be unable to decipher the contents of the messages without the cryptographic

keying material.

There are two main drawbacks to the Encrypted Message version of the protocol.

First, the header information is still sent in the clear, so as to allow squad members

and the leader to quickly disregard messages not intended for them. This information

could be used by the hacktivist to identity devices in the RT-PSM network (P2. device

identification). Second, if the message contents are identical, the ciphertext will also

be identical, allowing the hacktivist an opportunity to use pattern analysis techniques

to potentially discern message contents.

The first issue highlights a trade-off between sustainability and security: hubs and

leader devices can quickly stop processing messages in legitimate cases to preserve

battery life at the cost allowing adversaries to see header information. The second

issue will be resolved in the MAC-then-Encrypt Message version of the messaging

protocol.

Identity Spoofing

In an identity spoofing attack (A3), a nation state attacker spoofs the identity of

a message sender. In Plain Message version of the protocol, a nation state attacker

could simply craft a message, as shown in Figure 5-8, providing them an avenue for

privacy compromise at will (A3). In the Encrypted Message version of the protocol,

mounting a identity spoofing attack is not as easy. A nation state cannot create a

60

Figure 5-9: Identity spoofing (A3) — Encrypted Message version vs. nation state

Leader Squad Member

Ek(My PSI is 6)

Nation State

time

Ek(What’s your PSI?)

En
cr

yp
t

De
cr

yp
t

En
cr

yp
t

De
cr

yp
t

En
cr

yp
t

De
cr

yp
t

Re
pl

ay
Re

co
rd

Re
co

rd

Ek(My PSI is 6)

Ek(What’s your PSI?)

valid encrypted message and must perform a replay attack—first recording a valid

message, and later replaying it, as shown in Figure 5-9. In this case, the nation

state attacker is unable to decipher the received messages, but being able to request

ciphertext at will enables pattern analysis as well as a battery drain attack (A5).

The MAC-then-Encrypt Message version of the protocol can protect against both

versions of the identity spoofing attack by providing source authentication and mes-

sage integrity. When sending a message, a leader or hub first generates a tag based on

the message header and the message payload. The tag is then used as an initialization

vector for encrypting the message payload in Counter mode (this is SIV mode, see

Figure 4-2). A unique nonce is included in the message header to provide a fresh-

ness property, ensuring identical payloads map to unique ciphertexts each time. The

message recipient will disregard any messages with repeat nonces. The encryption

prevents attackers without the proper cryptographic keying material from generat-

ing anything other than garbled messages, and the nonce and MAC prevent replay

attacks. Figure 5-10 shows this process in action against the same identity spoofing

attack the was successful in Figure 5-9. Keeping track of past nonce values can be

implemented efficiently by using random values (and a bloom filter), timestamps, or

simply a counter. The AUTOBAN proof-of-concept implementation uses a counter.

This section has shown how the security mechanisms derived in Chapter 4.3.6 can

defend against a subset of the top active and passive threats to RT-PSM systems.

61

Figure 5-10: Defense against identity spoofing (A3) — MAC-then-Encrypt version vs.
nation state

Leader Squad Member

time

Nation State

Ek1(What’s your PSI?,
Nonce: 4)

Ek1(My PSI is 6,
Nonce: 67)

k2

k2

k2

M
A

C

D
ec

ry
p
t

V
er

if
y

E
n
cr

y
p
t

D
ec

ry
p
t

V
er

if
y

D
ec

ry
p
t

F
ai

l
ve

ri
fy

R
ec

or
d

R
ep

la
y Ek1(What’s your PSI?,

Nonce: 4)

k2

Indicates a MAC using key 2 which is
used as input to encryption using key 1

M
A

C

E
n
cr

y
p
t

A few open issues, such as how to protect against certain attacks (e.g., P2. device

identification) and how to provision devices with keys, are left to future work.

62

Chapter 6

Performance Evaluation

In this chapter, I analyze the performance of my implementation of SIV mode in

combination with a few underlying ciphers. To keep the measurements repeatable

and meaningful, I adhere to a common framework detailed in Section 6.1. Section 6.2

presents metrics relevant to evaluating the performance of block ciphers in ECB and

SIV modes on low-power devices.

6.1 Evaluation Methodology

In order to keep this performance analysis comparable to past work and to ensure

repeatability, I adhere to a common framework detailed in [14]. The framework

provides two important pieces of information. First, it describes at a high level what

task the cipher is expected to perform. Second, it provides performance metrics for

comparison. The performance metrics allow various ciphers to be ranked against one

another with respect to the same application and hardware platform.

6.1.1 Application Types

When making comparisons between lightweight cryptographic primitives it is impor-

tant to understand the application needs. Following [14], there are four main types

of applications relevant to lightweight cryptography in sensor networks. The appli-

63

cations differ along two dimensions: the lifetime of the cryptographic keys and the

amount of data being exchanged.

With respect to the lifetime of the key(s) the framework makes the following

distinction:

• Fixed Key — A fixed key application makes the assumption that the key or keys

used with the encryption scheme rarely, if ever, change. In software, the code

required to expand the key into the key schedule can be omitted. Additionally,

the key does not need to be stored; instead the expanded key schedule can be

precomputed and stored in flash memory. A fixed-key assumption is applicable

to tactical RT-PSM systems that have no requirement to re-key during a 7-day

mission, or lack the design flexibility or program space to allow for a re-keying

scheme.

• Flexible Key — With a flexible key, it is assumed that the keying material

is changed often. Under this assumption, a tactical RT-PSM system would be

expected to change keys multiple times over the course of a mission. This would

be necessary if the system needs to be protected from device capture (full-scope

attacks F2-6 from Chapter 3) or if the data exchanged by system components

is valuable enough to warrant the development effort and power expenditure

required for a key change.

With respect to the amount of data being transmitted, the following distinction

is made:

• Small Data — For small data size comparisons, it is assumed that a single block

of data (i.e., 128-bits in the AUTOBAN proof-of-concept implementation) is

encrypted at a time. The amount of data encrypted could be less than one

block, but it’s not useful to draw a distinction there as it would incur the same

cost as encrypting a full block. The total stream of data is also small—small

enough to make any setup costs relevant.

• Large Data — For large data comparisons, it is assumed that the length of the

data stream is long enough to effectively amortize away any setup costs (e.g.

key schedule expansion).

64

The four types of application are Fixed Key/Small Data, Fixed Key/Large Data,

Flexible Key/Small Data, and Flexible Key/Large Data. For the target use case

presented in Chapter 2, Fixed Key/Small Data and Fixed Key/Large Data are the

most appropriate models. Some quick notes about these two combinations: Fixed

Key/Small Data applies to low data rate applications that require authentication

(e.g., the pull-style updates and notifications use cases described in Chapter 2.2), and

Fixed Key/Large Data is applicable to certain streaming-based sensor applications

(e.g., the streaming use case described in Chapter 2.2). The analysis will focus on

these two types of applications. Analysis of cryptographic primitives serving the

other two types of applications, Flexible Key/Small Data and Flexible Key/Large

Data, would be similar, but more concern would be given to setup costs and re-keying

methods.

6.1.2 Performance Metrics

I collected four types of performance metrics: code size (flash), memory usage (RAM),

execution time (cycle counts/cost), and energy consumption. I considered the first

three metrics, flash, RAM, and cycle counts, because they provide insight into the

block cipher’s characteristics with respect to computationally-limited devices and

cannot be inferred through other measurements. The same is not true of energy

consumption. The energy consumption metric is redundant in the sense that it can

be computed given cycle counts and the device’s energy model. I include it since it

is often preferred over cycle counts because devices in tactical RT-PSM systems (and

more generally BANs) have tight energy budgets. From the first three measures, I

derived an overall performance metric, rank. Below I describe how each metric was

extracted and how to compute rank.

Code size (flash)

Code size is a measure of the amount of information that is stored in the flash memory

of the device. I refer to this metric as flash. Flash memory is a limited resource on

65

embedded devices. For instance, as mentioned in Table 5.1, the ATmega328P micro-

controller used in the AUTOBAN proof-of-concept implementation only has 32KB of

flash memory. It would be reasonable for an application to use microcontrollers with

even less flash memory.

To calculate the code size of a binary built for the ATmega328P microcontroller,

I used the GNU avr-size tool (version 2.24). The avr-size tool takes a binary file

and lists the section sizes in bytes. The binary code size reported in the results is

the sum of a binary file’s text and data sections. The text section of the binary

corresponds to all the machine instructions the ATmega328P microcontroller is going

to execute. The avr-size tool considers the prgmem section—a section of the binary

which includes constant data that will be stored in flash and referenced from flash

during program execution—to be part of the text section1. The data section of the

binary contains all of the global initialized variables declared in the program. The

implementations in this analysis do not use global uninitialized variables, so the bss

section size is 0 and is ignored.

Memory usage (RAM)

RAM consumption is composed of two parts: stack and data consumption. The stack

consumption corresponds to the information involved in the active subroutines of the

program’s execution and naturally varies during a program’s execution. At the start

of execution, the data section of the binary is loaded from flash into RAM—this gives

the data consumption portion of memory usage (and it can be calculated with the

avr-size tool as discussed above). Together, stack and data usage might include

the information to encrypt, keys, round keys, initialization vector, etc. Figure 6-1

shows the memory operation and layout of an Arduino Uno. Heap is included in

the diagram, however, none of the cipher implementations considered in this analysis

involve dynamic memory allocation, so no heap consumption is reported.

RAM usage is generally the limiting factor for applications on embedded devices.

1So, for instance, if an AES implementation has S-boxes stored in program memory (prgmem),
they are included in the flash size, as they should be.

66

Figure 6-1: Arduino Uno RAM operation

Data

Free Memory

Stack

Heap

Low memory
(Starts at 0 bytes)

High memory
(Ends at 2048 bytes)

Understanding the RAM usage of a cryptographic primitive is vital to successfully

integrating it into an application.

I experimented with measuring stack usage in two ways: 1) (on board) measuring

the number of bytes between the bottom of the stack and the top of the heap and

2) measuring the stack height using the Avrora simulator [56] and stack monitoring

tool.

Method 1 made use of the following code snippet provided by [25]

// Measure distance between stack and heap

int freeRam ()

{

extern int __heap_start , *__brkval;

int v;

return (int) &v - (__brkval == 0 ? (int) &__heap_start :

(int) __brkval);

}

which reports the difference in bytes between the bottom of the stack and the top

of the heap (i.e., the Free Memory region in Figure 6-1). By sprinkling calls to

Serial.println(freeRAM()); throughout the code I was able to get an idea of the

67

RAM usage patterns throughout program execution. Knowing where to place the

calls required familiarity with the source code and the underlying encryption and

decryption algorithms. My recommendation for future developers trying to apply a

similar method would be to inspect a call-graph of the program’s execution in order

to understand where the stack usage will be the highest and thus where to place calls

to the freeRam() method.

For method 2, I measured stack consumption using the Avrora tool (version

1.7.117). Avrora is a simulation and analysis framework for AVR microcontrollers

created as a research project by the UCLA Compilers Group [56]. With the Avrora

tool, I can inspect the height of the stack during the program’s execution.

In a few preliminary trials, I was able to get very similar results using these

different methods. The results reported in the following section were taken using the

latter method. I chose the Avrora tool because it didn’t involve modifying the code

and produced results faster than method 1.

Runtime (cycle counts/cost)

Cycle count indicates the number of CPU clock cycles spent on executing a certain

routine. In this analysis, cost, which is the number of cycles it takes to transform one

byte of plaintext into one byte of ciphertext (or vice versa), is of specific interest. The

cycle count required to encrypt a byte of data determines what types of applications

can be supported by the cryptographic primitive. For instance, if the number of cycles

required to encrypt a byte of data is too large, real-time, high-throughput streaming

applications cannot be supported.

As with RAM usage, I considered measuring the cycle counts in two ways: 1) (on

board) estimating the ticks using the execution time of the encryption (or decryption)

routine and 2) using the Avrora simulator.

To find the cycle count using the first method, I first calculated execution time

using the millis function2 from the Arduino library. The function returns the number

2The Arduino library also includes a micros function that has a resolution of 4 microseconds. I
did not use the micros function because the measurements did not require this level of precision.

68

of milliseconds since the Arduino board began executing. The execution time is

computed as the absolute difference between the time returned by millis at the end

of the encryption or decryption operation and at the beginning. Execution time is

then multiplied by the clock speed to get an approximate cycle count.

The Avrora simulator can simply be set to display the number of cycles between

two instructions.

In a few trials, both methods reported nearly identical results. I present results

taken using the Avrora simulator method as it was the quicker of the two and did

not involve instrumenting the code.

Energy

Energy measures the number of joules consumed by the device during the execution of

a particular routine. In this analysis, I refer to energy as the number of micro-joules

per byte (µJ/byte) required to transform plaintext into ciphertext (or vice versa in

the case of decryption). Understanding energy consumption will allow developers to

predict the battery lifetime of their devices. For a tactical RT-PSM system that must

support data collection and transmission for a period of up to 7 days, understanding

energy consumption is of vital importance. I considered two options for measuring

power consumption.

The first option was to use a power-measurement board. In [26] the authors place

a 22-Ohm shunt resistor between the Vdd pin and the 5-volt power supply, set triggers

to indicate the start and end of the encryption routine. In that setup, the authors

average the results from the measurement board over many runs of the encryption

routine on randomly generated plaintext samples.

The second option is considerably easier, once again involving the Avrora tool.

The Avrora tool includes an energy analysis monitor that uses Olaf Landsiedel’s work

on AEON to accurately estimate the power consumption of the executing AVR code

[40]. I chose this option due to limited time and AEON’s reported success.

69

Rank

I adopted a generalized version of the performance metric, rank, used in [14]. The

metric is applicable to cryptographic routines implemented in software. A higher

rank value is better. The measure is proportional to throughput divided by memory

usage, and is given by:

rank =
c/(wc · cost)

1 + wf · flash + wr · RAM

where the weights, W = (wc, wf , wr), are the penalties given to cost, flash usage, and

RAM usage respectively, and c is a constant equal to 108. The constant c has units of

cycles and is used to ensure the overall rank metric is unitless and has a reasonable

magnitude. In “Simon and Speck Block Ciphers on AVR 8-bit Microcontrollers”.

Beaulieu et al. set wc = 1, wf = 1 and wr = 2 [14]. Setting wr > wf symbolizes

that on the device in question RAM is a more precious resource than flash. In

this analysis, I offer rank values for the following sets of weighs: Wcost = (2, 1, 1)

and WRAM = (1, 1, 2)3. Depending on the priorities of the application one mix of

parameters may yield a more relevant overall metric of performance than others.

Energy is not included in this metric because it can be inferred from cost. If power

consumption is the top concern, for instance, a proper setting of the parameters could

be W = (2, 1, 1).

6.2 Cipher Evaluation

In this section, I describe the results of testing 5 ciphers according the methodology

described in Section 6.1 in ECB and SIV mode for the ATmega328P. In the case of

cost and energy, each of the reported results were obtained by averaging the outcomes

of 100 measurement runs with random plaintext (or ciphertext) as input.

I did not implement all of the discussed ciphers from scratch since that was outside

3Wflash = (1, 2, 1) was not considered because on the ATmega328P the implementations were in
no way flash limited.

70

the scope of this research. In a few cases, I modified available existing implemen-

tations so that they worked with my implementation of SIV mode and built for the

ATmega328P. These ciphers have been studied on this platform in previous work, but

not under SIV mode or specifically in the context of an RT-PSM system [23, 14, 26].

There are many existing implementation of these ciphers. Some of them may have

better performance along one or more of the dimensions considered here. I believe,

however, that this framework should provide insight into how to think about choosing

lightweight cryptographic primitives for a RT-PSM system. If better implementations

are developed, they could be measured under this framework to better understand

the absolute performance values for these ciphers under SIV or other AEAD modes

of operation.

First I introduce the block ciphers I measured. Then, I present and discuss the

results of the benchmarks.

6.2.1 Ciphers Measured

This analysis evaluates the following ciphers in ECB and SIV modes:

Original Speck implementation (SPECK-OG)

This is my original implementation of the Speck cipher. The implementation

was developed with no optimizations to ensure correctness and built as a learn-

ing exercise to familiarize myself with the Speck cipher. I include it to provide

insight into how important the right implementation is for an application’s per-

formance. This implementation stores the key schedule in RAM. SPECK-OG is

not included in the performance graphs because it is not competitive with the

other ciphers.

Optimized Speck implementation (SPECK-OPT)

This is my optimized implementation of the Speck cipher (the optimizations

are described in Chapter 7). The implementation is a modified version of my

original Speck cipher that was changed to support the AUTOBAN reference

implementation’s streaming mode of operation. Like SPECK-OG, this implemen-

tation stores the key schedule in RAM.

71

Optimized Speck implementation using EEPROM (SPECK-EEPROM)

This implementation is identical to SPECK-OPT except that the key schedule is

expanded into EEPROM. EEPROM is flash memory on the ATmega328P that

allows byte-level reading and writing by the executing program. The EEPROM

memory is preserved when the board is turned off.

ASM Speck implementation (SPECK-ASM)

This is an assembly implementation of Speck taken from [58] that has been

optimized for the Arduino platform. It unrolls calls to the round function and

inlines function calls whenever possible. The key schedule is stored in RAM.

AES implementation (AES)

This is an implementation of AES also taken from [58] that has been optimized

for the Arduino platform. The static S-box tables and other similar constant

global variables have been placed into program memory in order to reduce RAM

usage.

For all ciphers, the code was written following the 128-bit key/128-bit block size

specifications for the cipher. AES was selected for two main reasons. First, it is

approved by the NSA and is the NIST and ISO/IEC standard cipher. Second, in

past benchmarks it was the closest competitor to Speck [23, 14].

6.2.2 Benchmarks and Discussion

Table 6.1 and Table 6.2 show the metrics for each cipher in ECB and SIV mode,

respectively. Both tables contain the results for the ciphers’ performance over 16

bytes of text input (and 16 bytes of header input in the case of SIV). The measures in

the SIV table also account for the MAC creation and verification routines. Figures 6-

2 and 6-3 show plots of the cost and RAM metrics. SPECK-OG is excluded from the

plots because it is not competitive with the other ciphers.

Among all of the block ciphers under my SIV implementation, SPECK-ASM ranks

in the top spot for both the cost-prioritized (W = (2, 1, 1)) and the RAM-prioritized

(W = (1, 1, 2)) settings of the weights. This was expected given the performance of

SIV mode is entirely dependent on the performance of the underlying block cipher

72

Figure 6-2: Charts of cipher performance in ECB mode (16 bytes)

0.0

200.0

400.0

600.0

800.0

1000.0

1200.0

1400.0
SP
EC
K-
O
PT

SP
EC
K-
EE
PR

O
M

SP
EC
K-
AS
M AE
S

Co
st
	(c
yc
le
s/
by
te
)

Encryption Decryption

(a) Encryption/decryption costs

0

20

40

60

80

100

120

140

160

180

200

SP
EC
K-
O
PT

SP
EC
K-
EE
PR

O
M

SP
EC
K-
AS
M AE
S

RA
M
	(b

yt
es
)

Encryption Decryption

(b) RAM usage of ciphers

Figure 6-3: Charts of cipher performance in SIV mode (16-byte message payload and
16-byte message header)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

SP
EC
K-
O
PT

SP
EC
K-
EE
PR

O
M

SP
EC
K-
AS
M AE
S

Co
st
	(c
yc
le
s/
by
te
)

Encryption	(and	MAC	creation) Decryption	(and	MAC	verification)

(a) Encryption/decryption costs

0

100

200

300

400

500

600

SP
EC
K-
O
PT

SP
EC
K-
EE
PR

O
M

SP
EC
K-
AS
M AE
S

RA
M
	(b

yt
es
)

Encryption	(and	MAC	creation) Decryption	(and	MAC	verfication)

(b) RAM usage of ciphers

73

Results using ECB mode (on 16 bytes)

Cipher Flash RAM Cost Energy Rank 1 Rank 2

(Bytes) (Bytes) (cycles/byte) (µJ/byte) (Wcost) (WRAM)

I: Encryption (no key schedule generation)

SPECK-ASM 998 159 169 0.5 448.8 255.2

SPECK-OPT 492 116 598 1.7 230.4 137.2

AES 2947 188 547 2.6 55.0 29.1

SPECK-EEPROM 2186 77 1055 3.2 40.5 20.9

SPECK-OG 1226 153 75777 214.8 0.9 0.5

II: Decryption (no key schedule generation)

SPECK-ASM 992 159 175 0.5 435.9 248.0

SPECK-OPT 432 116 647 1.8 232.5 140.8

SPECK-EEPROM 2246 77 1133 3.5 36.8 19.0

AES 2863 152 1154 3.1 27.4 14.4

SPECK-OG 1258 267 161316 457.7 0.3 0.2

III: Encryption and Decryption (including key schedule generation)

SPECK-ASM 1296 463 840 2.4 53.6 33.8

SPECK-OPT 1372 404 2099 6.0 21.8 13.4

SPECK-EEPROM 2650 156 3729 10.9 9.1 4.8

AES 3417 396 4517 14.7 5.3 2.9

SPECK-OG 2990 637 309742 878.9 0.08 0.0

Table 6.1: Cipher performance evaluation using ECB mode

and other benchmarking efforts (as mentioned in Chapter 4.3.6) found Speck to be

superior to AES in terms of flash, RAM, and cost [14, 23].

The results show that the top-ranked ciphers, SPECK-ASM, SPECK-OPT, and AES, are

very similar in terms of RAM usage, which makes flash and cost the primary factors

that determine the overall rank. As a result, the rank of AES is much lower, due to its

large flash size. A large flash size is not unique to the particular implementation of

AES I picked to benchmark. As confirmed by [23], AES implementations are larger

than Speck implementations, mostly due to the space required for the S-boxes4 and

the lookup tables for round constants.

4S-box entries are independent of any input, so implementations use pre-calculated forms if
enough memory is available. It is possible to implement versions of AES that compute the S-box
values during operation, trading flash for cost.

74

Results using SIV mode (on a 16-byte payload with a 16-byte header)

Cipher Flash RAM Cost Energy Rank 1 Rank 2

(Bytes) (Bytes) (cycles/byte) (µJ/byte) (Wcost) (WRAM)

I: Encryption and MAC creation (no key schedule generation)

SPECK-ASM 5256 407 3852 7.3 4.3 2.3

SPECK-OPT 4862 410 6055 26.5 2.9 1.6

AES 7161 507 6646 32.5 1.8 1.0

SPECK-EEPROM 6196 405 9236 31.1 1.5 0.8

SPECK-OG 4925 413 835412 3237.6 0.0 0.0

II: Decryption and MAC verification (no key schedule generation)

SPECK-ASM 5212 426 4784 7.7 3.4 1.9

SPECK-OPT 4892 429 6176 27.1 2.8 1.5

AES 7195 526 6759 32.49 1.8 1.0

SPECK-EEPROM 6198 386 9358 31.9 1.5 0.8

SPECK-OG 5007 431 835415.44 3238 0.0 0.0

III: Encryption and Decryption (including MAC steps and key schedule generation)

SPECK-ASM 6408 1112 10206 15.2 1.1 0.6

SPECK-OPT 5992 1018 13704 57.8 0.9 0.5

AES 8095 941 13649 78.9 0.7 0.4

SPECK-EEPROM 7270 520 1758591 67.8 0.0 0.0

SPECK-OG 6829 1317 1815879 6887 0.0 0.0

Table 6.2: Cipher performance evaluation using SIV mode

AES’s decrypt operation is much more expensive than its encrypt operation—twice

as expensive in terms of cost (see Figure 6-2a)—making it a less attractive candidate if

decryption is required. STMicroelectronics (ST), a multinational maker of embedded

hardware and software, shows similar speed differences with their AES implemen-

tations on one of their platforms [11]. Two of the key points of ST’s explanation

are:

• In AES block encryption, the MixColumns operation is easier to compute than

InvMixColumns (used for decryption) because it uses smaller coefficients (hard-

ware implementations can achieve the same number of cycles).

• And, in encryption, subkeys are used in the order they are produced, while in

decryption the order is reversed requiring preliminary work before decryption

75

Figure 6-4: Cycles required to generate the key schedule

11325

5574

1968

0

2000

4000

6000

8000

10000

12000

SPECK-OPT SPECK-ASM AES

Cy
cle

s

can begin.

Note, that with SIV mode, the underlying cipher’s decryption operation is not re-

quired. In SIV mode, the payload is encrypted in Counter mode. In Counter mode,

decryption uses the underlying block cipher’s encryption operation. Additionally, the

MAC creation and verification operations only require the cipher block encryption

method. This explains essentially the same encryption and decryption performance

in terms of cost for all the ciphers in SIV mode (see Figure 6-3a).

One area in which the AES cipher excels is key schedule generation. The chart in

Figure 6-4 shows the number of cycles required to generate the key schedule for the

top-3 ciphers. SPECK-OG and SPECK-EEPROM are omitted because they are not com-

petitive. SPECK-EEPROM performs the worst because it has to write the key schedule

into EEPROM. AES can generate its key schedule almost three times as fast as the

nearest competitor, SPECK-ASM. Naturally, AES performs better than the other ciphers

in benchmarks that do include the key schedule generation. While not the case for

the RT-PSM system considered in this thesis, if keys must be replaced often, AES

may be an attractive cipher option due to its fast key expansion.

A somewhat surprising result is that the closest AES competitor in terms of the

rank metrics is SPECK-EEPROM. SPECK-EEPROM’s slow key schedule generation removes

it from consideration in Scenario III (encryption, decryption, and key schedule gen-

eration), but in Scenarios I and II it is much more competitive. SPECK-EEPROM also

76

Figure 6-5: Cost of SIV encryption and MAC generation with respect to message size
(using a 16-byte header)

0.0

1,000.0

2,000.0

3,000.0

4,000.0

5,000.0

6,000.0

7,000.0

8,000.0

9,000.0

10,000.0

16 32 64 96 128

Co
st
	(c
yc
le
s/
by
te
)

Payload	Size	(bytes)

SPECK-OPT SPECK-EEPROM SPECK-ASM AES

competes closely with SPECK-OPT when RAM is more highly valued. Having the ex-

panded key schedule in RAM greatly increases throughput at the expense of RAM

use. SPECK-EEPROM performs poorly in Scenario III because it has a large key gen-

eration cost, since EEPROM writes are extremely slow—writing a single byte takes

3.3 ms to complete [6]. It’s worth noting that if the program attempts to read the

EEPROM memory before the writes have finished, the program will stall until the

memory is ready. This can significantly slow down the encryption or decryption rou-

tines immediately following a key setup routine. If an application uses a Flexible-Key

model, then storing the key schedule in EEPROM is probably not a good option5.

I also benchmarked the ciphers in SIV mode on 32, 64, 96, 128 bytes of input

(all using a 16-byte header) to simulate the effects of encrypting longer messages. As

expected the relative ordering of cipher performance did not differ much in any of

these cases from the 16-byte case. The results are shown in Figure 6-5. It’s clear that

cost goes down in SIV mode with respect to payload size. This is due to the constant

5Using a version of Speck that expands the key schedule in-line with the each encryption and
decryption operation might work well.

77

amount of work needed to produce the message tag from the 16-byte message header.

This indicates that depending on power constraints the payload size of streaming-type

messages could be increased to reduce average encryption costs. If authentication,

ciphertext integrity, and message header integrity are not required, tag generation

overhead could be avoided altogether by just running the cipher in Counter mode.

As mentioned earlier, the reported cost metrics are the averages of 100 runs on

random plaintext (or ciphertext) input.6 The variance in the measurements was low:

for all of the reported cost metrics, the 95% confidence interval has a width of 2

cycles/byte or less.

6In SIV mode the message header remained constant. In SIV mode and ECB mode, the keys
remained the same.

78

Chapter 7

Optimizing and Securing the

AUTOBAN Implementation

In this chapter, I cover some of details of my development process. First, Section 7.1

describes the steps I followed to improve the performance of my initial Speck-SIV

implementation. Next, Section 7.2 details techniques I used to ensure the correctness

and security of my implementation of Speck-SIV.

7.1 Performance Optimizations

In this section, I discuss how I improved my initial implementation of the underlying

Speck cipher (SPECK-OG). This section aims to aid future developers in diagnosing and

resolving performance bottlenecks in cryptographic libraries for embedded devices

that support proof-of-concept applications like the AUTOBAN application described

in Chapter 5.

If the aim is to produce a production quality cryptographic library, however, the

following set of guidelines, similar to those discussed in [26], should be followed:

• The cryptographic library should be written in assembly in a single file and

clearly commented. To this end, the developer should be familiar with the in-

struction set provided by her device. For instance, the ATtiny45 from Atmel’s

AVR family has a reduced instruction set that does not provide a hardware mul-

79

tiply. This means that the SPECK-ASM implementation used in the benchmark

would not run on that device.

• The encryption and decryption processes should operate on text in memory—

ideally in registers. The resulting ciphertext or plaintext should overwrite the

passed in plaintext or ciphertext at the end of the process.

• The developer should understand the needs of her application in terms of flash,

RAM, cost, and energy, and use a framework similar to the one presented in

Section 6.1 to evaluate and select an optimal implementation. It is difficult to

optimize for these metrics simultaneously and a developer should be open to

making trade-offs.

• If necessary, in order to minimize data and memory usage, the key schedule

should be precomputed and stored in flash or computed “on-the-fly” during

encryption and decryption.

• If key flexibility is required, an interface for setting and securely erasing a key

should be exposed.

Returning to the task of building cryptographic primitives to support proof-of-

concept applications, as can be seen in the benchmark results in Table 6.2, SPECK-OG

has multiple orders of magnitude worse performance than my optimized implemen-

tation, SPECK-OPT. This for the most part is due to a ByteArray class I used to hide

the details of the bit arithmetic and logic on the 128-bit blocks. This choice was

made to avoid confusion when initially implementing the algorithm. Speck uses the

following operations on 128-bit words: bitwise XOR, bitwise AND, left circular shift,

right circular shift, and modular addition (for more information on Speck see [13]).

The initial ByteArray class provided extremely inefficient implementations of these

operations. Further, the ByteArray object did not perform these operations in place.

The ByteArray class also stored the underlying data in an array of uint8 ts in order

to prevent extra work dealing with byte order differences between the network inter-

face and the microcontroller. For all its inefficiencies, the ByteArray class allowed

me to rapidly prototype a working implementation. The need to optimize SPECK-OG

was born out of the AUTOBAN proof-of-concept application’s streaming use case.

80

SPECK-OG did not allow for an acceptable level of throughput, as evidenced by the

extremely large cost in Table 6.2. The application uses 128-Hz ECG data, and

no reasonable message batch size I tried could transmit in real-time with SPECK-OG

encrypting the batches.

The first step in producing a cipher with a lower cost was to understand where

SPECK-OG was spending its cycles. For this I used Avrora in combination with GDB.

This revealed that nearly all of the execution time was spent shifting. Speck requires

circular shift operations by α and β amounts, where α = 8 and β = 3 for the 128-bit

block and 128-bit key version of the cipher. The ByteArray class included left and

right shifts by 1. To shift by α or β, SPECK-OG looped over the shift-by-1 routines.1

Creating more efficient shifting operations specific to α and β, yielded a 10x speed-

up—better, but still 2 orders of magnitude away from the assembly version SPECK-ASM

and still not capable of supporting ECG streaming.

The next step was actually a large leap. More comfortable with the Speck encryp-

tion and decryption routines, I eliminated the cipher’s dependency on the ByteArray

class altogether and implemented the encryption and decryption round routines as

single-line macros. This provided a 500x speedup over SPECK-OG bringing it within

a factor of 3 of SPECK-ASM. Instead of using bytes (uint8 ts) like the ByteArray

class the macros used uint64 ts. On the ATmega328P shifting uint64 ts requires a

function call, which explains some of the factor of 3 difference between this optimized

version and SPECK-ASM.

The last step was to improve SIV mode which still made use of the ByteArray

class. I rewrote the ByteArray class to operate in place and changed it to use

uint64 ts as the underlying data type. To resolve the issue with the byte order,

I opted for a less than ideal solution: using a flip operation on each of the two

uint64 t values making up the 128-bit value when instantiating a ByteArray. A

flip operation requires 6 shift operations, resulting in 12 total function calls when

creating a ByteArray object. In spite of this, the new ByteArray class yielded a

significant speedup over the existing one. In order to improve the implementation

1Circular shifts were built on top of these standard shift operations.

81

further, I could remove the need for the ByteArray class completely.

Optimizations complete, the fruits of my labor yielded a cipher competitive with a

heavily optimized implementation of AES for ATmega328P, AES. To the original goal,

the optimizations more than supported the throughput required for ECG stream-

ing. Tables 6.1 and 6.2, highlight the results of the changes between SPECK-OG and

SPECK-OPT.

7.2 Correctness and Security Tests

In this section, I detail the steps I followed to increase my confidence that the code

I developed is correct and secure. It is well known that writing cryptographic code

is full of perils. The simplicity of Speck and SIV mode made writing the code much

simpler than other alternative ciphers and AEAD modes. For instance, Speck has no

key-dependent values used for equality checking, branching, or table lookup. Addi-

tionally, my Speck and SIV implementations avoid using any dynamically allocated

memory, reducing the chance for possible bugs. Nonetheless, I used the coding rules

summarized in [9] to ensure security and to avoid common pitfalls.

Correctness. After finishing initial development, I tested my implementation of

Speck with the test vectors given in [13]. I also encrypted random plaintext with

my implementation and decrypted the results using other Speck implementations (I

performed 1000 rounds of tests using the Speck implementations available through

ArduinoLibs’s cryptographic library [58]). I did the same in reverse to check decryp-

tion.

Security. To make sure that my implementation did not have any major security

flaws, I ran it through two static evaluators for AVR builds: CppChecker (1.73) and

Naggy (0.4.0) [10, 51]. The checkers revealed a few bad coding practices, which I

resolved, but no major security issues. I also applied Valgrind’s (3.11.0) Memcheck

tool to check for memory errors (e.g., valgrind --leak-check=yes --show-leak-

kinds=all bin/speck-siv-tests) and Clang’s (3.4) AddressSanitizer to bounds

82

check on stack objects (e.g., compiled the test code with the -fsanitize=address

-mllvm -asan-stack flags). While both of these last two methods operated on

x86 builds, they each returned 0 errors and 0 warnings, giving me confidence in the

correctness and security of my implementation. The checkers are not foolproof and

the code needs to reviewed by people with experience writing secure libraries.

One issue I corrected in my SIV implementation was the memcmp used in the

MAC verification step. Originally, the MAC verification step lacked a secure memcmp

function [3]. In the MAC verification step, the tag generated from the decrypted

ciphertext and header is compared against the tag provided. In order to be secure

and avoid leaking information, the comparison between the tags should return in a

constant amount of time regardless of what byte the comparison may fail on. The

first implementation of memcmp that was used to compare the tags returned as soon as

a difference was detected. This could potentially leak information to an attacker. In

the AUTOBAN proof-of-concept implementation, however, it does not matter. When

MAC verification fails on a message, the device will not respond, thus not leaking

any information regardless of how long it takes to verify that the message is invalid.

83

THIS PAGE INTENTIONALLY LEFT BLANK

84

Chapter 8

Conclusion and Future Work

Low-power computing devices and wireless transceivers have enabled real-time mon-

itoring of physiological data through the creation of cheap, long-lasting components.

Real-time monitoring of physiological data through an RT-PSM system can improve

the health and readiness of both combat and noncombat military personnel, and can

increase the situational awareness of squad leaders by providing information relevant

for mission planning. The security of tactical RT-PSM systems warrants concern

because a tactical RT-PSM system would necessarily exchange sensitive health infor-

mation and data relevant to mission planning in a battlefield setting. Furthermore,

allowing an adversary to inject messages would lead to confusion and to the deterio-

ration of the system’s availability, trustworthiness, and overall utility.

In this thesis, I have presented analysis techniques to aid the development of

secure RT-PSM systems and demonstrated the application of these techniques by

creating a secure proof-of-concept RT-PSM system implementation. In Chapter 3,

I provided an adversarial model and methodology for analyzing threats against a

generalized tactical RT-PSM system, which is detailed in Chapter 2. I considered the

impact from loss of data confidentiality, integrity, and availability on the RT-PSM

system from a variety of attacks that can be leveraged by adversaries ranging from

script kiddies to nation states. Informed by this analysis and the derived top threats,

in Chapter 4, I presented a set of security requirements and recommendations for

enhancing the privacy and security of RT-PSM systems. Those requirements are:

85

• Data integrity: Data in transit between a hub and an EUD should not be

corrupted or modified without the ability for detection.

• Authentication and Authorization: Components should be able to verify that a

particular entity (or group of entities) created a message.

• Data confidentiality: Data should be readable only by authorized components

of the RT-PSM system.

• Data freshness: Hubs and EUDs should be able to confirm that a message is

recent and has not been sent before.

• Software integrity: RT-PSM systems should use code signing or other methods

of checking software integrity to ensure that software placed on hubs and EUDs

has not been tampered with to leak data or provide incorrect information to

the squad leader.

The constrained nature of the components that make up a tactical RT-PSM system,

in terms of power-budget, memory, and computational power, made the selection of

mechanisms to fulfill these requirements a major challenge. Comparing alternatives,

I devised a system centered around the Speck cipher and SIV mode (Speck-SIV), an

efficient, symmetric-key based authenticated encryption mode, that achieves these

requirements while supporting the system’s original goal of improving the health of

resilience of military personnel. Using Speck-SIV, in Chapter 5, I showed a functional

proof-of-concept RT-PSM system capable of defending against the top passive and

active threats identified in Chapter 3. I evaluated the performance of the crypto-

graphic primitives in Chapter 6, showing that the performance of the Speck cipher

is superior to the performance of the AES cipher with respect to RT-PSM systems.

Lastly, in Chapter 7, I provided an overview of the development process and my

methods of ensuring correctness and security of my implementation of Speck-SIV.

While the proof-of-concept system can successfully defend against most of the top

threats, several other areas require further research to build a truly secure RT-PSM

system.

Encrypting Data at Rest. In the OBAN tactical RT-PSM system, hub devices

store unencrypted sensor data on an SD cards for post-mission analysis. If a hub

86

device is captured, that data can easily be extracted. For future work, it would be

helpful to explore options for encrypting data at rest. Unfortunately, any crypto-

graphic keying material also needs to be stored in memory, so, even if the senor data

is encrypted, the key could be used to decrypt it. Future work should also focus on

how to securely erase a key when a device is lost or captured.

Software Integrity Checking. One of the remaining security requirements

is software integrity checking. For the Android application running on the leader’s

display device, Android Studio [1] or the jarsigner command line tool [5] can be used

for signing and verifying. For the code running on the hub devices, it is more difficult.

In order to detect software integrity violations in the field, Remote Attestation is

needed. Remote Attestation is a security service that would allow a trusted party

to ascertain the software integrity of an untrusted hub device. Some minimalist

strategies (and a good summary of existing techniques) is presented in [29].

Supporting Dynamic Groups and Re-keying. Some tactical RT-PSM system

applications may require dynamic groups or transmit data sensitive enough to warrant

changing the keying material in the field. Further research into key distribution

is needed. There are some promising techniques that rely on the RT-PSM system

features mentioned in Chapter 4.2, such a distance bounding authentication [50].

Transmission vs. Compression Trade-off. In SPINS, Perrig et al. note that

most of the energy overhead from adding security protocols to sensor networks arises

not from the additional computational costs but rather from the increased data

transmission [44]. The Speck-SIV implementation only adds a 16-byte message tag.

Nonetheless, it would be beneficial to understand the energy characteristics of in-

creased data transmission. Specifically, it would be interesting to understand the

energy and time tradeoffs between sending data normally and compressing the data

before sending.

In summary, I analyzed threats to a tactical RT-PSM system and used those

threats to derive requirements that informed the development of a secure proof-of-

concept RT-PSM system called AUTOBAN. The hope is that the combination of

analysis techniques, security building blocks, and development practices I applied

87

will foster the creation of secure RT-PSM systems. While this work was performed

in the context of an RT-PSM system, many of the results generalize to the broader

BAN and Internet of Things (IoT) spaces where sensitive information is collected and

transmitted by networks of low-power, computationally-limited devices.

88

Bibliography

[1] Android studio: The official IDE for Android. [Online]. Available: https:
//developer.android.com/studio/index.html

[2] Authenticated encryption. [Online]. Available: https://en.wikipedia.org/wiki/
Authenticated encryption

[3] AVR Libc <string.h>: Strings. [Online]. Avail-
able: http://www.nongnu.org/avr-libc/user-manual/group avr string.html#
ga4cd54dc9109f0d3da49d9c35e6441b61

[4] “IEEE p1363.2: Standard specifications for password-based public-key
cryptographic techniques.” [Online]. Available: http://grouper.ieee.org/groups/
1363/passwdPK/draft.html

[5] jarsigner. [Online]. Available: http://docs.oracle.com/javase/7/docs/technotes/
tools/windows/jarsigner.html

[6] (2012, jan) Arduino - EEPROMWrite. [Online]. Available: https://www.
arduino.cc/en/Reference/EEPROMWrite

[7] (2012) Tech notes: Lincoln open cryptographic key management architecture.
https://www.ll.mit.edu/publications/technotes/TechNote LOCKMA.pdf.

[8] DoD, Resilient Military Systems and the Advanced Cyber Threat. Defense
Science Board Washington DC, 2013. [Online]. Available: http://www.acq.osd.
mil/dsb/reports/ResilientMilitarySystems.CyberThreat.pdf

[9] (2014, dec) Coding rules. [Online]. Available: https://cryptocoding.net/index.
php/Coding rules

[10] (2016, jan) Cppcheck: A tool for static C/C++ code analysis. [Online].
Available: http://cppcheck.sourceforge.net

[11] (2016, jan) Um0586 user manual : STM32 cryptographic library. [Online]. Avail-
able: http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/
PF259409

[12] S. Adams. (2016, feb) Dilbert: Sunday February 28, 2016. [Online]. Available:
http://dilbert.com/strip/2016-02-28

89

https://developer.android.com/studio/index.html
https://developer.android.com/studio/index.html
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html#ga4cd54dc9109f0d3da49d9c35e6441b61
http://www.nongnu.org/avr-libc/user-manual/group__avr__string.html#ga4cd54dc9109f0d3da49d9c35e6441b61
http://grouper.ieee.org/groups/1363/passwdPK/draft.html
http://grouper.ieee.org/groups/1363/passwdPK/draft.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jarsigner.html
https://www.arduino.cc/en/Reference/EEPROMWrite
https://www.arduino.cc/en/Reference/EEPROMWrite
https://www.ll.mit.edu/publications/technotes/TechNote_LOCKMA.pdf
http://www.acq.osd.mil/dsb/reports/ResilientMilitarySystems.CyberThreat.pdf
http://www.acq.osd.mil/dsb/reports/ResilientMilitarySystems.CyberThreat.pdf
https://cryptocoding.net/index.php/Coding_rules
https://cryptocoding.net/index.php/Coding_rules
http://cppcheck.sourceforge.net
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF259409
http://www.st.com/web/catalog/tools/FM147/CL1794/SC961/SS1743/PF259409
http://dilbert.com/strip/2016-02-28

[13] R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and
L. Wingers, “The SIMON and SPECK families of lightweight block ciphers,”
Cryptology ePrint Archive, Report 2013/404, 2013. [Online]. Available:
http://eprint.iacr.org/

[14] ——, “The SIMON and SPECK block ciphers on AVR 8-bit microcontrollers,”
Cryptology ePrint Archive, Report 2014/947, 2014, http://eprint.iacr.org/.

[15] ——, “SIMON and SPECK: Block ciphers for the internet of things,” Cryptology
ePrint Archive, Report 2015/585, 2015.

[16] M. Bellare, P. Rogaway, and D. Wagner, “EAX: A conventional authenticated-
encryption mode,” Cryptology ePrint Archive, Report 2003/069, 2003, http:
//eprint.iacr.org/.

[17] M. Bellare, J. Kilian, and P. Rogaway, “The security of the cipher block chaining
message authentication code,” J. Comput. Syst. Sci., vol. 61, no. 3, pp. 362–399,
Dec. 2000. [Online]. Available: http://dx.doi.org/10.1006/jcss.1999.1694

[18] M. Bellare and P. Rogaway, Introduction to Modern Cryptography, 2005, ch. 3.
[Online]. Available: http://web.cs.ucdavis.edu/∼rogaway/classes/227/spring05/
book/main.pdf

[19] J. Biddle, D. Brigada, A. Lapadula, M. Buller, and S. Mullen, “Oban: An
open architecture prototype for a tactical body sensor network,” in Body Sensor
Networks (BSN), 2013 IEEE International Conference on, May 2013, pp. 1–6.

[20] D. A. Brock and P. D. Horoho, “Army medicine 2020 campaign plan,” Tech.
Rep., 2013. [Online]. Available: https://ameddciviliancorps.amedd.army.mil/
CivilianCorps.aspx?ID=b2c81aa1-4d69-4219-a74d-90d5bcbfffbf

[21] W. Burleson, S. Clark, B. Ransford, and K. Fu, “Design challenges for secure
implantable medical devices,” in Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, June 2012, pp. 12–17.

[22] J. Daemen and V. Rijmen, “AES proposal: Rijndael,” Tech. Rep., 1999.

[23] D. Dinu, Y. L. Corre, D. Khovratovich, L. Perrin, J. Groschdl, and A. Biryukov,
“Triathlon of lightweight block ciphers for the internet of things,” Cryptology
ePrint Archive, Report 2015/209, 2015, http://eprint.iacr.org/.

[24] M. J. Dworkin, “SP 800-38b. recommendation for block cipher modes of opera-
tion: The CMAC mode for authentication,” Gaithersburg, MD, United States,
Tech. Rep., 2005.

[25] B. Earl. (2015, nov) Measuring memory usage. [Online]. Available: https:
//learn.adafruit.com/memories-of-an-arduino/measuring-free-memory

90

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dx.doi.org/10.1006/jcss.1999.1694
http://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
http://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://ameddciviliancorps.amedd.army.mil/CivilianCorps.aspx?ID=b2c81aa1-4d69-4219-a74d-90d5bcbfffbf
https://ameddciviliancorps.amedd.army.mil/CivilianCorps.aspx?ID=b2c81aa1-4d69-4219-a74d-90d5bcbfffbf
http://eprint.iacr.org/
https://learn.adafruit.com/memories-of-an-arduino/measuring-free-memory
https://learn.adafruit.com/memories-of-an-arduino/measuring-free-memory

[26] T. Eisenbarth, Z. Gong, T. Güneysu, S. Heyse, S. Indesteege, S. Kerckhof,
F. Koeune, T. Nad, T. Plos, F. Regazzoni, F.-X. Standaert, and
L. van Oldeneel tot Oldenzeel, Progress in Cryptology - AFRICACRYPT
2012: 5th International Conference on Cryptology in Africa, Ifrance,
Morocco, July 10-12, 2012. Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, ch. Compact Implementation and Performance Evaluation
of Block Ciphers in ATtiny Devices, pp. 172–187. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-31410-0 11

[27] T. Eisenbarth, S. Kumar, C. Paar, A. Poschmann, and L. Uhsadel,
“A survey of lightweight-cryptography implementations,” IEEE Des. Test,
vol. 24, no. 6, pp. 522–533, Nov. 2007. [Online]. Available: http:
//dx.doi.org/10.1109/MDT.2007.178

[28] D. J. Elaine Barker and M. Smid, “NIST special publication 800-56a:
Recommendation for pair-wise key establishment schemes using discrete
logarithm cryptography,” NIST, Tech. Rep., 2007. [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-56Arev1 3-8-07.pdf

[29] A. Francillon, Q. Nguyen, K. B. Rasmussen, and G. Tsudik, “A minimalist
approach to remote attestation,” in Proceedings of the Conference on Design,
Automation & Test in Europe, ser. DATE ’14. 3001 Leuven, Belgium, Belgium:
European Design and Automation Association, 2014, pp. 244:1–244:6. [Online].
Available: http://dl.acm.org/citation.cfm?id=2616606.2616905

[30] P. C.-G. Francisco Martn-Fernndez and C. Caballero-Gil, “Authentication based
on non-interactive zero-knowledge proofs for the internet of things,” Sensors, jan
2016.

[31] K. Fu and J. Blum, “Controlling for cybersecurity risks of medical device
software,” Commun. ACM, vol. 56, no. 10, pp. 35–37, Oct. 2013. [Online].
Available: http://doi.acm.org/10.1145/2508701

[32] O. Goldreich, S. Goldwasser, and S. Micali, “How to construct random
functions,” J. ACM, vol. 33, no. 4, pp. 792–807, Aug. 1986. [Online]. Available:
http://doi.acm.org/10.1145/6490.6503

[33] V. Grosso, G. Leurent, F.-X. Standaert, and K. Varıcı, “LS-Designs: Bitslice
Encryption for Efficient Masked Software Implementations,” in Fast Software
Encryption - FSE 2014, Londres, United Kingdom, Mar. 2014. [Online].
Available: https://hal.inria.fr/hal-01093491

[34] J. Haigh and C. Landwehr, “Building code for medical device software security,”
2015. [Online]. Available: http://cybersecurity.ieee.org/images/files/images/
pdf/building-code-for-medica-device-software-security.pdf

[35] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend,
W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers and implantable

91

http://dx.doi.org/10.1007/978-3-642-31410-0_11
http://dx.doi.org/10.1109/MDT.2007.178
http://dx.doi.org/10.1109/MDT.2007.178
http://csrc.nist.gov/groups/ST/toolkit/documents/SP800-56Arev1_3-8-07.pdf
http://dl.acm.org/citation.cfm?id=2616606.2616905
http://doi.acm.org/10.1145/2508701
http://doi.acm.org/10.1145/6490.6503
https://hal.inria.fr/hal-01093491
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf
http://cybersecurity.ieee.org/images/files/images/pdf/building-code-for-medica-device-software-security.pdf

cardiac defibrillators: Software radio attacks and zero-power defenses,” in
Proceedings of the 2008 IEEE Symposium on Security and Privacy, ser. SP ’08.
Washington, DC, USA: IEEE Computer Society, 2008, pp. 129–142. [Online].
Available: http://dx.doi.org/10.1109/SP.2008.31

[36] D. Harkins, “RFC 5297: Synthetic initialization vector (SIV) authenticated
encryption using the advanced encryption standard (AES),” IETF, Tech. Rep.,
2008. [Online]. Available: https://tools.ietf.org/html/rfc5297

[37] T. Iwata and K. Yasuda, Fast Software Encryption: 16th International
Workshop, FSE 2009 Leuven, Belgium, February 22-25, 2009 Revised Selected
Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, ch. HBS: A
Single-Key Mode of Operation for Deterministic Authenticated Encryption, pp.
394–415. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03317-9 24

[38] ——, Selected Areas in Cryptography: 16th Annual International Workshop, SAC
2009, Calgary, Alberta, Canada, August 13-14, 2009, Revised Selected Papers.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, ch. BTM: A Single-Key,
Inverse-Cipher-Free Mode for Deterministic Authenticated Encryption, pp.
313–330. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-05445-7 20

[39] C. F. Kerry and P. D. Gallagher, “FIPS PUB 186-4. digital signature standard,”
Gaithersburg, MD, United States, Tech. Rep., 2013.

[40] O. Landsiedel, K. Wehrle, and S. Gotz, “Accurate prediction of power
consumption in sensor networks,” in Proceedings of the 2Nd IEEE
Workshop on Embedded Networked Sensors, ser. EmNets ’05. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 37–44. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251990.1253399

[41] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, Ambient Intelligence.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, ch. TinyOS: An
Operating System for Sensor Networks, pp. 115–148. [Online]. Available:
http://dx.doi.org/10.1007/3-540-27139-2 7

[42] A. Moradi, A. Poschmann, S. Ling, C. Paar, and H. Wang, “Pushing the
limits: A very compact and a threshold implementation of AES,” in Advances
in Cryptology EUROCRYPT 2011, ser. Lecture Notes in Computer Science,
K. Paterson, Ed. Springer Berlin Heidelberg, 2011, vol. 6632, pp. 69–88.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-20465-4 6

[43] I. of Medicine (US) Committee on Metabolic Monitoring for Military Field Ap-
plications, “Monitoring metabolic status: Predicting decrements in physiological
and cognitive performance.” The National Academies, Tech. Rep., 2004.

92

http://dx.doi.org/10.1109/SP.2008.31
https://tools.ietf.org/html/rfc5297
http://dx.doi.org/10.1007/978-3-642-03317-9_24
http://dx.doi.org/10.1007/978-3-642-05445-7_20
http://dl.acm.org/citation.cfm?id=1251990.1253399
http://dx.doi.org/10.1007/3-540-27139-2_7
http://dx.doi.org/10.1007/978-3-642-20465-4_6

[44] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “SPINS:
Security protocols for sensor networks,” Secaucus, NJ, USA, pp. 521–534, Sep.
2002. [Online]. Available: http://dx.doi.org/10.1023/A:1016598314198

[45] J. Radcliffe. (2011, aug) Hacking medical devices for fun and insulin: Breaking
the human SCADA system. [Online]. Available: http://www.airspayce.com/
mikem/arduino/RadioHead/

[46] R. L. Rivest, Fast Software Encryption: Second International Workshop Leuven,
Belgium, December 14–16, 1994 Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1995, ch. The RC5 encryption algorithm, pp. 86–96. [Online].
Available: http://dx.doi.org/10.1007/3-540-60590-8 7

[47] M. Robshaw, “Stream ciphers: RSA laboratories technical report tr-701,” RSA
Laboratories 100 Marine Parkway Redwood City , CA 94065-1031, Tech. Rep.,
jul 1995. [Online]. Available: ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf

[48] P. Rogaway and T. Shrimpton, “The SIV mode of operation for deterministic
authenticated-encryption (key wrap) and misuse resistant nonce-based
authenticated-encryption,” 2007. [Online]. Available: http://csrc.nist.gov/
groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf

[49] R. S. Ross, SP 800-30 Rev 1, Guide for Conducting Risk Assessments. Gaithers-
burg, MD, United States: National Institute of Standards & Technology, 2012.

[50] M. Rushanan, A. Rubin, D. Kune, and C. Swanson, “SoK: security and privacy in
implantable medical devices and body area networks.” Johns Hopkins University,
Computer Science, Baltimore, MD, USA, 1466, 2014.

[51] S. K. Selvaraj. (2015, nov) Naggy: A live compiler diagnostics extension for
atmel studio. [Online]. Available: https://github.com/saaadhu/naggy

[52] D. Singelée, S. Seys, L. Batina, and I. Verbauwhede, “The energy budget for
wireless security: Extended version,” IACR Cryptology ePrint Archive, vol.
2015, p. 1029, 2015. [Online]. Available: http://eprint.iacr.org/2015/1029

[53] W. Stallings, Cryptography and Network Security: Principles and Practice,
3rd ed. Pearson Education, 2002.

[54] T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi, Selected Areas
in Cryptography: 19th International Conference, SAC 2012, Windsor,
ON, Canada, August 15-16, 2012, Revised Selected Papers. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, ch. TWINE: A Lightweight
Block Cipher for Multiple Platforms, pp. 339–354. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-35999-6 22

[55] W. Tharion, A. Potter, C. Duhamel, A. Karis, M. Buller, and R. Hoyt,
“Real-time physiological monitoring while encapsulated in personal protective

93

http://dx.doi.org/10.1023/A:1016598314198
http://www.airspayce.com/mikem/arduino/RadioHead/
http://www.airspayce.com/mikem/arduino/RadioHead/
http://dx.doi.org/10.1007/3-540-60590-8_7
ftp://ftp.rsasecurity.com/pub/pdfs/tr701.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/siv/siv.pdf
https://github.com/saaadhu/naggy
http://eprint.iacr.org/2015/1029
http://dx.doi.org/10.1007/978-3-642-35999-6_22

equipment,” Journal of Sport and Human Performance, vol. 1, no. 4, 2013.
[Online]. Available: https://journals.tdl.org/jhp/index.php/JHP/article/view/
jshp.0030.2013

[56] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: scalable sensor network
simulation with precise timing,” in IPSN 2005. Fourth International Symposium
on Information Processing in Sensor Networks, 2005., April 2005, pp. 477–482.

[57] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security: Limits and
opportunities in the internet of things,” IEEE Security Privacy, vol. 13, no. 1,
pp. 14–21, Jan 2015.

[58] R. Weatherley. (2016, mar) ArduinoLibs: Cryptographic library. [Online].
Available: https://rweather.github.io/arduinolibs/crypto.html

[59] D. Wheeler and R. Needham, “TEA, a tiny encryption algorithm.” Springer-
Verlag, 1995, pp. 97–110.

[60] W. Wu and L. Zhang, Applied Cryptography and Network Security: 9th
International Conference, ACNS 2011, Nerja, Spain, June 7-10, 2011.
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, ch.
LBlock: A Lightweight Block Cipher, pp. 327–344. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21554-4 19

94

https://journals.tdl.org/jhp/index.php/JHP/article/view/jshp.0030.2013
https://journals.tdl.org/jhp/index.php/JHP/article/view/jshp.0030.2013
https://rweather.github.io/arduinolibs/crypto.html
http://dx.doi.org/10.1007/978-3-642-21554-4_19

	Introduction
	Real-Time Physiological Status Monitoring System Fundamentals
	Core Components
	Use Cases

	Threat Analysis
	Analysis Methodology
	Adversarial Model
	Threats and Impact
	Top Ranked Threats

	Building a Secure rtpsm System
	Requirements for a Secure rtpsm System
	Existing Techniques
	Selecting Security Building Blocks

	AUTOBAN Proof-of-concept Implementation
	Implementation Components
	Cryptographic Library
	End-to-end AUTOBAN Demonstration

	Performance Evaluation
	Evaluation Methodology
	Cipher Evaluation

	Optimizing and Securing the AUTOBAN Implementation
	Performance Optimizations
	Correctness and Security Tests

	Conclusion and Future Work

