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Abstract

Duggan et al.[5] have created a reference implementation of the BigDAWG system:
a new architecture for future Big Data applications, guided by the philosophy that
“one size does not fit all”. Such applications not only call for large-scale analytics,
but also for real-time streaming support, smaller analytics at interactive speeds, data
visualization, and cross-storage-system queries. The importance and effectiveness of
such a system has been demonstrated in a hospital application using data from an
intensive care unit (ICU).

In this report, we implement and evaluate a concrete version of a cross-system
Query Executor and its interface with a cross-system Query Planner. In particular,
we focus on cross-engine shuffle joins within the BigDAWG system.
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Chapter 1

Introduction

The recent trend of development within the database community has been towards

a proliferation of data models and data management systems, many targeted for a

well-defined vertical market [2, 10]. Relational column stores are poised to take over

the data warehouse market. High-throughput OLTP workloads are largely moving to

main-memory SQL systems. There has been an explosion of NoSQL engines exploiting

a range of data models (typically operating on flexible storage formats such as JSON).

OLTP and stream processing engines are poised to satisfy the need for real-time

stream processing and analytics for the internet of things. Because they are orders

of magnitude faster for their specialized data models than other database systems,

these specialized systems exemplify the adage that “one size does not fit all” for data

management solutions[15].

It is not uncommon to see applications that take advantage of more than one

of these systems to support their complex workloads. For example, such an infras-

tructure can be designed around MIMIC II[14], a publicly available dataset covering

26,000 intensive care unit admissions at Boston’s Beth Israel Deaconess Hospital. This

dataset includes waveform data (up to 125 Hz measurements from bedside devices),

patient demographic information (name, age, etc.), doctor’s and nurse’s notes (raw

text), clinic reports and lab results, and prescriptions filled (semi-structured data).

In a real-world system, it would be prudent to split the waveform data even further

into real-time streams and historic archive data, for both storage and compression
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reasons, as well as the ability to have precomputed relevant analytics for faster access.

Given the variety of data sources, this system must support a cornucopia of data

types and access methods – ranging from standard SQL (e.g., how many patients were

given a particular drug), to complex analytics (e.g., computing the FFT of a patient’s

realtime waveform data and comparing it to the historic “normal”), and even text

search (e.g., finding patients who responded well to a particular treatment).

Our reference implementation of the system uses SciDB[16] to store MIMIC II’s

time series data, Accumulo[1] to store text, and Postgres[17] to store patient infor-

mation. The nature of these independent systems with correlated data implies that

there will be queries that span two or more storage engines. For example, to locate

the diagnoses of patients with irregular heart rhythms, one would query SciDB and

Postgres. To find doctor’s notes associated with a prescription drug, one would query

Accumulo and Postgres. To run analytics on particular cohorts of patients, one would

query Postgres and SciDB.

It is clear that a system designed to coordinate several distinct database engines

will be required in a myriad of future applications, especially those that are broad in

scope like MIMIC II. The concept of such a polystore federation has been discussed in

the BigDAWG project[7, 5], and a concrete implementation of the BigDAWG system’s

Query Executor module is detailed in this report.
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Chapter 2

Background

In this chapter, we introduce the basic concepts and structure of the BigDAWG

system. We begin with an overview of its data storage and representation model.

Next, we will explore an overview of the modules that allow BigDAWG to operate on

these underlying data models.

The chapter concludes with a look at the challenges and opportunities presented

by skew when attempting to execute queries on the underlying data.

2.1 BigDAWG System Architecture

The BigDAWG system is designed to offer users an interface that is agnostic to the

location of data, so that users are able to interface with the underlying database

engines while not being hampered by the specifics of which data is located on which

engine. BigDAWG utilizes the concept of islands of information to support this idea.

Each island serves as an abstraction for a federated system consisting of multiple

database engines. Islands include a query language, data model, and mechanisms for

interacting with the federated storage engines. Users are able to run queries against

islands without requiring any knowledge of the underlying engines, and BigDAWG is

responsible for performing them seamlessly. Users can also write queries that explic-

itly convert data from one Island to another, and BigDAWG handles the conversion

as necessary.
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2.1.1 System Modules

The BigDAWG system has four core modules: the Query Planner, the Performance

Monitor, the Data Migration and the Query Executor (see Figure 2-1 for the organi-

zation and data flow of the system).

Figure 2-1: Data flow across all modules of BigDAWG

Planner

The Planner module of BigDAWG is responsible for parsing a user’s input and con-

structing a logical query plan in the form of a dependency tree of action nodes.

Actions in the logical plan include querying a specific engine, performing a Join op-

eration, and performing a Union operation. The logical plan additionally specifies an

end-destination (in the form of a table name and an engine) that designates where

the query results should be stored.

The Planner generates multiple possible logical plans and interfaces with the Mon-

itor module in order to determine which of the candidate logical query plans should

be run by the Executor module.

Monitor

The Monitor module logs the execution times of logical query plans as they are

performed by the Executor. It utilizes a query signature system to relate new plans

to previously executed ones, and uses these relations in order to determine which of
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the provided logical plan is the most efficient.

When the BigDAWG system is not under high load, the Monitor can also call the

Executor directly with logical plans of its own in order to train its internal model.

Migrator

The Migrator module is responsible for migrating data between database engines.

The Migrator can handle both intra-Island as well as inter-Island migrations, but

inter-Island migrations may require additional parameters depending on the data

models of the relevant Islands. The Migrator module is called by the Executor when

needed to complete a logical query plan.

Executor

The Executor is responsible for performing the physical execution of a logical query

plan as provided by the Planner module. The Executor performs as many nodes of

the logical plan in parallel as possible, blocking on nodes with unfulfilled dependencies

until they can be executed. When a node creates a table, the Executor also queries

the database for the total row count, minimum, and maximum values in the resulting

table. Special operations handled by the Executor include the Union operator (which

is a trivial concatenation of the results of its dependencies) and the Join operator.

In this report, we provide a detailed overview and analysis of the Join operation

when performed across engines within an Island in the BigDAWG system, with a

specific focus on equijoin operation (henceforth referred to as simply a join)

Though the approaches implemented in the Executor module scale to any number

of participating engines, the status of the Planner module at the time of writing

does not present the Executor with opportunities to execute a single join across more

than two engines even when the join predicate is the same. In the case of a complex

join with a single predicate that spans multiple engines, the Planner module creates

a logical plan containing a cascading sequence of operations involving exactly two

engines.
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2.1.2 Supported Queries

The BigDAWG system currently supports subsets of the Structured Query Language[9]

for engines in the Relational Island (and other engines that expose a SQL-compatible

interface) and Array Functional Language[3] for engines in the Array Island. Queries

that are executable on a single engine are fully supported by passing the query string

to the engine itself. Inter-engine operations that are supported include basic Select,

Filter, and Project operations; basic aggregate functions such as Sum and Count; and

finally Join and Union operators.

2.2 Skew in Data Distribution

Traditional parallel joins are vulnerable to the presence of skew in the underlying

data. If the underlying data is sufficiently skewed, imbalances in computation load

and network transfer time will become the bottleneck in performance, outweighing

any of the gains that parallelism provides. The most efficient way to achieve fast,

parallelizable join execution of large tables across multiple engines is for the matching

tuples of the two inputs to always be hosted on the same engine. This allows for

parallel tuple comparison where each engine joins local data. Unfortunately, the fact

that the BigDAWG system manages data separated across various engines makes data

movement inevitable.

Prior work has been done by Duggan et al. in order to mitigate the negative

impacts of skew – and in some cases utilize it to improve performance – through

parallelized shuffle joins across worker nodes within the SciDB database engine[6].

The Query Executor module of BigDAWG attempts to generalize approaches explored

for SciDB to cross-engine equijoins in BigDAWG to efficiently compute these joins,

taking advantage of skew where possible.
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Chapter 3

Shuffle Join Framework

Once the Planner has determined a logical plan for evaluating a query, the Query

Executor performs all nodes of the logical query plan in parallel, blocking until any

necessary dependency nodes have been completed. For nodes which translate directly

into queries on single engines, this is trivially done by delegating execution to the

engine itself. Executing nodes that represent cross-engine join operations however,

takes place in several phases, involving moving data between engines.

In this chapter, we provide an overview of the process by which cross-engine joins

are performed in the BigDAWG Executor, through a pipeline called the shuffle join

optimization framework.

3.1 Execution Pipeline

Our shuffle join optimization framework assigns join-units, or small non-overlapping

ranges of tuples, to participating engines in order to make efficient use of network

bandwidth and to balance the tuple comparison load. These join-units are typically

represented by buckets in a histogram. Each join-unit consists of a fraction of the

predicate space, and tuples are assigned to a join-unit based on the value of their join

attribute. Tuples belonging to a single join-unit may be distributed over all engines

participating in the join, but must be brought to the same engine in order for the

join to be computed.
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The following steps are the phases of the shuffle join framework:

1. Skew Examination is the first phase, in which the distribution of the join

attributes on each participating engine is extracted. In some join strategies

(detailed in Chapter 5, this step may be skipped altogether.

2. Join-Unit Assignment is the next phase, in which the distribution of at-

tributes is utilized to assign tuples to be joined to specific participating engines.

3. Join-Unit Colocation is the phase in which the join units are physically

migrated to the engines to which they are assigned. This phase relies on the

Migrator (see Figure 2-1) to move portions of the join tables in parallel.

4. Tuple Comparison is the phase in which the Join operation is performed as

parallel local queries with the tuples that have been migrated to their assigned

engines.

5. Join Result Union is the final phase, where the outputs of each participating

engine’s tuple comparison step are migrated and Unioned at the single end-

destination engine specified in the logical query plan.

The speed with which the Executor is able to complete all of the above phases

determines the total execution time of a cross-engine join. The Executor delegates the

Join-Unit Colocation phase and Join Result Union phases to the Migrator module,

and delegates the Tuple Comparison to a given database engine.

It is in the Skew Examination and Join Unit Assignment phases that the Executor

makes decisions which are critical in optimizing the performance of the Join operation

in the face of potentially skewed data. In the remainder of this report, we detail

and evaluate various strategies for completing these two phases of the Shuffle Join

Framework.
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Chapter 4

Skew Examination

In this chapter, we begin by describing the Skew Examination phase in detail. We

follow by describing two particular strategies that were implemented in order to ex-

tract information about the degree of skew within a particular table: full table scans

and table sampling. The sampling strategy is further broken down into sampling

performed by the Executor, and sampling performed by the engine itself.

4.1 Overview

The Skew Examination phase is the first step in shuffle join execution. In this phase,

the Executor retrieves information about the data distribution of each engine involved

in the join. This information can then be utilized by join-unit assignment strategies

to make informed decisions about how join-units should be assigned and migrated in

future stages of the shuffle join. In this phase, a histogram detailing the distribution

of the join attribute for each table is either created, or extracted from the internal

statistics utilized by each engine.

A skew examination strategy consists of a function for each distinct database

engine that retrieves the following types of data:

Histogram data consists of a series of histogram buckets. The number of buckets

is a specified as a constant, and remains the same for all histograms within the
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same join operation. The bounds for each bucket is determined by utilizing

the minimum and maximum values the Executor retrieves after evaluating the

plan nodes that created the tables being joined, or are retrieved by querying

the engine if the tables already existed prior to the execution of the query plan.

The value for each bucket is the count of elements on the engine whose join

attribute falls within the given range.

Hotspot data consists of data that is of much finer granularity than a histogram

bucket. A hotspot is a single value of a join attribute that has a particularly

high occurrence in a given engine. The value associated with each hotspot

value is the count of items that have an identical value for their join attribute.

Hotspot data is only utilized if statistics are extracted from an engine’s internal

planner, and if that planner provides this information.

A skew examination function must return histogram data, but may not necessarily

return hotspot data. In the assignment strategies and analysis presented in this

report, both histogram buckets and hotspot values are treated as join-units by the

shuffle join planner. If there exists a hotspot value that is also within the range

contained by a histogram bucket, that histogram bucket is treated as if it does not

contain the hotspot, and the hotspot is treated as if it were a separate bucket.

The resulting information is then used in the tuple assignment phase.

4.2 Full Table Scan

The full table scan strategy involves scanning every element involved in the join,

for every participating table, constructing a completely accurate histogram of the

distribution of join attributes on each engine.

This strategy allows for perfectly accurate histogram data, but comes at the ex-

pense of slower performance. Depending on the circumstances, the overhead from

the increased time in skew examination may result in better overall performance if it

allows for join units to be more efficiently allocated.
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4.3 Table Sampling

An alternative approach to generating distribution information is to sample the data

in the participating join tables rather than performing a full table scan. In this

method, a fixed number or proportion of tuples are sampled at random from each

table, and a histogram is populated with the results. The histogram bucket counts

are then rescaled with respect to the total number of tuples on the local engine.

Depending on the schema of the table (particularly indexes and table sorting),

randomly accessing rows may prove to be costly, even compared with the full table

scan approach. This does not prove to be a problem with workloads which join on

results of subqueries however, because the intermediate tables created by the Planner

have no indexes or sorting parameters.

4.3.1 Engine-collected Statistics

In many cases[17, 11, 1], the database engine itself performs a sampling routine for

its internal statistics, which are often utilized by the engine’s query optimizer. Sev-

eral such databases (particularly relational databases) also record hotspots in their

statistics.

Where possible, utilizing the engine-provided statistics is preferred to performing

a query to sample the tables. Not only does this ensure that the local engine has up-

to-date statistics for performing the join on the data in the tables, but empirically, we

have seen that updating and extracting engine analytics is faster than than performing

queries for random sampling. In some cases, the histogram data extracted from

the engine is not of the desired bucket size. In these cases, the buckets are resized

assuming uniform distribution within buckets.
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Chapter 5

Join-Unit Assignment

In this chapter, we start by detailing the considerations which must be taken into

account when determining how to assign join-units to engines. We continue by de-

tailing join-assignment strategies in two categories: those which assign entire tables

to engines, and those which assign tuples to engines depending on their join-attribute

values.

5.1 Overview

Once information on the skew of each participating table has been collected, the

Executor must determine how to best allocate each join-unit represented in the tables

to specific engines. The strategy of assigning of tuples to participating engines can

have large performance implications on the runtime of each phase of the shuffle join

framework (listed in Section 3.1).

Some assignment approaches will be more computationally intensive than others,

and can take a longer time to compute, depending on the characteristics of the un-

derlying data to be joined. In cases of simpler assignment strategies, coarser skew

examination strategies may be utilized, leading to a performance increase in the Skew

Examination phase.

Another impact of join-unit assignment comes from the fact that migration of

tuples between engines is far from an instantaneous process. The network is typically
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the most scarce resource for joins in a shared-nothing architecture[12]. In addition,

there is a nontrivial amount of overhead associated with utilizing the Migrator module

for even a small amount of data. Because computation of a join at an engine is blocked

until all tuples assigned to that engine have successfully been migrated, the number

of migrations that an assignment of join-units requires has a direct impact on the

overall runtime of the Join. Assignments which require migrating fewer tuples can

begin the Tuple Comparison phase more quickly than those which involve migrating

a larger amount of tuples.

A final impact of join-unit assignment on overall performance is in the runtime

of the Tuple-Comparison Phase. The more tuples that are assigned to a specific

participating engine, the longer that engine will take to complete its tuple-comparison

phase. Though the tuple comparison phase is parallelized across all participating

engines, the total runtime of the join is bottlenecked by the engine which takes the

longest to complete its Tuple Comparison phase and send its results to the destination

specified by the Planner module.

In the following sections, various potential Join-Unit Assignment strategies are

explored, and their tradeoffs with respect to the above factors are discussed and

evaluated.

5.2 Full Table Assignment

In this section, we detail two join-unit assignment strategies that assign entire tables

to engines, without grouping any tuples by their join attributes.

This category of assignment can be viewed as treating the entirety of a table as a

join-unit, which allows these assignments to be performed with a much coarser degree

of skew examination (if any at all). By doing so, runtime savings are also achieved

by limiting the total number of migrations involved in the join process.

These assignment methods comes with the tradeoff of potentially migrating excess

data in the form of tuples that have no matching values with which to join at their

destination engine. Though probabilistic data structures such as Bloom Filters can
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be used to mitigate this factor (discussed in Section 7.2), the current implementation

of these strategies does not do so.

5.2.1 Destination Full Broadcast

This type of Full Table Assignment simply moves all data to the end-destination

engine specified by the logical plan generated by the Planner (see Section 2.1.1),

regardless of the size of the participating tables. The join is then computed locally

on the end destination engine. This assignment strategy eliminates the need for the

Skew Examination and Join Result Union phase. Additionally, the simplicity of this

assignment strategy allows this assignment to be computed efficiently and quickly.

This assignment strategy may perform slowly when non-destination tables are

excessively large and skewed, or when the destination engine performs the join at

a significantly slower pace than alternative engines. In these cases, it is possible

that the cost of migrating unnecessary tuples to a single potentially slower engine

dominates the savings from not needing to perform a finer-grain skew examination

and corresponding assignment strategy.

5.2.2 Minimal Full Broadcast

This planning model moves the smaller tables to the engine of the largest table. The

skew examination phase for this assignment strategy can treat the universe of all

potential join attribute values as a single join-unit, eliminating the skew examination

phase in favor of a simple count operation.

Compared to the Destination Full Broadcast assignment strategy, the Minimum

Full Broadcast can avoid situations where a single large table dominates the migration

times. The downside to this approach is that the computed join result may need to

be migrated to the destination engine specified in the Planner’s logical plan.
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5.3 Join-Attribute Assignment

In this section, we detail three join-unit assignment strategies that assign tuples to

engines based on the values of their join attributes. We discuss the skew-agnostic Hash

Assignment, and the skew-aware Minimum Bandwidth Heuristic and Tabu Search

assignments.

The skew-aware strategies rely on data provided by the Skew Examination phase

to make better informed assignments of the data being joined.

Though join-attribute assignments can result in more balanced migration and

execution times, it is important to note that every participating engine could have

migrations both to and from other participating engines, resulting in O(n2) total

simultaneous migrations, where n is the number of engines participating in the shuffle

join.

5.3.1 Hash Assignment

The Hash Assignment strategy is a skew-agnostic strategy. It randomly assigns tuples

to each participating engine in the join such that all tuples with the same join attribute

value end up on the same engine. It does so by simply hashing each tuple’s join

attribute, and mapping it to an engine using a common hash function H(x) shared

across all participating engines.

For a given tuple, t, having join attribute at over n engines, the Executor deter-

mines the engine e to which the tuple is assigned by:

e = H(at) mod n

This join strategy does not require the Skew Examination phase to take place.

If the data has a uniform distribution across all participating engines, the Hash

assignment strategy is expected to have a balanced number of migrations between

participating engines.

The Hash Assignment strategy does not, however, take into account any potential

imbalances between tuple comparison performance on participating engines, and also

28



can result in very inefficient allocations of tuples when faced with larger degrees of

skew in the data.

5.3.2 Minimum Bandwidth Heuristic

The first skew-aware assignment strategy we explore is the the Minimum Bandwidth

Heuristic, adopted from SciDB[6]. The MBH assumes that the overhead of migration

dominates the overall runtime, and attempts to optimize runtime by greedily assigning

join-units to the engine that already possesses the majority of the tuples for that join-

unit. We call the chosen engine for each join unit the unit’s “center of gravity”.

For a given join unit, i, having count {ci,1, ci,2, . . . , ci,n} over n engines, the Ex-

ecutor identifies the engine e with the most tuples from join unit i:

e = arg max
e=[1,n]

ci,e

and assigns the join unit to engine e.

This heuristic provably minimizes the amount of data transmitted in the Join-Unit

Colocation phase. In doing so, it attempts to complete the Join-Unit Colocation phase

as quickly as possible, so that the parallelized tuple comparison process can begin on

each participating engine, where network constraints do not impact runtime.

Though the MBH minimizes the migrations involved in the Join-Unit Colocation

phase, this assignment strategy does nothing to address unequal load in the Tuple

Comparison phase, and does not attempt to perform any optimization based on the

final size of the join.

5.3.3 Tabu Search

The final join-unit assignment strategy detailed in this report is based on the variant

of the Tabu Search[8] proposed for SciDB skew-aware join handling[6]. This assign-

ment strategy is also skew-aware, and begins with the assignment provided by the

Minimum Bandwidth Heuristic approach. It then searches for a locally optimal re-

sult by exploring engines with a higher-than-average cost associated with them, and
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attempting to reassign their join-units to engines with lower cost. The key insight

of the Tabu Search is that once a join-unit has been assigned to a given engine for

the first time, the unit-to-engine pair is noted in the “Tabu” list, ensuring that this

assignment is never considered again. Once it is impossible to improve on the plan

by reducing the load of the engines with high cost, the Tabu Search completes.

Algorithm 1 Tabu Search

function TabuSearch(E)
Input: E . Skew Examination results
Output: A . Join-Unit to Engine assignments

tabuList← ∅
A←MinimumBandwidthAssignment(E)
tabuList.insert(A)
engineCosts← ComputeEngineCosts(A)
A′ ← null

while A 6= A′ do
A′ ← A
for all j ∈ E.engines do

if engineCosts.get(j) ≥ mean(engineCosts) then
A← UnburdenEngine(j, A)

engineCosts← ComputeEngineCosts(A)
return A

Algorithm 2 Engine Unburdening

function UnburdenEngine(j, A, tabuList)
Input: j, A, tabuList . Engine to unburden, current assignments, Tabu List
Output: A′ . Assignment of reduced cost by unburdening j

for all i ∈ A.joinUnitsForEngine(j) do
for all j′ ∈ A.engines s.t. ¬(j′ = j ∨ tabuList.contains(i, j)) do

working ← A
working.assign(i, j)
if ComputeTotalCost(working) ≤ ComputeTotalCost(A) then

A← working
tabuList.put(i, j)

return A

Pseudocode for the modified Tabu Search algorithm utilized by SciDB and imple-

mented in the BigDAWG executor for join-unit assignment is shown in Algorithms 1

and 2. The algorithm initializes using the MBH assignment. The Tabu list is popu-

lated with this initial allocation, and per-engine cost estimates are calculated for the
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assignment, as defined below in Section 5.3.3.

After processing the initial assignment, the algorithm loops until it can no longer

improve upon the initial plan. All engines involved in the join are iterated over, and

those with high cost are evaluated for potential improvements.

Attempting to lighten the load of a given engine consists of iterating over each

join-unit assigned to that engine, and determining if assigning the join-unit to a

less burdened engine decreases the cost of the overall plan, as defined below in Sec-

tion 5.3.3. If the change does reduce the total cost of the assignment, the new assign-

ment is marked as optimal, and the reassignment is noted in the Tabu List. Once the

algorithm reaches a local optimum, it stops executing.

The approach of formulating the Tabu List as a join-unit to engine mapping is

borrowed from SciDB’s shuffle join handling. By formulating the Tabu List in this

way, we no longer have to examine the exponential O(2n∗u) possible assignments of

u join-units to n engines. Instead, we can reduce the search space to the polynomial

O(n ∗ u) = O(max(n, u)2).

Because the algorithm unburdens a single engine at a time, the bottleneck engine

is likely to change during a single round of unburdening. This formulation of the

Tabu List also prevents the algorithm from getting stuck in loops, wherein a single

join-unit is cyclically reassigned between multiple non-bottleneck engines.

Cost Estimation

The nature of Tabu Search necessitates a mechanism of evaluating the cost of a given

query plan. The primary functions that the cost estimation should consider include

the cost of migrating join units to a given engine, and the cost of comparing the

migrated tuples once the migrations have completed.

As the speeds at which each distinct engine is able to complete these steps varies

between engines, it is necessary to determine a cost estimation mechanism that is able

to handle varying costs per engine. The approach utilized is shown in Algorithm 3.

The cost for a specific engine is determined by the sum of the most expensive inbound

migration (since migrations are parallelized) and the cost of comparing all tuples being
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joined on the given engine. Both costs are modeled as a simple quadratic function of

the number of tuples, utilizing predetermined constants.

Algorithm 3 Tabu Search per-engine costs

function ComputeEngineCosts(A)
Input: A . Current assignments
Output: C . Map of engines to per-engine costs

A← {}
for all j ∈ A.engines do

A.put(ComputeSingleEngineCost(j, A))
return A

function ComputeSingleEngineCost(j, A)
Input: j, A . Desired engine, Current assignments
Output: cost . Cost associated with engine j

maxMigrationCost ← 0
n ← 0
for all j′ ∈ A.engines do

m← A.getAssignedTuples(j′, j).count()
(c1, c2)← MigrationConstants.get(j, j′)
maxMigrationCost ← max(c1 ∗m2 + c2 ∗m, maxMigrationCost)
n← n+m

(c3, c4)←ComparisonConstants.get(j)
tupleComparisonCost ← c3 ∗ n2 + c4 ∗ n
cost ← maxMigrationCost + tupleComparisonCost
return cost

As illustrated in Algorithm 4, the cost associated with the overall plan is simply

equivalent to the maximum of all engines. This is because every engine must complete

its local executions before the results can be be used as inputs to the Union operator

and returned to the user.

Algorithm 4 Tabu Search total cost

function ComputeTotalCost(A)
costs ← ComputeEngineCosts(A)
return Max(costs)

The downside to this cost model is that its correlation with real-world execution

time clearly depends on the constants for each participating engine. In cases where

the performance with respect to the number of tuples differs significantly from the

cost estimates, Tabu Search will assign join-units suboptimally. In our experiments,
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we use cost model parameters determined empirically by performing a regression

across varying workload sizes in order to reflect the performance characteristics of

the participating databases.
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Chapter 6

Experimental Results

In this chapter, we analyze the performance of the Skew Examination strategies de-

scribed in Chapter 4 and the Join-Unit Assignment strategies described in Chapter 5.

We start by describing the experimental setup. Then, we analyze the results

of our performance evaluation on the Skew Examination strategies. We close by

examining the performance of the different Join-Unit Assignment strategies under

varying degrees of skew.

6.1 Experimental Setup

Though the approaches implemented in the Query Executor module scale to any

number of participating engines, the status of the Query Planner module at the time

of writing does not present the Executor with opportunities to execute shuffle joins

across more than two engines. In the case of a complex join across multiple engines

that share a single predicate, the Planner module creates a logical plan containing a

cascading sequence of operations involving exactly two engines, despite the potential

benefits of parallelization through shuffling across multiple engines.

As a result, we conducted our skew examination and join-unit assignment evalu-

ations on an installation of BigDAWG consisting of two virtualized PostgreSQL in-

stances of different capacity. The larger engine had 150GB of data with four 3.4GHz

processor cores and 32GB RAM, while the other had a 75GB of data with a single
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3.4GHz processor core and only 8GB RAM. Both were using a switched network and

SATA disks. The joins are evaluated on the schema shown in Figure 6-1, and the

cross-engine Join workload of SELECT * FROM A, B WHERE A.id = B.id. Because

typical joins in the BigDAWG system are across intermediate un-indexed results of

Select, Project, and Filter operations, no indexes were used. A trial consists of this

workload run once with the logical plan’s destination engine specified as the larger

engine, and once with the the smaller. Each trial was started with a cold cache

and executed 5 times, with the average duration reported, segmented by phase of

execution.

CREATE TABLE bigdawgdev.test_table(

ID BIGSERIAL NOT NULL,

NAME VARCHAR (20) NOT NULL,

AGE INT NOT NULL,

ADDRESS VARCHAR (40)

PRIMARY KEY (ID)

);

Figure 6-1: Test database schema

Our experiments use synthetic data sampled from a Zipf distribution to carefully

control the level of skew in the tables. This distribution’s skewness is characterized

with α. Higher values of α denote greater imbalance data distribution. The exper-

iments begin with uniformly distributed data (α = 0), wherein all of the join-units

are the same size, and gradually increase the skew by 0.5 until reaching a maximum

of α = 2.0.

6.2 Skew Examination Strategy Evaluation

The first strategies that were evaluated were the skew examination strategies. In

order to compare the Full Table Scan and Sampling skew examination strategies, we

utilize them to execute the workload first using the Minimum Bandwidth Heuristic,

and then using the Tabu Search assignment strategy. We then compare the differences

in execution times for skew examination, and observe the impact of skew examination
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strategy on the performance of other phases involved in the shuffle join.
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Figure 6-2: Join performance with varying skew and skew examination strategies,
using Minimum Bandwidth Heuristic assignment

The benchmark results for both skew examination strategies with the Minimum

Bandwidth Heuristic assignment are shown in Figure 6-2, while those for Tabu Search

assignment are shown in Figure 6-3. The figures illustrate the total runtime of the

benchmark query under different Zipf distributions, segmented by time taken for each

phase. As expected, the portion of total runtime consumed by the Skew Examination

phase (shown in black) is significantly superior with the sampling strategy than with

the full table scan.

We now attempt to determine if there is a significant difference in the quality

of information generated by each strategy by examining their impact on the future

phases of the join. As indicated by the results, when the skew of the data is low, the

sampling strategy may result to less efficient assignments for both the MBH and Tabu
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Figure 6-3: Join performance with varying skew and skew examination strategies,
using Tabu Search assignment

assignment strategies. As skew increases, we notice that the post-examination phases

have approximately equivalent runtimes regardless of skew examination strategy. In

almost all cases, the fact that Skew Examination under sampling is faster than under

a full table scan more than makes up for any discrepancy between the later phases

as a result of suboptimal join-unit assignments, resulting in lower runtimes while

sampling.

From these results, we conclude that the Sampling skew examination strategy

results in performance that is strictly superior to the Full Table Scan strategy in

the Skew Examination phase. The total runtime under sampling is almost always

superior to the Full Table Scan strategy when accounting for all phases involved in

the shuffle join, especially when performed over skewed data.
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6.3 Join-Unit Assignment Strategy Evaluation

The second performance analysis was examining the performance differences between

all Join-Unit Assignment strategies described in Chapter 5 as the skew measure is

increased. As we saw in Section 6.2, the Sampling skew examination strategy almost

always outperformed the Full Table Scan strategy. As a result, in the following exper-

imentation, the Sampling strategy is utilized wherever skew examination is required.
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Figure 6-4: Join with varying skew and assignment strategies

Figure 6-4 illustrates the performance of the plan generated by all assignment

strategies given the experimental workload as the skew of the distribution varies.

We note that the skew examination phase is nonexistant for the Destination Full

Broadcast (DFB), Minimum Full Broadcast (MFB), and Hash assignment strategies,

while the performance of the examination phase (using the Sampling strategy) for

the Minimum Bandwidth Heuristic (MBH) and Tabu Search strategies is identical to
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that in Figures 6-2 and 6-3.

The assignment phase is also not used with the DFB or MBH strategies. The

computation of Hash assignments has a very minimal footprint, due to the fact that it

is delegated to the participating engines and piggybacked onto the join-unit colocation

phase. We observe that the MBH and Tabu Search strategies have additional overhead

in the assignment phase, with the Tabu Search assignment determination taking

roughly two to three times as long.

The DFB and MFB executions start off immediately with their colocation phase.

These two strategies migrate every tuple from one engine onto the other. As a result,

they are unable to realize any benefits from parallelization of the Migration process

and the tuple comparison phase. In the portion of the workload where the smaller

engine is the desired destination for the join result, the DFB strategy migrates every

tuple from the larger engine to the smaller engine, resulting in a longer colocation

and assignment phase. As a result, it consistently has higher migration times than

MFB.

When α = 0, the Hash strategy performs relatively well. It has tuple colocation

performance virtually identical to the MBH strategy, due to the uniform distribution

of the data. The only strategy that outperforms the Hash strategy at α = 0 is the

Tabu Search strategy, due to its ability to more effectively account for the fact that

the different engines have differing performance in the tuple comparison phase.

We observe that as α increases, the time needed to migrate the data based on skew-

agnostic assignments (DFB, MFB, and Hash) grows uncontrollably. Conversely, the

MBH and Tabu strategies are able to leverage the skew in the data, and perform

more efficient tuple assignments as the degree of skew increases. The Tabu approach

can further utilize its cost estimation information to balance tuple comparison load

across the two engines, and is competitive with the next-best assignment strategy

with all ranges of skew.
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Chapter 7

Future Work

Though the basics of the shuffle join executor show promising results, there are several

areas in which it can improve.

7.1 Shuffle Joins across 3+ Engines

Though the approaches described in this report are generalized to operations across

any number of engines in the Executor module, the Planner currently models more

complex cross-engine operations as a cascading sequence of operations involving ex-

actly two engines, even if there is a single join predicate shared among all such joins.

The shuffle join framework detailed in this report can perform joins across multiple

engines if they share a common predicate, allowing for an even larger amount of

savings by increased parallelization. Additionally, the shuffle join framework could

utilize multiple engines within the same island to distribute computational load if

there are performance gains to be realized by doing so.

7.2 Probabilistic Data Structures

The Full Table Assignment methods discussed in Section 5.2 come with the downside

of potentially migrating excess data in the form of tuples that have no matching

values with which to join at their destination engine.
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The amount of unnecessarily migrated tuples could be significantly reduced by

constructing probabilistic data structures such as Bloom Filters[13] to represent the

data contained at each participating engine, and only migrating join attributes which

test positive.

7.3 Cost Estimation by Training

The Tabu Search join-unit assignment strategy can significantly outperform other

strategies in the right circumstances. Unfortunately, the current implementation

requires constants to be determined in advance. The natural next step to solve this

problem would be to increase and leverage the data collected by the Monitor module

to train a model to determine these constants for each distinct engine in the system.

7.4 Parallelizing Alignment and Comparison

Currently, interaction with the Data Migration module is through a mechanism that

returns when the entire migration has either succeeded or failed. Only after any

necessary migrations are fully completed does the tuple comparison phase of query

execution start.

Query processing time may be improved if BigDAWG performed Joins across

streams of data as the data being migrated, but this brings both design and consis-

tency concerns that have not yet been fully explored and are beyond the scope of this

report.

7.5 Inter-Island Shuffle Join Execution

The current goal of the Query Executor is to implement efficient query execution for

intra-Island, cross-engine joins and rely on explicit Migration commands for queries

that span Islands. The strategies in this report could be used to intelligently plan

Joins that span across Islands, but doing so would require a more thorough under-
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standing of the costs associated with cross-Island Migrations.
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Chapter 8

Conclusion

We have introduced a shuffle join Executor that is able to efficiently execute joins

spanning across multiple database engines, and performs well in the presence of

skewed data.

The shuffle join methodology includes a multi-step process that exploits random

sampling and effective join-unit assignment strategies to minimize the computational

and network resources required to compute joins. The Executor can conduct the

necessary migrations of data across participating engines, and execute all necessary

operators for exploiting any available skew in the data in order to efficiently compute

Join results.

Empirical results indicated that this framework can consistently achieve significant

performance improvements compared to skew-agnostic approaches in the presence of

skewed data, while suffering no significant performance difference compared to skew-

agnostic methods when utilized over non-skewed, uniform distributions.
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