
Food Adulteration Detection Using Neural Networks

by

Youyang Gu

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Regina Barzilay

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by. .
Tommi S. Jaakkola

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Food Adulteration Detection Using Neural Networks

by

Youyang Gu

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In food safety and regulation, there is a need for an automated system to be able to
make predictions on which adulterants (unauthorized substances in food) are likely to
appear in which food products. For example, we would like to know that it is plausible
for Sudan I, an illegal red dye, to adulter "strawberry ice cream", but not "bread".
In this work, we show a novel application of deep neural networks in solving this
task. We leverage data sources of commercial food products, hierarchical properties
of substances, and documented cases of adulterations to characterize ingredients and
adulterants. Taking inspiration from natural language processing, we show the use
of recurrent neural networks to generate vector representations of ingredients from
Wikipedia text and make predictions. Finally, we use these representations to develop
a sequential method that has the capability to improve prediction accuracy as new
observations are introduced. The results outline a promising direction in the use of
machine learning techniques to aid in the detection of adulterants in food.

Thesis Supervisor: Regina Barzilay
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Tommi S. Jaakkola
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

The project was partially supported by FDA contract number HHSF223201310210C.

This paper represents the views and perspectives of the writer and should not be

viewed or acted upon as FDA policy. For official policy and guidance, consult

http://www.fda.gov.

I would like to thank my advisers, Professor Regina Barzilay and Professor Tommi

Jaakkola for giving me this amazing opportunity and for guiding me throughout the

research process.

I also want to thank the MIT NLP group, especially Tao Lei, for the useful

feedback and help you have given me. You guys will be missed.

To the members of the MIT FDA team, thank you for the work you have all put

in. We have accomplished a lot this year, I hope our work will be impactful for many

years to come.

To my friends, thanks for all of your support throughout my years at MIT. I am

glad we were able to push each other to not only survive at MIT, but also succeed.

Finally, thank you Mom and Dad, for everything you have done to get me to

where I am today. I am forever grateful.

5

6

Contents

1 Introduction 21

2 Data 27

2.1 Properties of ingredients and food products 27

2.1.1 Preprocessing . 28

2.2 Known cases of adulterant-food product pairs 29

2.2.1 Rapid Alert System for Food and Feed (RASFF) 30

2.3 Using chemical formulas . 31

3 Characterization of Ingredients 33

3.1 Problem formulation . 33

3.2 Underlying model . 34

3.3 Skip-ingredient model . 35

3.3.1 Approach . 35

3.3.2 Results . 38

3.4 Predicting categories . 42

3.4.1 Approach . 42

3.4.2 Results . 43

3.5 Predicting valid combinations . 47

3.5.1 Approach . 47

3.5.2 Negative sampling . 48

3.5.3 Results . 49

3.6 Predicting unseen ingredients . 52

7

3.6.1 Mapping unseen ingredients to embeddings 53

4 Collaborative Filtering 55

4.1 Results . 56

5 Ingredient Hierarchies 61

5.1 Nearest neighbor algorithm . 63

5.2 Neural network approach . 64

5.3 Evaluation . 65

6 Leveraging Text Data using Recurrent Neural Networks 69

6.1 Problem formulation . 72

6.2 Finding Wikipedia articles . 73

6.3 Experimental setup . 74

6.3.1 Training, validation, and test sets 74

6.3.2 Use of GPU . 74

6.3.3 Evaluation . 74

6.3.4 Hyperparameters . 75

6.4 Alternate versions . 76

6.4.1 No product vectors . 76

6.4.2 Augmenting with hierarchy representation 77

6.5 Results . 77

7 Sequential Refinement 81

7.1 Experimental Setup . 83

7.1.1 Evaluation . 83

7.1.2 Hyperparameters . 83

7.1.3 Simulating online scenario . 84

7.2 Results . 85

8 Conclusions 89

8.1 Contributions . 89

8

8.2 Future work . 90

A 93

A.1 Supplementary Information about the Datasets 93

9

10

List of Figures

3-1 Characterizing unknown ingredients using 2-dimensional vector repre-

sentations. In this case, the unknown ingredient is most likely a type

food coloring. 34

3-2 A t-distributed Stochastic Neighbor Embedding (t-SNE) plot of the

skip-ingredient embeddings (top) and the word2vec embeddings (bot-

tom). Note that the skip-ingredient embeddings have distinct clusters

that belong to certain ingredient categories (e.g. vegetables and fruits).

The multi-colored cluster in the top right corner is especially interest-

ing: it turns out that every ingredient in that cluster is organic. . . . 41

3-3 The effect of 𝛼 on the accuracy of category predictions. All probabili-

ties are the accuracies in predicting the aisle (e.g. using shelf to predict

the aisle). The x-axis is in log scale. Note that the value for 𝑥 = −10

actually represents no smoothing (𝛼 = 0). 45

3-4 t-SNE visualization of the embeddings trained using the valid/invalid

model. While the clusters are not as tight as those in the skip-ingredient

model, they are still easily distinguishable. 50

11

3-5 Starting with 5 ingredients, we add and remove up to 5 ingredients

and plot the percentage of combinations the neural network model

labeled as ’valid’. The graph makes intuitive sense: for valid combina-

tions, adding additional ingredients will decrease probability of being

marked ’valid’, while the opposite is true for invalid combinations. As

we remove ingredients, the model quickly labels all combinations as

’invalid’, most likely due to the fact that the inputs are not normal-

ized, and hence using a subset of ingredients as the input will never

trigger the threshold. 52

4-1 Effect of a threshold on evaluation metrics. As we increase the thresh-

old, the accuracy and precision increases, at the expense of recall. Re-

call is the percentage of correctly identified positive cases. Precision is

the percentage of positive predictions that are correct. Accuracy is the

percentage of correctly identified positive cases where a prediction exist. 58

4-2 Training data showing only the positive (+1) instances of adulterant

x with product y. 59

4-3 Matrix 𝑀 showing positive (+1) & negative (-1) instances of adulterant

x with product y. 59

4-4 Matrix 𝑌 showing positive (+1) & negative (-1) predictions of adul-

terant x with product y. 59

4-5 Matrix 𝑌 ′ showing positive (+1) & negative (-1) predictions after ap-

plying a threshold. 59

5-1 Sample hierarchy for red dyes. From the hierarchy, we can tell that

Sudan Red and FD&C Red 40 are more similar than Sudan Red and

say, a yellow dye. 62

12

6-1 Illustration of the recurrent neural network model (RNN), modified

slightly from [6] (used with permission). It takes as input the sum-

mary text of the Wikipedia article corresponding to an ingredient, and

outputs a vector representation of this ingredient. In the intermedi-

ate layers of the model, several feature map layers map the input into

different levels of feature representations. The stacked features are av-

eraged within each layer and then concatenated. For this work, we can

view the model as a black box. 71

6-2 The RNN model process without incorporating product information. 76

6-3 Visualization of the probability distributions of food product categories

for four ingredient inputs. 79

7-1 The running mean of the loss over time using the online algorithm for

ingredient "oatmeal". The online method performs the best in this

particular instance. 86

7-2 Plot showing the relationship between the sequence length and the

improvement in loss (online loss / baseline loss). We use a log scale

on the x-axis for the sequence length. An interesting pattern appears,

though there seems to be no strong linear correlation. 87

7-3 Plot showing the relationship between the true loss (using the true

distribution for predictions) and the improvement in loss (online loss /

baseline loss). It seems that as the true loss increases, it is also more

difficult for the online algorithm to improve upon the true loss. 87

13

14

List of Tables

2.1 10 most common food categories containing MSG (by percentage). . . 29

2.2 Comparison of four databases of adulterants. The % adult. in other 3

column shows the percentage of adulterants that appear in at least one

other database. We focus most of our analysis on the RASFF database,

as we have qualitatively determined it to be the most comprehensive.

Overall, there are 2221 unique adulterants, from which 167 of them

appear in more than 1 source. "Melamine" is the only adulterant to

appear in all four sources. 30

3.1 Applying the scoring metric for training using different number of in-

gredients (𝑁). The numbers in parenthesis show the score if the neigh-

bors are randomly chosen. Note that a low score/rank does not neces-

sarily imply a bad embedding: if there are 5000 ingredients, there may

be better neighbors for some of the ingredients that can replace the

original neighbors at the top of the nearest neighbors list. In addition,

an embedding that optimizes for just the top 100 ingredients will ap-

pear better than an embedding that optimizes for all 5000 ingredients.

Therefore, it is still important to occasionally check the embeddings to

make sure they are reasonable. 39

3.2 The model parameters used for different values of 𝑁 . The parameters

are chosen from a simple grid search. 39

15

3.3 Score metric for 𝑁 = 120 on three type of embeddings: those gener-

ated by the skip-ingredient model, those obtained from word2vec, and

random embeddings. 40

3.4 Predicting category of unlabeled ingredients based on the nearest neigh-

bors of the embeddings. Note that nutmeg can either be classified as a

seasoning or as a fruit/nut. In addition, phytonadione (vitamin k) was

wrong labeled as an additive, and correctly categorized by the model. 43

3.5 Comparison of the various models used to predict the category given

a set of ingredients. The first three models use 𝑁 = 1000 ingredi-

ents, while the last model uses 𝑁 = 5000 ingredients. Adding more

ingredients to the neural network model improves performance. 46

3.6 We can also use subcategories (rows) to predict their parent categories

(columns). However, this adds little additional predictive power, if any. 46

3.7 In addition to the one-hot vector format (last row), we tried different

other embeddings to represent the input ingredients used for predict-

ing categories. The input dimension 𝑑 is most correlated with pre-

diction accuracy. However, given the same dimension 𝑑, using the

skip-ingredient embeddings result in a higher accuracy than a random

embedding, while the word2vec embeddings perform worse. 47

3.8 Comparison of the maximum entropy and neural network models on

predicting valid/invalid combinations. The accuracy is broken down on

three datasets: the valid (V) set, the invalid (I) set, and the weighted

invalid (I weighted) set. Note that while maximum entropy can easily

reject the invalid set, is unable to distinguish between the valid and

weighted invalid sets. The neural network model performs well on all

three datasets. Adding more ingredients does not seem hurt the accuracy. 49

16

3.9 In addition to the one-hot vector format (last row), we tried dif-

ferent other embeddings to represent the input ingredients for the

valid/invalid model. The input dimension 𝑑 is correlated with pre-

diction accuracy. However, given the same dimension 𝑑, using the

skip-ingredient embeddings result in a higher accuracy than a ran-

dom embedding, while a similar improvement is not present for the

word2vec embeddings. 51

3.10 Selection of ingredients and their nearest neighbors based on the cosine

distances of the embeddings trained using the skip-ingredient model.

The model is able to cluster the broader semantic meaning of each

ingredient (e.g. beef is a meat, yellow 6 is a color). 54

3.11 Selection of ingredients and their nearest neighbors based on the co-

sine distances of the embeddings generated by the valid/invalid model.

Note that even though we never trained each ingredient individually,

the model was able to cluster the broader semantic meaning of each

ingredient. Its performance seems to be on par with the embeddings

generated by the skip-ingredient model. 54

3.12 Given previously unseen ingredients, we can use the UMLS database

to find the nearest neighbors in the seen ingredients. We can then use

this new representation to make various predictions (such as the ones

presented in this paper). 54

4.1 Sample predictions by the collaborative filtering model compared to

the actual results. 57

5.1 Top 3 outputs of trained model on sample training data (ingredients) 65

5.2 Top 3 outputs of trained model on sample test data (adulterants) . . 65

5.3 Comparison of the various models used to predict the category given

an ingredient. The two metrics shown are the mean average precision

(MAP) and precision at N (P@N), respectively. 67

17

6.1 Optimal hyperparameters for the RNN model. 75

6.2 Comparison of the various models used to predict the category given

an ingredient. The two metrics shown are the mean average precision

(MAP) and precision at N (P@N), respectively. We compare the RNN

model with the two alternate versions described in 6.4, as well as a

version with 𝑑 = 200. Using a higher dimension performs better at the

expense of training time. 78

6.3 Sample predictions generated by the model on eight unseen ingredi-

ents and three adulterants. The number in parenthesis represents the

probability provided by the model. 79

7.1 Optimal hyperparameters for the online learning model. 83

7.2 The mean loss over all the ingredients in the validation set (1666 in-

gredients) for the various methods. Mini-batch with 𝑧 = 10 and online

updates (𝑧 = 1) performed the best, on average. 84

7.3 Sample predictions generated by the model on the ingredient "oatmeal"

at the conclusion of the sequence (102 observations). The number in

parenthesis represents the probability provided by the model. In this

example, the online method significantly outperformed all the other

methods. Note that the online method tended to "nudge" the pre-

dictions towards the true predictions. The effect will likely be more

pronounced with an increased dimension size 𝑑 and less regularization. 85

A.1 Sample product entry from the FoodEssentials database. 93

A.2 Most common ingredients from FoodEssentials. 94

A.3 Most common adulterants (RASFF). 94

A.4 Most common product-adulterant combinations (RASFF). 94

A.5 Most common adulterant/category pairs (RASFF). 95

18

A.6 The most common categories from the FDA Import Refusals list. There

are 326,927 entries from 1/1/02 to 12/31/15. When filtering the en-

tries to only consider adulterations of food products, 111,183 entries

remain (34%). 95

A.7 Most common entries by refusal code and food category (FDA). . . . 95

A.8 Most common adulterant/category pairs (FDA). 96

A.9 Most common adulterants and ingredients (USP). 96

A.10 Most common ingredient / adulterant pairs (USP). 96

A.11 Most common adulterants and products (EMA). 97

A.12 Most common ingredient / adulterant pairs (EMA). 97

19

20

Chapter 1

Introduction

Ensuring the safety of food being sold in a region is important for the well-being of

a country and its citizens. In the United States, the Food and Drug Administration

(FDA) is responsible for protecting public health by regulating all food products that

are commercially sold. The FDA has a stringent list of requirements that need to be

followed before any product sees its life on a store shelf. Unfortunately, not everyone

follows the rules, and there have been an increasing number of incidents over the years

involving adulteration, the addition of unauthorized substances to food products.

There have been hundreds of recorded incidents of large-scale economically mo-

tivated adulteration of food in the past 40 years [2]. Some incidents, such as the

adulteration of olive oil with hazelnut oil, have less devastating effects than others.

However, in the late 2000s, milk products imported from China have been found to

contain melamine, an illegal substance added to boost protein content in regulatory

testing. Hundreds of thousands of children in China were sickened; six died. The

number of possibilities for adulterations are plentiful and difficult to pinpoint.

Current methods of detecting potential adulterants fall on the burden on domain

experts, who do not have the resources and capabilities to check every all possible

combinations. There is no centralized database containing relevant information about

all the adulterants. Again, human experts are needed to independently check each

adulterant and outline its properties. In some instances, even these experts would

have trouble making appropriate predictions. For example, sildenafil, a drug com-

21

monly known as Viagra, has been documented in the adulteration of chewing gum.

Most humans would not have thought of Viagara and chewing gum as a possible com-

bination, and thus lies the difficulty in these qualitative assessments. Often times, by

the time an illegal substance has been discovered in a food product, it already has

reached thousands, perhaps even millions of consumers. Being able to stay one step

ahead is essential in this field: prevention is key.

There has been a significant interest in having an automated system with the

ability to make predictions of likely adulterations. Such a system would be greatly

beneficial in tackling this problem, as this would allow domain experts to narrow their

search to high-risk products, therefore increasing the chance of stopping potentially

dangerous products from reaching consumers. The goal of this project is to make the

first steps towards building such a system. More specifically, our goal is to develop

a model that would 1) characterize various adulterants and 2) predict which food

products are most likely to be affected by a given adulterant.

Neural Networks

We will explore the building of this system using neural network architectures. The

rise in popularity of neural networks in recent years is partly due to their ability to

learn latent features in a semi-supervised fashion, requiring minimal prior knowledge

about the data and drastically reducing the time spent on feature selection. In natural

language processing, using deep neural networks to generate word embeddings have

been shown to perform significantly better than traditional 𝑁 -gram models [9, 11].

In addition, they have also been used to achieve state-of-the-art results in areas such

as sentiment classification [6], Go [13], and parsing [8].

There are many technical challenges in properly training neural networks. There

is often a misconception that they can generate great results with little effort. Given

a large database such as the ULMS Metathesaurus, it is unclear what information

we can extract from it that will be valuable in helping us make predictions. Using

text data poses a completely different challenge. Short text from a source such as

22

Wikipedia often contain a lot of noise, and it is unclear what the best way to train

a model to extract information from this data. Furthermore, our training data is

bounded by the number of articles we have for ingredients. Very few neural network

models in literature are trained on a corpus of only a few thousand entries.

In this work, we try to tackle these challenges and apply our models to this

novel task, namely that of predicting which food categories are likely to contain

certain (possibly illegal) ingredients. We use two main types of inputs: hierarchical

properties and text descriptions of ingredients. We show that neural networks are able

to achieve good predictions on a variety of tasks involving ingredients, adulterants,

and food products.

Related Work

As far as we are aware, we are the first to apply this technique to this problem. While

neural network models are prevalent in the machine learning community, there has

be no prior work done in applying these models to large-scale adulteration detection

(to the best of our knowledge). [16] showed the generation of ingredient substitutions

and alternate combinations of ingredients using online recipes. However, the set of

ingredients available in recipes is much smaller than the set of ingredients used in

commercial food products. Neural networks are uniquely equipped to handle large

datasets, and it is of interest to see if they are applicable in this particular setting

(they are).

Recurrent neural networks have been used to generate representation from the

Wikipedia corpus [15]. Wikipedia text have also been used for text similarity clas-

sification [14]. These neural network models use the entire Wikipedia corpus, which

differs from our approach of training on a specific subset of articles.

Narayanan [10] worked on building a database of adulteration instances from

relevant news articles on the web. He applied various machine learning techniques

such as the collaborative filtering classifier to determine whether an ingredient and a

food product can co-exist.

23

Data

Most resources contain only a few hundred instances where a substance has adulter-

ated a food product. The success of neural networks often depends on a large training

set. The scarcity of data in the area of food adulterants leads us to explore alternative

data sources to which we can train our models on. We relate adulterants to regular

food ingredients (milk, sugar, strawberries, etc.) and view them as part of the same

group of substances that can appear in a food product category. We assume that a

model that can predict which product category a regular food ingredient can appear

in will also be able to generalize to adulterants. Therefore, for the rest of this paper,

we will use the term ingredient to also include adulterants.

We have access to a large database of food products sold in the United States and

their ingredients, which we describe in detail in Chapter 2. We would like to take

a systemic approach to characterize the ingredients and the food products. Can we

predict the ingredient based on what products it appears in? Can we predict which

food products an ingredient is likely to appear in? Can ingredients be clustered into

groups based on their properties? What are likely substitutions for a given ingredient?

These are all questions we hope to answer.

Of course, while analyzing common food ingredients can be interesting, our ulti-

mate purpose is to generalize our results for adulterants. By narrowing the range of

food products that a substance can adulter, regulators such as the FDA can focus

their inspection efforts on a much lower subset of products, leading to higher efficiency

and effectiveness.

Sequential prediction

An issue with many standard machine learning techniques lies in how they are trained.

Once trained, many models are unable to adjust for new data points without having

to retrain on the entire data set, which is often infeasible, whether it is due to time,

cost, computational power, or all of the above. Online machine learning methods

24

address this issue by making their predictions one data point at a time, making

them ideal in this particular scenario. Often times, we are given a small subset of

adulterant/product category occurrences, and we must be able to adjust our model

accordingly in order to make predictions about other product categories that this

adulterant could occur in. In other words, if adulterant X has been found in food

product category Y, what other categories is it likely to be found in? We present a

model built on top of our neural network model that does sequential refinement based

on new data points.

Code and data

We use Python to implement all the models described in this paper. The Numpy,

Pandas, Theano, and Scikit-learn packages were instrumental to the success of our

implementation. The code is available at: https://github.mit.edu/yygu/adulteration

and https://github.mit.edu/yygu/rcnn.

Overview of the remaining sections

We will first describe the data we use in Chapter 2. Next, we present our first attempt

at characterizing ingredients in food products using neural networks (Chapter 3). In

Chapter 4, we describe a collaborative filtering method of predicting adulterant /

food product pairs. The remaining chapters focuses on the following question: given

an ingredient, what food product categories can it appear in? In Chapter 5, we lever-

age hierarchical properties of each ingredient to predict likely food categories. We

introduce a recurrent neural network architecture in Chapter 6 to leverage Wikipedia

articles of ingredients. Finally, we implement a model in Chapter 7 that can sequen-

tially update its predictions with each additional observation.

25

26

Chapter 2

Data

Our data is divided into two main categories: 1) properties of ingredients and food

products and 2) known cases of adulterant-food product pairs.

2.1 Properties of ingredients and food products

We can further divide this data into two subsections:

1. Product-level information of the ingredients. The FoodEssentials LabelAPI 1

gives us access to a majority of products being sold commercially in the US.

For each product, we have information about its name, product category, list of

ingredients, UPC code, and several other fields. See the Appendix for a sample

entry. The majority of this paper focuses on this data set.

∙ We extracted over 140,000 unique products and 100,000 unique ingredients.

Each product has an average of 14.3 ingredients. 17,000 ingredients occur

in more than 3 products, and only 1500 ingredients are present in 100+

products.

∙ Each product is classified under 3 types of categories, in order of increasing

specificity: aisle (16 choices), shelf (131 choices), and food category (1124

choices). For example, diet Pepsi falls under the food category "Soda -
1http://developer.foodessentials.com/

27

Diet Cola", the shelf "Soda", and the aisle "Drinks". Besides Chapter

3, all references to product categories refer to the 131 categories under

"shelf".

∙ The ingredients for a product are listed in descending order of predomi-

nance by weight.

∙ Salt, water, and sugar are the three most popular ingredients, occurring in

51%, 37%, and 35% of all products, respectively. There are 13 ingredients

that appear in more than 10% of all products.

∙ Given a product, we can determine its ingredient list. Given an ingredient,

we can determine all products that contain it. We can do numerous types

of analysis with this data. For example, Table 2.1 is a list of the top 10

food categories that are most likely to contain monosodium glutamate, or

MSG.

2. Property-level information of the ingredients. We can represent each ingredi-

ent by the relationship hierarchy it forms. This data comes from the UMLS

Metathesaurus2. For example, the hierarchy for monosodium glutamate (MSG)

is as follows: monosodium glutamate → glutamic acid → amino acid →

carboxylic acid → organic compound. We will transform this into a vector

representation to describe each ingredient, allowing us to characterize unknown

ingredients. We expand on the use of this information in Chapter 5.

∙ There are 2.5 million entries in this database (and 10+ million relation-

ships), but not all of them are necessarily relevant to ingredients that are

used in food.

2.1.1 Preprocessing

We apply some preprocessing on the ingredient list to convert it from a string to a

list of individual ingredients. To the best of our ability, we remove non-ingredients
2https://www.nlm.nih.gov/research/umls/knowledge_sources/metathesaurus/

28

Food Category # products in category % products w/MSG
Soup - Matzo Ball Soup 18 72%
Seasoning - Bouillon 180 71%
Stuffing Mixes 74 62%
Canned Soup - Cream Of 178 60%
Dip & Salsa - Ranch 60 58%
Salad Dressing - Ranch 368 57%
Canned Meals - Chili No Beans 62 52%
Dip & Salsa - Sour Cream Dip 47 51%
Snacks - Cheese Puffs 190 51%
Snacks - Onion Rings 22 50%

Table 2.1: 10 most common food categories containing MSG (by percentage).

(e.g. ’contains 2% or less of’), parenthesis (sub-ingredients of an ingredient), funny

punctuations, capitalizations, and other irregularities. Nevertheless, we cannot catch

all instances (e.g. ’salt’ vs ’slat’ vs ’less than 0.1% of salt’). We also convert all the

ingredients to lower-case, singular form. Finally, we ignore extremely rare ingredients

by limiting the total number of ingredients we are analyzing to the 𝑁 most frequently-

occurring ingredients. For the majority of this work, we used 𝑁 = 5000. While there

is no technical limitations to using a larger 𝑁 , we chose 𝑁 = 5000 as our upper limit

for two reasons: 1) a larger 𝑁 takes longer to train and 2) most ingredients after the

top 5000 occur in less than 10 products (0.007%), which leads to an imbalanced data

problem that we will describe in Section 3.3.1.

2.2 Known cases of adulterant-food product pairs

We found four sources that contain documented instances of adulterations:

∙ Rapid Alert System for Food and Feed (RASFF)3

∙ FDA Import Refusal Report (FDA)4

∙ U.S. Pharmacopeial Convention Food Fraud Database (USP)5

3http://ec.europa.eu/food/safety/rasff/index_en.htm
4http://www.accessdata.fda.gov/scripts/importrefusals/
5http://www.usp.org/food-ingredients/food-fraud-database

29

Name Author Entries Unique Entries Adulterants Products Categories % adult. in other 3
RASFF European Commission 7691 4403 425 3851 34 14.10%
FDA US Food and Drug Administration 111183 245 30 14578 36 33.30%
USP United States Pharmacopeia 2593 1775 1166 649 — 12.00%
EMA Food Protection and Defense Institute 2189 2011 789 486 24 18.10%

Table 2.2: Comparison of four databases of adulterants. The % adult. in other 3 col-
umn shows the percentage of adulterants that appear in at least one other database.
We focus most of our analysis on the RASFF database, as we have qualitatively
determined it to be the most comprehensive. Overall, there are 2221 unique adulter-
ants, from which 167 of them appear in more than 1 source. "Melamine" is the only
adulterant to appear in all four sources.

∙ Economically Motivated Adulteration Incidents Database (EMA)6

See Table 2.2 for a comparison of the four databases. To the best of our knowledge,

there are no other English databases containing significant amounts of information

regarding adulterants. For samples of the content found in these four sources, we refer

readers to Appendix A. We chose to focus most of our analysis of adulterants using

the RASFF database because it is the most comprehensive and realistic of the four.

They also represent real import violations, something the EMA and USP sources do

not have. On the other end of the spectrum, the FDA Import Refusals list is the least

specific in terms of listing the exact adulterant found in each of the food products.

2.2.1 Rapid Alert System for Food and Feed (RASFF)

RASFF is a system developed by the European Commission that tracks various im-

port violations of food-related products entering the European Union. We retrieved

7,691 entries of import alerts/rejections taken from 5 categories: food additives, heavy

metals contaminant, industrial contaminant, composition, and chemical contaminant.

Out of those there are 465 unique substances. 253 substances have been found in a

food product that falls under one of the 131 product categories defined in the ingre-

dients dataset.

Mercury, sulphite, and cadmium are the 3 most common adulterants, occurring

in 14%, 11%, and 9% of the incidents, respectively.

6http://www.foodfraudresources.com/ema-incidents/

30

Out of the 465 substances, 178 (38%) of them appear in the database of ingredients

in food products (Section 2.1). This means that the remaining 62% of the substances

are not normally found in food products, and its presence is most likely due to some

form of adulteration. When we narrow our search to only the 178 ingredients found in

food products, we find that the majority of the RASFF entries contain ingredient/food

category pairs that do not exist in food products. In other words, even though the

ingredients are used in food products, the cases found in RASFF occur when these

ingredients are found in food categories they are not designated for. For example,

’alcohol’ is a valid ingredient, but ’alcohol’ in ’soda’ would be a case of adulteration.

We would like to point out that the RASFF database does not specify why the

violation occurred, meaning that we do not know if the violation was accidental or in-

tentional. For this study, we make the assumption that each pair (ingredient/product)

is a positive instance of adulteration, whether or not it is intentional. We also do not

keep track of the amount of the adulterant - we view any presence as an instance of

adulteration, even though there are situations where it was simply a matter of there

being too much of a substance. These are simplified assumptions, but this allows us

to be methodical in our search and analysis despite the low volume of data.

2.3 Using chemical formulas

One idea we had is to make predictions about adulterations based on the standardized

chemical names of the adulterants (e.g. the IUPAC name). The motivation comes

from the fact that there will be many instances where we have not seen an adulter-

ant during training, yet we must make some kind of predictions about this unknown

adulterant. The name of a substance can reveal a lot of information about its prop-

erties, and we hope to leverage this fact to generate a representation of each unseen

adulterant and use it as an input into our model to make predictions. Each substance

can be uniquely identified by its standardized chemical name. For instance, 3-MCPD

and 3-monochloropropane-1,2-diol both refer to 3-chloropropane-1,2-diol. There has

been prior research in the natural language processing community in using the chem-

31

ical names to successfully predict chemical reactions. We hope we can apply similar

models to this task.

Out of the 464 adulterants from RASFF, 134 (29%) contain a chemical formula in

the UMLS Metathesaurus. We also tried using the CIRpy Python library to look up

the chemical formulas of adulterants. CIRpy is an interface for the Chemical Identifier

Resolver (CIR), a database developed by the CADD Group at the National Institute

of Health. Out of 2221 total adulterants, we are able to find 437 adulterants that have

easily-accessible chemical structures, for a recall of 20%. This is a lower bound, since

some entries have no direct match but have an indirect match (e.g. ’rhodamine b’

instead of ’colour rhodamine b’). Nevertheless, the low rate of recall is not sufficient

for us to continue pursuing this direction.

We also tried extracting 10 million chemicals from the ChemNet database of re-

actions and cross-referenced the list of 2221 adulterants. Only 61 out of the 2221

adulterants (2.7%) appear in this database. For the RASFF European database, it is

29 out of the 425 adulterants (6.8%). Again, because of the low recall, we chose not

to incorporate chemical formulas and reactions in our models.

32

Chapter 3

Characterization of Ingredients

In this chapter, we focus on the characterization of the ingredients in food products

using techniques inspired from natural language processing. We lay the groundwork

for models that can be extended to include adulterants.

3.1 Problem formulation

We have a set of 𝑁 ingredients 𝑆𝐼 = {𝑥1, 𝑥2, . . . , 𝑥𝑁} and 𝐹 food products 𝑆𝐹 =

{𝑝1, 𝑝2, . . . , 𝑝𝐹}. Each product 𝑗 contains a subset of the ingredients: 𝑝𝑗 = {𝑥𝑗,1, 𝑥𝑗,2, . . . }

and belongs to a particular category 𝑐𝑗. For example, we have a product named Hunt’s

Tomato Paste which consists of 3 ingredients: tomatoes, salt, and seasoning. It is

categorized as "canned tomatoes - tomato paste".

Given a set of ingredients, one goal is to be able to predict the most likely category

of this "product". Continuing the previous example, an input of "tomatoes, salt, and

seasoning" should tell us that "canned tomatoes - tomato paste" would be a very likely

category, whereas "milk additives - powdered milk" would not. A second goal is to

be able to predict whether a set of ingredients is a valid combination of ingredients.

We will describe this in deeper detail in the following sections.

In this chapter, we want to characterize the ingredients by using neural networks

to accomplish the following four goals:

1. Generate a low-dimensional vector representation for each ingredient.

33

Figure 3-1: Characterizing unknown ingredients using 2-dimensional vector represen-
tations. In this case, the unknown ingredient is most likely a type food coloring.

2. Predict the food category given a list of ingredients.

3. Determine if a list of ingredients form a valid combination.

4. Predict characteristics given an unknown ingredient.

Figure 3-1 shows an illustration of Goal 1. If we are able to generate a low-

dimensional vector representation for each ingredient, we can more easily characterize

new ingredients based on this new representation.

3.2 Underlying model

For all tasks that we investigate, we use a multilayer perceptron (MLP) with a single

hidden layer. We use a tanh activation function at the hidden layer. The model is

implemented in Python on top of the Theano library. The code has been optimized

to handle all the necessary computations in a reasonable amount of time (<1 hour

per epoch). At each step, we calculate the gradient and perform stochastic gradient

descent (SGD) on a batch. Data is split into a training set, a validation set, and a

testing set. All results presented in this paper are generated from the validation or

34

testing set. We implemented our own grid search algorithm to choose hyperparam-

eters such as the number of hidden nodes, the learning rate, number of epochs, and

the regularization rate.

3.3 Skip-ingredient model

3.3.1 Approach

The skip-gram model, introduced by Mikolov et al. [9] for word2vec, learns to predict

neighboring words given the current word. We modify this model to predict the

other ingredients in the same product given a particular ingredient. We call this

the skip-ingredient model. The input is a particular ingredient 𝑖, and the output is

a probability distribution over all ingredients that 𝑖 is likely to exist in the same

product with (hereby referred to as the context). The advantage of this model is that

the output size does not need to be fixed: we can generate an individual distribution of

the likelihood for every ingredient in the output. If a product contains 𝑘 ingredients,

then we can produce 𝑘 potential training points from that product.

We derive the cost function for the skip-ingredient model that is consistent with

the derivation for the skip-gram model presented by Rong [12]. For each training

point, we denote 𝑥𝑖 as the the embedding representing the input ingredient, 𝑤 =

{𝑤ℎ, 𝑤𝑜} as the hidden and output layer weights, 𝑥𝑜 = {𝑥𝑜
1, 𝑥

𝑜
2, . . . } as the one-hot

output vectors representing the context ingredients, 𝑧𝑜𝑗 as the value of the output layer

for ingredient 𝑗, 𝑂 as the number of context ingredients, 𝜆 as the 𝐿2 regularization

constant. The final form is produced below:

𝐽𝑠(𝑥,𝑤) = 𝐿𝑠(𝑥,𝑤) + 𝜆
(︁∑︁

(𝑥𝑖)2 +
∑︁

𝑤2
)︁
, (3.1)

35

where

𝐿𝑠(𝑥,𝑤) = − log 𝑝(𝑥𝑜
1, 𝑥

𝑜
2, . . . |𝑥𝑖) (3.2)

= −
∑︁

𝑗∈𝑐𝑜𝑛𝑡𝑒𝑥𝑡(𝑥𝑖)

𝑧𝑜𝑗 +𝑂 · log
∑︁
𝑗

exp(𝑧𝑜𝑗) (3.3)

At each iteration, we take the gradient of the cost function and update the weights

(and also the input vector 𝑥𝑖) as follows:

𝑤 = 𝑤 − 𝜂∇𝐽𝑠(𝑥,𝑤), (3.4)

where 𝜂 is the learning rate.

When doing batch training, we add up the cost function for each sample in

the batch and return the mean cost. Note that we convert the input from an 𝑁 -

dimensional one-hot vector to an embedding of a lower dimension (𝑥𝑖 ∈ R𝑑), with the

precise value depending on the total number of ingredients being evaluated (typically

𝑑 ∈ [10, 100]). The embeddings are initialized randomly (between -1 and 1). After

training, the inputs 𝑥𝑖 will be the vector representation for each ingredient.

Input sampling

Rather than take every ingredient in the product to generate the context (which

can be both computationally intensive and ineffective), we simply take the top 𝑘

ingredients in that product (from the ingredient list). Recall that the ingredients are

sorted in order of decreasing weight. We find that the top 𝑘 ingredients significantly

outperform random 𝑘 ingredients, probably due to the fact that the ingredients in

the beginning are much more indicative of the type of product. Using all ingredients

also does not perform as well, again most likely due to the fact that ingredients not

in the top 𝑘 ingredients generates more noise than additional information about the

product. Lastly, it turns out that randomly sampling 𝑚 ingredients to be the input

for each product (rather than rotate every ingredient) speeds up training time while

36

not signficantly reducing performance. 𝑘 changes based on the number of ingredients

𝑁 .

Selective dropout

One issue with the data is the imbalanced distribution of the ingredients. Using

the input sampling method from above, popular ingredients such as salt and sugar

will have significantly more training points than ingredients that appear in very few

products. For example, using 𝑁 = 5000 ingredients, the most popular 100 ingredients

occur more often than the remaining 4900 ingredients combined. Therefore, during

training, the model will tend to overfit the embeddings for the popular ingredients

and underfit the embeddings for the remaining ingredients. Therefore, we developed a

method called selective dropout to account for this imbalance. We resample the data

at each iteration according to the distribution of the ingredients and drop selected

training points. The basic idea is that we drop data points more frequently for more

popular ingredients in order to create a more balanced distribution. The algorithm

is described in Algorithm 1. We use the parameter 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡 as an expected upper

bound to the number of times an ingredient can occur at each iteration.

Algorithm 1 Selective dropout
1: 𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡← 500
2: 𝑆𝐼 ← {𝑥1, 𝑥2, . . . , 𝑥𝑁}
3: for 𝑖 in 𝑆𝐼 do
4: 𝑝𝑖 ← min(1,𝑚𝑖𝑛_𝑐𝑜𝑢𝑛𝑡/𝑐𝑜𝑢𝑛𝑡(𝑖))
5: end for
6: for each iteration do
7: 𝑇 = {all training points}
8: 𝑇 ′ = ∅
9: for 𝑡 ∈ 𝑇 do

10: 𝑖← input ingredient of 𝑡
11: if 𝑝𝑖 > 𝑟𝑎𝑛𝑑𝑜𝑚(0, 1) then
12: 𝑇 ′ ← 𝑇 ′ ∪ {𝑡}
13: end if
14: end for
15: 𝑡𝑟𝑎𝑖𝑛_𝑚𝑜𝑑𝑒𝑙(𝑇 ′)
16: end for

37

Scoring

Without annotated data, the only way for us to determine how "good" a set of

embeddings are is to apply the 𝑘-nearest neighbors algorithm on the embeddings

and manually inspect the results. This can become very tedious when determining

an optimal set of parameters. Therefore, we annotated the top 100 ingredients (by

frequency) with ingredients that are related to one another (called neighbors). For ex-

ample, ’soybean oil’ is related to ingredients such as canola oil, soybean, and vegetable

oil. Closer matches produce a higher score (e.g. ascorbic acid is closer to vitamin

C than vitamin B). We can then compare the nearest neighbors of any embedding

(ranked by their cosine distances) with the annotated neighbors to produce a score.

In addition, we manually labeled the top 1000 ingredients with their category (e.g.

’apple’ is a fruit, ’red 40’ is an artificial color). Using our annotations, here are the

four scoring metrics that we look at for parameter selection and evaluation:

1. Frequency that at least one of the annotated ingredients occurs in the top 3

nearest neighbors.

2. Average best (lowest) rank of annotated neighbors.

3. Average rank of all annotated neighbors.

4. Average rank of ingredients in the same category (e.g. all vegetables).

3.3.2 Results

We trained the embeddings using 𝑁 = 120, 1000, 5000 ingredients. The results are

shown in Table 3.1 and the parameters used are shown in Table 3.2. After training

the model, we fed the ingredients back into the model and looked at the output.

The outputs overwhelmingly favor the popular ingredients such as ’salt’, ’water’, and

’sugar’. This makes sense because those are the ingredients that most commonly

appear in the context. There are a few exceptions, such as ’cocoa butter’ with ’milk

chocolate’. We now turn our attention to the learned embeddings.

38

N=120 N=1000 N=5000
% found in top 3 69% (17%) 41% (2%) 44% (.4%)
Avg best rank 6 (15) 37 (125) 117 (626)
Avg rank of neigh 20 (60) 133 (500) 422 (2500)
Avg rank of cat 35 287 1341

Table 3.1: Applying the scoring metric for training using different number of ingredi-
ents (𝑁). The numbers in parenthesis show the score if the neighbors are randomly
chosen. Note that a low score/rank does not necessarily imply a bad embedding: if
there are 5000 ingredients, there may be better neighbors for some of the ingredients
that can replace the original neighbors at the top of the nearest neighbors list. In
addition, an embedding that optimizes for just the top 100 ingredients will appear
better than an embedding that optimizes for all 5000 ingredients. Therefore, it is still
important to occasionally check the embeddings to make sure they are reasonable.

N=120 N=1000 N=5000
𝜂 0.005-0.1 0.005-0.1 0.005-0.1
𝜆 0.0005 0.0005 0.0005
𝑚 10 20 30
𝑑 10 20 30
n_epochs 8 25 25
batch_size 200 100 200
max_output_len 4 10 12
min_count None 100 500

Table 3.2: The model parameters used for different values of 𝑁 . The parameters are
chosen from a simple grid search.

39

skip-ing word2vec random
% found in top 3 69% 56% 17%
Avg best rank 6 10 15
Avg rank of neigh 20 36 60

Table 3.3: Score metric for 𝑁 = 120 on three type of embeddings: those generated by
the skip-ingredient model, those obtained from word2vec, and random embeddings.

Embeddings

To analyze the embeddings, we took the nearest neighbors (by cosine distance) for

each ingredient. A sample is shown in Table 3.10. Two ingredients that frequently

occur in the same products do not necessarily share similar embeddings: a linear

regression with the actual co-occurrence probability shows no significant correlations.

From inspection, it appears that near neighbors refer to the same semantic concept,

which is exactly what we want. Ingredients have similar embeddings if they have

similar context.

Next, we map the embeddings to a 2-dimensional space using t-distributed stochas-

tic neighbor embedding (t-SNE). The top 1000 ingredients are color-coded by their

categories and plotted in Figure 3-2. Note that we left out ingredients that we are not

able to properly categorize, as well as ingredients/chemicals considered as "additives",

since we feel that the category is too broad (and difficult to label into subcategories).

A clear pattern emerges: the model was able to cluster ingredients based on their

categories under no supervision.

Comparison with word2vec

As a baseline, we compare the embeddings we generated using the skip-ingredient

model with those from word2vec. We took all the ingredients that can be found in

the set of pre-trained words and looked at their nearest neighbors. The results on

the scoring metric is shown in in Table 3.3. The t-SNE plot for word2vec is also

shown in Figure 3-2. We can conclude that the embeddings generated by our model

40

Figure 3-2: A t-distributed Stochastic Neighbor Embedding (t-SNE) plot of the skip-
ingredient embeddings (top) and the word2vec embeddings (bottom). Note that the
skip-ingredient embeddings have distinct clusters that belong to certain ingredient
categories (e.g. vegetables and fruits). The multi-colored cluster in the top right
corner is especially interesting: it turns out that every ingredient in that cluster is
organic.

41

outperforms the pre-trained word2vec embeddings in terms of being able to cluster

relevant ingredients.

Substitutions

We can use this model to perform a simple form of substitution, by replacing an

ingredient with the nearest neighbor (e.g. replace ’milk’ with ’skim milk’). Given a

set of candidate substitution ingredients, we can also determine the ingredient that

is closest to the target ingredient. While this may not work in all cases, it is a good

start for determining substitutions.

Categorization of ingredients

Another task we can perform using these embeddings is to determine the category

of an ingredient. For this task, we use the same list of 1000 ingredients that we

annotated for the t-SNE visualization. For an unlabeled ingredient, we look at the 𝑘-

nearest annotated ingredients and assign it the most frequent category. Using 𝑘 = 8,

we are able to obtain an accuracy of 70% on a test set of 100 ingredients. See Table

3.4 for an example of the predictions. If we take into account the category frequencies

during labeling, we can likely further improve on this result. We now turn to the task

of predicting the food category given the ingredients.

3.4 Predicting categories

3.4.1 Approach

Given a list of ingredients in a product, we want to predict its category. This can

either be the aisle (16 choices), the shelf (128 choices), or the food category (1124

choices). We represent the input as a 𝑁 -dimensional vector where index 𝑖 is a one

if ingredient 𝑖 occurs in the input product, and zero otherwise. The output is a 𝐶-

dimensional vector that denotes the probability distribution of the category, where 𝐶

is the number of categories (e.g. 128 for shelf). This is a classification problem whose

42

Ingredient Predicted cat Actual cat
high fructose corn syrup additive additive
modified food starch additive additive
vitamin b2 vitamin vitamin
enriched wheat flour grain grain
blue 1 flavor/color flavor/color
nutmeg seasoning fruit/nuts
locust bean gum dairy additive
culture dairy dairy
turkey meat/fish meat/fish
dried cranberry fruit/nuts fruit/nuts
phytonadione vitamin additive

Table 3.4: Predicting category of unlabeled ingredients based on the nearest neighbors
of the embeddings. Note that nutmeg can either be classified as a seasoning or as a
fruit/nut. In addition, phytonadione (vitamin k) was wrong labeled as an additive,
and correctly categorized by the model.

objective function can be defined below (as derived by Bishop [1]). The notation is

similar to that used in Section 3.3. We introduce an indicator function 𝑦𝑜𝑐 that is 1

when 𝑥𝑜 = 𝑐 and 0 otherwise.

𝐽𝑡(𝑥,𝑤) = 𝐿𝑡(𝑥,𝑤) + 𝜆
(︁∑︁

(𝑤ℎ)2 +
∑︁

(𝑤𝑜)2
)︁
, (3.5)

where

𝐿𝑡(𝑥,𝑤) =
𝐶∑︁
𝑐=1

[︀
− 𝑦𝑐 log(𝑧

𝑜
𝑐)− (1− 𝑦𝑐) log(1− 𝑧𝑜𝑐)

]︀
(3.6)

We modify the neural network from the previous section to incorporate this new

cost function. In addition, we apply a softmax in the output layer to generate a valid

probability distribution for 𝑧𝑜.

3.4.2 Results

Mixture model

We first attempt to predict the categories using a baseline probabilistic model. In

language topic modeling, we have a simple mixture model that predicts the most

43

likely topic 𝑧 in a document of text:

argmax
𝑧

𝑁∏︁
𝑖=1

𝑝(𝑤𝑖|𝑧). (3.7)

We can apply the same formula to our problem by replacing the words 𝑤𝑖 with

the ingredients 𝑥𝑖, and replacing the topic 𝑧 with the food category 𝑐. 𝑁 will be the

number of ingredients in the product. After converting the problem to log probability,

we obtain:

argmax
𝑐

𝑁∑︁
𝑖=1

log 𝑝(𝑥𝑖|𝑐). (3.8)

This equation does very well on the training set, but does not generalize to unseen

data. This is because of two problematic scenarios: 1) we encounter an ingredient not

seen in training and 2) a seen ingredient has not occurred in category 𝑐 previously. We

solve the former issue by assigning all unseen ingredients a uniform prior distribution

over the categories. The latter issue is dealt with by using additive smoothing, where

each ingredient 𝑖 is assigned the following probability:

𝑝(𝑥𝑖|𝑐) =
𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑖) + 𝛼

𝑐𝑜𝑢𝑛𝑡(𝑖) + 𝛼 · 𝐶
, (3.9)

where 𝑐𝑜𝑢𝑛𝑡(𝑐, 𝑖) refers to the number of times ingredient 𝑖 occurs in a product with

category 𝑐, 𝑐𝑜𝑢𝑛𝑡(𝑖) is the total number of times ingredient 𝑖 occurs, and 𝐶 is the

total number of categories.

Additive smoothing with a small 𝛼 performs significantly better, as Figure 3-3

shows. Looking at the figure, we choose the optimal smoothing factor to be 𝛼 = 1𝑒−9.

Using this model for 𝑁 = 1000, we are able to obtain an accuracy of 67.2%, 58.4%,

and 43.0% for aisle, shelf, and food category, respectively.

Maximum entropy model

Next, we use the maximum entropy model (implemented as logistic regression in

scikit-learn) to tackle this problem. For 𝑁 = 1000, we obtain accuracies of 76.4%,

67.7%, and 45.5% for aisle, shelf, and food category, respectively (See Table 3.5).

44

Figure 3-3: The effect of 𝛼 on the accuracy of category predictions. All probabilities
are the accuracies in predicting the aisle (e.g. using shelf to predict the aisle). The x-
axis is in log scale. Note that the value for 𝑥 = −10 actually represents no smoothing
(𝛼 = 0).

Neural network model

Lastly, we present the results of our neural network model. Again, using 𝑁 = 1000,

we get accuracies of 77.8%, 69.9%, and 50.3%. These results outperform both the

maximum entropy model and the mixture model.

In addition, we can use the predictions for shelf to predict the aisle, and the

predictions for food_category to predict the aisle and shelf (since all subcategories

belong to the same super-category). The results is shown in Table 3.6.

45

model aisle shelf food_category
mixture model 0.672 0.584 0.430
max entropy model 0.764 0.677 0.455
neural network 0.778 0.699 0.503
neural network (5k ings) 0.810 0.735 0.536

Table 3.5: Comparison of the various models used to predict the category given a set
of ingredients. The first three models use 𝑁 = 1000 ingredients, while the last model
uses 𝑁 = 5000 ingredients. Adding more ingredients to the neural network model
improves performance.

aisle shelf food_category
aisle 0.810 - -
shelf 0.830 0.735 -
food_category 0.816 0.720 0.536

Table 3.6: We can also use subcategories (rows) to predict their parent categories
(columns). However, this adds little additional predictive power, if any.

Generated embeddings

The embeddings generated by the categories are not as relevant as the embeddings

generated by the skip-ingredient model, so we will not discuss it further here.

Using embeddings as input

Instead of using a length 𝑁 one-hot vector to represent each ingredient, we want to

try using the embeddings we generated from the skip-ingredient model. The result is

presented in Table 3.7. The skip-ingredient embeddings perform slightly better than

a randomized embedding for each ingredient. The embedding vector length is highly

correlated with its performance, which makes sense: higher dimensions means more

degrees of freedom for the model. It is interesting to note that random embedding

performs better than the word2vec embeddings. A possible extension is to use the

skip-ingredient model to generate embeddings of length 1000, and comparing that

with the one-hot representation.

46

embedding type 𝑑 accuracy
random 20 0.270
skip-ing 20 0.283
random 300 0.442
word2vec 300 0.373
random 1000 0.436
one-hot 1000 0.699

Table 3.7: In addition to the one-hot vector format (last row), we tried different other
embeddings to represent the input ingredients used for predicting categories. The
input dimension 𝑑 is most correlated with prediction accuracy. However, given the
same dimension 𝑑, using the skip-ingredient embeddings result in a higher accuracy
than a random embedding, while the word2vec embeddings perform worse.

Predicting categories given a single ingredient

If we feed a single ingredient into this model, what category would the model predict

this ingredient to fall in? We expected the model to output either the category with

the most occurrences (𝑚𝑎𝑥(𝑐𝑜𝑢𝑛𝑡(𝑐𝑖))) or the category with the highest percentage

of occurrences (𝑚𝑎𝑥(𝑐𝑜𝑢𝑛𝑡(𝑐,𝑖)
𝑁𝑐

). But most of the time, this turned out to be not the

case. For many cases, the model has learned what that singular ingredient represents:

(milk → ’cream’, yeast → ’baking additives & extracts’, canola oil → ’vegetable &

cooking oils’, spices → ’herb & spices’). As a comparison, the categories with the

most occurrences (and also highest percentage of occurrences) for yeast are "bread &

buns’ and ’pizza’.

3.5 Predicting valid combinations

3.5.1 Approach

To predict whether a list of ingredients form a valid combination, we use the same

setup as Section 3.4.1. The output is 1 if the combination of ingredients is valid (i.e.

can exist in a food product), and 0 if it is invalid. Since this is a classifier with two

classes, we can use the same loss function as Equation 3.6.

47

We restrict the input to contain exactly the first 𝑘 ingredients from the ingredient

list. This is done to eliminate the need for normalization in the input space. In

addition, since the ingredients are listed in order decreasing amount, we believe the

first few ingredients possess the majority of the information about the product. In

practice, we found that 𝑘 = 5 works well. Increasing 𝑘 leads to a higher accuracy,

but less data (as there are fewer products with that many ingredients). For future

work, we plan on removing this constraint.

3.5.2 Negative sampling

We now introduce our own version of negative sampling. Simply choosing 𝑘 ingre-

dients at random to create invalid combinations is insufficient: the simple maximum

entropy model can generate an accuracy of 93%. This is because of the inbalanced

data problem: the valid combinations contains ingredients that occur more frequently.

Hence, "popular" ingredients are assigned a positive weights by the maximum entropy

model. On the other hand, rare ingredients usually occur with invalid combinations,

and are assigned negative weights. This accounts for the high accuracy in the maxi-

mum entropy model, but leads to little prediction power. Any combination of popular

ingredients will result in a "valid" output by the model.

Therefore, we must generate invalid results differently. In addition to completely

random combinations, we also generate invalid ingredients using the same frequency

distribution as the valid ingredients. Therefore, if ’salt’ appears in 10% of the valid

combinations, it will also appear in roughly 10% of the invalid combinations. This

forces our model to learn non-singular relationships in order to determine whether or

not a combination is valid, since simply looking at an ingredient’s popularity will not

enable the model to differentiate between valid and invalid. We found that a 1:1 ratio

of valid to invalid samples work well, with 95% of the invalid samples generated using

this weighted methodology (the other 5% being random combinations of ingredients).

Note that there is a trade-off in setting these parameters. For example, increasing

the valid to invalid samples ratio will improve the valid accuracies at the expense

48

Model 𝑁 V I I weighted
Max entropy 120 0.575 0.989 0.508
Max entropy 1000 0.612 0.976 0.441
Max entropy 5000 0.003 0.984 0.993
Neural network 120 0.942 0.914 0.844
Neural network 1000 0.861 0.968 0.950
Neural network 5000 0.877 0.956 0.936

Table 3.8: Comparison of the maximum entropy and neural network models on pre-
dicting valid/invalid combinations. The accuracy is broken down on three datasets:
the valid (V) set, the invalid (I) set, and the weighted invalid (I weighted) set. Note
that while maximum entropy can easily reject the invalid set, is unable to distinguish
between the valid and weighted invalid sets. The neural network model performs well
on all three datasets. Adding more ingredients does not seem hurt the accuracy.

of invalid accuracies. We chose the parameters such that the model outputs similar

accuracies across all three datasets (valid, invalid, invalid weighted).

3.5.3 Results

The results are presented in Table 3.8. Similar to the previous section, we compare

our neural network model with the maximum entropy model.

Maximum entropy model

After negative sampling is applied, the maximum entropy model performs similar to

or worse than random for either the valid or the weighted invalid combinations. This

does not change when we adjust the various parameters. We conclude that this model

is unable to incorporate higher order relationships between the ingredients.

Neural network model

The neural network model performs significantly better across all datasets. Even

though the ingredients are drawn from the same probability distribution, the model

is able to differentiate between the valid and weighted invalid datasets relatively well.

The exact mechanism behind the predictions has yet to be analyzed.

49

Figure 3-4: t-SNE visualization of the embeddings trained using the valid/invalid
model. While the clusters are not as tight as those in the skip-ingredient model, they
are still easily distinguishable.

Generated embeddings

The ingredient embeddings generated by the neural network, represented as the

weights from the input to the hidden layer (𝑤ℎ), are quite reasonable, as shown

by their nearest neighbors in Table 3.11. Using our scoring function, the embeddings

perform almost as well as those generated by the skip-ingredient model. The t-SNE

visualization is shown in Figure 3-4. The fact that the model is able to cluster simi-

lar ingredients is quite interesting, since at no point during training did we isolate a

particular ingredient (contrary to the skip-ingredient model).

50

embedding type 𝑑 V I I weighted
random 20 0.640 0.609 0.654
skip-ing 20 0.720 0.821 0.842
random 300 0.836 0.857 0.808
word2vec 300 0.845 0.851 0.759
random 1000 0.848 0.794 0.850
one-hot 1000 0.861 0.968 0.950

Table 3.9: In addition to the one-hot vector format (last row), we tried different
other embeddings to represent the input ingredients for the valid/invalid model. The
input dimension 𝑑 is correlated with prediction accuracy. However, given the same
dimension 𝑑, using the skip-ingredient embeddings result in a higher accuracy than
a random embedding, while a similar improvement is not present for the word2vec
embeddings.

Using embeddings as input

We try using the embeddings we generated from this model as input, in a similar

manner as Section 3.4.2. The result is presented in Table 3.9, and mirrors the result

from Section 3.4.2.

Substitutions

We can take valid combinations of 𝑘 ingredients and substitute 𝑘′ ∈ (1, 2, . . . , 𝑘) in-

gredients. As 𝑘′ increases to 𝑘 (more substitutions), the model shifts from outputting

overwhelmingly valid to overwhelmingly invalid. When we substitute invalid combi-

nations, the model continues to output overwhelmingly invalid. This result makes

sense intuitively. We cannot currently check the precise accuracy of these substitu-

tions due to the lack of annotated data. This area will be further explored in future

work.

Additions/removals

In addition to substitutions, we tried adding and removing ingredients from the 𝑘-

ingredient combinations for 𝑘 = 5. When adding ingredients, we add random in-

gredients. When removing ingredients, we randomly remove ingredients currently

in the combination. The percentage of inputs predicted as valid is shown in Figure

51

Figure 3-5: Starting with 5 ingredients, we add and remove up to 5 ingredients and
plot the percentage of combinations the neural network model labeled as ’valid’. The
graph makes intuitive sense: for valid combinations, adding additional ingredients
will decrease probability of being marked ’valid’, while the opposite is true for invalid
combinations. As we remove ingredients, the model quickly labels all combinations
as ’invalid’, most likely due to the fact that the inputs are not normalized, and hence
using a subset of ingredients as the input will never trigger the threshold.

3-5. Note that the model outputs all 1-ingredient and 2-ingredient combinations as

’invalid’, which could be correct or incorrect depending on the definition of a valid

combination. But as with substitutions, it is difficult to determine the validity of

the results without annotated data. However, we can certainly improve the model in

future work by incorporating training data consisting of different lengths.

3.6 Predicting unseen ingredients

There will be cases where we are given an ingredient that has not been seen in

the training data. This is especially relevant in the cases of adulterants, which are

52

(obviously) not present on the ingredients list. Using the UMLS database described

in Section 2, we can look up the properties of ingredients not seen during training.

3.6.1 Mapping unseen ingredients to embeddings

We learn a mapping between the property-level representation and the ingredient

embeddings. That idea is that we look for ingredients in the training data that have

similar properties as the unseen ingredients. As shown by Herbelot and Vecchi [3],

one way we can learn the mapping is to apply a partial least squares (PLS) regression.

We decided to use a 𝑘-nearest neighbor approach, as this approach performs similarly

to PLS in the dataset used by Herbelot and Vecchi.

Now that we have a mapping, we can map any unknown ingredient to an embed-

ding by first generating a property-level hierarchy representation and then applying

the mapping. We generated the property-based representations for 1000 ingredients

using this data. We then took 1000 unseen ingredients and found the nearest neigh-

bors in the seen ingredients based on the cosine similarities of the property-level

representations. The results are shown in Table 3.12. We describe the hierarchies in

greater detail in Chapter 5.

The models we introduced were able to successfully generate useful embeddings,

predict the food category of a list of ingredients, and determine if a combination of

ingredients is valid. This will help us in future work in characterizing illegal sub-

stances and predicting which food products they are likely to occur in. In addition,

these results can have various implications in other fields whose datasets can be trans-

lated in a similar manner to fit these models (e.g. generating list of chemicals in a

valid reaction). We next turn our attention to an alternative model to predicting

ingredient/product category pairs: collaborative filtering.

53

Ingredient Neighbor 1 Neighbor 2 Neighbor 3
cream cultured skim milk skim milk sour cream
modified corn starch autolyzed yeast modified cornstarch monosodium glutamate
garlic powder spice onion powder dehydrated onion
sodium phosphate smoke flavor smoke flavoring sodium diacetate
vegetable oil canola oil cottonseed
iron niacin thiamine ferrous sulfate
baking soda sodium bicarbonate monocalcium phosphate ammonium bicarbonate
preservative polysorbate 60 preservatives sodium propionate
beef pork mechanically separated chicken sodium nitrite
yellow 6 yellow 5 red 3 yellow 5 lake

Table 3.10: Selection of ingredients and their nearest neighbors based on the cosine
distances of the embeddings trained using the skip-ingredient model. The model is
able to cluster the broader semantic meaning of each ingredient (e.g. beef is a meat,
yellow 6 is a color).

Ingredient Neighbor 1 Neighbor 2 Neighbor 3
cream skim milk milk milkfat
modified corn starch food starch-modified modified food starch confectioners glaze
garlic powder spices garlic pepper
sodium phosphate beef broth part skim mozzarella cheese pork
vegetable oil corn oil brown rice canola oil
iron ferrous sulfate vitamin b1 riboflavin
baking soda tapioca flour organic dried cane syrup granola
preservative citric acid potassium phosphate sucralose
beef mechanically separated chicken pork mechnically separated turkey
yellow 6 pistachio red #40 ester gum

Table 3.11: Selection of ingredients and their nearest neighbors based on the cosine
distances of the embeddings generated by the valid/invalid model. Note that even
though we never trained each ingredient individually, the model was able to cluster
the broader semantic meaning of each ingredient. Its performance seems to be on par
with the embeddings generated by the skip-ingredient model.

Ingredient Neighbor 1 Neighbor 2 Neighbor 3
vanilla flavor organic vanilla extract vanilla organic vanilla
raisin paste organic tomato paste tomato paste potato flake
dill herb organic basil mustard
cheese sauce sauce worcestershire sauce tomato sauce
green red artificial color color
bleached flour enriched bleached flour corn flour partially defatted peanut flour
sausage pepperoni ham bacon
cane syrup organic dried cane syrup dried cane syrup glucose-fructose syrup
organic almond almond tree nut hazelnut
light tuna fish anchovy sardines

Table 3.12: Given previously unseen ingredients, we can use the UMLS database
to find the nearest neighbors in the seen ingredients. We can then use this new
representation to make various predictions (such as the ones presented in this paper).

54

Chapter 4

Collaborative Filtering

Our task is to be able to identify likely adulterant, food product pairs. One way to

do this is through a technique called collaborative filtering. Collaborative filtering

is most popularly applied to the area of recommendation system, in particular for

movies. Given a list of ratings that users have given for certain movies, the goal is to

predict the ratings for movies the users have not seen. The movies with the highest

predicted ratings are then recommended to the users. We will apply the similar

logic for predicting adulterations. In this case, food products are the users and the

adulterants are the movies. Instead of predicting movies that the user will like, this

collaborative filtering method will predict adulterants that are likely to adulterate

the food product.

To accomplish collaborative filtering, we implement a method called weighted

alternating least squares (ALS), as presented in [17]. We refer readers to the paper

for the exact algorithm details. To summarize, we try to find a low-rank matrix

factorization of 𝑀 into 𝑈 and 𝑇 that gives us:

𝑀 ≈ 𝑌 = 𝑈 · 𝑉 𝑇 , (4.1)

where 𝑀 is the matrix where the 𝑖, 𝑗 entry refers to the possibility of adulterant 𝑖

occurring in product 𝑗. A value of +1 means that that this combination is definitely

possible, while a value of −1 means that it is definitely not possible. Since we do

55

not know all the values of 𝑀 , we use 𝑌 to approximate it. The goal is that for a

given adulterant/product pair that does not have an entry in 𝑀 , we can use 𝑌 to

determine how likely this pair is.

4.1 Results

Using this approach, we are able to come up with a prediction for each product/adulterant

pair. We used the RASFF dataset described in 2.2.1. Below are the steps we followed

to set up the model:

1. From the 3,852 products and 464 adulterants, we filtered out all adulterants

and products that only occur once. We are left with 185 products and 74

adulterants. There are 511 data points, which we denote as positive instances.

This corresponds to a 511
185·74 = 3.7% sparsity.

2. We filled out the matrix 𝑀 (185× 74) with those 511 data points labeled +1.

3. Because we do not have direct access to negative labels (pairs that cannot occur),

we labeled 511 random points in 𝑀 as −1. We assume those combinations to

be negative instances.

4. We use the ALS algorithm iteratively to find a low-rank factorization of 𝑀 into

𝑈 (185× 𝑟) and 𝑉 (74× 𝑟) (Equation 4.1). 𝑟 is the rank. We found that 𝑟 = 5

works best.

5. We use the entries in 𝑌 = 𝑈𝑉 𝑇 to approximate 𝑀 .

A visualization of the matrices 𝑀 and 𝑌 can be seen in Figure 4.1. We used a

60/20/20 training/validation/test split. The cross-validated results on the test set

gives us a prediction accuracy of 57.7% on the positive (+1) cases. We can apply

one more "trick": we only make a prediction if the model is confident about the

56

Product Substance Actual Predict
apricot jam E210 - benzoic acid True True
canned vegetables sulphite True True
herbal supplement arsenic True True
grill spices colour Para Red True False
pickles sulphite True False
tuna mercury True No guess
raisins aliphatic hydrocarbons True No guess
pickled vegetable colour E110 - Sunset Yellow FCF False True
tomatoes colour Sudan 1 Unknown True
spinach nitrate Unknown True

Table 4.1: Sample predictions by the collaborative filtering model compared to the
actual results.

prediction. This involves simply applying a threshold 𝛼 over the matrix 𝑌 :

𝑌 ′[𝑖, 𝑗] =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, if 𝑌 [𝑖, 𝑗] > 𝛼

−1, if 𝑌 [𝑖, 𝑗] < −𝛼

0, otherwise

(4.2)

Using an optimum threshold improves our accuracy to up to 70% for the values where

the model outputs a prediction (𝑌 ′ ̸= 0). See Figure 4-1 to see the effects of a changing

threshold. Table 4.1 shows a list of sample predictions.

So far, we have made our predictions based solely on the limited set of food/adulterant

pairs of instances found in the RASFF database, in the absence any knowledge of what

the products or chemicals are. For our next steps, we plan to improve our current

method by adding features to the food products and chemicals. Similar to how in-

formation such as the genre, director, and lead actors of movies can be used to make

better predictions, we can utilize various properties of food products and chemicals

to make more accurate adulteration predictions. We explore that in the next chapter.

57

Figure 4-1: Effect of a threshold on evaluation metrics. As we increase the threshold,
the accuracy and precision increases, at the expense of recall. Recall is the percentage
of correctly identified positive cases. Precision is the percentage of positive predictions
that are correct. Accuracy is the percentage of correctly identified positive cases where
a prediction exist.

58

Figure 4-2: Training data showing only
the positive (+1) instances of adulterant
x with product y.

Figure 4-3: Matrix 𝑀 showing positive
(+1) & negative (-1) instances of adul-
terant x with product y.

Figure 4-4: Matrix 𝑌 showing positive
(+1) & negative (-1) predictions of adul-
terant x with product y.

Figure 4-5: Matrix 𝑌 ′ showing positive
(+1) & negative (-1) predictions after ap-
plying a threshold.

59

60

Chapter 5

Ingredient Hierarchies

For the remainder of this paper, we will focus on the following problem. Given an

ingredient, our goal is to be able to predict the most likely product categories that

this ingredient can occur in. Continuing from the previous example from Chapter 3,

an input of "tomatoes" should tell us that "canned tomatoes" would be a very likely

category, whereas "milk additives" would not be.

Up to this point, the model has no understanding of what any of the ingredients

mean. We can label the ingredients numerically from 1 to 𝑁 , and the model can

generate the exact same results. Obviously, there are additional information about

each ingredient that we can gather from the name. For example, we know that "milk"

is a dairy product, "FD&C red #40" is a red dye, and "tartrazine" is a yellow dye.

A human would be able to identify that "red #40" and "tartrazine" are more similar

to each other than milk. Can we teach that to our model? In other words, we want

to see if we can gather chemical/physical properties of the individual ingredients. We

turn to the Unified Medical Language System (UMLS) Metathesaurus to extract the

hierarchy relationship for each ingredient (Section 2.1).

The UMLS Metathesaurus contains hierarchy relationships aggregated from mul-

tiple sources. We limit our search of the relationships to four sources: Systematized

Nomenclature of Medicine - Clinical Terms (SNOMEDCT), National Cancer Insti-

tute (NCI), National Drug File - Reference Terminology (NDFRT), and Management

Sciences for Health (MSH).

61

Figure 5-1: Sample hierarchy for red dyes. From the hierarchy, we can tell that Sudan
Red and FD&C Red 40 are more similar than Sudan Red and say, a yellow dye.

For example, here is the hierarchy extracted for the ingredient "wheat flour":

wheat flour → wheat product → wheat → grain → plant structure →

plant material → organic natural material → natural material

See Figure 5-1 for a visualization of a sample hierarchy.

The property-level representations of substances generated using the UMLS Metathe-

saurus are helpful in mapping a substance name to a vector representation that en-

codes the substance’s chemical and physical properties. We want to leverage the fact

that similar ingredients tend to have similar hierarchies, which in turn means they

tend to appear in similar food products.

To generate a hierarchy representation for each ingredient, we used the following

steps for each ingredient:

1. Assume that there are 𝐻 unique nodes in the hierarchies for the entire set of

ingredients. Each node is assigned an index from 0 to 𝐻−1. We initialize every

ingredient to a zero vector of dimension 𝐻. We call this vector 𝑣. 𝐻 = 3751 in

our study.

62

2. We looked up the ingredient in the ULMS Metathesaurus. If the ingredient did

not exist because it is too specific (e.g. extra virgin olive oil), we iteratively

truncate the ingredient name until we are able to find a match (e.g. olive oil).

If no match exists, we return the zero vector.

3. If a match exists, we extract the hierarchy for the ingredient. Note that multiple

hierarchies can exist for the same ingredient. Assume there are 𝑘 unique nodes.

Let 𝐼 = 𝑖1, . . . , 𝑖𝑘 be the indices that these 𝑘 nodes correspond to. We assign

𝑣[𝑖] = 1,∀𝑖 ∈ 𝐼.

4. We normalize 𝑣 to sum to 1.

5.1 Nearest neighbor algorithm

We try a simple nearest neighbors algorithm to predict the likely product categories

for each adulterant.

We first generated the vector representations for the 5000 most popular ingredients

from the FoodEssentials ingredient/food products database. Out of 424 adulterants

from the RASFF database, we are able to generate a vector representation for 358

substances (84%). 249 (54%) have a direct match (no need to truncate the ingredi-

ent). For each of the 358 adulterants with a valid hierarchy representation, we found

the 10 nearest neighbors (via the smallest cosine distances) from among the hierar-

chy representations of the 5000 ingredients. We looked at the most common food

categories that these nearest neighbors occur in. From this we are able to create a

probabilistic model that outputs the most likely categories for each adulterant, and

the most likely adulterants for each category.

Table 3.12 in Chapter 3 shows the nearest neighbors for unseen ingredients calcu-

lated using the hierarchy representations. The high-level idea is that we want to find

ingredients that are similar to the adulterant. Since we have more information about

ingredients than adulterants, we can leverage information to predict the likely food

categories for an adulterant (and vice versa).

63

Using this model, we obtained the top 5 categories for the possible adulterant

nickel: meal replacement supplements, breakfast drinks, weight control, snack, energy

& granola bars, and energy, protein & muscle recovery drinks. We can also predict

adulterant from the category. Here are the top 5 possible adulterants for the product

category "liquid water enhancer": sucralose, acesulfame k, succinic acid, citrate, and

ethylcarbamate.

5.2 Neural network approach

We now try a more sophisticated model for making predictions: neural networks. Our

neural network takes as input the vector representation of an ingredient/substance, as

described earlier. The output is a softmax layer for the 131 possible food categories,

with a score assigned to each of 131 categories. A higher score indicates a stronger

relation between the input (the substance) and the output (the category). We can

think of the score as the probability that given an ingredient, it is found in that

product category.

For training, we use the empirical probability distribution of the product categories

as the true output. For example, if an ingredient appeared 30 times in category A

and 70 times in category B, and nowhere else, we take the true distribution to be 0.3

for category A and 0.7 for category B. Therefore, if the model were able to predict

0.3 for category A, 0.7 for category B, and 0 for all other categories, it would have

a loss of 0. We use the cross-entropy loss function, similar to the loss introduced in

Section 3.6.

Note that since we used a softmax layer over the food categories, the sum of the

probabilities for each of the food categories must add to 1. Rather than giving an

independent probability for each ingredient / product category pair, we take into

account the entire distribution of food categories. If a particular ingredient / product

category pair received a low probability, it could mean two things: 1) this is not a

likely pairing or 2) there are not many products in this category that contain this

ingredient, relative to all the other product categories. We believe this is a good

64

ingredient category 1 category 2 category 3
wheat flour bread & buns cookies & biscuits frozen appetizers
soybean oil bread & buns frozen appetizers salad dressing
enzymes cheese bread & buns frozen appetizers
milk cheese ice cream yogurt
natural flavors frozen appetizers ice cream candy
maltodextrin energy drinks snack bars chips & snacks
high fructose corn syrup ice cream soda cookies & biscuits

Table 5.1: Top 3 outputs of trained model on sample training data (ingredients)

ingredient category 1 category 2 category 3
sorbitan tristearate cookies & biscuits snack bars ice cream
tartrazine candy pickles ice cream
dioxins energy drinks snack bars soda
allura red ac candy soda ice cream
aluminum sodium sulphate frozen appetizers snack bars frozen dinners
brilliant blue fcf candy ice cream cookies
ethyl-p-hydroxybenzoate soda pickles soda

Table 5.2: Top 3 outputs of trained model on sample test data (adulterants)

representation since we want to bias our model to predict pairs that are both likely

and have a large number of products.

The FoodEssentials ingredient/food product database has over a million training

data points of ingredient / product category pairs. We convert each input to its

property vector representation and assign each food category to a numerical index.

We use a 60/40 training/validation split from this dataset. Finally, to test the model,

we pass in the property vector representation of the adulterants from the RASFF

database as the input. A sample of the results are shown in Table 5.1 and Table 5.2.

5.3 Evaluation

Recall that for each input ingredient, the model outputs a probability for each product

category. We rank the product categories in descending probabilities. Of course, the

category with the highest probability (rank=1) will be the most likely category for

65

this ingredient. We use two standard information retrieval (IR) metrics to evaluate

this ranking: mean average precision (MAP) and precision at 𝑁 (P@N). The mean

average precision compares the predicted rankings with the true rankings (ordered by

frequency of occurrence), and is calculated as follows:

𝑀𝐴𝑃 =
1

𝑁

𝑁∑︁
𝑖=1

𝑘∑︁
𝑗=1

𝑗

𝑝𝑟𝑒𝑑_𝑟𝑎𝑛𝑘(𝑐𝑖,𝑗)
(5.1)

where 𝑖 is the current ingredient, 𝑁 is the number of ingredients in our dataset, 𝑗

is the true rank, 𝑘 is the total number of product categories that ingredient 𝑖 has

been found in, and 𝑐𝑖,𝑗 is the product category corresponding to the true rank 𝑗 for

ingredient 𝑖. If the predicted rankings is the same as the true rankings, then it is easy

to verify that the MAP will be 1.

Precision at 𝑁 measures the percentage of the top 𝑁 predicted products that have

actually occurred in the true dataset, where 𝑁 is the total number of food categories

that the ingredient has appeared in. So for example, if an ingredient occurred in only

categories A and B, and the model predicted A and C as the top 2 categories, then

the P@N metric would be 0.5. If the model had predicted B and A, it would be 1.0.

Mathematically, it is calculated as follows:

𝑃@𝑁 =
1

𝑁

𝑁∑︁
𝑛=1

1

𝑘

𝑘∑︁
𝑗=1

1(𝑝𝑟𝑒𝑑_𝑟𝑎𝑛𝑘(𝑐𝑖,𝑗) ≤ 𝑘), (5.2)

where the variables are the same as those in Equation 5.1, and 1 denotes the indicator

function. Note that in the above formula, 𝑁 is the total number of ingredients.

Rather, we use 𝑘 to denote the 𝑁 in P@N in order to maintain the same variables

from Equation 5.1, which makes this a slight misnomer. Again, if the predicted

rankings is the same as the true rankings, or any permutation of it, the P@N will be

1.

Table 5.3 shows the evaluation metrics of our trained model. The baseline model

uses the mean occurrence distribution of the food categories as the prediction rank-

ings for every input. The inputs to the MLP were scrambled for the "MLP (random)"

66

Model Training set Validation set Adulterants
Random 0.162 / 0.132 0.172 / 0.142 0.045 / 0.011
Baseline 0.347 / 0.317 0.357 / 0.327 0.042 / 0.007
MLP (random) 0.350 / 0.318 0.351 / 0.323 0.031 / 0.001
MLP (dim=100) 0.536 / 0.479 0.478 / 0.429 0.103 / 0.047
MLP (dim=5321) 0.666 / 0.597 0.497 / 0.446 0.078 / 0.019

Table 5.3: Comparison of the various models used to predict the category given
an ingredient. The two metrics shown are the mean average precision (MAP) and
precision at N (P@N), respectively.

model. We also used principal component analysis (PCA) to reduce the dimensional-

ity of the hierarchy representations from 5321 to 100 in order to show that one does

not need a high-dimensional input vector to perform similarly well. The MLP with

full dimensions performs the best on the validation and adulterants datasets. There

are several reasons why the scores for adulterants might be low:

∙ There are 131 categories and a much smaller fraction of them appear in the data

compared to the ingredients. Therefore, this makes it harder for the model to

make accurate predictions.

∙ The data is not completely representative of our goal: just because an adulter-

ant/food category pair does not appear in our data does not mean this pairing

cannot occur. It could be that this pairing is legal and thus not considered an

adulterant. Therefore, a prediction made by the model that does not appear in

the data does not necessarily mean that the prediction is infeasible.

∙ Unlike with the training data, we do not account for the prevalence of each data

pair. In other words, we weigh each pair the same, regardless of how frequently

or rare this pair is.

∙ There is less information available about adulterants in general.

67

To summarize, we have created a model that is able to predict the most likely food

categories for an unseen substance using hierarchical properties of the substance.

This model performs well as long as we are able to find the substance in the ULMS

database. What if we are unable to find a corresponding entry? The next chapter

discusses a possible solution using Wikipedia.

68

Chapter 6

Leveraging Text Data using

Recurrent Neural Networks

Recurrent neural networks (RNN) were first developed for use in natural language

processing tasks such as document similarity and machine translation. Their key

strength is the ability to retain memory for a specific task, something traditional

neural networks cannot do. This is done by connecting the output of the previous layer

to the input of the current layer. This allows the RNN to process an arbitrary sequence

of inputs, making it ideal for applications in language, images, and speech. Due to

the inherit "deep" architecture of the RNN from having many layers, traditional

backpropagation techniques do not work in this setting. This is because propagating

the gradients often results in an exploding or vanishing gradient. There has been a

lot of research done in recent years on how to combat this problem, the most famous

of which is the long short term memory (LSTM) by Hochreiter & Schmidhuber [4].

We leave the details of the workings of a RNN and LSTM for another time. For this

task, we can think of it as a black box that takes as input a piece of text and outputs

a vector representation of that text.

One way to make predictions is to leverage text corpora to learn a representa-

tion for each ingredient using natural language processing techniques. We chose the

Wikipedia corpus for this task, as an article exists for most ingredients in our dataset.

Wikipedia contains an abundance of information and knowledge with regards to prac-

69

tically anything. Given a substance, such as an ingredient or adulterant, one can learn

a lot about the substance by reading the associated Wikipedia article. One will also

be likely to make somewhat informed predictions on which food products this sub-

stance can occur in. Note that any other source of text corpus could be similarly

applied, and future work could focus on leveraging text sources outside of Wikipedia.

Rather than extract the entire article (which can be quite long), we only extract

the summary text of the corresponding Wikipedia article, which is the top part of

the article before the main content. On a high level, we use a recurrent neural

network (RNN) as an encoder to map this summary text of the article into a vector

representation. We can then use this vector representation to make predictions on

the likely product categories. RNNs have been widely used in the natural language

processing community in recent years to process text for tasks ranging from machine

translation to topic modeling.

Machines do not inherently understand text. Therefore, we must first convert each

word into a vector representation, or word embedding. The idea is that similar words

will have similar representations, as determined by some distance metric (i.e. cosine

distance). These word embeddings must be pre-trained using a large text corpus. For

our work ,we use the GloVe pre-trained vectors (Common Crawl, 42 billion tokens,

300-dimensional) [11]. We also tried the Google News word2vec vectors [9], but they

did not perform as well.

Figure 6-1 for a schematics of the RNN model. We use a modified version of the

recurrent convolutional neural network model from [7]. While we do not focus on the

details of the RNN model for this study, it is important to understand the inputs and

outputs, as well as the overall process, which we present below:

1. We first tokenize the summary text.

2. We then map each token to its corresponding GloVe word vector. If the token

is not found, we assign it a vector zeros.

3. We now have a vector of word vectors for each ingredient. This is the input to

the RNN.

70

Figure 6-1: Illustration of the recurrent neural network model (RNN), modified
slightly from [6] (used with permission). It takes as input the summary text of the
Wikipedia article corresponding to an ingredient, and outputs a vector representation
of this ingredient. In the intermediate layers of the model, several feature map layers
map the input into different levels of feature representations. The stacked features
are averaged within each layer and then concatenated. For this work, we can view
the model as a black box.

71

4. The RNN performs mini-batch training. It groups ingredients with the same

length (number of tokens) together in a batch. For each batch, the RNN takes

in one word vector at a time and ultimately outputs a hidden representation

for each layer.

5. All the hidden representations are concatenated to generate a final representa-

tion for each ingredient.

6. We also compute the representations for each product category. Similar to the

ingredients, each product category has an associated Wikipedia text. We follow

the same process as above.

7. We now have two matrices containing representations for each ingredient (𝑛×𝑑)

and for each ingredient (𝑝 × 𝑑), where 𝑛 is the number of ingredients, 𝑝 is the

number of products, and 𝑑 is the hidden dimension.

8. We take the dot product of the two matrices to get a matrix of 𝑛 × 𝑝. Taking

the softmax of this matrix gives us a prediction over the product categories for

each ingredient. Section 6.1 will go over this in greater detail.

9. The model computes the cross-entropy loss and performs backpropagation. The

process is repeated for the remaining batches. This completes one epoch of

training.

6.1 Problem formulation

Let 𝜃 be the parameters of the RNN. We denote 𝑣𝜃(𝑥) ∈ R as the RNN mapping

of any text 𝑥 into a vector representation, where 𝑑 is the dimension of the hidden

representation specified in 𝜃. Let 𝑥𝑖 and 𝑧𝑝 be the Wikipedia pages for ingredient 𝑖 ∈ 𝐼

and product category 𝑝 ∈ 𝑃 , respectively. We use the same parameters 𝜃 to generate

the representations for both the ingredients and product categories. Therefore, 𝑣𝜃(𝑥𝑖)

is the vector representation for ingredient 𝑖 and 𝑣𝜃(𝑧𝑝) is the vector representation for

product category 𝑝 for an RNN model with parameters 𝜃.

72

We can train the RNN model to predict the product categories given a particular

ingredient:

𝑃 (𝑝|𝑖, 𝜃) = 1

𝑍𝜃

exp{𝑣𝜃(𝑧𝑝) · 𝑣𝜃(𝑥𝑖)}, (6.1)

where 𝑍𝜃 =
∑︁
𝑝′∈𝑃

exp{𝑣𝜃(𝑧𝑝′) · 𝑣𝜃(𝑥𝑖)} (6.2)

Note that this is a similar formulation to that of a collaborative filtering model

with user/item feature vectors produced by the RNN. The traditional CF model does

not properly apply in this case, as we are predicting a probability distribution over

all the product categories rather than a binary prediction for each category.

We define our loss function to be the cross-entropy loss from a multi-class predic-

tion problem:

𝐿(𝑖, 𝜃) = −
∑︁
𝑖∈𝐼

∑︁
𝑝∈𝑃

𝑞(𝑝|𝑖) log𝑃 (𝑝|𝑖, 𝜃), (6.3)

where 𝑞 is the observed probability of the product category. Our objective is to

minimize this loss.

6.2 Finding Wikipedia articles

We tried using the MediaWiki API to automate the process of generating the ap-

propriate Wikipedia article for each ingredient by taking the top search result for

each ingredient. This generates the incorrect article for many of the ingredients. For

example "black-eyed peas" were redirected to the article about the band starring

Will.I.Am et al.

Hence, we turned to Mechanical Turk and asked Turkers to find us the appropriate

Wikipedia article for each ingredient. This gave us much better results. Over half the

articles were different from our previous attempt using the API. Once we have the

associated Wikipedia articles, we use the MediaWiki API to download the summary

text.

73

The median word length of a Wikipedia summary text is around 50 words. For

ingredients without a corresponding Wikipedia entry (or the summary text is under

5 words), we do not use it for training.

6.3 Experimental setup

6.3.1 Training, validation, and test sets

We split the ingredients dataset of 5000 ingredients into training and validation sets

(2:1 split). We then use the adulterants dataset as the test set. Because the two

datasets are not directly comparable, an extension would be to split the ingredients

dataset into training, validation, and test sets, and then perform cross-validation.

6.3.2 Use of GPU

The RNNs are implemented on top of Theano, which means that we are able to lever-

age GPUs to aid us in our computation. Each epoch takes around 15 minutes to run

on the GPU. If we run the model without the product vectors (Section 6.4.1), we can

improve the speed by 15x. This is because the addition of the product vectors require

us to compute the representation for each of the 131 products at every iteration.

6.3.3 Evaluation

Recall from Section 5.3 that we use the mean average precision (MAP) and precision

at N (P@N) as our evaluation metrics. We will use the same two metrics to evaluate

our RNN model.

While these two metrics have their strengths, they collectively lack one thing: a

qualitative assessment. We hope to leverage the crowdsourcing capabilities of Amazon

Mechanical Turk to develop our qualitative evaluation assessment in the future. For

each ingredient/chemical, we take the top k ingredient/product pairs predicted by

the model and ask "Turkers" to mark whether this is A) a reasonable pair that would

likely be found together (e.g. 1% milk/yogurt) or B) not a reasonable pair (e.g. 1%

74

Parameter Value
regularization (𝜆) 0.000001
learning rate 0.001
hidden dimension (𝑑) 50
layers 1
batch size 5
n-gram 2
activation function tanh
dropout 0.01
epochs 100

Table 6.1: Optimal hyperparameters for the RNN model.

milk/soda). We will then weigh this result with the rank of the pair so that more

confident predictions will be rewarded (or penalized) appropriately.

For more sophisticated substances/chemicals, this task becomes more difficult.

Our preliminary analysis shows that Turkers have difficulty identifying likely adulter-

ant / product category pairs, as they can often appear in non-obvious scenarios. In

this situation, we can enlist the knowledge of domain experts rather than Turkers, but

the process would be identical. Combined with the quantitative evaluation metrics,

this will provide us with a more comprehensive view of the performance of our model.

6.3.4 Hyperparameters

We use SGD with a mini-batch size of 5. For the RNN model, we used Adam [5]

as the optimization method with the default setting suggested by the authors. We

used a hidden dimension of 𝑑 = 50 (while a higher 𝑑 tend to lead to improved results,

training time is much slower). For regularization, we used the L2 norm of the weights.

We performed an extensive search over the space of the hyperparameters. Table

6.1 shows the best setting we have found.

75

Figure 6-2: The RNN model process without incorporating product information.

6.4 Alternate versions

We also explored two other model architectures to tackle this problem. They are

minor alterations to the existing model.

6.4.1 No product vectors

The model we described above assumes that we have also generated a vector repre-

sentation of the products, 𝑣𝜃(𝑧𝑝). How will the model perform if we were to not use

this representation in our prediction? In that case, we will just have a matrix of a

vector of dimension 𝑛 × 𝑑 after Step 6 of the overall process from the beginning of

the chapter, where 𝑛 is the number of ingredients and 𝑑 is the hidden dimension.

This vector representation will then be passed to another layer of the neural network,

which maps the 𝑛×𝑑 matrix to a 𝑛×𝑝 matrix. A softmax is finally applied to predict

the likely food categories. This is a similar architecture as the one we used to make

predictions in Section 5.2. This version can be summarized in Figure 6-2.

76

As we will show in the upcoming Results section, this version of the model does

slightly better than the model we introduced above. This is likely because the final

neural network layer contains additional parameters that can be tuned by the model,

adding additional degrees of freedom compared to the previous model, where a dot

product was used instead to map the hidden representation into a probability distri-

bution. The benefit of the previous model was that we can use the ingredient and

product representations to generate a sequential model, which we will present in the

next chapter.

6.4.2 Augmenting with hierarchy representation

For each ingredient, at the final layer right before the softmax, we added the hierarchy

representation from Chapter 5. We want to see if we can combine the Wikipedia

article and the hierarchy representation to obtain a better overall representation of

an ingredient, and hence lead to a better predictive model. Because of the high

dimensionality of this representation (compared to the RNN representation), we used

principal component analysis (PCA) to reduce the dimensionality to be equal to

the dimension of the RNN representation. We then fed the concatenation of the two

representations into a final softmax layer, similar to the above version with no product

info.

As we will show in the next section, we have yet to tune this version of the model

to outperform the "normal" RNN model.

6.5 Results

Table 6.2 shows evaluation metrics of the RNN model. The metrics are described

in Section 6.3.3. The random model generates a random ranking of food categories

for each ingredient. The baseline model uses the mean occurrence distribution of the

food categories as the prediction rankings for every input. The MLP model is the

model from Section 5.2. The current RNN model outperforms all other baselines in

the validation and test sets. See Table 6.3 for a list of sample predictions.

77

Model Training set Validation set Adulterants
Random 0.162 / 0.132 0.172 / 0.142 0.045 / 0.011
Baseline 0.347 / 0.317 0.357 / 0.327 0.042 / 0.007
MLP 0.666 / 0.597 0.497 / 0.446 0.078 / 0.019
RNN (no products) 0.617 / 0.552 0.539 / 0.481 0.168 / 0.074
RNN (hierarchy) 0.647 / 0.578 0.522 / 0.468 0.100 / 0.017
RNN (d=200) 0.638 / 0.573 0.539 / 0.483 0.157 / 0.051
RNN 0.610 / 0.545 0.528 / 0.475 0.161 / 0.060

Table 6.2: Comparison of the various models used to predict the category given an
ingredient. The two metrics shown are the mean average precision (MAP) and preci-
sion at N (P@N), respectively. We compare the RNN model with the two alternate
versions described in 6.4, as well as a version with 𝑑 = 200. Using a higher dimension
performs better at the expense of training time.

Figure 6-3 is a visualization of the probability distributions of food categories for

four ingredient inputs. Different ingredients correspond to different food categories

of high interest.

We have showed that our deep neural network model performs significantly better

than both a random prediction and a baseline prediction based on the occurrence

frequency of the categories. We note that that the model is able to make these pre-

dictions based only on the Wikipedia entry for each ingredient. Looking at the sample

predictions, the model does quite well on ingredients with a thorough Wikipedia en-

try. This is a promising result that opens the door for new research directions. Our

next step is to incorporate more information into the model, such as combining the

hierarchical information used in the MLP model. We expect the performance of this

model to increase.

78

Ingredient Wikipedia article Neighbor 1 Neighbor 2 Neighbor 3
oatmeal Oatmeal cereal (0.564) snack, energy & granola bars (0.196) breads & buns (0.039)
watermelon juice Watermelon fruit & vegetable juice (0.352) ice cream & frozen yogurt (0.205) yogurt (0.064)
jasmine rice Jasmine rice flavored rice dishes (0.294) rice (0.237) herbs & spices (0.062)
shrimp extract Shrimp (food) fish & seafood (0.491) frozen dinners (0.128) frozen appetizers (0.113)
meatball Meatball pizza (0.180) breakfast sandwiches (0.128) frozen dinners (0.120)
polysorbate 80 Polysorbate 80 chewing gum & mints (0.531) candy (0.092) baking decorations (0.049)
ketchup Ketchup ketchup (0.461) salad dressing & mayonnaise (0.049) other cooking sauces (0.044)
benzoic acid Benzoic acid powdered drinks (0.062) fruit & vegetable juice (0.051) candy (0.045)
sibutramine Sibutramine energy drinks (0.193) specialty formula supplements (0.149) herbal supplements (0.092)
nitrite Nitrite sausages, hotdogs & brats (0.310) pepperoni, salami & cold cuts (0.257) bacon, sausages & ribs (0.057)
tadalafil Tadalafil energy drinks (0.522) soda (0.141) formula supplements (0.064)

Table 6.3: Sample predictions generated by the model on eight unseen ingredients and
three adulterants. The number in parenthesis represents the probability provided by
the model.

Figure 6-3: Visualization of the probability distributions of food product categories
for four ingredient inputs.

79

80

Chapter 7

Sequential Refinement

The RNN model, once trained, would be able to predict a probability distribution

over the product categories for any new or existing ingredient as long as a text repre-

sentation exists. However, this method does not provide an obvious way of adjusting

predictions after observing only a few instances. We therefore explore the scenario

where we are given a new ingredient and a few instances of their occurrence. Can

we update the model in a sequential or online fashion such that we can continually

improve its performance with each successive data point?

We introduce parameters 𝑤 = [𝑤1, . . . , 𝑤𝑑], 𝑤𝑗 ∈ R+ that will be adjusted in an

axis parallel manner:

𝑃 (𝑝|𝑖, 𝜃) = 1

𝑍𝜃,𝑤

exp{𝑣𝜃(𝑧𝑝)𝑇diag(𝑤)𝑣𝜃(𝑥𝑖)}, (7.1)

where 𝑍𝜃,𝑤 =
∑︁
𝑝′∈𝑃

exp{𝑣𝜃(𝑧𝑝′)𝑇diag(𝑤)𝑣𝜃(𝑥𝑖)}, (7.2)

and diag(𝑤) is a diagonal matrix with the entries specified by 𝑤. We assume the

RNN parameters 𝜃 and the vector representations 𝑣𝜃(𝑧𝑝) and 𝑣𝜃(𝑥𝑖) to be fixed at this

stage. We will update the feature weights 𝑤 in an online fashion in response to each

observation for a new ingredient.

Because we imagine it is possible for each new ingredient to have only a few

observations, it is important to properly regularize the weights as to avoid overfitting.

81

Ideally, we want to keep each parameter 𝑤𝑗 as close to 1 as possible. A reasonable

choice of regularizer is a Gamma distribution that is the conjugate prior to the inverse

variance:

𝑟𝑒𝑔(𝑤) = 𝜆
𝑑∑︁

𝑗=1

[log(𝑤𝑗)− 𝑤𝑗 + 1] (7.3)

where 𝜆 is the overall regularization parameter1. We now incorporate the regularizer

in our loss function:

𝐿(𝑖, 𝑤) = −
𝑛∑︁

𝑘=1

log𝑃 (𝑝𝑘|𝑖, 𝑤)− 𝑟𝑒𝑔(𝑤), (7.4)

where 𝑛 is the total number of observed categories up to this point: 𝑝1, . . . , 𝑝𝑛. It

can be verified that this loss function is convex, and thus allows us to use a variety of

powerful tools and techniques as described in lecture. In our study, we run stochastic

gradient descent (both online and batch) to minimize the loss. Note that each new

ingredient must be trained independently and assigned its own feature weights.

For each ingredient, we wish to minimize the loss function specified in 7.4 by

adjusting 𝑤. We will apply stochastic gradient descent (SGD) to update 𝑤:

𝑤 := 𝑤 − 𝜂∇𝐿𝑘(𝑖, 𝑤), (7.5)

where 𝜂 is the learning rate and 𝐿𝑘(𝑖, 𝑤) refers to the loss given by the last 𝑘 observed

product categories. True SGD is performed when 𝑘 = 1, normal gradient descent is

performed when 𝑘 = 𝑛, and mini-batch is performed when 1 < 𝑘 < 𝑛.

𝑤 is initialized as a vector of ones. We continuously adjust 𝑤 through the above

process until we have completely processed all of the data for a particular ingredient,

in which case we start over for a new ingredient.

1Another possible regularizer is to use the L2 norm: 𝜆
∑︀

𝑗 (𝑤𝑗 − 1)2.

82

Parameter Meaning Value
𝜆 regularization 0.01
𝜂 learning rate 0.1
𝛼 naive multiplier 0.02
𝑧 mini-batch size 10

Table 7.1: Optimal hyperparameters for the online learning model.

7.1 Experimental Setup

We use the RNN model in Chapter 6 to generate our vector representations 𝑣𝜃(𝑥𝑖)

and 𝑣𝜃(𝑧𝑝). Refer to Section 6.3 for the experimental setup of the RNN model.

7.1.1 Evaluation

We evaluate our various models using the loss function from Equation 7.4, without

the regularization term. The loss is updated at each iteration of the algorithm using

the 𝑤 at that point in time.

7.1.2 Hyperparameters

Since we used a hidden dimension of 𝑑 = 50, this also corresponds to |𝑤| for the

online feature weights. Though 𝑑 = 200 performs better, we show all of our results

for 𝑑 = 50 because the faster computational time allows us better iterate through

various parameterizations.

There are several parameters we need to tune for online learning, and they are

presented in Table 7.1. Similar to Homework 1, we use an adaptive learning rate:

𝜂 = 𝜂0√
𝑡/100

. To avoid numerical issues during training, we limit the feature weights to

lie in 𝑤𝑗 ∈ [10−8, 2].

83

Algorithm Loss
True 1.18
Uniform 4.88
Baseline 3.67
Naive 3.64
Batch all 3.57
Mini-batch 3.11
Online 3.13

Table 7.2: The mean loss over all the ingredients in the validation set (1666 ingredi-
ents) for the various methods. Mini-batch with 𝑧 = 10 and online updates (𝑧 = 1)
performed the best, on average.

7.1.3 Simulating online scenario

For each ingredient, we have a sequence of product categories where this ingredient is

observed. In the online setting, pass the sequence one at a time to the model. There

are two ways we generate this sequence of product categories:

Use true counts of product categories: In this scenario, for each ingredient, we

used the true counts of the product categories it has appeared in. In other words, if

’sugar’ appeared in ’soda’ 200 times, ’Soda’ would appear in the sequence 200 times.

We randomly permute the sequence to generate an iid sequence based on the true

distribution. This method more accurately mirrors the real-world scenario.

Generate counts according to true distribution: The previous method of se-

quence generation results in an uneven distribution of the number of product cate-

gories for each ingredient. A popular ingredient such as ’salt’ would have a sequence

of over 20,000 observations, while an ingredient such as ’half & half’ would only

have 20. By generating a fixed length sequence of 𝑛 observations based on the cate-

gory occurrence distribution, we can eliminate any issues in training associated with

varying-length sequences. While all of the results presented assume the previous sce-

nario, we found that the mean loss is lower in this scenario with 𝑛 = 1000, most likely

due to the fact that the median sequence length is around 50.

84

Algorithm Ingredient Loss Neighbor 1 Neighbor 2 Neighbor 3
True oatmeal 1.75 cookies & biscuits (0.373) chili & stew (0.294) breads & buns (0.108)
Baseline oatmeal 5.39 cereal (0.564) granola bars (0.196) breads & buns (0.039)
Naive oatmeal 5.35 cereal (0.561) granola bars (0.197) breads & buns (0.039)
Batch all oatmeal 5.61 granola bars (0.390) frozen appetizers (0.093) pasta (0.076)
Mini-batch oatmeal 4.55 cereal (0.784) breads & buns (0.091) granola bars (0.037)
Online oatmeal 3.84 cookies & biscuits (0.292) cereal (0.252) granola bars (0.148)

Table 7.3: Sample predictions generated by the model on the ingredient "oatmeal"
at the conclusion of the sequence (102 observations). The number in parenthesis
represents the probability provided by the model. In this example, the online method
significantly outperformed all the other methods. Note that the online method tended
to "nudge" the predictions towards the true predictions. The effect will likely be more
pronounced with an increased dimension size 𝑑 and less regularization.

7.2 Results

We compared the loss of our online algorithm to several other baseline metrics:

∙ True - We use the true distribution for each prediction.

∙ Uniform - We use a uniform distribution for each prediction.

∙ Baseline - We use the (same) probability distribution from the RNN, 𝑃 (𝑝|𝑖, 𝜃),

for each prediction.

∙ Naive - Starting with the baseline distribution, at each step, we multiply the

probability of the observed category by (1 + 𝛼).

∙ Batch all - At each step, we use the entire observed sequence to perform gradient

descent and update 𝑤.

∙ Mini-batch - At each step, we use a mini-batch size of 𝑧 to perform gradient

descent and update 𝑤.

∙ Online - At each step, we use only the current observation to perform stochastic

gradient descent (𝑧 = 1).

See Table 7.2 for a comparison of the different algorithms in the online setting.

For sample predictions for the ingredient "oatmeal", see Table 7.3. We tuned our

85

Figure 7-1: The running mean of the loss over time using the online algorithm for in-
gredient "oatmeal". The online method performs the best in this particular instance.

parameters on the training set and reported our results on the validation set. Running

gradient descent on the entire set of seen observations result has decent performance

when the step size is small. It is by far the slowest, especially as the sequence size

increases. SGD with just the latest observation can become rather unstable at times,

but performs fairly well on average and is very fast. Updates with a fixed mini-batch

size seem to offer the best of both worlds.

We show the loss over time for the ingredient ’oatmeal’ in Figure 7-1. We also show

the effect of the sequence length on the improvement in loss (over the baseline). See

Figure 7-2 for a scatter plot of this effect. Figure 7-3 shows the correlation between

the true loss and the improvement in loss. It seems counter-intuitive that the larger

the true loss, the harder it becomes for an online algorithm to improve it.

86

Figure 7-2: Plot showing the relationship between the sequence length and the im-
provement in loss (online loss / baseline loss). We use a log scale on the x-axis for the
sequence length. An interesting pattern appears, though there seems to be no strong
linear correlation.

Figure 7-3: Plot showing the relationship between the true loss (using the true dis-
tribution for predictions) and the improvement in loss (online loss / baseline loss). It
seems that as the true loss increases, it is also more difficult for the online algorithm
to improve upon the true loss.

87

88

Chapter 8

Conclusions

We successfully demonstrate a new application for deep neural networks by building

an automated model to predict likely food product categories from a given ingredi-

ent. We are able to show the effectiveness of neural networks when supplied with

different input representations of ingredients (hierarchical properties and text data).

As far as we are aware, this is the first study of its kind on learning representations

for ingredients and applying them for various prediction tasks. All models are also

extended to the case of adulterants.

8.1 Contributions

Below, we show the main contribution of each chapter in this work:

2. Collected comprehensive datasets on a) properties of ingredients and food prod-

ucts and b) known cases of adulterant-food product pairs.

3. Generated meaningful representations of ingredients based only on neighboring

ingredients in the same products (the skip-ingredient model).

4. Demonstrated the use of collaborative filtering techniques to predict the likeli-

hood of a given adulterant and food product.

5. Incorporated the hierarchical properties of ingredients and adulterants to pre-

dict likely food product categories using neural networks.

89

6. Introduced the use of recurrent neural networks to generate meaningful vector

representations of ingredients and adulterants from their Wikipedia pages; used

these representations to predict likely food product categories.

7. Showed the use of sequential learning techniques to incrementally improve the

model with each additional observation.

8.2 Future work

While our primary goal is to be able to make predictions about adulterants, a lot

of the work done in this paper is based on standard food ingredients. As mentioned

before, this is primary due to the fact that we have significantly more data for food

ingredients and in what food products they occur in that for adulterants. We have yet

to find a comprehensive and centralized database with information about adulterants.

It would be extremely helpful for the field of food safety to develop a centralized

resource with knowledge about various adulterants and where they were found. This

would also help us better train and evaluate our existing models. With that said, we

are confident that the techniques we have developed in this work can be smoothly

applied to any data about adulterants.

We want to stress that everything presented in this project is a "first steps" at-

tempt. We are nowhere close to exhausting the tricks we can apply to improve our

predictions. Because this is a novel application, our task for this work was not to

squeeze every ounce of performance out of our models, but rather show promising

directions for which future researchers can pursue. It is entirely possible for us to

sit down, tweak a few additional parameters (such as increasing the hidden dimen-

sion size), and get a 2% increase in the mean average precision overnight. Just as

how Rome was not built in a day, we also do not plan to completely establish the

boundaries of our models. We do hope, however, that we have laid the foundation

for future researchers interested in applying machine learning models to problems in

food safety. We hope our work will provide a source of inspiration to them and many

others.

90

Another future goal is to be able to convert our research into a format that is

more readily accessible by the general public. Right now, the only way to replicate

the results presented in this work is to download the raw code and run it yourselves.

Of course, you would also have to manually obtain the data as well. We hope to be

able to create a web interface that allows anyone to be able to enter ingredients and

adulterants and see the product categories predictions. Or in the case of our work

on RNNs and Wikipedia, one can enter a block of text and ask the model to make

predictions based on the text. Increasing the accessibility of this work will be a major

step in publicizing this new field of research, and we hope to be able to accomplish

this in the near future.

To conclude, we have taken the first steps towards generating an automated system

for the detection of adulterants in food. Ensuring the safety of food being sold

commercially is crucial to a stable and thriving society, and we hope to see this

field expand in the coming years as techniques mature and incidents becomes more

sophisticated.

91

92

Appendix A

A.1 Supplementary Information about the Datasets

field data
upc 857602004038
aisle Diet & Nutrition
shelf Snack, Energy & Granola Bars
food_category Bars - Nutrition & Energy Bars
brand Inbalance Health Corp
manufacturer Inbalance Health Corp
product_description Bar
product_name Inbalance Health Corp Bar
product_size 2 oz
serving_size 56
serving_size_uom g
servings_per_container 1
ingredients organic sunflower seed butter, organic brown

rice protein, organic crispy brown rice, or-
ganic rice bran, organic blue amber agave,
organic pea fiber, organic chocolate liquor,
organic cherry, organic cherry concentrate,
monk fruit extract

Table A.1: Sample product entry from the FoodEssentials database.

93

Ingredient # of products
salt 72933
water 52749
sugar 50055
citric acid 33448
riboflavin 21440
folic acid 21051
thiamine mononitrate 18981
niacin 18136
natural flavor 17516
soy lecithin 16916

Table A.2: Most common ingredients from FoodEssentials.

adulterant instances
mercury 1069
sulphite 876
cadmium 683
colour Sudan 1 569
benzo(a)pyrene 385
E 210 - benzoic acid 254
colour Sudan 4 180
arsenic 161
lead 161
iodine 129

Table A.3: Most common adulterants (RASFF).

product adulterant instances
swordfish mercury 270
dried apricot sulphite 173
palm oil colour Sudan 4 98
swordfish cadmium 84
soy sauce 3-monochlor-1,2-propanediol 75
olive- residue oil benzo(a)pyrene 61
dried seaweed iodine 50
food supplement 1,3 dimethylamylamine 45
carbonated soft drink E 210 - benzoic acid 42
spices colour Sudan 1 37

Table A.4: Most common product-adulterant combinations (RASFF).

94

adulterant category instances
mercury Fish & Seafood 1028
cadmium Fish & Seafood 588
sulphite Fruits, Vegetables & Produce 394
colour Sudan 1 Herbs & Spices 394
sulphite Fish & Seafood 352
benzo(a)pyrene Fish & Seafood 173
colour Sudan 4 Vegetable & Cooking Oils 152
E 210 - benzoic acid Soda 147
benzo(a)pyrene Vegetable & Cooking Oils 146
iodine Fruits, Vegetables & Produce 115

Table A.5: Most common adulterant/category pairs (RASFF).

category count
Fishery/Seafood Products 25884
Vegetables and Vegetable Products 22044
Fruit and Fruit Products 12125
Spices, Flavors, and Salts 7882
Candy without Chocolate, Candy Specialties, and Chewing Gum 6137
Bakery Products, Doughs, Bakery Mixes, and Icings 4687
Multiple Food Dinners, Gravies, Sauces, and Specialties (Total Diet) 3906
Vitamins, Minerals, Proteins, & Unconventional Dietary Specialties 3397
Cheese and Cheese Products 3301
Whole Grains, Milled Grain Products, and Starch 3127

Table A.6: The most common categories from the FDA Import Refusals list. There
are 326,927 entries from 1/1/02 to 12/31/15. When filtering the entries to only
consider adulterations of food products, 111,183 entries remain (34%).

charge code category instances
FILTHY-249 Fishery/Seafood Products 10109
PESTICIDE-241 Vegetables and Vegetable Products 7429
SALMONELLA-9 Fishery/Seafood Products 6438
SALMONELLA-9 Spices, Flavors, and Salts 4637
NO PROCESS-83 Vegetables and Vegetable Products 4512
UNSAFE COL-11 Candy 3820
FILTHY-249 Vegetables and Vegetable Products 3419
FILTHY-249 Fruit and Fruit Products 3147
UNSAFE COL-11 Bakery Products, Doughs, Bakery Mixes, and Icings 2198
NEEDS FCE-62 Vegetables and Vegetable Products 2150

Table A.7: Most common entries by refusal code and food category (FDA).

95

adulterant category instances
pesticide Vegetables and Vegetable Products 8406
salmonella Fishery/Seafood Products 6438
salmonella Spices, Flavors, and Salts 4637
color additive Candy 3822
pesticide Fruit and Fruit Products 2254
color additive Bakery Products, Doughs, Bakery Mixes, and Icings 2201
animal drug Fishery/Seafood Products 1569
color additive Fruit and Fruit Products 1339
color additive Soft Drinks and Waters 1305
color additive Snack Food Items (Flour, Meal, or Vegetable Base) 1107

Table A.8: Most common adulterant/category pairs (FDA).

adulterant count
Melamine 70
Hazelnut oil 47
Sunflower oil 47
Oil (non-authentic origin) 43
Soybean oil 43
Milk (bovine) 41
Corn oil 31
Water 31
Starch 22
Urea 22

ingredient count
Milk (fluid) 271
Olive oil 158
Honey 110
Olive oil (extra virgin) 103
Saffron (Crocus sativus L.) 56
Saffron 54
Orange juice 47
Coffee 41
Milk (powder) 35
Grapefruit seed extract 34

Table A.9: Most common adulterants and ingredients (USP).

ingredient adulterant count
Olive oil Hazelnut oil 28
Milk (fluid) Water 22
Milk (fluid) Melamine 22
Olive oil Sunflower oil 21
Honey (botanical origin specific) Honey of non-authentic botanical origin 17
Olive oil Soybean oil 17
Olive oil (extra virgin) Hazelnut oil 16
Olive oil (extra virgin) Sunflower oil 15
Milk (fluid, caprine) Milk (bovine) 14
Milk (fluid, ovine) Milk (bovine) 12

Table A.10: Most common ingredient / adulterant pairs (USP).

96

adulterant count
water 41
non-organic wheat 34
pork 33
urea 23
Beef 22
Chinese honey 18
non-organic millet 17
non-organic alfalfa 17
non-organic barley 17
non-organic corn 17

product count
milk 110
beef 36
ghee 30
organic wheat 30
grouper 29
mawa 27
lamb 27
honey 26
black pepper 23
extra virgin olive oil 21

Table A.11: Most common adulterants and products (EMA).

adulterant product category count
water milk Dairy Products 23
urea milk Dairy Products 6
hydrogen peroxide milk Dairy Products 6
Beef lamb Meat Products 5
palm oil ghee Dairy Products 4
caustic soda milk Dairy Products 4
methanol vodka Alcoholic Beverages 4
non-organic wheat organic wheat Grains and Grain Products 4
vegetable oil ghee Dairy Products 4
pork beef Meat Products 3

Table A.12: Most common ingredient / adulterant pairs (EMA).

97

98

Bibliography

[1] C. M. Bishop. Pattern recognition and machine learning. Springer Science, 2006.

[2] K. Everstine, J. Spink, and S. Kennedy. Economically motivated adulteration
(EMA) of food: common characteristics of EMA incidents. Journal of Food
Protection, 76(4):723–735, 2013.

[3] A. Herbelot and E.M. Vecchi. Building a shared world: Mapping distributional
to model-theoretic semantic spaces. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2015), 2015.

[4] Sepp Hochreiter and Jurgen Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[5] Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Representation (ICLR 2015),
2015.

[6] Tao Lei, Regina Barzilay, and Tommi Jaakkola. Molding cnns for text: non-
linear, non-consecutive convolutions. Proceedings of the Empiricial Methods in
Natural Language Processing (EMNLP 2015), 2015.

[7] Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi Jaakkola, Katerina Ty-
moshenko, Alessandro Moschitti, and Lluis Marquez. Semi-supervised question
retrieval with recurrent convolutions. Proceedings of the North American Chapter
of the Association for Computational Linguistics (NAACL 2016), 2016.

[8] Minh-Thang Luong, Quoc V. Le, Ilya Sutskever, Oriol Vinyals, and Lukasz
Kaiser. Multi-task sequence to sequence learning. Proceedings of the Inter-
national Conference on Learning Representation (ICLR 2016), 2016.

[9] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estima-
tion of word representations in vector space. Proceedings of the International
Conference on Learning Representations (ICLR 2013), 2013.

[10] Deepak Narayanan. Building and processing a dataset containing articles related
to food adulteration. Master’s thesis, Massachusetts Institute of Technology,
2015.

99

[11] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. Proceedings of the Empiricial Methods in Natural
Language Processing (EMNLP 2014), 2014.

[12] Xin Rong. Word2vec parameter learning explained. CoRR, abs/1411.2738, 2014.

[13] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre,
George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.

[14] Yangqiu Song and Dan Roth. Unsupervised sparse vector densification for short
text similarity. Proceedings of the North American Chapter of the Association
for Computational Linguistics (NAACL 2015), 2015.

[15] Ilya Sutskever, James Martens, and Geoffrey Hinton. Generating text with re-
current neural network. Proceedings of the International Conference on Machine
Learning (ICML 2011), 2011.

[16] C.Y. Teng, Y.R. Lin, and L.A. Adamic. Recipe recommendation using ingredient
networks. ACM Web Science (WebSci 2012), 2012.

[17] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel collaborative filtering for the netflix prize, 2008.

100

