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Abstract

Modern vector graphics editors support the creation of a wonderful variety of complex
designs and artwork. Users produce highly realistic illustrations, stylized represen-
tational art, even nuanced data visualizations. In light of these complex graphics,
selections, representations of sets of objects that users want to manipulate, become
more complex as well. Direct manipulation tools that artists and designers find ac-
cessible and useful for editing graphics such as logos and icons do not have the same
applicability in these more complex cases. Given that selection is the first step for
nearly all editing in graphics, it is important to enable artists and designers to express
these complex selections.

This thesis explores the use of interactive machine learning techniques to improve
direct selection interfaces. To investigate this approach, I created Insight, an interac-
tive machine learning selection tool for making a relevant class of complex selections:
visually similar objects. To make a selection, users iteratively provide examples of
selection objects by clicking on them in the graphic. Insight infers a selection from
the examples at each step, allowing users to quickly understand results of actions
and reactively shape the complex selection. The interaction resembles the direct
manipulation interactions artists and designers have found accessible, while helping
express complex selections by inferring many parameter changes from simple actions.
I evaluated Insight in a user study of digital designers and artists, finding that In-
sight enabled users to effectively and easily make complex selections not supported
by state-of-the-art vector graphics editors. My results contribute to existing work
by both indicating a useful approach for providing complex representation access to
artists and designers, and showing a new application for interactive machine learning.

Thesis Supervisor: Dr. Mitchel Resnick
Title: LEGO Papert Professor of Learning Research
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Chapter 1

Introduction

With remarkable advances in computation, digital art and design interfaces enable

users to create increasingly complex compositions. However, as some of our tools

begin to afford creation of this complexity, the other tools we use need to keep pace.

An important case is selection tools in editors for vector graphics, a medium used

ubiquitously in digital art and design. Selection specifies a representation of a set of

objects to edit in the graphic. It is a preliminary step before every edit operation,

making it important for it to be highly efficient and accessible. However, though the

popular direct manipulation selection tools are very effective for simple artwork and

designs, they are less effective in complex compositions:

Figure 1-1: Instances of complex artwork where direct manipulation selection is less helfpul.
In each of these, there are sets of objects that stand out which cannot be individually clicked
or region-selected easily. For example, in the panda image, selecting the leaves would be
very tedious.

There are two fundamental reasons that direct manipulation tools are difficult to use

in these cases. First, the representation users perceive for the selection is different

13



from one which uses only screen position. Users can see shape similarity, contiguity,

or resemblance to real-world objects as important to the selection structure. Second,

to use the parametric representations we know for these other relationships we must

specify many parameters, each taking many values. With direct manipulation tools,

users adjust very small numbers of parameters with each action, and must spend

time moving through continuous representations of parameters. Drawing a rectangle

to specify 𝑥- and 𝑦-bounds requires users to spend time dragging, while the rectangle

only has two corner points as parameters.

Figure 1-2: A visualization of the difficulties with direct manipulation selection tools. Note
that we perceptually group the leaves because of their similarity in appearance, not their
positions. Visual similarity is difficult to specify since it has many parameters.

Some approaches to managing this complexity involve leveraging the representational

power of computers. We can add auxiliary data to that visible in the medium, such

as explicitly marking groups and layers; or we can use automated processes to infer

representation parameters from simple interactions, such as finding all objects that

have similar shape under a stroke.

Unfortunately, each of these approaches has drawbacks given the practices digital

artists and designers are familiar with. Auxiliary data requires users to keep track

of a representation outside of the graphic. For example, in complex graphics where

the number of groups and layers becomes large, users cannot remember what each

of the groups is, and it becomes difficult to link them to the artwork. On the other

14



hand, inferential tools tend to take control away from users’ actions since they do

not recognize users’ goals effectively. When finding similarly-shaped objects under a

stroke, an inferential system can easily be confused by seeing multiple sets of very

similar objects.

In general, while these approaches potentially allow users to express complex repre-

sentations, they are not accessible to artists and designers. This concern inspires my

research question:

Research Question

How do we design graphics selection tools that are both expressive and accessible to

artists and designers?

In this thesis, I present Insight, a vector graphics selection tool aimed at enabling

artists and designers to make complex, expressive selections with simple, intuitive

interactions. Insight uses an interactive machine learning approach which has seen

increasing popularity for addressing complex decision tasks. Users iteratively provide

examples of selection objects by clicking in the medium’s visual representation, and

Insight infers a selection of visually similar objects at each step. This incremental

inference approach allows users to effectively shape the selection representation in

a manner similar to direct manipulation, without the tedium of completely explicit

specification.

I designed Insight’s interface, developed its novel inference algorithm, and tested In-

sight in a user study of digital artists and designers. Users found the interaction

simple and useful, discovering that they could effectively and easily make complex

selections not supported by state-of-the art vector graphics editors. Though users did

note that they could not control Insight as well as direct manipulation tools, they felt

that the iterative example-based inference was important for navigating the selection

representation. My work contributes to existing work by both indicating a useful

approach for providing complex representation access to artists and designers, and
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showing another application for interactive machine learning.

The remainder of this thesis is structured as follows: Chapter 2 discusses background

and related work, illuminating design goals for Insight. Chapter 3 explicitly lists the

design principles obtained from examining works from Chapter 2. Chapter 4 describes

in detail the design of Insight, including both the interaction and supporting inference

algorithm. Chapter 5 details the user study performed to evaluate Insight, and the

specific hypotheses it tested. Chapter 6 describes the results from the user study.

Chapter 7 discusses the results and their relevance to Insight’s specific design choices.

Lastly, Chapter 8 is a conclusion to the work.
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Chapter 2

Background and Related Work

In order to inform my development of Insight, I examined two major bodies of work.

First, I examined literature and systems for editing digital graphics to acquire specific

design goals. This exploration led me to the general approach of interactive machine

learning. I then examined literature and systems in interactive machine learning as

well to more particularly shape Insight’s design.

2.1 Editing Digital Graphics

A variety of tools exist for enabling artists and designers to edit digital graphics.

Those which provide the largest range of creative outcomes are creative code lan-

guages such as Processing [14] and [8]. These languages give users a library of data

structures and functions useful for describing graphical content. Users can specify

representations of their content and actions on it as needed, enabling selection and

editing of the complex representations described in Section 1. Unfortunately, pro-

gramming remains difficult for many artists and designers to adopt. They must go

through an intermediate, abstract text interface to intermittently make changes to

their graphic; and they must accustom themselves to structured problem-solving tech-

niques in conflict with their exploratory practices [27]. These differences in practices

are barriers that artists and designers frequently find difficult to overcome [11].
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Figure 2-1: Examples of different types of tools for editing graphics, with mouse motion
indicated by a dashed line. On the left is direct manipulation, in the middle is programming,
and on the right is inference. Both programming and inference notably let users edit complex
relationships, but it is often unclear to artists how actions will be realized on the graphic.

The tools common to digital graphic editing follow direct manipulation principles. In

direct manipulation interfaces, users perform rapid, incremental, reversible actions

directly on visual representations of objects of interest [21]. These interfaces typically

allow users to interact directly with their artwork and see the results of their actions

in real-time, reminiscent of the reflective conversation with medium that Schon notes

is characteristic of the design process [20]. Examples of direct manipulation selection

tools are those for specifying objects by clicking on or dragging regions around them.

Tools such as the Magic Wand and grouping also use direct manipulation, but not on

objects in the graphic, instead having the user work through other representations.

Unfortunately, while these tools find great use for artists and designers, they are

less useful when the graphic complexity increases and perceived object relationships

are not in terms of position (see Section 1). Though there are multiple recent di-

rect manipulation tools that enable people to create complex relationships like those

produced with programming [23, 5, 19], these are not adapted for the case of selection.

A final approach that has found its way into graphics is inference. Rather than have

the user go through a lengthy direct manipulation, parameters for actions on complex

representations of the graphic are inferred from simple user actions. A good example

of this approach which has found wide popularity is Content Aware Fill in Photo-

shop, with which the user can draw a region and have it filled to resemble surrounding

content. The user does not need to understand things like boundary smoothness con-

ditions that the tool might use to infer changes to the artwork. This approach has

18



Figure 2-2: A visualization of significant differences between direct manipulation, all-or-
nothing inference, and interactive machine learning. Direct manipulation has rapid feedback
cycles directly with the representation but adjusts it slowly; all-or-nothing inference adjusts
the representation quickly via a learner but with no feedback; and interactive machine
learning adjusts the representation at a moderate speed via a learner with rapid feedback.

recently been seen to be effective in selection as well, with both Lazy Select [28] and

Suggero [9] inferring objects that perceptually group from user strokes on a surface.

However, despite their success, these approaches notably reduce the user’s level of

explicit control, an important quality afforded by direct manipulation.

Ideally, selection tools for art and design need to support a variety of selection types

through interactions which are familiar and accessible for artists. Therefore, I rely

on a combination of direct manipulation principles and inference-based approaches.

These two find harmony in interactive machine learning, which I discuss in the next

section.

2.2 Interactive machine learning

The inference-based approach I take categorizes as interactive machine learning. In-

teractive machine learning refers to an approach for letting users interactively train

representation parameters with rapid, focused, and incremental model updates. Good

examples of interactive machine learning systems are found in other selection envi-
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ronments. In text editing, LAPIS [12] allowed users to iteratively specify positive and

negative text samples to infer all text samples satisfying a set of rules; Ritter and

Basu created a system which similarly took positive and negative examples in a file

browser and inferred a general file query [16]. For both systems, users interactively

chose new examples as they saw the selection change, rather than specifying all ex-

amples at once. These sample systems show that the primary theme of interactive

machine learning is feedback, since users shape the representation [1]. This is in con-

trast to all-or-nothing inference tools like Content-Aware Fill in Photoshop, where the

user specifies a region to be filled once and then cannot adjust that filling afterwards.

Notably, interactive machine learning bears many similarities to direct manipulation:

users manipulate a representation with quick and small update actions, adjusting

these actions as they see the representation change. The significant difference is in

the inferential nature of the representation updates themeselves: the results of actions

are not explicitly understood by users prior to execution. The approach by nature

posits that explicit action is not a requirement, and that only a general understanding

of how actions are adjusting towards the target representation is important [3].

Conversely, since inference systems do not constrain the types of updates a user can

make, it is very important to design interfaces and interactions that enable users to

effectively enact changes. To this end, a variety of systems have explored different

types of update actions and means to convey action results to users. Kulesza et al.

showed that users could additionally use song ratings and explicit genre selection to

improve an example-based music recommender, excited about the extra control [6].

Rosenthal and Dey showed that exposing lower level features such as uncertainty

measures made users less effective at email-labeling [18].

I draw on a set of principles for designing interactive machine learning systems has

been extracted in an excellent survey by Amershi et al. [1]. Many of these principles

coincide with ideas of direct manipulation, such as support for representation assess-
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ment. Notably though, a number of these principles favor providing more control

than the simple, concrete interaction of example provision. While further control can

be helpful for artists and designers [15], the means for further control often involve

users manipulating views of representations outside the original medium, reducing

simplicity and concreteness important for this use case. Balancing these tensions is

an important issue in this work, and results contribute to both discussions of general

interactive machine learning systems design as well as that specific to artists and

designers.
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Chapter 3

Design Goals

The discussions in the above sections imply a number of design goals for selection

tools for artists. These goals primarily reflect general needs of selection to be fast

and expressive, but also reflect particular needs of artists described in Chapter 2.

1. Efficiency: Can users make target selections quickly? Can they do so with few

actions?

2. Expressiveness: Can users make a variety of selections they find relevant?

3. Accessibility: Do users feel like the system is easy to adopt and use?

4. Exploration: Can users make selections in multiple ways? Are actions incre-

mental and reversible?

5. Concreteness: Is action directly on objects of interest? Do users need to

interact with representations outside the medium?

6. Control: Can users predict the results of their actions? Can users react to the

results of their actions?
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Chapter 4

System Description

Insight is implemented as an interactive machine learning tool for selecting visually

similar paths in vector graphics environments. Users train the selection representation

by iteratively clicking examples of paths they perceive as similar. They choose sub-

sequent examples by evaluating a visualization of all currently selected paths. The

example-based interaction makes Insight concrete, while small, reversible inference

actions help provide control and promote exploration. Expression and efficiency are

handled by inference: the visual similarity model allows for arbitrary sets of simi-

larity cues at multiple ranges to determine the selection, while a small number of

logarithmic-time tree searches forms the bulk of inference computation. The main

tradeoff is between control and simplicity: rather than provide users with deeper ac-

cess to the similarity representation, such as the ability to directly specify relevant

cues, interaction is limited to providing examples.

Figure 4-1: Sample usage of Insight. The pointer indicates the location of a click for pro-
viding an example. Examples are provided iteratively until the target selection is reached.

I describe the details of both Insight’s interface and inference in the sections be-
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low, along with design alternatives, tradeoffs, and justification of how design choices

address goals.

4.1 Interface

4.1.1 Example Provision

To describe the selection representation’s parameters, users provide only positive ex-

amples of vector paths they believe describes the similarity. These examples are

provided individually by clicking on example paths, and each example incrementally

adjusts the representation. The inference algorithm is agnostic to the order of exam-

ples provided.

There are many reasons for using an example-based interaction. Foremost, it is con-

crete and similar to direct manipulation tools, since users can see and directly point

to the example paths in the medium. Without an example-based approach, the user

must resort to working in an abstract representation of the artwork, since properties

such as color cannot be described in terms of artwork position. Secondly, example-

based interaction naturally lends itself to representation refinement. The number of

parameters in the visual similarity representation makes accurate inference difficult

(see Section 4.2.2), showing a need for a refinement process. This inferential selec-

tion refinement is unique to Insight among vector graphics selection tools. Though

LazySelect [28] and Suggero [9] also use inference and target complex selection rep-

resentations, users are not able to adjust the inference.

The choice to have users provide examples by clicks one-by-one is based in the accu-

racy of clicking. Complex graphics can have many occlusions and high path density.

Clicking unambiguously provides only examples, while marquees would inevitably

include unwanted paths. This does not exclude use of regions to provide examples

completely. Example provision could itself have an inferential step, where only paths
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very similar in the drawn region feed into the example-based inference. For this

project, I was intent on exploring first the use of any inferential selection refinement,

and so restricted to click-based example provision.

Figure 4-2: A depiction of region-based example provision. Trying to provide leaf examples
by drawing a rectangle around them inevitably grabs an unwanted thin strand as well.

Inference being agnostic to example order is important to making the interaction

concrete. This choice is different from tools such as LazySelect [28], which even uses

parameters such as interaction speed to influence inference. However, if example order

changed inference, it would mean that users’ model for similarity needed to account

for example order. Visual similarity descriptions from Feature Integration Theory

maintain that perceived similarity is a shared property [26, 24, 25], indicating that

an order-dependent model is at odds with user perception.

A last notable decision is the use of only positive examples. Many example-based

interactive machine learning tools allow for both positive and negative examples, in-

cluding selection tools in other environments. However, in the case of selection, the

use of only positive examples is made possible due to non-examples serving implicitly

as weak negative examples. This choice makes an important simplification to the

interface at the cost of negative examples’ ability to modify the representation differ-

ently. While negative examples could help to make inference converge more quickly,

their usage would require the user to keep in mind a second example set. In addition,
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it is frequently more difficult for users to give helpful negative examples as opposed

to positive examples [1].

4.1.2 Learning Feedback

The user receives feedback on the learned selection representation by directly viewing

a visualization of the matching paths after each example. At the start of interaction

with Insight, all vector paths in the graphic are rendered at 50% of their original

lightness value. As examples are added, paths matching the selection have their

lightness restored to normal, while paths removed from the selection are darkened

again. This results in only paths in the selection having original lightness at any point

of Insight’s use. Users can further visualize the selection by toggling the visibility of

selected paths.

Figure 4-3: Depiction of selection visualization as examples are provided.

Providing feedback at each step is important to helping users understand the results

of their actions [1]. Artists and designers look for feedback on all actions that change

system state. Even for users who are only interested in seeing the results of inference

after multiple examples, they can easily ignore the feedback since it does not interrupt

example provision.

The feedback visualization shows all paths selected according to the current selection

representation. This is in similar to previous selection tools [12, 16]. Particular to

selection in editing environments is that it needs to be exact. Users perform edits

on the specific items they want, and so want to know the selection exactly. Showing

all paths selected allows users to quickly get a close understanding of representation
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accuracy, guiding them to provide more examples or examine accuracy more closely

with visibility toggling.

Insight uses lightness to visualize the selection primarily due to complexities of graph-

ics. Graphics can contain large numbers of paths in a variety of colors, packed together

very closely. If outlines or bounding boxes like those in Adobe Illustrator are used,

paths with similar colors lose visibility, particularly in graphics with large numbers of

paths. Adjusting lightness helps distinguish selected paths for a wide variety of col-

ors, and avoids adding any extra clutter when lots of paths are present. Despite this,

the halving lightness adjustment is not appropriate for paths with very low lightness,

since changes are minimal. The search for a better selection visualization remains an

important issue.

Figure 4-4: Depiction of differences between use of outline for selection visualization and
lightness adjustment for selection visualization.

Allowing users to further visualize the selection by toggling the visibility of selected

paths is an example of providing freedom to query representation at will, an impor-

tant quality for interactive machine learning systems [1]. Though users already see

the results of actions after each example, the visualization provided is for generally

understanding the representation. It can be difficult in crowded graphics to clearly

see which exact paths are selected. Toggling the visibility of paths helps users exactly

recognize all selected paths.
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Figure 4-5: Depiction of selection visibility toggling. The selection becomes clearer when
removed from the image.

4.1.3 Representation Exploration

Insight provides undo and redo operations to let the user regress or progress one ex-

ample respectively, and then update the selection visualization. Both operations are

triggered via key-presses, similar to existing vector graphics software. The history

only contains the example sequence taken to obtain the current selection. If a user

performs an undo operation and subsequently clicks a new example, the most recent

example just previous to the undo is lost.

Undo and redo are provided to aid in representation exploration. By allowing users to

traverse back through the example stream and provide other examples, Insight helps

them try alternatives when they see unexpected results. On the other hand, not

keeping track of the different alternative example streams for the user places burden

on users to remember old example streams and their results. Features such as an

undo tree or selection visualizations for older training states could aid in managing

selection states, but would also complicate usage. Adding visualizations of selections

for other example sets like in CueFlik [4] would be difficult, since graphics are complex.

Notably, it is difficult to even do selection visualization in the main graphic view.

Without such visualization, an undo tree would still require users to remember how

their branches had performed, not relieving the original issue.
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4.1.4 Refining Selection with Other Tools

Insight is explicitly designed to complement, rather than replace, other vector graphics

selection tools. As with other selection tools, when users switch to different tools in

the environment the selection is saved. Users can thus use other selection tools, such

as manual click and lasso selection, to refine a selection produced by Insight. While

parameters of the selection representation Insight trains are not adjusted, other tools

describe their own selection representations and then combine with Insight’s by add

or remove set operations.

Figure 4-6: Depiction of selection refinement with manual tools. Here, a rectangular marquee
is used to remove the small number of extra unwanted paths.

Allowing use of other selection tools to refine the selection is an example of providing

means for inference critique [1], since users can adjust the end selection representa-

tion. Inference critique through other selection tools improves Insight’s efficiency in

cases where the inference gets very close to the target selection. Rather than continue

providing examples with some uncertainty about when the target will be reached, it

can be much faster to switch to a manual tool and remove or add the small difference.

Notably, other selection tools do not critique Insight’s learning, as is the case with

example provision. While more critiquing power could be given by allowing the user

to manually specify certain parameters of the selection representation, this would
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require work in an abstract artwork representation, reducing concreteness. Enabling

users to specify the importance of an example through other methods (i.e. the length

of the click) would also add complexity to Insight’s interaction set. Instead, Insight

prioritizes speed, and simplicity.

4.2 Inference

Insight’s inference consists of a selection representation and novel associated learning

algorithm, which takes example paths and infers parameters for the selection represen-

tation. I chose to represent visual similarity for selection because of its expressiveness

and relevance to artists and designers [13, 17, 9]. The representation I developed

provides a high level of expression by allowing for multiple similarity cues and ranges

described in Feature Integration Theory [26, 24, 25]. The learning algorithm finds

the cues and ranges specified by the user through examples.

4.2.1 Similarity Cue Extraction

Paths in vector graphics are represented as sets of appearance properties, each with

its own representation. For example, shape is represented as a Bezier curve, while

fill color is represented as an RGB triplet. It is challenging to measure perceptual

similarity from the default representations, so on activation Insight extracts needed

similarity cues from all paths for a more convenient representation. Translating once

helps avoid computational burden throughout the selection process.

The cues chosen for extraction along with their extraction means are shown below:

∙ Shape:

1. Sample 64 evenly-spaced boundary points for the path using the Bezier

curve.

2. Compute squared distances from each point to the centroid.

3. Extract rotation- and scale-invariant Fourier descriptor using the squared

centroid distances.
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∙ Fill Color:

1. Convert the fill color to a LAB representation.

∙ Stroke Color:

1. Convert the stroke color to a LAB representation.

∙ Stroke Width:

1. Transfer directly from the path representation.

∙ Scale:

1. Sample 64 evenly-spaced boundary points for the path using the Bezier

curve.

2. Compute eigenvalues and eigenvectors of the covariance matrix for bound-

ary points.

3. Extract principal axis and secondary axis of bounding ellipse with eigen-

vectors and eigenvalues.

∙ Orientation:

1. Compute angle between principal and secondary axes obtained for scale.

2. Break sign invariance by computing area above principle axis.

3. Normalize to range [−1, 1].

∙ Position:

1. Transfer directly from the path representation.

The majority of properties here are directly relevant to visual similarity according

to Feature Integration Theory [26, 24, 25], with position being the single exception.

Insight supports position for a subtle reason: in most vector graphics editors, selec-

tion updates by intersection with new selections are not possible. While users can

adjust selections by adding or removing new selections made with other tools, the
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lack of intersection updates makes it difficult to select paths by both position and

other appearance properties. Ideally, position would not be included as a property in

Insight. However, to support Insight’s applicability for testing, position was included.

The specific representations chosen for each of the cues describe Euclidean spaces

in which Euclidean distance correlates significantly with perceptual similarity. For

example, shape similarity measured by distance in the Fourier domain is strongly

correlated with perceived similarity [2]. This quality is important both for describing

the selection representation and making parameter learning feasible.

It is important to point out that vector paths do support other properties, such as

opacity. For this work, the focus is on providing a relevant and expressive similarity

representation. The set of cues chosen is large enough to make the selection represen-

tation highly expressive (see Section 4.2.2), and so leaving out these extra properties

does not reduce the utility of the system. In addition, Insight’s inference is fully ca-

pable of supporting these other properties, as their processing is similar to the other

properties in the chosen set. Opacity, for example, can be directly transferred just

like stroke width.

4.2.2 Selection Representation

The selection representation is a parametric description of visually similar paths for

a given image. Parameters are independent and variable. Different sets of values for

the parameters correspond to the different ways people can interpret similarity. The

range of values the parameters can take then describes all ways in which users can

interpret similarity. When users provide path examples, values for all parameters are

learned, fixing the representation to a particular interpretation of similarity the user

intends to describe.

I first give an explicit mathematical description of this representation, then explain

how it parameterizes visual similarity, and lastly describe how it supports the design
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goals of expression and relevance for artists.

Let 𝑃 ⊂ {𝑠ℎ𝑎𝑝𝑒, 𝑓𝑖𝑙𝑙, . . . , 𝑠𝑐𝑎𝑙𝑒} be an arbitrary subset of similarity cues, and {𝐶𝑝𝑘}
𝐾𝑝

𝑘=1

be an independent finite set of point clusters in 𝑝’s Euclidean space for each 𝑝 ∈ 𝑃 .

Define the set of clusters for all cues in 𝑃 by:

𝐶𝑃 = {{𝐶𝑝𝑘} : 𝑝 ∈ 𝑃 ∧ 𝑘 ≤ 𝐾𝑝}

The selection representation is then:

𝑆(𝑃,𝐶𝑃 ) =
⋂︁
𝑝∈𝑃

⋃︁
𝑘≤𝐾𝑝

𝐶𝑝𝑘 (4.1)

This representation describes visual similarity by encoding the rules from Feature

Integration Theory. Namely, this representation allows for arbitrary subsets of simi-

larity cues to be active in describing the similarity, and arbitrary ranges of similarity

for each of the cues.

Activity of arbitrary subsets of similarity cues is described in the outer intersection.

For the moment, take the inner union to describe a similarity group, a set of paths

interpreted as similar for a given cue 𝑝. Then,

(Overall Similar Paths) =
⋂︁
𝑝∈𝑃

(Similarity Group for 𝑝) (4.2)

describes the set of paths which are similar for each of the cues 𝑝 ∈ 𝑃 . Since 𝑃 is

freely let to be an arbitrary subset of similarity cues, it follows that this intersection

allows for similar paths to be expressed as paths that are similar for each of any

subset of similarity cues. In terms of the graphic, paths could be considered similar

if they are copies positioned differently, or if they just have the same shape and fill,

or if they have only similar scale. During usage of Insight, the set of active cues 𝑃 is

learned.
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Figure 4-7: Depiction of similarity with different sets of similarity cues. On the left, only fill
color and scale describe the similarity, while on the right shape is relevant as well. Generally,
similarity can be determined by an arbtirary set of cues.

The possibility for arbitrary ranges of similarity for any similarity cue is described in

the inner union. This is best seen by first replacing the union of clusters by a single

cluster:

(Similarity Group for 𝑝) =
⋃︁

𝑘≤𝐾𝑝

𝐶𝑝𝑘 = 𝐶𝑝 (4.3)

Each of the similarity cues takes values in a Euclidean space. Euclidean distance

in these spaces corresponds to perceptual distance. Since a cluster 𝐶𝑝 for a cue 𝑝

contains all path values for the cue which group closely together in the space, it fol-

lows that an arbitrary cluster can describe an arbitrary range of similarity for the

similarity cue. Concretely, a color cluster lets us describe paths similar for color as

those very close to a particular shade of red, or as just generally green. Insight then

must learn clusters for each cue.
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Figure 4-8: A visualization of different similarity ranges for a similarity cue. In this 2D LAB
color space projection, depending on the user’s intention either just the yellow items or both
yellow and green items could be considered similar. These similarities would use different
clusters.

It would appear that the previous two parts are enough to describe visual similarity

according to Feature Integration Theory:

(Overall Similar Paths) =
⋂︁
𝑝∈𝑃

𝐵𝑝 (4.4)

However, in practice, the Euclidean distance metrics used for each of the similarity

cues do not perfectly correspond to perception. This can result in clustering metrics

producing inaccurate clusters. People may also perceive similarity on axes such as

lightness for color, which can have a haphazard shape in LAB space. For this reason,

the description of similarity level for a similarity cue as a single cluster is relaxed to

a flexible cluster union:

𝐶𝑝 → ∪𝑘≤𝐾𝑝𝐶𝑝𝑘 (4.5)

Such a finite cluster union exists to cover any set of values in the space. Thus, any

set of paths can be considered similar for a given similarity cue. The consequence

of adding this flexibility is that the parameters to be learned increases to include

the number of clusters 𝐾𝑝 and the particular clusters. However, this relaxation is

essential for providing representation of all interpretations of similarity.
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Figure 4-9: A visualization of a case where the user may need to use multiple clusters to
describe the similarity. The user may find that red and green paths are both dark, but
yellow is not.

It is good to review how this representation is relevant to this work. Firstly, it is

clearly very expressive in that it supports a variety of interpretations of similarity.

This is true not just in the sense that abstractly any set of paths can potentially be

considered similar, but in the very real case of actual graphics. Graphics do contain

paths which are distributed very freely in these spaces, requiring the flexibility in the

representation.

The flexibility of this representation is also in contrast with previous work in Suggero

[9] and LazySelect [28]. In both of these systems, similarity is described as a single

cluster or cluster in a Euclidean space incorporating all cues. The assumption is

that the similarity distance used corresponds well to visual perception, but to my

knowledge there is no known metric that completely describes similarity between

objects. If users are to be capable of describing similarity as they see fit, it must

be the case that the representation allows for arbitrary interpretations. Of course, it

is still necessary to make sure that common parameter values are accessible quickly.

This is handled by appropriately biasing the learning algorithm.
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4.2.3 Learning Algorithm

The learning algorithm is responsible for determining the parameters to the selection

representation. It takes as input the graphic paths and examples, and outputs the

following representation parameters:

1. The list of active cues 𝑝.

2. The number of clusters for each active cue, {𝐾𝑝}𝑝∈𝑃 .

3. References to each of the clusters for each cue.

The primary goals for the learning algorithm are to ensure that interaction is efficient,

and allow for access to the expressive range of the representation. These two goals

are generally in conflict in learning systems. Ideally, users could describe all kinds

of representations with very few examples. However, an example provides evidence

for a large number of parameter sets. Uniquely identifying any of the parameter sets

will require large numbers of examples. If the learning algorithm is to be efficient, it

must then bias towards the parameter sets that are more frequent.

Figure 4-10: A depiction of the ambiguity problem in inference. A large bamboo example
could be representative of only large bamboo, or all bamboo. In general, a very large number
of interpretations are consistent with the example, so a biasing strategy must be carefully
chosen.
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The bias that Insight uses was informally determined by examining vector graphics

and prior knowledge of visual perception. I noted that typical vector graphics, for

each similarity cue, had sparsely-distributed and dense clusters. In the graphic this

corresponded to very clear similarity groups, such as green paths versus red paths.

This observation indicated that bias should be towards clusters which are relatively

dense, those that have a large number of paths and small radius relative to a cluster

covering all paths. The learning algorithm then tries to find clusters that have high

relative density and contain examples for evidence.

The learning algorithm starts with hierarchically clustering the paths for each sim-

ilarity cue. This is a first step in helping find important relatively dense clusters.

Hierarchical clustering reduces the large set of possible clusters to check to a small

set of important clusters. For points in a Euclidean space, hierarchical clustering

produces a perceptually-organized hierarchy [10]. At higher levels of the hierarchy,

clusters contain more points and cover larger spaces. At lower levels, clusters cover

smaller spaces but contain fewer points. As levels increase, clusters are combined so

that the distances between points in them are minimized, giving rise to the perceptual

organization noted above.

Figure 4-11: A depiction of hierarchical clustering, and the clusters with highest relative
density.
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While the cluster hierarchy gives us a reduced set of clusters to work with, the learning

algorithm must figure out which levels of the hierarchy are appropriate according to

the example evidence. This is dependent on both the relative densities of the clusters

in the hierarchy, as well as the number of examples in the clusters. Insight scores

each of the clusters according to this intuition to help make this decision. The score

for a cluster 𝐶 is given by:

𝑠𝑐𝑜𝑟𝑒(𝐶) = (𝑁(𝐶)−𝑅(𝐶))×
(︂
2

3
𝐸(𝐶)

)︂
(4.6)

where 𝑁(𝐶) is the relative number of paths in the cluster, 𝑅(𝐶) is the relative radius

of the cluster, and 𝐸(𝐶) is the number of examples in the cluster:

𝑁(𝐵) =
(number of paths in cluster)
(number of paths in graphic)

(4.7)

𝑅(𝐵) =
(radius of cluster)

(radius of cluster containing all paths)
(4.8)

𝐸(𝐵) = (number of examples in cluster) (4.9)

The scoring function describes the intuition on relative density and example evidence

given above. For a high-scoring cluster, we want a larger number of contained paths

and lower radius. The linear scaling with each of these terms is reasonable since we

do not want to prioritize score for any change in radius or number of paths. The

terms are normalized according to the global path count and radius of the graphic

so that weights for each are not scale-dependent. Lastly, the score grows multiplica-

tively with the number of examples, to capture the idea that each example provides

equivalent evidence for the same cluster. Notably, having many examples will push

even clusters with low relative density to high score, manifesting the importance of

evidence to learning.

Insight takes the clusters for a given cue to be the disjoint clusters that produce the

highest aggregate score. The enforces each example to contribute to only one selected

cluster, since disjoint clusters cannot contain the same path by definition. With this

41



choice, if examples aggregately provide good evidence for a cluster it will be selected,

while smaller clusters will be selected if the larger clusters’ lower relative densities do

not compensate the greater evidence. There is an important subtlety here though:

targeting aggregate score actually supports dense clusters that are far apart in the

hierarchy. This means that selecting both red objects and green objects is considered

advantageous to just selecting generally warm-colored objects given red and green

evidence. This is where the importance of a flexible representation becomes clear. If

a user is giving both red and green examples, the idea that they perceive similarity

for these examples specifically should be supported. Their examples should be more

important than the general metric for the similarity cue, since that metric as we noted

is imperfect.

Figure 4-12: A visualization of a case where targeting aggregate score is important. The
user has only given red and green examples, so it is more likely they want red and green
objects as opposed to red, green, and yellow.

To find the clusters for a cue giving highest aggregate score, Insight climbs the hierar-

chy from each example, both scoring clusters and keeping track of best-seen clusters.

The pseudocode for this procedure is given below:
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Algorithm 1 Maximizing Aggregate Ball Score for Cue
Require:

All example-containing clusters have initialized empty dictionary 𝑐𝑜𝑙𝑙𝑒𝑐𝑡
All example-containing clusters have initialized example count 𝑒𝑥𝑐𝑜𝑢𝑛𝑡
All example-containing clusters have initialized seen example count 𝑠𝑒𝑒𝑛 = 0
Initialized empty dictionary 𝑏𝑒𝑠𝑡

1: for all 𝑒𝑥𝑎𝑚𝑝𝑙𝑒 in 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 do
2: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 ← 𝑔𝑒𝑡𝐿𝑜𝑤𝑒𝑠𝑡𝐵𝑎𝑙𝑙(𝑒𝑥𝑎𝑚𝑝𝑙𝑒)
3: while 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 exists and 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑠𝑒𝑒𝑛 < 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑒𝑥𝑐𝑜𝑢𝑛𝑡 do
4: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑠𝑒𝑒𝑛← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑠𝑒𝑒𝑛+ 1
5: if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑠𝑒𝑒𝑛 == 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑒𝑥𝑐𝑜𝑢𝑛𝑡 then
6: 𝑠𝑐𝑜𝑟𝑒← 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑆𝑐𝑜𝑟𝑒(𝑐𝑙𝑢𝑠𝑡𝑒𝑟)
7: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡, 𝑝𝑟𝑒𝑣𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡)
8: if 𝑠𝑐𝑜𝑟𝑒 >= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡) then
9: 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡← {𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑖𝑑 : 𝑠𝑐𝑜𝑟𝑒}

10: if 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑝𝑎𝑟𝑒𝑛𝑡 is 𝑛𝑢𝑙𝑙 then
11: 𝑏𝑒𝑠𝑡.𝑢𝑝𝑑𝑎𝑡𝑒← 𝑢𝑝𝑑𝑎𝑡𝑒(𝑏𝑒𝑠𝑡, 𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑐𝑜𝑙𝑙𝑒𝑐𝑡)

Figure 4-13: An example execution of the climbing algorithm. Examples climb until they
see a cluster that has not collected all contained examples (Stop). At each step they track
the best cluster they’ve seen (Max), replacing children clusters as necessary. At the end the
best clusters for all examples are aggregated.

Given that this is the bulk of the computation of the algorithm, confirming the effi-

ciency of this procedure is important. The runtime complexity of this procedure is

𝑂(𝑀𝐸 log𝑁), where 𝑀 is the number of cues, 𝐸 is the number of examples, and 𝑁
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is the number of paths. Both 𝑀 and 𝐸 are small in a computational complexity con-

text. In this study 𝑀 = 7 and 𝐸 empirically is noted to be upper bounded by 50. 𝑁

can be large, on the order of 10000 in some cases, but since complexity is logarithmic

in 𝑁 this is not significant. The procedure thus maintains real-time application of

the learning algorithm.

The highest aggregate scores and corresponding clusters are saved for the purpose

of determining relevant similarity cues. As noted above, since the scoring function

is invariant to scale of values for a cue, the aggregate scores for each cue can be

compared. Insight chooses the relevant cues using these aggregate scores by:

1. Clustering the aggregate scores into 2 clusters using 𝑘-means, and picking the

cues from the cluster with higher mean (note these are clusters for cue scores,

not path values for a cue).

2. Thresholding for cues with aggregate score greater than 𝑡𝑤.

The first allows for selecting cues that notably stand out, while the second enforces

selecting cues which have a high score regardless. The second condition is for robust-

ness against a failure case in the first: one cue gets an incredibly high score because

all paths are extremely close. In this case, the one cue will be selected and keep

getting even greater score than the rest, since examples supporting old clusters just

keep increasing. If someone has given lots of examples for a cluster in a cue, the cue

should be selected regardless if other cues are getting increasing scores. The issue is

visualized below:
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Figure 4-14: A visualization of the scoring issue. If using only 2-mean clustering, the right
cue will always be selected while the left will not. The problem is solved by forcing selection
of cues with scores past a threshold.

After the relevant cues are learned, all parameters for the selection representation

have been computed, and the paths matching the selection are derived. The paths

are passed to the interface for visualization and the learning algorithm is completed.
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Chapter 5

Evaluation

To evaluate Insight, I developed a set of hypotheses for usage to analyze Insight’s

performance with respect to the design goals in Chapter 3. To explore these hy-

potheses, I conducted a user study of people with prior digital design and illustration

experience. Participants performed a variety of selection tasks with both Insight

and Adobe Illustrator, used as a control because of its role as a predominant com-

mercial vector graphics editor. Participants answered survey questions designed to

describe subjective experience with both (see Appendix B, C, D). Their answers and

recorded performance during tasks provided the data for exploring hypotheses and

understanding Insight’s effectiveness.

5.1 Hypotheses

1. Efficiency: I hypothesized that users generally would be quicker at selecting

visually similar paths. Given that Insight biases towards path sets relatively

dense in cues, I expected Insight would prove particularly quick for selections in

graphics with repetitive elements. I also expected that Insight would be quicker

in images with lots of paths or occlusions, since in these cases position-based

selection tools would be less helpful.

2. Expressiveness: I hypothesized that users would be able to make selections
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satisfying a wide variety of interpretations of visual similarity, meaning I ex-

pected users to be able to select paths similar to multiple degrees for many

similarity cue subsets, in a variety of images. I expected that even when the in-

terpretation of similarity did not get high priority from the learning algorithm’s

bias, Insight would help users get closer to the selection.

3. Accessibility: I hypothesized users would find example-based selection refine-

ment easy to use and adopt, and that the choice to use positive examples only

would particularly help.

4. Exploration: I hypothesized that users would find it easy to try alternative ex-

ample sequences with Insight by using undo and redo features to decide whether

different examples could help them make selections. However, I also hypothe-

sized that when large numbers of user-provided examples resulted in an unsat-

isfactory selection.

5. Control: I expected that users would be able to predict results of inference

enough to be able to move towards target selections and that any unexpected

results would be minor, enabling users to react effectively. Conversely, I hy-

pothesized that for images with fewer paths, users would prefer to use standard

direct manipulation tools rather than rely on Insight’s inference.

5.2 Participants

For the study, I solicited 14 participants with digital design or illustration experience

from a university community. Participants ranged in age from 18 to 45 and were pri-

marily female (85%). All had significant experience with Adobe Illustrator to ensure

they were familiar with the selection tools used as a control condition. Most partic-

ipants used Illustator at least weekly (71%), with the remainder reporting monthly

usage. 13 (93%) also had experience with programming or procedural art. I checked

this factor to help understand whether users’ familiarity with working in abstract

representations might affect their usage of tools in the study.
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5.3 Procedure

The study was conducted using the selection laptop: a 2015 Dell XPS 15 with a

mouse for performing selections, and the survey laptop: a 13-inch 2013 Macbook

Air for both visualizing selection task targets and answering survey questions. Both

the participant and the experimenter were in the same room, with the experimenter

answering questions about procedure and interface, and facilitating tasks such as

opening images. Participants performed 10 selection tasks with target selections

based on visual similarity. The target selections were chosen to describe a broad

diversity of visual similarities, with images that varied in style and use case. Selection

tasks were performed both with Adobe Illustrator and a test environment for Insight

implemented with Paper.js [7], providing a control condition. For each selection task,

participants went through the following steps:

1. The participant viewed the target selection on the survey laptop.

2. The participant attempted to perform the selection in Adobe Illustrator on the

selection laptop.

3. The participant attempted to perform the selection in the Insight test environ-

ment on the selection laptop.

4. The participant answered a series of survey questions about the task. Surveys

contained attitudinal questions relating to the evaluation hypotheses using 5-

point Likert scales, 5 being the optimal response. Attitudinal questions included

those for ease-of-use, confidence, predictability, and reactability.

To determine when selections were completed, participants were required to yes-no

query the experimenter, ensuring that they were responsible for interpreting inference

results. Participants could also choose to stop if they felt the task was too difficult, or

after 90 seconds into the task. The experimenter aided only in moving between survey

pages, opening images, and reminding users about controls (for example the keys

which controlled undo, zoom, pan, etc.). At the end of all selection tasks, participants
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were asked to provide detailed feedback about the entire experience through open-

ended survey questions. To help examine all hypotheses, data about selection actions

in the test environment were logged, and video of the screen was recorded.

5.3.1 Conditions

Figure 5-1: Images of both the control interface, Adobe Illustrator, and the Insight test envi-
ronment. Participants had access from image load to Magic Wand and groups in Illustrator,
starting in position-based select. The test environment started in Insight.

Users performed selection tasks in both Adobe Illustrator and a test environment for

Insight, providing a standard for comparison. I chose to evaluate Insight in compari-

son to Adobe Illustrator because it is one of the most predominant commercial vector

graphics editors, and was the editor most used by the study participants.

No simplification was made to Adobe Illustrator’s interface. Participants had full

access to all tools in Adobe Illustrator, including groups and layers defined by users

who had created the task images. This choice was made to help understand the im-

portance of working directly in the graphic. If available tools were restricted to click

and lasso as in other studies [22, 9, 28], it would be difficult to say whether this was

important or not. In addition, this choice allowed users to use all the toolset familiar

to them, helping to better gauge Insight’s accessibility.
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The test environment included just two tools: Insight and a manual tool for click

and rectangular marquee selection. The manual tool was included with Insight to

better model Insight’s expected use in a full vector graphics editor, one which allows

for critiquing the selection produced with other tools (see Section 4.1.4). The Insight

test environment automatically recorded all user examples and selections for analysis

following the study.

5.3.2 Selection Tasks

The selection tasks consisted of 10 different target selections, each on a different im-

age. A team of 4 researches including myself selected and evaluated a diversity of

composition types and image styles to ensure an expressive range of visual similarity

was tested. Some images are shown below in this section, with the rest available in

Appendix A.

Selected composition types included static backgrounds like those used in video games,

animation assets, and data visualizations. Selected style types included flat and

minimalist, sketch-like, and realistic.

Figure 5-2: Examples of task images from the different composition types and style types.

To capture a range of visual similarity, images were manually examined for sets of
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similar paths that stood out for editing. Conscious effort was taken to ensure that

many different sets of similarity cues were active for the tasks, but selections which I

could not understand in terms of Feature Integration Theory were not ignored.

Figure 5-3: Examples of selection tasks. All paths not in the selection have lightness halved.

Inevitably there is some bias in a few people choosing selection tasks. To help account

for this issue, I included questions about task relevance in surveys. No participants

felt that the tasks were not typical, though some did note that they personally worked

on smaller-scale designs.
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Chapter 6

Results

Overall, participants found Insight to be useful. They noted that it could be helpful

when creating their own work (mean: 3.86, std: 0.83), and would particularly find use

when editing vectors they did not create themselves (mean: 4.50, std: 0.5). Multiple

recognized specific use cases without prompt, and requested it be made available to

them in standard editors. The major reasons participants gave for Insight’s usefulness

directly match with the goals implicit in my research question. Users found that

they could express new and relevant selections, perform visual similarity selections

efficiently, and do so in a way that accessible to them. In the following sections, I

present more detailed evidence for how each of these goals was met.

6.1 Expression

I examined users’ ability to express selections by looking at the tasks participants

were able to complete. Histograms depicting both number of users that completed

each task as well as number of tasks completed by each user are shown below.
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Figure 6-1: Histograms for number of users that completed each task, and number of tasks
each user completed.

All users were able to make a majority of the selections in the tasks, often making

nearly all (mean: 7.9, std: 0.83). While none were able to make all selections, this was

a marked improvement over usage of Illustrator (mean: 5.0, std: 0.16). On an individ-

ual level as well, no participant was generally less able to make selections with Insight.

The histograms also reveal information about when Insight helps express selections.

Particularly, we see that for images with repetitive shapes, such as in Task 2 and

Task 5, Insight works well. These include tasks which were impossible for users

to make with Illustrator, such as Task 6 and Task 9. For images as in Task 4

Insight does not provide much benefit. The paths have similarity cue values that are

dispersed comparatively evenly in the cue spaces, with a few paths each for a wide

variety of colors, and a few paths each for many different shapes.

Another trend is that participants were better able to complete tasks that should

have been doable in Illustrator. Task 5 is a good example of this: it was possible
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to use the Magic Wand to make three individual selections and combine them, but

users either missed this or found it too error-prone. In general, it appeared that users’

expressive ability with Insight was not tied only to it smartly finding similar paths,

but due to features of the interaction such as simplicity of example provision.

6.2 Efficiency

I took two approaches to measuring Insight’s efficiency. First, I compared the amount

of time users spent on tasks completed in both Insight and Illustrator. Second, I mea-

sured the time users spent on all tasks completed in Insight. The first measurement

helps for comparing Insight’s interaction paradigm to standard tools’, while the sec-

ond is useful for checking whether Insight is generally efficient as a selection tool.

Graphs for both of these measurements are shown below:

Figure 6-2: Histograms for average time users spent on tasks completed with Insight, and
average time users spent on tasks completed with both Insight and Illustrator.

The comparison with Illustrator again highlights the idea that Insight can be more

accessible than the standard tools. Despite users having familiarity with tools in

Illustrator, with very little learning time they were able to be faster with Insight. I

noticed that even when users could use a similar number of actions in Insight and

Illustrator, as in Task 2 and Task 3, use of Insight was substantially faster. The

only task where this was the exception was Task 4. As noted in Section 6.5 above,

Task 4 has paths that are distributed very evenly in the spaces for similarity cues.

While comparisons with Illustrator show that Insight enables faster selection, it is
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important to see that Insight is still not as efficient as would be expected of selection

tools. For some tasks Insight took on average between 10 and 20 seconds, but on

others Insight took upwards of 50 seconds. 10-20 seconds may be acceptable for

a selection tool, particularly when users have had no prior exposure to it, but I

find greater than this to be concerning given the frequency of selection. Multiple

participants confirmed this by noting that if they were creating the artwork, they

would still try to organize selections with groups and layers for quick reference.

6.3 Accessibility

Accessibility was measured by Likert ratings for ease-of-use and confidence. In the

second survey about overall experience, participants indicated that they both were

confident (mean: 4.21, std: 0.58) and found Insight easy to use (mean: 4.29, std:

0.70). Again, we also measured these for each task individually to help understand

more specifically how Insight helped:

Figure 6-3: Histograms for average ease-of-use and confidence per task.
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Examining the histograms, we see that generally participants found Insight and Il-

lustrator similarly accessible, with ease-of-use and confidence for both tending to be

high. Given that Illustrator consists of a set of tools adopted into common practice,

this indicates that Insight is perceived as accessible to artists and designers as well.

The fact that Insight was provided to users with only a few minutes of instruction

compared with their months or years of experience only further supports this idea.

The exceptions to these trends are with Task 6 and Task 9, where Insight was noted

to be significantly more accessible. These were images both with very large numbers

of paths, and similarity representations with cues that Illustrator did not support.

Importantly, this is where we see Insight’s added levels of expression. With Insight’s

accessibility in these cases, we see an accomplishment of the goal set in my research

question: to provide expressive selection tools accessible to artists and designers.

6.4 Control

Control was measured by Likert ratings for predictability and reactability. In the

second survey about overall experience, participants indicated that they found In-

sight moderately predictable (mean: 3.50, std: 0.98) and reactable (mean: 3.43, std:

0.90). Again, we also measured these for each task individually to help understand

more specifically how Insight helped. Importantly, reactability and predictability for
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Illustrator were measured for usage of non-positional tools only, since positional tools

are considered to be clear:

Figure 6-4: Histograms for predictability and reactability of Insight and Illustrator.

Participants overall found Insight and Illustrator to both be similarly reactable and

predictable. While neither was extremely reactable or predictable like positional tools

are, participants tended to agree that the results of their actions were understandable.

This is an interesting result, since in Illustrator all actions are explicit, while Insight

infers selections.

Insight generally had a very small edge over Illustrator, but substantial differences

were visible for Task 6 and Task 9. As noted in results for accessibility (Section 6.3),

both images had very large numbers of paths, and similarity respresentations with

cues Illustrator did not support. Participants noted that these images were particu-

larly difficult to work with in Illustrator because the group and layer hierarchy was

far too complex to examine.

Lastly, just as Insight was found to be less efficient and expressive for Task 4, it

was found to be less predictable and reactable as well. Participants stated that

Insight inferred selections which did not appear similar to them, and changed rapidly

throughout the interaction.
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6.5 Exploration

Exploration was measured by counting the undos used by each participant, and the

number of examples used on average for each task. The first gives a straightforward

measure of whether users explored alternatives, while the second gives a measure

of whether participants explored the model by incremental updates. Histograms for

both are shown below:

Figure 6-5: Histograms for number of undos used by each user, and average number of
examples for each task.

The graphs give a general indication that Insight supports exploration. All users

tried to provide different examples using undo, with some using it heavily. I observed

that the difference in these participants was generally that those who used undo less

instead relied on providing extra examples, while those who used undo more were

more careful about picking examples they perceived to be relevant.

Participants appeared comfortable with adding examples in all tasks. I observed that

users very rarely restarted usage of Insight, instead preferring to continue adding
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examples until inference was correct. This does not necessarily indicate that Insight

provided small, incremental updates. In fact, participants felt that this was not true

in some cases, such as Task 4 and Task 10, where as noted in Section 6.4 inferred

selections changed rapidly. However, it does suggest that participants found adding

examples to be natural for exploring the visual similarity representation, continuing

to add examples even in the cases they found inference poor.
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Chapter 7

Discussion

My main goal in this work was to see if interactive machine learning could provide

interaction benefits important for selection in graphics. Here I discuss how this general

approach, and particular design choices unique to Insight, were important to this goal.

During these discussions, I also note how results indicate relevance of interactive

machine learning principles for artists and designers.

7.1 Inference helps manage complexity in selection

The particular tasks in which Insight was found to be most useful were those in

which images had thousands of crowded vector paths. In the corresponding images,

the vector paths to select conflicted with other paths in many similarity cues, and

the group hierarchies were extremely large. Results show that in all metrics, Insight

substantially outperformed Illustrator for these tasks.

I extract from these results that explicit selection tools become difficult to use when

working with complex artwork. When the selection representation contains many pa-

rameters, and the spaces for those parameters take many values, explicitly specifying

all parameters takes a large amount of interaction. In the tasks, when users applied

the Magic Wand the large number of parameters became the cues, while with groups

and layers finding the exact group index parameter for the desired group became
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impractical.

With Insight, participants were able to specify complex representations with a simple

action.

7.2 Artists and designers explore the representation

space

The results show that artists and designers both continue providing examples and use

undo to explore the selection representation. At any point in the interaction, partic-

ipants could restart the inference. However, they preferred options for incrementally

adjusting the selection representation and trying alternative example sequences. The

conclusion I draw from this is that artists and designers do value the ability to in-

crementally adjust their work in inferential selection as well, and find both iterative

example-based interaction and undo in Insight helpful for this goal.

5 participants also confirmed the importance of exploration by describing an addi-

tional feature they wanted in Insight: the ability to remove examples. In tasks where

participants used large numbers of examples, they realized that they may have spec-

ified a poor example early on in the interaction, and that adjusting by removing that

example would be more helpful than restarting the inference. Critical here is that

participants stated they did not feel the need for such a feature until first adding

examples with the tool.

7.3 Benefits of working directly on the graphic

In Section 6.5 and Section 6.2, I noted that even in tasks where the selection was

simple to perform with the tools in Illustrator, participants were slightly more effec-

tive and efficient with Insight. I observe that this is a subtle benefit that comes from
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working entirely in the medium. It appears that moving back-and-forth between the

graphic representation and the abstract representation presents a small but important

amount of overhead.

It was also important that participants could visualize the selection clearly and di-

rectly on the graphic. This was confirmed by issues participants found with the

lightness-based selection visualization. Though participants could examine the visu-

alization closely and recognize the selection, they understood it much better when

they used the visibility toggle, and so used it extremely frequently. By completely

removing the selection from the graphic, the visibility toggle very explicitly made the

selection clear.

On the other hand, no participant generally felt that abstract representations were

particularly inaccessible except in very complex artwork. Even then, the difficulty

they noted was not with the fact that tools used representations outside of the graphic,

but with the loss of control they experienced. Participants went to groups for these

tasks, but noted that it was impossible to tell how selecting any of those groups

from the panel would impact the artwork, since participants had not created them

themselves. As opposed to not being able to link an abstract representation to the

graphic, participants were concerned that they had not defined the components of

that abstract representation. While this acceptance of abstract representations may

align with the programming experience participants indicated, the conlusion I draw

from these results then is that concreteness is only important to the extent that it is

explicit.
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7.4 Control has primary importance in inferential

selection

Over all other factors I measured, participants’ feelings of control were most closely

tied to accessibility. As noted just above in Section 7.3, participants only found signif-

icant difficulty with groups because they had no control over the creator’s grouping.

Many participants were confident that if they had been constructing the artwork,

they would have structured the group hierarchy so that they could perform the tasks.

However, this only indicates the importance of control for artists. Realistically, many

images (such as in Task 9) could not support multiple important selections if groups

or layers were used, since paths in them could not share 𝑧-index. Furthermore, in

professional design users must frequently edit work others have provided to them,

making it impossible for users to define their own structure. A tool like Insight would

be necessary for these cases.

Importance of control was similarly true with Insight’s usage. Though participants

did not feel that Insight was extremely controllable like positional selection, for most

tasks they generally agreed it was predictable and reactable, and were accordingly able

to perform the tasks efficiently. Generally, they understood the small changes from

Insight’s incremental inference. When the model changes were dramatic however, as

in Task 4, participants felt they had less control, and accordingly both accessibility

and efficiency dropped. Our results then showed a clear agreement with the main

idea of interactive machine learning approaches: having small, incremental inference

updates to a representation is important.

Surprisingly, multiple participants also asked for more complex features to obtain

greater control. Contrary to my expectation that simplicity should be prioritized,

participants indicated that they would like to have features such as a dialog box for

marking explicit similarity cues, and the option to provide negative examples. This

confirms the results in other domains using interactive machine learning: prioritize
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control (see Section 2.2). An interesting direction for future work is then to try

providing additional means of control to artists and see how usability changes.

7.5 Learning for visual similarity is hard

All tasks contained selections for visually similar paths, but Insight was significantly

more effective in task images with repetitive elements and pattern.

The first issue I observe is with the representation of visual similarity. There are cases

where Euclidean distances for similarity cue representations do not closely resemble

perceptual similarity. A good example of this is with Task 10, where participants se-

lected buildings with multiple faces. Participants recognized faces as being the same

shape because they processed perspective, while Insight does not take perspective

into account. A substantial improvement to be made would be in developing better

metrics for individual cues.

A second important issue is with Insight’s biasing strategy. The biasing strategy is

generally one of Insight’s strengths. I noted that traditional machine learning algo-

rithms were not helpful for the case of Insight since the generalizations they made

with few examples were fairly arbitrary, making the selections visualized seem un-

controllable. By biasing towards relatively dense clusters, Insight helped users ac-

cess repetitive elements quickly, a generally important indication of visual similarity.

However, as seen in Task 4, this works poorly in images with paths distributed spo-

radically in each similarity cue. A possible adjustment for the learning algorithm

that could help would be to weight examples more heavily. This would cause less

relatively dense clusters to be selected more quickly so long as users were repeatedly

providing evidence.

A final possibility for learning visual similarity is to learn the representation itself.

With tools such as deep learning, it may be possible to directly feed a number of
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real-world visually similar path sets and obtain a classifier that understands what

visual similarity is without prior modeling. The same could be true of selections in

vector graphics in general. It would be interesting to pursue this direction, though

certainly collection of the required amount of selection data would be challenging.
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Chapter 8

Conclusion

Through my development and evaluation of Insight, I show a way to use interactive

machine learning to enable artists and designers to easily perform complex selections

in vector graphics. My results indicate that many of the qualities artists and design-

ers have been noted to value in their direct manipulation tools are true for graphics

selection as well, and that Insight’s interaction set is a means of providing them.

However, Insight is just a starting point in a broad space of possibilities. Interactive

machine learning could be explored for other important selection models or even

complex editing operations. It is an interaction paradigm which might be used to

enable artists and designers to produce a much broader variety of creative outcomes.

Studying how these tools can affect the creative process is a wonderful goal for future

research.
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Selection Tasks
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Appendix B

Demographic Survey
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Selection Task Survey
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Overall Feedback Survey
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