
Decibel: Transactional Branched Versioning for
Relational Data Systems

by

David Goehring

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2016

Certified by. .
Samuel Madden

Professor
Thesis Supervisor

Accepted by .
Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Decibel: Transactional Branched Versioning for Relational

Data Systems

by

David Goehring

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2016, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science

Abstract

As scientific endeavors and data analysis become increasingly collaborative, there is
a need for data management systems that natively support the versioning or branch-
ing of datasets to enable concurrent analysis, cleaning, integration, manipulation, or
curation of data across teams of individuals. Common practice for sharing and col-
laborating on datasets involves creating or storing multiple copies of the dataset, one
for each stage of analysis, with no provenance information tracking the relationships
between these datasets. This results not only in wasted storage, but also makes it
challenging to track and integrate modifications made by different users to the same
dataset. Transaction management (ACID) for such systems requires additional tools
to efficiently handle concurrent changes and ensure transactional consistency of the
version graph (concurrent versioned commits, branches, and merges as well as changes
to records). Furthermore, a new conflict model is required to describe how versioned
operations can interfere with each other while still remaining serializable. Decibel is
a new relational storage system with built-in version control and transaction manage-
ment designed to address these shortcomings. Decibel’s natural versioning primitives
can also be leveraged to implement versioned transactions. Thorough evaluation of
three versioned storage engine designs that focus on efficient query processing with
minimal storage overhead via the development of an exhaustive benchmark suggest
that Decibel is vastly superior to and enables more cross version analysis and function-
ality than existing techniques and DVCS software like git. Read only and historical
cross-version query transactions are non-blocking and proceed all in parallel with
minimal overhead. The benchmark also supports analyzing performance of versioned
databases with transactional support. It also enables rigorous testing and evaluation
of future versioned storage engine designs.

Thesis Supervisor: Samuel Madden
Title: Professor

3

4

Acknowledgments

This research was funded in part by Intel Science and Technology Center for Big

Data.

5

6

Contents

1 Introduction 15

1.1 Decibel . 15

1.2 Indexing . 18

1.3 Transactions . 18

2 Decibel: The Dataset Branching System 21

2.1 Versioning Patterns & Examples . 21

2.2 Decibel API and Architecture . 23

2.2.1 Architecture . 23

2.2.2 Decibel Model and API . 23

2.2.3 Versioned Query Language Overview 31

2.3 Physical Representations . 33

2.3.1 Overview . 33

2.3.2 Tuple-First Storage . 36

2.3.3 Version-First Storage . 40

2.3.4 Hybrid Storage . 46

2.3.5 Discussion . 49

2.4 Indexing . 49

2.4.1 Sample Range Queries . 50

2.4.2 Indexing Scheme . 51

2.5 Versioning Benchmark . 53

2.5.1 Branching Strategies . 54

2.5.2 Data Generation and Loading 56

7

2.5.3 Evaluated Queries . 56

2.6 Evaluation . 57

2.6.1 Scaling Branches . 57

2.6.2 Query Results . 58

2.6.3 Bitmap Commit Performance 63

2.6.4 Merge Performance . 64

2.6.5 Table-Wise Updates . 65

2.6.6 Load Time . 66

2.6.7 Comparison with git . 66

3 Transactions 71

3.1 Preliminaries . 71

3.2 Conflict Model . 74

3.2.1 General Issues . 75

3.2.2 Single Branch Concurrent Update to Branch Workspace . . . 76

3.2.3 Single Branch Concurrent vc 76

3.2.4 Concurrent Branching . 77

3.2.5 Extended Conflict Tracking: Changes Across Multiple Commits

and Branches . 79

3.2.6 Branch Level Conflicts . 81

3.2.7 Merge . 82

3.2.8 Relaxed Conflicts . 84

3.3 Decibel’s Concurrency Control Protocol 85

3.3.1 Naive Solution: Branching and Merging for Every Transaction 85

3.3.2 Overview and Invariants . 86

3.3.3 Global Snapshots . 87

3.3.4 Transaction Local Workspace Snapshot 87

3.3.5 Conflict Tracking and Serialization 88

3.3.6 Overview of Global Snapshot Reconciliation 89

8

3.3.7 Rebasing Bitmaps: Handling Concurrent Commits to the Same

Branch . 92

3.3.8 Non-Historical Branches . 95

3.3.9 Handling Merge with Locking 95

3.3.10 Concurrent Indexing . 98

3.3.11 Advantages of Bitmaps for Isolation 98

3.4 Concurrent Versioned Benchmark . 101

3.4.1 Overview . 101

3.4.2 Versioned Scenario . 101

3.4.3 Versioned Workload . 102

3.5 Evaluation . 105

3.5.1 Read Only Queries . 107

3.5.2 Update Performance . 109

3.5.3 Scalability: Varying vc Frequency 110

3.5.4 Scalability: Dataset Size . 112

3.5.5 Scalability: Branches . 113

4 Versioned Transaction Manager Implementation 115

4.1 Mechanisms in Decibel for High Concurrency and Recovery 115

4.1.1 Highly Concurrent Append Only Heap File 115

4.1.2 BufferPool Page Eviction during Concurrent Modification . . . 117

4.1.3 Transaction Managed Page . 118

4.1.4 Logging Module . 118

4.1.5 Lock Manager . 118

4.1.6 vc Bitmap Cache . 119

4.2 Versioned Transaction Manager Implementation Details 119

4.2.1 Overview . 119

4.2.2 Transaction Manager Hierarchy 120

4.2.3 Hybrid State . 122

4.2.4 Global Snapshots and Transaction Start 127

9

4.2.5 Transaction Workspace and Dependency Tracking 129

4.2.6 Global Snapshot Reconciliation In Detail: Merging a Transac-

tion Local Snapshot into Global Snapshot 134

4.2.7 Batch Transaction Committer 139

4.2.8 Transaction Abort . 140

4.2.9 Cleaning up Versioned Read/Write Sets 141

4.2.10 Recovery . 142

5 Related Work 145

5.1 Related Work in Dataset Versioning 145

5.2 Related Work in Transactions . 147

6 Conclusion 149

10

List of Figures

2-1 Decibel Architecture . 24

2-2 Two Example Workflows . 24

2-3 Example of Tuple-First . 34

2-4 Example of Version-First (depicts branches resulting from merges, but

could be commits) . 35

2-5 Example of Hybrid . 36

2-6 Example of merge scenario that requires Version-First to make 2 passes 43

2-7 Example Single Version Range Query 50

2-8 Example Cross Version Range Query 50

2-9 Indexing Example . 52

2-10 The various branching strategies in the versioning benchmark: a) Deep

b) Flat c) Science (Sci.) d) Curation (Cur.) 54

2-11 The Impact of Scaling Branches . 59

2-12 Query 1 . 60

2-13 Query 2 . 61

2-14 Query 3 . 61

2-15 Query 4 . 62

2-16 Table-Wise Updates: Query 1 (10 Branches) 65

3-1 Branch Workspaces . 73

3-2 Rebasing vcs . 77

3-3 Rebasing vcs from a Dirty Workspace 78

3-4 Difference between Historical Branches and Non-Historical Branches . 79

11

3-5 Read Only Transaction Scan Performance 108

3-6 Indexed Read Transaction Throughput (transactions/second) 109

3-7 Update Transaction Throughput (transactions/second) 110

3-8 Transaction Throughput (transactions/second) Varying the Frequency

at which Update Transactions Version Commit 111

3-9 Transaction Throughput (transactions/second) Varying Dataset Size . 112

3-10 Transaction Throughput (transactions/second) Varying the Number of

Branches . 113

3-11 Read only Transaction Throughput (transactions/second) Varying the

Number of Branches . 114

12

List of Tables

2.1 Sample Queries . 26

2.2 Summary of the Approaches . 50

2.3 Bitmap Commit Data (50 Branches) 63

2.4 Overview of Merge Performance . 64

2.5 Storage Impact of Table-Wise Updates from Figure 2-16, in GB. . . . 64

2.6 Build Times (seconds) . 66

2.7 git performance vs. Decibel (Hybrid) on the deep structure with 100%

inserts to 10 branches over 10000 commits 69

2.8 git performance vs. Decibel (Hybrid) on the deep structure with 50%

updates to 10 branches over 10000 commits 69

13

14

Chapter 1

Introduction

1.1 Decibel

With the rise of “data science”, individuals increasingly find themselves working col-

laboratively to construct, curate, and manage shared datasets. Consider, for example,

researchers in a social media company, such as Facebook or Twitter, working with a

historical snapshot of the social graph. Different researchers may have different goals:

one may be developing a textual analysis to annotate each user in the graph with

ad keywords based on recent posts; another may be annotating edges in the graph

with weights that estimate the strength of the relationship between pairs of users;

a third may be cleaning the way that location names are attached to users because

a particular version of the social media client inserted place names with improper

capitalization. These operations may happen concurrently, and often analysts want

to perform them on multiple snapshots of the database to measure the effectiveness

of some algorithm or analysis. Ultimately, the results of some operations may need

to be visible to all users, while others need not be shared with other users or merged

back into the main database.

Existing mechanisms to coordinate these kinds of operations on shared databases

are often ad hoc. For example, several computational biology groups we interviewed at

MIT to motivate our work reported that the way they manage such shared repositories

is to simply make a new copy of a dataset for each new project or group member.

15

Conversations with colleagues in large companies suggest that practices there are not

much better. This ad hoc coordination leads to a number of problems, including:

∙ Redundant copies of data, which wastes storage.

∙ No easy way for users to share updates to datasets with others or merge them

into the “canonical” version of the dataset.

∙ No systematic way to record which version of a dataset was used for an exper-

iment. Often, ad hoc directory structures or loosely-followed filename conven-

tions are used instead.

∙ No easy way to share data with others or to keep track of who is using a partic-

ular dataset. , besides using file system permissions (which are not practical to

use when sharing with users in other organizations who don’t have accounts).

One potential solution to this problem is to use an existing distributed version

control system such as git or mercurial. These tools, however, are not well-suited to

versioning large datasets for several reasons. First, they generally require each user to

“checkout” a separate, complete copy of a dataset, which is impractical within large,

multi-gigabyte or terabyte-scale databases. Second, because they are designed to

store unstructured data (text and arbitrary binary objects), they have to use general-

purpose differencing tools (like Unix diff) to encode deltas and compare versions.

Moreover, version control systems like these do not provide any of the high-level data

management features (e.g., SQL, transactions) typically found in database systems,

relational or otherwise.

In this thesis, we address how we have solved these problems in Decibel, a system

for managing large collections of relational dataset versions. Decibel allows users to

create working copies (branches) of a dataset based either off of the present state of

a dataset or from prior versions. As in existing version control systems such as git,

many such branches or working copies can co-exist, and branches may be merged

periodically by users. Decibel also allows modifications across different branches, or

within the same branch.

We describe our versioning API and the logical data model we adopt for versioned

datasets, and then describe several alternative approaches for physically encoding the

16

branching structure. Choosing the right physical data layout is critical for achieving

good performance and storage efficiency from a versioned data store. Consider a naive

physical design that stores each version in its entirety: if versions substantially overlap

(which they generally will), such a scheme will be hugely wasteful of space. Moreover,

data duplication could prove costly when performing cross-version operations like diff

as it sacrifices the potential for shared computation.

In contrast, consider a version-first storage scheme which stores modifications

made to each branch in a separate table fragment (which we physically store as

a file) along with pointers to the table fragments comprising the branch’s direct

ancestors. A linear chain of such fragments thus comprises the state of a branch.

Since modifications to a branch are co-located within single files, it is easier to read

the contents of a single branch or version by traversing its lineage. However, this

structure makes it difficult to perform queries that compare versions, e.g., that ask

which versions satisfy a certain property or contain a particular tuple [20].

As an alternative, we also consider a tuple-first scheme where every tuple that

has ever existed in any version is stored in a single table, along with a bitmap to

indicate the versions each tuple exists in. This approach is very efficient for queries

that compare the contents of versions (because such queries can be supported through

bitmap intersections), but can be inefficient for queries that read a single version since

data from many versions is interleaved.

Finally, we propose a hybrid scheme that stores records in segmented files like in

the version-first scheme, but also leverages a collection of bitmaps like those in the

tuple-first scheme to track the version membership of records. For the operations we

consider, this system performs as well or better than both schemes above, and also

affords a natural parallelism across most query types.

For each of these schemes, we describe the algorithms required to implement

key versioning operations, including version scans, version differencing, and version

merging.

17

1.2 Indexing

Traditional databases make extensive use of indexing to enable efficient lookup of

records by a key, be it a primary key or another attribute in a record. Such queries

include either a point look up (access a single record with a particular key) or a range

query (given with all the records where the corresponding keys are in a particular

range). To enable point and range queries across branches and commits, efficient

indexing of records across versions is required. The proposed scheme builds on tradi-

tional indexing (B-Tree or Hash [71]) to provide a minimal storage overhead solution

that is able to answer cross version index queries.

1.3 Transactions

Dataset versioning systems not only require the ability to version efficiently but also

need to support transactions with traditional database semantics with the addition of

versioning operations. Specifically, a group of branch, merge, commit, and data oper-

ations should be able to be done with traditional ACID guarantees so that resulting

execution of the transactions is Serializable, the traditional correctness criterion for

concurrent transactions [71, 10]. Concurrency is crucial in a system like this to not

only ensure that modifications to the dataset remain transactional, but to support

high throughput read only queries that are non-blocking and ensure that those read

only queries have a transactionally consistent view of the dataset. Any user should

be able to read a transactionally consistent snapshot of the database at any time and

should not wait for concurrent writers. Decibel also allows multiple transactions to

query different commits simultaneously.

Much research has been done in the areas of transaction management and concur-

rency control protocols [70, 48, 58, 11, 28, 74], but Decibel uses the underlying data

structures for version management to provide transaction isolation. Furthermore,

a new conflict model is required to describe how versioned operations can interfere

with each other while still remaining serializable. In addition to presenting Decibel,

18

this thesis presents a transaction management scheme for Decibel that leverages its

natural versioning properties to make versioned transactions serializable and support

high throughput, non-blocking read only queries.

Decibel is a key component of DataHub [13], a collaborative data analytics plat-

form that we’re building. DataHub includes the version control features provided by

Decibel along with other features such as access control, account management, and

built-in data science functionalities such as visualization, data cleaning, and integra-

tion.

The key contributions of this thesis are:

∙ We provide the first full-fledged integration of modern version control ideas

with relational databases. We describe our versioning API, our interpretation

of versioning semantics within relational systems, and several implementations

of a versioned relational storage engine.

∙ We describe a new versioning benchmark we have developed, modeled after

several workloads we believe are representative of the use cases we envision.

These workloads have different branching and merging structures, designed to

stress different aspects of the storage managers. The benchmark also supports

evaluating transaction performance of versioned databases.

∙ We provide an evaluation of our storage engines, showing that our proposed hy-

brid scheme outperforms the tuple-first and version-first schemes on our bench-

mark. We also compare against an implementation of database versioning in

git. We thoroughly analyze the trade-offs between these storage schemes across

a variety of operations and workloads.

∙ We show how to leverage Decibel’s natural versioning power to implement trans-

actions and discuss a conflict model for versioned databases.

We begin by presenting motivating examples, showing how end users could benefit

from Decibel. We then provide an overview of our versioning API and data model

in Section 2.2. A detailed overview of the aforementioned physical storage schemes

is presented in Section 2.3. We then describe our versioned benchmarking strategy

in Section 2.5 and the experimental evaluation of our storage models on a range of

19

versioned query types in Section 2.6. After this description of Decibel fundamentals,

we discuss the challenges for concurrency control and a conflict model for versioned

databases in 3.2. Then in 3.3 we discuss how Decibel’s protocol for handling con-

current changes. There we discuss how the natural versioning primtives provided by

Decibel can be leveraged to implement transactions. We then revisit the versioned

benchmark in 3.4 to discuss how it was augmented to analyze transaction perfor-

mance of versioned databases and the type of versioned transactions evaluated. We

then evaluate Decibel’s transaction implementation in 3.5. We then provide imple-

mentation details of the versioned transaction manager in 4.2.

20

Chapter 2

Decibel: The Dataset Branching

System

2.1 Versioning Patterns & Examples

We now describe two typical dataset versioning patterns that we have observed across

a wide variety of scenarios in practice. We describe how they motivate the need for

Decibel, and capture the variety of ways in which datasets are versioned and shared

across individuals and teams. These patterns are synthesized from our discussions

with domain experts, and inspire the workloads we use to evaluate Decibel.

Science Pattern: This pattern is used by data scientist teams. These data scientists

typically begin by taking the latest copy of an evolving dataset, then may perform

normalization and cleaning, add features, and train models, all iteratively. (e.g.,

remove or merge columns, deal with NULL values or outliers), annotate the data

with additional derived features, separate into test and training subsets, and run

models as part of an iterative process. At the same time, the underlying dataset that

the data scientists started with may typically evolve, but often analysts will prefer to

limit themselves to the subset of data available when analysis began. Using Decibel,

such scientists and teams can create a private branch in which their analysis can be

run without having to make a complete copy of the data. They can return to this

21

branch when running a subsequent analysis, or create further branches to test and

compare different cleaning or normalization strategies, or different models or features,

while retaining the ability to return to previous versions of their work. This pattern

applies to a variety of data science teams including a) The ads team of a startup,

analyzing the impact of the ad campaigns on website visitors. b) A physical scientist

team, building and testing models and physical theories on snapshots of large-scale

simulation data. c) A medical data analysis team, analyzing patient care and medical

inefficiencies and are only allowed to access records of patients who have explicitly

agreed to such a study.

Curation Pattern: This pattern is used by teams collectively curating a structured

dataset. While the canonical version of the dataset evolves in a linear chain, curators

may work on editing, enhancing, or pruning portions of this dataset via branches,

and then apply these fixes back to the canonical version. While this is cumbersome

to do via current tools, Decibel can easily support multiple users simultaneously

contributing changes to their branches, and then merging these changes back to the

canonical version. This way, curators can “install and test” changes on branches

without exposing partial changes to other curators or production teams using the

canonical version until updates have been tested and validated. This is similar to

feature branches in software version control systems. This pattern applies to a variety

of data curation teams including a) The team managing the product catalog of a

business with individuals who manage different product segments, applying updates

to their portion of the catalog in tandem. b) A volunteer team of community users

contributing changes to a collaboratively managed map, e.g. OpenStreetMaps, where

individual users may focus on local regions, adding points of interest or fixing detailed

geometry or metadata (e.g., one way information) of roads. c) A team of botanists

collaboratively contributing to a dataset containing the canonical properties of plants

found in a tropical rainforest.

22

2.2 Decibel API and Architecture

We begin with a brief overview of the Decibel architecture before describing the ver-

sion control model and API that Decibel provides to enable branched multi-versioning

of structured files or tables.

2.2.1 Architecture

Decibel (Figure 2-1) is implemented in Java, on top of the MIT SimpleDB database.

In this paper, we focus on the design of the Decibel storage engine, a new version-

optimized data storage system supporting the core operations to scan, filter, differ-

ence, and merge branching datasets. Note, however, that Decibel does support general

SQL query plans, but most of our query evaluation (joins, aggregates) is done in the

(unmodified) SimpleDB query planning layer. The changes we made for Decibel were

localized to the storage layer. The storage layer reads in data from one of the storage

schemes, storing pages in a fairly conventional buffer pool architecture (with 4 MB

pages), exposing iterators over different single versions of data sets. The buffer pool

also encompasses a lock manager used for concurrency control. In addition to this

buffer pool we store an additional version graph on disk and in memory. We focus

in this paper on the versioned storage manager and versioning data structures, with

support for versioning operations in several different storage schemes, not the design

of the query executor.

By implementing Decibel inside of a relational DBMS, we inherit many of their

benefits. For example, fault tolerance and recovery can be done by employing stan-

dard write-ahead logging techniques on writes, and role-based access control prim-

itives can be applied to different versions of the same table. We leave a complete

exploration of these aspects of Decibel to future work.

2.2.2 Decibel Model and API

We first describe the logical data model that we use, and then describe the version

control API, all in the context of Figure 2-2, where (a) and (b) depict two evolution

23

Versioned
queries

Versioned Storage Manager

Query Executor

Sec. 4 Storage Schemes
(One active at a time)

Buffer Pool

Version read/
update requests Iterators

Sec. 2

Figure 2-1: Decibel Architecture

R S
Version A

R S
Version B

R S
Version D

Master Branch

R S
Version C

Branch 1

R S
Version A

R S
Version B

R S
Version D

Master Branch

R S

Version E

commit

commit

branch

merge

R S
Version F

(a) (b)

branch

Branch 2

Figure 2-2: Two Example Workflows

patterns of a dataset.

Data Model.

Decibel uses a very flexible logical data model, where the main unit of storage is the

dataset. A dataset is a collection of relations, each of which consists of a collection

of records. Each relation in each dataset must have a well-defined primary key; the

primary key is used to track records across different versions or branches, and thus is

expected to be immutable (a change to the primary key attribute, in effect, creates a

new record). For the same reason, primary keys should not be reused across seman-

tically distinct records; however, we note that Decibel does not attempt to enforce

either of these two properties.

24

Version Control Model

Decibel uses a version control model that is identical to that of software version control

systems like git. As some readers may not be familiar with these systems, we now

describe the model in the context of Decibel. In Decibel, a version consists of a point-

intime snapshot of one or more relations that are semantically grouped together into

a dataset (in some sense, it is equivalent to the notion of a commit in git/svn). For

instance, Versions A—D in Figure 2-2(a) all denote versions of a dataset that contain

two relations, R and S. A version, identified by an ID, is immutable and any update

to a version conceptually results in a new version with a different version ID (as we

discuss later in depth, the physical data structures are not necessarily immutable and

we would typically not want to copy all the data over, but rather maintain differences).

New versions can also be created by merging two or more versions (e.g., Version F in

Figure 2-2(b)), or through the application of transformation programs to one or more

existing versions (e.g., Version B from Version A in Figure 2-2(a)). The version-level

provenance that captures these processes is maintained as a directed acyclic graph,

called a version graph. For instance, the entire set of nodes and edges in Figure 2-2(a)

or (b) comprises the version graph.

In Decibel, a branch denotes a working copy of a dataset. There is an active branch

corresponding to every leaf node or version in the version graph. Logically, a branch is

comprised of the history of versions that occur in the path from the branch leaf to the

root of the version graph. For instance, in Figure 2-2(a) there are two branches, one

corresponding to Version D and one corresponding to C. Similarly, in Figure 2-2(b)

there is one branch corresponding to version F, and another branch corresponding to

version E. The initial branch created is designated the master branch, which serves

as the authoritative branch of record for the evolving dataset. Thus, a version can

be seen as capturing a series of modifications to a branch, creating a point-in-time

snapshot of a branch’s content. The leaf version, i.e., the (chronologically) latest

version in a branch is called its head; it is expected that most operations will occur

on the heads of the branches. Although our current implementation does not support

25

Table 2.1: Sample Queries

Query Type SQL Equivalent
1: Single version scan:
find all tuples in relation
R in version v01

SELECT * FROM R
WHERE R.Version = ‘v01’

2: Multi-version pos. diff:
positive diff relation R
between versions v01, v02

SELECT * FROM R
WHERE R.Version = ‘v01’ AND R.id
NOT IN (SELECT id from R
WHERE R.Version = ‘v02’)

3: Multi-version join:
join tuples in R in
versions v01 and v02
satisfying Name = Sam

SELECT * FROM R as R1, R as R2 WHERE
R1.Version = ‘v01’ AND R1.Name = ‘Sam’
AND R1.id = R2.id AND R2.Version = ‘v02’

4: Several version scan:
find all head versions
of relation R

SELECT * FROM R WHERE
HEAD(R.Version) = true

access control, we envision that each branch could have different access privileges for

different users.

Decibel Operational Semantics

We now describe the semantics of the core operations of the version control workflow

described above as implemented in Decibel. Although the core operations Decibel

supports are superficially similar to operations supported by systems like git, they

differ in several ways, including: i) Decibel supports centralized modifications to the

data and needs to support both version control commands as well as data definition

and manipulation commands; ii) unlike git-like systems that adopt an ordered, line-

by-line semantics, Decibel treats a dataset as an unordered collection of records,

where records are identified by primary keys; as a result, many operations take on

different semantics (as described below); iii) unlike git-like systems that support a

restricted, finite set of multi-version operations (specifically, those that have hard-

coded implementations within these systems, e.g., blame, status, diff, grep), Decibel

can support arbitrary declarative queries comparing multiple versions, enabling a class

of operations that are very difficult in systems like git. We describe operations in

the context of Figure 2-2(a).

Users interact with Decibel by opening a connection to the Decibel server, which

creates a session. A session captures the user’s state, i.e., the commit (or the branch)

that the operations the user issues will read or modify. Concurrent transactions by

multiple users on the same version (but different sessions) are isolated from each

26

other through two-phase locking. Decibel also naturally supports optimistic concur-

rency control through branching and merging mechanisms (as discussed below). In

future work, we further plan to understand the interplay between the two different

mechanisms for optimistic concurrency control.

Init: The repository is initialized, i.e., the first version (Version A in the figure) is

created, using a special init transaction that creates the two tables as well as populates

them with initial data (if needed). At this point, there is only a single Master branch

with a single version in it (which is also its head).

Commit and Checkout: Commits create new versions of datasets, adding an extra

node to one of the existing branches in the version graph. Suppose a user increments

the values of the second column by one for each record in relation R, then commits

the change as Version B on the Master branch. This commit in Decibel creates a new

logical snapshot of the table, and the second version in the master branch. Version

B then becomes the new head of the Master branch. Any version (commit) on any

branch may be checked out, which simply modifies the user’s current session state

to point to that version. Different users may read versions concurrently without

interference. For example, after making a commit corresponding to Version B, any

other user could check out Version A and thereby revert the state of the dataset back

to that state within their own session. Versions also serve as logical checkpoints for

branching operations as described below.

In Decibel, every modification conceptually results in a new version. In update-

heavy environments, this could result in a large number of versions, most of which

are unlikely to be of interest to the users as logical snapshots. Hence, rather than

creating a new version that the user can check out after every update (which would

add overhead as Decibel needs to maintain some metadata for each version that can be

checked out), we allow users to designate some of these versions as being interesting,

by explicitly issuing commits. This is standard practice in source code version control

systems like git and svn. Only such committed versions can be checked out. Updates

made as a part of a commit are issued as a part of a single transaction, such that

they become atomically visible at the time the commit is made, and are rolled back

27

if the client crashes or disconnects before committing. Commits are not allowed to

non-head versions of branches, but a new branch can be made from any commit.

Concurrent commits to a branch are prevented via the use of two-phase locking.

Branch: A new branch can be created based off of any version within any existing

branch in the version graph using the branch command. Consider the two versions

A and B in Figure 2-2(a); a user can create a new branch, Branch 1 (giving it a

name of their choice) based off of Version A of the master branch. After the branch,

suppose a new record is added to relation S and the change is committed as Version

C on Branch 1. Version C is now the head of Branch 1, and Branch 1’s lineage or

ancestry consists of Version C and Version A. Modifications made to Branch 1 are not

visible to any ancestor or sibling branches, but will be visible to any later descendant

branches. The new branch therefore starts a new line of development starting from

Version C.

Merge: At certain points, we may merge two branches into a single branch, e.g.,

master and Branch 2 in Figure 2-2(b). The head commits in both branches (i.e.,

Versions D and E) are merged to create a new version (F). The merge operation

needs to specify whether the merged version should be made the head of either or

both of the branches, or whether a new branch should be created as a result of the

operation (in the example, Version F is made the new head of the master branch).

Decibel supports any user specified conflict resolution policy to merge changes when

the same record or records have a field that changed across the branches that are

being merged; by default in our initial implementation, non-overlapping field updates

are auto-merged and for conflicting field updates, one branch is given precedence and

is the authoritative version for each conflicting field (this is specified as part of the

merge command).

The semantics of conflicts are different than those of a software version control

system, where conflicts are at the text-line level within a file, which is similar to

detecting tuple level conflicts. Decibel tracks conflicts at the field level. Specifically,

two records in Decibel are said to conflict if they (a) have the same primary key and

(b) different field values. Additionally, a record that was deleted in one version and

28

modified in the other will generate a conflict. Exploring conflict models and UI’s for

conflict resolution are rich research areas we plan to explore.

Difference: The operation diff is used to compare two dataset versions. Given

versions 𝐴 and 𝐵, diff will materialize two temporary tables: one representing the

“positive difference” from 𝐴 to 𝐵 — the set of records in 𝐵 but not in 𝐴, and one

representing the “negative difference” — the records in 𝐵 but not in 𝐴.

Complete Version Graph Description: Now that the core operations of Decibel

have been described, the version graph is formally defined as follows:

∙ Branch operations result in a create commit and there is a directed edge from

the head commit of the parent branch at the time of a branch to the creation

(first commit) on the newly created branch.

∙ Commit operations move the head commit on a branch. There is a directed

edge from the old head commit of the branch to the new head commit.

∙ Merge operations involve two branches, where the contents of the second branch

(the secondary) are merged into the first branch (the primary). Merging results

in a merge commit (new head commit on the primary) on the primary branch

(from which another branch can be created). There is a directed edge from

the head commit of the secondary to the merge commit in the primary. This

edge is needed to properly track previous merges and move the lowest common

ancestor commit between the two branches so that subsequent merges between

the two branches do not merge previously merged data.

Merging and Conflict Model Discussion: Decibel supports both two-way and

three-way merges. Two-way merges involve comparing the two branches in their

entirety, ignoring common ancestry. This will generate a superfluous number of con-

flicts, especially between the commonly inherited data, but a user may wish to employ

such a strategy because conflict resolution can boil down record level acceptance of

conflicts from one branch (the primary) and simply incorporating the newly inserted

data from the other branch (the secondary). This merge procedure is also easy to

29

implement and does not require explicit version graph tracking. A three-way merge

procedure is more sophisticated and enables field level conflict resolution. This in-

volves finding the lowest common ancestor (lca) commit of the current head commits

of the two branches being merged. Then by looking at the lca and two head commits

Decibel can determine for each conflicting record which fields have been modified

since the two branches diverged based on the contents of the (lca) record and then

merge the 3 record appropriately. Decibel adopts a precedence model whereby if there

is a conflicting field change the primary’s version of the field is taken in the merged

record. This is probably the more desirable merge procedure, but is significantly more

complex to implement.

Decibel currently adopts the following conflict semantics based on the changes in each

branch. Some conflicts are considered auto-resolvable (non-conflicts). These include

the set of records that were update/deleted in one parent but were not modified in

the other branch from the point at which the branches diverged, the lca commit.

These are resolved by the simply incorporating the changes into the primary branch,

there is no explicit need to explicitly invoke a conflict resolution strategy. The other

class of conflicts are merge procedure resolvable (true conflicts) where the record was

changed in a particular way in both branches. They are called merge procedure

resolvable because the conflict could be handed to a user program (custom merge

procedure/conflict handler) for resolution, but Decibel attempts to auto-resolve these

conflicts using a precedence based merge model whereby the primary’s changes are

taken over the secondary’s. There are several types of these conflicts:

∙ Update/Delete: A record was updated in the primary and deleted in the sec-

ondary. Decibel handles this by taking the update from the primary.

∙ Delete/Update: A record was deleted in the primary and updated in the sec-

ondary. Decibel handles this by taking the delete from the primary.

∙ Update/Update: A record was updated in both the primary and secondary.

Decibel handles this by performing the three-way merge of the lca commit ver-

sion and the head commit versions of the primary and secondary as follows:

30

For every field 𝑗 if the primary’s 𝑗-th field matches the lca’s 𝑗-th field then the

secondary’s 𝑗-th field is taken in the merge otherwise the primary’s 𝑗-th field is

taken (since it has precedence).

∙ Insert/Insert: Two different records with the same primary key that was not

in the common ancestry were inserted into the two branches being merged.

Decibel handles this by taking the primary’s record.

Performing a three-way merge requires 3 different versions of a record for each conflict

that are most likely not located on the same page and so to prevent an exorbitant

amount of random I/O another approach is required. In our experiments, most

conflict sizes are only a few GB so it is reasonable to just buffer the conflicts in

memory as they are detected (e.g. scan the lca commit and two head commits and just

buffer the conflicting records, note that only the conflicting records in each commit

will be scanned). For large conflict sizes, however, it may be necessary to write out

the conflicts from each commit into separate files (e.g. the lca commit’s versions of

the conflicting record are written into file 1 and the primary’s head commit’s versions

of the conflicting records are written into file 2). Then each of these files are sorted

by primary key and the conflicts are read from these files.

Also, note that in some cases a version graph can contain more than one lca commit

for the two branches being merged, and it still remains to be investigated how to

handle this. From our research git would just use one. However, this particular

scenario did not occur in our experiments.

2.2.3 Versioned Query Language Overview

Decibel supports a versioning query language, termed VQuel, which was formally de-

fined in our previous TaPP paper [20]. Some of the queries supported by Decibel and

evaluated as part of our benchmark, described subsequently, are listed in Table 2.1.

We omit the VQuel syntax and only provide the equivalent SQL queries. (Nothing

we describe in the paper is tied to the choice of language.) These queries span a range

of functionality, ranging from Query #2, which does a positive diff between versions

31

v01 and v02 of relation R, i.e., finding all tuples in v01 but not in v02, to Query #4,

which finds all versions at the head of branches, using a special function HEAD. For

the corresponding VQuel queries see [57].

VQuel draws from classical query languages Quel [81] and GEM [?], none of which

had a versioning/temporal component, and adds versioning-specific features. Exam-

ples of queries in VQuel and their corresponding queries in a variant of SQL are

provided in Table 2.1, while a complete specification can be found in [20]. Note that

we are not advocating the use of VQuel as the only possible versioning query language;

as our table itself indicates, a variant of SQL itself could be a an alternative.

VQuel supports a range of functionality aimed at manipulating and querying

across a range of versions. Consider the rows of Table 2.1. VQuel includes basic

branching and merging operations (as described in the previous section). To “iterate”

over objects (versions, relations, branches), VQuel introduces the range command;

the retrieve command specifies the attributes that are part of the output (akin to

a SELECT in SQL), and the where command plays an identical role to the WHERE in

a SQL statement. To illustrate, consider Query #2, aimed at performing a positive

diff between versions v01 and v02 of relation R, i.e., finding all tuples in v01 not

present in v02. The VQuel query sets up an iterator E1 to loop over all the tuples of

relation R of version v01, and outputs all the attributes of these tuples, while verifying

that E1.id is not present in the set of ids output by a nested VQuel statement that

captures the ids present in the tuples of relation R of version v02. The corresponding

SQL is self-explanatory, where the version is treated as “just another attribute” of the

relation R. As yet another example, consider Query #4, which retrieves all the tuples

in all the “head” versions that satisfy some predicate, i.e., the versions that are the

latest commits across all the branches. Each record reported is annotated with the

set of versions that contain that record. Verifying if a version is a head version or not

is done using the HEAD() function. The queries listed in Table 2.1 capture a range

of functionality from scanning a single version, to comparing or joining a couple of

versions, to scanning all the versions that satisfy certain conditions.

32

2.3 Physical Representations

In this section, we explore several alternative physical representations of our versioned

data store. We begin by presenting two intuitive representations, the tuple-first and

version-first models. The tuple-first model stores all records together, and uses an

index to identify the branches a tuple is active in, whereas the version-first model

stores all modifications made to each branch in a separate heap file, affording efficient

examination of records in a single version. The tuple-first model outperforms on

queries that compare across versions, while the version-first model underperforms

for such queries; conversely, version-first outperforms for queries targeting a single

version, while tuple-first underperforms. Finally, we present a hybrid storage model

which bridges these approaches to offer the best of both. We now describe each of

these implementations and how the core versioning functionality is implemented in

each. Note that we depend on a version graph recording the relationships between

the versions being available in memory in all approaches (this graph is updated and

persisted on disk as a part of each branch or commit operation). As discussed earlier,

we also assume that each record has a unique primary key.

2.3.1 Overview

Our first approach, called tuple-first, stores tuples from all branches together in a

single shared heap file. Although it might seem that the branch a tuple is active

in could be encoded into a single value stored with the tuple, since tuples can be

active in multiple branches, a single value insufficient. Instead, we employ a bitmap

as our indexing structure to track which branch(es) each tuple belongs to. Bitmaps

are space-efficient and can be quickly intersected for multi-branch operations.

There are two ways to implement tuple-first bitmaps, tuple-oriented or branch-

oriented. In a tuple-oriented bitmap, we store 𝑇 bitmaps, one per tuple, where

the 𝑖th bit of bitmap 𝑇𝑗 indicates whether tuple 𝑗 is active in branch 𝑖. Since we

assume that the number of records in a branch will greatly outnumber the number of

branches, all rows (one for each tuple) in a tuple-oriented bitmap are stored together

33

ID	
 |	
 A&r	
 1|A&r	
 2|A&r	
 3|A&r	
 4|A&r	
 5	
 	
 ID	
 	
 	
 |Brc	
 A|Brc	
 B|Brc	
 C|Brc	
 D|Brc	
 E	

1	

2	

3	

4	

5	

3	

1	

3	

4	

5	

3	

2

Figure 2-3: Example of Tuple-First

in a single block of memory. In branch-oriented bitmaps, we store 𝐵 bitmaps, one per

branch, where the 𝑖th bit of bitmap 𝐵𝑗 indicates whether tuple 𝑖 is active in branch

𝑗. Unlike in the tuple-oriented bitmap, since we expect comparatively few branches,

each branch’s bitmap is stored separately in its own block of memory in order to

avoid the issue of needing to expand the entire bitmap when a single branch’s bitmap

overflows. Throughout this section, we describe any considerable implementation

differences between the two where appropriate.

Figure 2-3 demonstrates the tuple-first approach with a set of tuples in a single

heap file accompanied by a bitmap index indicating which tuples belong to one or

more branches 𝐴−𝐸. While tuple-first gives good performance for queries that scan

multiple branches or that ask which branches some set of tuples are active in (for

either tuple-oriented or branch-oriented variations), the performance of single branch

scans can be poor as tuples in any branch may be fragmented across the shared heap

file.

An alternative representation is the version-first approach. This approach stores

modifications to each branch in a separate segment file for that branch. Each new child

branch creates a new file with a pointer to the branch point in the ancestor’s segment

file; a collection of such segment files constitutes the full lineage for a branch. Any

modifications to the new child branch are made in its own segment file. Modifications

made to the ancestor branch will appear after the branch point in the ancestor’s

segment file to ensure this modification is not visible to any child branch. Ancestor

files store tuples that may or may not be live in a child branch, depending on whether

they been overwritten by a descendent branch. Figure 2-4 shows how each segment

34

ID	
 |	
 A&r	
 1|A&r	
 2|A&r	
 3|A&r	
 4|A&r	
 5	

ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	
 ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	

ID	
 |	
 A&r	
 1|A&r	
 2|A&r	
 3|A&r	
 4|A&r	
 5	

ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	

Branch	
 A	
 :	
 File	
 01	

Branch	
 C	
 :	
 File	
 03	
 Branch	
 B	
 :	
 File	
 02	
 Branch	
 E	
 :	
 File	
 05	

Branch	
 D	
 :	
 File	
 04	

Branch	
 point	
 Added	
 a/er	

branch	

3	
 2	

1	

6	

13	
 12	
 2

8
9

4	

3	

11	

14	

7	

Figure 2-4: Example of Version-First (depicts branches resulting from merges, but
could be commits)

file stores tuples for its branch. This representation works well for single branch scans

as data from a single branch is clustered within a lineage chain without interleaving

data across multiple branches, but is inefficient when comparing several branches

(e.g., diff), as complete scans of branches must be performed (as opposed to tuple-

first, which can perform such operations efficiently using bitmaps.)

The third representation we consider is a hybrid of version- and tuple-first that

leverages the improved data locality of version-first while inheriting the multi-branch

scan performance of tuple-first. In hybrid, data is stored in fragmented files as in

version-first. Unlike version-first, however, hybrid applies a bitmap index onto the

versioned structure as a whole by maintaining local bitmap indexes for each of the

fragmented heap files as well as a single, global bitmap index which maps versions to

the segment files which contain data live in that version. The local bitmap index of a

segment tracks the versions whose bits are set for that segment in the global bitmap

index, indicating the segment contains records live in that version. This is distinct

from tuple-first which must encode membership for every branch and every tuple in

a single bitmap index. Figure 2-5 shows how each segment has an associated bitmap

index indicating the descendent branches for which a tuple is active. We omit the

index for single version segments for clarity.

35

ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	

ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	
 ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	

ID	
 |	
 A&r	
 1|A&r	
 2|A&r	
 3|A&r	
 4|A&r	
 5	

ID|	
 A&r1|A&r2|A&r3|A&r4|A&r5	

Branch	
 A	
 :	
 File	
 01	

Branch	
 C	
 :	
 File	
 03	
 Branch	
 B	
 :	
 File	
 02	
 Branch	
 E	
 :	
 File	
 05	

Branch	
 D	
 :	
 File	
 04	

Added	
 a&er	

branch	

3	
 2	

1	

6	

13	
 12	
 2

8
9

4	

3	

11	

14	

7	

	
 ID|Brc	
 A|Brc	
 B|Brc	
 C|Brc	
 D|Brc	
 E	

Segment	
 Index	

1	

2	

3	

7	

File|Brc	
 A|Brc	
 B|Brc	
 C|Brc	
 D|Brc	
 E	

Branch-­‐Segment	
 Bitmap	

1	

2	

3	

4	

5	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 ID	
 	
 |	
 Brc	
 C	
 |	
 Brc	
 D	

Segment	
 Index	

4
3	

	
 	
 	
 ID	
 |	
 Brc	
 B	
 |	
 Brc	
 D	

Segment	
 Index	

2	
 8	
 9

Figure 2-5: Example of Hybrid

Our discussion focuses on how we minimized the number of repeated accesses to

data in our implementation of these schemes.

2.3.2 Tuple-First Storage

Tuple-first stores tuples from different branches within a single shared heap file. Recall

that this approach relies on a bitmap index with one bit per branch per tuple to

annotate the branches a tuple is active in.

Branch: A branch operation clones the state of the parent branch’s bitmap and

adds it to the index as the initial state of the child branch. A simple memory copy

of the parent branch’s bitmap can be performed. With a branch-oriented bitmap,

this memory copy is straightforward; in tuple-oriented, however, the entire bitmap

may need to be expanded (and copied) once a certain threshold of branches has been

passed. This can be done via simple growth doubling, amortizing the branching cost.

Commit: A commit on a branch in tuple-first stores a copy of the bits representing

the state of that branch at commit time. Since we assume that operations on histori-

cal commits will be less frequent that those on the head of a branch, we keep historical

commit data out of the bitmap index, instead storing this information in separate,

compressed commit history files for each branch. This file is encoded using a combina-

36

tion of delta and run length encoding (RLE) compression. When a commit is made,

the delta from the prior commit (computed by doing an XOR of the two bitmaps) is

RLE compressed and written to the end of the file. To checkout a commit (version),

we deserialize all commit deltas linearly up to the commit of interest, performing an

XOR on each of them in sequence to recreate the commit. To speed retrieval, we

aggregate runs of deltas together into a higher âĂĲlayerâĂİ of composite deltas so

that the total number of chained deltas is reduced, at the cost of some extra space.

There could potentially be several such layers, but our implementation uses only two

as checkout performance was found to be adequate (taking a few hundred ms).

Data Modification: When a new record is added to a branch, a set bit is added to

the bitmap indicating the presence of the new record. When a record is updated in

a branch, the index bit of the previous version of the record is unset in that branch’s

bitmap to show that the record is no longer active; as with inserts, we also set the

index bit for the new, updated copy of the record inserted at the end of the heap file.

Similarly, deletes are performed by updating the bitmap index to indicate that this

record is not active in the branch. Because commits result in snapshots of bitmaps

being taken, deleted and updated records will still be visible when reading historical

commits; as such, old records cannot be removed entirely from the system. To support

efficient updates and deletes, we store a primary-key index indicating the most recent

version of each primary key in each branch.

Tuple-oriented requires only that the new “row” in the bitmap for the inserted

tuple be appended to the bitmap. However, in a branch-oriented bitmap, the backing

array of the bitmap may occasionally need to be expanded via a doubling technique.

Since each logical column of the bitmap is stored independently, overwriting the

bounds of an existing branch’s bitmap effectively requires only that logical column

be expanded, not the bitmap as a whole.

Single-branch Scan: Often queries will only involve data for a single branch. To

read all tuples in a branch in tuple-first, Decibel emits all records whose bit is set

in that branch’s bitmap. When the bitmap is branch-oriented, these bits are co-

located in a single bitmap; in tuple-oriented bitmaps, the bits for a given branch are

37

spread across the bitmaps for each tuple. As such, resolving which tuples are live

in a branch is much faster with a branch-oriented bitmap than with a tuple-oriented

bitmap because in the latter case the entire bitmap must be scanned.

Multi-branch Scan: Queries that operate on multiple branches (e.g., select records

in branch A and B, or in A but not B) first perform some logical operation on

the bitmap index to extract a result set of records relevant to the query. Tuple-first

enables shared computation in this situation as a multi-branch query can quickly emit

which branches contain any tuple without needing to resolve deltas; this is naturally

most efficient with a tuple-oriented bitmap. For example, if a query is calculating an

average of some value per branch, the query executor makes a single pass on the heap

file, emitting each tuple annotated with the branches it is active in.

Diff: Recall that diff(A,B) emits two iterators, indicating the modified records in A

and B, respectively. Diff is straightforward to compute in tuple-first: we simply XOR

bitmaps together and emit records on the appropriate output iterator.

Merge: To merge two branches in tuple-first, records that are in conflict between the

merged branches are identified. If a tuple is active in both branches, then the new

child branch will inherit this tuple. The same is true if the tuple is inactive in both of

these branches. Otherwise, if a tuple is active in at least one, but not all of the parent

branches, then we must check to see if this is a new record (i.e., no conflict), whether

it was updated in one branch but not the other (again, no conflict), the fields updated

in the branches do not overlap (no conflict), or if overlapping fields are modified in

multiple branches (in which case there is a conflict).

At the start of the merge process, the lca commit is restored and a comparison

of that bitmap column with the columns of the branches being merged (their head

commits) can identify the tuples differing in each branch from the lca and the lca

records that were updated in both branches. If a row in the bitmap is encountered

where the lca commit is a 1 but both branches have a 0 in the same location, then

it is known that the record has been updated in both branches, a conflict. Similarly,

if the lca bit is 0 and either of other branch’s bits are 1 then this reflects a record

38

added after the lca. Using the bitmap this way reduces the amount of data that needs

to be scanned from the lca when detecting and resolving conflicts. To find conflicts,

we create two hash tables, one for each branch being merged. These tables contain

the keys of records that occur in one branch but not the other; we join them as we

scan, performing a pipelined hash join to identify keys modified in both branches.

Specifically, we perform a diff to find modified records in each branch. However, the

diff is modified such that records that were inherited from the lca by one branch and

updated in the other are excluded, specifically, rows where the lca was 1 and only

one branch had a 1 in the same location (e.g. 1,1,0). These types of differences

would normally be reported by the diff operator but they represent conflicts that

Decibel can automatically resolve using the bitmap since the inherited record was

only updated in one branch. For the purposes of conflict resolution we are only

interested in rows where the lca bit is 0, but one of the branches being merged have

the corresponding bit set (e.g. 0,0,1 or 0,1,0). These represent possible places where

conflicting inserts/updates may have occurred (e.g. an update to a lca, a previously

detected (1,0,0). Such rows need to be calculated per parent and can be done by

XORing the lca commit column with one parent’s head commit followed by an AND

with the same parent’s head commit (e.g. (lca XOR primary) AND primary. For

each record, we check to see if its key exists in the other branch’s table. If it does,

the record with this key has been modified in both branches and must be checked

for conflict. To do so, we find the common ancestor tuple and do a three-way merge

to identify if overlapping fields have been updated through field level comparisons.

If the record is not in the other branch’s table, we add it to the hash table for its

branch. Conflicts can be sent to the user for resolution, or the user may specify that

a given branch should take precedence (e.g., keep conflicting field values from A.) In

this paper, we don’t investigate conflict resolution policies in detail, and instead use

precedence.

More Conflict Scenarios Detected Using Bitmaps

Without loss of generality assume branch C is being merged into branch B and the

following notation is used to identify scenarios when comparing the head commit

39

bitmap columns of B and C to the lca commit bitmap column for a particular row

(that corresponds to a record): (lca bit, B’s head bit, C’s head bit). We have the

following scenarios:

∙ (1,1,1): This record was inherited from the lca and is still present in the heads

of both parents. No bits need to be flipped.

∙ (1,0,1): This is corresponds auto-resolvable (non-conflict) update/delete from

B, the lca record is still present in the head of C. If it is an update it is followed

by a record with a (0,1,0) row somewhere later in the bitmap. Since we are

merging C in B no bits need to be flipped in this row either since B’s 0 is

already there.

∙ (1,1,0): This is an auto-resolvable (non-conflict) update/delete from C, the lca

record is still present in the head of B. If it is an update it is followed by a record

with a (0,0,1) row somewhere later in the bitmap. We need to flip B’s 1 to a 0

since this inherited record was either deleted or updated by C.

∙ Note: (0,1,1) is impossible since two two heads are being compared to the lca

commit (the point where they were last synced).

2.3.3 Version-First Storage

In version-first, each branch is represented by a head segment file storing local mod-

ifications to that branch along with a chain of parent head segment files from which

it inherits records.

Branch: When a branch is created from an existing branch, we locate the current

end of the parent segment file (via a byte offset) and create a branch point. A new

child segment file is created that notes the parent file and the offset of this branch

point. By recording offsets in this way, any tuples that appear in the parent segment

after the branch point are isolated and not a part of the child branch. Any new

tuples, or tuple modifications made in the child segment and are also isolated from

the parent segment.

40

Commit: Version-first supports commits by mapping a commit ID to the byte offset

of the latest record that is active in the committing branch’s segment file. The

mapping from commit IDs to offsets are stored in an external structure.

Data Modification: Tuple inserts and updates are appended to the end of the

segment file for the updated branch. Updates are performed by inserting a new

copy of the tuple with the same primary key and updated fields; branch scans will

ignore the earlier copy of the tuple. Since there is no an explicit index structure to

indicate branch containment for a record and since a branch cannot delete a record for

historical reasons, deletes require a tombstone. Specifically, when a tuple is deleted,

we insert a special record with a deleted header bit to indicate the key of the record

that was deleted and when it was deleted.

Single-branch Scan: To perform branch scans, Decibel must report the records

that are active in the branch being scanned, ignoring inserts, updates, and deletes

in ancestor branches after the branch points in each ancestor. Note that the scanner

cannot blindly emit records from ancestor segment files, as records that are modified

in a child branch will result in two copies of the tuple: an old record from the ancestor

segment (that is still active in the ancestor branch and any prior commit) and the

updated record in the child segment. Therefore, the version-first scanner must be

efficient in how it reads records as it traverses the ancestor files.

The presence of merges complicates how we perform a branch scan, so we first

explain a scan with no merges in the version graph. Here, a branch has a simple

linear ancestry of segment files back to the root of the segment tree. Thus, we can

scan the segments in reverse order, ignoring records already seen, as those records

have been overwritten or deleted by ancestor branch. Decibel uses an in-memory set

to track emitted tuples. For example, in Figure 2-4 to scan branch D request that

the segment for D be scanned first, followed by C, and lastly A up to the branch

point. Each time we scan a record, that record is output (unless it is a delete) and

added to the emitted tuple list (note that deleted records also need to be added to

this emitted list). While this approach is simple, it does result in a higher memory

usage to manage the in-memory set. Although memory usage is not prohibitive, were

41

it to become an issue, it is possible to write these sets for each segment file to disk,

and the use external sort and merge to compute record/segment-file pairs that should

appear in the output. Merges require that the segments are scanned in a manner that

resolves according to some conflict resolution policy, which is likely user driven. For

example, on D the scan order could be 𝐷 −𝐵 − 𝐴− 𝐶 or 𝐷 −𝐵 − 𝐶 − 𝐴.

Scanning a commit (rather than the head of a branch) works similarly, but instead

of reading to the end of a segment file, the scanner starts at the commit point.

Decibel scans backwards to ensure more recently updated tuples will not be over-

written by a tuple with the same primary key from earlier in the ancestry. By doing

so, we allow pipelining of this iterator as we know an emitted record will never be

overwritten. However, reading segment files in reverse order leads to performance

penalties as the OS cannot leverage sequential scans and pre-fetching. Our imple-

mentation seeks to lay out files in reverse order to offset this effect, but we omit

details due to space reasons.

Merges result in a segment files with multiple parent files. As a result, a given

segment file can appear in multiple ancestor paths (e.g., if both parents branched off

the same root). So that we do not scan the same file multiple times, version-first

scans the version tree to determine the order in which it should read segment files.

The complexities are described next, but it generally requires multiple passes over

the data relevant to the branch to reconstruct the current state of that branch even

for single branch scans.

Multi-branch Scan: The single branch scanner is efficient in that it scans every

heap file in the lineage of the branch being scanned only once. The multi-branch case

is more complex because each branch may have an ancestry unique to the branch or

it may share some common ancestry with other branches being scanned. The unique

part will only ever be scanned once. For the common part, a naive version-first multi-

branch scanner would simply run the single branch scanner once per branch, but this

could involve scanning the common ancestry multiple times.

A simple scheme that works in the absence of merges in the version graph is to

topologically sort segment files in reverse order, such that segments are visited only

42

Figure 2-6: Example of merge scenario that requires Version-First to make 2 passes

when all of their children have been scanned. The system then scans segments in this

order, maintaining the same data for each branch being scanned as in single-version.

This ensures that tuples that were overwritten in any child branch will have been

seen when the parent is scanned.

Unfortunately, with merges the situation is not as simple, because two branches

being scanned may need to traverse the same parents in different orders (e.g., branch

C with parents A and B where B takes precedence over A, and D with parents A and

B where A takes precedence over B). Difficulties also arise even in the single branch

scan case since merges may have occurred in a branch’s ancestry. See Figure 2-6, to

reconstruct the head of C, VF would have to revisit File 01 and so would perform

more random I/O which may become prohibitive as the complexity and number of

merges up the ancestry increases. In this case, we do two passes over the segment

files in the pertinent branches. In the first pass, we build in-memory hash tables

that contain primary keys and segment file/offset pairs for each record in any of the

branches being scanned. To construct these final hash tables, multiple intermediate

hash tables are created, one for each portion of each segment file contained with any

43

of the branches that is scanned. Each hash table is built by scanning the segment

from the branch point backwards to the start of the next relevant branch point (so

if two branches, A and B both are taken from a segment S, with A happening before

B, there will be two such hash tables for S, one for the data from B’s branch point

to A’s branch point, and one from A to the start of the file.) This can be thought

of as building commit change logs. Also, note that the order in which the segments

are scanned does not matter since the hash tables will be combined in-memory, but

it is imperative that every relevant segment (e.g. in the union of the ancestries of

all the branches to be scanned) be scanned starting at the latest relevant commit

in that segment so as to construct all of the commit hash tables for that segment

in one pass. Then, for each branch, these in-memory tables can be scanned from

leaf-to-root (called the linearized ancestry) and takes into account merge precedence

for combining data from two merged branches to determine the records that need

to be output on each branch, just as in the single-branch scan. Alternatively, the

final per branch hash tables can be built by reversing the linearized ancestry and

incorporating the changes from the intermediate hash tables (commit change logs) in

order.These output records are added to an output priority queue (sorted in record-id

order), where each key has a bitmap indicating the branches it belongs to. Finally,

the second pass over the segment files emits these records on the appropriate branch

iterators. Since commits are branch points without the added segment file, the multi-

branch scanner also supports scanning arbitrary commits.

A crucial facet to understand is that the ancestry linearization is non-trivial.

Initially, it requires creating a new graph called the precedence scan ordering (PSO)

graph from the version graph. The PSO graph is formed by first reversing all of

the edges in the version graph (to generate a scan path from leaf to root) and then

adding additional directed edges based on the conflict model. For instance, to support

the three-way merge semantics with precedence based conflict resolution„ for every

commit that is reachable from the leaf commit of the branch to be reconstructed

(which can be found using a simple breadth-first search) and has two parents (is a

merge) a precedence edge needs to be added from the first commit in the divergence of

44

the primary branch from the lca commit to the head commit in the secondary. Adding

this edge requires that the primary parent’s commits its divergence from the lca are are

processed before the secondary’s (thus handling the delete/update and update/delete

conflicts). Now to linearize the ancestry of the leaf commit to reconstruct involves a

topological sort of the PSO graph .

Diff: Diff in version-first is straightforward, as the records that are different are

exactly those that appear in the segment files after the lowest common ancestor

version. Suppose two branches 𝐵1 and 𝐵2 branched from some commit 𝐶 in segment

file 𝐹𝐶 ; creating two segment files 𝐹1 and 𝐹2. Their difference is all of the records

that appear 𝐹1 and 𝐹2. If 𝐵1 branched from some commit 𝐶1 and 𝐵2 branched from

a later commit 𝐶2, then the difference is the contents of 𝐹1 and 𝐹2, plus the records

in 𝐹𝐶 between 𝐶1 and 𝐶2.

However, if an update or deleted occurred only in one branch after diverging from

the lowest common ancestor, it is necessary to scan part of the common ancestry to

retrieve the old version of the record present in the other branch, which can be done

in a hash join fashion, for brevity we omit the details.

Merge: By default, merging involves creating a new branch, a new child segment,

and branch points within each parent. In a simple precedence based model, where all

the conflicting records from exactly one parent are taken and the conflicting records

from the other are discarded, all that is required is to record the priority of parent

branches so that future scans can visit the segments in the appropriate order, with

no explicit scan required to identify conflicts. To allow the user to manually resolve

conflicts or to use field level conflicts, we need to identify records modified in both

branches from their lowest common ancestor. The approach uses the general multi-

branch scanner (that can also scan specific commits) to collectively scan the head

commits of the branches being merged and the lowest common ancestor commit. A

scan of the lowest common ancestor commit is required for a field level merge of

records that were updated in both branches.

We materialize the primary keys and segment file/offset pairs of the records in

all three commits into in-memory hash tables, inserting every key. We perform a

45

comparison on these hash tables to determine where the conflicts are. For instance,

if a key exists both the lca’s table and the primary parent’s table, but the offsets

are different then we know the record was updated in the primary. As in tuple-

first, a value-based three-way diff is used to detect which fields have been updated.

The resultant record is inserted into the new head segment, which must be scanned

before either of its parents. This handles the update/update conflicts and resolving the

other types of conflicts are resolved by the multi-branch scanner when it reconstructs

the branch by using the linearized ancestry and incorporating the changes from the

primary parent’s segments such that they take precedence over the secondary parent’s

by combining the intermediate hash tables in the correct order.

2.3.4 Hybrid Storage

Hybrid combines the two storage models presented above to obtain the benefits of

both. It operates by managing a collection of segments, each consisting of a single

heap file (as in version-first) accompanied by a bitmap-based segment index (as in

tuple-first). As described in Section 2.3.1, hybrid uses a collection of smaller bitmaps,

one local to each segment. Each local bitmap index tracks only the set of branches

which inherit records contained in that segment; this contrasts with the tuple-first

model which stores liveness information for all records and all branches within a single

bitmap. Additionally, a single branch-segment bitmap, external to all segments, relates

a branch to the segments that contain at least one record alive in the branch. Bit-wise

operations on this bitmap yield the set of segments containing records in any logical

aggregate of branches. For example, to find the set of records represented in either of

two branches, one need only consult the segments identified by the logical OR of the

rows for those branches within this bitmap. This enables a scanner to skip segments

with no active records and allows for parallelization of segment scanning.

As in the version-first scheme, this structure naturally co-locates records with

common ancestry, but with the advantage that the bitmaps make it possible to effi-

ciently perform operations across multiple branches (such as differences and unions)

efficiently, as in the tuple-first scheme.

46

In hybrid, there exist two classes of segments: head segments and internal seg-

ments. Head segments track the evolution of the “working copy” of a single branch;

fresh modifications to a branch are placed into that branch’s head segment. Head

segments become internal segments following a branch operation, at which point the

contents of the segment become frozen, and after which only the segment’s bitmap

may change.

We now describe the details of how specific operations are performed in hybrid.

Most operations are similar to tuple-first, but first involve locating the relevant seg-

ments for an operation on multiple branches and then applying the tuple-first proce-

dure on each of the corresponding bitmaps for those segments. For brevity we discuss

a few of the hybrid operations to give a sense of what is required for segment iden-

tification and modifying segment bitmaps, the other operations logically follow and

can be found in [57].

Branch: The branch operation creates two new head segments that point to the

prior parent head segment: one for the parent and one for the new child branch.

The old head of the parent becomes an internal segment that contains records in

both branches (note that its bitmap is expanded). These two new head segments

are added as columns to the branch-segment bitmap, initially marked as present for

only a single branch, while a new row is created for the new child branch (creation

of the new head segments could, in principle, be delayed until a record is inserted or

modified.) As in tuple-first, the creation of a new branch requires that all records

live in the direct ancestor branch be marked as live in a new bitmap column for the

branch being created. Unlike tuple-first, however, a branch in hybrid instead requires

a bitmap scan be performed only for those records in the direct ancestry instead of

on the entire bitmap.

Single-branch Scan: Single branch scans check the branch-segment index to iden-

tify the segments that need to be read for a branch. Thus, as in tuple-first, a segment

read filters tuples based on the segment index to only include tuples that are active

for the given branch. Due to the branch-segment index, the segments do not need to

be scanned in a particular order.

47

Merge: Merging is again similar to the tuple-first model except that the operation is

localized to a particular set of segments containing records in the branches involved

in the merge operation. As in tuple-first, the segment bitmaps can be leveraged (also

requiring the lowest common ancestor commit) to determine where the conflicts are

within the segment, the only difference now is identifying the new segments from

the second parent that must track records for the branch it is being merged into. A

conflict is output for records which have overlapping fields modified in at least one

of the branches being merged. The original copies of these records in the common

ancestry are then scanned to obtain their primary keys and thus the record identifiers

of the updated copies within each branch being merged. A three-way diff determines

if conflicting fields have been updated. Subsequently, any join operation may be used

once the identifiers of conflicting records have been obtained. Once conflicts have been

resolved, the records added into the child of the merge operation are marked as live

in the child’s bitmaps within its containing segments, creating new bitmaps for the

child within a segment if necessary. Though Hybrid can leverage bitmap operations

to conduct the merge more efficiently, including records from new segments breaks

the natural branch locality and so after many merges it is possible that every segment

will need to be read when reconstructing a branch.

Commit: The hybrid commit process is analogous to that of the tuple-first model

except that the bitmap column of the target branch of the commit must be snapshot-

ted within each segment containing records in that branch, as well as the branch’s

entry in the branch-segment bitmap.

Data Modification: The basic process for inserts, deletes, and updates is as in

tuple-first. Updates require that a new copy of the tuple is added to the branch’s

head segment, and that the segment with the previous copy of the record have the

corresponding segment index entry updated to reflect that the tuple in prior segment

is no longer active in this branch. If the prior record was the last active record in the

segment for the branch being modified, then the branch-segment bitmap is updated

so that the segment will not be considered in future queries on that branch.

48

Multi-branch Scan: As in tuple-first, multi-branch scans require less work than in

version-first as we can pass over each tuple once, using the segment-index to determine

how to apply the tuple for scan. However, compared with tuple-first, hybrid benefits

from scanning fewer records as only the segments that correspond to the scanned

branches need to be read.

Diff: The differencing operation is again performed similarly to the tuple-first model

except that only the set of segments containing records in the branches being differ-

enced are consulted. The storage manager first determines which segments contain

live records in either branch, then each segment is queried to return record offsets

comprising the positive and negative difference between those branches within that

segment. The overall result is an iterator over the union of the result sets across all

pertinent segments.

2.3.5 Discussion

The previous sections discussed the details of the three schemes. We now briefly

summarize the expected differences between their performance to frame the evalua-

tion, shown in Table 2.2. Tuple-first’s use of bitmaps allows it to be more efficient

at multi-branch scans, but its single heap file does poorly when records from many

versions are interleaved. Bitmap management can also be expensive. Version-first, in

contrast, co-locates tuples from a single version/branch, so does well on single-branch

scans, but because it lacks an index performs poorly on multi-version operations like

diff and multi-version scan. Hybrid essentially adds a bitmap to version-first to allow

it to get the best of both worlds.

2.4 Indexing

Indexing is a crucial function in a standard databases to speed up access of single

records or records that have an attribute in a particular range. Furthermore, indexing

is crucial for benchmarking (e.g. benchmarks such as YCSB [21]). Thus, it is crucial

for a versioned database to support the same functionality, except across versions,

49

Type Pro Con
Tuple-First Efficient Multi-Branch

Scans. Simple diffs.
Declustered stor-
age. Large bitmap
growth.

Version-First Efficient single branch
scan. Cheap branch
creation. Minimal In-
dexing. Cheap up-
dates.

Expensive scans
with merges.
Expensive multi-
branch scans.

Hybrid Good single and multi
branch scans. Smaller
indexes. Clustering.

None

Table 2.2: Summary of the Approaches

which can either commits and branches. We begin exploration of indexing with a few

sample indexed queries and then introduce the indexing algorithm and show how it

can answer these queries and queries like them.

2.4.1 Sample Range Queries

select * from R where R.version="c1" AND R.field > value

Figure 2-7: Example Single Version Range Query

Figure 2-7 is an example of a single version (commit) range query that selects all

records with field > value from a particular commit. This commit can be any commit

that exists in the system and is useful for finding relevant values from some historical

version of the dataset when examining changes of sets of records across the lineage.

select * from R where R.version="c1" OR R.version="c2" AND R.field > value

Figure 2-8: Example Cross Version Range Query

Figure 2-8 is an example of the type of cross version range query that a user may

request to the system.This query requests all records that have field > value and

exists in either version c1 or c2. This can be generalized to any logical combination

of versions.

50

2.4.2 Indexing Scheme

The goal with these indexing algorithm is to find records that satisfy a predicate (e.g.

𝑎𝑔𝑒 > 5) but only report the matching records that belong to a particular group of

commits. A naive solution would be to build a separate index on the desired field (e.g.

𝑎𝑔𝑒) per commit and then visit each index to answer the range query on each desired

commit. First, the storage overhead alone soon makes this solution prohibitive even

with a modest number of commits on a moderate size data set. Furthermore, a lot

of the data between commits is shared and so this storage overhead is somewhat

artificial. Second, performing a linear number of separate range queries is inefficient

since for this incurs numerous random page reads when conducting the index search

for disk bound indexes.

Before discussing the indexing scheme in detail, we make a few clarifications. The

proposed solution works with an index on any attribute of a record. We make the

distinction between a record’s key and its RecordId. The key is the field on which

the index is built (e.g. age). The RecordId is the record’s physical location in some

segment file (i.e. combination of segment file, offset within file, e.g. page number,

tuple number).

The solution works as follows: have a single traditional index (e.g. B-tree) store a

set of RecordIds for a particular key. These RecordIds represent where records with

that key are physically located across segments. This with the version bitmaps for

every commit is enough to answer any cross version range query that involves any

logical combination of the versions.

The query in Figure 2-7 can be answered as follows:

1) Use the index to find the sets of RecordIds with field > value. Take the union of

these sets.

2) Group these RecordIds by segment file and create an in-memory bitmap that

records the record numbers in that segment that correspond to answering the

range query. Call these sets of bitmaps RB.

51

ID | Attr 1|Attr 2|Age |Attr 4

Segment 2

ID | Attr 1|Attr 2|Age |Attr 4

Segment 1

1’ |x’ |x |4 |x |

1 |x |x |4 |x |

Index on Age Segment Files

ID | Brc B

Segment Index

ID | Brc A|Brc B

Segment Index
3 4

2 |y |y |4 |y |

Set of records with

age=4 across all versions

Bitmap for Branch

B corresponding

to Commit 2 on B

Bitmap for Branch

A corresponding

to Commit 1 on A

Select * from R where version=commit 2 on B

and age = 4 Matching Records: 1’, 2

Select * from R where version=commit 1 on A

and age = 4 Matching Records: 1

Figure 2-9: Indexing Example

3) Use the pack files to retrieve the per segment bitmaps to get the records in that

commit. Call these sets of bitmaps VB.

4) For each bitmap in RB ∩ VB (there are bitmaps for the same segment) for the

same segment perform the logical AND between the bitmap in RB and VB. Ignore

the bitmaps not in the intersection since they contain records that are not in the

specified commit or do not satisfy the range query. The remaining bitmaps contain

exactly the physical locations of all the records that are in the specified version

and satisfy the range query.

5) Sort the RecordIds such that each segment is visited once and sequentially and

report out the satisfying records.

What makes this work is that the index just stores the places where any such record

52

with the desired key could exist (the RecordIds) and then we use the bitmaps from

the desired commits to pick out the relevant records that also match the range query.

This is illustrated in Figure 2-9 where to get all the records with 𝑎𝑔𝑒 = 4 from commit

2 on branch B requires looking at the index on age to find the records in the system

where the age is 4 and the consulting the appropriate bitmaps to find the records

satisfying the range query and belong to the desired version.

The query in Figure 2-8 can be answered in a similar way except VB is constructed

by using the version bitmaps for both commits to construct the bitmaps per segment

that contains records in any logical combination of the versions (e.g. AND, OR, etc.).

This works for both primary key and secondary indexes.

Decibel’s indexing scheme leverages the version bitmaps and involves only a single

traditional index. Each update to a record involves an insert into the index; nothing is

ever removed from the index so the index grows in linearly with the number of updates.

Also, because the index tracks records with a particular key across multiple commits

and branches, obtaining records in a particular branch becomes more expensive. Thus,

it is beneficial to maintain a traditional index for each branch that only tracks the most

recent versions of records in that branch, excluding older records from prior commits.

This incurs O(branch size) overhead per branch but can dramatically speed up the

typical data operations on a single branch for users only concerned with the current

state of that branch, e.g. a user updating a record with primary key = "david".

2.5 Versioning Benchmark

To evaluate Decibel, we developed a new versioning benchmark to measure the per-

formance of our versioned storage systems on the key operations described above.

The benchmark consists of four types of queries run on a synthetic versioned dataset,

generated using one of four branching strategies. The benchmark is designed as a

single-threaded client that loads and updates data according to branching strategy,

and measures query latency. Although highly concurrent use of versioned systems is

possible, we believe that in most cases these systems will be used by collaborative

53

Master	
 1	

Master	
 2	

Master	
 4	

Master	
 3	

Master	
 1	

Ac.ve	
 1	
 Ac.ve	
 3	

Ac.ve	
 2	
 Ac.ve	
 2	

Master	
 1	

Master	
 2	

Master	
 4	

Master	
 3	

Ac.ve	
 1	

Ac.ve	
 3	

Master	
 2	

Master	
 4	

Master	
 3	

Dev	
 1	
 Fix	
 1	

Fix	
 3	

Master	
 1	

Dev	
 2	

Feature	
 1	
 Feature2	

Dev	
 2	

Feature	
 1	

Fix	
 2	

(a) (b) (c)

(d)
Figure 2-10: The various branching strategies in the versioning benchmark: a) Deep
b) Flat c) Science (Sci.) d) Curation (Cur.)

data analytics and curation teams where high levels of concurrency in a single branch

is not the norm.

2.5.1 Branching Strategies

Branches in these datasets are generated according to a branching strategy. The first

two patterns, deep and flat, are not meant to be representative of real workloads, but

instead serve as extreme cases to stress different characteristics of the storage engines.

The remaining two patterns are modeled on typical branching strategies encountered

in practice as described in Section 2.1. Figure 2-10 depicts these strategies with nodes

as commits or branches.

Deep: This is a single, linear branch chain. Each branch is created from the end of

the previous branch, and each branch has the same number of records. Here, once a

branch is created, no further records are inserted to the parent branch. Thus, inserts

54

and updates always occur in the branch that was created last. Single-version scans

are performed on the tail, while multi-branch operations select the tail in addition to

its parent or the head of the structure.

Flat: Flat is the opposite of deep. It creates many child branches from a single initial

parent. Again, each branch has the same number of records. For single-version scans,

we always select the newest branch, though this choice is arbitrary as all children are

equivalent. For multi-branch operations, we use the single common ancestor branch

plus one or more randomly-selected children.

Science: As in the data science pattern in Section 2.1, each new branch either

starts from some commit of the master branch (“mainline”), or from the head of

some existing active working branch. This is meant to model a canonical (evolving)

data set that different teams work off of. There are no merges. Each branch lives

for a fixed lifetime, after which it stops being updated and is no longer considered

active. All single-branch modifications go to either the end of an active branch or

the end of mainline. Inserts may be optionally skewed in favor of mainline. Unless

specified otherwise, single and multi-version scans select either the mainline, oldest

active branch, or youngest active branch with equal probability.

Curation: As in the data curation pattern described in Section 2.1, there is one mas-

ter data set (e.g., the current road network in OpenStreetMaps), that is on a mainline

branch. Periodically “development” branches are created from the mainline branch.

These development branches persist for a number of operations before being merged

back into the mainline branch. Moreover, short-lived “feature” or “fix” branches may

be created off the mainline or a development branch, and are eventually being merged

back into their parents. Data modifications are done randomly across the heads of

the mainline branch or any of the active development, fix, or feature branches (if

they exist). Unless specified otherwise, single or multi-version scans randomly select

amongst the mainline branch and the active development, fix, and feature branches

(if they exist).

55

2.5.2 Data Generation and Loading

In our evaluation, generated data is first loaded and then queried. The datasets we

generate consist of a configurable number of randomly generated integer columns, with

a single integer primary key. We fix the record size (1KB), number of columns (250),

page size (4 MB), and create commits at regular intervals (every 10,000 insert/update

operations per branch). Our evaluation in Section 2.6 uses 4-byte columns; exper-

iments were also run using 8-byte columns, but no differences were noticed. The

benchmark uses a fixed mix of updates to existing records and inserts of new records

in each branch (20% updates and 80% inserts by default in our experiments). For

each branching strategy described earlier, we vary the dataset size and number of

branches. Each experimental run uses the same number of branches. A parameter

controls how to intersperse operations and branch creation. The benchmark also

supports two loading modes, clustered and interleaved. In clustered mode, inserts

into a particular branch are batched together before being flushed to disk. In our

evaluation, we only consider the interleaved mode as we believe it more accurately

represents the case of users making concurrent modifications to different branches.

In interleaved mode, each insert is performed to a randomly selected branch in line

with the selected branching strategy: for deep, only the tail branch accepts inserts;

for flat, all child branches are selected uniformly at random; for the data science and

data curation strategies, any active branch is selected uniformly at random (recall

that those strategies may “retire” branches after a certain point). The benchmark

additionally supports insert skew for non-uniform insertion patterns; our evaluation

of the scientific strategy favors the mainline branch with a 2-to-1 skew, for example.

2.5.3 Evaluated Queries

The queries targeted in our benchmark are similar to those in Table 2.1; we summarize

them briefly here.

Query 1: Scan and emit the active records in a single branch.

Query 2: Compute the difference between two branches, 𝐵1 and 𝐵2. Emit the

56

records in 𝐵1 that do not appear in 𝐵2.

Query 3: Scan and emit the active records in a primary-key join of two branches,

𝐵1 and 𝐵2, that satisfy some predicate.

Query 4: A full dataset scan that emits all records in the head of any branch

that satisfy a predicate. The output is a list of records annotated with their active

branches.

A benchmark run consists of the time to evaluate each of the four queries on the

four branching strategies, at a particular dataset size, and with a particular set of

test storage engines (tuple-first, version-first, and hybrid, in our case.)

Our benchmarking software, including a data generator and benchmark driver

(based on YCSB [21]), is available at http://datahub.csail.mit.edu/www/decibel.

2.6 Evaluation

In this section, we evaluate Decibel on the versioning benchmark. The goals of our

evaluation are to compare the relative performance of the version-first, tuple-first,

and hybrid storage schemes for the operations described in Section 2.5. We first

examine how each of the models scales with the number of branches introduced to

the system. Next, we examine relative performance across the query types described

in Section 2.5.3 for a fixed number of branches. We then examine the performance

of each model’s commit and snapshot operations, as well as load times. Finally, we

provide a brief comparison with a git-based implementation.

For tuple-first and hybrid, we use a branch-oriented bitmap due to its suitability

for our commit procedure. We flush disk caches prior to each operation to eliminate

the effects of OS page caching.

2.6.1 Scaling Branches

Here we examine how each storage model scales with the number of branches intro-

duced into the version graph. We focus on deep and flat branching strategies as these

patterns represent logical extremes to designed to highlight differences between the

57

three designs. Moreover, we examine only Query 1 (scan one branch) and Query

4 (scan all branches) as these queries also represent two fundamental extremes of

versioning operations.

Figure 2-11a shows how the storage models scale across structures with 10, 50,

and 100 branches for Query 1 on the flat branching strategy. As tuple-first stores

records from all versions into a single heap file, ordered by time of insertion, we see

single-branch scan times for tuple-first greatly underperform both version-first and

hybrid. Note that the latencies for version-first and hybrid decline here since the

total data set size is fixed at 100GB, so each branch in the flat strategy contains

less data as the number of branches is increased. On the other hand, tuple-first’s

performance deteriorates as the bitmap index gets larger. In contrast, Query 1 on the

deep structure (not shown for space reasons) results in uniform latencies as expected

(250 seconds ±10%) for each storage model and across 10, 50, and 100 branches as

all branches must be scanned.

Unlike Query 1, Query 4 (which finds all records that satisfy a non-selective predi-

cate across versions) shows where version-first performs poorly. The results are shown

in Figure 2-11b. This figure shows the performance issue inherent to the version-first

model for Query 4. Performing this query in version-first requires a full scan of the

entire structure to resolve all differences across every branch. The tuple-first and

hybrid schemes, on the other hand, are able to use their bitmap indexes to efficiently

answer this query.

The intuition in Section 2.3 is validated for the version- and tuple- first models: the

tuple-first scheme performs poorly in situations with many sibling branches which are

updated concurrently, while the version-first model performs poorly on deep multi-

version scans. Also, in both cases hybrid is comparable with the best scheme, and

exhibits good scalability with the number of branches.

2.6.2 Query Results

Next, we evaluate all three storage schemes on the queries and branching strategies

described in Section 2.5. All experiments are with 50 branches. Note that the deep

58

Version
First

Tuple
First

Hybrid
0

50

100

150

200

250

300

350

La
te

nc
y

(s
ec

)

Scaling Number of Branches

10
50
100

(a) Query 1 on Flat

Version
First

Tuple
First

Hybrid
0

500

1000

1500

2000

2500

La
te

nc
y

(s
ec

)

Scaling Number of Branches

10
50
100

(b) Query 4 on Deep

Figure 2-11: The Impact of Scaling Branches

and flat strategies were loaded with a fixed 100 GB dataset, but the scientific and

curation strategies were loaded with a fixed number of branches to result in a dataset

as close to 100 GB as possible, but achieving this exactly was not possible; consult

Table 2.6 for the specific dataset sizes.

Query 1 (Q1): Figure 2-12 depicts the results of Query 1 across each storage model.

We also include data for tuple-first where records from each version are clustered

together into page-sized (4MB) blocks. Here, we scan a single branch and vary the

branching strategy and active branch scanned. The bars are labelled with the branch-

ing strategy and the branch being scanned. For the deep strategy, we scan the latest

active branch, the tail. Since each successive branch is derived from all previous

branches, this requires all data to be scanned. Note that we are scanning 100 GB of

data in about 250s, for a throughput of around 400 MB/sec; this is close to raw disk

throughput that we measured to be 470 MB/sec using a standard disk diagnostic tool

(hdparm). For flat, we select a random child. For tuple-first, this results in many

unnecessary records being scanned as data is interleaved; data clustering improves

performance most in this case. The use of large pages increases this penalty, as an

entire page is fetched for potentially a few valid records. Something similar happens

in scientific (sci). Both the youngest and oldest active branch and branches have

59

Figure 2-12: Query 1

interleaved data that results in decreased performance for tuple-first. When reading

a young active branch, more data is included from many mainline branches, which

results in a higher latency for version-first and hybrid in comparison to reading the

oldest active branch. Tuple-first has to read all data in both cases. For curation

(cur.), we read either a random active development branch, a random feature branch,

or the most recent mainline branch. Here, tuple-first exhibits similar performance

across use cases, as it has to scan the whole data set. Version-first and hybrid exhibit

increasing latencies largely due to increasingly complicated scans in the presence of

merges. As the level of merges for a particular branch increases (random feature to

current feature to mainline), so does the latency. As expected version-first has in-

creasingly worse performance due to its need to identify the active records that are

overwritten by a complicated lineage, whereas hybrid leverages the segment-indexes

to identify active records while also leveraging clustered storage to avoid reading too

many unnecessary records. Thus, in this case, hybrid outperforms both version and

tuple-first.

Query 2 (Q2): Figure 2-13 shows the results for Q2. Recall that Q2 does a diff

between two branches. In the figure we show four cases, one for each branching

strategy: 1) diffing a deep tail and it’s parent; 2) diffing a flat child and parent;

3) diffing the oldest science active branch and the mainline; and 4) diffing curation

60

DEEP
TAIL/PARENT

FLAT
MASTER/CHILD

SCI OLDEST
ACTIVE/MASTER

CUR
MASTER/DEV

0

200

400

600

800

1000

1200
La

te
nc

y
(s

ec
)

Version First
Tuple First
Hybrid

Figure 2-13: Query 2

DEEP
TAIL/PARENT

FLAT
MASTER/CHILD

SCI OLDEST
ACTIVE/MASTER

CUR
MASTER/DEV

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(s
ec

)

Version First
Tuple First
Hybrid

Figure 2-14: Query 3

61

DEEP FLAT SCI CUR0

200

400

600

800

1000

1200

1400

1600

1800

La
te

nc
y

(s
ec

)

Version First
Tuple First
Hybrid

Figure 2-15: Query 4

mainline with active development branch. Here, version-first uniformly has worse

performance due to the need to make multiple passes over the dataset to identify the

active records in both versions. This is in part due to the implementation of diff in

version-first not incrementally tracking differences between versions from a common

ancestor. Tuple-first and hybrid are able to leverage the index to quickly identify the

records that are different between versions. As the amount of interleaving increases

(dev to flat), we see that hybrid is able to scan and compare fewer records than

tuple-first, resulting in a lower average query latency.

Query 3 (Q3): Figure 2-14 depicts the results for Q3 which scans two versions,

but finds the common records that satisfy some predicate. This is effectively a join

between two versions. The trends between Q2 and Q3 are similar, however for version-

first in Q2 we must effectively scan both versions in their entirety as we cannot

rely on metadata regarding precedence in merges to identify the differences between

versions. In Q3, we perform a hash join for version-first and report the intersection

incrementally; in the absence of merges, the latencies are better (comparable with

hybrid), but in curation with a complex ancestry we need two passes to compute the

records in each branch and then another pass to actually join them.

Query 4 (Q4): Figure 2-15 depicts the results for Q4 with full data scans to emit

62

Table 2.3: Bitmap Commit Data (50 Branches)

Agg. Pack
File Size
(MB)

Avg. Com-
mit Time
(ms)

Avg.
Check-
out Time
(ms)

DEEP TF 234 15 501
HY 198 13 25

FLAT TF 532 86 193
HY 155 10 66

SCI TF 601 35 544
HY 277 9 836

CUR TF 510 10 570
HY 280 6 43

the active records for each branch that match some predicate. We use a very non-

selective predicate such that sequential scans are the preferred approach. As expected

tuple-first and hybrid offer the best (and comparable) performance due to their ability

to scan each record once to determine if which branch’s the tuple should be emitted

to. Version-first however, must sometimes make multiple passes to identify and emit

the records that are active for each branch; in particular this is true in the curation

workload, where there are merges. In addition, version-first has a higher overhead

for tracking active records (as a result of its need to actively materialize hash ta-

bles containing satisfying records). The deeper and more complicated the branching

structure, the worse the performance for version-first is. Also note in flat, hybrid

outperforms tuple-first with near max throughput. This largely due to working with

smaller segment indexes instead of a massive bitmap.

2.6.3 Bitmap Commit Performance

We now evaluate the commit performance of the different strategies. Our benchmark

performed commits at fixed intervals of 10000 updates per branch. Table 2.3 reports

the aggregate on-disk size of the compressed bitmaps for the tuple-first and hybrid

schemes as well as averages of commit creation and checkout times. The aggregate

size reported includes the full commit histories for all branches in the system. Recall

from Section 2.3.2 that in tuple-first the commit history for each branch is stored

within its own file; in hybrid, each (branch, segment) has its own file. This results in

a larger number of smaller commit history files in the hybrid scheme.

63

Table 2.4: Overview of Merge Perfor-
mance

Two-Way Three-Way
Avg MB/sec Avg MB/sec

VF 14.2 9.6
TF 15.8 15.1
HY 26.5 33.2

Table 2.5: Storage Impact of Table-
Wise Updates from Figure 2-16, in
GB.

Pre-Size Post-Size

DEEP 100 180
FLAT 100 108
SCI 83 146
CUR 91 130

Commit time and checkout time was evaluated by averaging the time create/checkout

a random set of 1000 commits agnostic to any branch or location. Checkout times

for hybrid are better since the total logical bitmap size is smaller (as bitmaps are

split up) and the fragmentation of inserts in tuple-first increases dispersion of bits in

bitmaps, enabling less compression. Note that the overall storage overheads are less

than 1% of the total storage cost in all cases, and commit and checkout times are less

than 1 second in all cases. We flushed disk caches prior to each commit/checkout.

2.6.4 Merge Performance

Table 2.4 shows the performance of Decibel’s merge operation for each storage model,

in terms of throughput (MB/sec). We evaluated merge on the curation branching

strategy with 50 branches. Results represent the throughput of the operation relative

to the size of the diff between each pair of branches being merged. Numbers are in

aggregate across the (approx. 30) merge operations performed during the build phase.

The diff sizes of the merge operations varied from about 200 MB to 3 GB. We report

results for both two-way and three-way merge strategies, that is, with both tuple and

field-level conflicts. Version-First underperforms more in the three-way merge model

because the lca commit must still be scanned in its entirety to determine conflicts,

whereas the other models can leverage the bitmap indexes to reduce the component

of the lca that is scanned. Note that field-level merges for the other strategies are as

fast or better than tuple-level merges.

64

DEEP TAIL FLAT
FIRST CHILD

SCI YNG.
ACT.

SCI
MAIN

CUR DEV CUR MAIN0

100

200

300

400

500

600

La
te

nc
y

(s
ec

)

Version First (pre-Update)
Version First (post-Update)
Tuple First (pre-Update)
Tuple First (post-Update)
Hybrid (pre-Update)
Hybrid (post-Update)

Figure 2-16: Table-Wise Updates: Query 1 (10 Branches)

2.6.5 Table-Wise Updates

We also investigated Decibel’s performance on table-wise update operations that

touch every record in a table. Since Decibel copies complete records on each up-

date, a table-wise update to a branch will tend increase the data set size by the

current size of that branch, and also effectively cluster records into a new heap file.

Figure 2-16 presents performance numbers for a single-version scan (Query 1) for each

branching strategy before and after a table-wise update. We ran these experiments

across each branching strategy and across 10 branches instead of 50 to more clearly

display the effects of each table-wise update as each branch will have more data on

average compared to the 50 branch case. Version-first degrades proportionately to the

amount of new data that is inserted. The bitmap-based methods do not suffer from

this issue. In addition, tuple-first in particular sees considerable performance gains as

a result of the data clustering. Other operations and larger branch sizes displayed the

same relative performance presented in previous experiments, in proportion with the

larger data set sizes that arise as a result of table-wise updates. However, table-wise

updates do increase data set sizes considerably. Table 2.5 displays the data set size

increases corresponding to the operations represented in Figure 2-16. (Note that the

size increases are agnostic to the storage model used.) Such space overhead also arises

in other no-overwrite systems, e.g., Postgres and Vertica. This can be mitigated with

65

Table 2.6: Build Times (seconds)

Branches 10 50 10 50
100 GB 100 GB 83 GB 148 GB

VF DEEP 810 789 SCI 665 1540
TF 918 1020 914 2155
HY 908 941 805 1630

100 GB 100 GB 91 GB 139 GB
VF FLAT 888 1083 CUR 992 6238
TF 1138 1946 1229 4532
HY 993 1197 1030 3079

judicious use of tuple and field-level compression, at some materialization cost. We

postpone investigation of this to future work.

2.6.6 Load Time

Table 2.6 shows the total load time for our evaluations. This time includes inserting

records, creating branches, updating records, merging branches, and creating com-

mits. Here, we deterministically seed the random number generator to ensure each

scheme performs the same set of operations in the same order. In general, version-

first is fast for loading and branching as no bitmap index maintenance is required.

However, with curation the performance for version-first suffers due to the complex

branching structure. The load time for hybrid is lower than tuple-first due to smaller

indexes, and is comparable with version-first. As noted earlier, due to random genera-

tion process science and curation data sizes vary. In general load times are reasonable

(on the order of 100 MB/sec).

2.6.7 Comparison with git

A natural question is whether it would be possible to build Decibel on top of an

existing version control system like git. To answer this question, we implemented

the Decibel API using git as a storage manager. We created a local git repository,

and call git commands (e.g. branch) in place of Decibel API calls. We implemented

this in two ways: git 1 file, which uses a single heap file for all records versioned

by git, and git file/tup, which creates a file for each tuple in the database. Other

implementations, such as grouping tuples from the same commit into the same file,

66

are also possible, but quickly begin to approximate what we built in Decibel. We also

implemented CSV-based and binary-based storage formats to compare differencing

operations. Note that CSV results in a larger raw size due to string encoding. We

use the benchmark from Section 2.5.2 and configured git with default settings.

Table 2.7 shows performance of the deep branching strategy with 10 separate

branches and 10000 commits (evenly spaced over the dataset). Commit times include

the git add and git commit commands. As the commit and checkout times show,

git suffers with even modest data set sizes and commit frequencies. We had to

manually run repack operations to force git to compact its repositories (we did this

once after loading in our benchmarks); this took substantial time (more than 13 hours

for the 1GB benchmark). Not repacking resulted in 20x or more space overheads.

Despite use of compression, binary files have a large storage overhead as a result of

git being unable to diff and delta chain binary files, so the entire binary object is

stored again in the git object database even for a small changes. It is also worth

noting that a 10 GB benchmark was not able to complete within several days for

any of the git-based systems; the 1 GB benchmark on 1-file CSV and binary did

not complete after 4 days. We ran git repack -d, git prune-packed, and git

prune –expire now to compress data before profiling version checkouts and reduce

the repo size. Memory consumption used by git for each commit was equal to the

total data set size at that point (git uses a differencing algorithm which compares

entire versions against one another in memory). Decibel’s storage overhead is higher

because it does full record-copies on writes, but its performance is much better, with

up to 3 orders of magnitude lower latency for commit and checkout operations, while

using less than 1% space overhead for commit metadata.

Part of git’s poor performance is from storing each version as a separate object,

with periodic creation of “packfiles” to contain several objects, either in their entirety

or using a delta encoding. As shown, computing diffs can be slow and restoring

binary objects is inefficient, as git exhaustively compares objects to find the best

delta encoding to use, compute SHA-1 hashes for each commit (proportional to data

set size), and compresses blobs.

67

The results in Table 2.7 highlight key differences between git and Decibel. In

particular git’s use of delta chains minimizes storage overhead, but takes a long time

to both commit and checkout. In contrast, Decibel’s simple appends for commits

and new files for branches, improves performance. Table 2.8 shows similar perfor-

mance numbers for a more update-intensive workload. For structured, multi-versioned

data a hybrid of indexes and delta chains can improve performance while supporting

lightweight commits. Additionally, concurrency with git relies on cloning an entire

repo to isolate changes. Embedding versioning into a database enables existing con-

currency control schemes without materialized snapshots and allows operations to

efficiently query multiple versions.

Given that Decibel and Git offer very similar functionality, in some sense, this

paper “is” showing how to do an adequate implementation of Git on top of a DBMS,

and what the different tradeoffs are. As a specific example, a key design question for

Git is the format of the “pack-file”, i.e., exactly how a large number of objects (across

many versions) should be stored compactly together so that objects can be retrieved

efficiently and storage space is minimized. Git’s solution to that problem is through

use of delta chains. However, as we show in this paper, using deltas is not a good

idea when we are dealing with relational and structured data, and instead, a hybrid

of bitmaps and deltas may be preferred. Thus, our paper shows how the pack-file

structure should be redesigned to handle structured datasets. Our paper also shows

how the different operators should be reimplemented in light of this new format of a

pack-file.

Furthermore, git’s concurrency control model is to clone the entire repo locally,

operate on this local workspace, and then merge with other copies of the repo to

incorporate the changes from other users. From a transactional standpoint this is

infeasible since most datasets are several hundred GB (if not hundreds of TB), so

forcing each transaction to clone a repo is not practical. In turn, as we propose a

purely remote solution is required where the DBMS managers have the infrastructure

to support large datasets (note that this remote infrastructure could be replicated

itself to ensure fault tolerance, the key difference is every user does not need a copy).

68

Table 2.7: git performance vs. Decibel (Hybrid) on the deep structure with 100%
inserts to 10 branches over 10000 commits

Data Size Repo Size repack Time Commit Time Checkout Time
(MB) (MB) (sec) 𝜇± 𝜎 (ms) 𝜇± 𝜎 (ms)

git 1 file (bin) 10 10.95 1231 137± 50 134± 45
git 1 file (csv) 10 15.77 364 313± 120 266± 71
git file/tup (bin) 10 15.11 62 80± 44 694± 379
git file/tup (csv) 10 17.3 56 74± 31 686± 348
Decibel 10 10.63 N/A 3± 2 6± 4
git 1 file (bin) 100 39.37 1597 781± 393 2522± 2040
git 1 file (csv) 100 79.5 3286 1749± 937 1652± 586
git file/tup (bin) 100 53.17 509 694± 371 7300± 3859
git file/tup (csv) 100 96.4 478 693± 367 7481± 4425
Decibel 100 101.12 N/A 3± 2 10± 5
git file/tup (bin) 1000 366.83 42502 6686± 3692 56415± 37464
git file/tup (csv) 1000 453.91 48234 6848± 3819 66489± 74004
Decibel 1000 1003.56 N/A 3± 10 26± 46

Table 2.8: git performance vs. Decibel (Hybrid) on the deep structure with 50%
updates to 10 branches over 10000 commits

Data Size Repo Size repack Time Commit Time Checkout Time
(MB) (MB) (sec) 𝜇± 𝜎 (ms) 𝜇± 𝜎 (ms)

git 1 file (csv) 100 80.7 4262 1788± 1037 2014± 1270
git file/tup (csv) 100 73.31 337 441± 508 9326± 6433
Decibel 100 101.32 N/A 4± 2 15± 8

Furthermore, git doesn’t support high performance concurrent operations on the

same repo on the same machine and only allows one branch to be checked out a

time. Thus, despite git’s ability to store the dataset more compactly, it lacks support

required for high levels of concurrent transactions. Decibel can provide random access

to every commit in the system without blocking new commits from being creating

by obtaining the relevant bitmap columns from the packfiles, which can be cached in

memory. All historical reads can go on in parallel. Furthermore, Decibel can support

transactions using the branching model and though a lock may be acquired when

creating the branch (capturing a snapshot of the global version graph), all subsequent

operations to that branch can go on independent (lock-free) of other transactions

operating on different branches. Overall, git is a general purpose DVCS, but Decibel

shows a better approach can be taken to suit the needs of a versioned DBMS.

69

70

Chapter 3

Transactions

In this chapter we discuss the concept of a versioned transaction, a transaction that

can include versioned operations and how the natural versioning capabilities of Deci-

bel can be leveraged to support transactions and isolation between transactions. We

also introduce a conflict model for versioned operations and present Decibel’s concur-

rency control protocol and implementation, followed by an evaluation under different

workloads and analyze the benefits and issues of using Decibel versioning primitives

for transaction isolation.

3.1 Preliminaries

A versioned transaction is a standard database transaction that includes versioned

operations (commit, branch, merge). Decibel handles concurrent versioned transac-

tions, making them both durable and atomic (ACID guarantees). Each concurrent

transaction’s changes must be isolated from each other until transaction commit time,

when those changes become visible to subsequent transactions and the system guar-

antees durability. To avoid confusion, we differentiate the versioned commit operation

from transaction commit, by using vc to indicate a versioned commit and tc to specify

transaction commit.

As per the traditional database transaction isolation definition, all updates must

be isolated (hidden) from concurrent transactions until commit time when the trans-

71

actions changes are made globally visible to all subsequent transactions. Furthermore,

transactions that are still running should not see a new view of the database state

that conflicts with what they have already read/written. We extend this definition of

isolation to include version graph changes, any branches, commits, or merges edges

produced by a transaction should be isolated from other transactions in the same

way as data changes and transactions should not observe conflicting views as new

transactions tc their changes.

The correctness criterion for these concurrent versioned transactions is serializ-

ability [71], i.e., that all of the transactions should appear to have run in some serial

ordering despite the actual operations within the transaction being interleaved to

achieve higher performance.

We adopt the following model for concurrent changes to the versioned data set:

∙ Each record has a primary key that not only is used to track the record across

versions, but also to identify serialization conflicts.

∙ Each branch has a workspace that reflects the current state of that branch that

contains the cumulative effects of all changes. Specifically, a branch workspace

is the entry point for all changes to that branch and a vc of a workspace creates

a new named snapshot in the version graph that can be retrieved at a later

time. Thus, the workspace contains the cumulative effects of all prior vc and

any dirty changes since the last vc. A workspace with changes since the last vc

on that branch is called dirty. See Figure 3-1. Note: consider this separately

from transactions, just think of it with respect to a single user operating on a

branch.

∙ Updates and new changes to individual records in a branch are directed to the

workspace.

∙ New head vcs are created from the branch workspace.

∙ branch creates a new branch from the current head commit of the parent branch,

not the workspace. To branch the workspace, the parent branch must be vced.

72

Branch A

Branch B

Workspace

for Branch A

Workspace

for Branch B

Snapshot of A’s workspace

that become a versioned

commit after update

Version Graph

including commits

(circles) for Branches A

and B

1

1’

1’’

Record 1

before update

Update 1’ to 1’’

Figure 3-1: Branch Workspaces

This prevents gaps in the version graph from forming. For instance, let’s say

record 5 is updated in branch A with no vc, then branch B is created from A, if

B inherits the change to 5 then since 5 was not part of any vc on branch A, the

lineage of this record is not well defined in B. The lineage is not well defined

because a subsequent change to record 5 in A will overwrite this earlier change

and without a vc on A, there is no way to track where B’s initial record 5 came

from. Thus, a vc on the parent branch is required before branching to ensure

the parent’s workspace is properly snapshotted.

∙ Modifying non-head vcs can be achieved by branching the desired vc, making

the modification, and then merging back into the parent branch.

∙ merge must be done from the head vc of the secondary parent to the head vc

of the primary parent. This creates a new head vc on the primary parent’s

branch. If there is any state that has not been vced on either branch (dirty

branch workspaces), a merge creates new vcs on these branches before merging.

This is particularly required on the primary branch (merge target) to prevent

smashing updates in the workspace and maintain proper provenance tracking

required for subsequent merges.

These rules together yield a consistent versioned database where vcs are appended

73

to the version graph and once appended (via transaction commit) become immutable.

This last feature is particularly crucial for parallelism and high throughput in answer-

ing historical queries.

3.2 Conflict Model

There are numerous challenges in handling concurrent changes to a versioned database

which together necessitate the development of a new conflict model on which tradi-

tional concurrency control schemes [48] can be applied and augmented. The complexi-

ties stem from not only maintaining transactional consistency of the collection of data

items in the system, but also maintaining consistency of the version graph itself. In

the following discussion we assume that both transactions start with a consistent view

of the version graph and the underlying data. A transactionally consistent view is a

snapshot of the database that reflects only the effects of the committed transactions

in some serial order (serializable).

We now introduce and discuss certain types of conflicts that can occur between

transactions. To begin, for the case where each concurrent transaction each reads

and modifies a different branch alone then serializability is trivially achieved because

operations on different branches generally commute with each other (unless a prior

versioned operation on a branch introduced a constraint), so any ordering of those

transactions produces the same final state on each branch. Also, clearly it is the

case that reading the data in vcs that existed at the time the transaction started

requires no conflict tracking/avoidance as those vcs have their positions solidified in

the version graph and the data in those commits is immutable. Conflicts between

transactions are not created from accessing historical data, they are created from

changes to the branch workspaces and the addition of new vcs. We now delve into

the conflicts produced when transactions try to read and modify the same sets of

branches.

The discussion below describes record level serialization conflicts in terms of Op-

timistic Concurrency Control [48]. In OCC a transaction’s execution is broken up

74

into a read phase, validation phase, and write phase. In the read phase, the transac-

tion records the identifiers of the records it read and wrote, when it writes a record

it copies it from the database and makes a copy in a private workspace to provide

isolation. Then when the transaction tcs it is validated for serialization conflicts, and

if it passes validation then the transaction can copy its changes over to the database

in the write phase. Validation checks for serialization conflicts as follows. A record

(or set of records) serialization conflict occurs for transaction 𝑇1:

1) If the write set of any transaction that committed since 𝑇1 started intersects 𝑇1’s

read set (in the serialization order 𝑇1 was required to see the other transaction’s

changes and it may not have been the case depending on when 𝑇1 read the record,

e.g. before the write phase of the earlier transaction).

2) If the write set of any transaction that is running concurrently with 𝑇1 inter-

sects 𝑇1’s read set or write set (there is a conflicting change and both cannot be

serialized, one needed to see the change of the other).

The discussion tries to remain neutral to how a versioned system is implemented

and talks more generally about the types of conflicts that arise in any versioned

system. However, specifics are used when appropriate to provide clarity and concrete

examples.

3.2.1 General Issues

There are two main points of contention: version graph appends (e.g. adding commits,

branches, and merge nodes to the version graph) and branch workspace updates. Not

only do branch workspace updates have to be atomic across multiple branches, but

also the version graph changes have to be atomic across all branches. For instance,

it cannot be the case that transaction 𝑇1 vcs on Branch A and B and 𝑇2 does the

same and 𝑇1’s commit appears before 𝑇2’s in A but after 𝑇2’s in B.

75

3.2.2 Single Branch Concurrent Update to Branch Workspace

Here we describe the case where a transaction just makes an update to a branch and

no vc, the transaction just updates the workspace of a branch. This case is most

analogous to modifications in a standard database since it involves no modification of

the version graph, just a modification to the branch’s workspace. Reads/writes need

to be tracked here to serialize changes to a branch’s workspace. Furthermore, since

creating new vcs requires first modifying the branch’s workspace, changes to just the

workspace conflict with concurrent vcs and non-historical branches, described next.

3.2.3 Single Branch Concurrent vc

In this section we describe serialization problems with respect to concurrent vcs to

the same branch. Consider two users that start transactions 𝑇1 and 𝑇2, update

disjoint records on branch A, both vc, and both tc. Without loss of generality, 𝑇1

tcs first. 𝑇1’s vc node now appears in the version graph as the new head for A. At

this point 𝑇2’s view of the version graph has diverged. This appears to be a conflict

causing 𝑇2 not be serializable, but in fact it is serializable. The key insight stems from

the observation that even though 𝑇2 created a new vc which is a logically complete

snapshot of the dataset, it never read or wrote 𝑇1’s record so from 𝑇2’s point of view

it does not matter whether it has the new record in its snapshot, it never observed or

modified the state of it. Thus, the serial ordering becomes 𝑇1 followed by 𝑇2 when

𝑇2 tcs and appends its node to the version graph. However, 𝑇1’s changes need to

be incorporated into 𝑇2’s vc. This process is called rebasing; 𝑇2’s vc is rebased on

𝑇1’s vc to include 𝑇1’s changes. This is similar to the git rebase command [98] and

involves re-writing a transaction local version graph history to create a new global

history that incorporates a transaction’s changes. See Figure 3-2 for an example of

this process. This establishes a transactionally consistent lineage and will be discussed

more in 3.3.7. Note that rebasing a vc incorporates that vc’s changes into the branch

workspace, because the vc’s changes need to be present in the current state of the

branch. If the operations performed by both transactions did conflict, e.g. 𝑇1 and

76

Branch ACurrent Global Head vc (vc 3)

Transaction 1Read: 1,3Wrote: 3,4

Before Rebase
(concurrent execution, no conflicts across vcs made to extend HEAD so can be rebased)

Transaction 2Read: 2,5Wrote: 5

vc 4’ vc 4’’

vc 5’

After Rebase
(linearizing changes to branch A upon TXN commit, tc)

Branch A

New Global Head vc (vc 6, includes changes from 4 and 5)

vc 4

vc 4’’ → vc 6

vc 5

Transaction Local Change
Solidified, tc-ed change, visible to subsequent transactions

Basic vc RebaseDG1

Figure 3-2: Rebasing vcs

𝑇2 both read and wrote record 𝑅1 and then vced, one of the resulting vcs is incorrect

since one must have observed the results of the other. It is worth noting that if instead

transaction 𝑇1 just performed a workspace update and did not create a vc, that 𝑇2

vc would still have to be rebased to include the changes from 𝑇1s update, otherwise

the new vc is not consistent with what the transaction that tced before it did. See

Figure 3-3.

3.2.4 Concurrent Branching

In this section we describe serialization problems with respect to creating new branches

within a transaction. There are two types of branching, create a new branch from a

historical vc and create a new branch by creating a new vc on the parent branch and

branching that vc. This latter branch type is called a non-historical branch operation.

Non-Historical branches present a serialization problem since they involve transaction

local modifications to the parent branch that may need to incorporate the changes of

a concurrent transaction’s vc that tced before this transaction tcs. Figure 3-4 defines

and demonstrates the difference. Consider two transactions 𝑇1 and 𝑇2, 𝑇1 and 𝑇2

both vc on branch A. 𝑇2 creates branch B from the vc it created on Branch A. Branch

77

Dirty Workspace Rebase

Branch ACurrent Global Head vc (vc 3)

Transaction 1Read: 1,3Wrote: 3,4

Before Rebase

Transaction 2Read: 2,5Wrote: 5

vc 4’

After Rebase
Branch A

T1’s local workspace for A (where it wrote 3,4), no vc

vc 4’ includes 3,4,5

T1 tcs first with a dirty branch workspace on branch A and T2 adds a vc, T2’s vc must include T1’s workspace changes, it came after T1 in the tc order

Final branch workspace includes all changes

Transaction Local Change
Solidified, tc-ed change, visible to subsequent transactions

Figure 3-3: Rebasing vcs from a Dirty Workspace

B is a non-historical branch. 𝑇1 tcs. 𝑇2’s vc to branch A must now be rebased to in-

clude 𝑇1’s changes. This also affects 𝑇2’s branch B because its creation vc depends on

its vc on A which needs to be rebased when 𝑇2 tcs. Generally, in such a scenario if the

transaction with the Non-Historical branch tcs, its vc and in turn the branch created

from that vc must incorporate the changes from the updates or vcs it did not see by

transactions that tced earlier, otherwise the branch is not consistent with the lineage

of and modifications to the parent branch. Note this applies recursively to subsequent

vcs on a non-historical branch and subsequent branches derived from non-historical

branches created by the same transaction, dubbed recursive non-historical branches.

Furthermore, if the transaction with the non-historical branch reads and updates a

record in that non-historical branch that is also updated by a concurrent transaction

in the parent branch, then the non-historical transaction can no longer be serialized.

The problem stems from the fact that once a vc or workspace change is exposed to

subsequent transactions it cannot be re-written or modified without producing con-

flicting views of the versioned database’s snapshots. Thus, any transaction that adds

vcs to a branch must include in its new vcs changes from the vcs created since the

time the transaction started (and the most recent workspace changes) to preserve the

semantics of the version graph. It might seem that this can be fixed by transforming

the vc on the parent branch that caused these problems (the vc on the parent branch

78

Historical vs Non-Historical Branches

Branch A

Historical Branch Non-Historical Branch Recursive Non-Historical Branch

Branch B

Creation vc for Branch B derived from previously tced and visible vcon Branch A

vc 4

Branch A

Branch B

Creation vc for Branch B depends on a tentative transaction local vc(vc 4) that may have to be rebased

vc 4

Branch A

Branch B

Branch C

Branch C is non-historical branch because its parent branch is

Transaction Local Change
Solidified, tc-ed change, visible to subsequent transactions

Figure 3-4: Difference between Historical Branches and Non-Historical Branches

from which the non-historical branch was derived) into a new branch itself, but this

violates the notion of what it means to create a vc on the parent branch, i.e., the vc

is a part of the parent branch where it was added.

Historical branches are always serializable because they are created from a transac-

tionally solidified and consistent (historical) part of the ancestry. Thus, if transaction

𝑇1 adds a new vc to the parent branch, another transaction 𝑇2 that creates only a

historical branch commutes in the serial ordering with respect to 𝑇1. This branch

by 𝑇2 could have occurred either before or after 𝑇1’s vc, and from the semantics of

branch in a branched versioned database, the ordering does not matter. The same

argument applies if 𝑇1 just updated the branch workspace.

3.2.5 Extended Conflict Tracking: Changes Across Multiple

Commits and Branches

Up until now we have only considered the problems when a transaction makes a

single version graph change in a specific way, we now discuss how multiple vcs and

created branches affect serialization. The previous analysis showed that concurrent

modifications to the version graph are serializable as long as the transactions did not

79

read/write any conflicting records in a concurrent vc or workspace change. Now we

extend this to any (across all) of version operations (e.g. vc, branch). For instance, if

two transactions add several vcs to the same branch, as long as they do not read/write

any of the same records then the group of vcs can be placed one after the other in

the branch lineage when the transactions tc. Records read/written to over the course

of all these vcs must be tracked (or locked) to determine if there is a serialization

conflict.

Another case where record level conflicts need to be tracked across multiple ver-

sions and that introduces complexity is the case of recursive non-historical branches,

branches derived from non-historical branches. Because the vc a non-historical branch

was derived from (its creation vc) may need to be rebased (is in contention so to

speak), any vc or branch derived from it is also in contention (may need to be re-

based) and must be removed if there is a serialization conflict. A transaction with

a non-historical branch must be aborted if any update to the non-historical branch

or any of its descendants conflict with any update made to the originating ancestor

branch (branch where the conflict was first introduced, branch from which the first

non-historical branch was created). The reason for this is that the update to the

originating ancestor branch would cause the creation vc of the non-historical branch

to be rebased. If this introduces a new version of a record that the transaction previ-

ously updated in the non-historical branch then its update is incoherent with respect

to what the non-historical branch should have started with and the result is not

serializable.

Additional complexity stems from the observation that the conflict checking/avoidance

should only be done with respect to the originating parent branch where the conflict

was first introduced. Concurrent changes to different non-historical branches should

not conflict with each other. This is true simply because the updates are to disjoint

branches that are not derived from one another. For instance, transaction 𝑇1 creates

a vc, lets call it 𝐶1, on Branch A and then creates a non-historical Branch B from

𝐶1. Transaction 𝑇2 does the same and creates a new Branch C, its vc on Branch A

is designated 𝐶2. As long as 1) none of the changes in 𝐶1 conflict with the changes

80

in both 𝐶2 and Branch C, and 2),symmetrically, none of the changes in 𝐶2 conflict

with the changes in 𝐶1 and Branch B then both can be serialized after some rebasing,

depending on which transaction tced first. Note that the same record can be updated

in Branch B and Branch C as long as these updates did not occur in either 𝐶1 or

𝐶2, which would threaten the creation vc of one of the non-historical branches. Once

branch creation (the creation vcs of the non-historical branches) can be serialized,

changes to these two different branches should not conflict with each by the virtue of

being different branches. Thus, changes in B and C should only conflict with changes

in A and not each other. However, what this means is that subsequent reads/writes

of branches B and C (to the worksapce and any commits on those branches) must

be tracked so as to detect/avoid conflicts with A. Again, this also applies to any

subsequent branches derived from B or C within the same transaction that created

them, the recursive non-historical branches.

In contrast, there are cases where conflicts do not need to be tracked, i.e., when

a transaction accesses a historical (different from the non-historical case above) since

these changes are independent of the flow of the rest of the version graph and so are

always serializable.

3.2.6 Branch Level Conflicts

So far we have only considered how point record modifications across the versioned

operations made by a transaction can cause serialization issues. There are types

of branch level operations that do conflict with concurrent version graph changes

even though the data contained in those new vcs or branches may have never been

read/written by a transaction. For instance, a transaction that lists all or number of

vcs back from the current head vc of branch (e.g. git log), we will call this the list-

Commits(branch) command. A listCommits(branch) conflicts with any concurrent

append of a vc to that branch if a transaction that previously observed the set of vcs,

calls listCommits(branch) again and observes the change. This is analogous to a

phantom read [71, 10] for the set of vcs on a branch. The listBranches() (e.g. git

branch) command that encounters the same problem on the set of branches that ex-

81

ist. Operations such as diff on the workspace of a branch or a new vc created by the

transaction are branch level data read operations that conflict with any concurrent

update or vc to the branch.

3.2.7 Merge

In this section we discuss the complications that arise when merging concurrently with

other transactions performing versioned operations to the branches being merged. To

summarize, merge is essentially a table level update and so not only do concurrent

changes to the primary parent’s branch conflict, but also changes to the secondary

parent’s branch have to be considered as well to ensure serializability.

Merge involves creating new vcs on both the parent branches prior to the merge

and then results in an additional merge vc on the primary parent’s branch. Thus,

merge conflicts with workspace changes, new vcs, and non-historical branches on the

primary branch. To make matters worse, merge generally involves reading/writing

a large amount of data (average diff sizes as reported in Chapter 2 ranged from a

couple hundred megabytes to a few gigabytes), making the probability of a merge

transaction producing a record conflict with any transaction updating the primary

branch very high.

Counter intuitively, any vc added to the secondary parent’s branch also presents

an issue because the definition of merge only allows heads of branches to be merged.

If a merge results in a vc on the secondary branch (because its workspace is dirty),

this vc may have to incorporate data from the new head vc (or just workspace update)

added by a concurrent transaction. Thus, the merge as it occurred based on the vcs

it had when it ran is incomplete and must include the data added in the vcs and

workspace updates it did not see. This could introduce new merge conflicts, causing

parts of the merge to be redone (e.g. consider field level merge, it involves creating

new records). To make this concrete consider the following example:

1) Transaction 𝑇1 and 𝑇2 start at the same time and see the same initial version

graph.

82

2) Transaction 𝑇1 starts a merge from Branch B (secondary parent) to Branch A (pri-

mary parent). 𝑇1 created a new vc on Branch B because it has a dirty workspace.

3) Transaction 𝑇2 adds a vc to Branch B and tcs before 𝑇1. The problem here is

that 𝑇1 tcs physically in time after 𝑇2. 𝑇2 has already moved the head on B so

𝑇1’s new vc will have to be rebased on 𝑇2’s vc when 𝑇1 tcs, which in turn affects

the merge 𝑇1 conducted since the data being merged from the secondary parent

(B) might be different. For instance, let’s say without 𝑇2’s changes 𝑇1 performed

a field level merge between record R and 𝑅′ in branches A and B, respectively.

𝑇2 updated 𝑅′ in B to 𝑅′′ and so the resulting record that 𝑇1 wrote to resolve

the merge conflict is incorrect since it does not include the changes from 𝑇2 (𝑇1

merged R and 𝑅′ instead of R and 𝑅′′).

These issues are mitigated to some extent by choosing a more relaxed merge (e.g.

2 way merge) procedure that involves just taking one record over another instead

of producing a field level merged record. However, the problem still remains that

the merge vc produced as of when the transaction executed the merge is incorrect

and must be patched to include additional changes if a vc or update was made to

either parent branches by a transaction that tced before the transaction conducting

the merge.

Despite these challenges, all hope is not lost, because in principle a merge op-

eration in a transaction by itself can be made serializable. Given the complete set

of transactions, just performing the merge at the end is enough for serializability.

This is correct because the merge operation does not care about the specific records

taken during the merge, just that the merge makes sense with respect to the data

in the vcs in the version graph and the version graph itself. The lesson here is that

merge must somehow be delayed or view a transactionally consistent version graph

and concurrent changes must be prevented.

One final issue must be addressed and that is how merges conflict between branches

created by a transaction and the branches that were visible prior to transaction start.

∙ A merge between two historical branches created by a transaction incurs no

83

conflicts with any other transaction because these branches are local to the

transaction and can incur no concurrent modifications.

∙ A merge from a historical branch (secondary parent) created by a transaction to

a currently publicly visible branch (existed prior to transaction start, was added

by another transaction that successfully committed) incurs all the conflicts and

conflict tracking on the primary branch, which already seems prohibitive.

∙ A merge from/to a non-historical branch must handle conflicts on the ancestor

branch it was created from because any concurrent change to that ancestor

branch may again cause new changes to be incorporated into the new branch

and for the same reason as discussed with adding new vcs this causes problems

for merge. Again, this also applies to recursive non-historical branches.

3.2.8 Relaxed Conflicts

It is worth noting that if a versioned system can guarantee that only transactionally

consistent views of the version graph and branch workspace are ever observed (that

is repeated reads to these structures return the same results with only the current

transaction’s modifications) that the issues described above only present serialization

problems if the transaction performs a read of a branch and then proceeds to update

the same branch. If a transaction wrote to/updated a separate branch from every

other transaction then because operations between branches commute and the data

the transaction read was transactionally consistent then the combination of branch

read one branch and write another branch can be serialized before any additional

update to the branch that was read.

To make this concrete consider the following example:

1) Transaction 𝑇1 gets a transactionally consistent snapshot of the database.

2) Transaction 𝑇2 does the same.

3) 𝑇1 reads branch A (does not matter if it is the version graph, point level data

read, or branch level data read, e.g. diff) and then updates branch C.

84

4) 𝑇2 reads and updates branch A and tcs first.

5) Under normal OCC validation 𝑇1 would have to abort since 𝑇2’s write set over-

lapped its read set. However, since 𝑇1 never updated A and the snapshot it had is

transactionally consistent, it does not conflict with 𝑇1’s changes. The serialization

order is 𝑇1 and then 𝑇2 even though 𝑇2 committed first.

This can be generalized to sets of branches. What this suggests is that if a versioned

system can guarantee transactionally consistent snapshot reads of the version graph

and branch workspaces that some spurious conflicts can be removed.

3.3 Decibel’s Concurrency Control Protocol

In this section we describe Decibel’s concurrency control protocol for a versioned

database at a high level and save the implementation details for 4.2. First, we pro-

vide an overview of the how the system manages isolation and discuss the invariants

that Decibel maintains. Then we discuss how Decibel handles each of the problems

specified in 3.2. In doing so we begin to outline what transaction local state is main-

tained and how the local non-conflicting changes of a transaction are incorporated

into the global database state. Finally, we end on a discussion of how concurrent

index updates are handled and the potential benefits of using bitmaps for transaction

isolation.

3.3.1 Naive Solution: Branching and Merging for Every Trans-

action

One might envision a system where transactions branch each branch they intend to

modify prior to accessing it and then direct all their writes to the new transaction

local branch. Then at the end of the transaction merge their transaction local branch

back into the originating branch. First, doing this in an atomic sense is a challenge

in and of itself and using branching in this manner for isolation pollutes the version

graph with temporary branches, which already contradicts the standard notion of a

85

branch being long lived. Second, branch must be a relatively cheap operation and

incur very little overhead for this to be effective and scale to thousands or tens of

thousands of transactions. Unfortunately, since new branches in Decibel result in not

only a new segment file but several new pack files (bitmaps) for every ancestor of the

branch being modified, using this branch-per-tc strategy is very inefficient. Instead

Decibel must do something much lighter weight, as described in the next section.

3.3.2 Overview and Invariants

Now we delve into the concurrency control protocol employed by Decibel. The pri-

mary goal here is to leverage the natural versioning of Decibel to implement transac-

tion isolation (e.g. use bitmaps) as opposed to MVCC protocols that use timestamps,

such as PostgreSQL [69]. The system should support high throughput concurrent

reads that do not block, a read-only transaction should never have to wait and its

answer should always be serializable. Since the system relies on the bitmap for trans-

action isolation and Decibel is append only, exposing the results of transactions boils

down to atomically flipping bits in the appropriate bitmaps and atomically exposing

version graph changes. This can simplify reasoning about changes to the state of

the database and in turn concurrent transaction management. At a high level, this

works because the bitmaps provide a lightweight snapshot of the database state and

if updates to the bitmap are made in a controlled way then each transaction can get

a set of bitmaps that contain exactly the records each transaction is allowed to view

and none of the records added/changed by a concurrent transaction. However, since

there are many bitmaps (one per branch per segment) that are disk bound, using

the bitmaps for recovery purposes is an issue since forcing bitmaps to disk results

in random I/O that makes tc slow even if batching is employed. Thus recovery is

provided by traditional Write Ahead Logging.

Decibel ensures that each transaction gets a transactionally consistent and im-

mutable global snapshot of the entire database state when it starts. The global snap-

shot just contains the meta data needed for a transaction to interpret the database

state in a transactionally consistent way. When a transaction starts to update the

86

database state if makes a local copy (copy on write) of the relevant global snapshot

state it started with and modifies that, isolating its changes from other transactions.

Creating a new global snapshot that incorporates the changes for a set of tcing trans-

actions exposes those updates to subsequent transactions and not transactions that

have already accessed previous global snapshots. To preserve the non-blocking prop-

erty for read only transactions, these transactions can just read the current global

snapshot (since it is immutable) and the system employs a combination of OCC and

locking to ensure transactions that update or read and update the database state do

so serializably and have their changes exposed by creating a new global snapshot.

3.3.3 Global Snapshots

The global snapshot is essentially a Hybird storage model object with the appropriate

branch workspaces and version graph so as to only expose a transactionally consis-

tent version of the database state. A branch workspace in the context of Decibel

corresponds to the current state of the all the bitmaps for every segment belonging

to a branch in the current global snapshot. These are immutable and changes by

non-conflicting transactions are only exposed by creating new global snapshots. At a

high level, a global snapshot contains:

∙ The branch workspace for every branch in the system.

∙ Transactionally consistent prefix of the version graph.

∙ Copies of per segment meta data (this is much smaller than the bitmaps them-

selves).

3.3.4 Transaction Local Workspace Snapshot

Transactions get their global snapshots at transaction start and all operations go to

the transaction’s local workspace that uses the global snapshot as a starting point.

The transaction workspace includes the relevant immutable branch workspaces from

the global snapshot it acquired (if it is know that a transaction will not be operating

87

on a particular subset of branches, then those bitmaps can be excluded). The branch

workspaces are copy on write and updates are directed to a transaction’s local copy.

Note that a change to any of the branch workspaces within a transaction workspace

does not modify the global snapshot from which it is derived, the branch workspace is

modified locally to the transaction within the transaction workspace and subsequent

reads of any of the branch workspaces within the transaction workspace will reflect

the changes made by the transaction. A transaction can see its own updates on the

original global snapshot, but other transactions cannot (its changes are isolated).

The bitmaps are used to control visibility of concurrent updates even though the

underlying segment files are constantly being mutated to incorporate new data that

transactions are adding. A transaction’s record level changes are installed directly in

the segments a transaction changed, but the transaction gets copies of the relevant

bitmaps from its initial global snapshot and modifies those directly in the transaction’s

transaction workspace.

The transaction also gets a workspace version graph which is a local version graph

initialized with the head vcs in the version graph of the global snapshot. A transac-

tion’s version graph changes go to this workspace version graph. Whenever, a complete

view of the version graph the transactions looks at the union of the workspace version

graph and the global snapshot’s (the one it started with) version graph.

When a transaction is ready to tc a new global snapshot is built that incorporates

its transaction local workspace changes and this global snapshot replaces the old

one, exposing the transaction’s changes atomically to subsequent transactions. This

process is called global snapshot reconciliation.

3.3.5 Conflict Tracking and Serialization

Optimistic Concurrency Control

Decibel adopts Optimistic Concurrency Control so that most operations are non-

blocking and this is more conducive to a versioning system since OCC is naturally a

versioned concurrency control protocol, but does not have the ability to create explicit

88

versions.

Validation and Commit

Changes to a transaction’s workspace are tracked as previously described and tracks

conflicts as specified in Section 3.2 to determine serialization problems. A transaction

is validated at tc time and if no conflicts are detected then the changes are used to

build the next global snapshot for subsequent transactions.

Read Only Transactions

Since each transaction gets a valid serializable and immutable snapshot of all the

transactions that mutated the database state, a read-only transaction does not need to

be validated. It is serializable in the following way. Read only transaction 𝑇𝑝 obtains

a snapshot A that has the effects of transactions 𝑇1...𝑇𝑘 in some serial ordering. 𝑇𝑝’s

serialization number is exactly at 𝑇𝑘 (𝑝 = 𝑘), seeing 𝑇𝑘’s changes and before the

next set of mutation operations that are used to create the new snapshot. Read only

transactions that get the same snapshot can share the same serialization point. The

OCC validation on the transactions that do modify the state ensure these snapshots

are serializable and so read only transactions do not need to be validated and the

read only snapshot isolation issued reported in [30] does not occur.

3.3.6 Overview of Global Snapshot Reconciliation

Maintaining the global snapshot is a challenge. The system not only needs to in-

corporate the changes from concurrent transactions that may have started based on

different global snapshots in an isolated and atomic way, but also this reconcilia-

tion/build procedure needs to be fast and the structure needs to be lightweight so

as to not become a bottleneck. More of this process is discussed 4.2, but here is an

overview of the reconciliation process.

89

Reconciliation Procedure: Building the Next Global Snapshot

Database state changes are exposed to subsequent transactions by taking the cur-

rent global snapshot as a starting point and then incorporated the changes in the

transaction workspaces of the tcing transactions to build a new global snapshot that

exposes those changes. To get a sense of how this is done we explore integrating a

single transaction’s changes into the current global snapshot, Section 4.2 describes

how Decibel handles incorporating changes from multiple transactions.

The algorithm below adds all of the changes made by a transaction in version graph

dependency order (e.g. incorporating and rebasing ancestors before descendants).

The algorithm must also ensure that if a transaction has multiple vcs across multiple

branches then all the those transaction’s vcs are rebased and new vcs are created

before moving onto a new transactions changes. This is so each transaction’s changes

creates a new front of the version graph, all the transaction’s appends need to be in

the same order across all branches changed so that the transactions changes appear

to happen atomically to the version graph. To be precise, if two transactions 𝑇1 and

𝑇2 both make vcs on branches A and B it cannot be the case that 𝑇1’s vc happens

before 𝑇2’s on A and after it on B, there is no serial ordering equivalent.

The algorithm works as follows. The transaction workspace reports the historical

branches the transaction created in a set called histCreatedBranches and the non-

historical branches in notHistCreatedBranches. It also reports the head vcs of every

branch that existed at the time the transaction started (derived from the global

snapshot) in a set called headsAtStart. It maintains a map from vc identifier local

to the transaction to the new global vc identifier that the vc was translated to after

rebasing. This map is called localToGlobalCommitIdTransalationMap. As vcs are

rebased or directly taken this map is filled. This map tracks processed vcs and another

transaction local vc cannot be processed until its parent vcs have been processed.

∙ Initialize localToGlobalCommitIdTransalationMap to headsAtStart pointing to

themselves since they existed at transaction start and are already global. It

also places the creation vc of each historical branch in the map point to itself,

90

because it is global by default since its creation vc does not need to be rebased.

∙ Topologically sort the workspace version graph. Remember the version graph

has directed edges from parents to children and only the workspace version graph

was topologically sorted so all the relevant vcs that may need to be rebased are

processed in the order in which they need to be rebased.

∙ In topologically sorted order (ignoring vcs in localToGlobalCommitIdTransala-

tionMap):

– If the vc to process only has one parent then check to see if this is the

creation vc of a non-historical branch (can be determined by probing notH-

istCreatedBranches using the branch identifier that the vc was on). If so,

then the parent vc on which this branch was predicated has been pro-

cessed and the branch is re-initialized based on the finalized parent vc.

This includes initializing per segment state (in the new global snapshot),

such as bitmap columns for the new branch on segments belonging to the

parent branch. The new global snapshot’s version graph is also updated

to reflect the branch creation edge. otherToMeCommitIdTransalationMap

is updated since this a creation vc, the vc is mapped to itself. If the vc is

the creation vc of a historical branch then the vcs can be taken directly

(since they do not need to be rebased), however, because these bitmaps are

local to the transaction workspace, per segment state has to be iniitialized

as well (workspace bitmaps have to be moved over into new objects that

permit subsequent transactions to access the branch in a transactionally

consistent way, this is discussed more in 4.2).

If the vc is not the creation vc of a branch then the branch already exists or

its creation vc was previously re-initialized so the algorithm becomes greedy

and finds the maximum number of children vcs that belong to this branch

in the topologically sorted order and rebases them all at once. The new

global snapshot’s version graph is also updated to reflect the rebased vcs

(adding a linear chain). otherToMeCommitIdTransalationMap is updated

91

and maps the transaction local vc identifier to the newly assigned global

vc identifier.

– If the vc to process has two parents then this was a merge vc. Decibel uses

a locking protocol for merges discussed in 3.3.9 and it ensures the merge

vc reflects the exact current state of the affected branches and so those

vcs do not need to be rebased. Also, the per segment data relevent to

those branches can be incorporated (taken) directly from the transaction’s

workspace. otherToMeCommitIdTransalationMap is updated.

∙ This continues until all new nodes are processed (end of list containing the

topologically sorted nodes).

∙ Finally, after all the vcs have been rebased and their changes incorporated into

the relevant branch workspces, the branch workspace changes for each branch

modified from the transaction workspace are rebased on top of the new global

snapshot’s branch workspaces. This incorporates the transaction’s local dirty

branch workspace changes into the corresponding branch workspaces of the

new global snapshot, making them dirty in the new global snapshot so that

subsequent vcs that are rebased will include these changes in their first rebased

vc.

This gives a sense of how changes per transaction are integrated to produce a new

global snapshot and we leave the details of this process to the 4.2. Specifically, the

system collects changes from many transactions and then a batch committer thread

incorporates all of those changes into a new global snapshot, see: 4.2.7.

3.3.7 Rebasing Bitmaps: Handling Concurrent Commits to

the Same Branch

Now given that we understand how new global snapshots are built at a high level, we

delve into the details of the individual functions used to incorporate changes, such as

rebasing.

92

In Section 3.2 we introduced the notion that vcs by concurrent transactions that

do not conflict should all be allowed to be appended to the version graph. Decibel

handles this by rebasing the bitmaps that the vcs affected. This is possible without

conflict because of the OCC protocol that ensures the transactions updated different

records and so independent bitmap locations. Thus, all that is required is for the

system to decide on how to order the commits by the different transactions (since the

transactions did not read/write any of the same records, any order is fine). Thus, the

system selects a transaction to incorporate changes from. Starting from the workspace

bitmaps of the current global snapshot (which may be different than the snapshots

each transaction started with), for each vc the transaction made, take the bitmap

deltas and apply those deltas (XOR the deltas with the bitmap to produce a bitmap

containing the changes made by that transaction) to each bitmap affected by the vc.

Then create a new vc that represents the new global vc that the transaction’s local vc

was translated to. Thus, the transaction’s vc has been rebased on the current global

snapshot and this is done for each transaction ready to tc and so each subsequent

transaction’s vcs are rebased on each other, building a new version graph and global

snapshot that reflects all of the changes of non-conflicting concurrent transactions.

If a transaction also made a workspace change (without a vc), the workspace for

that bitmap is dirty. After the transaction’s vcs are rebased the workspace changes

must be XORed into the corresponding workspace bitmaps for the current snapshot

being built so that when subsequent transaction’s vcs are rebased they will include

the workspace changes by the previous transaction (since it is as if all of the pre-

vious transaction’s changes took effect before the subsequent transaction’s, so the

subsequent vcs that will be rebased need to include the previous workspace changes).

Remember a transaction’s record level changes are installed directly in the segments

a transaction changed, but the transaction gets copies of the relevant bitmaps from

its initial global snapshot and modifies those directly in the transaction’s transac-

tion workspace. Thus, concurrent appends get disjoint locations in a segment and

so they get disjoint locations in their local copies of their bitmaps across all trans-

actions. Thus, when XORing bitmap changes for two non-conflict updates the bits

93

corresponding to the new records holding the result of the update (since the system

is append only, new records are always generated from updates) do not cancel each

other out.

To speed up this rebase procedure the transaction not only modifies it local branch

workspaces directly, but it also stores the bitmap changes in a delta buffer. When

a vc is made, the delta buffer is snapshotted and reset. The delta buffer snapshot

is stored in a list local to the transaction so that a transaction can checkout its own

vcs and so that the vc deltas are not available to other transactions (how this is done

physically is discussed in 4.2). This means that rebasing just involves XORing in the

supplied delta and not actually re-computing the delta using an XOR operation per

pair of matching bitmaps in the global snapshot being built and the transacation’s

local snapshot (the reason to avoid this is that such an XOR on large bitmaps is

expensive). Storing deltas directly also means that creating a new vc after rebase

involves passing the delta directly to the underlying storage manager (note that if a

bitmap workspace is dirty then the first vc delta needs to include the dirty workspace

changes since the last vc as well).

Validation Revisited

We stated the system uses OCC for validation, a stricter form of validation is actu-

ally required. Transactions cannot write records that have previously been updated

by transactions that tced since they started (and grabbed their global snapshots and

corresponding bitmap copies). The reason for this is as follows. Let’s say two transac-

tions 𝑇1 and 𝑇2 start with the same bitmap column for Branch A with a single record

𝑅1 and its location in the initial bitmap is 0. Transaction 𝑇1 flips the bit at 0 and

add record 𝑅1′ with bitmap location 1. It tcs and now the next global snapshot has

𝑅1′ at bitmap location 1 and the old bitmap location 0 holds a 0. 𝑇2 then updates

𝑅1 to 𝑅1′′ unsets bitmap location 0 in its local workspace bitmap and then adds 𝑅1′′

with bitmap location 2. Under normal OCC this would not be a conflict because 𝑇2’s

update would simply overwrite the first update to 𝑅1. However, both transactions

touched the same bitmap location for 𝑅1 which leads to an incorrect result during

94

rebasing, concurrent overwrites are more complex. The rebasing approach based on

XORing in a transaction’s delta for the branch workspace would re-introduce both

𝑅1 and 𝑅1′′ and leave 𝑅1′ in place. In turn, the system must prevent concurrent

transactions from touching the same bitmap locations at all. Despite this, we discuss

how to fix these issues and remove all blind writes to further improve concurrency in

3.3.11.

3.3.8 Non-Historical Branches

Since non-historical branches may have to have their creation vc rebased, if a rebase is

required all the subsequent vcs (and descendant branches) to that branch are rebased

on top of the new creation vc. Historical branches do not have to be rebased and

neither do their vcs.

3.3.9 Handling Merge with Locking

As discussed in 3.2, merges represent an operation with a high high possibility of

conflict and if they fail that means a tremendous amount of work was wasted con-

ducting them. merge is virtually equivalent to a table-wise update. This necessitates

a pessimistic (locking) protocol that will guarantee eventual success for a merge op-

eration while in the common case of no merge allow for other operations to proceed

optimistically.

Locking Protocol

Each branch has a long duration lock that supports both shared and exclusive modes.

When a transaction first accesses a branch, if it is for any operation other than a merge

then it acquires the branch lock in shared (S) mode. This allows for concurrent vcs

and branches to go on in parallel. A transaction that merges two branches must

acquire the lock in exclusive (X) mode on both of the branches being merged (for

reasons specified in 3.2). This locks out other transactions that may mutate the

branch in any way and ensures that the merge operation has stable head vcs to

95

operate on to conduct the merge. This also prevent merges into or from any of

the branches being currently merged by any other transaction, concurrent merges

conflict themselves. Once acquired all locks are held until the end of the transaction

after the new global snapshot has been created. If a transaction that previously

accessed a branch for a purpose other than merge now accesses the branch for a merge,

the a lock upgrade request is issued. However, especially in this case, the current

global snapshot could have changed between the time the transaction started and the

time the exclusive locks on the target branches are actually acquired, a vc or branch

workspace change could have occurred and for merge to be successful, not conflict, and

not miss any data that should have been in the merge, the transaction conducting the

merge needs to observe the most recent branch workspaces and intermediate changes

to the version graph that are not in it the global snapshot that it got when it started.

A simple solution would be to abort and retry if a single change is detected, but

this is unnecessary, instead if the actual changes made do not conflict with what the

transaction has already observed then pieces of the current global snapshot can be

added to the global snapshot it started with to create a transactionally consistent

global snapshot that has stabilized (no more concurrent vcs/updates allowed) and

will allow the merge to proceed and succeed. The transaction does not miss any

updates because for it to have acquired the lock all the other transactions had to

have released the lock and this only occurs after the new global snapshot has been

created that incorporates the changes from the transactions that previously held the

lock. This process is called a snapshot reload (reloading the local snapshot from

the current global one). For a transaction with a merge by itself, it is serialized

after all of the transactions that modified the two branches being merged. If the

transaction also modified other branches then this imposes a serialization constraint

and the reload procedure needs to check (using the constraints already tracked for this

transaction, e.g. read/write sets) if given what the transaction has already done and

could do if reloading and subsequently merging would cause a serialization conflict

in which case the transaction that is merging needs to abort. Transactions that were

waiting for the shared branch lock and come after the merge also have to reload

96

for similar reasoning, so that they see the merge vc and base their changes off of

it, otherwise the transaction could create a conflict with something the merge did

(e.g. update the old version of a record that was three-way merged). Similar conflict

detection must be done. Nonetheless, this is all primarily an optimization to reduce

the number of aborts, the simple solution of aborting the transaction if the relevant

parts of the global snapshot changed and trying again holding exclusive locks on the

relevant branches at transaction start works. However, if this approach is taken, it is

best if merges are placed in their own transactions, grabbing exclusive locks to begin

with. To summarize with reloading fewer transactions abort and allows merging to

be conducted in an online fashion (e.g. a transaction touches other branches and then

merges, if a transaction just did a merge it could grabs the exclusive locks and then

obtain the current global snapshot and this would work, but reduces the capability

of a transaction).

Finally and most importantly, since the merge vc and all subsequent vcs are exactly

in the correct state upon tc (there were no concurrent mutations after the exclusive

lock was acquired), these vcs do not need to be rebased and so can be carried over

directly into the next global snapshot (again the workspace bitmaps per segment of

the affected branches are carried over directly to the new global snapshot).

There is also a subtlety with non-historical branches. First, let’s consider a trans-

action merging two historical branches it created. This incurs no overhead and does

not require a reload because these branches are local to the transaction and their

creation vc is not in contention (does not have to be rebased). For a non-historical

vc (as described in 3.2) any change here conflicts with any changes to the originating

ancestor branch. Thus, any change into/from a non-historical branch must forward

all its lock requests to the originating ancestor branches. This applies to branches

created from non-historical branches within the transaction. As an example, if non-

historical branch B is created from A within transaction 𝑇1 and B is branches to

create C all lock requests to C should be redirected to lock requests for A because

this entire lineage has to be rebased based on the concurrent updates to A. Merging

to (to corresponds to acting as the primary) B or C from another branch could con-

97

flict with additions to A created by the rebase (meaning either abort or the merge

would have to be redone). Merging from (corresponds to acting as the secondary)

B or C to another branch could result in the merge missing data that should have

been included in the merge because of a rebase that re-wrote vcs (at the time the

merge was conducted it did not consider the data from A that needed to be included

in B’s head vc because of a concurrent vc to A that caused B’s creation vc to be

rebased). Since to create B, A needed to be locked in S mode, no merge can occur

into A so there is no concern that a new merge vc will become the creation vc of

the original non-historical branch which could create additional complications during

rebase. Also, note that not only do the lock requests have to be forwarded but also

conflict checking must be forwarded appropriately once the lock has been acquired.

3.3.10 Concurrent Indexing

Indexing in Decibel is described in Chapter 2.4, extending it to support concurrency

is as simple as ensuring that the underlying B-Tree index or Hash Index is thread

safe since the mechanism for isolating records from concurrent transactions are the

bitmaps in each immutable global snapshot so it does not matter if the set contains

RecordIds from ongoing transactions, they will be ignored until the next global snap-

shot when the new bitmaps are exposed. Updates of aborted transactions will always

be ignored because of the same reason, but could lead to index bloat if they are left

in place and slow down subsequent lookup so the recovery mechanism must remove

them as in a traditional database.

3.3.11 Advantages of Bitmaps for Isolation

Transaction Internal Consistency

The OCC protocol guarantees external consistency, the execution of all the transac-

tions so far to an outside observer appears serializable. However, the standard OCC

protocol does not guarantee internal consistency for a transaction, that is the data the

transactions reads is always consistent with some serial execution of the previously

98

tced transactions, specifically ensuring that invariants preserved by transactions had

they run serially are not violated when run in parallel. A more strict form of this is

that the transaction does not see any new changes at all since the transaction started.

OCC does not ensure this because consider two transactions 𝑇1 and 𝑇2. 𝑇2 reads

records 𝑅1 and 𝑅2. Then 𝑇1 writes 𝑅1′, 𝑅2′, and tcs. Then 𝑇2 reads 𝑅2′. From an

external point of view, 𝑇2 will abort because 𝑇1’s write set intersected 𝑇2’s read set.

However, 𝑇2 read the old 𝑅1 and the new 𝑅2′ while it was running, which could cause

it operate incorrectly (e.g. divide by 0 when if the transactions had run in any serial

order this would have never happened). The advantage of having a bitmap/snapshot

of the records in the global snapshot the transaction is using is that these bitmaps are

isolated from each other and 𝑇2 will not observe any new updates it does not make

itself, it will only see the state of the database as of the time it started, a transaction-

ally consistent global snapshot. Though MVCC timestamp protocols used in systems

like PostgeSQL provide similar guarantees, Decibel does as well and augments the

OCC protocol.

Elimination of Write/Write Conflicts

Besides using the bitmap to efficiently index records across vcs, there are advantages

to using bitmaps for isolation, one involves eliminating write/write (blind writes)

conflicts for transactions that are executing concurrently (not previously tced) which

under the OCC protocol would cause the transaction to abort (this can also be used

to solve the problem presented in 3.3.7). First, with write/write conflicts it does not

matter which write takes effects in the end state of the database so long as all of the

transaction’s writes across all records and branches appear to take effect atomically.

The main concern with write/write conflicts not being allowed to proceed in parallel

is that all of each transaction’s updates may not be done atomically so the final state

of the database is some mixed state. For instance, let’s say we have two transactions

𝑇1 and 𝑇2 that both write records 𝑅1 and 𝑅2. If the writes to these records go

on in parallel it could be the case because of some scheduler interleaving that the

final effect of the database is 𝑇1’s 𝑅1 and 𝑇2’s 𝑅2 or vice versa when the final state

99

in any serial ordering should either be all of 𝑇1’s changes or all of 𝑇2’s. Thus, the

OCC protocol disallows concurrent writes to the same records. However, this is not

the case with Decibel because snapshots are built atomically and when building the

snapshot all of transaction’s writes take effect (become visible) via bitmap flips on

the appropriate segments, the data is already in place.

This works as follows when building the next global snapshot. Let us say an update

to the same key in the same branch is detected (can be detected by keeping track

of the keys from read/writes of transactions already processed) when incorporating

all the changes for a transaction 𝑇2, so a concurrent transaction 𝑇1 with an update

to the same key had its changes already incorporated into the global snapshot being

built. When incorporating 𝑇2’s write, then the primary key index and current state

of the bitmaps after the incorporating 𝑇1’s changes can be leveraged (see Chapter

2.4) to find 𝑇1’s update’s bitmap location and so unset it in favor of 𝑇2’s update.

That is unset 𝑇1’s bit for that update and then take 𝑇2’s bit for that record. By

flipping bits 𝑇2 has overwritten part of 𝑇1’s changes instead of aborting. Note the

rest of 𝑇1’s changes were still incorporated atomically and it is as if 𝑇2 is occurring

after 𝑇1 even though they ran concurrently, but 𝑇2’s data is already in place (the

record was already appended and it was assigned a unique bitmap location), all that

needs to be done to preform the atomic overwrite of multiple records is by flipping

the appropriate bits. The use of the index can be mitigated a bit if a temporary

in-memory index is built (as in 2.4) but only holds the locations of new records added

by the tcing transactions.

The power and speed of this come from using bitmaps to atomically switch over

to new records atomically in an efficient way by simply flipping bits (assuming the

underlying system can do this atomically and transactionally, the system we imple-

mented as discussed in 4.2 can). This is only one advantage of using bitmaps for

isolation, but one could conceive of many more advantages around similar ideas and

speeding up query processing.

100

3.4 Concurrent Versioned Benchmark

To analyze transaction performance of a concurrent and transactional versioned sys-

tem requires building on the versioning benchmark presented in 2.5.

3.4.1 Overview

In the concurrent case, the utility of branching strategies is unclear since maintaining

the invariant of a particular branching strategy is a synchronization problem of its

own and yields no additional insight about the performance of the underlying concur-

rency control scheme of the underlying versioned database system. For this reason

we augment the versioned benchmark described in 2.5 so that concurrency control

and transactions can also be effectively analyzed. The original versioned benchmark

is utilized to load and build the dataset with a particular ancestry defined by the

branching strategy using a single thread, this is called a Versioned Scenario. Then

the system is opened up to multiple client threads that issue requests to the versioned

DBMS as defined in a Versioned Workload similar to that of YCSBs Core Workload

[21].

3.4.2 Versioned Scenario

As we build the base version structure (described in 2.5), we record information about

the structure being built to help the workload select relevant data to read/write per

branch (e.g., ensure that most of the keys being selected for update are actually part

of that branch and do not become inserts). Specifically, we track:

∙ The branches created.

∙ The keys in every branch. The indexing scheme described in 2.4 is not employed

and instead a full copy of the keys in a branch is made. This is primarily for

simplicity in the key generation mechanisms and scales to moderate dataset

sizes and number of branches.

∙ All the vcs created (required for historical query generation).

101

∙ Since the benchmark supports reading data from specific vcs, if point reads

from historical vcs is enabled it may be the case that a lot of keys requested

based on branch may not exist in the commit requested. To enabled accurate

vc reads, keys in the vcs can also be tracked if requested by the user, this is

called accurate commit mode. Note: this employs the same mechanisms used to

track keys in branches and so can consume more memory in large workloads.

All of this information is encapsulated in a build report object that is then passed

to the Versioned Workload.

3.4.3 Versioned Workload

Once the versioned structure is built a user-specified number of client threads are

created that continuously call into the Versioned Workload to get queries to execute.

The Versioned Workload is a transaction factory: it creates Transaction objects that

encapsulate all the information required to execute the desired transaction. The Ver-

sioned Workload selects the next type of query and makes a call to either the selected

Contention Strategy or the Historical Query Generator to get operands for that query

in the getNextTransaction() method. These calls are lightweight and not a bot-

tleneck. Because the Versioned Workload object only generates the transactions and

does not execute them, the getNextTransaction() method can be entirely protected

by a mutual exclusion lock.

Transactions

We now describe the transactions supported by the benchmark. For each of the

following transactions, the branches and keys involved when referring to transactions

that affect the workspace of a branch (as opposed to historical queries) are derived

from the Contention Strategy. The rest of the queries that query historical vcs created

during the Versioned Scenario/build of the structure rely on the Historical Query

Generator since these reads do not produce any conflicts.

∙ update to a set of records in a branch.

102

∙ read a set of records from a branch.

∙ read-modify-update a set of records in a branch. The transaction first reads

the records and the updates them.

∙ scan a branch, retrieving up to max scan length records

∙ diff a branch, retrieving up to max scan length records

∙ branch a branch, this transaction first makes a vc to the branch being branched

to make the resultant branch non-historical

∙ merge a set of branches. The transaction is started with an intent to merge so

it grabs exclusive locks as the start, vcs the workspaces of the parent branches,

and then executes the merge query.

∙ branch-modify-merge: select a branch, branch it (creating a historical branch),

read and modify a few records from the parent branch, and then merge the

changes back into the parent branch.

∙ branch-historical, creates a historical branch derived from the vc returned

by the Historical Query Generator.

∙ read-historical: read a set of records from a historical vc

∙ scan-historical: scan a historical vc, retrieving up to max scan length records

∙ diff-historical: diff a pair of historical vcs, retrieving up to max scan length

records.

The workload parameter vc frequency controls the frequency at which branch

modification operations (e.g. update, rmw, branch) result in a vc at the end of the

transaction.

103

Contention Strategies

Contention strategies are designed to vary the level of contention between mutator

transactions (e.g. update) in two dimensions, the branches selected and the records

(primary keys) within that branch that are selected. The contention strategy oper-

ation selection functions take as argument client information so that the contention

strategy can make decisions based on the client requesting operands for a particu-

lar type of operation. The contention strategies make use of the build report from

the Versioned Scenario to generate branch names and selected record (keys). New

branches and vcs introduced as a result of transactions from the workload and not

the Versioned Scenario are ignored, so that the set of branches selected remains con-

stant and the selection distributions over these branches make sense to create the

appropriate level of contention.

The first type of contention strategy is the called independent writers contention

strategy. This strategy models no contention between the transactions generated be-

tween clients (and client can only generate one transaction at a time, so no contention

between transactions). Every client gets a disjoint sets of branches to operate on, at

most two (to support merge queries). This type of workload can give a baseline for

the best possible performance a versioned system can achieve.

The second type of contention strategy is called the basic contention strategy. It

selects branches based on a user specified distribution (e.g. uniform, zipfian) and then

based on the branch selects (records) within the branch using another user specified

distribution. With these two parameters, the benchmark can evaluate performance

with varying levels of contention. For instance, a high contention workload selects

the same set of branches and the same set of keys from each branch while lower

contention workloads could select the same braches, but different keys within the

branch or different branches entirely.

Contention Levels:

The following configurations provide minimal, moderate, and high contention.

∙ minimal: uniform distribution for branch selection and uniform distribution

104

for key selection within a branch

∙ moderate: uniform distribution for branch selection and zipfian distribution

for key selection within a branch, or zipfian distribution for branch selection

and uniform distribution for key selection within a branch

∙ high: zipfian distribution for branch selection and zipfian distribution for key

selection within a branch

Historical Query Generation

The Historical Query Generator makes use of the build report to get all the vcs created,

then using a user specified distribution selects vcs for operations at random (the

default is a zipfian, so more recent vcs are selected for analysis). For point reads from

a vc, if accurate vc mode is not enabled the keys assumed to be in the vc are the keys

currently in the branch the vc was made on. The keys are selected from a uniform

distribution by default since selecting keys to read from a historical vc never creates

contention.

3.5 Evaluation

Since Decibel is the first of its kind, there is nothing to compare to so the system

is evaluated with respect to varying the number of client threads for each parameter

analyzed. We evaluate Decibel with transaction support against sequential Decibel

(a single thread that issues commands as quickly as it can) when appropriate. The

reason to not evaluate against sequential Decibel for everything is that sequential

Decibel is naturally faster with one thread since it does no log writes and has no

serialization/isolation overhead between transactions, but cannot support concurrent

updates. They are fundamentally different types of systems. One could compare

transactional Decibel with a trivial implementation of Decibel that supports concur-

reny by grabbing a global database lock, a global lock does not scale, limits concur-

rency, and prevents readers from being concurrent with writers, and so it is not an

105

interesting comparison. Thus, we just analyze how transactional Decibel handles in-

creasing concurrency. Each of the following sections focuses on evaluating the system

with respect to a single or small subset of parameters. Unless otherwise specified

the default parameters for each experiment are as follows. The experiments were run

on a computer with an Intel Xeon 7500 8 core processor and 25 GB/sec memory

bandwidth. We use 4MB pages with 1KB records. When a record is read all of its

fields are read and when a record is updated all of its field are updated. Most of the

dataset is in memory to prevent random reads from incurring a random I/O cost and

skewing read/scan performance. However, for durability, transactions that mutate

the database state must incur log writes which is forced to disk at tc time. Finally,

to further evaluate the user of bitmaps in indexing, the primary key index used for

point/indexed reads and writes is in-memory.

Versioned Scenario Configuration

∙ Branching Strategy: Scientific

∙ Number of branches: 1

∙ Dataset Size: 1GB

∙ Insert/Update ration: 80%, 20%

∙ Aggregate number of vcs (evenly spaced over the dataset): 10000

Versioned Workload Configuration

∙ Update/Read Ratio: 50%, 50%

∙ Contention Level: minimal to moderate (zipfian for branch selection, uni-

form for key selection)

∙ vc (versioned commit) frequency: 20%

∙ Number of transactions to complete: 100000

106

For experiments that use the default number of branches (1), there is only one

segment that contains every record and one bitmap column that tracks changes to

those records. This is to assess the viability of using bitmaps for isolation in this very

simple case.

3.5.1 Read Only Queries

In this section we evaluate transactional Decibel on a set of read only queries, showing

Decibel’s high performance.

Scans

In the section we evaluate parallel scan performance of the workspace of a branch.

The experiment involves a transaction workload of 100 scans and the reports the

aggregate scan throughput (total amount of data scanned divided by amount of time

taken) varying the number of threads. Figure 3-5 shows the results and compares

against sequential Decibel. In this case this is acceptable since the data is immutable.

This also gives a sense of the high parallel read performance. Throughput increases

dramatically with the number of threads, with virtually no overhead and produces

close to 5x as much throughput as sequential Decibel, capping out at data transfer

speeds close to that of the memory bus. This is because each scan can go on in

parallel on each core (scan throughput does not increase when going out to 100

threads because this is much larger than the number of cores) and so the total time it

takes to scan all the records is much lower than sequential Decibel that must execute

each scan one at a time. This makes the aggregate throughput higher. 3-5 also shows

the scan performance of scanning random historical vcs; again this is immutable data

that incurs no overhead to scan.

107

0

2000

4000

6000

8000

10000

1 10 100

M
B

/s
e

c
S

ca
n

n
e

d

Number of Client Threads

Aggregate Scan Throughput over 100 Scans

Sequential Transactional

(a) Aggregate Scan Throughput over 100 Scans

0

2000

4000

6000

8000

10000

12000

14000

16000

1 10 100

M
B

/s
e

c

Number of Client Threads

Aggregate Historical Scan Throughput for

Transactional Decibel over 100 Scans

(b) Aggregate Historical Scan Throughput over 100 Scans

Figure 3-5: Read Only Transaction Scan Performance

Index Reads

Figure 3-6 shows the number of indexed read transactions per second that trans-

actional Decibel can perform. The results are similar to scan performance. How-

108

ever, single threaded transactional Decibel performance indicates that there is some

overhead for basic transaction maintenance, but the system scales as the number of

threads increases. Since point reads consult the bitmap for every read the reason

that the performance is so high is that because the branch workspace bitmap is not

changing and so the transaction does not write to the transaction local workspace

bitmap (causing the branch workspace bitmap that it got from the global snapshot

to be copied). In turn, every transaction shares the same branch workspace bitmap

and the majority of this bitmap is cached by each processor so index lookups incur

little overhead.

0

10000

20000

30000

40000

50000

60000

1 10 100

T
ra

n
sa

ct
io

n
s/

se
c

Number of Client Threads

Read Transaction Throughput

Sequential Transactional

Figure 3-6: Indexed Read Transaction Throughput (transactions/second)

3.5.2 Update Performance

In this section we see how transactional Decibel scales with as the ratio of updates

to reads increases, ending with a transaction workload that is 100% updates. Figure

3-7 shows the results. As the update ratio increases, the transaction throughput goes

down. Even though read queries can be answered without synchronization, writes

must be incorporated into the branch workspace and each transaction touches the

109

same branch (since there is only one). Furthermore, for writes, each bitmap must be

copied so that each transaction has its own local bitmap, which creates a bottleneck.

The runtime is dominated by the updates, individual read latencies are negligible (0

ms), so reads proceed at the throughput specified in 3.5.1. Average update latencies

range from 1-20 ms but as the number of client threads increase more updates are

batched together increasing the throughput. Nonetheless, performance still generally

increases with the number of threads. This is because the batch transaction committer

is batch rebasing updates by many transactions at once and the the batch transaction

committer thread can have parts of the bitmaps cached for even better performance.

Furthermore, since no locks are involves in updating the bitmap to build the next

global snapshot there is minimal cache coherence overhead.

0

1000

2000

3000

4000

5000

6000

1 10 100

T
ra

n
sa

ct
io

n
s/

se
c

Number of Client Threads

Update/Read Mix Transaction Throughput for

Transactional Decibel for Varying Mixes

50/50

80/20

100/0

Figure 3-7: Update Transaction Throughput (transactions/second)

3.5.3 Scalability: Varying vc Frequency

In this set of experiments we evaluate how increasing the vc frequency affects perfor-

mance. Every update has a certain probability of creating a vc in addition to its point

update and we sweep this probability from 0 to 100. This shows that making a vc

110

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 100

T
ra

n
sa

ct
io

n
s/

se
c

Number of Client Threads

50/50 Update/Read Transaction Throughput for

Transactional Decibel Varying Versioned Commit

Frequencies

0%

50%

100%

Figure 3-8: Transaction Throughput (transactions/second) Varying the Frequency at
which Update Transactions Version Commit

incurs very little overhead. This is because of two reasons. First, having each trans-

action just store the deltas on the relevant bitmaps for each vc created eliminates the

overhead of figuring out what additional changes need to be saved to recover the vc.

In addition, the rebasing cost of a vc is minimal. Furthermore, saving these bitmap

deltas as the new global snapshot is being built is cheap because they are not written

out to the corresponding pack files at tc time, instead they are buffered in memory

and so saving vc deltas involves just manipulating a few objects in memory. Second,

regardless of whether a vc is made or not, the branch workpsace must be updated to

include the changes made by a transaction and that is where the time is being spent.

Specifically whether a transaction just updates the branch workspace or updates the

branch workspace and makes a vc, the local changes that the transaction introduced

in either of those cases need to be incorporated in the new global snapshot’s branch

workspace so that these changes are visible to subsequent transactions.

111

0

1000

2000

3000

4000

5000

6000

1 10 100

T
ra

n
sa

ct
io

n
s/

se
c

Number of Client Threads

50/50 Update/Read Transaction Throughput for

Transactional Decibel Varying Dataset Size

1 GB

5 GB

10 GB

Figure 3-9: Transaction Throughput (transactions/second) Varying Dataset Size

3.5.4 Scalability: Dataset Size

In these set of experiments we vary the dataset size. These set of experiments specif-

ically show how the idea of using bitmaps for isolation scales. Figure 3-9 shows that

as the dataset size goes from 1GB to 5GB throughput drops by a little less than a

factor of 2. What this shows is that even though these bitmaps are in-memory and

run length encoded (compressed), giving each transaction that makes an update its

own copy of the bitmap is moderately expensive. Furthermore, if the access pattern

is random, more and more runs of 1s are are interrupted, reducing the effectiveness

of run length encoding. This may also cause run optimizing the bitmap to take more

time. Also, these bitmaps may no longer fit in the processor’s cache and so reading

and writing to the bitmap incurs a memory access. We did not attempt a 100GB

dataset since the bitmap alone would have been 12.5 MB, which is larger than L1

and L2 caches and would occupy half of the L3 cache. Furthermore, each transaction

may need its own slightly modified copy of the bitmap, incurring more overhead. It

is future work to determine how to reduce this.

112

3.5.5 Scalability: Branches

0

2000

4000

6000

8000

10000

12000

1 10 100

T
ra

n
sa

ct
io

n
/s

e
c

Number of Client Threads

50/50 Update/Read Transaction Throughput for

Transactional Decibel Varying Number of Branches

1 Branch

10 Branches

20 Branches

Figure 3-10: Transaction Throughput (transactions/second) Varying the Number of
Branches

Here we see how the system scales with multiple branches. The performance

roughly matches that of single branch performance and maintains the same general

trend of increasing performance with the number of client threads going out to the

number of cores in the machine. This performance can be enhanced if the rebase

procedure between branches in the batch transaction comitter is parallelized as de-

scribed in 4.2.7. However, there is a boost in performance at 100 threads because

more transactions are being batched together and the group of transactions is touch-

ing a small set of smaller bitmaps than in the single branch case. Also, run length

optimizing these smaller bitmaps is faster.

Figure 3-11 shows indexed read only transaction throughput varying the number

of branches. This roughly matches the single branch case and its high performance.

However, another scaling issue related to copying of Hybrid meta data takes over at

20 branches, reducing performance.

113

0
10000
20000
30000
40000
50000
60000

1 10 100

Tra
nsa

ctio
n/s

ec

Number of Client Threads

Read Only Transaction Throughput for Transactional Decibel Varying Number of Branches

1 Branch
10 Branches
20 Branches

Figure 3-11: Read only Transaction Throughput (transactions/second) Varying the
Number of Branches

114

Chapter 4

Versioned Transaction Manager

Implementation

In this chapter we discuss the implementation of the Versioned Transaction Manager.

We first introduce some components in the versioned DBMS that required careful

attention to support high concurrency and then we move on to discuss the architecture

of the versioned transaction manager and how bitmap state is controlled.

4.1 Mechanisms in Decibel for High Concurrency

and Recovery

In this section we discuss the implementation details of some core components of the

underlying storage system and how they deal with and enable high concurrency in

the face of isolation.

4.1.1 Highly Concurrent Append Only Heap File

In an append only file there is a lot of contention on the last few pages of the file and

so even holding a short duration lock on the entire page to ensure that a transaction’s

inserted record gets a unique slot and does not get overwritten by another transaction

becomes unfeasible. Furthermore, threads reading these last few pages should not see

115

a partially inserted record (the record could be tced but because of the java memory

model the changes are not in memory they are in the store buffer) so the requirement

for a memory fence, locks is still required. However, after a page has all its slots filled

it becomes immutable and so locks are never required. Thus, the goal is to have each

thread appending a record to get its own slot without locks, ensure that the contents

of the record are written to memory, and allow readers once the page becomes full to

access the data without locks. The AppendOnlyHeapPage has an atomic counter that

and when a thread wants to insert a record into a page it calls getAndIncrement() to

atomically get an index on the page that no other thread has ever received and no

other thread will get. The thread is then free to write to this slot in the page and no

other thread will over write it. Since the page is just an array of bytes each page has

a thread local ByteBuffer object that it used to access the page’s bytes. Each page

also has a lock bank, one lock per record slot (the minimum possible granularity in

the page) to act as a memory barrier for the inserted record, the thread acquires an

uncontended lock while writing the data to the page in memory. Readers of data on a

page also grab this lock if the page has been modified since it was retrieved from disk

(not been filled yet). After the page has been filled there are no more needs for locks

and reads access the record slots without locking. The AppendOnlyHeapFile keeps

track of which pages have free slots using an atomic integer array that keeps track of

the free count on each page, if a thread fails to get a slot (the counter exceeds the

number of slots on the page) on a page then it consults the AppendOnlyHeapFile free

count integer array around locations that correspond to the end of the file and tries

again. The page counter and the integer array at the file level do not have to exactly

be in sync the file integer array is more a shortcut and the thread will just keep

trying to insert if it observes that the page is full. After an insert the inserting thread

updates the spot corresponding to the page it modified in the file level integer array

atomically. These make reads and inserts extremely fast because multiple threads can

access and insert their records in parallel, writing to disjoint memory locations. When

the end of the file is reached, several new pages are written in batch by one thread (it

acquires an exclusive lock on the page) in batch to minimize page initialization cost

116

and prevent persisted high contention on the last page.

4.1.2 BufferPool Page Eviction during Concurrent Modifica-

tion

Threads currently on a page should not keep a reference to this page when it is

evicted and a page should not be evicted or written to disk when there are threads

currently inserting records into it as those may be captured in the data written to

disk. However, the system should not be prevented from writing the page to disk for

a long duration as this slows down threads waiting for the new page to be brought

into memory. The way this is handled is that prior to any operation on any page

it increments an atomic counter (called the modification counter) particular to that

page and then checks to see if the page is disabled, if so the thread decrements the

counter, does not perform the operation, and waits for the page to be re-enabled.

Prior to writing the page to disk the page is quiesced, the thread writing the page out

sets a disabled flag and then checks the counter and waits for it to become 0. Since

the threads check the other’s variables in reverse order they will never miss each other

and once the disabled flag is set the threads will drain out and the thread can proceed

to write the page out to disk and not miss a modification. This is called quiescing a

page. If the page is evicted it is marked as dead and the next time the thread checks

to see if the page is enabled it will also check to see if the page is dead and if so it

will stop waiting and cause the operation to be re-tried at the next higher level, e.g.

for insert find another empty page and attempt the insert again.

Since pages can be evicted while being read and these pages should not continue

to be referenced for proper memory management, the page iterators must handle a

PageEvictedException that may be thrown when accessing a slot on page in which

case the iterator re-fetches the page and continues iteration right where it left off on

the page.

117

4.1.3 Transaction Managed Page

The system wraps a pages returned by the database files in a Transaction Managed

Page that handles the problems defined in 4.1.2 (encapsulates the access counter,

disabled flag, waiting, and quiesce functionality) so that regardless of the page imple-

mentation it will still always work with the buffer pool. The Transaction Managed

Page also handles the record level WAL logging functionality (logs before and after

images of the record modified) if the concurrency control/recovery scheme requires

it. Since accessing the page pins it from eviction it is ok if the transaction and so the

changes will not make it to disk until a log entry is made.

4.1.4 Logging Module

The DbLogFile is a a general purpose log implementation built to log record level

changes to pages, segment meta data, and version graph meta data. It buffers the

head of the log file in memory using a concurrent queue and also manages log sequence

numbers and the dirty page table required for recovery as per the AIRES recovery

algorithm [62] that is used as part of the Decibel recovery algorithm specified in

4.2.10.

4.1.5 Lock Manager

The system also has a generic multi-granularity hierarchical lock manager [52]. It is

generic (has a generic type that specified the type of object being locked) so any type

of object can be locked and it can be used to support page level locks and record level

locks. The lock manager is deadlock free in that it guarantees deadlock free mutual

exclusion according to the specific of multi-granularity locks (that is if the lock is

able to be acquired then at least one transaction can acquire it, the locking process

does not deadlock itself, this is different from transaction deadlock where transactions

deadlock each other because they are requesting the same locks in different order).

However, it does not have any other progress guarantees besides, and transactions can

be starved, repeatedly fail to acquire the lock. Future work is to make this first come

118

first served, which is stronger than starvation freedom. This is particularly useful in

Decibel’s locking protocol to ensure merge transactions are not infinitely starved.

To support efficient range locking based on key ranges, this lock manager was

used as a primitive to build a key partitioned multi-granularity hierarchical lock [56].

This separates locking key ranges from physical index key-range locking which makes

it easier to develop locking protocols when the underlying index implementation is

opaque to the developer of the database.

4.1.6 vc Bitmap Cache

To speed up checkout times there is a vc bitmap cache in the buffer pool that contains

the materialized bitmaps of recently requested vcs managed in LRU fashion. However,

it is also beneficial to cache vc deltas from the pack files in memory as well since this

aids the reconstruction time of vcs and is less memory intensive. The Versioned

Transaction Manager does this to some extent in the global snapshot it maintains, it

caches recent vc deltas in memory.

4.2 Versioned Transaction Manager Implementation

Details

In this section we discuss the implementation of the versioned transaction manager

that provides transaction isolation. The implementation is in Java. We assume the

version graph and the workspace bitmaps of all branches fit in memory. The latter is

more a requirement since these bitmaps are going to be used for transaction isolation

and so need to be consulted prior to every database access.

4.2.1 Overview

The HybridVersionedTransactionManager is the class encapsulating all the code for

versioned transaction management based on the Hybrid scheme. A transaction be-

gins by calling transactionBegin() on the HybridVersionedTransactionManager

119

which creates the transaction local workspace, the HybridVersionedWorkspace, for

the transaction based on the current GlobalSnapshot. The GlobalSnapshot en-

capsulates a Hybrid storage model object that exposes a transactionally consistent

version graph and branch workspace bitmaps via SnapshotManager objects that rep-

resent the bitmaps. When the transaction’s workspace is created, local workspace

versions of these SnapshotManager objects are created (in copy on write fashion)

that the transaction can modify directly. Every time a transaction tries to access the

database it makes the corresponding call into the HybridVersionedTransactionMan-

ager (e.g. insert, vc, etc.) and the transaction manager then forwards this call

to its HybridVersionedWorkspace that operates on a local Hybrid storage model

object with the appropriate transaction local version graph and SnapshotManager

objects loaded into it. From that point on operations run as in sequential Decibel in

2 with the addition of conflict trakcing provided by the HybridVersionedWorkspace

and the VersionedReadWriteSet. Finally, when the transaction tcs, it calls trans-

actionComplete() on the HybridVersionedTransactionManager. The thread then

executing the transaction validates the transaction’s changes according to the OCC

protocol. If validation fails, the transaction aborts, otherwise it enqueues its changes

for the BatchTransactionComitter to take its bitmap and version graph changes

and build a new GlobalSnapshot so that is changes will be exposed to subsequent

transactions. The BatchTransactionComitter drains the queue and builds a new

GlobalSnapshot containing all the changes of the tcing transactions. For durability

the transacton waits for its log entries to be flushed to disk.

4.2.2 Transaction Manager Hierarchy

The HybridVersionedTransactionManager extends the AbstractOCCTransaction-

Manager which extends the AbstractTransactionManager. The AbstractTransac-

tionManager intercepts all calls to modify the database. It manages moving pages

from memory to disk after the BufferPool evicts them, e.g. quiescing the page and

then writing it to disk. It is also responsible from wrapping retrieved pages from

disk in the TransactionManagedPage. It also provides configuration options for all

120

transaction managers that subclass it, such as enabling logging and how to handle

transaction tc and abort. The AbstractTransactionManager creates a BatchTrans-

actionComitter thread that runs in the background and tcs (or aborts, in the case

of locking protocols it is useful to batch abort to minimize the number of times parts

of the log on disk are accessed) the changes of all the tcing transactions according

to the semantics of the subclass. Transactions that want to tc submit the request to

the BatchTransactionComitter, which returns a TransactionFuture and the trans-

actions wait synchronously (to support scalability in the number of threads waiting

threads go to sleep and wait using Java’s wait() and notify()) for the BatchTrans-

actionComitter to process their request and ensure that their changes are durable

and reflected in the current database state. This includes forcing the log to disk and

by batching several transactions together when the log is forced, the per transaction

cost of durability goes down. Note that not all transactions have to be batch tced

or aborted, for instance, in the case of the HybridVersionedTransactionManager,

read only transactions do change the database and so may not have to wait. Again,

this is configurable by and dependent on the subclass.

The AbstractOCCTransactionManager provides the basic functionality to handle

transaction management according to the Optimistic Concurrency Control protocol.

This include keeping track of read/write sets for active and completed transactions,

and parallel validation for transactions that wish to tc. The AbstractOCCTransac-

tionManager also manages transaction Workspace objects for each transaction via a

WorkpsaceManager object. The WorkpsaceManager generates new Workspace objects

for transactions according to semantics of the specific implementation. All operations

intercepted by the transaction manager are directed to the transaction’s workspace

and then after validation those changes are exposed to transactions that subsequently

start. It also provides the ability for transactions that retry after a validation failure

to proceed without conflict by causing any transaction that is attempting to read or

modify a value that the failed transaction attempted to modify to block, waiting for

the earlier transaction to complete.

The HybridVersionedTransactionManager has a HybridVersionedWorkspace-

121

Manager that encapsulates a GlobalSnapshot object which encapsulates all the in-

formation required to access the current serializable snapshot of the database state.

It is on top of this that the HybridVersionedTransactionManager tc procedure in-

corporates all the changes of transactions that have passed validation to create a new

serializable GlobalSnapshot. This new GlobalSnapshot is atomically released to

new transactions via the HybridVersionedWorkspaceManager using a AtomicRef-

erence, the partial results of a transaction are never exposed.

4.2.3 Hybrid State

Before we discuss the Global Snapshot in detail, an understanding of the state re-

quired by the Hybrid storage model is required. To reduce complications, no new head

segment for the parent branch is created upon branch. This means that there are

O(number of branches) segments and all updates to a branch go to its original seg-

ment. New branches get their own segments to store data particular to that branch.

We continue to use the columnar approach to bitmap storage and representation. Be-

cause of the columnar approach, not creating a new segment on branch of the parent

branch is justifiable since no vacuous 0s are introduced into the columns for the child

branches, the 0’s are implicit since no new records for the child branch are inserted

into the parent segment or ancestor. Thus, full Hybrid performance is still achievable

and complexity is reduced.

Snapshot Managers

The most fundamental component is the SnapshotManager, it encapsulates and man-

ages snapshots of the workspace bitmaps, corresponding to different vcs. There is one

SnapshotManager per branch that tracks the segment membership in a branch, which

segments belong to a particular branch as discussed in 2.3.4. This is called the branch-

membership snapshot manager. After branch creation (where the new branch inherits

all the segments of all its parent), this may change as a result of a merge where a

branch must now track segments from a branch in a disjoint subtree of the version

122

graph. There is also one SnapshotManager per branch (bitmap column) on every

segment that tracks records for that branch. As records are updated and moved from

parent segments to the target branch’s segment, the ancestor segment’s snapshot

managers’ workspaces for the target branch are updated (flipping the corresponding

bits to 0) and the snapshot manager for the target branch on its own segment is

updated to reflect the addition of a new record. Controlling the bits exposed by these

SnapshotManagers controls the snapshot of the database a transaction can view. Op-

erations on a SnapshotManager include that ability to add() and remove() tracked

locations in a segment for a branch (remember that the bits in these bitmap columns

correspond to physical locations in a segment file that represent records that belong

to a particular branch in that segment). These modifications go to the workspace

for the SnapshotManager that reflects the current state (accumulated changes across

all of time) of the bitmap column. These workspaces are snapshotted during a vc

(versioned commit) operation (to enabled reconstruction of a particular vc). How

the snapshot process works is dependent on the snapshot manager implementation.

The SnapshotManager used in 2.3.4 stored a snapshot to a pack file by only writing

out the delta between the last snapshot and the current workspace. The snapshoted

workspace can then be reconstructed by replaying the deltas on the initial vc (initial

workspace), which is also written to the pack file. Finally, the SnapshotManager

supports retrieving particular snapshots based on a vc identifier.

vcs (Versioned Commits)

vcs on a branch are totally ordered by a commit tag number, representing the vc

number on that branch. So a globally unique vc is identified via (branch id, commit

tag). A vc involves snapshotting all the SnapshotManagers on the relevant segments

for a branch. The SnapshotManager’s use these commit tags to determine what

snapshot to re-create. Since a vc involves a snapshot of every SnapshotManager

belonging to a branch, it would seem that the commit tag corresponds exactly with

the snapshot number to reconstruct on every segment. This is true if the branch

is never merged, if the set of segments included in a branch never changed. After a

123

merge procedure, the set of segments included in a branch may grow and if the branch

had previous vcs then the commit tag 1 has no meaning for the SnapshotManager

on the newly tracked segments since the segments’ SnapshotManagers do not have

a snapshot for commit tag 1. Thus, these global commit tags must be translated

to segment local commit tags that map to an actual snapshot number that the

SnapshotManager can reconstruct. This is done by keeping a per segment tracking

commit tags map that specifies the global commit tag at which this segment started to

be included in the branch (the map maps from branch identifier to global commit tag

at which this segment started to be a part of the branch). This acts as an offset so that

subsequent vcs map to the correct snapshot numbers per segment SnapshotManager

for that branch. For instance, if branch B has global commit tag 10 (and so B’s head

segment SnapshotManager has 10 snapshots) and it is merged with branch C that

introduces a new segment, call it 2. At global commit 10 segment 2 has no snapshots,

but at commit 11 for branch B, branch B’s SnapshotManager on segment 2 will have

1 snapshot, but the tracking commit tag for branch B on segment 2 is 10. Thus, to

restore to commit tag 11 we restore B’s head segment SnapshotManager to snapshot

11 and then translate the current global commit tag to a segment local commit tag

for segment 2 as follows, the snapshot number for branch B on segment 2 is: (global

commit tag for the desired snapshot) - (tracking commit tag for branch B on segment

2 (10)) = 1, mapping to the correct snapshot number that the SnapshotManager on

segment 2 can reconstruct for branch 2.

Transaction Manged Master Workspace Snapshot Manager

Though the snapshot managers provide the ability to create new dataset snapshots,

an additional layer is required to support transactions and control how workspace

changes and new snapshots are exposed. The TransactionMasterWorkspaceSnap-

shotManager wraps a SnapshotManager object (that is implemented to store version

information efficiently). It is used to atomically incorporate or rebase bitmap changes

made by concurrent transactions and expose bitmap column changes to subsequent

transactions. Specifically, it has an atomic reference that contains the current trans-

124

actionally consistent state of the bitmap column. It then has a workspace bitmap

that is an exact duplicate that can be written to by the BatchTransactionCommitter

thread to take changes from concurrent transactions that have modified that bitmap

locally in their workspace and build a new workspace bitmap that reflects the new

transactionally consistent state when building the new global snapshot. Once the

new workspace is completely updated the atomic reference switches over to a copy of

the current workspace state to atomically expose all the bitmap changes. This will be

discussed in more detail, but this is description just gives a sense of what is happen-

ing to update bitmaps. The key point is there is an isolation between the currently

publicly visible state (i.e. visible to new transactions) and the new transactionally

consistent state being built to ensure that new changes can be incorporated without

blocking transactions that just want to read the state.

To enhance performance the SnapshotManager wrapped by the TransactionMaster-

WorkspaceSnapshotManager is a ConcurrentBufferedSnapshotManager. This snap-

shot manager buffers recent vc snapshots in memory in a manner equivalent to 2.3.4,

it buffers deltas in memory and an aggregate delta of all the deltas currently on

disk. This speeds up checkout, or snapshot recreation time for recent snapshots

since the pack file on disk does not need to be consulted. Also, since these deltas

are immutable, it admits the possibility of concurrent snapshot reconstruction of

recent snapshots. The TransactionMasterWorkspaceSnapshotManager also caches

recently reconstructed and accessed snapshots in their entirety in the BufferPool to

further increase performance.

Additional Hybrid State

The additional state maintained by the Hybrid storage model is:

∙ versionGraph object which contains all of the version graph information, i.e. vc

nodes and edges between them representing full lineage tracking.

∙ segmentIdGenerator which is an atomic integer used to generate unique seg-

ment numbers that can be referenced in the branch-membership. This variable

125

needs to be atomic because it is shared by all concurrent transactions that are

generating new segments for new branches and so need to atomically generate

a unique segment number.

∙ branchMembershipMap which maps from a branch id to its branch-membership

snapshot manager.

∙ branchIdToInitialSegmentNum which maps from a branch id to the original/dedicated

segment that should hold new records/updates for that branch.

∙ segmentIdToSegment maps a particular segment id to the corresponding Seg-

ment object.

The additional state maintained per Segment object is:

∙ AppendOnlyHeapFile object that represents the underlying data file for that

segment that records can be concurrently appended to by concurrent transac-

tions. This is thread safe and shared by all transactions inserting data into this

segment. Again, what controls visibility of these records are the bitmap column

snapshot managers.

∙ columnNumberGenerator is an atomic integer that generates column numbers

for new snapshot managers for this segment. New snapshot managers for a

segment are introduced when branches are created or merged. This is shared

between all concurrent transactions and needs to be globally unique to ensure

that concurrent branches of the same branch get disjoint columns, which makes

reconciling concurrent changes easier.

∙ trackingCommitTags as discussed in 4.2.3.

∙ branchIdToColumn which maps a branch id to the corresponding unique column.

∙ SegmentBitMap which holds the relevant SnapshotManager objects for the branches

currently visible to a transaction and uses a columnNumberToSnapshotManager

to get the appropriate snapshot manager corresponding to a branch that has a

126

particular column on a segment. It can be the case that a branch has a different

column number on different segments, but that is ok. All that is required is

that we can map a branch to the correct column on each segment.

It is important to note that the system adopts a "share what can be shared"

philosophy. Some objects are shared to minimize transaction start cost and ensure

synchronization (e.g., with the columnNumberGenerator between the transactions),

while other objects are copied to avoid exposing new effects produced by concurrent

transactions, giving each transaction an isolated state. This is discussed more in

4.2.4.

4.2.4 Global Snapshots and Transaction Start

Now the reader is able to understand the essence of a GlobalSnapshot. We walk

through the basic elements of a GlobalSnapshot and how transactions convert this

immutable snapshot of the database state into a workspace to which they can write

and read their own changes that are isolated from concurrently running transactions.

At the most basic level, the GlobalSnapshot is a Hybrid storage model object where

each snapshot manager is a TransactionMasterWorkspaceSnapshotManager. It also

holds a snapshot number which is the system defined transaction number (according

to the OCC protocol) of the last transaction that had an effect in building the Glob-

alSnapshot. The tced transactions that this transaction’s changes must be validated

against include only the transactions with transactions numbers later than this snap-

shot number of the snapshot the transaction started with (the tced transactions since

it started) and the transactions running concurrently with it. This GlobalSnapshot

is immutable and replaced when a new GlobalSnapshot is created.

When a transaction begins a HybridVersionedWorkspace is generated to hold all

the isolated changes for the transaction. A HybridVersionedWorkspace contains a

lightweight mutable copy of the Hybrid storage model object in the current Global-

Snapshot.

The following hybrid state is shared by all copies: AppendOnlyHeapFile, segmen-

127

tIdGenerator, columnNumberGenerator. All the TransactionMasterWorkspaceS-

napshotManager are converted to TransactionWorkspaceSnapshotManager that are

initialized from the currently publicly visible bitmap exposed by the Transaction-

MasterWorkspaceSnapshotManager and hold all the changes made by the transac-

tion isolated from other transactions (the initial bitmap is copy on write). The rest of

the state is copied to ensure that transactions get a transactionally consistent view of

those data structures. For instance, the branchIdToColumn and branchIdToInitialSeg-

mentNum are copied to prevent exposing new branches from concurrent transactions.

This also means that these structures do not have be thread safe, reducing the syn-

chronization cost. However, it is important to note that the AppendOnlyHeapFile

per segment is shared by all transactions so that the transactions all insert their data

into the same, correct file backing the segment. This is why the AppendOnlyHeapFile

had to be very high performance and support high throughput concurrent inserts at

the page level. Remember, though the transaction’s data is physically inserted to

the same file, isolation is guaranteed by the workspace bitmaps of the correspond-

ing TransactionWorkspaceSnapshotManager which is local to the transaction and

initialized from a transactionally consistent global snapshot.

As for the versionGraph, the version graph is not copied since after several thou-

sand vcs this becomes a bottleneck. Instead, the version graph is split up into two

parts, a commonVersionGraph and a workspaceVersionGraph, whose union represents

the complete version graph view with respect to the transaction. The commonVer-

sionGraph is shared directly by all transactions and all new additions to the version

graph are directed to the workspaceVersionGraph, a separate version graph object.

Both of these graphs are wrapped in a VersionGraph object that is also augmented

with a map that maps from the a branch identifier to the current head vc identifier for

that branch as of when the transactionally consistent GlobalSnapshot created and

exposed. When a transaction needs a complete view of the version graph (e.g. for

merge operations), it looks at the graph union of the workspaceVersionGraph and the

commonVersionGraph. To ensure connectivity, the workspaceVersionGraph is initial-

ized with nodes corresponding to the head vcs of all branches. To discover the version

128

graph changes made by a transaction, only the workspaceVersionGraph needs to be

explored, excluding the head vcs that existed at the time the transaction started.

Given a transactionally consistent, isolated lightweight mutable copy of the Hy-

brid storage model object in the GlobalSnapshot, the transaction can proceed as

in sequential Decibel applying the same algorithms to this snapshot. The Trasnac-

tionWorkspace then forwards all writes/reads to this local snapshot and tracks the

changes for validation purposes when the transaction tries to tc.

4.2.5 Transaction Workspace and Dependency Tracking

As discussed, the transaction workspace is primarily comprised of a lightweight mu-

table copy of the Hybrid storage model object in the GlobalSnapshot and additional

dependency tracking to ensure serializability. We now describe this process in more

detail.

TransactionWorkspaceSnapshotManager

As discussed in 4.2.4 all the TransactionMasterWorkspaceSnapshotManager are

converted to TransactionWorkspaceSnapshotManager that are initialized from the

currently publicly visible bitmap exposed by the TransactionMasterWorkspaceS-

napshotManager and hold all the changes made by the transaction isolated from

other transactions. We now discuss this in more detail.

A TransactionWorkspaceSnapshotManager is a new SnapshotManager object

that is designed to act like a traditional SnapshotManager with respect to the con-

currently executing transaction. It provides a transactionally consistent view of that

SnapshotManager’s current state that allows a transaction to read its own changes,

but have its own changes be isolated from other transactions. It does this by start-

ing in a transactionally consistent state, as per the snapshot of the bitmap column’s

workspace exposed by the corresponding TransactionMasterWorkspaceSnapshot-

Manager. This initial snapshot is copy-on-write. That is all read-only transactions

share the same immutable initial snapshot, while transactions that mutate the state

129

need their own local copy so that its changes to the bitmap workspaces are iso-

lated. Now this is primarily an optimization so that transactions that make multiple

changes and then want to scan a branch can do so easily and efficiently. That being

said, the transaction’s changes across all its vcs are not stored in their entirety as

that would require a substantial amount of memory. This also slows down the rec-

onciliation procedure that incorporates a transaction’s local changes when building

a new GlobalSnapshot, discussed in 3.3.6 and 4.2.6 since to figure out the non-

conflicting changes (as determined by validation) made by a transaction requires

XORing large bitmaps that are mostly the same (specifically the one corresponding

to the vc and the workspace bitmap the TransactionWorkspaceSnapshotManager

got from the TransactionMasterWorkspaceSnapshotManager when its lightweight

copy of the GlobalSnapshot was created). Instead, only the deltas made to this base

bitmap workspace by the transaction are stored in memory. Specifically, every time

a bit is flipped from an insert, update, or delete to a record, that delta is recorded in

a set of deltas since the workspace was initialized or last reset, called the workspace

delta. When a vc is made, this delta set is snapshotted and stored in a list of vcs

made by this transaction and the workspace delta is reset. It is important to note

that because these updates may be sparse, it is better to use a structure like Hash-

Set<Integer> to store these detlas. This list of vc deltas and the workspace delta

is stored by the TransactionWorkspaceSnapshotManager in a BufferedDeltaSnap-

shotManager object.

To support retrieving a particular snapshot based on a snapshot number, the

TransactionWorkspaceSnapshotManager is initialzied with the current last snap-

shot number that was installed in the TransactionMasterWorkspaceSnapshotMan-

ager, this represents the last valid snapshot of a vc that was solidified, existed prior

to the transaction’s start, call this lastSnapNum. The next snapshot number gen-

erated by the TransactionWorkspaceSnapshotManager vc procedure will be last-

SnapNum + 1 (the next snapshot number had this transaction run serially given the

current state, note that these snapshots may have to be rebased and so the snap-

shot numbers will change when they are incorporated to build the next global snap-

130

shot) and subsequent snapshots continue to increment this. Thus, when a snapshot

with 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑁𝑢𝑚 ≤ 𝑙𝑎𝑠𝑡𝑆𝑛𝑎𝑝𝑁𝑢𝑚 is requested, the request is forwarded to the

TransactionMasterWorkspaceSnapshotManager object that in turn forwards the re-

quest to the SnapshotManager that holds all of the previously created snapshots. The

reason it is forwarded to the TransactionMasterWorkspaceSnapshotManager object

is so that the TransactionMasterWorkspaceSnapshotManager can control access to

the SnapshotManager that backs its, providing necessary synchronization if necessary

(the SnapshotManager that backs it does not necessarily have to be thread safe). Also,

to reduce snapshot reconstruction time for this solidified snapshots, the Transac-

tionMasterWorkspaceSnapshotManager caches the snapshots it reconstructed in the

BufferPool which it can later retrieve. To retrieve a snapshot with 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑁𝑢𝑚 >

𝑙𝑎𝑠𝑡𝑆𝑛𝑎𝑝𝑁𝑢𝑚, requires first retrieving the snapshot corresponding to 𝑙𝑎𝑠𝑡𝑆𝑛𝑎𝑝𝑁𝑢𝑚

and then applying all the deltas buffered by the TransactionWorkspaceSnapshot-

Manager’s BufferedDeltaSnapshotManager between 𝑙𝑎𝑠𝑡𝑆𝑛𝑎𝑝𝑁𝑢𝑚+ 1 and the de-

sired 𝑠𝑛𝑎𝑝𝑠ℎ𝑜𝑡𝑁𝑢𝑚.

When a new branch is created, the SnapshotManager created for each relevant

segment is a TransactionWorkspaceSnapshotManager. Then when the transactions

local workspace is merged to build a new global snapshot, this is upgraded to a

TransactionMasterWorkspaceSnapshotManager. This also happens when a merge

causes a new segment to be tracked for a particular branch (remember a new Snap-

shotManager has to be generated in this case).

Given this type of workspace for bitmap column SnapshotManager workspace

isolation and the fact that new records appended to the same AppendOnlyHeapFile for

a particular segment are not visible unless they appear in a bitmap column visible to

the transaction, bitmaps have effectively and Decibel’s natural versioning primitives

have been leveraged to provide isolation.

Tracking Dependencies: Versioned Read Write Set

Now we delve into how serialization conflicts are tracked, based on the theory dis-

cussed in 3.2. Before we introduce the notion of a VersionedReadWriteSet, we

131

discuss a typical ReadWriteSet. A standard ReadWriteSet simply have two sets of

key, the set of primary keys of records that the transaction read, called the read set,

and the set of primary keys of records that the transaction wrote, called the write set.

It is worth noting that if primary keys are integers and non-negative (which they are

likely to be in most relational databases), then the ReadWriteSet can be represented

compactly using compressed bitsets (bitmaps).

A VersionedReadWriteSet extends this by having a ReadWriteSet per branch

to determine point read/write conflicts per branch. Validation of point reads and

writes in this case are by looking at the intersection of the branches accessed between

the two transactions being validated and then for each branch that both of them

accessed validate the corresponding ReadWriteSets in the typical manner. It also

tracks branches created and branch level data (e.g. diff) and version graphs reads

(e.g. listCommits() or listBranches) using HashSets of branch identifiers. The

same branch access intersection detection and validation is applied again here when

validating these branch level operations. To handle Non-Historical Branch Conflicts

the VersionedReadWriteSet maintains a map that maps the Non-Historical Branch

to the first ancestor branch that made a branch in its lineage Non-Historical (it

may be useful to this point to review 3.2). This is the branch with which that

Non-Historical branch has to check conflicts with. When validating a transaction’s

VersionedReadWrite against that of another transaction, it must check the Non-

Historical ReadWriteSet and branch level operations against the other transaction’s

ReadWriteSet corresponding to the ancestor witch which the Non-Historical conflicts.

It also needs to validate against the branch level operations as well in the same way.

The validation must do this for every non-historical branch, so validation in this case

is expensive.

Tracking Dependencies: Hybrid Versioned Workspace

The HybridVersionedWorkspace detects places where possible conflicts may occur

and then adds them to the VersionedReadWriteSet accordingly. Specifically it main-

tains two sets, branchesToTrack and commitsToTrack which contain the branch and

132

vc identifiers, respectively, of the branches and vcs that should be tracked for possible

data conflicts, i.e. operations that involve these vcs need to report what was accessed

or non-historical branch conflicts to the VersionedReadWriteSet. For instance, every

scan or point read from a branchesToTrack or commitsToTrack must have the primary

keys of the records read added to the read set for the corresponding branch in the

VersionedReadWriteSet (similar reporting is done from records updated in a branch,

except those primary keys are added to the write set for the branch). This is done by

the TransactionManagedVersionedScanner that wraps the versioned iterator that

scans over the data in the desired vc or branch. Every record that is accessed by

the underlying iterator is passed to the HybridVersionedWorkspace which extracts

the primary key and adds it to the read set for the corresponding branch. To handle

multi-vc and multi-branch scans, the ability for the Hybrid to efficiently report all

the versions in which a record belongs is used so that if a record belongs to multiple

branches it is added to the read set for all of those branches. Note that none of this

overhead is required to scan vcs that existed prior to the start of the transaction since

they have been solidifed and are serializable so do not need to be tracked, in turn the

underlying file iterator can be access directly and full scan/read performance can be

achieved.

branchesToTrack is initialized to hold every branch in the global snapshot copy

the transaction acquired. commitsToTrack is initially empty. When a vc is added to

a branch in branchesToTrack, the vc is added to commitsToTrack. To detect non-

historical branches, the HybridVersionedWorkspace maintains a map from branch

identifier to ancestor branch for which conflicts may arise, called the branchToCon-

flictingAncestor map. It is initialized with every branch that existed in the global

snapshot copy being mapped to itself. When a branch operation branches a vc in

commitsToTrack, the branch this vc was made on is retrieved (it is actually stored

in the vc identifier object) and the ancestor branch it conflicts with is looked up in

branchToConflictingAncestor. Then, a new entry is added that also maps the new

branch to this ancestor branch. This constraint/conflict is also added to the Ver-

sionedReadWriteSet for checking during validation against other transactions.

133

Note that the vcs created before the start of transaction are not in commitsToTrack

and so historical branches never have to undergo this added dependency tracking

and scans, reads, or updates of their data or vcs never incur any overhead and the

underlying file iterator can be access directly and full scan/read performance can be

achieved. Also, note that branching of a branch directly without a vc first to that

branch is not allowed because it breaks the lineage tracking of the branch as discussed

in 3.2, so the system only needs to concern itself with branches derived from vcs.

Merge Locking

The system has branch locks, utilizing the lock manager presented in 4.1.5. Whenever

a branch is accessed for a merge operation, it uses branchToConflictingAncestor to

forward lock requests to the correct conflicting branch as specified in 3.3.9. Once

the exclusive lock is acquired the new global snapshot is retrieved and checked for

any changes on either of the branches that are being merged and the transaction is

aborted in a change is detected. A change can be detected using a version vector

with one slot per branch that is incremented (by the BatchTransactionComitter

if a tcing transaction had a modification to that branch. The end version vector

is then associated with the GlobalSnapshot that can be retrieved after the merge

lock is acquired. Analogously, if a transaction that just wants to modify a branch

(i.e., branch, vc, update), it uses branchToConflictingAncestor to get the correct

lock to grab and checks for a merge vc on the desired branch (or conflicting ancestor)

and aborts if one is detected (merge vcs are stored in a sorted map per branch in the

VersionGraph object so the transaction can use the current head vc commit identifier

to determine if there have been any subsequent merge vcs after this).

4.2.6 Global Snapshot Reconciliation In Detail: Merging a

Transaction Local Snapshot into Global Snapshot

Now we discuss the implementation of the algorithm for taking a transactions local

workspace changes and incorporating them into the current global snapshot to build a

134

new global snapshot which was presented in 3.3.6 (the reader is encouraged to review

this before proceeding). Remember this procedure just takes the changes of a single

transaction and incorporates it into the new global file.

This process starts by creating a lightweight copy for replacement of the current

GlobalSnapshot. This is different from the copy acquired by a new transaction.

For the most part the same things are copied and shared, except the commonVer-

sionGraph and TransactionMasterWorkspaceSnapshotManagers can be accessed di-

rectly (no TransactionWorkspaceSnapshotManagers are produced).

Updating the Version Graph

After vcs are rebased, if necessary, new vc identifiers are generated and then the com-

monVersionGraph is updated to include these new vcs and the edges between (based

on how the old vcs where connected in the transaction’s worksapce). To prevent these

vcs becoming visible to transactions that are using the commonVersionGraph in their

workspaces, the transaction’s VersionGraph object masks the commonVersionGraph

such that no vc added after the transaction started is visible in the union of the com-

monVersionGraph and the workspaceVersionGraph (this is done through mechanisms

provided by the graph library being used) [1].

Rebasing Regular vcs

A regular vc is a vc that is not a merge or branch creation vc, those cases are discussed

subsequently. Rebasing a vc involves simply rebasing all the snapshot managers cor-

responding to this branch on every segment tracked by this branch. At this point

when a new vc (that is not a merge or a branch creation vc) is being added all depen-

dencies that could have affected branch-membership for the branch the vc is on have

been applied (this is true because vcs are processed in topologically sorted order).

Thus, all the segments that are relevant to this vc are in the new GlobalSnapshot’s

(that is being built) branch-membership TransactionMasterWorkspaceSnapshot-

Manager’s workspace for the branch the vc is on. Thus, using the segments listed

here, we rebase each TransactionMasterWorkspaceSnapshotManager per segment

135

as follows.

1) Given a delta corresponding to a vc that the transaction made, this delta is

XORed into the workspace for the TransactionMasterWorkspaceSnapshotMan-

ager, then a new snapshot is created. To optimize, the vc delta is passed along to

the SnapshotManager that backs the TransactionMasterWorkspaceSnapshot-

Manager. The backing SnapshotManager may also be keeps an aggregate delta of

all the workspace changes from previous transactions since the last vc processed.

Before creating the snapshot based on the delta reported by the current transac-

tion, the SnapshotManager will XOR the aggregate delta into the reported delta

for the vc and this creates the new effective vc delta for that vc. The new vc

needs to include all the previously unvced changes by previous transactions that

may have executed concurrently, but did not produce update conflicts, so that

the resultant snapshot is a valid snapshot with respect to the history of branch

changes by previous transactions. Once a vc delta is created that includes all of

these changes the deltas for subsequent vcs do not need to include the aggregate

delta and the aggregate delta is reset.

2) 1) is repeated for every vc delta that the transaction produced.

Remember updating the workspace of the TransactionMasterWorkspaceSnap-

shotManager is ok because the TransactionMasterWorkspaceSnapshotManager has

a separate snapshot object that represents the last transactionally consistent snap-

shot of the workspace that is currently exposed to all transactions as part of the

previous GlobalSnapshot and this is immutable and separate from the workspace of

the TransactionMasterWorkspaceSnapshotManager that is currently being written

to.

Updating Workspaces

After rebasing vcs for a transaction, if the transaction made any changes to any

of the workspaces of the TransactionWorkspaceSnapshotManagers that were not

136

part of any vc then this final workspace delta is XORed into the workspace for the

corresponding TransactionMasterWorkspaceSnapshotManager so that next global

workspace released reflects the most recent unvced changes of the the transaction.

Branch Initialization

Whenever a new branch is detected, the parent vc identifier from which the branch was

derived, the derivation vc, and the transaction’s Hybrid storage model object, called

a HybridDbFile are analyzed and the HybridDbFile of the current GlobalSnapshot

is updated in the following way:

∙ Based on the Segment object local to the HybridDbFile of the transaction, a

new Segment object is created that is essentially empty, but refers to the same

underlying AppendOnlyHeapFile that contains the branch’s new data. Then

branchIdToInitialSegmentNum is updated so that it refers to the new segment.

∙ A new branch-membership TransactionMasterWorkspaceSnapshotManager is

created and initialized based on the branch-membership SnapshotManager of

the parent branch at the snapshot specified by the derivation vc. Then the

workspace for the branch-membership is updated to include the new segment id

and then a new snapshot is created.

∙ Now based on the complete initial branch-membership, the branch is initialized

on every segment that has data belonging to that branch (more segments could

be added at a later vc as a result of a merge).

Branch initialization per Segment proceeds as follows. Again the parent vc iden-

tifier from which the branch was derived, the derivation vc, and the corresponding

Segment from the transaction local HybridDbFile’s file, call it other, are referenced

during this process.

∙ Creating a new TransactionMasterWorkspaceSnapshotManager initialized based

on the parent branch’s bitmap for this segment at the derivation vc. Note that

137

subsequent rebasing of this branch will bring its state up to date on all Snap-

shotManagers. Thus, the TransactionWorkspaceSnapshotManager has been

upgraded to a TransactionMasterWorkspaceSnapshotManager.

∙ The SegmentBitmap is updated to include the new TransactionMasterWorkspace-

SnapshotManager at the appropriate column (branchIdToColumn is also up-

dated).

∙ trackingCommitTags is initialized so that the new branch is tracked on this

segment starting at vc 1.

Merges

Handling merge vcs proceeds like branch initialization (for the primary parent, the

branch that was modified as a result of the merge) for new segments that now need

to be tracked as part of the branch except the new TransactionMasterWorkspaceS-

napshotManager is initialized to the bitmap of the corresponding Transaction-

WorkspaceSnapshotManager at the merge vc snapshot. Since a transaction had an

exclusive lock on the branch at the time the merge was conducted, the bitmaps can

be transferred over directly to the new TransactionMasterWorkspaceSnapshotMan-

ager. Also, the tracking vc tag on this segment is set to the value of the tracking vc

tag on the transaction’s local segment object.

If a segment already had a TransactionMasterWorkspaceSnapshotManager for

the primary parent then the current workspace is rebased based on the merge vc delta

and a new vc snapshot created.

The branch-membership for the primary parent is also rebased so that it includes

the new segments that it tracks.

Exposing Changes

After the changes from all transactions are rebased and the workspaces of all branches

updated (all the corresponding TransactionMasterWorkspaceSnapshotManager workspaces

are updated), the changes introduced by all the transactions must be exposed to

138

subsequent transactions. The challenge here is that the changes to every Transac-

tionMasterWorkspaceSnapshotManager for every segment must be released atom-

ically. Remember, when a new snapshot is built, a lightweight copy of the current

GlobalSnapshot is created. For simplicity, we stated that the TransactionMaster-

WorkspaceSnapshotManager was passed along directly. However, a lightweight copy

of the TransactionMasterWorkspaceSnapshotManager was actually created with its

data backed by its parent copy: the data was not copied, a new object was just cre-

ated so it could be manipulated independently. This is so a new atomic reference

that holds the current transactionally consistent state of the bitmap column will be

created and will be separate from the one that transactions can access via the current

GlobalSnapshot. Thus, the new snapshot that will be available to transactions can

be placed in this new reference and not yet exposed to concurrent transactions. Once

all these snapshots per TransactionMasterWorkspaceSnapshotManager are in place,

the GlobalSnapshot is atomically replaced itself via the globally accessible atomic

reference, and now the changes of all transactions have been incorporated to build a

new GlobalSnapshot and have been released to subsequent transactions.

4.2.7 Batch Transaction Committer

When transactions are ready to tc they submit their workspace to the BatchTrans-

actionCommitter thread that makes a lightweight copy for replacement of the current

GlobalSnapshot and then merges in all the changes of every transaction that is read

to tc to build a new GlobalSnapshot that reflects the changes of all the transactions.

Then all changes are exposed atomically by replaced the current global snapshot with

the new one.

This is simple and justifiable because all of the transactions data changes are

already installed, all that needs to be done is patch the version graph and update the

bitmaps on the affected segments. Furthermore, since these bitmaps are compressed

and are in a representation where they are stored contiguously in-memory, the Batch-

TransactionCommitter has cache locality when accessing an updating the bitmap.

It also in a sense batch rebases all the vcs of all the transactions of a tcing transaction.

139

This is a general purpose solution which is designed to handle arbitrary version graph

changes in an efficient way by batching changes. The BatchTransactionCommitter

also forces the head of the log to disk for durability and so amortizes the cost of disk

writes over many transactions.

However, this means that writes to different branches need to wait on each other,

but controlled parallelism can be applied here. There can be a committer thread per

group of branches and if a transaction writes to only the branches in one of those

sets, then its changes can be processed in parallel with the other batch committers.

However, if a transaction’s changes involve changes to branches in two different sets

then the transaction’s changes have to be processed after the other batch committers

have finished by a master batch comitter than integrates the final changes. However,

for the common case of independent branch writes, full performance can be achieved

and rebases to that branch are effectively batched. This also simplified complexity in

handling transactions that affect many branches.

As a final note, there is also a background log flusher thread the flushes the log

to disk in the background. This helps speed up transaction tc time because as the

committer is processing the bitmap changes, the log flusher flushes and forces the log

to disk so that when the committer finishes building the next global snapshot, all the

required changes are already on disk and the comitter does not have to force the log

to disk.

4.2.8 Transaction Abort

Since a transaction’s deltas are buffered in memory (which is reasonable since these

deltas can be compressed) and the deltas are never exposed until tc (merged into a

new GlobalSnapshot), transaction abort simply involves discarding the in-memory

changes to bitmaps that the transaction performed, no-undo is required. However,

this does leave some slots in the segments that the transaction added data to vacant.

The reason for this is so that write performance in the common case is just an append

to the main file which is faster than traditional OCC schemes that use separate files

or pages to store temporary version of modified records that must then be copied

140

to the correct locations corresponding to the records modified to make those record

visible to subsequent transactions. This problem can be partially solved by putting

the locations of wasted slots of an aborted transaction in a pool of slots that can be re-

used by subsequent transactions, and transactions check this pool for and atomically

get independent slots to write to first, before consulting the AppendOnlyHeapFile.

Though this re-uses storage, it may make a transaction incur a random I/O to fetch

the page holding the empty slot from disk. Exploring better strategies for space

reclamation is an element of future work.

4.2.9 Cleaning up Versioned Read/Write Sets

Though the VersionedReadWriteSets stored for validation only contain the primary

keys of the records touched by the transaction they consume more and more memory

as the system proceeds. Each GlobalSnapshot is assigned a snapshot number. Every

transaction’s VersionedReadWriteSet is available in a readWriteSetMap that maps

from transaction identifier to its VersionedReadWriteSet. The system also maintains

a snapshotNumToTransactionSet that maps a snapshot number to the transactions

whose changes were incorporated into that GlobalSnapshot, this is a sorted map so

ranges can be scanned. Every transaction helps clean these up at transaction start.

Before a transaction starts it records the snapshot number of the current GlobalSnap-

shot and places this is another map tidToEarliest that specifies the earliest snapshot

number that a transaction has found. The transaction then tries to clean up unneeded

VersionedReadWriteSet as discussed shortly. After this is done, it proceeds to grab

its copy of the current GlobalSnapshot, which may have a later snapshot number.

Note that a transaction does not grab a snapshot at the time it records the earliest

snapshot number it has seen, it just records the earliest possible snapshot number it

could get so if it is delayed adding an entry to tidToEarliest and the GlobalSnapshot

advances this is ok because those more recent VersionedReadWriteSets is what the

transaction will be validated against, the system just needs to ensure that no trans-

actions to validate against are missed. Thus, after the addition to tidToEarliest, the

transaction finds the minimum snapshot number in tidToEarliest then uses snapshot-

141

NumToTransactionSet to get all of the transactions identifiers of all the transactions

that belong to a snapshot with a snapshot number strictly smaller than the mini-

mum snapshot number found. Then the corresponding VersionedReadWriteSet are

removed from the readWriteSetMap and the memory is freed.

4.2.10 Recovery

Recovery is straight forward. Each transaction is assigned a global write number

or serialization number by the BatchTransactionCommitter. Before releasing the

new GlobalSnapshot, the BatchTransactionCommitter logs a summary record that

includes the write numbers of all the transactions it processed. This summary is

essentially a batch tc log record, tc log records are added to the log and then the log

is forced so that transactions are only tced if the head of the log and the correspond-

ing tc log records made it to disk. This combined with the fact that the system is

append only and data is not modified in place, redo only recovery is sufficient. Now

all that is required is for all transaction to log all changes to the Hybrid state of

their local GlobalSnapshot (see 4.2.3). This includes the records themselves and the

bitmap deltas for every TransactionMasterWorkspaceSnapshotManager (assuming

the backing SnapshotManager stores snapshots by storing deltas). Standard WAL

logging mechanism are utilized. When a transaction creates a vc, each delta created in

the relevant TransactionWorkspaceSnapshotManagers (remember there is one per

segment for every branch tracked by that segment) is assigned a local write number

and this is logged with the delta created on that TransactionWorkspaceSnapshot-

Manager. If the transaction made un-vced changes to the workspace those are logged

at the end of the transaction and assigned the next write number (it is also noted

that this last delta does not correspond to a vc).

To recover the state of the database simply requires replaying the all the changes

of tced transactions in serialization number order and when processing the bitmap

changes of a particular transaction for a particular TransactionMasterWorkspaceS-

napshotManager, apply those changes in local write number order (i.e., writing exactly

the required deltas in the right order to the pack file on disk and keeping an aggre-

142

gate delta in-memory that includes every delta introduced by every tced transaction,

so as to recover the entire workspace for that TransactionMasterWorkspaceSnap-

shotManager). The version graph can be recovered similarly (by logging nodes and

edges and offseting node identified properly based on the local write number, seri-

alization number of the transactions, and the final node identifiers of the previous

transactions).

Checkpointing

Though recovering the entire data from a log ensure recovery, after a long period

of time the log will grow. Thus, a checkpointer thread periodically forces pages to

disk and writes changes (bitmap deltas) for every TransactionMasterWorkspaceS-

napshotManager to disk (to the pack file that backs them on disk). To perform

this atomically, the checkpointer grabs a global snapshot and using a index structure

maintained by the system to determine the highest write number in this snapshot.

It then forces all the deltas of every TransactionMasterWorkspaceSnapshotMan-

ager to disk and records a map of TransactionMasterWorkspaceSnapshotManager

identifier (i.e. pack file name) to the EOF (end of file) location after flushing and

forcing. Then the checkpointer writes this information to a checkpoint record that is

in a separate checpoint meta data file. This checkpoint record also specifies the the

highest write (serialization) number of the GlobalSnapshot it checkpointed to disk

and the minimum of the log sequence numbers of the transaction start log entry of all

running transactions and the transactions whose changes are reflected in the current

global snapshot and any subsequent snapshot created since the checkpointer captured

its global snapshot. This min lsn specifies the earliest point in the log record to look

for relevant log records of tced transactions. To recover the records the systems uses

the AIRES recovery algorithm. During recovery, the system starts log replay from

min lsn of the most recent checkpoint and filters out log records belonging to transac-

tions with write numbers less than the highest write number of the GlobalSnapshot

it checkpointed to disk since their changes are already in the corresponding on disk

structures (the write numbers of the relevant transactions can be found by rolling

143

forward in the log and examining the batch commit records logged by the Batch-

TransactionCommitter). For changes that are missing the recovery procedure uses

the map of TransactionMasterWorkspaceSnapshotManager identifier (i.e. pack file

name) to the EOF location from the most recent checkpoint as the start location to

start applying new bitmap deltas. The checkpoint meta data file is append only and

the checkpoint record has a checksum, so either the new checkpoint record makes it

to disk or it does not and if the recovery algorithm starts from an earlier checkpoint

all it will be doing is overwriting the data that is already in the on disk structures

(e.g. pack files) with the same data, which does not affect correctness.

For performance reasons during tc, the on disk structures that hold the records

and the pack files should be on a separate disk from the log.

144

Chapter 5

Related Work

5.1 Related Work in Dataset Versioning

There has been plenty of work on linear dataset versioning (i.e., for a linear, temporal

chain of versions without any branching.) For instance, temporal databases [5, 92,

82, 76] support “time-travel”, i.e., the ability to query point-in-time snapshots of a

linear chain of database versions. Lomet et al. introduced ImmortalDB, a temporal

versioning system built directly into SQLServer [54]. ImmortalDB also leverages an

append-only, copy-on-write strategy for updates, but embeds backpointers into tuples

to record the (linear) provenance information. Later work investigated compression

strategies across tuple versions [55]. Recent work has looked into linear versioning

for specialized databases, e.g., graph and scientific array databases. Khurana et

al. [46] develop snapshot retrieval schemes for graph databases, while Seering et al. [79]

develop compression schemes for array databases. Soroush et al. [83] develop a storage

manager for approximate timetravel in array databases through the use of skip-lists

(or links), tailored to a linear version chain. Since a branched system like Decibel

lacks a total ordering of branches, the temporal methods explored in this body of

work do not apply.

There is also prior work on temporal RDF data and temporal XML Data. Motik [65]

presents a logic-based approach to representing valid time in RDF and OWL. Several

papers (e.g., [2, 93]) have considered the problems of subgraph pattern matching or

145

SPARQL query evaluation over temporally annotated RDF data. There is also much

work on version management in XML data stores and scientific datasets [18, 49, 59].

These approaches are largely specific to XML or RDF data, and cannot be directly

used for relational data; for example, many of these papers assume unique node iden-

tifiers to merge deltas or snapshots.

Multi-versioning is extensively used in databases to provide snapshot isolation [9,

69]. However, these methods only store enough history to preserve transactional

semantics, whereas Decibel preserves historical records to maintain branched lineage.

Some operations in Decibel include provenance tracking at the record or version

level. Provenance tracking in databases and scientific workflow systems has been

studied extensively as well (see, e.g., [31, 25]). But those systems do not include

any form of collaborative version control, and do not support unified querying and

analysis over provenance and versioning information [20].

Existing software version control systems like git and mercurial inspired this work.

While these systems work well for modest collections of small text or binary files, they

are not well-suited for large sets of structured data. Moreover, they do not provide

features of databases, such as transactions or high-level query interfaces. Instead,

Decibel ports the broad API and workflow model of these systems to a traditional

relational database management system.

There exists a considerable body of work on “fully-persistent” data structures,

B+Trees in particular [27, 51, 72]. Some of this work considers branched branches, but

is largely focused on B+Tree-style indexes that point into underlying data consisting

of individual records, rather than accessing the entirety or majority of large datasets

from disk. Jiang et al. [40] present the BT-Tree which is designed as an access method

for “branched and temporal” data. Each update to a record at a particular timestamp

constitutes a new “version” within a branch. Unfortunately, their versioning model

is limited and only supports trees of versions with no merges; furthermore, they do

not consider or develop algorithms for the common setting of scanning or differencing

multiple versions.

A recent distributed main-memory B-Tree [84] considers branchable clones which

146

leverage existing copy-on-write algorithms for creating cloneable B-Trees [27]. How-

ever, like the BT-Tree, these methods heavily trade off space for point query efficiency

and therefore make snapshot creation and updating very heavyweight operations. In

addition, the paper does not evaluate any operations upon snapshots but only the

snapshot creation process itself. Merging and differencing of data sets are also not

considered.

Even discounting the inherent differences between key-value and relational storage

models, none of the aforementioned work on multi-versioned B-Trees considers the

full range of version control operations and ad hoc analytics queries that we consider

with Decibel. In general, B-Trees are appropriate for looking up individual records

in particular versions, but are unlikely to be useful in performing common versioning

operations like scan, merge, and difference, which are our focus in this paper.

5.2 Related Work in Transactions

Transaction management is a well studied field in database systems. There has been

much work in concurrency control protocols that are optimistic or maintain multi-

ple versions of records (MVCC) so that writes do not block reads and vice versa [74].

Decibel is a mix of an Optimistic Concurrency Control and Multi-version Concurrency

Control system to maintain transaction isolation. It uses the built in versioning to en-

sure that transactions get isolated transactionally consistent snapshots of the dataset

to operate on, and then it employs the well known Optimistic Concurrency Control

protocol [48] to serialize concurrent changes. Though Decibel does not attempt to

revise these protocols to reduce conflicts (such as in [109]), it takes a new approach of

changing the underlying versioning maintenance mechanism and provides a simpler

model to reason about. In OCC each transaction gets its own workspace (changes

buffered in memory and spilling over to an auxiliary file when they become too large)

to hold new versions of updated records. Multi-version concurrency control proto-

cols ([58] provides a survey of MVCC protocols) such as that in PostgreSQL [69] use

147

append only data stores so that updates create a new record instead of updating

records in place and timestamps to isolate changes, a transaction acquires a read

time stamp at transaction start and all changes with a larger timestamp (or corre-

sponding to transactions currently running) are invisible to the transaction. Other

systems update records in place and store versions as before image deltas in undo

buffers to enable reconstruction of older versions [67, 58] a transaction may be using.

For timestamp protocols, the timestamp represents the snapshot the transaction is

operating on, supporting high performance Snapshot Isolation ([10] provides a sur-

vey of all the isolation levels provided by modern databases) which is not serializable,

even in the read only case [30]. Additional conflict tracking is then utilized to ensure

serializability. This not only introduces complexity in providing transaction update

serialization, but also presents additional challenges for updating indexes and finding

records changed by a particular transaction since may versions of a record may exist

concurrently. Indexes in PostgreSQL store no version information so only by exam-

ining the records themselves can it identify the ones relevant to the transaction [58],

which can be inefficient if the records are scattered across multiple pages. Decibel

leverages its natural versioning primitives and a simple indexing algorithm to solve

all of these problems that scales a large number of concurrent readers.

148

Chapter 6

Conclusion

We presented Decibel, our database storage engine for managing and querying large

numbers of relational dataset versions in a transactional manner. To the best of

our knowledge, Decibel is the first implemented and evaluated database storage en-

gine that supports arbitrary (i.e., non-linear) versioning of data. We evaluated three

physical representations for Decibel, compared and contrasted the relative benefits

of each, and identified hybrid as the representation that meets or exceeds the perfor-

mance of the other two representations; we also evaluated column and row-oriented

layouts for the bitmap index associated with each of these representations. In the

process, we also developed a versioning benchmark to allow us to compare these

representations as well as representations developed in future work. Finally we also

showed how to leverage the natural versioning properties of Decibel to implement a

highly concurrent versioned database that supports transactions and non-blocking,

high throughput read only historical cross-versioned query transactions, the common

use case of versioned databases.

149

150

Bibliography

[1] jGraphT.

[2] A. Pugliese et al. Scaling RDF with time. In WWW, 2008.

[3] Daniel J. Abadi, Samuel Madden, and Nabil Hachem. Column-stores vs. row-
stores: how different are they really? In SIGMOD Conference, pages 967–980,
2008.

[4] Daniel J. Abadi, Daniel S. Myers, David J. DeWitt, and Samuel Madden. Ma-
terialization Strategies in a Column-Oriented DBMS. In ICDE, pages 466–475,
2007.

[5] Ilsoo Ahn and Richard Snodgrass. Performance evaluation of a temporal
database management system. In SIGMOD, pages 96–107, 1986.

[6] Manish Kumar Anand, Shawn Bowers, and Bertram Ludäscher. Techniques for
efficiently querying scientific workflow provenance graphs. In EDBT, volume 10,
pages 287–298, 2010.

[7] Manish Kumar Anand, Shawn Bowers, Timothy Mcphillips, and Bertram
Ludäscher. Exploring scientific workflow provenance using hybrid queries over
nested data and lineage graphs. In Scientific and Statistical Database Manage-
ment, pages 237–254. Springer, 2009.

[8] Monya Baker. De novo genome assembly: what every biologist should know.
Nature methods, 9(4):333–337, 2012.

[9] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ANSI SQL isolation levels. In SIGMOD, pages
1–10, 1995.

[10] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ansi sql isolation levels. In Proceedings of the 1995
ACM SIGMOD International Conference on Management of Data, SIGMOD
’95, pages 1–10, New York, NY, USA, 1995. ACM.

[11] Philip A. Bernstein, Sudipto Das, Bailu Ding, and Markus Pilman. Optimiz-
ing optimistic concurrency control for tree-structured, log-structured databases.

151

In Proceedings of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, SIGMOD ’15, pages 1295–1309, New York, NY, USA, 2015.
ACM.

[12] Anant Bhardwaj, Amol Deshpande, Aaron Elmore, David Karger, Sam Mad-
den, Aditya Parameswaran, Harihar Subramanyam, Eugene Wu, and Rebecca
Zhang. Collaborative data analytics with datahub (demo). In VLDB, 2015.

[13] Anant P. Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande,
Aaron J. Elmore, Samuel Madden, and Aditya G. Parameswaran. DataHub:
collaborative data science & dataset version management at scale. In CIDR,
2015.

[14] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and
Aditya G. Parameswaran. Principles of dataset versioning: Exploring the recre-
ation/storage tradeoff. In PVLDB, 2015.

[15] Shawn Bowers. Scientific workflow, provenance, and data modeling challenges
and approaches. Journal on Data Semantics, 1(1):19–30, 2012.

[16] Shawn Bowers, Timothy M McPhillips, and Bertram Ludäscher. Provenance in
collection-oriented scientific workflows. Concurrency and Computation: Prac-
tice and Experience, 20(5):519–529, 2008.

[17] Paul G Brown. Overview of scidb: large scale array storage, processing and
analysis. In SIGMOD, pages 963–968. ACM, 2010.

[18] P. Buneman, S. Khanna, K. Tajima, and W. Tan. Archiving scientific data.
ACM TODS, 29(1):2–42, 2004.

[19] Peter Buneman and Wang chiew Tan. Archiving scientific data. In ACM SIG-
MOD, pages 1–12, 2002.

[20] Amit Chavan, Silu Huang, Amol Deshpande, Aaron J. Elmore, Samuel Madden,
and Aditya G. Parameswaran. Towards a unified query language for provenance
and versioning. In TaPP, 2015.

[21] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In SoCC, 2010.

[22] Mark Craven, Johan Kumlien, et al. Constructing biological knowledge bases by
extracting information from text sources. In ISMB, volume 1999, pages 77–86,
1999.

[23] Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Ro-
man Simakov, Emad Soroush, Pavel Velikhov, Daniel Wang, Magdalena Bal-
azinska, Jacek Becla, et al. A Demonstration of SciDB: A Science-Oriented
DBMS. PVLDB, 2(2):1534–1537, 2009.

152

[24] Philippe Cudré-Mauroux, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Ro-
man Simakov, Emad Soroush, Pavel Velikhov, Daniel L. Wang, Magdalena
Balazinska, Jacek Becla, David J. DeWitt, Bobbi Heath, David Maier, Samuel
Madden, Jignesh M. Patel, Michael Stonebraker, and Stanley B. Zdonik. A
Demonstration of SciDB: A Science-Oriented DBMS. PVLDB, 2(2):1534–1537,
2009.

[25] Susan B Davidson, Sarah Cohen Boulakia, et al. Provenance in scientific work-
flow systems. IEEE Data Eng. Bull., 30(4):44–50, 2007.

[26] Susan B Davidson and Juliana Freire. Provenance and scientific workflows:
challenges and opportunities. In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pages 1345–1350. ACM, 2008.

[27] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan. Mak-
ing data structures persistent . In STOC, pages 109–121, 1986.

[28] Jose M. Faleiro and Daniel J. Abadi. Rethinking serializable multiversion con-
currency control. Proc. VLDB Endow., 8(11):1190–1201, July 2015.

[29] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis
Shasha. Making snapshot isolation serializable. ACM Trans. Database Syst.,
30(2):492–528, June 2005.

[30] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. A read-only transaction
anomaly under snapshot isolation. SIGMOD Rec., 33(3):12–14, September
2004.

[31] Juliana Freire, David Koop, Emanuele Santos, and Cláudio T Silva. Prove-
nance for computational tasks: A survey. Computing in Science & Engineering,
10(3):11–21, 2008.

[32] Nathan Goodman, Steve Rozen, Lincoln Stein, and A. G. Smith. The Lab-
Base system for data management in large scale biology research laboratories.
Bioinformatics, 14(7):562–574, 1998.

[33] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semirings.
In Proceedings of the Twenty-sixth ACM SIGMOD-SIGACT-SIGART Sympo-
sium on Principles of Database Systems, PODS ’07, pages 31–40, New York,
NY, USA, 2007. ACM.

[34] Philip J. Guo, Sean Kandel, Joseph M. Hellerstein, and Jeffrey Heer. Proac-
tive wrangling: mixed-initiative end-user programming of data transformation
scripts. In UIST, pages 65–74, 2011.

[35] Tom Heath and Christian Bizer. Linked data: Evolving the web into a global
data space. Synthesis lectures on the semantic web: theory and technology,
1(1):1–136, 2011.

153

[36] Jeffrey Heer and Joseph M. Hellerstein. Data visualization & social data anal-
ysis. PVLDB, 2(2):1656–1657, 2009.

[37] GD Held, MR Stonebraker, and Eugene Wong. Ingres: A relational data base
system. In Proceedings of the May 19-22, 1975, national computer conference
and exposition, pages 409–416. ACM, 1975.

[38] David A Holland, Uri Jacob Braun, Diana Maclean, Kiran-Kumar Muniswamy-
Reddy, and Margo I Seltzer. Choosing a data model and query language for
provenance. In The 2nd International Provenance and Annotation Workshop.
Springer, 2008.

[39] Zachary G. Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. OR-
CHESTRA: Rapid, Collaborative Sharing of Dynamic Data. In CIDR, pages
107–118, 2005.

[40] Linan Jiang, Betty Salzberg, David Lomet, and Manuel Barrena. The BT-Tree:
A branched and temporal access method. In PVLDB, pages 451–460, 2000.

[41] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex
Rasin, Stanley B. Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stone-
braker, Yang Zhang, John Hugg, and Daniel J. Abadi. H-store: A high-
performance, distributed main memory transaction processing system. In
PVLDB, volume 1, 2008.

[42] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler:
interactive visual specification of data transformation scripts. In CHI, pages
3363–3372, 2011.

[43] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey
Heer. Profiler: integrated statistical analysis and visualization for data quality
assessment. In AVI, pages 547–554, 2012.

[44] Grigoris Karvounarakis, Zachary G Ives, and Val Tannen. Querying data prove-
nance. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data, pages 951–962. ACM, 2010.

[45] Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over his-
torical graph data. CoRR, abs/1207.5777, 2012.

[46] Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over his-
torical graph data. ICDE, 2013.

[47] Jihie Kim, Ewa Deelman, Yolanda Gil, Gaurang Mehta, and Varun Ratnakar.
Provenance trails in the Wings/Pegasus system. Concurrency and Computation:
Practice and Experience, 20(5):587–597, 2008.

[48] H. T. Kung and John T. Robinson. On optimistic methods for concurrency
control. ACM Trans. Database Syst., 6(2):213–226, June 1981.

154

[49] N. Lam and R. Wong. A fast index for XML document version management.
In APWeb, 2003.

[50] Gad M. Landau, Jeanette P. Schmidt, and Vassilis J. Tsotras. Historical queries
along multiple lines of time evolution. In PVLDB, pages 703–726, 1995.

[51] Sitaram Lanka and Eric Mays. Fully persistent B+-Trees . In SIGMOD, 1991.

[52] Suh-Yin Lee and Ruey-Long Liou. A multi-granularity locking model for con-
currency control in object-oriented database systems. IEEE Trans. on Knowl.
and Data Eng., 8(1):144–156, February 1996.

[53] Chunhyeok Lim, Shiyong Lu, Artem Chebotko, and Farshad Fotouhi. OPQL:
A first opm-level query language for scientific workflow provenance. In Services
Computing (SCC), 2011 IEEE International Conference on, pages 136–143.
IEEE, 2011.

[54] David Lomet, Roger Barga, Mohamed F. Mokbel, German Shegalov, Rui Wang,
and Yunyue Zhu. Transaction time support inside a database engine. In ICDE,
2006.

[55] David Lomet, Mingsheng Hong, Rimma Nehme, and Rui Zhang. Transaction
time indexing with version compression. In VLDB, 2008.

[56] David Lomet and Mohamed F. Mokbel. Locking key ranges with unbundled
transaction services. Proc. VLDB Endow., 2(1):265–276, August 2009.

[57] Michael Maddox, David Goehring, Aaron Elmore, Samuel Madden, Aditya
Parameswaran, and Amol Deshpande. Decibel: The relational dataset branch-
ing system. Technical Report, available at: http://web.engr.illinois.edu/
~adityagp/decibel-tr.pdf, 2016.

[58] Dibyendu Majumdar. A Quick Survey of MultiVersion Concurrency Algorithms.
November 2007.

[59] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet. Change-centric manage-
ment of versions in an XML warehouse. In VLDB, 2001.

[60] Anderson Marinho, Leonardo Murta, Cláudia Werner, Vanessa Braganholo, Sér-
gio Manuel Serra da Cruz, Eduardo Ogasawara, and Marta Mattoso. Provman-
ager: a provenance management system for scientific workflows. Concurrency
and Computation: Practice and Experience, 24(13):1513–1530, 2012.

[61] Eric Mays, Sitaram Lanka, Bob Dionne, and Robert Weida. A persistent store
for large shared knowledge bases . In IEEE Transactions on Knowledge and
Data Engineering, pages 33–41, 1991.

155

[62] C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz.
Aries: A transaction recovery method supporting fine-granularity locking and
partial rollbacks using write-ahead logging. ACM Trans. Database Syst.,
17(1):94–162, March 1992.

[63] C Mohan, Bruce Lindsay, and Ron Obermarck. Transaction management in
the R* distributed database management system. TODS, 11(4):378–396, 1986.

[64] Anthony Molinaro. SQL Cookbook. O’Reilly, 2005.

[65] B. Motik. Representing and querying validity time in RDF and OWL: A logic-
based approach. In ISWC, 2010.

[66] Leonardo Murta, Vanessa Braganholo, Fernando Chirigati, David Koop, and
Juliana Freire. noworkflow: Capturing and analyzing provenance of scripts.
In Provenance and Annotation of Data and Processes, pages 71–83. Springer,
2014.

[67] Thomas Neumann, Tobias Mühlbauer, and Alfons Kemper. Fast serializable
multi-version concurrency control for main-memory database systems. In Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, SIGMOD ’15, pages 677–689, New York, NY, USA, 2015. ACM.

[68] Gultekin Ozsoyoglu and Richard T. Snodgrass. Temporal and Real-Time
Databases: A Survey. IEEE Transactions on Knowledge and Data Engineering,
7:513–532, 1995.

[69] Dan R. K. Ports and Kevin Grittner. Serializable snapshot isolation in Post-
greSQL. In PVLDB, pages 1850–1861, 2012.

[70] E. Rahm and A. Thomasian. Distributed optimistic concurrency control for high
performance transaction processing. In Databases, Parallel Architectures and
Their Applications,. PARBASE-90, International Conference on, pages 490–
495, Mar 1990.

[71] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems.
Osborne/McGraw-Hill, Berkeley, CA, USA, 2nd edition, 2000.

[72] Ohad Rodeh. B-trees, shadowing, and clones. ACM Transactions on Storage,
2008.

[73] Mark A Roth, Herry F Korth, and Abraham Silberschatz. Extended algebra
and calculus for nested relational databases. ACM TODS, 1988.

[74] Mohammad Sadoghi, Mustafa Canim, Bishwaranjan Bhattacharjee, Fabian
Nagel, and Kenneth A. Ross. Reducing database locking contention through
multi-version concurrency. Proc. VLDB Endow., 7(13):1331–1342, August 2014.

156

[75] B. Salzberg and V. Tsotras. Comparison of access methods for time-evolving
data. ACM Comput. Surv., 31(2), 1999.

[76] Betty Salzberg and Vassilis J. Tsotras. Comparison of access methods for time-
evolving data. ACM Computing Surveys, pages 158–221, 1999.

[77] Sunita Sarawagi. User-Adaptive Exploration of Multidimensional Data. In
VLDB, pages 307–316, 2000.

[78] Sunita Sarawagi and Gayatri Sathe. i3: Intelligent, interactive investigaton of
olap data cubes. In SIGMOD Conference, page 589, 2000.

[79] Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. Efficient versioning for scientific array databases. In ICDE. IEEE, 2012.

[80] Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-
braker. Efficient versioning for scientific array databases. In ICDE. IEEE, 2012.

[81] Richard Snodgrass. The temporal query language TQuel. ACM Transactions
on Database Systems (TODS), 12(2):247–298, 1987.

[82] Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer,
1995.

[83] Emad Soroush and Magdalena Balazinska. Time travel in a scientific array
database. In ICDE, 2013.

[84] Benjamin Sowell, Wojciech Golab, and Mehul A. Shah. Minuet: A scalable
distributed multi-version B-Tree. In PVLDB, pages 884–895, 2012.

[85] Chris Stolte, Diane Tang, and Pat Hanrahan. Polaris: a system for query,
analysis, and visualization of multidimensional databases. Commun. ACM,
51(11):75–84, 2008.

[86] Michael Stonebraker. Concurrency control and consistency of multiple copies
of data in distributed ingres. In Berkeley Workshop, pages 235–258, 1978.

[87] Michael Stonebraker, Jacek Becla, David J DeWitt, Kian-Tat Lim, David Maier,
Oliver Ratzesberger, and Stanley B Zdonik. Requirements for science data bases
and scidb. In CIDR, volume 7, pages 173–184, 2009.

[88] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. The design
and implementation of ingres. In TODS, volume 1, pages 189–222. ACM, 1976.

[89] Michael Stonebraker, Gerald Held, Eugene Wong, and Peter Kreps. The de-
sign and implementation of INGRES. ACM Transactions on Database Systems
(TODS), 1(3):189–222, 1976.

[90] Michael Stonebraker and Greg Kemnitz. The POSTGRES next generation
database management system. In CACM, volume 34, pages 78–92. ACM, 1991.

157

[91] Mike Stonebraker, Daniel J Abadi, Adam Batkin, Xuedong Chen, Mitch Cher-
niack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam Madden, Elizabeth
O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and Stan Zdonik. C-store: a column-
oriented dbms. In Proceedings of the 31st international conference on Very large
data bases, pages 553–564. VLDB Endowment, 2005.

[92] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and R. Snodgrass (editors).
Temporal Databases: Theory, Design, and Implementation. 1993.

[93] J. Tappolet and A. Bernstein. Applied temporal RDF: Efficient temporal query-
ing of RDF data with SPARQL. In ESWC, pages 308–322, 2009.

[94] Irving L Traiger, Jim Gray, Cesare A Galtieri, and Bruce G Lindsay. Trans-
actions and consistency in distributed database systems. TODS, 7(3):323–342,
1982.

[95] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Mad-
den. Speedy transactions in multicore in-memory databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles, SOSP
’13, pages 18–32, New York, NY, USA, 2013. ACM.

[96] http://aws.amazon.com. Amazon Web Services.

[97] http://bigdata.csail.mit.edu/Living_Lab. Living Lab.

[98] http://git-scm.org.

[99] http://github.org. GitHub.

[100] http://ipython.org. IPython.

[101] http://mercurial.selenic.com.

[102] http://office.microsoft.com/en-us/excel/. Microsoft Excel.

[103] http://pandas.pydata.org. Python Data Analysis Library (retrieved June 1,
2014).

[104] http://www.bitbucket.org. Bitbucket.

[105] http://www.peterlundgren.com/blog/on-gits-shortcomings. On Git’s
Shortcomings.

[106] Peter T. Wood. Query languages for graph databases. SIGMOD Rec., 41(1):50–
60, April 2012.

[107] Eugene Wu, Samuel Madden, and Michael Stonebraker. SubZero: A fine-
grained lineage system for scientific databases. In ICDE, pages 865–876, 2013.

158

[108] Marcin Wylot, Philippe Cudre-Mauroux, and Paul Groth. Executing
provenance-enabled queries over web data. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pages 1275–1285. International World
Wide Web Conferences Steering Committee, 2015.

[109] Yuan Yuan, Kaibo Wang, Rubao Lee, Xiaoning Ding, Jing Xing, Spyros Blanas,
and Xiaodong Zhang. Bcc: Reducing false aborts in optimistic concurrency
control with low cost for in-memory databases. Proc. VLDB Endow., 9(6):504–
515, January 2016.

159

