
Evaluating and Improving the Usability of
MIT App Inventor

by

Aubrey Joyce Colter

S.B., Massachusetts Institute of Technology (2013)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2016

c○ Massachusetts Institute of Technology 2016. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 13, 2016

Certified by. .
Harold Abelson

Class of 1922 Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Evaluating and Improving the Usability of MIT App Inventor

by

Aubrey Joyce Colter

Submitted to the Department of Electrical Engineering and Computer Science
on May 13, 2016, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

MIT App Inventor is a blocks-based programming language for Android apps designed
to teach programming skills to middle school and high school students. We aim to
make app development accessible for all.

Anyone learning to program must learn computational thinking methods; App
Inventor users must also learn how to use the service. Our target users, teenagers and
people without programming experience, often conflate the two learning processes:
they think App Inventor is hard because learning to program is hard. As such,
App Inventor needs a user interface that matches the conventions of commercially-
available software our users already know how to use. Such an interface will allow
them to focus on learning how to program and to transfer their knowledge and skills
to other programming languages and environments.

I designed several tasks and conducted a usability study on the existing, publicly-
available App Inventor service. Users encountered 75 unique issues and a total of 157
issues. This is an average of 5 unique issues and 10.5 total issues per user. I made
changes to the App Inventor source code that addressed 34 of the most common
issues encountered. My intent was to make App Inventor both more usable to novice
programmers and more similar to the programming environments that experienced
programmers use. Finally, I conducted a usability study with the same tasks on the
modified version of App Inventor. Users encountered 65 unique issues, including 19
issues encountered in the first study, and 107 total issues. Based on user comments
and behavior, I conclude that my solutions resolved 21 of the original issues, partially
mitigated 9 issues, and did not improved the usability of 4 issues.

Thesis Supervisor: Harold Abelson
Title: Class of 1922 Professor of Computer Science and Engineering

3

4

Acknowledgments

First, I would like to thank my advisor, Hal Abelson, for allowing me to follow my

passion for user interfaces and human-computer interaction. He gave me the latitude

and resources to explore the usability of App Inventor and has provided valuable

feedback throughout this process.

I could not have completed this project without Andrew McKinney’s support. He

was always excited about the work that I was doing. He helped me formalize my idea

for this thesis, he collaborated with me to prioritize the issues to address after the

first study, and he was willing to help when I was stuck.

I appreciate the generosity of Christopher LaRoche and Katherine Wahl, the MIT

IS&T Usability Team. They helped me refine my usability study tasks, they fit my

project to their busy testing schedule, and they conducted all of the sessions.

Special thanks to my sister, Quinn Colter: in addition to being a usability study

pilot tester while on vacation, she edited my thesis for content and clarity. Her

corrections have significantly improved the usability of this document.

I would not have a thesis without the participation of five pilot testers and twenty-

seven testers. I learned so much about usability tests and human-computer interaction

by observing them. I thank each of the participants for their time.

My friend, Candice Murray, kindly formatted all of my references for LaTeX. My

fellow researcher, Benjamin Xie, helped me troubleshoot issues as I was typesetting

my thesis in LaTeX.

Finally, a big thanks to the members of the App Inventor developer team who

answered my questions, reviewed my code, collaborated with me on projects that

stemmed from this experiment, and edited parts of this thesis.

5

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Contributions . 16

2 Related Work 19

3 Introduction to App Inventor 23

3.1 Overview . 23

3.2 Sample App Built with App Inventor 25

3.3 Target User Groups . 25

3.4 Community Outreach . 26

3.5 Curricula Developed for App Inventor 27

4 First Usability Study and Analysis 29

4.1 User Groups . 29

4.2 Design . 30

4.3 Implementation . 31

4.4 Results and Analysis . 32

4.4.1 Numerical Analysis . 32

4.4.2 Most Common Issues . 33

4.4.3 Observations about User Behavior and Success 34

4.5 Quotes from Participants about Common Issues 35

7

5 Code Implementation and Rationale 39

5.1 Wording of Menus and Error Messages 39

5.1.1 Top Menu Bar and Submenus 40

5.1.2 Dialog Box Messages . 43

5.1.3 Strings in Designer View . 43

5.2 Blocks Issues . 44

5.2.1 Event Handler and Control Blocks 44

5.2.2 Blocks View Toggle Button 44

5.2.3 App Component and Any Component Blocks 45

5.2.4 Procedures vs. Functions . 47

5.2.5 Backpack . 47

5.3 Trouble Connecting with the Companion 48

5.4 Clicking did not Match Expectations 48

5.5 Onboarding . 49

5.6 Other UI Changes . 50

5.6.1 Basic Component Palette Drawer 50

5.6.2 Color in App Inventor . 50

6 Second Usability Study and Analysis 53

6.1 User Groups . 53

6.2 Design . 54

6.3 Implementation . 54

6.4 Results and Analysis . 54

6.4.1 Numerical Analysis between Both Studies 54

6.4.2 Issue Analysis between Both Studies 56

6.4.3 Resolved Issues . 57

6.4.4 Partially Resolved Issues . 58

6.4.5 Unresolved Issues . 61

6.5 Quotes from Participants . 64

8

7 Future Work 67

7.1 Onboarding . 67

7.2 Tutorials and Walkthroughs . 68

7.3 More Design Control . 68

7.4 Outstanding Issues . 69

7.4.1 Simulator in the Designer View 69

7.4.2 Scrolling in the Blocks Workspace 69

7.4.3 Viewer Screen Sizes . 70

7.4.4 Hidden and Non-visible Components 70

7.5 Other Thoughts . 70

8 Conclusion 73

A Beginner Usability Study Tasks 75

B Technical Usability Study Tasks 77

C Onboarding Script 79

D System Usability Scale (SUS) Form 81

9

10

List of Figures

3-1 Example of the Blocks used in App Inventor 24

3-2 Designer View . 25

3-3 Blocks View . 26

4-1 Plot of SUS Scores by Study Participant 33

5-1 Original Top Menu Bar . 41

5-2 New Top Menu Bar . 41

5-3 Original Connect Menu . 42

5-4 New Test Menu . 42

5-5 Original Help Menu . 42

5-6 New Help and About Menus . 42

5-7 Original Welcome Dialog . 43

5-8 New Welcome Dialog . 43

5-9 Original Event Handler and Control Blocks 45

5-10 New Event Handler and Control Blocks 45

5-11 Onboarding Box Indicating the Blocks Toggle Button 45

5-12 Onboarding Sequence Boxes for the Blocks Palette 46

5-13 Original Backpack in Empty and Nonempty States 47

5-14 New Backpack in Empty, Hover, and Nonempty States 47

5-15 Onboarding Box that Introduces the Backpack 48

5-16 Right-click Menu in Components Pane 49

5-17 Right-click Menu in Viewer Pane . 49

5-18 First Box in the Onboarding Sequence 50

11

5-19 Original User Interface and New Basic Palette Drawer 51

5-20 Original and New Color Palette . 51

5-21 Original and New Designer View Comparing Green Color Schemes . . 52

6-1 Scatter Plot of SUS Scores by Study Participant 55

6-2 Success of Solutions to Unique Issues from First Usability Study . . . 56

6-3 Duplicate Issues between Studies . 56

12

List of Tables

4.1 Table of SUS Scores Across All Users in First Usability Study 33

6.1 Table of SUS Scores Across All Users in Second Usability Study . . . 55

13

14

Chapter 1

Introduction

MIT App Inventor is a web service designed with the overarching goal of democra-

tizing Android application development [1]. Through freely available curriculum and

tutorials, App Inventor also aims to teach middle school and high school students the

fundamentals of programming. The service employs Blockly, a open-source blocks-

based programming framework [7]. As a project within the MIT Center for Mobile

Learning, we aim to make programming more accessible to young people and people

who do not have a programming background. MIT App Inventor mitigates a lot of

the difficulty intrinsic in programming for Android, which helps our inventors have a

better experience when designing and developing Android apps. Furthermore, App

Inventor tries to make it easier to learn how to program by replacing traditional lines

of code with a more graphical and tactile method of creating code.

1.1 Motivation

App Inventor users must learn how to use the service in addition to learning good

programming practices and techniques. Because App Inventor’s target user groups

are teenagers and people without programming knowledge, App Inventor needs a

high-quality user interface that engages users in an intuitive, pleasant programming

experience.

I have always been interested in human-computer interaction and user interfaces.

15

As a child, I liked teaching myself how to use computer programs, such as Power-

Point and Adobe Premiere. When I was teenager, my grandmother used to bring

her computer to family gatherings so that I could teach her how to use it. From

these experiences, I gained an appreciation for user interfaces that were intuitive and

enjoyable for people to use.

Through my own experience learning to use App Inventor, I have found that it

is not always intuitive. As a master’s student at MIT, I have had the opportunity

as a TA and a Technovation Mentor1 to watch people use App Inventor for the first

time, and I have seen their occasional frustration with it. Because the interface does

not always match their expectations, they underestimate App Inventor’s power and

capability.

Because of these experiences, I wanted to first quantify the issues that users en-

counter with App Inventor. Second, I wanted to try to solve those problems. And

third, I wanted to collect data to see if and how much my fixes improved the usability

of the system. If my fixes proved to be beneficial, meaning they reduced the frequency

with which an error was encountered, I could use the data to justify that the changes

should be included in the public App Inventor service.

1.2 Contributions

My thesis is a three-phase experiment based on MIT App Inventor. First, I designed a

usability study and observed volunteers as they completed the tasks. My participants

were divided into two groups by their prior experience with programming. Second,

based on the individual and collective responses to the tasks in the study, I attempted

to fix 34 of the most common issues in App Inventor. My goal was twofold: 1) to

make App Inventor more usable to novice programmers; and 2) to make it match

other programming environments that experienced developers use. Finally, I observed

participants completing the same usability study tasks in my new version of App

1Technovation is a global competition for young women in middle school and high school. They
must create a business plan and develop an app that fulfills a need in their community. Teams are
mentored by industry professionals [27].

16

Inventor. The results from the second usability study show that my changes were

an overall improvement, eliminating 21 and partially mitigating 9 of the originally

discovered 75 unique issues in the public App Inventor service. However, 4 of the

original issues that I addressed were not mitigated by the solution and remain open

problems.

The following chapters explain in more detail each of the steps in my thesis.

In chapter 2, I outline related work, although there was only one paper about the

results from a usability study being applied in code and retested, and one paper

about building a usable programming language for children. Chapter 3 contains a

brief introduction to App Inventor, its screens, and a sample app. In chapter 4, I

describe the design and execution of the first usability study and its results. Chapter

5 is a report of my changes to App Inventor, including before and after screenshots.

Chapter 6 contains the results of the second usability study, which are compared to

the first study’s results. I conclude in chapter 7 with a section about future work

that directly stems from this project, and final thoughts in chapter 8 about what I

learned through this experiment.

17

18

Chapter 2

Related Work

With increased use of personal computers and mobile devices, web-services and soft-

ware companies are spending more resources on design and usability. The usability

field is rapidly expanding to improve the overall user experience and to increase the

marketability of companies’ products.

In my research, I found only one paper that used the results of a usability study

to inform their decisions to redesign the interface, which was then retested. In early

2014, Darejeh et al. published a paper investigating the Ribbon interface in Microsoft

Office products and its learnability for users with low computer literacy [6]. After

an initial usability test of the Ribbon, the authors used their findings to redesign the

Ribbon interface and retested it. Through their data analysis, they showed that their

redesigned Ribbon:

∙ Enabled participants to complete tasks that they could not complete in the

original version;

∙ Increased participants’ speed in completing the given tasks;

∙ Decreased the number of steps that participants took while performing the

tasks.

In 2002, as a result of the work he did for his doctoral thesis, John Pane published

a paper about HANDS, a programming language he developed for children in 5th

grade or older [22]. HANDS is an event-driven programming language, like App

Inventor. His goal was to reduce the difficulty of programming by improving the

19

usability of a development environment’s user interface. They conducted a usability

study with HANDS focusing on queries, aggregate operations, and the high visibility

of data. They concluded that the users, all of whom were non-programmers, who used

HANDS performed significantly better than the users who used a version of HANDS

that had the three studied features disabled.

In 2015, biomedical researchers tested the usability of Printed Educational Mate-

rials (PEMs), packets of information that are a distributed to clinics in an attempt to

change primary care [9]. The researchers note that the information in PEMs rarely

had an impact on physician behavior. Their usability study was structured similarly

to mine, though they used paper materials, and I used a web-based software prod-

uct. They employed a graphic designer to redesign a publicly-available PEM based

on physician feedback, then asked physicians to choose their preferred design, the

original or the redesigned version. They also asked the physicians to rate the PEM

on the System Usability Scale (SUS) 1. They found that their redesigned Therapeutic

Letters were easier to read, which could impact physician behavior. Furthermore,

they concluded that even a single usability test can provide valuable feedback.

In late 2014, Geng et al. discussed the impact of fixing the usability problems

of the Furniture Giveaway website [8]. They analyzed the usability of the 2009 and

2010 versions of the website by comparing the number of steps and amount of time

required to complete specified tasks. They found that site structure, convenience of

functionality, and graphic design improved the users’ online experience .

In 2016 Sheng-yi Hsu et al. wrote a paper about users’ behavior and efficacy using

App Inventor, specifically the Blocks editor [11]. They stated that the benefit of blocks

is that they lower the barrier for learning to program, but unfortunately the App

Inventor Blocks editor does not improve understanding. They defined understanding

as reading, searching, and maintaining code, crucial actions that most developers

spend 35 percent of their time doing. They introduced a “shelf” structure to the

App Inventor Blocks Editor. Users could organize blocks in different “shelves” in the

1The SUS is a form used to assess the subjective usability of a system. I describe more about
the SUS and how I used it in my experiements in section 4.4.1

20

workspace and switch between viewing different block shelves for better readability of

large volumes of blocks. They used A/B testing to determine whether their structure

was beneficial to students who knew the basics of programming. They concluded that

the shelves improved the students’ understanding of the code blocks.

In 2005, Yu-chen Hsu published a paper about an experiment using metaphors

to teach beginners and experts about Internet Protocol (IP) [12]. The author gave

participants a pretest, then split the beginners and the experts into four groups; one

group of beginners and one group of experts were taught the metaphor, and the other

two groups were not taught the metaphor. After learning about IP, the researcher

administered a post-test with two different types of questions. This paper shows that

other researchers have divided a population of users into two groups based on their

familiarity with computers, as I did.

In 2015, Andreas Sonderegger et al. performed a usability study in which they

divided their users into two groups: older people (mean age 58.1 years) and younger

people (mean age 23 years) [26]. They claimed that usability improvements intended

to help older users also benefited younger users. They concluded that their results

did not show an age-related effect for effectiveness or accuracy in task completion,

but younger adults performed better on speed-related tasks.

In addition to academic literature about usability studies, there is a wealth of

information about performing usability studies. Jakob Nielsen is known in the field

as the expert of usability studies. He published a paper in 1994 that concluded four

to five participants are sufficient for a usability study [20].

In 2000, Steve Krug published a book about improving the usability of business

websites [14]. In addition to giving suggestions for how businesses can improve the

overall design of their websites, he emphasized usability testing, and included a section

on how businesses can do it themselves without hiring a professional. He insisted that

testing always works, even with the wrong user; any test can show areas in a site that

need improvement. Though his book focused on websites that are used primarily for

finding information and making purchases, many of the principles can be applied to

web-based software like App Inventor.

21

Finally, the United States government maintains a website about usability and

improving user experience [4]. They include guidelines, methods, and templates for

performing usability studies and reporting results.

22

Chapter 3

Introduction to App Inventor

3.1 Overview

Development of MIT App Inventor began in 2009 as a collaboration between Google’s

Mark Friedman and MIT professor Hal Abelson, who was on sabbatical at Google

[1]. Because it was developed at Google, App Inventor was designed to build Android

apps. In January 2012, Google open-sourced App Inventor, and the MIT Center for

Mobile Learning assumed responsibility for maintaining and developing the service.

App Inventor is a free, open-source, world-wide service with over 4.7 million reg-

istered users and an average of 175,000 active weekly users from 195 countries. To

date, users have built more than 14.9 million apps and have published about 30,000

apps on the Google Play Store.

App Inventor makes programming Android apps much easier than programming

in Java using Android Studio or another IDE. Following the tutorials, users are able

to create simple, fully-functioning apps in under an hour.

App Inventor consists of two main screens: the Designer view and the Blocks view.

In the Designer view (see Figure 3-2), users drag and drop components into their app.

If the component is a visible component, such as a Button or Image, the component

is displayed on a mock phone screen within the Designer view. If the component is a

non-visible component, such as the GPS sensor or a database, it is displayed in a list

below the mock phone screen. The components’ special properties (e.g. text that is

23

displayed on the component or a source image) can be customized in a pane in the

Designer view. The components also have unique code blocks associated with their

specific capabilities and properties. Users can access these code blocks by toggling

from the Designer to the Blocks view.

In the Blocks view (see Figure 3-3), rather than traditional lines of text, App

Inventor uses Blockly, an open-source framework for building visual programming

languages [7]. The code is displayed as blocks that link together. Users drag and drop

blocks corresponding to the components they have added to their apps to build the

logic of their apps. The blocks are very readable, meaning users can easily determine

what a segment of code does by reading through the blocks in hierarchical order. For

example, as shown in Figure 3-1, when Button1 is clicked, Sound1 will play.

Figure 3-1: Example of the Blocks used in App Inventor

As illustrated by Figure 3-1, there are different types of blocks available in the

Blocks view depending on the components used in the Designer. App Inventor is an

event-driven language. The yellow when Button1.Click block responds to the event

that the component called Button1 is clicked; the purple call Sound1.Play block is

a procedure unique to Sound components that plays the file set as the component’s

source. Different block types are different colors, allowing the user to easily see how

blocks are related. More block types and their corresponding colors can be seen in

Figure 3-3.

Another feature unique to App Inventor is the Companion App, which allows

live-testing an app during development. The user downloads the Companion App

onto their Android device and uses it to connect their device to App Inventor. Once

connected, the app the user is building is displayed in the Companion (over WiFi

or through a USB connection), and the user can interact with the app as if it were

installed on their device. As the user makes changes to the app in App Inventor,

24

those changes are reflected in the version running through the Companion on their

device.

3.2 Sample App Built with App Inventor

The app shown in Figures 3-2 and 3-3 prompts the user to enter a favorite artist’s

name and then plays a snippet of one of the artist’s songs when the user clicks “Listen!”

1. When the Listen! button (Button1) is clicked, the app makes a call to the

iTunes API via the Web component (Web1).

2. When Web1 receives the JSON result from the iTunes API:

(a) The app parses out the song’s preview URL, title, and artist’s name,

(b) A Label (Label1) is set to display the song’s title and artist’s name,

(c) The Player (Player1) component plays the song snippet from the URL.

Figure 3-2: Designer View

3.3 Target User Groups

Our target audience is middle school and high school students. By giving students an

easier alternative to traditional text-based programming, we hope to introduce them

25

Figure 3-3: Blocks View

to programming at a younger age. We hope that students using our platform will

learn good programming practices, which they can transfer to other programming

languages. Regardless of their future career choices, we think that programming will

be a necessary skill. Programming teaches students to think logically and empowers

them to experiment with technology.

In addition to teenagers and college students, a significant portion of App Inventor

users are end-user programmers. In a survey open from October 2013 through April

2016, 69.6% of 221,771 self-selected users said they used App Inventor at home. Some

of these users are professional developers who use App Inventor to quickly prototype

app ideas, or to teach others how to program. Other users are teaching themselves

to program by using App Inventor. We intended to meet the needs of each of these

groups.

3.4 Community Outreach

App Inventor has a vibrant online and offline community. Many people participate

in the online user forums, with experienced users answering questions from less expe-

26

rienced users, usually helping them debug their apps.

The Master Trainers community is a global group of K-16 educators and other

professionals who have been trained to teach App Inventor in their communities [17].

They teach students and teachers in workshops, classes, and afterschool programs

about programming concepts and give them the tools they need to become app de-

velopers.

App Inventor also has an active open-source community with programmers from

around the world contributing to the service [2]. This community includes students at

MIT who work with the full-time App Inventor developers to hone their programming

skills. They gain real-world experience working on a large codebase, which they can

apply in industry and personal projects.

3.5 Curricula Developed for App Inventor

Many individuals and schools have developed programming curricula using App In-

ventor. The App Inventor team has published many free tutorials on our website.

People outside of the core App Inventor team have also written books and maintain

websites with App Inventor tutorials. Notably, David Wolber at UCSF has writ-

ten two books and maintains an App Inventor curriculum on appinventor.org [30].

Additionally, in middle schools and high schools, teachers have developed their own

curricula for introductory computer science classes.

Several competitions for middle school and high school students use App Inventor

as a way of introducing teenagers to programming. The Technovation Challenge is

a global competition for young women to develop a business plan around an original

app that addresses a need in their communities [27]. The Verizon Innovative App

Challenge invites teenagers to create apps and then compete at the regional, state,

and national level [29]. Both of these competitions utilize mentors from industry to

teach the students how to program and think innovatively.

Working with the Hong Kong Jockey Club Charities Trust and the Hong Kong Ed-

ucation Bureau, we are are developing a computer science curriculum for 4th through

27

6th grade students [15]. Fourth grade students will learn Scratch [25], and 5th and

6th grade students will learn App Inventor. In the first year, a pilot program will run

in 32 primary schools. We plan to expand to the approximately 250 primary schools

in Hong Kong over the course of four years.

28

Chapter 4

First Usability Study and Analysis

4.1 User Groups

App Inventor has three main user groups: teenage and college-age students, who are

generally using the service for class assignments; people with little to no prior pro-

gramming experience who want to learn how to program; and hobbyist programmers

who want to create or prototype Android apps more quickly than by programming

in Java.

Due to the limited timeframe of my Master’s thesis, I chose not to include teenage

participants in my usability study. Working with minors requires additional permis-

sions and precautions, and teenagers are generally less reliable than adults.

Instead, I invited adult novice and hobbyist programmers with no prior exposure

to App Inventor to participate in my usability study. I recruited participants by

emailing MIT mailing lists and by posting a general request in various technical and

non-technical Facebook groups. A brief Google survey established their programming

background and determined their eligibility. In total, eight novice and seven hobbyist

programmers participated in the first study [20]. They ranged in age from 18 to 54

years old. Seven of the study participants were affiliated with MIT.

The novice participants all identified as having one year or less of programming

experience. One participant had prior experience with Scratch. One of the partici-

pants had less than 1 year of experience programming for iOS. Only two of the eight

29

participants had access to an Android phone or tablet.

Three of the hobbyist participants had between 1 and 5 years of programming

experience; two had 5 to 10 years of programming experience; and two participants

had more than 10 years of experience. Five of the hobbyist participants had prior

experience working with a blocks-based language, and one participant had over 5

years of experience programming for iOS. Five of the seven participants had access

to an Android phone or tablet.

I chose to divide my users into “beginner” and “technical” groups so that I could

learn what non-programmers and programmers expect in a development environment.

Novice programmers, based on their experience with common consumer software such

as Microsoft Word and the Adobe Creative Suite, have different expectations than

programmers, who have experience with IDEs. I want App Inventor to conform to

common conventions of consumer software, so that it is easy for new programmers

to learn how to use App Inventor, and so that they do not get frustrated and give

up. I also want App Inventor to match other IDEs so that as novice users become

more competent, the skills and conventions they learn can easily transfer to other

programming environments.

4.2 Design

Before designing the study tasks, I compiled a list of common App Inventor usability

issues. I spoke with two proficient App Inventor users, both of whom have taught

programming with App Inventor to others [24], [28]. As a TA, I helped several MIT

students who were learning App Inventor, both in person and by answering questions

on the class forum [23]. Finally, I informally observed common questions asked on

App Inventor forums [3]. I used this list as a basis for designing two sets of tasks:

one for novice programmers (Beginner Tasks) and one for experienced programmers

(Technical Tasks). (See Appendices A, B for the lists of tasks.)

With direction from Christopher LaRoche and Katherine Wahl, the MIT Infor-

mation Service and Technology (IS&T) Accessibility and Usability Group, I refined

30

the sets of tasks to give the study participants an experience that would simulate the

experience of a first-time App Inventor user in 30 minutes or less [16]. Two novice and

three hobbyist programmers were asked to pilot test the tasks that were subsequently

refined and used for the 15 study participants. Each task set had 8 tasks, but the

participants were asked to stop if they did not complete all of the tasks in 30 minutes.

The Beginner Tasks focused on the Designer view. The Technical Tasks focused

on the Blocks view. The decision to have beginner users primarily interact with the

Designer view and technical users primarily interact with the Blocks view was due to

the limited amount of time we had with each user; I wanted to make sure that we

could test as many of the features of App Inventor as possible. The Designer view is

similar to consumer software products, and the Blocks view is similar to development

environments. This division proved to be logical in my pilot tests, where I noticed

that the experienced programmers were less likely to return to the Designer view once

they found the Blocks view. Furthermore, because code is less intimidating to them,

I wanted to see how they would interact with many blocks.

The Beginner Tasks were inspired by the Hello Purr tutorial on the App Inventor

website [10]. The tasks guided the participant through each of the steps required to

build an App Inventor user’s typical first app. By the end, they had a functioning

app that they were asked to test on an Android phone (either their own, one provided

by our lab, or the App Inventor emulator).

The Technical Tasks guided the participants to open a provided, pre-built app

based on the MoleMash tutorial, an app similar to the whack-a-mole carnival game

[19]. The tasks guided the participants to refactor parts of the provided code and

add an additional feature to the basic app’s scoring methodology.

4.3 Implementation

Chris and Katherine professionally conducted the usability tests as third-party mod-

erators. Approximately half of the participants completed the study in-person at the

MIT IS&T Usability Lab; the other participants completed the study remotely via

31

WebEx. Participants were encouraged to think aloud as they completed the tasks.

All sessions were recorded (screen and audio) for analysis after the study. I was a

silent observer in the Usability Lab for many of the sessions, and I took detailed notes

based on what the participants were saying and doing as they completed the tasks.

Participants were directed to the public App Inventor service. The users who

were participating in the lab were given this web address in the task introductions,

but they started their session on the empty My Projects page. Chris signed in to

App Inventor using his own Google account to reduce the amount of time necessary

to start the study. Remote users were sent a detailed set up email that informed

them they would need to log in to the service with a Google account and included

a screenshot of the My Projects page to show them where they needed to start the

study.

4.4 Results and Analysis

4.4.1 Numerical Analysis

After completing the study, users filled out a System Usability Scale (SUS) form (see

Appendix D). The SUS is a simple, ten-item questionnaire for subjectively assessing

the usability of a system [13]. This form is platform-agnostic and asks participants

to rate their experience using the software on a 5-point Likert scale. A SUS score,

which can range from 0 to 100, represents the overall usability of the system, with

higher numbers representing a more usable experience.

Unfortunately, for the first study, we did not label the completed forms, which

would have allowed us to separate them into beginner and technical groups. Thus, we

cannot determine if the two groups gave different ratings to App Inventor’s usability.

Figure 4-1 shows SUS scores from each of the participants and Table 4.1 shows an

analysis of the scores across all users.

Although I watched many participants struggle through the tasks, they generally

reported on the SUS that App Inventor was easy to use, they would not need a lot of

32

Figure 4-1: Plot of SUS Scores by Study Participant

Standard
Mean Median Deviation Minimum Maximum

All Users 71.08 71.25 10.47 57.5 97.5

Table 4.1: Table of SUS Scores Across All Users in First Usability Study

training to use it, they thought the functionality was well integrated, and that most

people would be able to easily learn how to use App Inventor. Furthermore, most

participants were able to complete all of the tasks, which probably made them feel

successful. This is a valuable insight suggesting that if people feel successful, they are

more likely to rate the product as easy to use. Thus, if we can help our App Inventor

users, especially the teenage users, feel like they are successfully building apps, they

will be more likely to think that App Inventor is easy to use, and they will continue

programming.

4.4.2 Most Common Issues

Despite the results from the SUS indicating that App Inventor is fairly usable, across

the fifteen users I tabulated 75 unique issues and a total of 157 issues. This is an

average of 5 unique issues and 10.5 total issues per user. I used these issues to decide

which parts of App Inventor I would redesign.

33

The most common issue was that event handler blocks were the same color as

control blocks, which are easier to find. Ten out of the fifteen participants went

to the Control drawer to find a handler for a button being clicked or a canvas being

touched. Although it makes sense from a teaching perspective that the two categories

of blocks are the same color because they both handle the control flow of the app, it

was confusing and frustrating to the users.

In the second most common issue, eight participants had a difficult time finding

the button to toggle to the Blocks view from the Designer view. Ultimately, all of the

users were able to find the button and progress with their tasks; however, it took them

a long time to find it and may have prevented some of the users from completing all

of the tasks in the study. This issue was experienced by both beginner and technical

participants.

The issues that I addressed and their solutions are detailed in Chapter 5.

4.4.3 Observations about User Behavior and Success

The two technical users with more than 10 years of programming experience had the

least amount of difficulty using App Inventor. I propose a few explanations for this

occurrence. First, App Inventor was designed by developers, so it should match these

users’ mental models for design and development environments. Second, these users

are probably the most experienced at learning new programming languages. Although

they had little experience with blocks-based programming languages, I think they

were the least intimidated and it was easy for them to learn the basics of programming

with App Inventor. Finally, they have the most experience being persistent in working

with computers and programming languages, and they assumed that it would work.

One remote participant did not finish the tasks in the time allotted, but after the

session, he sent the remaining answers to the tasks to Katherine. This kind of tenacity

is something that we want to teach to people learning to program, but it probably

comes from years of experience, not from using inherently difficult software. Young

students are unlikely to persevere with a program that is too hard to use.

We had one participant who works on the Scratch development team at MIT.

34

Through watching her, I realized that App Inventor is very similar to Scratch and

matches the Scratch paradigms fairly well. She was more comfortable with the blocks

than any of the other participants. The other technical participants worked on tasks

one at a time, but did not build the full functionality in the allotted time. The

Scratch-proficient participant easily completed the full functionality of the MoleMash

app without guidance from the tasks. She said that she felt like she did not need to

test it because she thought it was easy to do. This suggests that she was confident

in her ability to write correct code, a confidence we hope to instill in young users.

4.5 Quotes from Participants about Common Issues

∙ The most common issue was looking for event handler blocks in the Control

section of the blocks palette. One user said, “Now I just need to find a When

Do. Where’s a when? Can I do an If? There’s a While. You’d think When

would be the first thing.” Another user said, “I thought it would be in Control

because it’s yellow like the other ones! But I don’t see anything here.” A third

user said, “I expected the canvas block to be in control, but I guess it makes

sense.” I discuss my solution to this issue in section 5.2.1.

∙ Eight users had difficulty finding the button to switch to the Blocks view. Many

users asked, “Where is the Blocks view?” One user said, “When I’m switching

between things, my thought is to go to the upper left. I don’t know why I have

that instinct. That’s where I was looking first.” After they found the button,

most users concluded, “I guess it makes sense now, but it was hard to find.” See

section 5.2.2 for my solution.

∙ Five users had trouble connecting to the Companion App. One user tried the

Hard Reset option, and then she tried AI Companion. She said “I only picked AI

Companion because the other 2 options didn’t make sense.” Another user who

completed the study remotely commented, “Connect [the menu option] might

not make sense, but I know about it because I was told to download the app.”

These comments motivated the changes in section 5.3.

35

∙ The technical tasks asked the users to abstract blocks into a function (see

Appendix B, Task 3). One user commented, “I don’t know how to write func-

tions in this app.” Another, after pulling the blocks into a procedure, asked,

“How do I do my call? How do I get it in there?” The confusion about proce-

dures and functions was an error in the usability tasks, which is discussed in

section 5.2.4.

∙ A few users saw the Backpack, but no one knew what it would do. One user

said, “I assume the Backpack is ‘save for later,’ but it isn’t obvious to me what

it is.” Another user found the Backpack with code in it from the previous

participant’s session. He said, “I don’t know what it does, but it’s there.” I

attempted to make the functionality of the Backpack more discoverable with

my changes described in section 5.2.5.

∙ Four users wanted instructions when they first opened App Inventor. One

said, “A popup or tooltip would have been helpful for the completely unedu-

cated.” I created an onboarding sequence with small dialog boxes to guide users

around App Inventor before they start their first project (see section 5.5 and

Appendix C).

∙ Two users commented on the overall usability of the system. One said, “It’s

pretty straightforward. Not intuitive, but easy to see what is happening,” and

another said, “There seems to be a little bit of a learning curve. But it does

seem intuitive once you’re comfortable with it.”

∙ Several users commented on ease of using the blocks. One participant liked

the design of the blocks: “I like how they are shaped. Having the shapes that

coordinate is very nice because it shows me where things go, how they fit, and

what I’m looking for.” Another thought, “The commands for making things

happen to execute various functions is perfect. It’s color coordinated, and I

love that. It’s very easy to conceptualize.” One user said, “I like how the

options are all right there. Having to remember everything that I need to do

in programming is hard. Here I can just fill in the box.” Another user said, “I

noticed there’s a sound effect when a connection is made. It’s good to know it

36

happened.”

∙ Most users had small delight moments when using App Inventor. One of the

participants with more than 10 years of programming experience said, “This is

visual programming! This is kind of fun!” One of the users finished his app,

exclaiming, “It works! Hey, that’s exciting!”

37

38

Chapter 5

Code Implementation and Rationale

Of the 75 unique issues identified in the first usability study, I implemented solutions

for 34 issues. Working with our lead software developer, I prioritized the issues I

would address. We chose the issues that were seen the most often, and the issues that

would be the easiest to fix given the current codebase and my 1-year Master’s thesis

timeline. However, all of the issues have been documented and other MIT students

in our group have chosen some of the issues as their own projects.

Most of the solutions involved very small changes, but in aggregate, they amounted

to considerable changes in App Inventor1. In several cases, one solution addressed

more than one issue. I have included before and after screenshots of App Inventor to

illustrate my solutions. I tried to follow usability practices that I learned from MIT’s

user interface design class [18] and my own usability research [21].

5.1 Wording of Menus and Error Messages

Of the unique issues users faced, 17 were due to outdated wording, long messages in

dialog boxes, or messages that were not as precise or descriptive as they need to be.

These comprise the bulk of the issues I addressed, though they often required the

least amount of time. I documented all of the strings that I changed so that they can
1I implemented all of my solutions on a personal branch of the App Inventor source code. I did

not merge them into the public service’s codebase as I completed them because I did not know if
the solutions would be effective.

39

be translated.

5.1.1 Top Menu Bar and Submenus

Many users indicated that they did not understand the menu wording, which consti-

tute 8 of the unique issues. They had questions like:

∙ What is a checkpoint?

∙ What is the Gallery?

∙ What is a keystore?

∙ What is AI Companion?

One participant thought the Build menu would be where to find blocks, while another

thought it would be where she started a new project. The Guide heading was

confusing to a user because it linked to the Documentation page instead of a tutorial.

I worked with another student to wireframe a new menu. We reorganized menu

item placement and reworded submenu items. After receiving feedback from the

team, she and I implemented the new menu and added it to my branch (see Figures

5-1 and 5-2).

We first changed the top-level menu bar:

∙ We removed Beta from our logo because we are no longer in beta mode. We

removed the 2 from the logo because it originally differentiated App Inventor

2 from App Inventor Classic. Classic was retired in July 2015, so we no longer

need to differentiate between the two services.

∙ Connect became Test (Figures 5-3 and 5-4). We considered renaming it Run,

but ultimately decided we wanted to highlight the live-testing feature unique to

App Inventor.

∙ Build became Package so that it would not be confused with building an app

or building with blocks. We think it is intuitive because packaging an app is

like packaging a gift when it is ready to be given.

∙ Gallery became App Gallery to give the users a hint that apps are in the

Gallery. We kept the word Gallery to match Scratch’s convention.

∙ We removed the Guide button and renamed the Help submenu item Library

40

to Documentation. Both options originally linked to the same page on the App

Inventor website.

∙ We removed Report an Issue from the top bar and created a new About

menu (see Figure 5-6).

∙ We added a Teach item (not shown) that will be placed between About and

English to give educators using App Inventor quick access to the Educators

forum and website once it is finished.

Figure 5-1: Original Top Menu Bar

Figure 5-2: New Top Menu Bar

We also reworded submenu items:

∙ We changed Checkpoint to Save a checkpoint.

∙ We changed Import Keystore to Import app signing keystore to indicate that a

keystore is used to sign an app for the Google Play Store.

∙ Under Test, we changed AI Companion to Companion App over WiFi ; simi-

larly, we changed USB to Companion App over USB. These options now indicate

to users that they should connect the Companion App on their device to App

Inventor via WiFi or USB, respectively (Figure 5-4).

∙ Under Test, we changed Reset Connection to Stop live testing on Companion

App to be more informative of the action while still using few, simple words.

∙ Under Test, we moved Hard Reset to About, and we changed its text to

Update Companion on Emulator, which is consistent with our documentation

(see Figure 5-6).

We removed duplicate items from the top bar and submenus. Report an Issue

was available in the top bar as well as under Help, and it linked to the same page

as the Forum, also under Help. We combined Forum and Report an Issue under

Help. We assume that most users will not need to report an issue because we are

41

Figure 5-3: Original Connect Menu Figure 5-4: New Test Menu

no longer in beta mode. We reorganized some of the menu items to group related

functionality. We moved and renamed several of the menu items under Help to a

new About menu, as shown in Figures 5-5 and 5-6). About became App Inventor

Version, Companion Information became Current Companion Version, and Show

Splash Screen became Show Welcome Splash Screen. In the Help menu, we renamed

Library to Documentation and added a link to the Walkthroughs, which includes the

onboarding sequence (see section 5.5).

Figure 5-5: Original Help Menu Figure 5-6: New Help and About Menus

42

5.1.2 Dialog Box Messages

I reviewed all of the messages shown to users and edited them for style and content.

As much as possible, I tried to reduce the number of words in the messages and make

any button text more descriptive of what the click would do.

The Welcome to App Inventor message that greets users the first time they log in

to App Inventor had too many words that were too small (Figure 5-7). The opening

screen has a lot of empty space, and the dialog box was very small on the screen. I

redesigned the dialog with feedback from the team. I reduced the number of words

and added action buttons to help users get started quickly. I also made the welcome

dialog larger and removed the green outline to make the box feel lighter visually

(Figure 5-8).

Figure 5-7: Original Welcome Dialog

Figure 5-8: New Welcome Dialog

5.1.3 Strings in Designer View

Users made a few comments about strings in the Designer that confused them. One

user was confused that the Palette drawer containing components such as Button,

43

Image, and TextBox, was called User Interface because he thought that he was de-

signing the user interface of his app throughout the tasks. I changed the name of this

drawer to Basic.

Another user was browsing the properties of the Sound component and commented

that he did not know what MinimumInterval was because there were no units. It was

easy to add ‘(ms)’ to the property description for the components with a time interval.

By doing this, users will not need to go to the documentation on a different page to

understand the MinimumInterval property.

Finally, one user did not know what the string ‘Display Hidden Components in

Viewer’ in the Viewer box meant. I changed it to ‘Display Invisible Components’

because components have a Visible property.

5.2 Blocks Issues

5.2.1 Event Handler and Control Blocks

Ten of the fifteen users were frustrated trying to find event handler blocks because

they were the same color as control blocks. Control blocks are much more discoverable

due to the small yellow square next to Control in the Built-in blocks palette. I made

the event blocks a darker shade of yellow and the control blocks a lighter tint of the

same yellow (Figures 5-9 and 5-10).

5.2.2 Blocks View Toggle Button

Eight of the fifteen users had difficulty finding the Blocks view toggle button in the

top right corner the first time they were asked to switch to the Blocks view. To

mitigate this problem, I added a box in my onboarding sequence2 that showed users

the button in the top right corner of the screen. The box required the user to click

the Blocks toggle button before the script would let them continue to the next box

(Figure 5-11).

2See description of the onboarding sequence on page 49.

44

Figure 5-9: Original Event Handler and Control Blocks

Figure 5-10: New Event Handler and Control Blocks

Figure 5-11: Onboarding Box Indicating the Blocks Toggle Button

5.2.3 App Component and Any Component Blocks

Four users found the Any Component expandable section of the blocks palette

before they found the blocks for components they had in their app. I added three

onboarding boxes to explain the different sections of the Blocks palette (Figure 5-12).

45

Figure 5-12: Onboarding Sequence Boxes for the Blocks Palette

46

5.2.4 Procedures vs. Functions

Two technical users had difficulty finding the Procedures built-in blocks. The task

asked them to abstract some blocks into a Function, so they looked for a Function

drawer in the Blocks palette. This was a mistake in the tasks. The task should

have used the word Procedure, which is consistent with the AP Computer Science

Principles curriculum [5, p. 16]. I fixed this mistake in the second usability study

tasks.

5.2.5 Backpack

The Backpack provides a way for users to copy and paste code blocks from one

project or screen to another. Two users specifically stated they did not know what

the Backpack would do. An App Inventor student developer added new Backpack

icons that better indicate the Empty, Hover, and Nonempty states of the Backpack,

shown in Figure 5-14. Now when the Backpack is nonempty, the user sees blocks

spilling out instead of the backpack being almost imperceptibly bigger, as shown in

Figure 5-13.

Figure 5-13: Original Backpack in Empty and Nonempty States

Figure 5-14: New Backpack in Empty, Hover, and Nonempty States

I also added a box in the onboarding sequence about the Backpack, which included

a link to documentation about it on the App Inventor site (see Figure 5-15).

47

Figure 5-15: Onboarding Box that Introduces the Backpack

5.3 Trouble Connecting with the Companion

Two users tried to scan the AI Companion QR code with their devices’ normal QR

code reader app. By changing the menu item text to Companion App over WiFi, we

hint to users that they should scan the QR code with the Companion App. Once

they open the Companion App, it is easy to scan the code.

Because most of the study participants used Windows, they often encountered

an error when starting the Emulator because the necessary (on Windows) aiStarter

program was not already running. I changed the wording on the error to make it

more clear that the program was not running.

5.4 Clicking did not Match Expectations

A few users tried to right-click on a component in the Designer to delete it. Working

with another student, we added a right-click context menu for components. The menu

in the Components pane has options to delete and rename the component (Figure

5-16). The menu for components in the Viewer pane has an option to delete the

selected component (Figure 5-17).

Due to a bug with the Welcome message dialog (Figure 5-7), users had to click the

Start New Project button in the top corner of the My Projects page twice because the

first click dismissed the dialog. This bug confused users because they thought that

48

Figure 5-16: Right-click Menu in
Components Pane

Figure 5-17: Right-click Menu in
Viewer Pane

the Start New Project button was not responding to their click. I fixed this bug so

that one click dismisses the welcome dialog and propagates to the Start New Project

button.

5.5 Onboarding

Four users asked for quick instructions, onboarding, or an orientation to App Inventor

when they started their tasks. I created an onboarding sequence using a Javascript

“hooks” framework that was written by two App Inventor students but never inte-

grated into the main service. My tour of App Inventor opens when the user clicks

Start My First Project from the new Welcome dialog box (see Figure 5-8), and it is

visible after the user enters a project name, making the onboarding very discoverable

(Figure 5-18). The tour uses small dialog boxes that move around the screen to point

out different features in App Inventor; see Appendix C for the full script of text in

the boxes. The first box also gives the user the option to see annotated screenshots

of the Designer and Blocks views on the main App Inventor site.

By adding the Javascript hooks, I added the capability to guide users through

tutorials directly inside App Inventor. These boxes can validate whether the current

step has been completed, making them more effective than a printed or video tuto-

rial. Another student has been improving the usability of these boxes, by adding a

progress indicator, a skip button to override the validation, and more tutorials. These

49

Figure 5-18: First Box in the Onboarding Sequence

improvements were not complete before the second usability study, so they will be

tested separately.

5.6 Other UI Changes

5.6.1 Basic Component Palette Drawer

I reordered the components in the User Interface/Basic Palette drawer to group

similar components (Figure 5-19). I also moved the Label component closer to the top

so that it would be more visible to users and they would choose it instead of a TextBox

when they wanted to create a caption (see Appendix A, Task 4). The TextBox

component lets the app user enter text, which is not a proper caption component.

5.6.2 Color in App Inventor

One user, a designer, commented on the limited color choices. Though I did not

add more colors, I changed the default colors to basic colors in the same tone, and I

arranged them in rainbow order in the Designer view, instead of alphabetical order

(Figure 5-20).

Finally, I gave App Inventor a fresh coat of green paint, which makes the colors

pop and overall looks nicer (Figure 5-21).

50

Figure 5-19: Original User Interface and New Basic Palette Drawer

Figure 5-20: Original and New Color Palette

51

Figure 5-21: Original and New Designer View Comparing Green Color Schemes

52

Chapter 6

Second Usability Study and Analysis

6.1 User Groups

For the second usability study, I recruited participants primarily at MIT because

in-lab sessions were easier for the session moderator, Chris LaRoche, and partici-

pants were less likely to experience technical difficulties. I found participants through

Facebook groups associated with MIT students and once again asked them to apply

through the brief Google survey. I also contacted applicants for the first usability

study who had not participated.

Once again, I divided the 12 participants into two groups based on their prior

programming experience. Five users completed the Beginner Tasks, and seven users

completed the Technical Tasks. Due to an error on my part, one novice participant

attempted the Technical Tasks. Though the experience was more frustrating for him

than we intended, he had valuable insights and found areas of documentation that did

not match my new version of App Inventor. Thus, we decided to include his session

in the study data.

Ten of the users who participated in this usability study had personal access to

Android phones or tablets, meaning they were familiar with the operating system.

Though not a requirement for eligibility, I think that Android users are more repre-

sentative of App Inventor users because they have experience with the Android OS.

Also, they would have felt more comfortable navigating the short tasks involving the

53

phone. However, iPhone and non-smartphone users were still able to navigate the

phone section of the tasks because the App Inventor Companion App was on the

home screen of the device.

All of the second study users were between the ages of 18 and 30. The beginner

users all stated they had less than one year of programming experience. Three of

the technical users had between 1 and 5 years of programming experience; the other

three had between 5 and 10 years of experience. None of the users were professional

developers.

6.2 Design

We used the same tasks that I designed for the first study. We made a few minor

changes, such as new screenshots, to reflect the changes in my new version of App

Inventor.

6.3 Implementation

All of my code changes are on a branch in my personal Github repository of the App

Inventor source code. We created a separate public instance of App Inventor using

my branch and directed users to http://uiux.appinventor.mit.edu/. Chris prepared

for and conducted the sessions the same way as the first study (see section 4.3).

6.4 Results and Analysis

6.4.1 Numerical Analysis between Both Studies

After the usability study, users completed the SUS form (see Appendix D). This time,

we numbered the SUS forms with the order in which they were completed, so we were

able to associate the forms with the users (see Table 6.1 and Figure 6-1). This means

that in addition to aggregate data, we can break down the scores by user group. The

54

SUS is a score out of 100 with a higher score indicating a technology that is more

usable.

Figure 6-1: Scatter Plot of SUS Scores by Study Participant

Standard
Mean Median Deviation Minimum Maximum

Beginner Users 58.75 58.75 29.95 27.5 95
Technical Users 76.67 76.25 9.03 65 92.5

All Users 67.71 75 23.1 27.5 95

Table 6.1: Table of SUS Scores Across All Users in Second Usability Study

I chose not to do an inferential statistical analysis of these scores and the scores

from the first usability study because the sample sizes are so small. Instead, I simply

compared the scores.

When comparing the SUS scores of the users in the first study to all of the users in

the second study, the averages are quite close: 71.08 and 67.71, respectively. However,

the standard deviations are quite different: 10.47 and 23.1, respectively. There were

two beginner users in the second study who reported very low SUS scores of 27.5;

this score is approximately 2 standard deviations below the mean of the SUS for All

Users in the second study. As previously explained, one of these users was a novice

who completed the Technical Tasks; it is understandable that due to his experience

with App Inventor, he did not perceive the technology to be very usable. However,

55

it is unclear why the other user gave App Inventor such a low SUS score. He said he

had Googled App Inventor before using it (to learn what it does), and it seems that

his expectations were not met. The overall theme of his session was that he seemed

to think that App Inventor should do more of the work for him than it is designed to

do.

6.4.2 Issue Analysis between Both Studies

I attempted to address 34 of the 75 unique issues from the first study. Of the 75

original unique issues, 56 issues were not encountered in the second study, including

21 issues that I addressed. Based on my solutions and user comments and behavior,

I conclude that my solutions resolved those 21 original issues (Figure 6-2). The

remaining 35 unseen issues can be explained by unique users; we cannot control for

users’ inherent variability in expectations, nor for their familiarity with computers

and programming.

Across the twelve users in the second study, I tabulated 65 unique issues and 107

total issues. This is an average of 5.4 unique issues and 8.9 total issues per user. On

average, these users found 0.4 more unique issues and 1.6 fewer total issues each than

the first usability study participants. Of the 65 unique issues, only 19 were issues also

seen in the first study (Figure 6-3). Of these 19 duplicate issues, I did not address

nine and six were mitigated by my solution. Four of the solutions neither improved

nor worsened the usability of the issue.

Figure 6-2: Success of Solutions to
Unique Issues from First Usability
Study

Figure 6-3: Duplicate Issues between
Studies

56

6.4.3 Resolved Issues

My solutions, described in Chapter 5, resolved 21 of the original issues, meaning

users did not encounter the issues in the second study. In the following list, I briefly

explain the issue from the first study and describe the solution or reference a longer

description from Chapter 5. Because these issues were resolved, I will merge the

solutions into the App Inventor codebase.

1. Four users were confused by the error messages when the Companion App

disconnected from or could not connect to App Inventor. See section 5.1.

2. A user did not understand the Session is Out of Date warning dialog. See

section 5.1.

3. One user tried to scan the app’s APK download QR code with the Companion

App. See section 5.1.1.

4. Though users usually did not comment on it, observing their interactions showed

that there were too many words on dialog boxes. See section 5.1.2.

5. The splash screen with release information shown when a user signs on to App

Inventor was distracting for new users. We stopped showing the splash screen

by default.

6. Three users were confused by the instructions from the splash screen to set up

the Emulator or an Android device to work with App Inventor. Because the

splash screen was not shown, users did not encounter this issue. The usability

of the setup instructions should be evaluated separately.

7. Clicking the Start New Project button did not work if the Welcome dialog box

was open; three users encountered this bug. See section 5.1.2.

8. Two users were hindered by the discrepancy of using the term procedure in App

Inventor and the term function in the study tasks. See section 5.2.4.

9. Five users said the call block for a procedure was hard for to find without an

example. See section 5.2.4.

10. A user thought the Build menu was where to find blocks; another user thought

it was where she could start a new project. See section 5.1.1.

57

11. A user expected the Guide menu item to link to a tutorial, not App Inventor

documentation. See section 5.1.1.

12. A user asked, “What is a checkpoint?” See section 5.1.1.

13. A user asked, “What is the gallery?” See section 5.1.1.

14. A user asked, “What is ‘Display Hidden Components in Viewer’?” See section

5.1.3.

15. Three users did not understand the AI Companion menu item. See section

5.1.1.

16. Three users asked for a quick orientation. See section 5.5.

17. A user requested a popup or tooltip in the blocks view. See section 5.2.3.

18. A user tried to right-click to delete a TextBox component. See section 5.4.

19. A user did not know what a Sound component’s MinimumInterval property was

because it did not have units. See section 5.1.3.

20. Users were confused by the palette drawer named User Interface. See section

5.6.1.

21. One participant complained that the available colors were limiting. See section

5.6.2.

6.4.4 Partially Resolved Issues

Because my solutions improved the usability of the following 9 issues, I will merge

my solutions into the App Inventor codebase. However, they remain open problems

that should be further investigated and eventually resolved.

Blocks view toggle button is hard to find

The onboarding sequence showed users where to find the Blocks view toggle button.

Six of the study participants, including the five beginner users, stepped through the

onboarding. The onboarding was not easily discoverable for the technical users. Three

of the technical users who did not see the onboarding had a hard time finding the

button. However, this outcome is better than the first usability study, where eight

58

out of fifteen users could not find the toggle. One beginner user said, “The toggles

[between Designer and Blocks] feel far away. I haven’t used anything over here yet.

It’s good that I had to click on the blocks button earlier [in the tour]. That’s how I

remembered how to switch.”

Using a TextBox instead of a Label as a caption

Several of the beginner users still chose the TextBox component to add a caption to

their app, when I was expecting them to choose a Label component. Even though

I reordered the components in the Basic palette, people still chose TextBox without

seeing Label. I think they were predisposed to choose TextBox because of text boxes

in Microsoft Word. When you add a text box in Word, you are adding a caption that

can hover in your document. I think changing the component name to TextEntryBox

or TextField would suggest to users that a TextBox in App Inventor is a component

in which the app user can enter text.

Connecting with the Companion App

I hoped to resolve the issues with connecting the Companion App by changing the

Connect/Test menu wording to be more descriptive (see 5.3); I also mentioned the

top menus in the onboarding sequence. However, a few users still had trouble finding

the 6-digit code to connect to the Companion App. One user thought that the code

must have been emailed to her, while another thought that because he hadn’t finished

his app, he wouldn’t have a code. They did not see the Test menu.

However, once users found the Test menu, they were much less confused by the

submenu options, one user commenting, “Ooo Companion App Over Wifi. That

sounds good.” These users generally had the Companion App open and saw that it

was asking for a code. We should add more descriptive instructions for connecting to

App Inventor on the home screen of the Companion App.

A few other users tried to scan the Companion App QR code with the normal QR

code reader on the phone. I think this problem will not be encountered if the users

set up App Inventor for themselves and download the Companion App on their own

59

devices.

No trash can in Designer view

In both studies, a user did not see the Delete button for components in the Designer

view because they “looked for a little trash can in the corner [of the Designer] because

that’s what it was in the other one [the Blocks view],” but there is no trash can.

Because App Inventor is a heavily drag-and-drop interface, they were not looking for

buttons. I think it makes sense to add a trash can in the corner of the Viewer so

that users can drag and drop components in the Designer view, like they can in the

Blocks view.

Right-click menu

Working with another student, I added a right-click menu that has a Delete option

and a Rename option. A few users in both tests tried to right-click or double-click the

text in a button or label to change it. Because nothing changed when they double-

clicked, they easily understood that was the wrong thing to do. I think it was helpful

to have a right-click context menu in the second study. This menu makes the Designer

view more consistent with the Blocks view interactions. Hopefully we can add more

options to the right-click menu in the Designer view, like changing the text on the

component or linking an image source file.

Keystore menu option is unclear

Overall, three people asked about the Keystore menu options. These options are a

rarely-used feature that allows apps created by different App Inventor accounts to be

signed with the same developer key. This feature is only necessary if an App Inventor

user with multiple accounts wants to list their apps as being created by the same

developer in the Google Play Store. I initially thought about hiding it in a submenu,

but that proved too difficult with the current GWT setup of the drop-down menus.

Instead, I changed the menu wording to include a few more words relating to signing

the app (see section 5.1.1). It did not make things worse, nor did it draw more

60

attention to the menu items, but the users were still confused. I think hiding it in an

“Advanced Options” submenu is the best idea.

Saving the empty screen

App Inventor asks the user to confirm an autosave when the user is in the Blocks

view but has not dragged any blocks into the Workspace. I clarified the wording of

the message and the action buttons, but one user in each study still encountered the

dialog box and was confused by it.

I think this dialog box is will appear more often if users go through the onboarding

sequence. They will be spending more time in the Blocks view, reading the popups

and navigating, without adding any blocks to the Workspace. I think App Inventor

should automatically save the empty screen because the user has given the project a

name. By doing this, the Save the Empty Screen dialog would be eliminated, which

would reduce user confusion.

6.4.5 Unresolved Issues

Because my solutions did not improved the usability of the following 4 issues, I will

not merge my solutions into the App Inventor codebase. These issues will require

more experimentation to develop a usable solution.

Event handler blocks are the same color as control blocks, which are easier

to find

I changed the color of the event handler blocks to be a darker shade of yellow and

the basic control blocks to be a lighter tint of yellow. The colors were distinguishable

when the blocks were placed near each other, as one user noticed toward the end of

her session. However, they were not distinguishable enough to help users understand

that they should not look for an event handler block in the Control drawer. Eight

out of twelve users went to the Control drawer because it has a yellow square icon

next to it.

61

Additionally, I tried to alleviate this issue by adding boxes in the onboarding

sequence to teach users about the three different areas of the Blocks palette (see Figure

5-12). However, these boxes came at the end of the very long onboarding sequence;

based on user behavior, I assume that most users were no longer thoroughly reading.

It is also possible that the users did not have enough knowledge of components at the

time of the onboarding to understand that different blocks would later be available.

When the users could not find the ‘when’ event handler block, many instead chose

the ‘if’ control block and attempted to change the ‘if’ to a ‘when.’ Eventually, most

users were able to find the ‘when’ in the appropriate component drawer. In some

cases, the test moderator had the user move on to the next task without finding the

block. One user summarized, “I thought the built-in blocks were pretty confusing

when I was trying to find something for the button, not knowing that everything

listed over here was a drawer. I thought they [the components listed] were objects,

like they are in the Designer view. Objects that I could move and drop.”

Once users found the components in the Blocks palette, they did not need help

finding component blocks (like event handlers) again. I think creating new icons

for the components that stand out visually would help the users not overlook the

components in the Blocks palette.

Finding the Any Component Blocks before the App Component Blocks

Three users, when looking for event blocks, navigated from the Built-in blocks to

the Any Component expander in the Blocks palette, skipping right over the app

component blocks.

I added a box in the onboarding sequence about the use of Any blocks (see the

last box in Figure 5-12). The box said Any blocks are advanced feature to be used

with similar components, like Sprites. Most users saw Sprites and commented, “I

don’t know what Sprites are.” One user optimistically stated, “That’s okay. I’ll figure

it out.” The users typically did not pull out Any blocks. If they had, they might

have noticed that there are event blocks inside the Any blocks drawers, and the users

would have been able to find the right block.

62

As suggested above, I think that creating new icons for components would help.

I also think I should condense the three onboarding boxes about the Blocks palette

into one box and add arrows to highlight the three different regions. Any blocks are

an advanced feature and are not needed by beginner App Inventor users; they can be

learned later. The onboarding sequence should not mention anything about sprites

because users were unnecessarily confused by them. There was no mention of sprites

in the first study, and no users expressed concerns about them.

Users did not understand the Backpack

Although the Backpack icon changed before the second usability study, people still

did not know its purpose or how they should use it. I think the new icons better

illustrate when blocks have been put in the Backpack. However, users still made

comments like, “What’s this Backpack it’s talking about? I have no idea about the

Backpack. I’m going to add things to it and see what happens,” and, “It makes

me think of carrying things somewhere or packing things. Does it have to do with

compiling code? I’m not really sure.” Finally, one user said, “It doesn’t look like I

can remove things from the Backpack, either,” indicating she did not know how it

worked, and it did not match her intuition about what it should do.

My solution was to add a box in the onboarding sequence about the Backpack (see

section 5.2.5). One beginner user clicked the link for More Information, which took

her to a page on the main App Inventor site that explains the Backpack. On seeing

the page, she said, “Whoa, okay, I’m going to come back to that,” and immediately

closed the window to go back to App Inventor. She found too much information and

was overwhelmed by it because she did not need to use the Backpack for her tasks.

I suggest removing the box from the onboarding sequence because beginner users

do not need to use the Backpack. I want to add more discoverable documentation

about the Backpack when the user starts to use it so that they can learn what it is and

what it does when they are ready and curious. We can also make our documentation

more user-friendly by reducing the number of words on the Backpack page.

63

AI Starter error

The aiStarter program is necessary for Windows users who would like to use the Emu-

lator. AI stands for App Inventor; however, most users do not make that connection.

Before the studies, we chose to set up App Inventor for our users because it is an

involved process, and it should be a one-time occurrence, which would be a waste of

time in a 30 minute usability study. Because our users did not go through the App

Inventor setup process themselves, they did not know what the aiStarter or the error

were. I think users might not have encountered this issue if they had set up App

Inventor themselves.

For the second study, I clarified the words in the error box. However, the three

users who subsequently encountered this error immediately clicked it away without

reading the message. Then, when the Emulator did not start, they would try a

different Test option. Six users across both studies thought that the Emulator would

be the best way to test their app.

Approximately 85% of our user base uses Windows, so this error is a very relevant

issue, especially in classroom settings where the teacher or IT professional set up the

computers, but the students encounter the error. If users continue to encounter the

error, it should encourage them to try an Android device with the Companion App

instead of the Emulator. However, this solution may not be possible in school settings

due to lack of hardware.

6.5 Quotes from Participants

∙ Most of my attempts to rephrase long messages on dialog boxes were futile.

Through doing these studies, I learned that people do not like to read. One

user expressed it perfectly when encountering the Save Empty Screen message,

saying, “I don’t know what this is. I’m just going to click it.”

∙ One user said, “The designer reminds me of Illustrator a little bit [with the]

narrow columns.” I loved this quote because it shows what we are trying to do

with App Inventor: match the software that users already know how to use,

64

to minimize the amount of time and effort it takes to learn how to use App

Inventor.

∙ Three users in my second usability study were very concerned about the place-

ment of blocks in the Blocks view, a comment only one user made in the first

study. One user stated, “I don’t know if these blocks flow linearly, and my sus-

picion is they don’t.” I thought this was a curious trend that must depend on

personality and familiarity with programming. Some languages do flow linearly,

and if that is what the participant was accustomed to using, they would expect

something similar in App Inventor.

∙ One user who was not familiar with smartphones had an interesting exchange

trying to connect to the Companion App. He clicked the menu option to get the

QR code and said, “Oh, clever!” But he had difficulty trying to scan the code

due to strange brightness and contrast issues on the screen. He then said, “I’m

going to give up, like an impatient millennial,” and proceeded to type in the

code and said, “I’m glad there’s another way to do it.” After he got the phone

to connect over WiFi, he said, “I don’t have high expectations of consumer

technologies of being able to do fancy things like these.”

∙ About the Palette and all of the available components, one user said, “I like

being able to see the lists of tools that I’m not using. That gives me more ideas

of things that I could make, without already having the idea . . . like an idea

generator.”

∙ Several users commented on the blocks and their ease of use. One said, “I really

like the blocks because not everyone knows code. It was interactive and fun.

Fun as code can be.” And another said, “I think compared to a normal coding

language, it’s much easier to use than writing out the actual code. A lot of

where you mess up is in the formatting. This makes the formatting easy.” A

third user commented, “It’s definitely a lot easier than I thought it would be.”

Finally, one user said, “I think if I were a first-time Android app developer,

I’d be interested in using this over the Android SDK.” These users appreciated

what App Inventor was designed to do, and seemed to have fun while building

65

the apps.

∙ Observing the usability tests was most fun when the participants had a delight

moment with the apps they were building. One beginner user was particu-

larly excited about App Inventor. After reading the onboarding out loud, he

responded to the final box’s “Have fun inventing!” with, “I will.” As he pro-

gressed through the tasks and was able to format the design of the app screen

to his liking, he said, “This is going well. I like my app so far.” After building in

the blocks, he said, “Maybe we get to test it... Yay!... ooh this is fun!... I have

a friend who would love this app.” At the conclusion of his study, he clicked

the button and heard the cat meow, then excitedly said, “It’s working!”

66

Chapter 7

Future Work

In addition to the proposed solutions in Sections 6.4.4 and 6.4.5 for issues not fully

resolved by my work described in Chapter 5, there are several other areas that future

versions of App Inventor could improve.

7.1 Onboarding

The onboarding sequence (see Appendix C) needs to be refined. It would benefit

from its own usability study, in which users are asked to step through it and give

their feedback about whether too much information is included at certain steps or if

necessary information has been omitted from the script. For example, after watching

users, it became clear that there were too many boxes in the sequence, especially

because there was no indication of the length of the onboarding or the user’s current

position.

Users suggested adding arrows or some other visual cue, such as highlighting, to

emphasize a feature or section of interest, in addition to the box moving to different

locations on the screen. One person suggested animating the box around the screen,

instead of having new boxes created each time, which would help guide their eyes

around the screen and be a little less visually jolting.

Finally, one user wanted to end the onboarding early, but he did not realize that

he could click the Close button to do so. Instead, he kept clicking Next until he

67

reached the end. It might be beneficial to add an X in the top corner of the dialog

boxes and remove the Close button, so that the boxes match the convention of closing

windows in the top corner.

7.2 Tutorials and Walkthroughs

We need to differentiate between Tutorials (static guides on the App Inventor website

that teach how to build apps) and Walkthroughs (dynamic guides within the Designer

and Blocks views that validate a user’s progress as they build an app). We need to

use more distinctive names for these two guides that appear next to each other in the

Help menu. We also need to expand the Walkthrough selection; it currently has just

three walkthroughs for building “Easy” apps.

7.3 More Design Control

Several users in both studies wanted more control over the look and feel of the app

they were building. Participants requested more control over the alignment of their

components. Several people expected to be able to drag components to a specific

location on the Viewer’s mock phone screen. We should make the Viewer behave

more like Android Studio or XCode for component arrangement on a screen.

As I observed study participants, many of whom were coders or engineers, it was

clear to me that they expected to be able to do simple design things that currently

are not possible in App Inventor. For example, they became frustrated with App

Inventor when it did not allow them to position a button at the bottom of the screen.

If users could position components and adjust properties, like they can do in Android

Studio, App Inventor apps would be more visually appealing and could compete with

professional quality apps developed in Java. At the end of her session, one participant

said, “You don’t need to be a coder to do this. I could take a designer and get them

to build an app. You could take a coder and get them to design something that’s

probably prettier than what they’d do on their own.”

68

We should add a discoverable option for using more colors in the Designer view.

Currently, a component’s color property in the Designer view is limited to showing

the default colors (see Figure 5-20). We could add a color picker button in the color

property dropdown, giving users more control over the colors displayed in the Viewer.

In the Blocks view, we could add a way for the user to create custom color blocks. We

could replace the current 70-tone color picker with a wheel to allow users to choose

more colors. In the Blocks view, it would be good to show a thumbnail on the RGB

block of the color created with that block.

We should add more default fonts (App Inventor currently only has 3 fonts avail-

able for use), or we should create a way for people to upload their own font files use in

their apps. We could extend the media upload functionality to include font files and

let the user set the font source of a component to use an uploaded font. We should

add more font formatting options so that the users can do what is currently available

in Android Studio.

7.4 Outstanding Issues

7.4.1 Simulator in the Designer View

In total, four participants expected to be able to interact with their app on the mock

phone screen in the Viewer. It would be nice to build a Simulator in the Viewer

so that the user could interact with their app in the same screen in which they are

building it. This would also eliminate the need for the Emulator, which runs slowly

and requires extra software to use on Windows (see section 6.4.5).

7.4.2 Scrolling in the Blocks Workspace

Several people complained that the Blocks view Workspace scrolling behavior was

inconsistent with the rest of App Inventor and their expectations. Blockly has im-

plemented zoom scrolling, like what exists in Google Maps. Before we integrate this

new Blockly functionality into App Inventor, we should perform a small usability test

69

to see if zoom scrolling is behavior that is familiar and useful.

7.4.3 Viewer Screen Sizes

Because Android phone and tablet screens come in a variety of sizes, it would be

useful to have an option to see different screen sizes in the Viewer. This way, the user

can design their apps for a variety of different screens, even if they do not own the

physical devices.

7.4.4 Hidden and Non-visible Components

I changed the string ‘Display Hidden Components in Viewer’ in the Viewer to ‘Display

Invisible Components’ because components have a ‘Visible’ property. However, my

advisor later pointed out that this could be confusing because App Inventor also

has Non-Visible Components. It would be better to keep the string ‘Display Hidden

Components in Viewer’ and instead change the property on the component from

‘Visible’ to ‘Hidden.’ This property would not be selected by default. This change

would make ‘Display Hidden Components in Viewer’ consistent and avoid confusion

with non-visible components.

7.5 Other Thoughts

Many users commented that they would like a version of App Inventor that could

build apps for iOS. This suggestion would be a large undertaking that was only

recently made possible when Swift became open-source. In the US, more consumers

have iPhones, but outside of the US, more consumers have Android devices. In the

future, it would be nice to have an App Inventor feature that allowed users to export

to Android and/or iPhone. However, due to the the different design patterns and

capabilities of Android OS and iOS, it may not be possible for a user to design and

program an app in App Inventor that can then be exported and easily used on both

Android and iOS devices.

70

As more features of App Inventor are added and refined, it is important that we

continue performing small usability tests. Our future usability tests do not need to

be as extensive nor as time and resource intensive as my thesis experiment. They

can be as simple as asking a few friends who are less familiar with App Inventor to

go through a set of informal tasks to verify that what we have changed makes sense

to them. We could also put new features in front of users at our outreach events and

observe their behavior to get a better understand whether or not the new feature is

intuitive to less-experienced users.

My usability studies uncovered over 120 usability-related issues in App Inventor.

These issues will be properly documented so that they can become small projects

for MIT undergraduate students and App Inventor open-source community members

who are passionate about user interfaces, giving more people the ability to contribute

to our project.

71

72

Chapter 8

Conclusion

App Inventor was created to teach people how to program. I used App Inventor to

create my first mobile app almost 5 years ago. More recently, through this project,

App Inventor taught me how to program with GWT and how to work with a large

codebase. Additionally, I learned a lot about how people interact with App Inventor

and can generalize my findings to better understand human-computer interaction.

Many users did not try certain actions they thought should work, and incidentally

do work, in App Inventor. I think that because App Inventor had previously failed

to match their expectations, they no longer wanted to experiment with features that

were not readily apparent. For example, one user did not try to copy multiple blocks

at one time, instead selecting each block individually and copying and pasting it,

then putting all of the blocks back together. In App Inventor, it is possible to copy

multiple blocks that are connected by selecting and copying the parent block. As

another example, three users stated that they wished they could type to get a block

they wanted; if they had tried that in the Workspace, they would have discovered

that the feature exists.

I also learned that people do not like to read. One user stated, “When I see a

bunch of text, I tend to zone out and don’t read it, just rush through it instead.”

Steve Krug insists that users will not read instructions until they have failed to

‘muddle through’—and then they will only skim the instructions and likely not find

the information they need [14, p. 47]. I saw this repeatedly as I observed users

73

‘muddle through’ using App Inventor.

The lessons I have learned about users, usable design, and usability testing will

be beneficial to me as I pursue a career in software development with a focus on

user interfaces and human-computer interaction. Learning about how users think by

observing them has taught me to be more mindful of design decisions that I make. I

have learned the value of usability testing and how to perform it, a skill I can continue

to hone as I conduct tests on future software that I develop.

By making App Inventor more usable, we make the world of programming more

accessible to more people. I have accomplished my goal of making App Inventor

easier to use so that our novice programmers will be less frustrated. I hope that more

young people will be exposed to programming through App Inventor and eventually

be able to use their skills in whatever career they choose.

74

Appendix A

Beginner Usability Study Tasks

Originally, each of the tasks appeared on its own page; to conserve space, they have

been condensed in this reproduction.

Welcome to the App Inventor Usability Study!

Imagine you have an awesome idea for a new app that everybody needs: The Cat’s
Meow. Your app will have a picture of a cat that meows when the user pets it. It’s
sure to take the Internet by storm!

You do some research, and a friend recommends MIT App Inventor. You want to
try designing your awesome cat app for your Android phone.

Task 1:
What do you think you should do to start your project?

Task 2:
After creating your new project, you start by designing what the app’s screen

will look like. You must add all of the components to the screen before you can add
functionality to your app. First, you will need to add a button. How do you proceed?

Task 3:
Next, you’ll need to add a picture of the cat to the button (source file is "cat.jpg"

on your desktop).

Task 4:
You decide to add a text caption under the button, telling the user to pet the cat.

How would you proceed?

75

Task 5:
Finally, you need to add the cat’s meow sound (source file is "meow.mp3" on your
desktop) to the app. How would you do this?

Task 6:
To make your app work, you’ll need to add blocks, which are the code of the

program. You want your meow sound to play when you click the button. You can
make that happen by adding these blocks:

Task 7:
You want to test what your app does on your phone. You’ve already downloaded

the MIT App Inventor Companion app. How would you proceed?

Task 8:
You decide that you don’t need a caption. How would you remove it?

Thank you for your participation today!

76

Appendix B

Technical Usability Study Tasks

Originally, each of the tasks appeared on its own page; to conserve space, they have

been condensed in this reproduction. These are the tasks from the second usability

study; they are only minorly changed from the first study.

Welcome to the App Inventor Usability Study!

You already know how to program (at least the basics), but you’ve never pro-
grammed for smart phones. Imagine you want to learn how to program for Android,
but you don’t have a lot of time to invest.

You do some research, and a friend recommends MIT App Inventor. You decide
to try it out. You think it could help you quickly prototype apps.

Task 1:
To help you get started, your friend sent you one of their App Inventor projects.

You’ve saved it onto your desktop as "MoleMash.aia". How would you go about
opening it up from the App Inventor website?

Task 2:
You’ve got your friend’s app open in App Inventor. You want to see what the app

does on your phone. How would you proceed?
Feel free to test Mole Mash by using the Companion app throughout the rest of

these tasks.

77

Task 3:
You open up the blocks view and notice your friend’s app has these code blocks that
update the ScoreLabel text. These blocks are used in two separate places, but do the
same thing.

You want to use good programming practice and abstract these blocks into a proce-
dure.
How would you continue?

Task 4:
Now replace those set ScoreLabel.Text blocks with calls to your procedure in both

places they are currently used.

Task 5:
You notice your friend’s app is unfinished. You want to complete the app by

adding functionality for a miss counter. The miss counter will count the number of
times a player hits the canvas but does not touch the mole.

How would you go about adding a miss variable block, like the score variable block?

Task 6:
How would you set the miss variable to 0 when the player resets the game?

Task 7:
How would you go about creating a procedure to set the MissLabel text the way

ScoreLabel is set?

Task 8:
You will need to add an event handler for when the Canvas is touched. How would

you go about adding this block?

Thank you for your participation today!

78

Appendix C

Onboarding Script

These messages were displayed in popups around the Designer and Blocks views to

quickly teach the user how to use App Inventor.

1. Welcome to App Inventor! Before you get started, we’d like to take you on a

short tour.

2. This view is called the Designer. This is where you will design the look and feel

of your app.

3. This is the Palette. It stores all of the components you can use in your apps in

these labeled drawers.

4. This is the Viewer. It shows what the app will look like on a phone screen.

Drag and drop components from the Palette here to add them to your app.

5. This is the list of Components. All of the components in the viewer will appear

in a nested list here. You can select, rename and delete components from this

column.

6. This is a list of the properties specific to the selected component in the app.

You can change the component’s size, text, color, etc.

7. These buttons toggle between the Designer and Blocks views. In the Blocks

view, you can program the behavior of your app. Click the Blocks button.

8. This is the Workspace. You drag and drop blocks from the drawers on the left

to this workspace and snap them together to program your app’s behavior.

9. These are the built-in blocks. They are always available. You can find general

79

behaviors for your app, such as math, if/else statements, loops, variables, and

procedures.

10. Component blocks will be here, nested under Screen1. These blocks are specific

to the components you added to your app in the Viewer.

11. Any Component blocks operate on groups of similar components and are often

used inside of loops, such as changing the positions of a group of sprites.

12. Up here at the top, you can find options to live-test your app, generate an

installable APK for your app, get help, etc.

13. Have fun inventing!

80

Appendix D

System Usability Scale (SUS) Form

81

82

Bibliography

[1] About Us | Explore MIT App Inventor. http://appinventor.mit.edu/explore/
about-us.html. Accessed May 5, 2015.

[2] App Inventor Developers Forum - Google Groups. https://groups.google.com/
forum/#!forum/app-inventor-dev. Accessed May 3, 2016.

[3] MIT App Inventor Forum - Google Groups. https://groups.google.com/forum/
#!forum/mitappinventortest. Accessed May 2, 2015.

[4] Assistant Secretary for Public Affairs. Home. http://www.usability.gov/. Ac-
cessed April 6, 2016.

[5] College Board. AP Computer Science Principles Course and Exam Description,
Including the Curriculum Framework.

[6] Ali Darejeh and Dalbir Singh. An investigation on Ribbon interface design guide-
lines for people with less computer literacy. Computer Standards & Interfaces,
36(5):808–820, September 2014.

[7] N. Fraser. Blockly | Google Developers. https://developers.google.com/blockly/.
Accessed April 26, 2016.

[8] Ruili Geng and Jeff Tian. Improving Web Navigation Usability by Comparing
Actual and Anticipated Usage. IEEE Transactions on Human-Machine Systems,
45(1):84–94, February 2015.

[9] Agnes Grudniewicz, Onil Bhattacharyya, K Ann McKibbon, and Sharon E
Straus. Redesigning printed educational materials for primary care physicians:
design improvements increase usability. Implementation science : IS, 10(1):156,
January 2015.

[10] Hello Purr for App Inventor 2. http://appinventor.mit.edu/explore/ai2/
hellopurr.html. Accessed September 21, 2015.

[11] Sheng-yi Hsu, Yuan-fu Lou, and Chuen-tsai Sun. Block Shelves for Visual Pro-
gramming Languages. May 2016.

[12] Yu-chen Hsu. The effects of metaphors on novice and expert learners’ perfor-
mance and mental-model development. Interacting with Computers, pages 770–
792, 2006.

83

[13] P. Jordan, B. Thomas, B. Weerdmeester, and I. McClelland. Usability Evaluation
in Industry. Taylor & Francis Ltd., 1996.

[14] Steve Krug. Don’t Make Me Think: A Common Sense Approach to Web Usabil-
ity. Peachpit, Berkeley, 2 edition, 2006.

[15] K. Lang. MIT App Inventor and Hong Kong Jockey Club Announce Joint
Project. http://appinventor.mit.edu/explore/blogs/karen/2016/05/mit.html.
Accessed May 9, 2016.

[16] C. LaRoche and K. Wahl. Informal personal interview about usability testing.
Conducted April 8, 2015.

[17] Mobile Computing & App Development Course | MIT Professional
Education. http://professional.mit.edu/programs/short-programs/
educational-mobile-computing. Accessed April 25, 2016.

[18] R. Miller. User Testing. http://courses.csail.mit.edu/6.831/2014/readings/
L11-user-testing/, 2015. Accessed April 12, 2015.

[19] MoleMash for App Inventor 2. http://appinventor.mit.edu/explore/ai2/
molemash.html. Accessed September 21, 2015.

[20] Jakob Nielsen. Estimating the number of subjects needed for a thinking aloud
test. International Journal of Human-Computer Studies, 41(3):385–397, Septem-
ber 1994.

[21] Jakob Nielsen. 10 Heuristics for User Interface Design. https://www.nngroup.
com/articles/ten-usability-heuristics/, 1995. Accessed April 14, 2015.

[22] John F. Pane, Brad A. Myers, and Leah B. Miller. Using HCI Techniques to
Design a More Usable Programming System. Proceedings of the IEEE 2002 Sym-
posia on Human Centric Computing Languages and Environments (HCC’02),
page 198, September 2002.

[23] MIT Mobile Apps Class Help Forum: 2015. https://piazza.com/class/
i4k0lv5m3ko6s. Accessed May 2, 2015.

[24] A. Richardson. Informal personal interview about using App Inventor at Youth
Radio. Conducted May 1, 2015.

[25] Scratch - Imagine, Program, Share. https://scratch.mit.edu/. Accessed May 3,
2016.

[26] Andreas Sonderegger, Sven Schmutz, and Juergen Sauer. The influence of age
in usability testing. Applied ergonomics, 52:291–300, January 2016.

[27] Technovation - Girls in Technology Entrepreneurship. http://www.
technovationchallenge.org/. Accessed February 4, 2016.

84

[28] G. van Emde Boas. Informal presentation to MIT App Inventor team about
frequently encountered usability issues in App Inventor. March 18, 2015.

[29] Verizon Innovative App Challenge. http://appchallenge.tsaweb.org/. Accessed
April 25, 2016.

[30] David Wolber. Learn to build Android apps | Appinventor. http://www.
appinventor.org/. Accessed February 18, 2016.

85

