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Abstract

We consider the problem of generating motion plans for a robot that are guaranteed to
succeed despite uncertainty in the environment, parametric model uncertainty, and distur-
bances. Furthermore, we consider scenarios where these plans must be generated in real-time,
because constraints such as obstacles in the environment may not be known until they are
perceived (with a noisy sensor) at runtime. Our approach is to pre-compute a library of
“funnels” along different maneuvers of the system that the state is guaranteed to remain
within (despite bounded disturbances) when the feedback controller corresponding to the
maneuver is executed. The resulting funnel library is then used to sequentially compose
motion plans at runtime while ensuring the safety of the robot. A major advantage of the
work presented here is that by explicitly taking into account the effect of uncertainty, the
robot can evaluate motion plans based on how vulnerable they are to disturbances.

We demonstrate and validate our method using extensive hardware experiments on a
small fixed-wing airplane avoiding obstacles at high speed (∼12 mph), along with thorough
simulation experiments of ground vehicle and quadrotor models navigating through cluttered
environments. To our knowledge, the resulting hardware demonstrations on a fixed-wing
airplane constitute one of the first examples of provably safe and robust control for robotic
systems with complex nonlinear dynamics that need to plan in realtime in environments
with complex geometric constraints.

The key computational engine we leverage is sums-of-squares (SOS) programming. While
SOS programming allows us to apply our approach to systems of relatively high dimension-
ality (up to approximately 10-15 dimensional state spaces), scaling our approach to higher
dimensional systems such as humanoid robots requires a different set of computational tools.
In this thesis, we demonstrate how DSOS and SDSOS programming, which are recently
introduced alternatives to SOS programming, can be employed to achieve this improved
scalability and handle control systems with as many as 30-50 state dimensions.

Thesis Supervisor: Russ Tedrake
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Imagine an unmanned aerial vehicle (UAV) flying at high speed through a cluttered envi-

ronment in the presence of wind gusts, a legged robot traversing rough terrain, or a mobile

robot grasping and manipulating previously unlocalized objects in the environment. These

applications demand that the robot move through (and in certain cases interact with) its en-

vironment with a very high degree of agility while still being in close proximity to obstacles.

Such systems today lack guarantees on their safety and can fail dramatically in the face of

uncertainty in their environment and dynamics.

The tasks mentioned above are characterized by three main challenges. First, the dynam-

ics of the system are nonlinear, underactuated, and subject to constraints on the input (e.g.

torque limits). Second, there is a significant amount of uncertainty in the dynamics of the

system due to disturbances and modeling error. Finally, the geometry of the environment

that the robot is operating in is unknown until runtime, thus forcing the robot to plan in

real-time.

1.1 Contributions

In this thesis, we address these challenges by combining approaches from motion planning,

feedback control, and tools from Lyapunov theory and convex optimization in order to per-
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(a) A plane deviating from its nominal planned tra-
jectory due to a heavy cross-wind.

X

Y

(b) The “funnel” of possible trajectories.

Figure 1-1: Not accounting for uncertainty while planning motions can lead to disastrous consequences.

form robust real-time motion planning in the face of uncertainty. In particular, in an offline

computation stage, we first design a finite library of open loop trajectories. For each trajec-

tory in this library, we use tools from convex optimization (sums-of-squares programming in

particular) to design a controller that explicitly attempts to minimize the size of the worst

case reachable set of the system given a description of the uncertainty in the dynamics and

bounded external disturbances. This control design procedure yields an outer approximation

of the reachable set, which can be visualized as a “funnel” around the trajectory, that the

closed-loop system is guaranteed to remain within. A cartoon of such a funnel is shown in

Figure 1-1(b). Finally, we provide a way of sequentially composing these robust motion plans

at runtime in order to operate in a provably safe manner in previously unseen environments.

One of the most important advantages that our approach affords us is the ability to

choose between the motion primitives in our library in a way that takes into account the

dynamic effects of uncertainty. Imagine a UAV flying through a forest that has to choose
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between two motion primitives: a highly dynamic roll maneuver that avoids the trees in front

of the UAV by a large margin or a maneuver that involves flying straight while avoiding the

trees only by a small distance. An approach that neglects the effects of disturbances and

uncertainty may prefer the former maneuver since it avoids the trees by a large margin and is

therefore “safer”. However, a more careful consideration of the two maneuvers could lead to

a different conclusion: the dynamic roll maneuver is far more susceptible to wind gusts and

perturbations to the initial state than the second one. Thus, it may in fact be more robust

to execute the second motion primitive. Further, it may be possible that neither maneuver

is guaranteed to succeed and it is safer to abort the mission and simply transition to a hover

mode. Our approach allows robots to make these critical decisions, which are essential if

robots are to move out of labs and operate in real-world environments.

We demonstrate and validate our approach using thorough simulation experiments of

ground vehicle and quadrotor models navigating through cluttered environments, along with

extensive hardware experiments on a small fixed-wing airplane avoiding obstacles at high

speed (∼12 miles per hour) in an indoor motion capture environment. To the best of our

knowledge, the resulting hardware demonstrations on a fixed-wing airplane constitute one

of the first examples of provably safe and robust control for robotic systems with complex

nonlinear dynamics that need to plan in real-time in cluttered environments.

The key computational engine we leverage in this thesis is sums-of-squares (SOS) pro-

gramming. While SOS programming allows us to apply our approach to systems of relatively

high dimensionality (up to approximately 10-15 dimensional state spaces), scaling our ap-

proach to higher dimensional systems such as humanoid robots requires a different set of

computational tools. In this thesis, we demonstrate how DSOS and SDSOS programming

[3, 4], which are recently introduced alternatives to SOS programming, can be employed to

achieve this improved scalability and handle control systems with as many as 30-50 state

dimensions. Problems of this scale are significantly beyond what SOS programming can

currently handle.
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1.2 Outline

The outline of the thesis is as follows. Chapter 2 discusses prior work; Chapter 3 provides a

brief background on semidefinite and sums-of-squares (SOS) programming, which are used

heavily throughout the thesis; Chapter 4 shows how to use SOS programming to compute

funnels; Chapter 5 introduces the notion of a funnel library; Chapter 6 describes our algo-

rithm for using funnel libraries for real-time robust planning in environments that have not

been seen by the robot before; Chapter 7 presents extensive simulation results on a ground

vehicle model and compares our approach with an approach based on trajectory libraries;

Chapter 7 also considers a quadrotor model and shows how one can use our approach to

guarantee collision-free flight in certain environments; Chapter 8 presents hardware exper-

iments on a small fixed-wing airplane in order to demonstrate and validate our approach;

Chapter 9 describes how DSOS and SDSOS programming can be used to handle systems in

the 30-50 dimensional range; Chapter 10 concludes the thesis with a discussion of challenges

and open problems.
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Chapter 2

Relevant Work

2.1 Motion Planning

Motion planning has been the subject of significant research in the last few decades and

has enjoyed a large degree of success in recent years. Planning algorithms like the Rapidly-

exploring Randomized Tree (RRT) [54], RRT? [53], and related trajectory library approaches

[60] [37] [99] can handle large state-space dimensions and complex differential constraints.

These algorithms have been successfully demonstrated on a wide variety of hardware plat-

forms [57] [93] [92] [90]. However, an important challenge is their inability to explicitly reason

about uncertainty and feedback. Modeling errors, state uncertainty and disturbances can

lead to failure if the system deviates from the planned nominal trajectories.

The motion planning aspect of our approach draws inspiration from the vast body of

work that is focused on computing motion primitives in the form of trajectory libraries.

For example, trajectory libraries have been used in diverse applications such as humanoid

balance control [60], autonomous ground vehicle navigation [92], grasping [15] [32], and

UAV navigation [34] [12]. The Maneuver Automaton [37] attempts to capture the formal

properties of trajectory libraries as a hybrid automaton, thus providing a unifying theoretical

framework. Maneuver Automata have also been used for real-time motion planning with

static and dynamic obstacles [38]. Further theoretical investigations have focused on the
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offline generation of diverse but sparse trajectories that ensure the robot’s ability to perform

the necessary tasks online in an efficient manner [43]. More recently, tools from sub-modular

sequence optimization have been leveraged in the optimization of the sequence and content

of trajectories evaluated online [32, 31].

Robust motion planning has also been a very active area of research in the robotics

community. Early work [22] [63] [48] [58] focused on settings where the dynamics of the

system are not dominant and one can treat the system as a kinematic one. The problem

is then one of planning paths through configuration space that are robust to uncertainty

in the motion of the robot and geometry of the workspace. Our work with funnels takes

inspiration from the early work on fine-motion planning, where the notions of funnels [68]

and preimage backchaining [63] (also known as goal regression or sequential composition)

were first introduced. The theme of robust kinematic motion planning has persisted in

recent work [72] [44] [67], which deals with uncertainty in the geometry of the environment

and obstacles.

2.2 Planning under Uncertainty

In settings where the dynamics of the system must be taken into account (e.g., for underac-

tuated systems), the work on planning under uncertainty attempts to address the challenges

associated with uncertainty in the dynamics, state, and geometry of the environment. In

particular, chance-constrained programming [26] provides an elegant mathematical frame-

work for reasoning about stochastic uncertainty in the dynamics, initial conditions, and

obstacle geometry [18] [79] [104] and allows one to generate motion plans with bounds on

the probability of collision with obstacles. In settings where the state of the system is par-

tially observable and there is significant uncertainty in the observations, one can extend

this framework to plan in the belief space of the system (i.e., the space of distributions over

states) [107] [108]. While these approaches allow one to explicitly reason about uncertainty

in the system, they are typically restricted to handling linear dynamical systems with Gaus-

sian uncertainty. This is due to the computational burden of solving chance constrained
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problems for nonlinear and non-Gaussian systems.

Similarly, other approaches for belief space planning [24] [85] [88] [16] [1] [82] also approx-

imate the belief state as a Gaussian distribution over state space (however, see [84] for an

exception to this) for computational efficiency and hence the true belief state is not tracked.

Thus, in general, one does not have robustness guarantees. The approach we take in this

work is to assume that disturbances/uncertainty are bounded and provide explicit bounds

on the reachable set to facilitate safe operation of the nonlinear system.

More generally, the rich literature on Partially Observable Markov Decision Processes

(POMDPs) [51] is also relevant here. POMDPs present an elegant mathematical framework

for reasoning about uncertainty in state and dynamics. However, we note that our focus

in this work is on dynamical systems with continuous state and action spaces, whereas the

POMDP literature typically focuses on discretized state/action spaces for the most part.

2.3 Reachable Sets

Reachability analysis for linear and nonlinear control systems has a long history in the

controls community. For linear systems subject to bounded disturbances, there exist a

number of techniques for efficiently computing (approximations of) backwards and forwards

reachable sets [56] [42] [109]. One can apply techniques from linear reachability analysis

to conservatively approximate reachable sets of nonlinear systems by treating nonlinearities

as bounded disturbances [9]. This idea has been used in [8] for performing online safety

verification for ground vehicles. A similar idea was used in [7] to perform online safety

verification for UAVs and to decide when the UAV should switch to an emergency maneuver

(a “loiter circle”). In this thesis we will also compute outer approximations of reachable sets

(which we refer to as “funnels”). However, the approach we present here is not based on

a linearization of the system and thus has the potential to be less conservative for highly

nonlinear systems. Further, the scope of our work extends beyond verification; the emphasis

here is on safe real-time planning with funnels.

Approximations of reachable sets for nonlinear systems can be computed via Hamilton-
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Jacobi-Bellman (HJB) differential game formulations [73]. This method was used in [41] for

designing motion primitives for making a quadrotor perform an autonomous backflip in a

2D plane. While this approach handles unsafe sets that the system is not allowed to enter,

it is assumed that these sets are specified a priori. In this thesis, we are concerned with

scenarios in which unsafe sets (such as obstacles) are not specified until runtime and must

thus be reasoned about online. Further, techniques for computing reachable sets based on the

HJB equation have historically suffered from the curse of dimensionality since they rely on

discretizations of the state space of the system. Hence, unless the system under consideration

has special structure (e.g., decoupled systems [27]), these methods have difficulty scaling up

beyond approximately 5-6 dimensional state spaces.

An approach that is closely related to our work is the work presented in [78]. The authors

propose a randomized planning algorithm in the spirit of RRTs that explicitly reasons about

disturbances and uncertainty. Specifications of input to output stability with respect to

disturbances provide a parameterization of “tubes” (analogous to our “funnels”) that can

be composed together to generate motion plans that are collision-free. The factors that

distinguish the approach we present in this thesis from the one proposed in [78] are our focus

on the real-time aspect of the problem and use of sums-of-squares programming as a way

of computing reachable sets. In [78], the focus is on generating safe motion plans when the

obstacle positions are known a priori. Further, we provide a general technique for computing

and explicitly minimizing the size of tubes.

Another approach that is closely related to ours is Model Predictive Control with Tubes

[69]. The idea is to solve the optimal control problem online with guaranteed “tubes” that

the trajectories stay in. A closely related idea is that of “flow-tubes”, which have been used

for high-level planning for autonomous systems [59]. However, these methods are generally

limited to linear systems.
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2.4 Lyapunov Theory and SOS programming

A critical component of the work presented here is the computation of “funnels” for nonlin-

ear systems via Lyapunov functions. The metaphor for thinking about Lyapunov functions

as defining funnels was introduced to the robotics community in [25], where funnels were

sequentially composed in order to produce dynamic behaviors in a robot. However, com-

putational tools for automatically searching for Lyapunov functions were lacking until very

recently. In recent years, sums-of-squares (SOS) programming has emerged as a way of

checking the Lyapunov function conditions associated with each funnel [80]. The technique

relies on the ability to check nonnegativity of multivariate polynomials by expressing them

as a sum of squares of polynomials. This can be written as a semidefinite optimization pro-

gram and is amenable to efficient computational algorithms such as interior point methods

[80]. Assuming polynomial dynamics, one can check that a polynomial Lyapunov candidate,

V (x), satisfies V (x) > 0 and V̇ (x) < 0 in some region Br. Importantly, the same idea can be

used for computing funnels along time-indexed trajectories of a system [102] [103]. In this

thesis, we will use a similar approach to synthesize feedback controllers that explicitly seek

to minimize the effect of disturbances on the system by minimizing the size of the funnel

computed along a trajectory. Thus, we are guaranteed that if the system starts off in the

set of given initial conditions, it will remain in the computed “funnel” even if the model of

the dynamics is uncertain and the system is subjected to bounded disturbances.

The ability to compute funnels using SOS programming was leveraged by the LQR-Trees

algorithm [102] for feedback motion planning for nonlinear systems. The algorithm works by

creating a tree of locally stabilizing controllers which can take any initial condition in some

bounded region in state space to the desired goal. However, LQR-Trees lack the ability to

handle scenarios in which the task and environment are unknown till runtime: the offline

precomputation of the tree does not take into account potential runtime constraints like

obstacles, and an online implementation of the algorithm is computationally infeasible.

The SOS programming approach has also been used to guarantee obstacle avoidance

conditions for nonlinear systems by computing barrier certificates [86] [13]. Barrier functions
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are similar to Lyapunov functions in spirit, but are used to guarantee that trajectories

starting in some given set of initial conditions will never enter an “unsafe” region containing

obstacles. This approach, however, is limited to settings where the locations and geometry

of obstacles are known beforehand since the barrier certificate one computes depends on

this data and computing barrier certificates in real-time using SOS programming is not

computationally feasible at the present time.
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Chapter 3

Background

In this chapter we provide a brief background on the key computational tools that will be

employed throughout this thesis.

3.1 Semidefinite Programming (SDP)

Semidefinite programs (SDPs) form an important class of convex optimization problems.

They are optimization problems over the space of symmetric positive semidefinite (psd)

matrices. Recall that a n×n symmetric matrix Q is positive semidefinite if xTQx ≥ 0, ∀x ∈

Rn. Denoting the set of n× n symmetric matrices as Sn, a SDP in standard form is written

as:

min
X∈Sn

〈C,X〉 (3.1)

s.t. 〈Ai, X〉 = bi ∀i ∈ {1, . . . ,m},

X � 0,

where C,Ai ∈ Sn and 〈X, Y 〉 := Tr(XTY ) =
∑
i,j

XijYij. In other words, a SDP involves

minimizing a cost function that is linear in the elements of the decision matrix X subject to
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linear and positive semidefiniteness constraints on X.

Semidefinite programming includes Linear Programming (LP), Quadratic Programming

(QP) and Second-Order Cone Programming (SOCP) as special cases. As in these other cases,

SDPs are amenable to efficient numerical solution via interior point methods. The interested

reader may wish to consult [106] and [19, Chapter 2] for a more thorough introduction to

SDPs.

3.2 Sums-of-Squares (SOS) Programming

An important application of SDPs is to check nonnegativity of polynomials. The decision

problem associated with checking polynomial nonnegativity is NP–hard in general [80]. How-

ever, the problem of determining whether a polynomial is a sum-of-squares (SOS), which is

a sufficient condition for nonnegativity, is amenable to efficient computation. A polynomial

p in indeterminates1 x1, x2, . . . , xn is SOS if it can be written as p(x) =
m∑
i=1

q2i (x) for a set of

polynomials {qi}mi=1. This condition is equivalent to the existence of a positive semidefinite

(psd) matrix Q that satisfies:

p(x) = v(x)TQv(x), ∀x ∈ Rn, (3.2)

where v(x) is the vector of all monomials with degree less than or equal to half the degree

of p [80]. Note that the equality constraint (3.2) imposes linear constraints on the elements

of the matrix Q that come from matching coefficients of the polynomials on the left and

right hand sides. Thus, semidefinite programming can be used to certify that a polynomial

is a sum of squares. Indeed, by allowing the coefficients of the polynomial p to be decision

variables, we can solve optimization problems over the space of SOS polynomials of some fixed

degree. Such optimization problems are referred to as sums-of-squares (SOS) programs. The

interested reader is referred to [80] and [19, Chapters 3,4] for a more thorough introduction

1Throughout this thesis, the variables x that a polynomial p(x) depend on will be referred to as “indetermi-
nates”. This is to distinguish these variables from decision variables in our optimization problems, which
will typically be the coefficients of the polynomial.
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to SOS programming.

In addition to being able to prove global nonnegativity of polynomials, the SOS pro-

gramming approach can also be used to demonstrate nonnegativity of polynomials on basic

semialgebraic sets (i.e., sets described by a finite number of polynomial inequalities and

equalities). Suppose we are given a set B:

B = {x ∈ Rn | geq,i(x) = 0, gineq,j(x) ≥ 0}, (3.3)

where geq,i and gineq,j are polynomials for i ∈ {1, ..., Neq}, j ∈ {1, ..., Nineq}. We are interested

in showing that a polynomial p is nonnegative on the set B:

x ∈ B =⇒ p(x) ≥ 0. (3.4)

We can write the following SOS constraints in order to impose (3.4):

q(x) := p(x)

r(x)︷ ︸︸ ︷
−

Neq∑
i=1

Leq,i(x)geq,i(x)−
Nineq∑
j=1

Lineq,j(x)gineq,j(x) is SOS, (3.5)

Lineq,j(x) is SOS,∀j ∈ {0, ..., Nineq}.

(3.6)

Here, the polynomials Leq,i and Lineq,j are “multiplier” polynomials analogous to Lagrange

multipliers in constrained optimization. In order to see that (3.5) and (3.6) are sufficient

conditions for (3.4), note that when a point x satisfies geq,i(x) = 0 and gineq,j(x) ≥ 0 for

i ∈ {1, ..., Neq}, j ∈ {1, ..., Nineq} (i.e., when x ∈ B) then the term r(x) is non-positive. Hence,

for q(x) to be nonnegative (which must be the case since q is SOS), p(x) must be nonnegative.

Thus, we have the desired implication in (3.4). This process for using multipliers to impose

nonnegativity constraints on sets is known as the generalized S-procedure [80] and will be

used extensively in Chapter 4 for computing funnels.
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Chapter 4

Computing Funnels

In this chapter we describe how the tools from Chapter 3 can be used to compute outer

approximations of reachable sets (“funnels”) around trajectories of a nonlinear system. The

approach in Chapter 4.1 builds on the work presented in [103, 102] while Chapters 4.3.1

and 4.3.2 are based on [66] and [65] respectively. In contrast to this prior work however,

we consider the problem of computing outer approximations of forwards reachable sets as

opposed to inner approximations of backwards reachable sets. This leads to a few subtle

differences in the cost functions of our optimization problems.

Consider the following dynamical system:

ẋ = f(x(t), u(t)), (4.1)

where x(t) ∈ Rn is the state of the system at time t and u(t) ∈ Rm is the control input.

Let x0 : [0, T ] → Rn be the nominal trajectory that we would like the system to follow

and u0 : [0, T ] → Rm be the nominal open-loop control input. Defining new coordinates

x̄ = x− x0(t) and ū = u− u0(t), we can rewrite the dynamics (4.1) in these variables as:

˙̄x = ẋ− ẋ0 = f(x0(t) + x̄(t), u0(t) + ū(t))− ẋ0. (4.2)

We will first consider the problem of computing funnels for a closed-loop system subject
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to no uncertainty. To this end, we assume that we are given a feedback controller ūf (t, x̄)

that corrects for deviations around the nominal trajectory (we will consider the problem

of designing feedback controllers later in this chapter). We can then write the closed-loop

dynamics of the system as:

˙̄x = fcl(t, x̄(t)). (4.3)

Given a set of initial conditions X0 ⊂ Rn with x0(0) ∈ X0, our goal is to find a tight outer

approximation of the set of states the system may evolve to at time t ∈ [0, T ]. In particular,

we are concerned with finding sets F (t) ⊂ Rn such that:

x̄(0) ∈ X0 =⇒ x̄(t) ∈ F (t), ∀t ∈ [0, T ]. (4.4)

Definition 1. A funnel associated with a closed-loop dynamical system ˙̄x = fcl(t, x̄(t)) is a

map F : [0, T ]→ P(Rn) from the time-interval [0, T ] to the power set (i.e., the set of subsets)

of Rn such that the sets F (t) satisfy the condition (4.4) above.

Thus, with each time t ∈ [0, T ], the funnel associates a set F (t) ⊂ Rn. We will parameter-

ize the sets F (t) as sub-level sets of nonnegative time-varying functions V : [0, T ]×Rn → R+:

F (t) = {x̄(t) ∈ Rn|V (t, x̄(t)) ≤ ρ(t)}. (4.5)

Letting X0 ⊂ F (0, x̄), the following constraint is a sufficient condition for (4.4):

V (t, x̄) = ρ(t) =⇒ V̇ (t, x̄) < ρ̇(t), ∀t ∈ [0, T ]. (4.6)

Here, V̇ is computed as:

V̇ (t, x̄) =
∂V (t, x̄)

∂x̄
fcl(t, x̄) +

∂V (t, x̄)

∂t
. (4.7)

Intuitively, the constraint (4.6) says that on the boundary of the funnel (i.e., when V (t, x̄) =
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ρ(t)), the function V grows slower than ρ. Hence, states on the boundary of the funnel

remain within the funnel. This intuition is formalized in [102, 103].

While any function that satisfies (4.6) provides us with a valid funnel, we are interested

in finding tight outer approximations of the reachable set. A natural cost function for

encouraging tightness is the volume of the sets F (t). Combining this cost function with our

constraints, we obtain the following optimization problem:

inf
V,ρ

∫ T

0

vol(F (t)) dt (4.8)

s.t. V (t, x̄) = ρ(t) =⇒ V̇ (t, x̄) < ρ̇(t), ∀t ∈ [0, T ],

X0 ⊂ F (0, x̄).

4.1 Numerical implementation using SOS programming

Since the optimization problem (4.8) involves searching over spaces of functions, it is infinite

dimensional and hence not directly amenable to numerical computation. However, we can

use the SOS programming approach described in Chapter 3 to obtain finite dimensional

optimization problems in the form of semidefinite programs (SDPs). We first concentrate

on implementing the constraints in (4.8). We will assume that the initial condition set X0 is

a semi-algebraic set (i.e., described in terms of polynomial inequalities):

X0 = {x̄ ∈ Rn | g0,i(x̄) ≥ 0, ∀i = 1, . . . , N0}. (4.9)

Then the constraints in (4.8) can be written as:

V (t, x̄) = ρ(t) =⇒ ρ(t)− V̇ (t, x̄) > 0 (4.10)

g0,i(x̄) ≥ 0 ∀i ∈ {1, . . . , N0} =⇒ ρ(0)− V (0, x̄) ≥ 0. (4.11)
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If we restrict ourselves to polynomial dynamics and polynomial functions V and ρ, these

constraints are precisely in the form of (3.4) in Chapter 3.2. We can thus apply the procedure

described in Chapter 3.2 and arrive at the following sufficient conditions for (4.10) and (4.11):

ρ̇(t)− V̇ (t, x̄)− L(t, x̄)[V (t, x̄)− ρ(t)]− Lt(t, x̄)[t(T − t)] is SOS, (4.12)

ρ(0)− V (0, x̄)−
N0∑
i

L0,i(x̄)g0,i(x̄) is SOS, (4.13)

Lt(t, x̄), L0,i(x̄) are SOS, ∀i ∈ {1, . . . , N0}. (4.14)

As in Chapter 3.2, the polynomials L,Lt and L0,i are “multiplier” polynomials whose coef-

ficients are decision variables.

Next, we focus on approximating the cost function in (4.8) using semidefinite program-

ming. This can be achieved by sampling in time and replacing the integral with the finite

sum
N∑
k=1

vol(F (tk)). In the special case where the function V is quadratic in x̄:

V (tk, x̄) = x̄TSkx̄, Sk � 0, (4.15)

the set F (tk) is an ellipsoid and we can use semidefinite programming (SDP) to directly

minimize the volume by maximizing the determinant of Sk (recall that the volume of the

ellipsoid F (tk) is a monotonically decreasing function of the determinant of Sk). Note that

while the problem of maximizing the determinant of a psd matrix is not directly a problem

of the form (3.1), it can be transformed into such a form [14, Chapter3]. Further note

that the fact that our cost function can be handled directly in the SDP framework is in

distinction to the approaches for computing inner approximations of backwards reachable

sets [102] [103] [65]. This is because the determinant of a psd matrix is a concave function

and hence minimizing the determinant is not a convex problem. Hence, in the previous

work, the authors used heuristics for maximizing volume.

In the more general case, we can minimize an upper bound on the cost function
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N∑
k=1

vol(F (tk)) by introducing ellipsoids E(tk):

E(tk) = {x̄ ∈ Rn|x̄TSkx̄ ≤ 1, Sk � 0} (4.16)

such that F (tk) ⊂ E(tk) and minimizing
N∑
k=1

vol(E(tk)). The containment constraint can be

equivalently expressed as the constraint:

V (tk, x̄) ≤ ρ(tk) =⇒ x̄TSkx̄ ≤ 1, (4.17)

and can thus be imposed using SOS constraints:

1− x̄TSkx̄− LE,k(x̄)[ρ(tk)− V (tk, x̄)] is SOS, (4.18)

LE,k(x̄) is SOS. (4.19)

Combining our cost function with the constraints (4.12) - (4.14), we obtain the following

optimization problem:

inf
V,ρ,L,Lt,L0,i,Sk,LE,k

N∑
k=1

vol(E(tk)) =
N∑
k=1

vol({x̄|x̄TSkx̄ ≤ 1}) (4.20)

s.t. ρ̇(t)− V̇ (t, x̄)− L(t, x̄)[V (t, x̄)− ρ(t)]− Lt(t, x̄)[t(T − t)] is SOS,

(4.21)

ρ(0)− V (0, x̄)−
N0∑
i

L0,i(x̄)g0,i(x̄) is SOS,

1− x̄TSkx̄− LE,k(x̄)[ρ(tk)− V (tk, x̄)] is SOS, ∀k ∈ {1, . . . , N},

Sk � 0, ∀k ∈ {1, . . . , N},

Lt(t, x̄), L0,i(x̄), LE,k(x̄) are SOS,∀i ∈ {1, . . . , N0}, ∀k ∈ {1, . . . , N}.

While this optimization problem is finite dimensional, it is non-convex in general since the

first constraints are bilinear in the decision variables (e.g., the coefficients of the polynomials
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L and V are multiplied together in the first constraint). To apply SOS programming, we

require the constraints to be linear in the coefficients of the polynomials we are optimizing.

However, note that when V and ρ are fixed, the constraints are linear in the other decision

variables. Similarly, when the multipliers L and LE,k are fixed, the constraints are linear in

the remaining decision variables. Thus, we can efficiently perform this optimization by alter-

nating between the two sets of decision variables (L,Lt, L0,i, Sk, LE,k) and (V, ρ, Lt, L0,i, Sk).

In each step of the alternation, we can optimize our cost function
N∑
k=1

vol(E(tk)). These al-

ternations are summarized in Algorithm 1. Note that the algorithm requires an initialization

for V and ρ. We will discuss how to obtain these in Chapter 4.4.

1: Initialize V and ρ.
2: costprev =∞;
3: converged = false;
4: while ¬converged do

5: STEP 1 : Minimize
N∑
k=1

vol(E(tk)) by searching for multiplier polynomials

(L,Lt, L0,i, LE,k) and Sk while fixing V and ρ.

6: STEP 2 : Minimize
N∑
k=1

vol(E(tk)) by searching for (V, ρ, Lt, L0,i, Sk) while fixing L

and LE,k.

7: cost =
N∑
k=1

vol(E(tk));

8: if
costprev − cost

costprev
< ε then

9: converged = true;
10: end if
11: costprev = cost;
12: end while

Algorithm 1: Funnel Computation

Remark 1. It is easy to see that Algorithm 1 converges (though not necessarily to an optimal

solution). Each iteration of the alternations is guaranteed to achieve a cost function that is

at least as good as the previous iteration (since the solution from the previous iteration is

a valid one). Hence, the sequence of optimal values in each iteration form a monotonically
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non-increasing sequence. Combined with the fact that the cost function is bounded below by

0, we conclude that this sequence converges and hence that Algorithm 1 terminates.

4.2 Approximation via time-sampling

As observed in [103] in practice it is often the case that the nominal trajectory x0 : [0, T ]→

Rn is difficult to approximate with a low degree polynomial in time. This can lead to the

constraint (4.21) in the problem (4.20) having a high degree polynomial dependence on t.

Thus it is often useful to implement an approximation of the optimization problem (4.20)

where the condition (4.10) is checked only at a finite number of sample points tk ∈ [0, T ], k ∈

{1, . . . , N}. We can use a piecewise linear parameterization of ρ and can thus compute:

ρ̇(tk) =
ρ(tk+1)− ρ(tk)

tk+1 − tk
. (4.22)

Similarly we can parameterize the function V by polynomials Vk(x̄) at each time sample and

compute:
∂V (t, x̄)

∂t
≈ Vk+1(x̄)− Vk(x̄)

tk+1 − tk
. (4.23)

We can then write the following modified version of the problem (4.20):

inf
Vk,ρ,Lk,L0,i,Sk,LE,k

N∑
k=1

vol(E(tk)) =
N∑
k=1

vol({x̄|x̄TSkx̄ ≤ 1}) (4.24)

s.t. ρ̇(tk)− V̇k(x̄)− Lk(x̄)[Vk(x̄)− ρ(tk)], ∀k ∈ {1, . . . , N},

ρ(t1)− V1(x̄)−
N0∑
i

L0,i(x̄)g0,i(x̄) is SOS,

1− x̄TSkx̄− LE,k(x̄)[ρ(tk)− Vk(x̄)] is SOS, ∀k ∈ {1, . . . , N},

Sk � 0, ∀k ∈ {1, . . . , N},

L0,i(x̄), LE,k(x̄) are SOS, ∀i ∈ {1, . . . , N0}, ∀k ∈ {1, . . . , N}.
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This program does not have any algebraic dependence on the variable t and can thus provide

significant computational gains over (4.20). However, it does not provide an exact funnel

certificate. One would hope that with a sufficiently fine sampling in time, one would recover

exactness. Partial results in this direction are provided in [103] along with numerical exam-

ples showing that the loss of accuracy from the sampling approximation can be quite small

in practice.

The problem (4.24) is again bilinear in the decision variables. It is linear in the two

sets of decision variables (Lk, L0,i, Sk, LE,k) and (Vk, ρ, L0,i, Sk). Thus, Algorithm 1 can be

applied directly to (4.24) with the minor modification that V and ρ are replaced by their

time-sampled counterparts and the multipliers (L,Lt) are replaced by the multipliers Lk.

4.3 Extensions to the basic algorithm

Next we describe several extensions to the basic framework for computing funnels described

in Chapter 4.1. Chapter 4.3.1 discusses the scenario in which the dynamics of the system

are subject to bounded disturbances/uncertainty, Chapter 4.3.2 considers the problem of

synthesizing feedback controllers that explicitly attempt to minimize the size of the funnel,

Chapter 4.3.3 demonstrates how to handle input saturations, and Chapter 4.3.4 considers a

generalization of the cost function.

4.3.1 Uncertainty in the dynamics

Suppose that the dynamics of the system are subject to an uncertainty term w(t) ∈ Rd that

models external disturbances or parametric model uncertainties. The closed-loop dynamics

(4.3) can then be modified to capture this uncertainty:

˙̄x = fcl(t, x̄(t), w(t)). (4.25)

We will assume that the dynamics fcl depend polynomially on w. Given an initial condition

set X0 ⊂ Rn as before, our goal is to find sets F (t) such that x(t) is guaranteed to be in F (t)
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for any valid disturbance profile:

x̄(0) ∈ X0 =⇒ x̄(t) ∈ F (t),∀t ∈ [0, T ],∀w : [0, T ]→W . (4.26)

Parameterizing the sets F (t) as sub-level sets of nonnegative time-varying functions V :

[0, T ]× Rn → R+ as before, the following condition is sufficient to ensure (4.26):

V (t, x̄) = ρ(t) =⇒ V̇ (t, x̄, w) < ρ̇(t),∀t ∈ [0, T ], ∀w(t) ∈ W , (4.27)

where V̇ is computed as:

V̇ (t, x̄, w) =
∂V (t, x̄)

∂x̄
fcl(t, x̄, w) +

∂V (t, x̄)

∂t
. (4.28)

This is almost identical to the condition (4.6), with the exception that the function V is

required to decrease on the boundary of the funnel for every choice of disturbance. Assuming

that the set W is a semi-algebraic set W = {w ∈ Rd | gw,j(w) ≥ 0,∀j = 1, . . . , Nw}, the

optimization problem (4.20) is then easily modified by replacing condition (4.21) with the

following constraints:

(4.29)

ρ̇(t)− V̇ (t, x̄, w)− L(t, x̄, w)[V (t, x̄)− ρ(t)]− Lt(t, x̄, w)[t(T − t)] . . .

. . . −
Nw∑
j=1

Lw,j(t, x̄, w)gw,j(w) is SOS,

Lw,j(t, x̄, w) is SOS,∀j = {1, . . . , Nw}.

These SOS constraints now involve polynomials in the indeterminates t, x̄ and w. Since these

constraints are linear in the coefficients of the newly introduced multipliers Lw,j, Algorithm

1 can be directly applied to the modified optimization problem by adding Lw,j to the list of

polynomials to be searched for in both Step 1 and Step 2 of the iterations. Similarly, the

time-sampled approximation described in Chapter 4.2 can also be applied to (4.29).
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4.3.2 Feedback control synthesis

So far we have assumed that we have been provided with a feedback controller that corrects

for deviations around the nominal trajectory. We now consider the problem of optimizing

the feedback controller in order to minimize the size of the funnel. We will assume that the

system is control affine:

ẋ = f(x(t)) + g(x(t))u(t), (4.30)

and parameterize the control policy as a polynomial ūf (t, x̄). We can thus write the dynamics

in the x̄ coordinates as:

˙̄x = f(x0(t) + x̄(t)) + g(x(t))[u0(t) + ūf (t, x̄)]− ẋ0. (4.31)

The feedback controller can then be optimized by adding the coefficients of the polynomial

ūf (t, x̄) to the set of decision variables in the optimization problem (4.20) while keeping all

the constraints unchanged. Note that ūf appears in the constraints only through V̇ , which

is now bilinear in the coefficients of V and ūf since:

V̇ (t, x̄) =
∂V (t, x̄)

∂x̄
˙̄x+

∂V (t, x̄)

∂t
. (4.32)

With the (coefficients of) the feedback controller ūf as part of the optimization problem,

note that the constraints of the problem (4.20) are now bilinear in the two sets of decision

variables (L,Lt, L0,i, Sk, LE,k, ūf ) and (V, ρ, Lt, L0,i, Sk). Thus, in principle we could use a

bilinear alternation scheme similar to the one in Algorithm 1 and alternatively optimize

these two sets of decision variables. However, in this case we would not be searching for

a controller that explicitly seeks to minimize the size of the funnel (since the controller

would not be searched for at the same time as V or ρ, which define the funnel). To get

around this issue, we add another step in each iteration where we optimize our cost function
N∑
k=1

vol(E(tk)) by searching for (ūf , ρ, Lt, L0,i, Sk) while keeping (V, L, LE,k) fixed. This allows

us to search for ūf and ρ at the same time, which can significantly improve the quality of
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the controllers and funnels we obtain. These steps are summarized in Algorithm 2. By a

reasoning identical to the one in Remark 1 it is easy to see that the sequence of optimal

values produced by Algorithm 2 converges.

1: Initialize V and ρ.
2: costprev =∞;
3: converged = false;
4: while ¬converged do

5: STEP 1 : Minimize
N∑
k=1

vol(E(tk)) by searching for controller ūf and

(L,Lt, L0,i, LE,k, Sk) while fixing V and ρ.

6: STEP 2 : Minimize
N∑
k=1

vol(E(tk)) by searching for controller ūf and (ρ, Lt, L0,i, Sk)

while fixing (V, L, LE,k).

7: STEP 3 : Minimize
N∑
k=1

vol(E(tk)) by searching for (V, ρ, Lt, L0,i, Sk) while fixing

(L,LE,k, ūf ).

8: cost =
N∑
k=1

vol(E(tk));

9: if
costprev − cost

costprev
< ε then

10: converged = true;
11: end if
12: costprev = cost;
13: end while

Algorithm 2: Feedback Control Synthesis

We note that the approach for taking into account uncertainty described in Chapter 4.3.1

can easily be incorporated into Algorithm 2. Similarly, by parameterizing the controller ūf

as polynomials uf,k(x̄) at the times tk, we can also apply the time-sampled approximation

described in Chapter 4.2.
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4.3.3 Actuator saturations

A. Approach 1

Our approach also allows us to incorporate actuator limits into the verification procedure.

Although we examine the single-input case in this section, this framework is easily extended

to handle multiple inputs. Let the control input u(t) at time t be mapped through the

following control saturation function:

s(u(t)) =


umax if u(t) ≥ umax

umin if u(t) ≤ umin

u(t) o.w.

Then, in a manner similar to [102], a piecewise analysis of V̇ (t, x̄) can be used to check the

Lyapunov conditions are satisfied even when the control input saturates. Defining:

V̇min(t, x̄) :=
∂V (t, x̄)

∂x̄

(
f(x0 + x̄) + g(x0 + x̄)umin

)
+
∂V (t, x̄)

∂t
, (4.33)

V̇max(t, x̄) :=
∂V (t, x̄)

∂x̄

(
f(x0 + x̄) + g(x0 + x̄)umax

)
+
∂V (t, x̄)

∂t
, (4.34)

we must check the following conditions:

u0(t) + ūf (t, x̄) ≤ umin, V (t, x̄) = ρ(t) =⇒ V̇min(t, x̄) < ρ̇(t), (4.35)

u0(t) + ūf (t, x̄) ≥ umax, V (t, x̄) = ρ(t) =⇒ V̇min(t, x̄) < ρ̇(t), (4.36)

umin ≤ u0(t) + ūf (t, x̄) ≤ umax, V (t, x̄) = ρ(t) =⇒ V̇ (t, x̄) < ρ̇(t), (4.37)

where u0 is the open-loop control input and ūf is the feedback controller as before. These

conditions can be enforced by adding additional multipliers to the optimization program

(4.20) or its time-sampled counterpart (4.24).
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B. Approach 2

Although one can handle multiple inputs via the above method, the number of SOS

conditions grows exponentially with the number of inputs (3m conditions for V̇ are needed

in general to handle all possible combinations of input saturations). Thus, for systems with

a large number of inputs, an alternative formulation was proposed in [65] that avoids this

exponential growth in the size of the SOS program at the cost of adding conservativeness to

the size of the funnel. Given limits on the control vector u ∈ Rm of the form umin < u < umax,

we can ask to satisfy:

x̄ ∈ F (t) =⇒ umin < u0(t) + ūf (t, x̄) < umax, ∀t ∈ [0, T ]. (4.38)

This constraint implies that the applied control input remains within the specified bounds

inside the verified funnel (a conservative condition). The number of extra constraints grows

linearly with the number of inputs (since we have one new condition for every input), thus

leading to smaller optimization problems.

4.3.4 A more general cost function

We end our discussion of extensions to the basic algorithm for computing funnels presented

in Chapter 4.1 by considering a generalization of the cost function (volume of the funnel)

we have used so far. In particular, it is sometimes useful to minimize the volume of the

funnel projected onto a subspace of the state space. Suppose this projection map is given by

π : Rn → Rnp with a corresponding np × n projection matrix P . For an ellipsoid E = {x̄ ∈

Rn | x̄TSkx̄ ≤ 1}, the projected set π(E) is also an ellipsoid Ep = {x̄ ∈ Rnp | x̄TS(p)
k x̄ ≤ 1}

with:

S
(p)
k = (PS−1k P T )−1. (4.39)

Recall that the ability to minimize the volume of the ellipsoid E using SDP relied on being

able to maximize the determinant of Sk. In order to minimize the volume of Ep, we would
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have to maximize det(S
(p)
k ), which is a complicated (i.e. nonlinear) function of Sk. Hence,

in each iteration of Algorithm 1 we linearize the function det(S
(p)
k ) with respect to Sk at

the solution of Sk from the previous iteration and maximize this linearization instead. The

linearization of det(S
(p)
k ) with respect to Sk at a nominal value Sk,0 can be explicitly computed

as:

Tr
(
P T (PS−1k,0P

T )−1PS−1k,0SkS
−1
k,0

)
, (4.40)

where Tr refers to the trace of the matrix.

4.4 Implementation details

We end this chapter on computing funnels by discussing a few important implementation

details.

4.4.1 Trajectory generation

An important step that is necessary for the success of our approach to computing funnels

is the generation of a dynamically feasible open-loop control input u0 : [0, T ] 7→ Rm and

corresponding nominal trajectory x0 : [0, T ] 7→ Rn. A method that has been shown to work

well in practice and scale to high dimensions is the direct collocation trajectory optimization

method [17]. While this is the approach we use for the results in Chapter 7, other methods

like the Rapidly Exploring Randomized Tree (RRT) or its asymptotically optimal version,

RRT? can be used too [54, 53].

4.4.2 Initializing V and ρ

Algorithms 1 and 2 require an initial guess for the functions V and ρ. In [102], the authors

use the Lyapunov function candidate associated with a time-varying LQR controller. The

control law is obtained by solving a Riccati differential equation:

− Ṡ(t) = Q− S(t)B(t)R−1BTS(t) + S(t)A(t) + A(t)TS(t) (4.41)
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with final value conditions S(t) = Sf . Here A(t) and B(t) describe the time-varying lin-

earization of the dynamics about the nominal trajectory x0. The matrices Q and R are

positive-definite cost-matrices. The function:

Vguess(t, x̄) = (x− x0(t))TS(t)(x− x0(t)) = x̄TS(t)x̄ (4.42)

is our initial Lyapunov candidate. Setting ρ to a quickly increasing function such as an

exponential is typically sufficient to obtain a feasible initialization.
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Chapter 5

Funnel Libraries

5.1 Sequential composition

One can think of funnels computed using the machinery described in Chapter 4 as robust

motion primitives (the robustness is to initial conditions and uncertainty in the dynamics).

While we could define a funnel library simply as a collection F of funnels and associated

feedback controllers, it will be fruitful to associate some additional structure with F . In

particular, it is useful to know how funnels can be sequenced together to form composite

robust motion plans. In order to consider this more formally, we will first introduce the

notion of sequential composition of funnels defined in [25].

Definition 2. [25] An ordered pair (F1, F2) of funnels F1 : [0, T1]→ P(Rn) and F2 : [0, T2]→

P(Rn) is sequentially composable if F1(T1) ⊂ F2(0).

In other words, two funnels are sequentially composable if the “outlet” of one is contained

within the “inlet” of the other. A pictorial depiction of this is provided in Figure 5-1. We

note that the sequential composition of two such funnels is itself a funnel.
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Figure 5-1: The ordered pair of funnels (F1, F2) is sequentially composable. The outlet of F1 is contained
within the inlet of F2, i.e., F1(T1) ⊂ F2(0).

5.2 Exploiting invariances in the dynamics

For our purposes here, it is useful to introduce a slightly generalized notion of sequential

composability that will allow us to exploit invariances (continuous symmetries) in the dy-

namics. In particular, the dynamics of large classes of mechanical systems such as mobile

robots are often invariant under certain transformations of the state space. For Lagrangian

systems, the notion of “cyclic coordinates” captures such invariances. A cyclic coordinate

is a (generalized) coordinate of the system that the Lagrangian does not depend on. We

can then write the dynamics of the system ẋ = f(x(t), u(t)) as a function of a state vector

x = [xc, xnc] which is partitioned into cyclic coordinates xc and non-cyclic coordinates xnc in

such a way that the dynamics only depend on the non-cyclic coordinates:

ẋ = f(xnc(t), u(t)). (5.1)

For example, the dynamics of a quadrotor or fixed-wing airplane (expressed in an appropriate

coordinate system) do not depend on the x− y− z position of the system or the yaw angle.

Invariance of the dynamics of the system also implies that if a curve t 7→ (x(t), u(t)) is a

valid solution to the dynamics ẋ = f(x(t), u(t)), then so is the transformed solution:

t 7→ (Ψc(x(t)), u(t)), (5.2)
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where Ψc is a transformation of the state vector along the cyclic coordinates. This allows us

to make the following important observation.

Remark 2. Suppose we are given a system whose dynamics are invariant to transformations

Ψc along cyclic coordinates xc. Let F : [0, T ] → P(Rn) given by t 7→ F (t) be a funnel

associated with this system. Then the transformed funnel given by t 7→ Ψc(F (t)) is also a

valid funnel. Hence, one can in fact think of invariances in the dynamics giving rise to an

infinite family of funnels parameterized by shifts Ψc(F ) of a funnel F along cyclic coordinates

of the system.

Note that here we have implicitly assumed that the feedback controller:

uf (t, x) = u0(t) + ūf (t, x̄) = u0(t) + ūf (t, x− x0(t)) (5.3)

associated with the funnel has also been transformed to:

u0(t) + ūf (t, x−Ψc(x0(t))). (5.4)

In other words, we have transformed the reference trajectory we are tracking by Ψc. Hence-

forth, when we refer to transformations of funnels along cyclic coordinates we will implicitly

assume that the feedback controller has also been appropriately modified in this manner.

These observations allow us to define a generalized notion of sequential composition that

exploits invariances in the dynamics. We will refer to this notion as sequential composition

modulo invariances (MI).

Definition 3. An ordered pair (F1, F2) of funnels F1 : [0, T1] → P(Rn) and F2 : [0, T2] →

P(Rn) is sequentially composable modulo invariances (MI) if there exists a transformation

Ψc of the state along cyclic coordinates such that F1(T1) ⊂ Ψc

(
F2(0)

)
.
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Figure 5-2: Sequential composition modulo invariances. The top row of the figure shows two funnels that
are not sequentially composable in the sense of Definition 2. However, as shown in the bottom row of the
figure, they are sequentially composable in the more general sense of Definition 3. By shifting the funnel F2

(whose outline is plotted using dotted lines for reference) in the cyclic coordinate (xc), we can ensure that
the outlet of F1 lies in the inlet of this shifted funnel Ψc(F2).

Informally, two funnels F1 and F2 are sequentially composable in this generalized sense if

one can shift F2 along the cyclic coordinates of the system and ensure that its inlet contains

the outlet of F1. Figure 5-2 provides a pictorial depiction of this.

One may think of sequential composability MI of funnels as being analogous to the

compatibility condition required for sequencing trajectories in the library of a Maneuver

Automaton [37]. Let πnc denote the projection operator that maps a state x = [xc, xnc] to

the non-cyclic coordinates xnc. In order to be able to sequence together two trajectories

x1 : [0, T1]→ Rn and x2 : [0, T2]→ Rn, one requires:

πnc(x1(T1)) = πnc(x2(0)). (5.5)

Note, however that imposing this compatibility condition on the nominal trajectories asso-
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ciated with two funnels is neither necessary nor sufficient for the funnels being sequentially

composable MI. Sequentially composability MI is concerned with the compatibility between

funnels themselves and not the underlying nominal trajectories, which distinguishes our

notion of compatibility between maneuvers from that of [37].

5.3 Runtime composability

The two notions of sequential composability we have considered so far allow us to produce

new funnels from a given set of funnels by stitching them together appropriately in an offline

preprocessing stage. We now introduce another notion of composability that is particularly

important for reasoning about how funnels can be executed sequentially at runtime. We will

refer to this notion as runtime composability.

Definition 4. An ordered pair (F1, F2) of funnels F1 : [0, T1] → P(Rn) and F2 : [0, T2] →

P(Rn) is runtime composable if for all xout ∈ F1(T1), there exists a transformation Ψc of

the state along cyclic coordinates such that xout ∈ Ψc

(
F2(0)

)
.

In other words, for any state xout in the outlet of F1, one can shift F2 along cyclic coordinates

and ensure that its inlet contains xout. Hence, we can guarantee that it will be possible to

execute the funnel F2 (after appropriate shifting in the cyclic coordinates) once the funnel

F1 has been executed (though the particular shift Ψc required depends on xout and thus

will not be known until runtime). Hence, runtime composability of funnels allows us to

exploit invariances in the dynamics of the system at runtime and effectively reuse our robust

motion plans in different scenarios. As a simple example, a UAV flying through a cluttered

environment can reuse a funnel computed for a certain starting position by shifting the funnel

so its inlet contains the UAV’s current state.

Remark 3. It is easy to see from Definition 4 that two funnels F1 and F2 are runtime
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Figure 5-3: The figure shows two funnels that are not sequentially composable MI (since the inlet of funnel
F2 isn’t large enough in the xc dimension). However, since πnc(F1(T1)) ⊂ πnc(F2(0)), they are runtime
composable.

composable if and only if:

∀xout = [xc, xnc] ∈ F1(T1), ∃x0,c s.t. [x0,c, xnc] ∈ F2(0). (5.6)

This condition is simply stating that we can shift the point xout along cyclic coordinates in

such a way that it is contained in the inlet of F2. This condition in turn is equivalent to:

πnc(F1(T1)) ⊂ πnc(F2(0)), (5.7)

where as before πnc denotes the projection onto the non-cyclic coordinates of the state space.

Figure 5-3 shows two funnels that are not sequentially composable MI. However, since

πnc(F1(T1)) ⊂ πnc(F2(0)), they are runtime composable.

We end our discussion on composability of funnels by noting the following relationship

between the three notions of sequential composability we have discussed.
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Remark 4. The three notions of sequential composability we have discussed are related as

follows:

Sequential composability =⇒ Sequential composability MI =⇒ Runtime composability.

The first implication is immediate from Definitions 2 and 3. The second implication follows

from the following reasoning:

F1(T1) ⊂ Ψc

(
F2(0)

)
(Sequential composability MI, ref. Definition 3)

=⇒ πnc(F1(T1)) ⊂ πnc
(
Ψc(F2(0))

)
= πnc(F2(0)) (Runtime composability, ref. Remark 3).

5.4 Checking composability

Given two funnels F1 : [0, T1] → P(Rn) and F2 : [0, T2] → P(Rn) defined as F1(t) = {x̄ ∈

Rn | V1(t, x̄) ≤ ρ1(t)} and F2(t) = {x̄ ∈ Rn | V2(t, x̄) ≤ ρ2(t)} for polynomials V1 and V2,

this section describes how we can check sequential composability, sequential composability

MI and runtime composability in an offline preprocessing stage.

5.4.1 Sequential composability

Sequential composability of (F1, F2) is equivalent to the following condition:

V1(T1, x̄) ≤ ρ1(T1) =⇒ V2(0, x̄) ≤ ρ2(0). (5.8)
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We can thus apply the generalized S-procedure (described in Chapter 3.2) and check sequen-

tial composability using the following simple SOS program:

Find L(x̄) (5.9)

s.t. ρ2(0)− V2(0, x̄)− L(x̄)(ρ1(T1)− V1(T1, x̄)) is SOS,

L(x̄) is SOS.

5.4.2 Sequential composition MI

In order to check sequential composability MI, we need to search for a shift Ψc along cyclic

coordinates of the state such that F1(T1) ⊂ Ψc(F2(0)). For the important special case in

which the sets F1(T1) and F2(0) are ellipsoids (corresponding to V1(T1, x̄) and V2(0, x̄) being

quadratic1 in x̄), we can cast this search as a semidefinite program (SDP). Suppose the sets

F1(T1) and F2(0) are given by:

F1(T1) = {x ∈ Rn | (x− x1(T1))TS1(x− x1(T1)) ≤ 1} (5.10)

F2(0) = {x ∈ Rn | (x− x2(0))TS2(x− x2(0)) ≤ 1}, (5.11)

where x1 : [0, T1] → Rn and x2 : [0, T2] → Rn are the nominal trajectories around which

the funnels were computed and S1 and S2 are positive definite matrices. We would like to

search for a shift ∆c ∈ Rn (where the components of ∆c corresponding to the non-cyclic

coordinates are set to zero) such that the ellipsoid:

Ψc(F2(0)) = {x ∈ Rn | [x− (x2(0) + ∆c)]
TS2[x− (x2(0) + ∆c)] ≤ 1} (5.12)

is contained within the ellipsoid F1(T1). The first step in obtaining the desired SDP is to

note that the set Ψc(F2(0)) can be represented equivalently as the image of the unit ball

1Note that the restriction to quadratic V1(T1, x̄) and V2(0, x̄) is a relatively mild one. We are not imposing
any conditions on the degree of V1 and V2 at times other than the endpoints.
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under an affine map:

Ψc(F2(0)) = {Bu+ x2(0) + ∆c | ‖u‖2 ≤ 1}, (5.13)

where B = chol(S2))
−1. Here, chol(S2) is the Cholesky factorization of S2 (guaranteed to

exist and be invertible since S2 is positive definite). Such a representation is a standard trick

in semidefinite programming (see for example [21, Chapter 8.4.2]).

Introducing the notation b := −S1x1(T1) and c := x1(T1)
TS1x1(T1) − 1, the condition

that the ellipsoid F1(T1) is a subset of the ellipsoid Ψc(F2(0)) is then equivalent to being able

to find a scalar λ > 0 such that the following matrix semidefiniteness constraint holds ( [21,

Chapter 8.4.2]):


−λ− c+ bTS−11 b 01×n (x2(0) + ∆c + S−11 b)T

0n×1 λIn×n B

x2(0) + ∆c + S−11 b B S−11

 � 0. (5.14)

Here, the matrices I and 0 represent the identity matrix and the all-zeros matrix respectively.

Since this semidefiniteness condition is linear in λ and ∆c, the problem of searching for these

decision variables subject to λ > 0 and (5.14) is a SDP. This SDP will be feasible if and only

if F1 and F2 are sequentially composable MI.

The problem of checking sequential composability MI in the more general non-ellipsoidal

case is not directly amenable to such a SDP based formulation. However, if we fix Ψc, then

the problem of checking sequential composability MI reduces to the problem of checking

sequential composability. Thus, we can use the SOS program (5.9) to verify if a given Ψc

yields the desired containment constraint F1(T1) ⊂ Ψc(F2(0)). One natural choice is to set

Ψc such that πc(Ψc(x2(0))) = πc(x1(T1)), where πc is the projection of the state onto the

cyclic coordinates. Intuitively, this corresponds to shifting the funnel F2 so that the start

of its nominal trajectory is lined up along cyclic coordinates with the end of the nominal

trajectory of F1. If the SOS program is infeasible, a local search around this Ψc could yield

the desired shift.
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5.4.3 Runtime composability

In order to check runtime composability of F1 and F2, we need to check the inclusion

πnc(F1(T1)) ⊂ πnc(F2(0)). For the important special case where the sets F1(T1) and F2(0)

are ellipsoids, we can compute the projections exactly. This is because the projection of an

ellipsoid onto a linear subspace is also an ellipsoid (see equation (4.39) for the exact formula

for the projected ellipsoid). Checking if a given ellipsoid contains another is a straightforward

application of semidefinite programming [21, Example B.1, Appendix B].

For the more general case, one might hope for a SOS programming based condition

for checking πnc(F1(T1)) ⊂ πnc(F2(0)). However, the existential quantifier inherent in the

projection (see the equivalent condition (5.6)) makes it challenging to formulate such SOS

conditions. Nevertheless, there exist general purpose tools such as quantifier elimination [29]

for checking quantified polynomial formulas such as (5.6). While the worst-case complexity

of doing general purpose quantifier elimination is poor, software packages such as QEPCAD

[23] (or dReal [39], which is based on a different theoretical framework) can often work well

in practice for specialized problems. We note however that in the examples considered in

Sections 7 and 8 we will only be using funnels with ellipsoidal inlets and outlets and thus

will not be concerned with this complexity.

5.5 Funnel library

A simple but useful generalization of the notions of composability introduced above can be

obtained by checking the associated containment conditions at a given time τ1 rather than

at time T1. For example, we will say that the ordered pair of funnels (F1, F2) is sequentially

composable at time τ1 if F1(τ1) ⊂ F2(0). We will use similar terminology for the other notions

of composability. Given a collection F of funnels associated with a dynamical system, we

will associate a directed graph G(F) whose vertices correspond to funnels F ∈ F . Two

vertices corresponding to funnels Fi and Fj are connected by a directed edge (Fi, Fj) if and

only if the ordered pair (Fi, Fj) is runtime composable at some specified time τi. We will
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sometimes refer to τi as the execution time of funnel Fi.

Definition 5. A funnel library FL associated with a given dynamical system is a tuple FL =

(F ,G(F), C, {τi}), where F is a set of funnels for the dynamical system, G(F) is the directed

graph representing which funnels are runtime composable, C is the set of feedback controllers

associated with the funnels in F , and {τi} is the set of execution times.

Note that while we do not impose restrictions such as connectedness or strong connectedness

on the graph G(F), it may be useful to impose such conditions based on the task at hand. For

example, for tasks which require continuous operation (such as a UAV navigating indefinitely

through a forest or a factory arm continuously placing objects onto a conveyor belt), we

should require that G(F) be strongly connected (since if G(F) is not strongly connected,

we are ruling out the possibility of executing certain funnels in the future). On a similar

note, properties of the graph such as its diameter or girth may be related to the efficiency

with which a certain task can be accomplished. Identifying which graph theoretic properties

should be imposed on G(F) for different tasks is an interesting research avenue, but we do

not pursue this in the present work.
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Chapter 6

Real-time Planning with Funnels

Given a funnel library FL = (F ,G(F), C, {τi}) computed offline, we can proceed to use it for

robust real-time planning in previously unseen environments. The robot’s task specification

may be in terms of a goal region that must be reached (as in the case of a manipulator

arm grasping an object), or in terms of a nominal direction the robot should move in while

avoiding obstacles (as in the case of a UAV flying through a forest or a legged robot walking

over rough terrain). For the sake of concreteness, we adopt the latter task specification

although one can adapt the contents of this chapter to the former specification. We further

assume that the robot is provided with regions in the configuration space that obstacles are

guaranteed to lie in and that the robot’s sensors only provide this information up to a finite

spatial horizon around the robot. Our task is to choose funnels from our library in a way

that avoids obstacles while moving forward in the nominal direction.

The key step in our real-time planning approach is the selection of a funnel from the

funnel library that doesn’t intersect any obstacles in the environment. This selection process

is sketched in the ReplanFunnel algorithm (Algorithm 3). Given the current state x of the

robot and the locations and geometry of obstacles O in the environment, the algorithm

searches through the funnels in the library that are runtime composable with the previous

funnel that was executed. We assume that the funnels are (totally) ordered in a preference

list. As an example, this ordering can be based on likely progress towards the goal or by
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aggressiveness of the maneuvers (less aggressive maneuvers are given preference) for a UAV.

For each funnel Fi, the algorithm tries to find a shift Ψc along cyclic coordinates of the

system such that the shifted funnel Ψc(Fi) satisfies two properties: (i) the current state x

is contained in the inlet of the shifted funnel, (ii) the projection of the shifted funnel onto

the coordinates of the state space corresponding to the configuration space1 doesn’t intersect

any obstacles in O. If we are able to find such a shift, we are guaranteed that the system will

remain collision-free when the funnel is executed despite the uncertainties and disturbances

that the system is subjected to.

The simplest way to try to choose Ψc is to set it such that the nominal trajectory xi

associated with the funnel lines up with the current state in the cyclic coordinates (i.e., using

the notation of Chapter 5, πc(Ψc(xi(0))) = πc(x)). Intuitively, this corresponds to shifting

the funnel so that it is executed from the current location of the robot. We can then use

standard collision-checking libraries such as the Bullet Collision Detection & Physics Library

[30] to check if Ψc(Fi) (projected onto the configuration space) intersects any obstacles. We

will discuss more sophisticated ways of finding Ψc in Chapter 6.1.

If the search for a collision-free funnel in Algorithm 3 doesn’t succeed, we assume that

there is a failsafe maneuver that can be executed to keep the robot safe. For a ground

vehicle, this could entail coming to a stop while for a quadrotor or fixed-wing airplane

this may involve transitioning to a hover or propellor-hang mode. In certain cases, it is

possible to derive geometric conditions on the environment that the robot will operate in

(e.g., constraints on obstacle size and gaps between obstacles) that guarantee that a collision-

free funnel will always be found by Algorithm 3 if the environment satisfies these conditions.

We will see an example of this in Chapter 7.2 for a quadrotor system navigating through a

forest of polytopic obstacles.

Algorithm 4 provides a sketch of the real-time planning and control loop, which applies

the ReplanFunnel algorithm in a receding-horizon manner. At every control cycle, the robot’s

sensors provide it with a state estimate and report the locations and geometry of the set of

obstacles O in the sensor horizon. The algorithm triggers a replanning of funnels if any of the

1Note that these projections can be computed in the offline computation stage.
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1: Inputs: x (current state of system), O (reported obstacles in environment),
previousFunnel (previous funnel that was executed)

2: for i = 1, . . . ,#(F) such that (previousFunnel, Fi) ∈ G(F) do
3: success ⇐ Find a shift Ψc along cyclic coordinates such that x is contained in the

inlet of Ψc(Fi) and Ψc(Fi) is collision-free w.r.t. O
4: if success then
5: return Ψc(Fi)
6: end if
7: end for
8: return Ffailsafe

Algorithm 3: ReplanFunnel

following three criteria are met: (i) if the system has executed the current funnel Fi for the

associated execution time τi, (ii) if the current state of the system is no longer in the funnel

being executed, or (iii) if the current funnel being executed is no longer collision-free. In

principle, (ii) should not happen. However, in practice this can happen if the system received

a disturbance that was larger than the ones taken into account for the funnel computations.

Option (iii) can happen if the robot’s sensors report new obstacles that were previously

unseen.

1: x⇐ Initialize current state of the robot
2: O ⇐ Initialize obstacles in sensor horizon
3: Fi ∈ F ⇐ Initialize current planned funnel
4: for t = 0, . . . do
5: x⇐ Update current state of robot
6: O ⇐ Update obstacles in sensor horizon
7: replan ⇐ Check if we have finished executing current funnel Fi for the associated

execution time τi
8: insideFunnel ⇐ Check if current state is still inside the current funnel Fi being

executed
9: collisionFree ⇐ Check if current funnel Fi is still collision-free with O

10: if replan or ¬insideFunnel or ¬collisionFree then
11: Fi ⇐ ReplanFunnels(x,O, Fi)
12: else
13: apply feedback control input u associated with current funnel Fi
14: end if
15: end for

Algorithm 4: Real-time planning loop
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6.1 Shifting funnels at runtime

The main step in Algorithm 3 is the search for a shift Ψc along cyclic coordinates such

that the shifted funnel Ψc(Fi) will be collision-free with respect to the obstacles in O while

containing the current state x in its inlet:

Find Ψc (6.1)

s.t. x ∈ Ψc(Fi(0)), (6.2)

πconf (Ψc(Fi)) ∩ O = Ø.

Here, πconf is the projection onto the configuration space variables of the state space. This

optimization problem is non-convex in general since the free-space of the environment is

non-convex. However, the number of decision variables is very small. In particular, if we

parameterize the shift Ψc by a vector ∆c ∈ Rn (where the coordinates of ∆c corresponding to

the non-cyclic coordinates are set to zero) such that Ψc(x) = x+ ∆c, the number of decision

variables is equal to the number of cyclic coordinates of the system.

We can thus apply general-purpose nonlinear optimization tools such as gradient-based

methods to solve this problem. In particular, the first constraint is equivalent to checking

that the value of the Lyapunov function V (0, x̄) = V (0, x−(xi(0)+∆c)) at time 0 is less than

or equal to ρ(0) (recall that the funnel is described as the ρ(t) sub-level set of the function

V (t, x̄)). As in Chapter 4, xi here is the nominal trajectory corresponding to the funnel Fi.

The second constraint can be evaluated using off-the-shelf collision-checking libraries.

Despite the small number of decision variables, for some applications general-purpose

nonlinear optimization may be too slow to run in real-time. For the important special case

where the cyclic coordinates form a subset of the configuration space variables (e.g., for

a UAV), we propose another approach that allows us to search over a restricted family of

shifts Ψc but has the advantage of being posed using convex quadratic constraints. The first

observation is that the containment constraint (6.2) is a convex quadratic constraint for the
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Figure 6-1: The two red regions are obstacles. The green region represents the set of allowable shifts of the
funnel segment that satisfy the linear constraints given by the collision normals and collision distances.

case where the inlet of the funnel is an ellipsoid (i.e., the function V (0, x̄) is a positive definite

quadratic). If the inlet is not an ellipsoid, we can find an ellipsoidal inner approximation by

solving a simple SOS program offline.

Next, we seek to find a set of convex constraints that will guarantee non-collision of the

funnel. We will assume that πconf (Fi) is represented as a union of convex segments Sk and

that the obstacles in the environment are also convex (we assume that non-convex obstacles

have been decomposed into convex segments). For each funnel segment, we can find collision

normals njk and collision distances djk to each obstacle oj ∈ O (these are easily extracted

from a collision-checking software). Figure 6-1 provides an illustration of this for a single

convex segment S1. The two regions colored in red are obstacles. The collision normals are

n11 and n21. By definition, collision normals provide us with constraints such that any shift

∆c of the segment S1 satisfying the linear constraint nTjk∆c < djk will be collision-free. The
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region corresponding to this is shaded in green in the figure.

The constraints described above (containment of the current state in an ellipsoid and the

linear constraints given by the collision normals) form a special case of convex Quadratically

Constrained Quadratic Programs (QCQPs), for which there exist very mature software pack-

ages. For our examples in Chapter 7, we use the FORCES Pro package [35]. The package

generates solver code tailored to the specific optimization problem at hand and is faster in

our experience than using general-purpose convex QCQP solvers.

6.2 Global Planning

Algorithm 4 employed a receding horizon strategy for real-time planning. For tasks such

as robot navigation through previously unmapped environments, such a replanning-based

strategy is unavoidable since the robot’s sensors will only report obstacles in the environment

in some finite sensor horizon around the robot. Thus, the robot will need to replan as it makes

progress through the environment and more obstacles are reported by its sensors. However,

in certain scenarios where the robot has access to a larger portion of the environment, a

planning strategy that is more global in nature may be appropriate. In general, the funnel

primitives provide a discrete action space which can be searched by any heuristic planner -

the primary considerations here are the additional constraint of containment of the current

state in the inlet and the moderately more significant cost of collision checking. Here we

briefly mention a few ways in which global planning may be achieved.

Grid-based planners: One can build on existing trajectory library-based planning ap-

proaches to quickly find collision-free sequences of funnels that minimize a certain perfor-

mance criterion (e.g., distance traversed by the nominal trajectories in the sequence). For

example, [99] uses a variant of the grid-based planning algorithm A? to search through possi-

ble sequences of trajectories in a library. The additional cost of extending such an approach

for planning with funnels is the cost that comes from pruning sequences of funnels that are

in collision with obstacles in the environment.
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Maneuver automata: The Maneuver Automaton [37] provides an alternative trajectory

library-based approach that exploits continuous symmetries (such as shift invariance for

ground vehicles or UAVs) to achieve efficient planning. The approach relies on having a

number of “trim trajectories” and maneuvers that transition between them. One can then

efficiently plan sequences of trims and maneuvers that start and end at prescribed points

in space by solving a set of equations that has the same structure as an inverse kinematics

problem. In order to extend this approach for real-time planning with funnels, one needs to

(potentially approximately) solve the inverse kinematics problem subject to the constraint

that the funnel sequence is collision-free.

Planning backwards: The real-time planning approaches we have discussed so far all plan

forward in time. However, in cases where there is a well-defined goal set that one needs to

reach, it may be more efficient to plan backwards. This kind of planning is a direct analog

of the preimage backchaining approach [63] in the motion planning literature. One way to

perform this backwards search would be to employ a randomized strategy similar to the

Rapidly-exploring Randomized Tree (RRT). In particular, we can grow a tree of funnels

backwards from the goal set by using the funnels in our funnel library as primitives for the

extension operator for the RRT. One can again exploit invariances in the dynamics when

performing this extension operation by randomly sampling shifts/rotations of funnels (while

still maintaining sequential composability and non-collision of funnels). The termination

criterion for this RRT-like algorithm is the containment of the current state of the robot

in the tree of funnels. This is very similar to the LQR-Trees approach [102], with the

following differences: (i) one would only use a pre-computed library of funnels in the tree

rather than computing new funnels (which would be computationally infeasible for real-

time implementation), and (ii) the extension operator in the tree would take into account

non-collision of funnels with obstacles in the environment.
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Chapter 7

Examples

In this chapter we apply the techniques presented in this thesis on two simulation examples.

We will consider a hardware example in Chapter 8. The computations in this chapter were

performed on a 3.4 GHz desktop computer with 16 GB RAM and 4 cores.

7.1 Ground Vehicle Model

As our first example we consider a ground vehicle model based on the Dubins car [36]

navigating an environment of polytopic obstacles. A pictorial depiction of the model is

provided in Figure 7-1. The vehicle is constrained to move at a fixed forward speed and can

control the second derivative of its yaw angle ψ. We introduce uncertainty into the model

by assuming that the speed of the vehicle is only known to be within a bounded range and

is potentially time-varying. The full non-linear dynamics of the system are then given by:

x =


x

y

ψ

ψ̇

 , ẋ =


−v(t) sinψ

v(t) cosψ

ψ̇

u

 (7.1)
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Figure 7-1: Illustration of the ground vehicle model.

with the speed of the plane v(t) ∈ [9.0, 11.0] m/s. The control input is bounded in the range

[−1000, 1000] rad/s2.

The trajectory library, T , computed for the ground vehicle consists of 20 trajectories and

is shown in Figure 7-2(a). The trajectories xi(t) : [0, Ti] 7→ R4 and the corresponding nominal

open-loop control inputs were obtained via the direct collocation trajectory optimization

method [17] for the vehicle dynamics in (7.1) with v(t) = 10 m/s. The initial state xi(0)

was constrained to be [0, 0, 0, 0] and the final state xi(Ti) was varied in the x direction while

keeping the y component fixed. We locally minimized a cost of the form:

J =

∫ Ti

0

[1 + u0(t)
TR(t)u0(t)] dt

where R is a positive-definite matrix. We constrained the nominal control input to be in the

range [−500, 500] rad/s2 to ensure that feedback controllers computed around the nominal

trajectories do not immediately saturate.

For each xi(t) in T we obtain controllers and funnels using the method described in

Chapter 4. In order to obtain polynomial dynamics, we computed a (time-varying) degree

3 Taylor expansion of the dynamics of the system around the nominal trajectory. We note

that with the right change of coordinates, one can express the dynamics of this system
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(a) (b)

Figure 7-2: The plot on the left shows the trajectory library for the ground vehicle model. The plot on the
right shows a selection of funnels from the funnel library projected onto the x− y plane.

directly as a polynomial. In particular, we can introduce new indeterminates s and c for

sin(ψ) and cos(ψ), and impose the constraint that s2 + c2 = 1 (this equality constraint is

easily imposed in the sums-of-squares programming framework). However, this increases

the dimensionality of the state space and in practice we find that the time-varying Taylor

approximation accurately captures the nonlinearities of the system.

The approach from Chapter 4.3.2 along with the time-sampled approximation described

in Chapter 4.2 (with 15 time samples) was used to synthesize a (time-varying) linear feedback

controller around each trajectory. The methods described in Chapter 4.3.1 and 4.3.3 were

used to take into account the parametric uncertainty and input saturations that the system is

subject to. As described in Chapter 4.4.2, we used a time-varying LQR controller to initialize

the funnel computations. The computation time for each funnel was approximately 5-10

minutes. A subset of the funnels is shown in Figure 7-2(b). Note that the four-dimensional

funnels have been projected down to the x− y dimensions for the purpose of visualization.

The directed graph G(F) that encodes real-time composability between funnels (ref. Chapter

5.5) is fully connected.

The resulting funnel library was employed by Algorithm 4 for planning in real-time

through environments with randomly placed obstacles. Figure 7-3 shows the funnels that
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Figure 7-3: This plot shows the funnels that were executed in order for the ground vehicle model to traverse
a randomly generated obstacle environment using the funnel library based real-time planning approach.

were executed in order to traverse a representative environment. The obstacle positions

were randomly generated from a spatial Poisson process (with a density/rate parameter

of 0.6 obstacles per m2). Two further “barrier” obstacles were placed on the sides of the

environment to prevent the vehicle from leaving the region containing obstacles. The planner

was provided with a sensor horizon of 3m in the y direction (forward) and ±2m in the x

direction (side-to-side) relative to the position of the vehicle. Only obstacles in this sensor

window were reported to the planner at every instant in time. The execution times τi for

each funnel were set such that replanning occurred once 80% of the funnel was executed. The

parametric uncertainty in the speed of the vehicle was taken into account in our simulation
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by randomly choosing a speed v(t) ∈ {9.0, 11.0} m/s after every execution time period has

elapsed. The real-time planner employs the QCQP-based algorithm from Chapter 6.1 for

shifting funnels in the x−y directions (we did not exploit invariances in the yaw dimension of

the state space in order to ensure that the vehicle moves in the forward direction and doesn’t

veer off to the sides). We use the FORCES Pro solver [35] for our QCQP problems. This

resulted in our implementation of the real-time planner running at approximately 40 − 50

Hz.

We performed extensive simulation experiments to compare our funnel library based ro-

bust planning approach with a more traditional trajectory library based method. In order to

facilitate a meaningful comparison, we used the underlying trajectory library corresponding

to our funnel library. The trajectory-based planner employs essentially the same outer-loop

as our funnel-based approach (Algorithm 4). The key difference is that the planner chooses

which maneuver to execute by evaluating which trajectory has the maximal clearance from

the obstacles (as measured by Euclidean distance):

max
i

min
t,j

dist(xi(t), oj) (7.2)

where xi(t) ∈ T is a trajectory in the library and oj ∈ O is an obstacle in the environment.

Once a maneuver is chosen based on this metric, a time-varying LQR feedback controller

computed along this trajectory is applied (the same LQR controller that is used to initialize

the funnel computations).

To compare the two planners, we generated 100 obstacle environments randomly as de-

scribed previously. For each environment, we ran the different planning algorithms until

there was a collision of the vehicle with an obstacle. The distance in the y direction at the

time of collision was recorded for each run. Figure 7-4 compares the performance of the

different approaches. For each distance on the x-axis of the plot the height of the bar indi-

cates the number of runs for which the vehicle traveled beyond this distance. As is evident

from the plot, our funnel library based approach provides a significant advantage over the

trajectory-based method.
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Figure 7-4: A bar plot comparing the performance of the funnel library approach with one based on a
trajectory library.

This advantage can be partially understood by considering a specific example. In partic-

ular, Figure 7-5 demonstrates the utility of explicitly taking into account uncertainty during

the planning process. There are two obstacles in front of the vehicle. The two options avail-

able to the plane are to fly straight in between the obstacles or to maneuver aggressively to

the right and attempt to go around them. If the motion planner didn’t take uncertainty into

account and simply chose to maximize the clearance in terms of Euclidean distance from the

nominal trajectory to the obstacles (see equation (7.2)), it would choose the trajectory that

goes right around the obstacles. However, taking the funnels into account leads to a different

decision: going straight in between the obstacles is guaranteed to be safe even though the

distance to the obstacles is smaller. In contrast, the maneuver that avoids going in between

obstacles is less robust to uncertainty and could lead to a collision. The utility of safety
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guarantees in the form of funnels is especially important when the margins for error are

small and making the wrong decision can lead to disastrous consequences.

Figure 7-5: This figure shows the utility of explicitly taking uncertainty into account while planning. The
intuitively more risky strategy of flying in between two closely spaced obstacles is guaranteed to be safe, while
the path that avoids going in between obstacles is less robust to uncertainty and could lead to a collision.

7.2 Quadrotor Model

The next example we consider is a model of a quadrotor system navigating through a forest

of polygonal obstacles. A visualization of the system is provided in Figure 7-6. The goal of

this example is to demonstrate that we can derive simple geometric conditions on the envi-

ronment that guarantee collision-free flight. In other words if the environment satisfies these

conditions, the Algorithm 3 presented in Chapter 6 will always succeed in finding a collision-
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Figure 7-6: Visualization of the quadrotor system.

free funnel from the library and the quadrotor will fly forever through the environment with

no collisions.

The quadrotor model has a 12 dimensional state space consisting of the x-y-z position

of the centre of mass, the roll-pitch-yaw of the body, and the time derivatives of these

configuration space variables. The dynamics model we use is identical to the one presented

in [71] with an additional uncertainty term in the form of a “cross wind”. We modeled this

with a bounded uncertainty term on the acceleration of the x position: ẍ = ẍnominal + ∆,

with ∆ ∈ [−0.1, 0.1] m/s2.

Figure 7-7(a) plots the trajectory library we use. The funnel library consists of 20 ma-

neuvers and was created in a manner similar to the ground vehicle example. In partic-

ular, the trajectories xi(t) : [0, Ti] 7→ R12 and the corresponding nominal open-loop con-

trol inputs were obtained via the direct collocation trajectory optimization method [17].

The initial state xi(0) was constrained to have a forwards speed of 2 m/s (i.e, xi(0) =

[0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0]) and the final state xi(Ti) was varied in the x direction while

keeping all other components of the state fixed. We locally minimized a cost of the form:

J =

∫ Ti

0

[1 + u0(t)
TR(t)u0(t)] dt
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(a) (b)

Figure 7-7: The plot on the left shows the trajectory library for the quadrotor model. The plot on the right
shows a selection of funnels from the funnel library projected onto the x− y − z space.

where R is a positive-definite matrix. In addition to the 20 maneuvers, the library also

consists of a “trim” trajectory corresponding to the quadrotor flying forward at a constant

speed of 2 m/s.

For each xi(t) in T we obtain controllers and funnels using the method described in Chap-

ter 4. We obtained time-varying Taylor expansions of degree 3 computed around the nominal

trajectory. The approach from Chapter 4.3.2 along with the time-sampled approximation

described in Chapter 4.2 (with 15 time samples) was used to synthesize a (time-varying) lin-

ear feedback controller around each trajectory. The methods described in Chapter 4.3.1 were

used to take into account the parametric uncertainty that the system is subject to. The com-

putation time for each funnel was approximately 20-25 minutes. The directed graph G(F)

that encodes real-time composability between funnels (ref. Chapter 5.5) is fully connected.

Moreover, the funnel corresponding to the trim trajectory is sequentially composable modulo

invariances (ref. Chapter 5.2) with the other maneuvers in the library, allowing us to apply

the trim trajectory before or after any of the maneuvers. A subset of the funnels is shown

in Figure 7-7(b). Note that the twelve-dimensional funnels have been projected down to the

x− y − z dimensions for the purpose of visualization.

Given this funnel library F , we will show how one can derive simple geometric conditions

on the environment that guarantee that a collision-free funnel will always be found during

real-time planning. In order to simplify the analysis, we will assume that the quadrotor

75



Figure 7-8: Obstacle bounding boxes and quadrotor radius.

is navigating through a 2.5D environment (i.e., the obstacles in the environment are 2D

polygons extruded in the z-direction). But, we note that our analysis can be extended to

fully three dimensional environments. We will treat the geometry of the quadrotor as a

sphere of radius rquad.

Since we are only considering 2.5D environments, it is sufficient to project the environ-

ment and funnels down to the x− y plane. Consider (axis aligned) bounding boxes for the

2D obstacles (see Figure 7-8). Denote the center of the bounding box for obstacle oi as

(oi,x,, oi,y) for i ∈ {1, . . . , Nobs} (Nobs is the number of obstacles in the robot’s sensor hori-

zon). Suppose without loss of generality that the quadrotor’s x-y-z position is (0, 0, 0). We

will first derive conditions on the distances oi,y, dx,ij := |oi,x − oj,x|, and sizes rx,i, ry,i (ref.

Figure 7-8) such that there exists a collision-free funnel in F assuming the quadrotor’s x-y-z

position is (0, 0, 0). We will then extend this analysis to derive conditions that guarantee

that a collision-free funnel will always be found as the quadrotor applies Algorithm 3 in a

receding horizon manner to fly continuously through the environment.
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For each funnel Fi ∈ F compute bounding boxes for the inlet and outlet of the funnel

(see Figure 7-9(b)). We will refer to the dimensions of these bounding boxes as depicted in

the figure as f outi,y , f
out
i,x , f

in
i,y, f

in
i,x. Define

fx := max(f out1,x , ..., f
out
N,x, f

in
1,x, ..., f

in
N,x) + rquad,

where N is the number of funnels in the library (21 in our case). Similarly, define:

fy := max(f out1,y , ..., f
out
N,y, f

in
1,y, ..., f

in
N,y) + rquad.

Next, define δ as shown in Figure 7-9(a) as the distance (in the x-dimension) of the

endpoints of trajectories in T . Denote by ∆x the distance (in the x-dimension) between

the endpoints of the most aggressive trajectories in T and let ∆y be the distance in the

y-direction that each trajectory in the library covers (see Figure 7-9(a)).

Define rx := max(r1,x, ..., rNobs,x), ry := max(r1,y, ..., rNobs,y). Then consider the following

conditions on the obstacles:

oi,y > ∆y, ∀i ∈ {1, . . . , Nobs} (7.3)

ry < fy (7.4)

rx < ∆x − 2fx (7.5)

dx,ij > 2fx + δ, ∀i, j ∈ {1, . . . , Nobs}, i 6= j. (7.6)

It is straightforward to see that these conditions imply the existence of a funnel in F

that is collision-free when executed from the quadrotor’s location at (0, 0, 0) (i.e., Algorithm

3 will succeed assuming that the full 12 dimensional state of the quadrotor is contained

within the inlet of all the funnels in F). In particular, the condition (7.3) ensures that the

funnels are not too close to the quadrotor’s starting location. Condition (7.4) prevents an

obstacle from extending so far in the y-direction that it collides with the middle segments
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Figure 7-9: Notation for geometry of trajectories and funnels.
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of a funnel. Condition (7.5) ensures that obstacles do not extend so far in the x-direction

that there is no funnel in the library that goes around the obstacle (e.g., imagine a wall in

front of the quadrotor). And finally (7.6) ensures that the gap in the x-direction between

any two obstacles is large enough for some funnel in F to fit through. Then conditions (7.5)

and (7.6) ensure that this gap occurs in a portion of the space that is reachable by one of

the funnels in the library (and not in some far off location in the x-direction where a funnel

in F does not extend to).

We can now extend this analysis to the scenario in which the quadrotor is flying along

continuously through the environment by applying Algorithm 3 in a receding horizon manner.

We will assume that the sensor horizon of the quadrotor (i.e., the range in which obstacles

are reported) is greater than ∆y in the y-direction and greater than ∆x/2 in the x-direction.

We then need to ensure that when the quadrotor finishes executing a funnel, it does not find

itself in a position where there are obstacles that are very close to it. In order to do this, we

will first replace the conditions (7.3) and (7.6) with the following condition on the separation

between obstacles:

dy,ij := |oi,y − oj,y| > ∆y + fy (7.7)

OR

dx,ij > 2fx + δ. (7.8)

This condition ensures that obstacles are separated enough in either the x or y directions.

However, this is still not enough to prevent cases where the quadrotor executes a funnel

and finds itself too close to an obstacle. In particular, suppose that the quadrotor starts

off at location (0, 0, 0) and that there is a single obstacle in the environment located at

(0, 1.1∆y+fy) (the size of the obstacle will not matter in this example). When the quadrotor

applies Algorithm 3 at location (0, 0, 0) to find a funnel, all the funnels in the library will

be collision-free. Let us suppose that the algorithm chooses the funnel corresponding to the

quadrotor flying straight and ends up in location (0,∆y). At this point, the obstacle is too

close to the quadrotor and a collision-free funnel will not be found. To prevent cases such as
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Figure 7-10: The plot shows the quadrotor maneuvering through a forest of polytopic obstacles in a collision-
free manner. The environment satisfies simple geometric conditions that allow us to guarantee collision-free
flight forever. Note that the visualized funnels have been inflated to take into account the size of the
quadrotor.

this, we can use the trim maneuver in F corresponding to the quadrotor flying straight in

order to “pad” the distance to the obstacles. In particular, we can apply the trim maneuver

until the quadrotor is at distance ∆y from the obstacle (in the y-direction) and then use

Algorithm 3 to replan. This will guarantee that Algorithm 3 will succeed and thus our

analysis is complete.

Figure 7-10 shows an example of the quadrotor system navigating through an environ-

ment that satisfies the geometric conditions derived above. The figure shows the sequence

of funnels executed by the quadrotor to traverse the environment. Note that the funnels

depicted in the plot have been inflated by rquad in order to take into account the physical

extent of the quadrotor.

We end this section by noting that our goal here has been to demonstrate the possibility

of imposing geometric conditions on the environment that guarantee collision-free flight.

Going forwards, our analysis may be varied or tightened in many ways. For example, we can
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extend it in a straightforward manner to fully 3D environments. Further, we have assumed

that the quadrotor is only planning a single funnel at a time (in contrast to sequences of

funnels). Planning sequences of funnels may help loosen some of the restrictions on the

environment that we have made in our analysis.
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Chapter 8

Hardware experiments on a

fixed-wing airplane

In this chapter, we will validate the key components of the approach presented in this thesis

on a small fixed-wing airplane performing a challenging obstacle avoidance task. The goal

of these hardware experiments is to answer the following important practical questions:

• Can we obtain models of a real-world challenging nonlinear dynamical system that are

accurate enough to compute funnels that are valid in reality?

• Can we implement the real-time planning algorithm described in Chapter 6 to operate

at the required rate given realistic computational constraints?

• Can we demonstrate our planning algorithm on a realistic and challenging obstacle

avoidance task?

8.1 Hardware platform

The hardware platform chosen for these experiments is the SBach RC airplane manufactured

by E-flite shown in Figure 8-1(a). The airplane is very light (76.6 g) and highly maneuverable,

thus allowing for dramatic obstacle avoidance maneuvers in a tight space. The control inputs
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to the SBach are raw servo commands to the control surfaces (ailerons, rudder, elevator) and

a raw throttle setting. These commands are sent through a modified 2.4 GHz RC transmitter

at an update rate of 50 Hz.

8.2 Task and experimental setup

The experimental setup is shown in Figure 8-1(b). The airplane is launched from a simple

rubber-band powered launch mechanism at approximately 4−5 m/s. The goal is to traverse

the length of the room while avoiding the obstacles placed in the experimental arena. The

airplane’s planner is not informed where the obstacles are beforehand; rather, the obstacle

positions and geometry are reported to the planner only once the airplane clears the launcher.

This simulates the receding-horizon nature of realistic obstacle avoidance tasks where the

obstacle positions are not known beforehand and planning decisions must be taken in real-

time. The experiments are performed in a Vicon motion capture arena that reports the

airplane and obstacle poses at 120 Hz. All the online computation is performed on an

off-board computer with four Intel i7 2.9GHz processors and 16 GB RAM.

8.3 Modeling and system identification

Our dynamics model of the airplane is based on the model described in [95] ([98] is also a

good reference for modeling fixed-wing airplanes). The model has 12 states:

x = [x, y, z, φ, θ, ψ, ẋ, ẏ, ż, P,Q,R].

Here, +x is in the forward direction, +y is to the right and +z is downwards as depicted in

Figure 8-1(b) (this is the standard North-East-Down coordinate frame used in aeronautics).

The states φ, θ, ψ are the roll, pitch and yaw angles. The variables P,Q,R are the compo-

nents of the angular velocity expressed in the body coordinate frame. The control inputs of

the model are the angles of the ailerons, rudder and elevator, along with the speed of the
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(a) The E-flite SBach RC airplane used for hardware experiments.

(b) Experimental setup and coordinate system.

Figure 8-1: Airplane hardware and experimental setup.
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propellor. Thus, we have 4 control inputs since the ailerons are coupled to deflect in opposite

directions by the commanded magnitude.

The airplane is treated as a rigid body with aerodynamic and gravitational forces acting

on it. Here, we provide a brief description of our model of the aerodynamic forces:

Propellor thrust The thrust from the propellor is proportional to the square of the

propellor speed. The constant of proportionality was obtained by hanging the airplane

(with the propellor pointing downwards) from a digital fish scale and measuring the thrust

produced for a number of different throttle settings.

Lift/drag on aerodynamic surfaces The lift and drag forces on the ailerons, rudder,

elevator and tail of the airplane were computed using the flat-plate model. The flat-plate

model was also used as a baseline for the lift and drag coefficients of the wings, but an

angle-of-attack dependent correction term was added. This correction term was fit from

experimental data obtained from passive (i.e., unactuated) flights in a manner similar to

[74]. Since lift and drag forces are dependent on the airspeed over the aerodynamic surface,

we need to take into account the effect of “propwash” (i.e. the airflow from the propellor).

The relationships between the throttle speed command and the propellor downwash speed

over the different control surfaces were measured using a digital anemometer in a manner

similar to [95].

Body drag The drag on the airplane body is approximated as a quadratic drag term whose

drag coefficient is fit from data.

As described above, many of the parameters in the model were obtained directly from

physical experiments and measurements. However, some model parameters are more difficult

to measure directly. These include the moments of inertia of the airplane and the coefficient

of drag associated with the airplane body. The prediction-error minimization method in the
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Matlab System Identification Toolbox [61] was used to fit these parameters and to fine-tune

the measured parameters. In particular, we collected data from 15-20 flights (each lasting

approximately 0.5–0.7 seconds) where the control inputs were excited using sinusoidal signals

of varying frequency and amplitude.

8.4 Funnel validation

The first major goal of our hardware experiments was to demonstrate that our model of

the SBach airplane is accurate enough to compute funnels that are truly meaningful for

the hardware system. To this end, we computed a funnel (shown in Figure 8-2(a)) for the

airplane using the approach described in Chapter 4. We first estimated the set of initial

states that the launcher mechanism causes the airplane to start off in (here, by “initial

state” we mean the state of the airplane as soon as it has cleared the launcher mechanism).

This was done by fitting an ellipsoid around the initial states observed from approximately

50 experimental trials. We then used direct collocation trajectory optimization [17] to design

an open-loop maneuver that makes the airplane bend towards the left. The initial state of

the trajectory is constrained to be equal to the mean of the experimentally observed initial

states and the control inputs are constrained to satisfy the limits imposed by the hardware.

Next we computed a time-varying LQR (TVLQR) controller around this nominal trajectory.

This controller was tuned largely in simulation to ensure good tracking of the trajectory

from the estimated initial condition set. The resulting closed-loop dynamics were then

Taylor expanded around the nominal trajectory to degree 3 in order to obtain polynomial

dynamics. Finally, we used SOS programming to compute the funnel depicted in Figure 8-

2(a) using the time-sampled approximation described in Section 4.2 (with 10 time samples).

The inlet of the funnel was constrained to contain the experimentally estimated set of initial

conditions. We observed that the tuned TVLQR controller does not saturate the control

inputs for the most part and thus we did not find it necessary to take input saturations

into account in our funnel computation. Further, we wanted to assess the validity of our

funnel for the nominal dynamics model of the airplane and did not take into account any
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(a) A depiction of the funnel that was validated on
hardware. The funnel has been projected down to
the x − y − z coordinates of the state space and
then reprojected onto the camera image.

(b) The value of the Lyapunov function (V ) plotted
as a function of time for 30 different trials of the
airplane started from different initial conditions
in the inlet of the funnel. The 1-sublevel set of
the Lyapunov function corresponds to the funnel
(i.e., a Lyapunov function of 1 or less corresponds
to the airplane being inside the funnel). All 30
of the trajectories remain inside the computed
funnel for the entire duration of the maneuver.

Figure 8-2: Validating funnels on the fixed-wing airplane.

uncertainty in the model. The funnel computation took approximately 1 hour.

We validate the funnel shown in Figure 8-2(a) with 30 experimental trials of the airplane

executing the maneuver corresponding to the funnel. The airplane is started off in different

initial conditions in the inlet of the funnel and the TVLQR controller is applied for the dura-

tion of the maneuver. Figure 8-3 shows still images of a sample flight of the airplane executing

the maneuver with the funnel superimposed onto the images. A video with a visualization

of the funnel and flights through it is available online at https://youtu.be/cESFpLgSb50.

Figure 8-2(b) provides a more quantitative perspective on the flights. In particular, the

figure shows the value of the Lyapunov function V (x̄, t) as a function of time achieved during

the 30 experimental trials. Here, the Lyapunov function has been normalized so that the 1-

level set corresponds to the boundary of the funnel. As the plot illustrates, all 30 trajectories

remain inside the computed 12 dimensional funnel for the entire duration of the maneuver.

This suggests that our model of the airplane is accurate enough to produce funnels that are
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(a) (b)

(c) (d)

Figure 8-3: Still images of the SBach flying through a funnel. The funnel has been projected down to the
x− y − z coordinates of the state space and then reprojected onto the camera image.

indeed valid for the hardware system.

8.5 Obstacle avoidance experiments

The second major goal of our hardware experiments was to demonstrate the funnel library

based real-time planning algorithm proposed in Chapter 6 on the obstacle avoidance task

described in Chapter 8.2. Our first step was to design a rich trajectory library consisting

of a large number of different maneuvers. We initialized the library with the maneuver

from Chapter 8.4 and augmented it by computing trajectories with varying final states. In

particular, the library consists of 40 trajectories which were obtained by discretizing the
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final state in the y and z coordinates and using direct collocation trajectory optimization to

compute locally optimal trajectories for the airplane model described in Chapter 8.3. The

x−y−z components of this trajectory library are depicted in Figure 8-4, with the trajectory

from Chapter 8.4 highlighted in blue.

Figure 8-4: Trajectory library for the SBach airplane. The library consists of 40 different maneuvers. The
maneuver from Chapter 8.4 is highlighted in blue.

For each trajectory in our library, we computed a TVLQR controller with the same

state/action costs as the controller for the maneuver in Chapter 8.4. As in Chapter 8.4, we

used SOS programming to compute funnels for each trajectory in the library. We note that

since the dynamics of the airplane are symmetric with respect to reflection about the x axis,

we were able to halve the amount of computation involved in constructing the trajectory/-

funnel library by exploiting this symmetry.

As mentioned in Chapter 8.2, the positions and geometry of the obstacles are not reported

to the planner until the airplane has cleared the launcher. This forces planning decisions

to be made in real-time. We use the planning algorithm described in Chapter 6 to choose

a funnel from our library. The planner employs the QCQP-based algorithm from Chapter

6.1 for shifting funnels in the x − y − z directions. As in the other examples considered in

this thesis, we use the FORCES Pro solver [35] for our QCQP problems. If no satisfactory
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funnel is found by the planner, we revert to a “failsafe” option which involves switching off

the propellor and gliding to a halt. A more sophisticated failsafe would be to attempt to

transition to a “propellor-hang” mode. However, we found that our failsafe provides adequate

protection to the airplane’s hardware as it usually glides on to the safety net before colliding

with any obstacles. Finally, we note that since the experimental arena is quite limited in

space, we do not replan funnels once one has been chosen; the airplane executes the feedback

controller corresponding to the chosen funnel for the whole duration of the flight.

We tested our approach on 15 different obstacle environments of varying difficulty. These

environments are shown in Figures 8-5 and 8-6. The obstacles include poles of different

lengths in varying orientations and also a hoop of diameter equal to 0.9 m (as a reference

the airplane’s wingspan is 0.44 m, thus only leaving 0.23 m of margin on either side of the

airplane assuming it passes through the center of the hoop). We model the poles as cuboids

with heights equal to that of the poles and widths equal to the diameter. The hoop is

approximated with eight polytopic segments (see Figure 8-8).

Figure 8-7 presents a more quantitative perspective on the obstacle environments. Here

we we have plotted a histogram of the gaps between obstacles in the environment and

compared it to the wingspan of the airplane. In particular, for each obstacle in a given

environment we consider the distance1 to the closest obstacle that is at least 5 cm away

(the 5 cm threshold is chosen to prevent obstacles that are right next to each other being

considered as having a small gap. For example, the obstacle closest to one of the horizontal

poles in the first environment in Figure 8-5 should be the other horizontal pole and not the

adjacent vertical pole). As the histogram illustrates, a significant fraction (approximately

35%) of the gaps are less than the airplane wingspan and about 66% of the gaps are less

than two wingspans. Of course, it is worth noting that not all of the gaps greater than the

wingspan are in fact negotiable (e.g., obstacles placed far apart along the x direction).

A video of the airplane traversing a few representative environments is available online

at https://youtu.be/cESFpLgSb50. Out of the 15 environments the airplane was able to

1Here, the distance between obstacles is defined in the usual way for sets. In particular, for any pair of
obstacles O1 and O2, we define the distance between them as min

x1∈O1,x2∈O2

‖x1 − x2‖2.
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Figure 8-5: Environments 1-8 on which the online planning algorithm was tested. The obstacles include
poles of different lengths in varying orientations and also a hoop of diameter equal to 0.9 m.
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Figure 8-6: Environments 9-15 on which we tested our planning algorithm. The bottom most image shows
the only failure case. Here the airplane brushed one of the obstacles on its way across the room.
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Figure 8-7: Histogram of gaps between objects in our test environments compared with the airplane’s
wingspan (0.44 m). As the plot shows, a significant number of the gaps between obstacles are less than then
wingspan.

successfully negotiate 14 of them, thus demonstrating the efficacy of our real-time planner

on this challenging task.

Figure 8-8 presents the output of our real-time planner on four of the more challenging

environments. In particular we plot the funnel chosen by the planner (which have been shifted

using the QCQP-based algorithm presented in Chapter 6.1) alongside an image sequence

showing the airplane executing the plan. We note that the increased expressivity afforded

to us by the ability to shift funnels in the cyclic coordinates has a large impact on the

planner being able to find collision free funnels. Perhaps the best example of this is the

environment which contains the hoop (top row of Figure 8-8). Without the ability to make

small adjustments to the funnels, the chances of finding a collision free funnel are extremely

low (we would require a funnel that passes almost exactly through the center of the hoop).

Figure 8-9 compares the output of the planner with and without applying the QCQP-based

algorithm for shifting funnels. As we can observe, the best funnel found in the former case
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Figure 8-8: This figure depicts the planned funnel along with the polygonal obstacle representations for four
of our fifteen test environments. Note that the funnels have been inflated to take into account the collision
geometry of the airplane (modeled as a sphere of diameter equal to the wingspan).
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Figure 8-9: The QCQP-based algorithm for shifting funnels (Chapter 6.1) plays a crucial role in the planner’s
ability to find collision free funnels. Here we compare the output of the planner with and without applying
the QCQP-based algorithm for shifting funnels. The best funnel found in the former case is well in collision
with the obstacles while in the latter case the planner is able to find a collision free funnel. Note that the
funnels chosen in the different cases correspond to different maneuvers.

is well in collision with the obstacles while in the latter case the planner is able to find a

collision free funnel. This illustrates the crucial role that exploiting invariances plays in the

success of the planner on this task.

As mentioned before, the airplane was able to successfully negotiate 14 out of our 15

environments. The single failure case occurred on the environment shown at the bottom

of Figure 8-6, where the airplane clipped one of the poles close to the end of its flight.

This failure can be attributed to the fact that the planner chose to execute one of a small

handful of maneuvers that are more aggressive than the funnel we validated in Chapter 8.4.

The controller saturates the control inputs significantly on this maneuver and hence violates

our assumption about input limits not being reached. Hence this funnel is not entirely

valid on the hardware system. While we could have taken actuator saturations into account

while computing the funnels (see Chapter 4.3.3), we chose not to do so in order to reduce the

computation time. In hindsight, a more careful treatment of the system would have included

saturations when computing funnels.

Finally, we note that on a small number of occasions during our experiments we observed

the “failsafe” option being employed by the planner (i.e., switching off the throttle and

gliding to a halt). This was typically caused by failures in the launching mechanism such as

the airplane making contact with the operator’s hand on its way out of the launcher. Due
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to the altered initial conditions in these cases the airplane is not in the inlet of most or all

of the funnels and thus has to resort to the failsafe. On these occasions we simply repeated

the experiment to obtain a successful flight.

8.6 Implementation details

We end this chapter by mentioning a few implementation details that were important in

achieving the results presented above. First, while the Vicon motion tracking system pro-

vides accurate position and orientation estimates at 120 Hz, a finite difference of these

measurements can lead to noisy estimates of the derivative states. For our experiments we

filtered the finite differences using a simple Luenberger observer [64].

Second, we observed a delay of approximately 55 ms in our closed-loop hardware system.

While there are several ways to explicitly take this into account by adding delay states to

our airplane model, we accommodate for the delay during execution by simulating our model

forwards by 55 ms from the estimated current state and using this simulated future state to

compute the current control input. This simple strategy is a common one and has previously

been found to be effective in a wide range of applications [47, 75, 94].
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Chapter 9

Addressing the challenge of scalability

with DSOS and SDSOS programming

The main computational tool we have employed throughout this thesis has been sums-of-

squares (SOS) programming. In general, SOS programming has had a large impact on the

control theory community since its advent over a decade ago [80] and has been used to

tackle a wide variety of problems including feedback control synthesis, safety verification

and computation of regions of attraction, invariant sets, and reachable sets for a broad class

of nonlinear and hybrid systems [105, 49, 87, 28, 2, 46]. However, despite the wide accep-

tance of the SOS approach in the control and optimization communities, applications of the

method considered in the literature typically involve systems of relatively modest dimen-

sion (approximately 5-10 states). In fact, to our knowledge, our use of SOS programming

for computing funnels for the quadrotor (Chapter 7.2) and fixed-wing airplane (Chapter 8)

systems are among the largest-scale control applications of this nature.

Thus, scalability of SOS programming is one of the key challenges that need to be ad-

dressed in order to apply the funnel library-based approach to more complex robotic systems

such as humanoids. More generally, the limits on scalability of SOS programming have made

its application to network control, power systems, multi-agent systems, and complex robotic

systems extremely challenging. While control systems of higher dimension have been ad-

99



Figure 9-1: The methods presented in this chapter allow us to handle problems of dimensionality well
beyond the reach of current SOS programming based approaches. For example, in Chapter 9.4.4, we design a
balancing controller for a 30 state and 14 control input model of the ATLAS humanoid robot. A visualization
of the model is shown in this figure, along with the hardware platform (inset) on which the parameters of
the system are based. (Picture of robot reproduced with permission from Boston Dynamics.)

dressed using SOS programming in certain cases, they involve exploiting special structure

(e.g., symmetry, sparsity) of the particular problem under consideration [81, 11, 10, 110].

For many real-world control applications, we would like to be able to handle problems of

high dimensionality even when such structure is limited or not available. Further, even for

smaller problems, being able to obtain an answer much more quickly than we currently can

(perhaps at the cost of conservatism) would be of significant practical utility.

The limited scalability of the SOS approach is due in large part to the fact that, in general,

SDPs are among the most expensive convex relaxations. At the current state of solver

technology, it is not uncommon for the more practically-oriented user to want to avoid SDP-

based approaches. For example, in the industry-motivated field of integer programming,

the cutting-plane approaches used on real-life problems are almost exclusively based on

linear programming (LP) or second order cone programming (SOCP) [77, 50]. Even though

semidefinite cuts are known to be stronger, they are too expensive to be used even at the

root node of branch-and-bound techniques for integer programming. In the field of SOS

optimization, however, a sound alternative to SOS programming that can avoid SDP and

take advantage of the existing mature and high-performance LP/SOCP solvers is lacking.

This is precisely what we are after here.
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In very recent work [4], Ahmadi and Majumdar provide new sufficient conditions for

polynomial nonnegativity based on linear programming (LP) and second-order cone pro-

gramming (SOCP) relaxations. The key insight is to replace the positive semidefiniteness

constraint on the Gram matrix in the SOS approach with stronger conditions: diagonal dom-

inance and scaled diagonal dominance. Equivalently, the set of polynomials that is being

searched over is restricted to a subclass of sums-of-squares polynomials: the Diagonally-

Dominant SOS (DSOS) and Scaled-Diagonally-Dominant SOS (SDSOS) polynomials (see

Definition 8). This results in significantly cheaper optimization problems, though with more

conservative solutions in general.

By leveraging the scalability of available LP/SOCP solvers, we demonstrate the efficacy of

this approach on several high-dimensional problems that are currently well beyond the reach

of SOS programming: computing a region of attraction for a 22 dimensional system, network

analysis for an oscillator network with 50 nodes, searching for degree 3 controllers and degree

8 Lyapunov functions for an Acrobot system (with the resulting controller validated on a

hardware platform), and synthesizing a balancing controller for a 30 state and 14 input

model of the ATLAS humanoid robot shown in Figure 9-1. This last example may be

viewed as a first step towards applying the funnel library approach presented in this thesis

to a system of the complexity of a humanoid robot. We also present numerical experiments

on smaller instances of our problems (where SOS techniques can be implemented) in order

to demonstrate that the additional conservatism introduced by our methods can be small

compared to SOS approaches.

This work also gives rise to several interesting theoretical questions related to the “gap”

between (S)DSOS and nonnegative polynomials and how this gap may be reduced and even

closed with the help of multiplier polynomials. This is analogous to the classical Positivstel-

lensatz theorems for the gap between nonnegative polynomials and SOS polynomials. Since

our goal in this chapter is to provide a clear practical exposition of the approach along with

its control applications, only a highlight of a few theorems in this direction is presented in

Chapter 9.3 and a more comprehensive treatment is to be found in [4].
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9.1 Relevant Work

There have been many contributions to improvements in scalability of SOS programming.

One approach has been to develop systematic techniques for taking advantage of problem

structure, such as sparsity or symmetry of the underlying polynomials, to reduce the size

of the SDPs. Examples include applications to network problems where connectivity infor-

mation is known a priori [45], dynamical systems that can be decomposed and analyzed

using smaller subsystems [10], and analysis of delayed linear systems with a low-rank delay

coefficient matrix [110].

Another approach which also holds promise has been to design customized solvers for

special classes of SDPs and avoid resorting to off-the-shelf interior point solvers. Examples

in this direction include the work in [52], which proposes a method for solving large scale

robust stability problems in a parallel computing environment with a customized interior

point solver, and in [101], which offers a customized interior point algorithm for optimizing

over the set of nonnegative trigonometric polynomials.

The approach we take in this chapter for enhancing scalability is orthogonal to the ones

mentioned above (and can potentially later be combined with them). We propose to not work

with the SOS decomposition to begin with, but employ computationally cheaper sufficient

conditions for polynomial nonnegativity that are perhaps stronger than a SOS decompostion,

but still provide useful solutions for various control applications.

A previous approach that has a similar spirit is the work in [40], which tackles the specific

task of finding a lower bound on the minimum of a polynomial using geometric programming

(GP). However, these GP-based conditions seem to be too strong and we show in [4] that

this method is always outperformed by the SDSOS approach.
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9.2 Diagonal Dominance and

Scaled Diagonal Dominance

Recall from Chapter 3.2 that a polynomial p(x) is a sum-of-squares (SOS) if and only if

there exists a positive semidefinite symmetric matrix Q that satisfies

p(x) = v(x)TQv(x). (9.1)

The vector v(x) here is the vector of all monomials that have degree less than or equal to

half the degree of p. As discussed in Chapter 3.2, the search for a matrix Q satisfying the

linear constraints coming from (9.1) can be cast as a semidefinite program and solved using

a variety of techniques (e.g. interior point methods).

In this chapter, we will denote the cone of SOS polynomials with degree d in n variables

by SOSn,d. Denoting the cone of nonnegative polynomials in n variables and degree d

by POSn,d, it is clear that SOSn,d ⊆ POSn,d. The key insight we will exploit here is

to replace the condition that the symmetric matrix Q is positive semidefinite (psd) with

stronger sufficient conditions in order to obtain inner approximations to the cone SOSn,d.

In particular, we will require Q to be either diagonally dominant (dd) or scaled diagonally

dominant (sdd). We recall these definitions below.

Definition 6. A symmetric matrix A is diagonally dominant (dd) if aii ≥
∑
j 6=i

|aij| for all i.

We will refer to the set of n× n dd matrices as DDn.

Remark 5. It is clear from Definition 6 that the set DDn has a polytopic description and

can thus be optimized over using LP.

Definition 7. A symmetric matrix A is scaled diagonally dominant (sdd) if there exists an

element-wise positive vector y such that:

aiiyi ≥
∑
j 6=i

|aij|yj,∀i.
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Equivalently, A is sdd if there exists a positive diagonal matrix D such that AD (or equiva-

lently, DAD) is dd.

The set of n× n sdd matrices will be denoted by SDDn. We note that sdd matrices are

sometimes referred to as generalized diagonally dominant matrices [20].

Remark 6. The fact that diagonal dominance is a sufficient condition for positive semidefi-

niteness follows directly from Gershgorin’s circle theorem. This also implies that sdd matrices

are psd since the eigenvalues of DAD have the same sign as those of A when D is a diagonal

matrix with positive entries. Hence, denoting the set of n×n symmetric positive semidefinite

matrices (psd) as S+
n , we have from the definitions above that:

DDn ⊆ SDDn ⊆ S+
n .

The next theorem, which is proved in [4], provides an important characterization of the

set SDDn.

Theorem 1 ([4]). Denote the set of n×n symmetric matrices as Sn. Let M ij
2×2 ∈ Sn denote

the symmetric matrix with all entries zero except the elements Mii,Mij,Mji,Mjj. Then, we

have the following description of SDDn:

SDDn =

A ∈ Sn : A =
i=n∑
i,j 6=i

M ij
2×2,

Mii Mij

Mji Mjj

 � 0

 .

Theorem 1 provides us a method to optimize over the set SDDn using second order cone

programming (SOCP), as the following theorem demonstrates.

Theorem 2. The set of matrices SDDn can be optimized over using second order cone

programming (SOCP).

Proof. Positive semidefiniteness of the 2 × 2 matrices in Theorem 1 is equivalent to the

diagonal elements Mii,Mjj, along with the determinant MiiMjj −M2
ij, being nonnegative.

This is a rotated quadratic cone constraint and can be imposed using SOCP [6].
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9.3 DSOS and SDSOS Polynomials

We now introduce naturally motivated cones that are inner approximations of POSn,d and

that lend themselves to LP and SOCP.

Definition 8 ([4]).

• A polynomial p is diagonally-dominant-sum-of-squares (dsos) if it can be written as

p =
∑
i

αim
2
i +

∑
i,j

β+
ij (mi +mj)

2 + β−ij (mi −mj)
2,

for some monomials mi,mj and some constants αi, β
+
ij , β

−
ij ≥ 0.

• A polynomial p is scaled-diagonally-dominant-sum-of-squares (sdsos) if it can be writ-

ten as

p =
∑
i

αim
2
i +

∑
i,j

(β+
i mi + γ+j mj)

2 + (β−i mi − γ−j mj)
2,

for some monomials mi,mj and some constants αi, β
+
i , γ

+
j , β

−
i , γ

−
j ≥ 0.

We denote the set of polynomials in n variables and degree d that are dsos and sdsos by

DSOSn,d and SDSOSn,d respectively. The following inclusions are straightforward:

DSOSn,d ⊆ SDSOSn,d ⊆ SOSn,d ⊆ POSn,d.

Our terminology in Definition 8 comes from the following relationship between dsos and

sdsos polynomials to the cones of dd and sdd matrices introduced in Chapter 3.

Theorem 3 ([4]).

• A polynomial p of degree 2d is dsos if and only if it admits a representation as p(x) =

zT (x)Qz(x), where z(x) is the standard monomial vector of degree d, and Q is a dd

matrix.
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• A polynomial p of degree 2d is sdsos if and only if it admits a representation as p(x) =

zT (x)Qz(x), where z(x) is the standard monomial vector of degree d, and Q is a sdd

matrix.

Theorem 4. The set DSOSn,d is polyhedral and the set SDSOSn,d has a second order cone

representation. For any fixed d, optimization over DSOSn,d (resp. SDSOSn,d) can be done

with linear programming (resp. second order cone programming), of size polynomial in n.

Proof. This follows directly from Remark 5 and Theorem 2, along with Theorem 3. The size

of these programs is polynomial in n since the size of the Gram matrix is

(
n+ d

d

)
×
(
n+ d

d

)
,

which scales as nd.

We will refer to optimization problems with a linear objective posed over the cones

DSOSn,d and SDSOSn,d as DSOS programs and SDSOS programs respectively.

9.3.1 Asymptotic Guarantees

Next, we briefly discuss how the “gap” between the cones DSOSn,d, SDSOSn,d and POSn,d

can be reduced and in some cases closed. In particular, we consider the use of “multipliers”

similar to the Positivstellensatz multipliers employed in SOS programming.

Definition 9.

• For a positive integer r, a polynomial p is r-diagonally-dominant-sum-of-squares (r-

dsos) if the polynomial (∑
i

x2i

)r

p

is dsos.

• For a positive integer r, a polynomial p is r-scaled-diagonally-dominant-sum-of-squares

(r-sdsos) if the polynomial (∑
i

x2i

)r

p

is sdsos.
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We denote the set of polynomials in n variables and degree d that are r-dsos and r-sdsos

by r-DSOSn,d and r-SDSOSn,d, respectively.

Note that the sets r-DSOSn,d and r-SDSOSn,d can also be optimized over using LP and

SOCP respectively. The purpose of the multiplier (
∑

x2i )
r is to have a knob for trading

off speed with accuracy of approximation. By increasing r, we obtain increasingly accurate

inner approximations to the set of nonnegative polynomials. The following example shows

that the LPs obtained from even small r can outperform the semidefinite programs resulting

from SOS.

Example 1. Consider the polynomial, p(x) = x41x
2
2+x42x

2
3+x43x

2
1−3x21x

2
2x

2
3. This polynomial

is nonnegative but not a sum-of-squares [89]. However, there is an LP-based nonnegativity

certificate since one can show that p ∈ 1-DSOS. Hence, 1-DSOS * SOS.

The following two theorems provide asymptotic guarantees on r-dsos (and hence r-sdsos)

hierarchies. Their proofs rely on Positivstellensatz results from real algebraic geometry.

Theorem 5 ([4]). Let p be an even form (i.e., a form where individual variables are raised

to even degrees), with p(x) > 0 for all x 6= 0, then there exists an integer r such that

p ∈ r-DSOS.

If we allow the use of general multipliers (in contrast to
∑

x2i ), we can relax the assump-

tion of evenness.

Theorem 6 ([4]). For any positive definite form p, there exists a form q such that q and pq

are both dsos.

Note that given p, the search for such a q (of a given degree) is a LP. Moreover, a feasible

solution to this LP certifies nonnegativity of p.

9.4 Examples

This section demonstrates the scalability of the DSOS and SDSOS approach on four ex-

amples relevant to control and verification of dynamical systems. We compare runtimes

and optimality of our approach with the SOS approach in cases where this is possible (i.e.,
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smaller instances of problems). A software package written using the Systems Polynomial

Optimization Toolbox (SPOTless) [70] includes a complete implementation of the presented

methods and is available online1. The toolbox features very efficient polynomial algebra and

allows us to setup the large-scale LPs and SOCPs arising from our examples.

We use MOSEK as our LP and SOCP solver. Runtimes for SDPs are reported for both

the recently released MOSEK SDP solver and the very widely used SeDuMi solver. All code

was run on a machine with four Intel i7 processors with a clock speed of 3.4 GHz and 16 GB

RAM.

9.4.1 Regions of Attraction

In our first example, we consider the computation of regions of attraction (ROA), which

is known to be a NP-hard problem [5]. The system we examine is the N -link pendulum

depicted in Figure 9-2. This system has 2N states x = [θ1, . . . , θN , θ̇1, . . . , θ̇N ] composed of

the joint angles and their derivatives. There are N − 1 control inputs (the joint closest to

the base is not actuated). Each link of the pendulum is assumed to be a uniformly dense

cylindrical rod of radius 5 cm with mass m = 1 kg and length l = 1 m. We take the

unstable “upright” position of the system to be the origin of our state space and design a

LQR controller in order to stabilize this equilibrium. The cost matrix Q and the action

matrix R for the LQR controller are both diagonal, with Qii = 10 for i = 1, . . . , N , Qjj = 1

for j = N + 1, . . . , 2N , and Rii = 1 for i = 1, . . . , N − 1.

2N (# states) 4 6 8 10 12 14 16 18 20 22

DSOS < 1 0.44 2.04 3.08 9.67 25.1 74.2 200.5 492.0 823.2

SDSOS < 1 0.72 6.72 7.78 25.9 92.4 189.0 424.74 846.9 1275.6

SOS (SeDuMi) < 1 3.97 156.9 1697.5 23676.5 ∞ ∞ ∞ ∞ ∞
SOS (MOSEK) < 1 0.84 16.2 149.1 1526.5 ∞ ∞ ∞ ∞ ∞

Table 9.1: Runtime comparisons (in seconds) for ROA computations on N-link system.

1Link to SPOTless software package:

https://github.com/spot-toolbox/spotless
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Figure 9-2: An illustra-
tion of the N-link pendu-
lum system (with N = 6).
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Figure 9-3: Comparisons of projections of the ROAs
computed for the 6-link pendulum system using DSOS,
SDSOS and SOS programming.
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A polynomial approximation of the dynamics of the closed loop system is obtained by a

Taylor expansion of degree 3. Denoting the resulting dynamics by ẋ = f(x), if we can find

a positive definite polynomial V (x) such that the following condition holds:

V (x) ≤ ρ =⇒ V̇ (x) < 0, (9.2)

then the ρ sublevel set of V (x) is an inner approximation of the ROA. We choose our

Lyapunov function to be the cost-to-go function V (x) = xTSx of the LQR controller and

attempt to maximize ρ. As described in [80], under the assumption that the Hessian of V̇ (x)

is positive definite at the origin, the following is a sufficient condition for (9.2):

(xTx)(V (x)− ρ) + L(x)V̇ (x) ≥ 0. (9.3)

Here, L(x) is a “multiplier” polynomial. By replacing the nonnegativity condition in (9.3)

with a DSOS constraint, we obtain a LP:

max
ρ,L(x)

ρ (9.4)

s.t. (xTx)(V (x)− ρ) + L(x)V̇ (x) ∈ DSOS2N,6

Similarly, a SDSOS/SOS constraint yields a SOCP/SDP. The optimization in (9.4) is over

ρ and L(x) (degree 2).

We note that while there are different SOS programming based formulations for approxi-

mating the ROA that allow one to search over Lyapunov functions in addition to the scaling

ρ (see, e.g., [105]), these typically lead to non-convex optimization problems. Algorithms for

these formulations generally do not have convergence guarantees, thus making it difficult to

distinguish between conservatism caused by the algorithm and conservatism inherent in the

(S)DSOS condition. Hence, in order to facilitate a direct comparison of the DSOS, SDSOS

and SOS approaches, we use the formulation presented above in (9.3), which involves solving

a single convex optimization problem for each approach.
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An important observation is that unlike the sets POSn,d and SOSn,d, the sets DSOSn,d

and SDSOSn,d are not invariant to affine coordinate transformations, i.e., a polynomial

p(A(x)) is not necessarily DSOS (resp. SDSOS) even if p(x) is DSOS (resp. SDSOS) and A is

an affine transformation. Thus, performing coordinate transformations on the problem data

(e.g., on the state variables of a dynamical system) can sometimes have an important effect.

We explore this issue in this example by performing a preprocessing step that is intuitive and

straightforward to implement. It can be used for problems involving the search for Lyapunov

functions, and can potentially be extended to other problems as well. In particular, we find

an invertible affine transformation that simultaneously diagonalizes the Hessians of V (x) and

−V̇ (x) evaluated at the origin (this is always possible for two positive definite matrices). The

intuition behind the coordinate change is that the functions V (x) and −V̇ (x) locally resemble

functions of the form xTDx (with D diagonal), which are DSOS polynomials that are “far

away” from the boundary of the DSOS cone. We solve the optimization problem (9.3) after

performing this coordinate transformation. The transformation is then be inverted to obtain

ROAs in the original coordinate frame.

Table 9.1 compares the runtimes of the programs obtained using our approach with SOS

programming for different values of 2N (number of states). The SOS programs obtained for

2N > 12 are too large to run (due to memory constraints). In contrast, our approach allows

us to handle almost twice as many states. Further, for cases where the SOS programs do

run, the DSOS and SDSOS programs are significantly faster. In particular for the 12 state

system, DSOS is approximately 2500 times faster than SOS using SeDuMi and 150 times

faster than SOS using MOSEK, while SDSOS is 900 times faster in comparison to SeDuMi

and 60 times faster than MOSEK for SOS.

Table 9.2 compares the optimal values of ρ obtained using the different methods. The

values obtained using SDSOS programming are within approximately 80 to 90 percent of

the values from SOS programming. Note that since the Lyapunov function is fixed in our

case and we are only optimizing ρ, the ratio of optimal values of ρ is equal to the ratio of

(Volume)
1

2N of the ROAs. While the result using DSOS are more conservative, they could
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2N (states) 4 6 8 10 12

ρdsos/ρsos 0.38 0.45 0.13 0.12 0.09

ρsdsos/ρsos 0.88 0.84 0.81 0.79 0.79

Table 9.2: Comparison of optimal values for ROA problem on N -link pendulum.

still be useful in practice. Figure 9-3 compares projections of the ROAs obtained using the

different methods for the 6-link pendulum.

9.4.2 Network Analysis

In this example, we consider Example 3 from [45]. The goal is to analyze the domain on

which the Hamiltonian function V for a network of Duffing oscillators is positive definite:

V =
N∑
i=1

ai(
1

2
y2i −

1

4
y4i ) +

1

2

N∑
i=1

N∑
k=1

bik
1

4
(yk − yi)4. (9.5)

Here, N is the number of nodes in the network. The following condition can be used to

establish an inner approximation of the domain on which V is positive definite:

p(y1, . . . , yN) = V −
N∑
i=1

λiy
2
i (g − y2i ) ≥ 0, (9.6)

where λi > 0 are scalar multipliers. These conditions imply that V is positive definite when

y2i < g.

In [45], the authors propose an approach that exploits network structure to eliminate

monomials from the SOS program that results from replacing the inequality in (9.6) with a

SOS condition. This makes the SOS program smaller (potentially at the cost of conservatism)

and allows them to handle large network sizes.

By replacing the nonnegativity in (9.6) by a (S)DSOS condition, we can apply the tech-

niques presented in this chapter. For the comparisons presented below, we do not preprocess

the programs using the method presented in [45]. We demonstrate that we are able to handle

network sizes considered in [45] without explicitly exploiting network structure. Of course,
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N (nodes) 10 20 30 40 50

DSOS 0.24 0.76 2.86 8.74 21.35

SDSOS 0.26 1.07 5.02 17.81 46.64

SOS (SeDuMi) 3.91 16050.26 ∞ ∞ ∞
SOS (MOSEK) 0.53 173.75 ∞ ∞ ∞

Table 9.3: Runtimes (in seconds) for network problem.

N (nodes) 10 20 30 40 50

DSOS 0.94 0.74 0.71 0.69 0.66

SDSOS 1.58 1.49 1.48 1.48 1.48

SOS (SeDuMi) 2.00 2.00 NA NA NA

SOS (MOSEK) 2.00 2.00 NA NA NA

Table 9.4: Optimal values (g) for network problem.

we would expect to scale even better by using the approach in [45] as a preprocessing step.

As in [45], we randomly set
0.5

N
≤ bik ≤

1.5

N
, corresponding to a globally coupled network

of Duffing oscillators. We also find the largest value of g for which the condition (9.6) is

feasible by performing a bisection search in an outer loop. These results and runtimes are

compared for (S)DSOS and SOS programming in Tables 9.4 and 9.3 respectively.

We find that our approach works with runtimes comparable to [45], even though we do

not exploit the network structure. In contrast, the SDP solvers MOSEK and SeDuMi are

significantly slower even for networks with N = 20. For N larger than 25, memory (RAM)

constraints prevent the SDP from running.

In [45], the value of g is 1.8 for all network sizes. Thus, the optimal values we obtain

using SDSOS programming are only slightly more conservative.

9.4.3 Hardware Experiments on Acrobot

The utility of our method is not restricted to high-dimensional systems. As we show in

this example, we can design high degree polynomial feedback controllers using high degree

Lyapunov functions for smaller systems with benefits in terms of running time as compared

to SOS programming. We consider the Acrobot [96], which is a benchmark for control of
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Figure 9-4: Picture of the Acrobot balancing in the upright configuration using the controller de-
signed with SDSOS programming. A video of the controller in action is available online at
https://www.youtube.com/watch?v=FeCwtvrD76I.

underactuated systems. The system is a special case of the N -link pendulum examined in

Chapter 9.4.1 (with N = 2) and is actuated only at the joint between the two links of the

robot (θ2). The task is to design a polynomial feedback controller in order to stabilize the

system about the unstable “upright” position. The hardware platform on which experiments

are conducted is shown in Figure 9-4 balancing in this configuration using the controller

designed with SDSOS programming (as described below).

System identification for the hardware platform was performed using the prediction error

minimization method in MATLAB’s System Identification Toolbox [61] in order to identify

parameters of the model presented in [96]. The dynamics were then Taylor expanded around

the equilibrium to degree 3 in order to obtain a polynomial vector field.

We use the method presented in [65] to design a balancing controller for the system.

In particular, we search for a degree 8 Lyapunov function V (x) and a degree 3 feedback

controller u(x) in order to maximize the size of the region of attraction (ROA) of the resulting
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closed-loop system. The DSOS version of the optimization problem is:

max
ρ,L(x),V (x),u(x)

ρ (9.7)

s.t. V (x) ∈ DSOS4,8

−V̇ (x) + L(x)(V (x)− ρ) ∈ DSOS4,10

L(x) ∈ DSOS4,4∑
j

V (ej) = 1.

Here, L(x) is a non-negative multiplier term and ej is the j-th standard basis vector for

the state space Rn. It is easy to see that the above conditions are sufficient for establishing

Bρ = {x ∈ R4 | V (x) ≤ ρ} as an inner estimate of the region of attraction for the system.

When x ∈ Bρ, the second constraint implies that V̇ (x) < 0 (since L(x) is constrained to be

non-negative). The last constraint normalizes V (x).

The optimization problem (9.7) is not convex in general since it involves conditions

that are bilinear in the decision variables. This is similar to the funnel computations we

encountered in Chapter 4 and can be solved by iteratively optimizing groups of decision

variables. Each step in the iteration is then a DSOS program (or a SDSOS/SOS program if

the constraints in (9.7) are replaced by DSOS/SOS constraints). This iterative procedure is

analogous to the one used in Chapter 4 for computing funnels and is described in more detail

in [65]. The procedure can be initialized with the Lyapunov function from a LQR controller

and a small enough value of ρ. The LQR Lyapunov function can also be used to perform

a coordinate transformation in a manner identical to the one described in Chapter 9.4.1.

Finally, we note that in order to use the approach described above on the Acrobot hardware

platform, it is also important to take into account the torque limit of the system.The opti-

mization problem (9.7) can be modified in a straightforward manner to account for torque

limits as described in [65, Section IV A].

Figure 9-5 presents two-dimensional slices of the ROA resulting from the approach de-

scribed above using SDSOS and SOS programming (DSOS programming yields very con-

115



−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

θ
1
 (radians)

θ 2 (
ra

di
an

s)

 

 
SOS
SDSOS

(a) θ1-θ2 subspace.

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

θ
2
 (radians)

θ̇
2
(r
ad
/s
)

 

 
SOS
SDSOS

(b) θ2-θ̇2 subspace.

Figure 9-5: Comparisons of slices of ROAs computed for the Acrobot system using SDSOS and SOS pro-
gramming.

servative results on this example and we do not present the results here). The ROA from

SDSOS programming is only slightly conservative on the θ1 − θ2 slice and is in fact slightly

larger than the SOS ROA on the θ2 − θ̇2 slice2 Each iteration of the algorithm takes ap-

proximately 40 seconds with SDSOS, while SOS takes 1825 seconds with SeDuMi and 148

seconds with MOSEK. Convergence of the algorithm is observed between 5 and 10 iterations

for SDSOS and SOS. Thus, we obtain significant gains in running times with very little loss

in quality of the solution.

We validated the performance of the balancing controller from SDSOS programming by

implementing it on the hardware platform shown in Figure 9-4. An open-loop controller

that swings up the system from the downright configuration to the upright one was designed

using the direction collocation trajectory optimization approach [17]. A time-varying LQR

controller was then designed to correct for deviations from this nominal trajectory. At

the end of the trajectory, the robot switches to our balancing controller. We performed

30 consecutive experimental trials of the robot swinging up and balancing. The balancing

controller had a success rate of 100% on these trials. A video of the controller in action is

2Note that the iterative algorithm we employ here is not guaranteed to converge to the global optimum of
the problem. Hence, the ROA from SDSOS will not necessarily be a subset of the SOS ROA.
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available online at https://www.youtube.com/watch?v=FeCwtvrD76I.

We end this example by noting that attempting to use SOS programming to search

for a higher degree controller (e.g., degree 5) resulted in numerical errors from the SDP

solvers. This prevented us from running more than 2 or 3 iterations of the algorithm.

In contrast, we did not run into such numerical issues with SDSOS programming. This

highlights another benefit of our approach; in addition to smaller optimization problems, we

also obtain programs that seem to be better conditioned numerically and are easier to work

with due to the maturity of existing LP and SOCP solvers.

9.4.4 Control Synthesis for Humanoid Robot

In our final example, we apply our approach to synthesize a feedback controller for a hu-

manoid robot. Control of humanoid robots presents a significant challenge due to the non-

linear dynamics of the system and high dimensionality of the state space. Here we use the

approach described in this chapter to design a balancing controller for a model of the ATLAS

robot shown in Figure 9-1. This may be viewed as a first step towards applying the funnel

library approach presented in this thesis to a system of the complexity of a humanoid robot.

The robot was designed and built by Boston Dynamics Inc. and was used by a number of

teams at the 2015 DARPA Robotics Challenge [55].

Our model of the robot is based on physical parameters of the hardware platform and

has 30 states and 14 inputs. The task considered here is to balance the robot on its right

toe. In order to do this, we make a few simplifying assumptions. First, we assume that the

interface of the right foot and the ground is mediated by a pin joint at the toe. This joint

is not actuated and its axis is parallel to the ground, constraining the foot to pitch up and

down relative to the ground. Next, we ignore collisions between the different links of the

robot. Finally, we do not take into account input saturations.

The balancing controller is constructed using the approach described in Chapter 9.4.3

with SDSOS programming. We Taylor expand the dynamics about the equilibrium to degree

3 in order to obtain polynomial dynamics and search for a linear controller using a degree
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2 Lyapunov function. Each iteration takes approximately 4.5 minutes and convergence oc-

curs in 4-5 iterations. We also used DSOS programming to design a controller, but we do

not present these results here due to space constraints. We note that SOS programming is

unable to handle this system due to memory (RAM) constraints. Figure 9-6 demonstrates

the performance of the resulting controller from SDSOS programming by plotting initial

configurations of the robot that are stabilized to the fixed point. As the plot illustrates,

the controller is able to stabilize a very wide range of initial conditions. A video of simula-

tions of the closed loop system started from different initial conditions is available online at

http://youtu.be/lmAT556Ar5c.

(a) Nominal pose (fixed point) (b) Stabilized pose 1 (c) Stabilized pose 2

(d) Stabilized pose 3 (e) Stabilized pose 4 (f) Stabilized pose 5

Figure 9-6: Nominal position of the robot, i.e., the fixed point being stabilized (subplot (a)), and con-
figurations of the robot that are stabilized by the controller designed using SDSOS programing (subplots
(b)-(f)). A video of simulations of the controller started from different initial conditions is available online
at http://youtu.be/lmAT556Ar5c.
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Chapter 10

Discussion and Conclusion

In this thesis we have presented an approach for real-time motion planning in a priori un-

known environments with dynamic uncertainty in the form of bounded parametric model

uncertainty and external disturbances. The method augments the traditional trajectory

library approach by constructing stabilizing controllers around the nominal trajectories in

a library and computing outer approximations of reachable sets (funnels) for the resulting

closed-loop controllers via sums-of-squares (SOS) programming. The pre-computed funnel

library is then used to plan online by sequentially composing them together in a manner

that ensures obstacles are avoided.

We have demonstrated our approach using extensive simulation experiments on a ground

vehicle model. These experiments demonstrate that our approach can afford significant

advantages over a trajectory-based approach. We also applied our approach to a quadrotor

model and demonstrated how for certain classes of environments we can guarantee that the

system will fly forever in a collision-free manner. We have also validated our approach using

thorough hardware experiments on a small fixed-wing airplane flying through previously

unseen cluttered environments at high speeds. To our knowledge, the resulting hardware

demonstrations on a fixed-wing airplane constitute one of the first examples of provably safe

and robust control for robotic systems with complex nonlinear dynamics that need to plan

in realtime in environments with complex geometric constraints. It is also worth noting
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that while one often associates robustness with very conservative behavior, our hardware

experiments demonstrate that this need not be the case. In particular, the airplane performs

some very aggressive maneuvers while still being robust.

Finally we discussed how DSOS and SDSOS programming, which are recently proposed

alternatives to SOS programming, can be used to handle systems with 30-50 dimensional

state spaces (well beyond what SOS programming can currently handle). The key idea

behind DSOS/SDSOS programming is to replace the positive semidefiniteness constraint

in SOS programming with stronger conditions based on diagonal dominance and scaled

diagonal dominance. The resulting inner approximations of the SOS cone are referred to

as the DSOS and SDSOS cones, which can be optimized over using linear programming

(LP) and second-order cone programming (SOCP) respectively. The example applications

we considered include a 30 state and 14 control input model of the ATLAS humanoid robot,

thus demonstrating the promise of applying the funnel library approach to systems of this

scale.

10.1 Challenges and extensions

10.1.1 Numerical difficulties

There are a number of challenges associated with our approach. One of the main difficulties

in implementing our method is the relative immaturity of solvers for semidefinite programs

(SDPs). While recently released software such as the MOSEK solver [76] have improved

the speed with which solutions can be obtained, SDP solvers are still in their infancy as

compared to solvers for Linear Programs (LPs). Thus, numerical issues (e.g., due to the

scaling of problem data) inevitably arise in practice and must be dealt with in a relatively

ad hoc manner (e.g., rescaling problem data or removing redundant decision variables).

However, preprocessing of sums-of-squares (SOS) programs and SDPs is an active area of

inquiry [83, 62, 91] and solver technology is bound to improve as SDPs are more widely

adopted in practice.
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10.1.2 Robots with complex geometries

Another challenge associated with our method has to do with implementing the approach

on robots with complex kinematics/geometry. One option (as described in Chapter 6) is to

project the funnel onto the configuration space (C-space) of the system and perform collision

checking against the C-space representation of obstacles. However, computing C-space rep-

resentations of obstacles is typically challenging for non-trivial geometries, especially since

it needs to be done as obstacles are reported in real-time.

For the examples considered in this paper, the geometry of the robots were approximated

relatively accurately by spheres. This allowed us to project the funnel onto the x − y − z

space (in contrast to the full configuration space of the system) and inflate this projection by

the radius of the corresponding sphere. These inflated funnels were then used for collision-

checking during real-time planning. For robots with complex geometries, inflating the funnel

in x− y− z space in this manner is not an entirely straightforward operation. However, this

is potentially a more promising approach than performing collision-checking against C-space

obstacles since the inflation can computed in the offline computation stage as it depends

only on the geometry of the robot and not the obstacles.

10.1.3 Designing funnel libraries

There is an inherent tradeoff in our approach between the richness of the funnel library and

the amount of computation that needs to be performed in real-time in order to be able to

search through it. For extremely large funnel libraries, it may be computationally difficult

to search through all the funnels while planning online. It is thus important to explore ways

in which one could speed up this search. For example, one could exploit the observation that

funnels in close proximity to a funnel that is in collision are also likely to be in collision and

use this to choose the sequence in which to evaluate funnels for collisions. Further, given

certain features of the environment one may be able to predict which funnels are likely to

be in collision (without actually performing collision-checking) and evaluate these funnels

first. These intuitions have been formalized and exploited using the theory of submodular
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optimization in the context of trajectory libraries [33, 31]. The approach allows one to

optimize the sequence in which trajectories are evaluated and should be generalizable to

funnel libraries as well.

A closely related question is how to choose the funnels in the library in the first place.

As we observed in Chapter 7.2 for the quadrotor system, one can derive relatively simple

geometric conditions on the environment in order for us to be able to guarantee that the

system will be able to navigate through it without collisions. If we know a priori that our

environment will satisfy these geometric conditions, this provides a way to check if our funnel

library is sufficiently rich. However, for real-world environments (e.g., forests) we may not be

able to make such assumptions. Instead, we might have a generative (probabilistic) model of

our environments and could use this to evaluate/design our funnel library. For instance, it

is known that the locations of trees in a forest are modeled well by spatial Poisson processes

[100]. In such settings, it may be possible to design a randomized algorithm for generating the

funnel library where one samples different realizations of the environment, searches through

the existing library to find a collision-free funnel for the sampled environment, and adds a

new funnel to the library when such a funnel doesn’t exist.

10.1.4 Probabilistic guarantees

Throughout this paper, we have assumed that all disturbances and uncertainty are bounded

with probability one. In practice, this assumption may either not be fully valid or could lead

to overly conservative performance. In such situations, it is more natural to provide guaran-

tees of a probabilistic nature. Recently, results from classical super-martingale theory have

been combined with sums-of-squares programming in order to compute such probabilistic

certificates of finite time invariance [97], i.e. provide upper bounds on the probability that

a stochastic nonlinear system will leave a given region of state space. Combining the tech-

niques presented in [97] with the approach presented in this work to perform robust online

planning on stochastic systems will be the subject of future work.
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10.1.5 Reasoning about perception systems

In this thesis, we have focused most of our attention on reasoning about the real-time plan-

ning and control systems. In particular, we assumed that the robot is equipped with a

perception system that reports (at runtime) regions in which obstacles are guaranteed to

lie within. This may not always be a valid assumption; in practice, perceptual systems can

often have false negatives and fail to report an obstacle in the environment. In such sce-

narios, it is unreasonable to expect to guarantee with probability one that the system will

remain collision-free and we can only hope for probabilistic guarantees. One could envision

modeling this perceptual uncertainty by considering an occupancy map with probabilities

of occupancy associated with each voxel. Modeling and reasoning about such perceptual

uncertainty remains an important open problem.

10.1.6 Real-time computation of funnels

Due to the computation time associated with funnels, the approach presented in this work

had two phases: an offline phase for computing funnels and an online stage for real-time

planning with funnels. As we observed in Chapter 9, however, it is possible to get large com-

putational gains using DSOS and SDSOS programming as compared to SOS programming.

While in Chapter 9 we highlighted the gains in terms of scalability for large-scale control

systems, we also observed gains in running time for smaller-scale systems. This raises the

interesting possibility of being able to dispense with the offline computation stage and com-

pute a funnel and feedback controller in real-time based on the geometry of the environment.

Currently, this would only be feasible for relatively low-dimensional systems but may be an

exciting direction to pursue.

We believe that the work presented in this thesis has the potential to be deployed on real

robots to make them operate safely in real-world environments. Our hope is that by building

upon this work and pursuing the directions for future research presented above we can make

this a reality.
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