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Abstract

This thesis carries out a series of studies and develops a methodology and tools to measure and
analyze ambulatory physiological, behavioral and social data from wearable sensors and mobile
phones with trait data such as personality, for learning about behaviors and traits that impact
human health and wellbeing. This thesis also validates the methodology and tools on a selected
subset of the questions that can be answered by the data collected.

First, I conducted a study to characterize wrist electrodermal activity (EDA) patterns
with concurrent polysomnography and conventional palm EDA measurement. I developed a
tool to analyze the EDA data quantitatively and found that wrist EDA peaks occur during Non
REM2 and 3 sleep. Then, with multi-modal wearable sensor data, | conducted several studies
showing how multi-modal wearable sensors can improve characterization of sleep/wake states
over motion-sensing alone, and predict sleep-related memory consolidation. We found that
wrist-EDA helps discriminate when there is improved sleep-related memory consolidation.

Next, with colleagues at MIT and Brigham and Women’s hospital, 1 designed and
carried out the first four semesters of the “SNAPSHOT study”, which measured over 100,000
hours of multi-sensor and smartphone use data from 168 college students, recruited together
with their social groups. Each student contributed intensive multi-modal ambulatory data
(physiological, behavioral, environmental, and social) for 30 days. Each student also filled out
standardized questionnaires on mental health, personality, stress, social interactions, sleep and
GPA, and provided a measure of dim light melatonin, enabling circadian phase to be measured.

To investigate the value of the data, I examined a subset of the large set of questions that

these new data enable us to answer: I examined the associations between sleep regularity and
sleep duration on academic performance, physical/mental health, perceived stress and
wellbeing-related measures using coarsened exact matching to control covariates. Qur data
showed that sleep irregularity was statistically significantly more associated with bad health,
reported in the morning, and with worse mental health than sleep duration. I also identified
features useful for recognition of monthly reported perceived stress (high vs low): daily
activities, personality, sleep, physiology, social interactions, phone usage, and mobility.
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Chapter 1
Introduction

1.1 Motivation and Thesis Aims

Recently, many wearable devices have allowed us to monitor our daily lives: for example, a lot of
wrist wearable devices have been commercialized and allowed us to collect activity and physiological data
(e.g. pedometer or activity/sleep tracker using accelerators, heart rate from plethysmography, skin
conductance, blood pressure, blood sugar level). Smart phones are capable of monitoring location, activity,
social interaction over calls and SMS and environmental data such as ambient light exposure and humidity.
How can we leverage 24/7 rich data from wearable devices? What if accumulated data could provide
meaningful information that will make you aware of your health condition and what behaviors you should
change to improve your health and wellbeing? Sleep, stress and mental health have been major health issues
in modern society. What if we can figure out which factors influence your bad sleep or stress problem?
What if we can predict your health condition based on your behaviors in the past 10 days? Could early
warnings be given to change behaviors and predict conditions such as depression? People could be more
aware of their health condition, think about how they could be healthier or solve their health problems and
make actions to be healthier.

Much research has been done to compare healthy populations and patient populations or healthy
populations under control tasks vs condition tasks (sitting down vs adding stress); however, even within
healthy populations, we have variations: some people tend to feel more stressed or to be poor sleepers, and

some people could feel down. In order to prevent being in a bad health condition or sliding from a good to
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a bad health condition, we need to observe variations in the uncontrolled real world and understand which
factors influence these variations, and examine if we can detect signs indicating a slide from a good health
condition to a bad condition in the early stages. The cause of poor sleep habits and high stress as well as
reactions to stressors and sleep habits can depend on many factors: internal factors are personality types
and physiological factors and external factors are behaviors and environmental and social factors. We need
to determine how we can collect and analyze these data and take advantage of them to keep people healthier.

The main goal of this thesis is to develop a reproducible methodology to capture ambulatory data
on physiological and behavioral characteristics of human subjects using sensors installed in mobile phones
and wearable devices, to collect data using this methodology, and to show that the data can be used to
answer important health questions. To achieve this goal, I developed a suite of software tools that monitor
and analyze the behavioral and physiological traits of individuals, and I deployed these tools in a cohort
study of sleep among healthy college students, which we call the SNAPSHOT Study. The SNAPSHOT
study seeks to nmeasure Sleep, Networks, Affect, Performance, Stress, and Health
using Objective Techniques. The goal of developing this data collection methodology is to provide a means
to study the relationship between the physiological, behavioral, and psychological characteristics of healthy
individuals in an ambulatory setting, instead of in a controlled laboratory setting. I led the design of the
SNAPSHOT study to collect data mainly to understand the associations between sleep, stress, mental health
and wellbeing-related measures. Here, | validate the data collection methodology 1 developed by showing
that the data collected in the study can be used to answer some of the important questions related to sleep,
stress, and mental health. In particular, we show the influence of sleep duration and regularity on mental
health and other health measures and physiological, behavioral and trait markers for stress. These results
indicate that our methodology is able to generate the data needed to identify physiological, behavioral, and
trait markers in an ambulatory setting and could be used to study a variety of conditions that are known to
depend on social and environmental factors, such as sleep, stress and mental health.

In this thesis, first, I introduce the analysis of wrist electrodermal activity (EDA) during sleep. |
describe a software tool I developed and show how it can be used to understand the properties of EDA
patterns relative to sleep stages and relative to conventional palmar EDA. Then, I describe two studies
conducted to investigate how wearable sensor features contribute to sleep/wake classification and to sleep-
dependent memory consolidation, and findings we obtained with both studies. Lastly, I describe the
SNAPSHOT Study, where we extended our measurement to a multi-modal, 24/7, long-term and large scale
design to measure sleep, stress and mental health in MIT undergraduate students’ daily life. With colleagues
at MIT and Brigham and Women’s Hospital, 1 have developed tools and designed and executed large-scale
and long-term studies to collect intensive multi-modal and long-term data in daily lives using wearable

sensors and mobile phones as well as some data that could be labels or biomarkers measured in the
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laboratory. We started the SNAPSHOT study (previously we called College Sleep study) in fall 2013 and
have collected 168 participants’ data from MIT undergraduate students who are extremely busy and at high
stress and sleep deprivation. We have recruited 50 MIT undergraduates each semester, making an
unprecedented number of measures from each student for 30 days each: We have collected continuous
physiology, behavior and social data 24/7 (120960 hours), including electrodermal activity, skin
temperature, 3 axis acceleration and light exposure from wrist devices, and over 5000 day phone calls, SMS
logs, location, application usage, and screen on/off logs from mobile phones. We have also collected
questionnaire measurements twice a day and pre- and post-study to quantify daily diary items (exercise,
academics and sleep schedule, caffeine, alcohol and drug intake, subjective daily measures about health,
alertness, stress, mood and social interaction), and to provide standardized survey scores about sleep, stress,
anxiety, and personality types. Participants also spend one night in the hospital for dim-light melatonin
assessment of circadian phase.

Lastly, I describe the validation of the collected data by showing two kinds of analysis (1) the
influence of sleep duration and sleep regularity on academic performance, stress level, physical/mental
health and other health measures and (2) automated recognition of monthly perceived stress using multi-
modal data.

This thesis describes how we developed tools, designed a series of studies and collected data using
wearable sensors and mobile phones combined with laboratory measurement to find associations and

predictors related to sleep, stress, and mental health in an ambulatory setting.

1.2 Thesis Contributions

This thesis provides contributions in:

- Designing and running multi-modal large-scale long-term studies (MIT SNAPSHOT Study) with
wearable devices and surveys to measure sleep, stress and mental health data in daily life

- Developing software and methods to clean up and analyze ambulatory physiological and behavioral
data (EDA, skin temperature and acceleration) data from wrists and mobile phone data (call, SMS,
location, screen on/off timing logs)

- Characterizing EDA during sleep measured with dry wrist-worn electrodes and comparing it to
palmar EDA, and characterizing its patterns relative to sleep stages

- Applying multi-modal wearable measurement to sleep/wake recognition and memory

consolidation and finding related features in wearable measurement

19



Providing a new and rich dataset to allow us to solve many research questions
Validating the SNAPSHOT Study methodology by analyzing the data and comparing the results
with the results previously reported
Answering the following research questions with the multi-modal wearable data and tools:

- What are characteristics of wrist EDA during sleep? (Chapter 3)

- Can we recognize sleep dependent memory consolidation using multi-modal wrist sensor
data? (Chapter 4)

- Can multi-modal wrist sensor data classify sleep/wake epochs better than actigraphy?
(Chapter 4)

- What are characteristics in physiological and behavioral patterns from MIT undergraduate
students in 30 days of daily-life data? (Chapter 6)

- How do sleep duration and regularity influence academic performance, physical/mental
health, stress level and other health measures? (Chapter 7)

- How accurately can we recognize perceived stress and which features from which modality

work better? (Chapter 7)

1.3 Thesis Outline

The outline of this thesis is the following:

Chapter 2 Background

This chapter describes background and related work about this thesis: sleep, stress, mental health, social

interaction, and mobile and wearable sensing.

Chapter 3 Quantitative Analysis of Wrist Electrodermal Activity during Sleep

This chapter describes methods we developed to quantitatively characterize wrist sleep EDA measured on

the wrist during sleep and the comparison of wrist sleep EDA with sleep stage and palmar EDA.

Chapter 4 Multi-modal Wearable Data Analysis

This chapter constructs new methods for human sleep dependent memory consolidation and sleep/wake

states using multi-modal wearable sensor data.
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Chapter 5 SNAPSHOT Study: Design and Measurement
This chapter describes the design and execution of the SNAPSHOT study. The precise measures we use

are all presented here.

Chapter 6 SNAPSHOT Study: Data Cleaning, Pre-processing, Feature Extraction and Data Characteristics
This chapter describes methods of cleaning and pre-processing ambulatory data, extracting features and

characteristics of our dataset.
Chapter 7 SNAPSHOT Study: Data Validation, Analysis and Results
This chapter describes specific questions we answer to validate the SNAPSHOT Study methodology, the

analysis and the findings.

Chapter 8 Discussions, Limitations, and Contributions

This chapter discusses the main findings, summarizes the contributions, and lists several future direction.
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Chapter 2
Background

In this chapter, we introduce background about sleep, circadian rhythm, stress, and mood and mental health:
why they are important to study, and measurement and relationships among these that relate to the work of
this dissertation. Then we also introduce methods and wearable and mobile devices to measure sleep, stress

and mental health and previous studies to measure and recognize them.

2.1 Sleep and Circadian Rhythm

This chapter describes our main target in our study, sleep and summarizes the importance of sleep,
measurement of sleep and circadian rhythm, the impact of sleep deprivation on learning and memory, and

mood and emotion, and the influence of electric devices on sleep.

2.1.1 Sleep Behaviors and Health

Short sleep duration is highly prevalent in the United States, with approximately 30% of the adult
population sleeping less than 7 hours per night [Marcelli, 2009]. One recent study reported that 5 healthy
participants slept for 7.2 hours on average under 2 week prehistoric living conditions where the participants
in the study had no access to electricity and any modern conveniences, such as mobile phones or newspapers
[Piosczyk, 2014]. Numerous studies indicate that less than 7 hour sleep is insufficient for optimal health

and cognitive function, recommending approximately 8 hours of sleep per night for the average young
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healthy adult [Van Dongen, 2003]. Sleep is critical to a wide range of biological functions; inadequate sleep
results in impaired cognitive performance [Van Dongen, 2003][Cohen, 2010], academic performance
[Wolfson, 2003] and mood [Moturu, 2011], and adverse health outcomes including obesity [Gupta, 2002]
[Weiss, 2010], diabetes [Zizi, 2010], and cardiovascular disease[Malhotra, 2009].

These studies were mostly done in laboratory settings or using questionnaires. Laboratory studies
have advantages in collecting cleaner data in control settings; however, they have also disadvantages in not
being able to measure natural sleep. Studies using questionnaires can capture data from a larger number of
participants; however, the measurement might be subjective and might not be accurate. Some studies
pointed out the difference between self-reported sleep patterns in sleep diaries and wrist actigraphy
measurement [Martin, 2011]. Our study has captured both subjective and objective data in the real world
to measure natural sleep. Also, most of these studies focused on a few days of data collection and a relatively
small number of individuals; however, our work makes new advance not only in quantity of participants
and nights, but also in richness of gathering and analyzing continuous behavioral, physiological, and social

network data from a month of real-world college student life.

2.1.2 Circadian Rhythms and Sleep Homeostat

Sleep behaviors are affected by biological, social and environmental factors. Biologically, they are affected
by two main factors: circadian rhythm and sleep homeostat. Circadian rhythm is an approximately 24-h
periodic drive to sleep that can be synchronized by the daily light/dark cycle [Dijk, 2002]. The sleep
homeostat is a biological drive to sleep that increases during wake and decreases during sleep [Daan, 1984].
The circadian and homeostatic drives act on a sleep/wake switch present in the hypothalamus [Saper, 2005].

The suprachiasmatic nucleus (SCN) in the hypothalamus in mammals is the master circadian
pacemaker [Ralph, 1990]. The timing (“phase”) of circadian rhythms is synchronized to local time by ocular
light exposure. Inappropriately timed light exposure, such as light during the biological time for sleep, may

adversely affect both the amount of sleep at night and alertness during the day.

2.1.3 Measurement of Circadian Rhythm and Sleep

To measure circadian phase, a constant routine protocol in a laboratory has been used in previous studies.
Participants stay up with fixed posture on a bed under dim light (< 20 lux), and circadian phase is measured
with core body temperature or melatonin from saliva or blood [Dufty, 2002] (Figure 2.1). Participants are

kept in a temporally and environmentally isolated condition under the dim light during wake episodes so
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as not to entrain the circadian rhythm. Time course of melatonin rhythm is shown in Figure 2.2. Melatonin
secretion usually starts 6-7 hours before habitual bedtime with sleepiness and distal temperature. Melatonin
secretion is suppressed by light. Light is a major entrainment in circadian rhythm. The entrainment happens
depending on when light is applied. The relationship between the timing of light exposure and the light
induced circadian phase shift is called a “phase response curve (PRC)” [Khalsa, 2003]. Figure 2.3 shows
the PRC to the bright light stimulus using melatonin midpoints as the circadian phase marker and this curve

explains how much phase advance/delay occurs when light is applied.
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Figure 2.1 Time course of sleepiness scale, core body temperature, skin temperature, distal-proximal
temperature gradient and salivary melatonin in constant routine [Cajochen, 2003].
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Figure 2.3 The PRC to the bright light stimulus using melatonin midpoints as the circadian phase marker
[Khalsa, 2003].

To measure sleep clinically, polysomnography (PSG) has been used to monitor sleep and identify sleep
disorders in sleep labs as a gold standard; however, it has disadvantages requiring the patient to stay one or
more nights in the lab wearing uncomfortable sensors and wires. Actigraphy has been used to monitor long-
term sleep wake cycles outside the laboratory. Cole et al. showed that sleep and wake are classified with an
accuracy of 88% using wrist-worn actigraphy and regression analysis comparing the wrist data to PSG
[Cole, 1992]. Some other researchers have applied machine learning or new algorithms to improve the
accuracy [Sadeh, 1994][Pollak, 2001] or used other data (heart rate variability from electrocardiogram
(ECQG) or respiration) [Lewicke, 2008][Long, 2014].
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In our study, we measured circadian rhythm through sampling melatonin in saliva and through
gathering sleep/wake patterns with a wrist sensor and with self-reported electronic sleep diaries (more

details will be in section 5.2 Data Collection).

2.1.4 Electric Device Use and Sleep Behaviors

One of the most important factors in influencing sleep behaviors among children, adolescents, and young
adults is the growing use of electronic and social media [Shochat, 2012]. Previous survey based studies
showed that social and electric media such as TV, computer games, and music before sleep can result in
difficulties sleeping, making young adults sleep less and be more tired [Eggermont, 2006][Garrison, 2011]
[Paavonen, 2006] [Shochat, 2010] [Sugawara, 2007], or simply spend less time in bed [van den Bulck,
2004]. In addition, excessive Internet and mobile phone use can cause anxiety and insomnia [Jenaro, 2007],

and in the long term these effects can potentially lead to depression [Thomée, 2011].

Many studies have examined phase response curve and represented that electric light advances the
circadian rhythm after circadian phase 0 hour and delays it before circadian phase 0 hour using a constant
routine protocol [Khalsa, 2003]. Further, a laboratory study showed that exposure to a light-emitting screen
with short-wave length light in the late evening suppressed melatonin secretion, increasing subjective
alertness as well as objective alertness measured as increased eye movement and low frequency brain wave
activity [Cajochen, 2011]. Another study showed that reading an electric book right before sleep prolonged
sleep latency, increased alertness, suppressed a melatonin level and reduced alertness next morning in

comparison to reading a paper book [Chang, 2014].

Our SNAPSHOT study is designed to collect data to investigate the relationship among electric
device use (mobile phone/email monitoring), light exposure (light sensor data) and subjective and objective

sleep and health measures and academic performance in extended daily life (section 5.2 Data Collection).

2.1.5 Impact of Acute Sleep Deprivation and Chronic Sleep Restriction
Several studies have examined the time course for the impact of acute sleep deprivation and chronic sleep

restriction on sleepiness and on neurobehavioral performance.

One study [Van Dongen, 2003] examined how acute sleep deprivation and chronic sleep restriction
influence sleepiness and neurobehavioral performance using dose-response experiments. Both chronic and
acute sleep deprivation show increased sleepiness and neurobehavioral deficits, but impacts of the two types

of sleep deprivation are different. Comparison of chronic sleep restriction to total sleep deprivation showed
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that the latter resulted in extremely large neurobehavioral deficits in performance in
psychomotor vigilance task (PVT) and sleep delta power responses relative to how much sleep was lost.
Responses of chronic sleep restriction were cumulative in cognitive performance. Subjective sleepiness
ratings showed an acute response to sleep restriction but did not significantly differentiate the 6 hour and 4
hour conditions. Even moderate sleep restriction (7 hour sleep) results in neurobehavioral deficit; however,
the two types of sleep deprivation have also different recovery processes: acute sleep deprivation shows
larger impacts than chronic sleep restriction and acute sleep loss takes less time to recover than chronic
sleep loss [Belenky, 2003].

Learning and Memory

Many researchers have shown how sleep is related to learning and memory using sleep deprivation or sleep
restriction. For example, performance in a visual discrimination task [Stickgold, 2000] significantly
improves after sleep, but doesn’t after sleep deprivation and even after the following 2 nights of recovery
sleep. The study also showed that improvement in the task is proportional to the percentage of SWS in the
first quarter of the night and the REM in the last quarter of the night, given sleep longer than 6 hours.
Another study [Maquet, 2003] showed that visuo-motor skill performance was improved and the brain
activity increased in the superior temporal sulcus after post-training sleep compared to post-training sleep

deprivation.

Mood and Emotion

Some studies have shown that sleep loss could degrade mood and lead to depression. Medical interns who
exposed to sleep deprivation showed higher score in depression compared to their baseline [Rosen, 2006].
Epidemiologic studies also showed the relationship between sleep deprivation and psychiatric disorders.
People who suffer from insomnia have high percentages of mood disorders [Ford, 1989] and also long sleep
onset and frequent night awakenings are major symptom of depression [Taylor, 2005]. On the other hand,
total sleep deprivation improves depressed mood for short term till recovery sleep in 60% of patients
diagnosed with affective disorders [Wirz-Justice, 1999]. This can be considered because sleep deprivation
makes sleep phase on the next day advanced. In most depression patients, sleep-wake cycle is delayed to

other circadian rhythm in their body and delayed to sleep-wake cycle in healthy people.
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Moturu et al. investigated the association among sociability, sleep quality and mood with self-
reported surveys and mobile phone proximity data from 54 participants for one month [Moturu, 2011].
Based on self-reported data from participants, they found that the good mood group had longer sleep
duration (average ~7 hours) than the poor mood group (6.4 hours) and lower sociability was related to
poorer mood. Another study showed the relationship between fatigue, mood and sleep need (difference
between preferred sleep length and actual self-reported sleep length) in three different populations, school
children, students and employees [Oginska, 2006]. These studies examined the relationship between self-
reported sleep length and mood or sleep deprivation and mood; however, their sleep and mood measurement
were all based on self-reported data only.

Jet lag and shift work can also degrade mood. In those cases, after an abrupt time-shift,
desynchronization of the biological clock to a new time-zone or the external clock and sleep deprivation
occur. One study showed that depression increased in abrupt phase delay [David, 1991]. In another study
about bipolar patients [Frank, 2007], maniac episodes could be triggered by time-zone changes and by sleep
deprivation. The study also showed that regularity of sleep, circadian rhythm and life style could regulate
the symptoms of bipolar disorders.

Some studies have shown that taking melatonin after time shift led to faster recovery of mood
degradation. One study [Petrie, 1993] showed that oral melatonin led to faster recovery in jet lag, self-
reported mood, energy and alertness. Another study done for shift workers [Folkard, 1993] showed that
melatonin given at bedtime increased alertness at wake time. Melatonin helps to adjust the biological
rhythm to a new time zone or time shift and in improved mood. This also implies that desynchronized
biological rhythm and sleep deprivation in jet lag and shift work could lead to degradation of mood,

alertness and energy.

Next, we describe other targets of our study, stress, mood and mental health, together with their

definitions, the importance of measuring them, and previous studies to measure or recognize them

2.2 Stress

Stress is one of the major problems in modern society. Sometimes people are aware of being under stress,
for example, when they are occupied with deadlines of homework and projects; however, long-term
conditions with high stress can be chronic and people may be less likely to notice whether they are under

high stress, or they may be generally less sensitive to stressors. Stress detection technology could help
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people better understand and relieve stress by increasing their awareness of heightened levels of stress that
would otherwise go undetected.

Several technologies have been developed to measure or recognize stress level; some methods are
based on physiological signals: blood pressure (BP) [Vrijkotte, 2000], heart rate (HR) [Vrijkotte, 2000],
heart rate variability (HRV) [Dishman, 2000], skin conductance (SC) [Hernandez, 2011][Setz, 2010],
cortisol [Dickerson, 2004][van Eck, 1996}, pupil diameter [Mokhayeri, 2011]. Activity of the sympathetic
and para-sympathetic nervous systems can be monitored through SC, BP, HR and HRV. Here, we describe
the SC we used in our study. SC has been considered as a biomarker for stress [Boucsein, 1992], where
eccrine sweat activity that is controlled by only sympathetic nervous activity is measured, For example,
Healey et al. measured SC, HR, HRV, respiration and electromyogram to recognize stress levels in Boston
drivers, finding that SC was the most accurate predictor of stress [Healey, 2005]. Hernandez et al.
discriminated stressful and non-stressful calls at the call center environment using SC features. Setz et al.
automatically classified SC responses from cognitive load and stress with accuracy higher than 80%.
Kusserow et al. measured public speaker, an on-stage musician, an Olympic ski jumper, and people during
everyday life, quantifying stress arousal using SC and other signals such as HR, HRV, and acceleration
[Kusserow, 2013}.

Other methods are based on surveys. For example, the Holmes and Rahe Stress Scale counts up
events in the prior year that could lead to stress [Holmes, 1967]. Perceived stress has been used as a self-
reported stress marker [Cohen, 1983). Questions in the perceived stress scale (PSS) assess what degree in
each situation a subject feels stressful.

In our study, we used the PSS-10 (surveys with 10 questions) to evaluate stress level in the past
one month at the pre and post study, and a daily stressed-calm scale (0-100) (twice per day). We combined
long-term physiological, social and environmental objective data with personality types and subjective data

to understand not only spontaneous stress but also long-term stress reactions (section 5.2 Data Collection).

2.3 Mood and Mental Health

Mood is defined as "the appropriate designation for affective states that are about nothing specific or about
everything-about the world in general" [Frijda, 2009]. Unlike emotions, which follow their eliciting stimuli
closely or even instantaneously, a mood is usually temporally remote [Morris, 1992] from its cause (e.g., a
person can wake up in a bad mood in the morning as a result of a confrontation the previous evening).

Consequently, the cause of a mood may not always be easy to identify.
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To measure mood, the Profile of Mood States (POMS) [McNair, 1989] has been used frequently in
psychology. The questionnaire consists of 65 emotion adjectives and each of them is rated with a five point
scale. POMS evaluates six different mood states: tension, depression, anger, vigor, fatigue, and confusion.
The Positive and Negative Affect Schedule (PANAS) [Watson, 1988] has been also used often. PANAS
consists of 20 adjectives and each of them is rated with a five point scale. In contrast to the POMS, the
PANAS was developed not to assess distinct mood states but rather to assess positive affect and negative
affect.

Positive mood is linked to good health including good performance, cognition, and memory
[Chepenik, 2007] [Nadler, 2010]. These results are based on studies with either depressed people or with
healthy people undergoing emotional induction or sleep deprivation in a laboratory. In the studies, a visual
analogue scale or PANAS was used to assess mood. We conducted a study to examine sleep and behavior
influences on mood for college students in their daily lives at home and work. New technology makes it
possible to objectively measure sleep and other behaviors and examine their association with daily
emotional ups and downs. Since the surveys described above have many items, we used daily Sad-Happy
scale (0-100) to evaluate sadness and happiness twice per day in our study (section 5.2 Data Collection).

Mental Health includes emotionally, psychologically and socially positive conditions
[MentalHealth.gov]. Questionnaires have been used to evaluate mental health. Here, we introduce three
questionnaires, which are commonly used in previous studies. The Patient Health Questionnaire (PHQ-9)
is one of the most commonly used surveys [Kroenke, 2001]. The PHQ-9 consists of nine diagnostic items
of DSM-1V: anhedonia, depressed mood, trouble sleeping, feeling tired, change in appetite, guilt or
worthlessness, trouble concentrating, feeling slowed down or restless, and suicidal thoughts. Each item is
rated from 0=Not at all through 3=Nearly every day. The final score tells us severity of depression: no
depression (0-4), and mild (5-9), moderate (10-14), moderately severe (15-19) and severe depression (20-).
The Goldberg Anxiety and Depression Scale (GADS) is an 18-item self-report symptom inventory
[Goldberg, 1988]. The GADS score is based on ‘yes’ or ‘no’ to nine depression and nine anxiety items
about feeling in the past month. The Short-Form 12 (SF-12) is a generic health-related quality-of-life
instrument for physical and mental health used in large population health studies [Ware, 1996]. Three items
in the SF-12 ask about calmness, energy and feeling down related to depressive and anxiety disorders. In
our study, we used SF-12 to evaluate both physical and mental health. We were not able to evaluate
depression directly because of constraints it put on our hospital partners and the overnight stay expected
there for our participants.

Next, we describe personality traits and social factors that influence our physical and mental health

including sleep, stress, mood and mental health

32



2.4 Personality Types

Several studies have suggested that personality types affect physical and mental health [Janjhua,
2012][Martin, 1996]. The interactions between academic performance, sleep quality, self-reported stress,
self-reported mental health and personality categories have been previously characterized using self-
reported data. Specifically, academic performance has been correlated with personal traits
(conscientiousness, openness and agreeableness) [Poropat, 2009, Noftle, 2007] and sleep parameters have
been reported to be influenced by personality traits of neuroticism [Soehner, 2007], extraversion [Killgore,
2007], and agreeableness [Clark, 2007]. Vollrath summarized the relationship between stress and the Big
Five Inventory Personality Test categories and identified that neuroticism was a predictor of stress [Vollrath,
2001]. Another study showed negative associations between perceived stress and extroversion,
conscientiousness, agreeableness, and openness and positive association between perceived stress and
neuroticism [Ebstrup, 2011]. In our study, we also used the Big Five Inventory Personality Test [John,
1999] to evaluate openness, extraversion, conscientiousness, agreeableness, and neuroticism with 46

questions (section 5.2 Data Collection).

Next, we describe what we measure using mobile phones and wearable sensors for our ambulatory studies
and summarize previous studies to measure and recognize sleep, stress and mental health using wearable

and mobile device data.

2.5 The Role of Social Networks in Mediating
Behaviors

Several studies have shown that health-related behaviors can be mediated and spread within a social
network. These include behaviors such as sleep [Mednick, 2010], obesity [Christakis, 2007], happiness
[Fowler, 2008], depression [Rosenquist, 2011], and loneliness [Cacioppo, 2009]. Furthermore, the spread
of these behaviors has been shown to extend beyond the dyad, spreading up to three degrees of separation.
Social network analysis has shown that people who self-report being happy are more likely to be located at
the center of their social network, where they connect to other happy people, furthering the importance of
the social network [Fowler, 2008]. Another analysis showed that poor sleep behavior can spread in social

networks from one person up to four degrees of separation. The effects were strongest between tightly
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connected individuals, suggesting that the frequency and strength of interaction play important roles
[Mednick, 2010].

These studies are based on surveys while our study addresses health-related behavior contagion in
the real world by objectively measuring both social network structure from phone call, short message
service: SMS and email usage and health-related behaviors. Previous studies using smart phones showed
that individual’s mood is associated with both individual’s sleep and the spouse’s mood and individual’s

sleep is also associated with both individual and the spouse’s mood [Moturu, 2011].

2.6 Multi-modal Measurement using Mobile/Wearable
Sensors

Recently, many wearable devices have allowed us to monitor our daily personal behaviors, extending
measurements that had been done in laboratory or clinical settings before. In this section, we introduce the

main ones used in our study.

Measurement from mobile phones

Mobile phones can measure data such as location, distance you travel, social interactions (phone call, SMS
and email), application usage, and acceleration and light sensor data. Some smart phones are also equipped
with temperature, pressure and humidity sensors. On Android, there are several frameworks to help us to
log these data easily. In our study, we used funf framework to collect call, SMS, location, screen on/off

timing and application usage (section 5.2 Data Collection).

Acceleration

Acceleration is one of the most commonly implemented measurement in wearable devices and it has been
used to track steps and activity levels (e.g. Fitbit, Jawbone) and activity recognition (walking, sitting,
climbing stairs etc) [Aggarwal, 2011]. It has also been used to track sleep. In sleep studies, actigraphy uses
a wrist-worn accelerometer to identify sleep vs wake patterns [Ancoli-Israel, 2003]. For regular consumers,
commercialized devices and smart phone applications track sleep duration, quality and sleep patterns based

on tracking movement during sleep; however, it is not clear how accurately these devices track sleep
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patterns as each device has different algorithms which have not been disclosed compared to
polysomnography, a gold standard used to diagnose sleep disorders with multi-modal physiological signals
(electroencephalogram, electrocardiogram, respiration, and electromyogram etc). In our studies, we used a
3-axis accelerometer and an actiwatch (sections 3.2.1 Measurement, 4.1.2 Methods, 4.2.2 Methods and 5.2

Data Collection).

Electrodermal activity (EDA)

Electrodermal activity (EDA) provides a measure of activity in the sympathetic nervous system, one of the
main branches of the autonomic nervous system. It has been widely used in psychophysiology studies
including for pain [Ledowski, 2007, Storm, 2008], schizophrenia [Ohman, 1981, Schell, 2005], emotion
[Kreibig, 2010], epilepsy [Poh, 2012], depression [Ward, 1983] and stress [Healey, 2005]. In laboratory
settings, the measurement has been carried out on palms or fingers; however, wearable devices allow us to
measure it on the wrist or ankle in ambulatory settings. In this thesis, first we compared wrist sleep EDA
with palm sleep EDA and measured EDA on the wrist (sections 3.2.1 Measurement, 4.1.2 Methods, 4.2.2
Methods and 5.2 Data Collection) and we extended the EDA measurement and analysis to day and sleep

time to quantify sympathetic activities.

Skin Temperature

Several wearable devices enable us to measure skin temperature on the surface of our body (wrist sensors,
and button type sensors). In previous studies, skin temperature has been used to investigate insomnia [Lack,
2008], circadian rhythm [Martinez-Nicolas, 2013] and circadian phase [Kolodyazhniy, 2012]. Furthermore,
low rhythmicity in skin temperature in depression patients have been reported [Barbini, 1998]. In this thesis,

we measured wrist skin temperature (sections 3.2.1 Measurement, 4.2.2 Methods and 5.2 Data Collection).

Ambient Light

Light is one of the most important factors that regulates sleep and circadian rhythm (See sections 2.1.2 and
2.1.3). Wearable light sensors measure light intensity of photopic and RGB light and they have been used
in studies to investigate how light exposure during day and night influence wellbeing and sleep [Sander,
2015] [Harb, 2015]. In this thesis, we measured photopic light intensity on the wrist (section 5.2 Data

Collection).
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2.7 Understanding Sleep, Stress and Mental Health
from Multi-modal Mobile/Wearable Data

This section describes previous research with wearable sensors and/or mobile phone data to measure,
recognize or find markers related to sleep, stress and mental health in ambulatory settings. This section

helps readers to understand their study design, measurement and data analysis methods.

The “Student Life” study, which monitored 48 college students across a 10 week term at Dartmouth
College using Android phones, investigated the relationship between wellbeing measures such as stress,
depression, flourishing and loneliness and academic performance and objective mobile phone sensors and
usage [Wang, 2014]. Their correlation analysis showed associations between higher conversation frequency
(day and night) and longer conversation duration (day), and lower PSS, and longer sleep duration and lower
PSS.

To understand sleep, several studies have been done using multi-modal data. A bedside standalone
system was developed to capture movement on beds and bedroom environmental data (sound, temperature,
and humidity) to give feedback about sleep-related behaviors to users [Kay, 2012]. Another study used
mobile phone sensor and usage data (sound, accelerometer, light sensor, proximity sensor, running app,
battery, and screen status) from a month of data (N=27) to build models to recognize sleep-wake states and
overall and daily sleep quality (good or poor sleepers based on the PSQI score, and daily subjective sleep
quality, good or poor quality) [Min, 2014], resulting in 93% accuracy for sleep-wake recognition and 84%

and 81%, respectively, in accuracy of overall and daily sleep quality classification.

For recognizing stress levels, several studies have used mobile phones and wearable sensors. Bauer
et al. found behavioral modification (the number of places they visited, social interactions, calls, and SMS)
in the comparison of stress related situations (during 2 week stressful events and 2 weeks after them, N=7).
Bogomolov et al. used multi-modal 7-month data from 120 participants including phone usage, weather
and personality type information to classify high/low daily stress levels [Bogomolov, 2014]. They showed
73% accuracy with the combination of 32 features (5 features from Big Five test, 4 features related to
weather (e.g. temperature, humidity), 12 call and SMS features (e.g. # of calls and SMS, entropy and
reaction time to SMS) and 11 proximity features (e.g. # of Bluetooth IDs and entropy)) and personalized
models. We also investigated 5 day high vs low stress recognition (N=18) and 30 day high vs low stress
recognition (N=66) using wearable sensor and mobile phone data and showed 75% and 90% respectively

[Sano, 2013b] [Sano, 2015]. Muaremi et al also did stress recognition using sleep parameters, and
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physiological responses (heart rate, heart rate variability and EDA) (N=10, 19 days), and phone usage and
sleep heart rate variability (N=35, 4 months) and showed 61% 3 class stress level classification accuracy
with combination of phone usage and HRV features and 73% with sleep duration and upper body posture,

or HRV features [Muaremi, 2013, Muaremi, 2014].

For mood and mental health recognition, Moodscope used mobile phones to predict two axes of
daily emotion, activeness and pleasure, using multi linear regression models (N=32, 2 months) [LiKamWa,
2013]. They captured phone usage such as email, SMS, call, application usage and mobility and showed
93% accuracy with personalized models. Grunerbl et al. recognized mental states and state changes in
bipolar disorder patients using android phone usage (4 different modalities: call, sound, acceleration and
location) and showed 76% recognition accuracy with the feature fusion (N=10, 12 weeks) [Griinerbl, 2015].
Our earlier paper developed daily happiness-sad prediction using physiology, mobility and phone data from
the SNAPSHOT Study and showed 70% accuracy with features such as skin conductance, acceleration,
pre-sleep activity, social interaction, exercise, screen-on duration and time indoors (N=68, 30 days) [Jaques,

2015].
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Chapter 3
Quantitative Analysis of Wrist Electrodermal
Activity during Sleep

In this chapter, we present quantitative characterization of electrodermal activity (EDA) patterns on the
wrists of healthy adults during sleep using dry electrodes. We compare the new results on the wrist to prior
findings on palmar or finger EDA by characterizing data measured from 80 nights of sleep consisting of 9
nights of wrist and palm EDA from 9 healthy adults sleeping at home, 56 nights of wrist and palm EDA
from one healthy adult sleeping at home, and 15 nights of wrist EDA from 15 healthy adults in a sleep
laboratory, with the latter compared to concurrent polysomnography. While high frequency patterns of
EDA called “storms” were identified by eye in the 1960°s, we systematically compare thresholds for
automatically detecting EDA peaks and establish criteria for EDA storms. We found that more than 80%
of EDA peaks occurred in non-REM sleep, specifically during slow-wave sleep (SWS) and non-REM stage
2 sleep (NREM2). Also, EDA amplitude is higher in SWS than in other sleep stages. Longer EDA storms
were more likely in the first two quarters of sleep and during SWS and NREM2. We also found from the
home studies (65 nights) that EDA levels were higher and the skin conductance peaks were larger and more
frequent when measured on the wrist than when measured on the palm. These EDA high frequency peaks
and high amplitude were sometimes associated with higher skin temperature, but not always. More work is

needed looking at neurological and other EDA elicitors in order to elucidate their complete behavior.
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3.1 Introduction

EDA is widely used in psychophysiology and provides a measure of activity in the sympathetic nervous
system, one of the main branches of the autonomic nervous system. Studies on EDA (also known as
galvanic skin response, GSR) during sleep have shown that elevated levels of EDA, with high frequency
“storm” patterns are more common during deep, slow wave sleep (SWS) [Koumans, 1968], while the
frequency of EDA peaks is lower in the first cycle of the night [Freixa i Baqué, 1983b] (Table 3.1).
Classically, EDA has been measured as skin conductance level or skin conductance responses and involves
attaching wired and gelled electrodes to the skin, usually on the fingers or palm [Boucsein, 1992; Fowles,
1981]. However, several studies have shown valid measurement of EDA on other locations including the
forearm (Table 3.2). Studies using dry electrodes on the forearm have demonstrated reliable long-term
measures of EDA [Poh, 2010] and have also led to the discovery of correlations between EDA and
significant neurological events measured from EEG [Poh, 2012].

In this study, we used a wireless non-invasive EDA sensor worn as a wristband on the distal forearm,

which made it easy for subjects to be monitored in the same manner in the sleep lab and at home. We
collected and analyzed 80 nights of EDA data more than ever previously reported in a single study.
Our study makes three main contributions: First, we compare wrist EDA (convenient for continuous long-
term measurement) to palmar EDA (inconvenient). When we began this work, there was concern that the
wrist measures would primarily reflect thermal sweating. Our work finds significant EDA patterns in sleep
from the forearm while simultaneously measuring skin temperature at the same position.

Second, we characterize EDA in natural sleep, proposing an automated method to extract features
from the EDA, and using these features to create a taxonomy of EDA patterns during sleep. For 15 nights
where we have concurrent synchronized polysomnography (PSG), we also characterize the EDA-PSG
relationships and compare the new measures with results published in the 1960-70’s. PSG is currently the
gold standard to evaluate and diagnose sleep patterns; however, the use of PSG requires scalp EEG
electrodes and other sensors that tend to be uncomfortable and expensive, time-consuming to apply, and
arguably interfere with the sleep they are measuring. Actigraphy is a much less invasive method often used
to estimate daytime and sleep activity with a wrist-worn device; however, it does not measure neural activity
such as stages of sleep. In this study, we measure both EDA and actigraphy to develop a quantitative
characterization of EDA in natural sleep.

Third, we also compare EDA responses with skin temperature. It has long been recognized that
thermoregulatory processes are suppressed during REM, while they persist during NREM [Adam, 1986].
In a study of five healthy men, the largest sweating, averaged across multiple sites on the body, was

recorded during SWS while the lowest was recorded during REM, although sweating was not completely
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blocked during REM [Sagot, 1987]. But this occurred in the absence of significant changes in skin
temperature across sleep stages. We provide the first characterization of the interaction between wrist/palm

EDA, skin temperature, and sleep stages.

Table 3.1 Summary of previous sleep EDA studies

Description Location
Asahina et al., 1964, N=20, GSR high activity in stage 4 galvanic skin response
(measurement location
unknown)
Broughton et al., 1965, Responses are frequent in stage | electrodermal response on palm
N=unknown 4, and rare in REM sleep and dorsal forearm
Lester et al., 1967, N=53 More GSR peaks in stage 4 Galvanic skin response on
finger
Koumans et al., 1968, N = Electrodermal fluctuations skin potential and response on
unknown increase during SWS and palm and dorsal surface of
decrease during REM forearm
Hori et al. 1970, N=15 Skin potential response max: skin potential activity on the
SWS, low: REM palmar surface of finger and
dorsal surface of hand
McDonald et al., 1976, N=46 Storming in stage 3-4 skin potential and resistance,
unknown location
Freixa i Baqué et al., 1983a, Spontaneous skin potential electrodermal activity on palm
N=8 responses increase during 2-4 and dorsal surface of hand
sleep cycles
Ware et al., 1984, N=12 Storming occurs during NREM | skin resistance response on
sleep hands
Burch, 1985, N=unknown, GSR storms during sleep stage | skin response (location
4 unknown);
Liguori et al., 2000, N=53 Spontaneous sympathetic skin Sympathetic skin response on
responses was highest in stage 4 | hand
and lowest in REM sleep
Kobayashi et al., 2003, N=8 The GSR peaks and sweat rate | Galvanic skin response on the
were significantly less frequent | dorsal side of hand;
during REM sleep than during
NREM sleep.
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Table 3.2 Summary of previous EDA studies

Location

Johnson et al, 1966, N =29 Finger, GSR and SCR, sleep lab

Johns et al, 1969, N=31 Finger, GSR, sleep lab

Liguori et al., 2000, N=53 Hand, sympathetic skin response, sleep lab

Shiihara et al., 2000, N=5 Finger, Skin conductance, Palm, Skin potential, sleep lab

Kobayashi et al., 2003, N=8 Hand, galvanic skin response, sleep lab

Poh et al., 2010, N=26 Finger and inner wrist, Electrodemal Activity, Physical,
cognitive and emotional tasks

Poh et al. 2012, N=80 Wrist, electrodermal acitivity, epilepsy patient admitted to
the long-term video-EEG monitoring unit

van Dooren et al., 2012, N=17 16 positions (fingers, distal wrist, central wrist, vertical wrist,
chest, foot (instep), calf, forehead, neck, shoulders, back,
buttock, abdomen, armpit, upper arm, and thighbone), skin
conductance, watch emotional film clips

3.2 Methods

3.2.1 Measurement

Our studies examined EDA during sleep by monitoring skin conductance on the outer or inner wrist (dorsal
or ventral forearm) or on the palmar surface, using the Affectiva Q™ sensor with 1cm diameter Ag-AgCl
dry electrodes. The sensor logged EDA, actigraphy (3-axis accelerometer) and skin surface temperature at
32 Hz. The Massachusetts Institute of Technology Committee On the Use of Humans as Experimental

Subjects (COUHES) approved both studies.

EDA at home from wrist and palm from healthy adult (65 nights)

Nine healthy adults (two females) wore the Q sensors on the right palm and wrist for one night each. A
tenth person (healthy adult female) wore the Q sensors for 56 nights. Participants put the sensor on before

going to bed, and took it off after waking.

EDA with concurrent PSG (15 nights)

Fifteen healthy university students (ages 18-22, 10 males) participated in a night of measurements in a sleep
laboratory, wearing the Q sensor on the wrist. Sleep was simultaneously monitored with standard PSG and

scored by standard criteria [Rechtschaffen, 1968].
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3.2.2 Definition

We define the following terms:

EDA peak: Local EDA maximum that exceeds a defined threshold (see analysis below for details).
EDA-peak epoch: A 30 second section of EDA having at least one EDA peak

EDA storm: Consecutive EDA peak epochs. Thus, an EDA storm has a minimum duration of one minute,
and has at least two peaks during that minute.

Burch storm: “A minimum of 5 galvanic skin response (GSR) peaks per minute for 10 consecutive
minutes of sleep” [Burch N, 1965; Lester, 1967]

EDA event: A section of EDA data having one or more EDA peaks or storms (e.g., an EDA isolated peak,
EDA peak epoch, EDA storm or Burch storm)

3.3 Analysis

In this work, we automate the processing of EDA data in order to remove noise and to extract features that
are robust and meaningful for characterizing sleep, and in order to provide objective measures that can be
used across nights, across participants, and across studies. In PSG, it is standard practice to label sleep
stages in 30-second epochs; thus, we adopt the length of 30-second segments for our comparison analyses.

The EDA data were processed in four steps.

1. Detection of sleep from actigraphy: Standard zero-crossing detection and Cole's function were applied
to the accelerometer data to discriminate between sleep and wake [Cole, 1992]. Only EDA data that
corresponded to the times scored as sleep were further processed. Thus, EDA data that might be associated

during the night with getting out of bed and moving around were not included in the analyses below.

2. Pre-processing of EDA: All EDA data that corresponded to segments of sleep were subsequently low-
pass filtered (cutoff frequency 0.4 Hz, 32nd order FIR filter).

3. EDA peaks: After EDA data were low-pass filtered, we computed the first derivative and determined
where it exceeds a threshold. Part of our effort asked, “What is the optimal threshold that has meaning for

sleep data?” We conduct in this study tests varying the threshold over these values: 0.005, 0.01, 0.02, 0.03,
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0.04 and 0.05 uS/s and describe below how dependent the results are on the particular value. In subsequent
analyses comparing wrist and palm EDA, we used a threshold of 0.01 pS/s. We define EDA “peaks” as
those whose rise phase exceeds the threshold. Peaks must be separated by at least one second or they will
be counted as a single peak. Thus, this method can detect up to 30 peaks per epoch, although in sleep the

most we have seen is 13 peaks in one epoch.

4. EDA storms: Our definition above is that an EDA storm must consist of at least two adjacent peak
epochs. Thus, the slowest possible storm would have 2 peaks per minute. Often during sleep we see regions
with much faster bursts of 5-8 peaks per minute (ppm), and once we saw 26 ppm. During our analysis, we
compared EDA storms to previous ones in the literature. Thus, for the analyses below, we compared

definitions requiring 1, 2, 3, and 4 EDA peaks per epoch, before clustering the adjacent epochs into “storms.”

The EDA peak detector we developed is fully automated and has been quantitatively and qualitatively
validated for accuracy. Figure 3.1 shows 10 seconds and 1 minute of EDA raw data and its derivative. Peaks
shown here (black dots) are automatically detected when the derivative exceeds the threshold of 0.005 pS
(red line). An asterisk marks the location of the rising edge of the peak. All peaks during sleep that meet
the criteria are detected except when 2 peaks occur less than 1 second apart. When 2 peaks are less than 1
second apart then it marks only the first of the two peaks. The third peak in the bottom of Figure 3.1 (x and
arrow) is not detected aS two peaks occur within a second.

Figure 3.2 displays one night of filtered EDA data, the number of EDA peaks for each 30-second
epoch, along with a 4-min segment of the filtered EDA data and the detection of EDA peaks for the 4-min
segment using the most sensitive threshold of 0.005 nS/s.

Our analysis, below, has three main parts:
(1) Compare EDA amplitude (skin conductance level) and the number of peaks for wrist and palm
recordings.
(2) Compare wrist EDA amplitude and the number of peaks in sleep stages and during the four
quarters of the night (ANOVA and post hoc t-test); also characterize storm durations.

(3) Compare EDA and skin-surface temperature at the EDA electrodes (correlation analysis)
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Figure 3.1 EDA peak detection (EDA amplitude and derivatives)

The black asterisks show detected peaks and x shows a peak detected

within 1 second after the previous one and counted as one peak.
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Figure 3.2 A-filtered EDA data for one night in a healthy adult. B: detected EDA peaks in 30-s epochs. C:
zoom of region marked with a bar on A. D: # of EDA peaks in each 30-s epoch.
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3.4 Results

3.4.1 Wrist vs. Palmar EDA

Most prior studies of EDA during sleep have looked at palmar skin conductance as a measure of EDA, e.g.
Doberenz et al collected one night of palmar data from each of 48 subjects [Doberenz, 2011]. We found
that EDA measured on the wrist usually gives a larger signal than that measured on the palm, although
otherwise the two signals are usually reasonably correlated during sleep (e.g., Figure 3.3). To quantify this,
we analyzed the difference between the wrist and palm EDA data (after filtering as above) from 9 healthy
adults using 0.03 pS as tolerance (epsilon). Across participants, the palmar skin conductance measured
during sleep was at least 0.03 uS lower than the inner wrist skin conductance during 74% of samples.
Despite this difference, the palm and the inner wrist EDA show the same number of EDA peaks for 71%
of 30-sec sleep epochs, with more EDA peaks on the wrist seen during 21% of sleep epochs and less on the
wrist during the other 8%.

We also analyzed the difference between the wrist and palm EDA data for 56 nights (longitudinal
case study) because, increasingly, long-term measurement is important in understanding intra-individual
differences as well as in treatment and intervention studies, and we wish to compare a set of individual
results to the group results. As shown in Figure 3.4, on 48 of the 56 nights (86%), the average skin
conductance level measured from the inside of the wrist was higher than the palmar level during sleep (both
measured on the right side of the body). On the remaining 8 nights, the palmar skin conductance had larger
amplitude than the wrist. When analyzed by hour of sleep, the wrist EDA was higher than the palmar EDA
71% of the time (255 hours of sleep), while 23% of the time (84 hrs of sleep) the palmar EDA exceeded
the wrist EDA, and 5% of the time (18 hrs of sleep), the difference between wrist and palmar EDA was less
than 0.03 pS.

Our software used the 0.01 threshold as mentioned above and detected EDA peaks during sleep
both for palm and wrist on all 56 nights. As seen in Figure 3.5, on 42 of the 56 nights, more EDA peaks
were detected on the inner wrist. Of 357 hours of sleep, the wrist and palmar EDA-peak counts per epoch
were equal 83% of the time (296 hours of sleep); 12% of the time the wrist EDA showed more peaks (42
hrs of sleep), and 5% of the time the palmer EDA had more peaks (19 hrs of sleep). Thus, overall the wrist
appears to be a more sensitive location for capturing EDA events during sleep. Moreover, these results were

consistent both across individuals and long-term within an individual.

46



= [a%]
= O N O W

EDA Amplitude
[micro S]

e

0.5
o Black: Wrist, Gray Palm
o 05 1 0 05
Time [hour]
I ]
0 05 1

Figure 3.3 Examples of wrist and palm EDA during sleep

47



——wrist
-----palm

T 0 M 0w o

™~ ™~
[So401w] epnyidu

n ~ 0 O
- o

B vYJd3 uesiy

O |Palm - Wrist| < 0.03 microS

m Paim-Wrist > 0.03 microS

—
=
c.mv i
g
.
§

MI“
mm

Figure 3.4 EDA amplitude comparison between the palm and the wrist

(56 nights, 357h, one participant long-term)

48



w
()]

=
[
w; 3-
x 2
08 25
< 5 x
258 2
- A
5 S=15
il
gu.l 1
w
Q
=3 os
£
B =i . | N
N MO EFMMOAEDIDCFONRAEDDETOWULAED M
E e rerNNONONNOOMOMOO T T T T U0
2
(=

= Paim > Wrist OPalm = Wrist @ Paim < Wrist

Hours
0O = N W & o 0O ~N O
————
——
=
T
—=

53 &
55

Figure 3.5 # of EDA peak comparison between the palm and the wrist (56 nights, 287 h)
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not for all epochs

3.4.2 Characteristics of EDA

We wish to characterize EDA peaks and their relation to sleep stages. First, we examine the sensitivity of
the peak-detection parameters for our automated algorithm. We computed the distribution of the number of

EDA peaks per 30s epoch for thresholds from .005 to .05 pS/sec (= 15 in the laboratory). Over the fifteen
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nights, more than 60% of the 30-s epochs did not show any peaks, regardless of peak threshold. As expected,
a lower threshold for EDA peaks showed more peaks.

We then analyzed how the peaks that occurred are distributed across the sleep stages Most of the
night was spent in NREM2, and indeed we see most of the peaks (55 + 4%) occurred in NREM2. The next
highest are 25+4% in SWS, 12+1% in REM and 4+0% in NREM 1. This relative ordering of NREM2 >
SWS > REM > NREM1 holds regardless of the threshold that we used for detecting peaks. Thus, this
finding is robust over a large range of parameter values. However, the relative number found in each stage
varied: the ratio of EDA peaks in REM compared to SWS varies systematically from 39% at the highest
threshold to 77% at the lowest.

Figure 3.6 shows that SWS has the highest percentage of epochs with EDA peaks during sleep. The
percentage of sleep epochs containing EDA peaks varied significantly across sleep stages (repeated
measures ANOVA, F=12.70, df=3, p< 4.82E-06). Overall, EDA peaks were more than 1.5 times more
frequent in SWS than in NREM2 and more than 3 times more frequent in SWS than in REM (post hoc t-
test, p=0.05). While the exact percentages of peaks decrease as the threshold gets higher, the main findings
relating EDA to sleep stages are consistent for thresholds from .005 to .05 pS. Thus, the EDA peaks
measured on the wrist with dry electrodes show robust properties related to sleep stages. Figure 3.7 shows
the distribution of EDA peak epochs over the night. Most of the EDA peak epochs occurred in the first half
of the night.

Next, we analyze the basic properties of EDA amplitude, peaks and storms. Median EDA-
amplitude (averaged median across participants) was 0.44, 0.26, 0.18, and 0.26 in SWS, NREM2, NREM 1
and REM. The median EDA amplitude in SWS was significantly higher than in the other sleep stages.
(ANOVA and post hoc t-test, p < 0.05). (We computed the median because the distribution of EDA
amplitude is far from Gaussian.) Thus, the wrist EDA median amplitude varies with sleep stages. We also
compared the EDA amplitude between epochs with EDA peaks and those without EDA peaks. In twelve
out of 15 participants, median EDA amplitude was higher in epochs with EDA peaks. The EDA-peak
frequency (peaks per epoch) was also significantly higher in SWS than in NREM2, NREM1 and REM
(ANOVA and post hoc t-test, p=0.05).

We also validated the robustness of the new automated criteria for detecting EDA storms: the
number of EDA peaks required per epoch. We again found that the relative distribution of storms is robust
across the criteria: About 85% of storms lasted under 5 minutes regardless of the various amplitude gain
thresholds for EDA peaks (0.005 — 0.05 uS) and regardless of the various peaks-per-epoch thresholds for
EDA storms (1-4 peaks/epoch).

Burch was the original scientist identifying EDA storms, which he and his colleague identified

visually after measuring GSR on the left middle finger with Ag-AgCl electrodes and a sodium-chloride
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paste [Lester, 1967]. We wanted to compare today’s objective sensor data and automated algorithm to their
original hand-counted values. Among all wrist EDA events in our data, only 11% of EDA events met
Burch’s criteria (>5 EDA peaks/min, and duration > 10 minutes). Of these Burch storms, 95% occurred
during NREM2 and SWS, compared to 89% of isolated EDA peaks and non-Burch storms. Similarly, 77%
of Burch storms occurred during the first half of the night, compared to only 43% of the other peaks and
storms. Thus, we have qualitative similarities between our automated and objective measures and Burch’s
hand-count observations in EDA peaks and storm occurrences in NREM2 and SWS, but difference in their

distribution across the night.
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Figure 3.6 Mean percentages of sleep stage epochs containing EDA peaks (N=15, error bars: s.e.m.)
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Figure 3.7 Percentages of epochs with more than 1 EDA peak (threshold = 0.01 pS/s)

3.4.3 EDA vs Skin Temperature

The purpose of the analysis here is to determine whether skin surface temperature is the cause of the EDA
changes we see during sleep. Note that skin surface temperature is not the same as core body temperature;
core body temperature drop is usually preceded by wrist temperature increase [Sarabia, 2008]. We have
also found that skin temperature tends to climb for most of our participants during sleep, which is consistent
with the previous finding [Martinez-Nicolas, 2013]. We do not have measures of ambient temperature or
of whether or not the person’s wrist was under a blanket, which is likely to make the skin warmer;
nonetheless, it is still interesting and meaningful to examine correlations between the skin surface
temperature and the EDA, both measured at the position of the same pair of electrodes because it still tells
us if temperature change influences EDA activation. We first examine the correlation between skin
temperature and EDA overall as well as during each sleep stage. Out of 15 participants, 12 participants
showed significant positive correlations between 30s epoch averaged skin conductance level (SCL) and 30s
epoch averaged skin temperature level. Also, 9 of the 15 participants showed significant positive correlation
between the number of EDA peaks and skin temperature per epoch. However, 13 out of 15 participants also
showed higher wrist temperature in SWS than in REM generally, making causal links unclear. While EDA

amplitude and peaks do have a statistical relationship with skin temperature in our 30-sec data, the
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correlation breaks down at a finer time scale. Examples can be found (e.g., Figure 3.8), where EDA and
skin temperature are completely dissociated. Thus, increases in EDA amplitude and peaks are not simply
the immediate consequence of changes in skin surface temperature,

Both the wrist and the palm contain eccrine sweat glands, which have a primary function of
thermoregulation, and which are denser on the palm than on the wrist [Dawson, 2007]. We examined if
wrist or palm differed in how their EDA responded to temperature during sleep, comparing wrist and palm
temperature when there were and were not EDA peaks. On the wrist, 6 out of 9 participants showed higher
temperature during epochs without peaks than with peaks; thus, the EDA peaks were not simply associated
with warmer skin on the wrist. In contrast, on the palm, 7 out of 9 showed higher temperature during epochs
with EDA peaks than without (wrist vs. palm, c? = 3.6, p = 0.058). Thus, there may be a slight tendency for
higher temperature on the palms to lead to more peaks on the palms (binomial, p =.089). All 9 participants
showed higher mean temperature on the wrist than on the palm during EDA peak epochs. Also, 7 out of 9
showed higher mean wrist temperature than palm during non-storm epochs. When the wrist temperature
was higher than the palm temperature, then the wrist EDA was almost always higher than the palm EDA
(95% of these epochs).
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Figure 3.8 Examples from sleep showing that changes in EDA are not always caused by changes in
temperature (upper two: skin temperature on the wrist was flat when EDA showed storms and there are
no storms when temperature climbs, lower two: wrist EDA goes up when wrist temperature has no
change)

3.5 Discussion

This EDA study, with 80 nights of data, examined and characterized basic EDA properties during sleep.
Our study includes the first longitudinal characterization (56 nights) as well as 15 nights with synchronized
PSG and nine additional nights of healthy adults at home. Consistent with previous studies [McDonald,

1976, Burch 1965], our data showed that the mean EDA amplitude in SWS is significantly larger than in
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other sleep stages. We also observed a decreased number of peaks in EDA during REM sleep, which was
consistent with these prior studies (Asahina, 1964, Broughton, 1965, Hori, 1970, McDonald, 1976, Ware,
1984, Burch 1965, Ligori, 2000). These common findings are noteworthy because ours is a significant sleep
study to use a convenient-to-wear dry-electrode EDA skin conductance sensor on the wrist, while most
prior studies measured the EDA on the palmar surface or fingers with wired gelled electrodes. We also
developed a fully automated EDA sleep peak detection algorithm providing objective measures across a
range of thresholds, and showed that the findings were robust across these thresholds. We will further
discuss comparisons of forearm vs. palmar EDA below, but these significant findings serve to validate both
the occurrence of EDA peaks and the sleep-stage dependence of the EDA peaks for this alternate convenient
location of wearing a sensor.

In our study, EDA peaks were not distributed uniformly over the night, but were more likely to be
located in the first half of the night. This can be because more SWS occurs in the earlier half of the night.
However, some nights showed no EDA peaks in the first SWS cycle. It is important to note that EDA peaks
and storms did not happen in all cycles of SWS and NREM2; thus the EDA peaks provide different
information than that normally obtained from PSG. In fact on some nights, some participants have no EDA
storms, while on other nights they may have many. Meanwhile, when EDA storming does happen, it is
most likely to appear during SWS and NREM2.

We found that the largest number of peaks per epoch occurred in SWS and NREM2. Freixa i Baqué
et al. (1983b), Johnson et al. (1966) and Hori et al. (1970) also found more peaks in SWS, and McDonald
showed a decrease in the EDA storm rate in NREM 1 and NREM 2 sleep (1976), all of which are consistent
with our results. Liguori et al. (2000) showed that the frequency of spontaneous sympathetic skin
conductance peaks in stage 4 (SWS) was 5-9 per minute. This result is slightly different but consistent with
our tendency (the most frequent in SWS, 2- 26 per minute). One earlier finding that did not match ours is
that of Freixa i Baqué et al. (1983b) who found that spontaneous EDA activity showed a smaller number
of EDA peaks per minute (i.e., 60%) during the first sleep cycle (the different EEG stages from sleep onset
appearance of alpha rhythm (NREM1) until the end of the first REM) compared to the subsequent three
sleep cycles (defined as different EEG stages between the ends of two REM periods) (Freixa i Baqué, 1983a,
N=8). In our data, the first and second quarters of the night showed a larger number of EDA peaks per 30-
second epoch than the latter two. Hori et al. also visually found that EDA peak frequency was less frequent
in the latter half of sleep, especially after the third full REM cycle (Hori, 1970, N=15), consistent with our
findings based on objective wrist EDA data.

Most of the EDA storms in our data lasted under 5 minutes. Of all EDA peaks detected over the 80
nights, only 11% were in EDA storms that met Burch's storm criteria. Nevertheless, we found more storms

per night than the 2-3 storm nightly average reported by Freixa i Baqué [Freixa i Baqué, 1983a]; this may
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in part be due to the stronger EDA signal obtained when measured on the wrist. In addition, our result
showed that longer storms, with a larger number of EDA peaks, are more likely to occur in the earlier part
of the night and in SWS and NREM2.

We measured EDA on the forearm using a wristband, while previous studies examined EDA mostly
on the palmar surface or fingers. Our results showed that the EDA amplitude and storm patterns during
sleep are usually more pronounced on the forearm than on the palm, and thus peaks are more likely to be
detected when measured with a wristband. These observations are the opposite from activities during
daytime awake tasks [Van Dooren, 2012] where peaks tend to be more pronounced on the palm. The
stronger signal we observed on the wrist during sleep may explain why we found more EDA peaks than
earlier studies, not only during SWS but also during NREM2 as well. This sensitivity on the wrist was
found even using dry electrodes, which avoids the problem of a gel breaking down over long-term wear
and interfering with signal level over time.

Our findings of a higher mean skin temperature during SWS may appear to contradict those of
Sagot et al. (1987) who showed no statistical relationship between skin temperature and sleep stages;
however, they averaged skin temperature from 10 different points on the body, including distal and
proximal skin temperature, while our findings were specific to the wrists.

Warmer wrists help explain the higher SCL and larger number of peaks found on the wrists overall. That
said, we cannot say that the higher SCL and peaking are always associated with skin surface temperature
changes: There are instances, such as Figure 3.8, where SCL on the palm is higher than on the wrist, while
the skin temperature is higher on the wrist than on the palm. An overall correlation is present, but the
relatively rapid changes we see in EDA do not appear to be caused only by changes in skin surface
temperature.

When we began these studies, we were initially perplexed by this discrepancy: During sleep, we
would expect low emotional arousal and low EDA responsivity; however, we found higher EDA
responsivity, even after removal of sleep-motion artifacts, and even at times when skin surface temperature
was dropping. Since that surprise, we have learned about key neurological findings showing, for example,
that the amygdala and hippocampus, when directly stimulated with depth electrodes, elicit large skin
conductance responses [Mangina, 1996]. The amygdala and hippocampus regions of the brain are known
for being involved in memory and emotion. In fact, in recent work we have found that automatically
computed features of the skin conductance over a night’s sleep are more accurate predictors of improvement
in a learning task (learned before sleep, tested after sleep) than are classic features measured from EEG or
from PSG (Sano, 2013a, Chapter 4 in this thesis). It is thus possible that neurological memory-related

processes may also be contributing to the patterns of EDA responsivity we measure during sleep.
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This study has several limitations. Several factors can influence an individual’s EDA. For example,
thermal regulation influences sweating and we did not measure core body temperature or environmental
temperature, nor did we videotape to track the position of participants’ wrists. Only the temperature on the
skin location of the EDA electrodes was measured. Core body temperature is usually higher earlier in sleep
(when there is usually more SWS) and tapers down over the course of sleep. Sleep stages such as SWS and
NREM?2 have been associated with higher core body temperature on average than REM [Sagot, 1987]. Core
body temperature behaves in ways different from distal skin surface temperature [Krauchi, 2002]; thus,
thermoregulation remains a potential driver of some of our findings, even when there is no strong
correlation between temperature at the electrode location and the skin conductance measured at the same
position. Another mystery is that some nights had no EDA responses, despite that we might still expect that
core body temperature dropped over the night. One possible explanation for the women in the study is that
they have reduced sweating during the luteal phase (latter half) of their menstrual cycle, and this could
cause a reduction in measured EDA storm peaks [Mackinnon, 1954]. Future sleep studies should examine
the timing of the measurements made relative to female participants’ menstrual cycles. Our longitudinal
study of one subject, who was female, showed quite a bit of variation from night to night in the EDA
patterns. Future work is needed to characterize inter- and intra- individual differences in long-term EDA

features.

3.6 Conclusion

This work presents the systematic taxonomy of autonomic activity patterns measured in healthy adults
based on forearm skin conductance and actigraphy during sleep. Our analyses focused on the automated
detection of EDA peaks and on regions of continuous peaks called “storms,” and their comparison with
concurrent PSG as well as with skin surface temperature.

Most of the EDA data in this study were measured from the wrist and on most nights the results
showed greater activity at this location than at the traditional palmar location in terms of both amplitude
and the number of peaks; thus, the wrist is a viable location to get long-term data about EDA patterns during
sleep.

About 80% of wrist EDA peaks are observed in SWS and NREM2 sleep, and mostly in the first
half of the night. This property is robust over different thresholds to detect EDA peaks. Only 11% of all
EDA peak epochs were contained in Burch’s EDA storms (classically defined as more than 5 peaks per
minute and durations longer than 10 minutes), and these occurred mostly in the first half of the night. EDA

amplitude was also on average higher during EDA-peak epochs.
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We analyzed the relationship between EDA and skin temperature, where we found a higher
frequency of EDA peaks and a higher average skin conductance level in SWS, measured on the wrist,
tending to co-occur with higher temperature on the wrist, although not always in association with higher
temperature. While we know that thermoregulation influences EDA, the temperature on the surface of the
skin does not fully account for the EDA patterns measured at that location.

Overall, our work has characterized strong patterns in EDA that can be measured at home or in the
lab, using automated methods that are robust to different parameter settings. Qur findings characterize
consistent EDA patterns related to sleep stages derived from gold standard PSG. Future work is needed to
elucidate the many neurological, environmental, and thermoregulatory influences contributing to the rise

of these EDA patterns.
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Chapter 4
Multi-modal wearable data analysis

In the last chapter, we characterized wrist EDA responses during sleep. This chapter introduces two studies
we conducted using wearable sensors including sleep EDA and describe how they contribute (1) to

understand sleep-related memory consolidation and (2) to classify sleep/wake epochs.

4.1 Recognition of Sleep Dependent Memory
Consolidation with Multi-modal Sensor Data

This study presents the possibility of recognizing sleep dependent memory consolidation using multi-modal
sensor data. We collected visual discrimination task (VDT) performance before and after sleep at laboratory,
hospital and home for N=24 participants while recording EEG (electroencepharogram), EDA
(electrodermal activity) and ACC (accelerometer) or actigraphy data during sleep. We extracted features
and applied machine learning techniques (discriminant analysis, support vector machine and k-nearest
neighbor) from the sleep data to classify whether the participants showed improvement in the memory task.
Our results showed 60-70% accuracy in a binary classification of task performance using EDA or
EDA+ACC features, which provided an improvement over the more traditional use of sleep stages (the

percentages of SWS in the 1% quarter and REM in the 4" quarter of the night) to predict VDT improvement.
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4.1.1 Introduction

Past studies have shown that sleep can enhance memory consolidation. Some studies have shown the
relation to REM sleep [Siegel, 2001] [Karni, 1994]. Stickgold et al. showed that consistent and significant
performance improvement on a Visual Discrimination Task (VDT) became proportional to the amount of
sleep in excess of six hours, and subjects with an average of eight hours then exhibited a correlation in
performance to the % of sleep stages: % of SWS (Slow Wave Sleep) in the first quarter of the night, and %
of REM (Rapid Eye Movements) in the last quarter [Stickgold, 2000]. To our knowledge, no prior studies
have attempted to classify whether sleep-dependent memory consolidation occurred by using automated
analysis of sensor data during sleep. This study examines whether EEG (electroencephalogram), EDA
(electrodermal activity) and Actigraphy data during sleep can predict task performance improvement on
the VDT.

4.1.2 Methods

A. Measurement

Twenty-four healthy university students (ages 18-22, 16 males) participated in 3 nights of measurements,
one night in a “homey” sleep laboratory, one night in a hospital GCRC, and one night at home to measure
physiological changes related to task performance on a VDT, measured before and after sleep. The
physiological measures consisted of EDA (a measure of sympathetic nervous system activity), skin
temperature and actigraphy (all three measured from the wrist at 32Hz) each night and EEG (C3, C4, Ol
and O2 under international 10-20 method, 100Hz) for the nights in the sleep lab and hospital GCRC. The
Massachusetts Institute of Technology Committee On the Use of Humans as Experimental Subjects
(COUHES) approved both studies.

Each night (PM), participants trained on a different version of the VDT, slept, and were tested the
next morning (AM). Sleep in the sleep lab and GCRC was also monitored with standard PSG
(polysomnography), consisting of 30-second epochs of sleep stages labeled by experts (Wake, REM, Non-
REM 1, 2 and SWS).

We evaluated task improvement by overnight change (PM-AM) in VDT performance (a lower
score is better performance). We obtained standard PSG sleep staging as well as subjective sleep quality
evaluations on a scale of 1 to 4. Unfortunately, out of all data, only 15 nights of data from 15 participants
(10 males) in the hospital had accurately time-synched EDA data with concurrent PSG, so while we have
EDA and actigraphy for all nights, we only have it synchronized with sleep stage information for a subset

of the nights.
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Figure 4.1. Sample target screens for the visual discrimination task.

The VDT was a task that has been used routinely in sleep and memory studies by Stickgold et al. (2000).
Each target screen contained a rotated “T” (A) and “L” (B) at the fixation point and a horizontal (A) or
vertical (B) array of three diagonal bars in the lower-left quadrant of the visual field (Reprinted with
permission from [Stickgold, 2000]).

Figure 4.1 shows one trial of the VDT method, consisting of 5 screens that appear in typically less
than 1 second. The first screen is a fixation screen (black with a white centered crosshair) that remains until
the participant hits a key. This is followed by a 16-ms target screen, a 0-400-ms blank “interstimulus
interval” (ISI), and then a 16-ms mask screen. The ISI varies over the course of the task, starting at 400 ms
and is progressively shortened to Oms over the 25 blocks of 50 trials. Each participant was asked to
determine two features of the target screen: whether the capital letter in the center of the screen was "T" or
“L” and whether an array of three diagonal bars in one quadrant of the screen is horizontal or vertical. By
interpolating the ISI at which 80% accuracy is achieved on the horizontal versus vertical decision, a
‘threshold’ ISI (in ms) was extracted from each session of the VDT. A lower threshold is a better
performance. Overnight improvement or deterioration on the VDT was then calculated as a subtraction of
the AM VDT threshold from the PM threshold. For example, 30 ms indicates the person performed 30 ms
better in the AM than in the PM, while a negative value signals deterioration from PM to AM. One VDT

session consisted of 25 blocks with 50 trials in each.
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B. Feature Extraction
Figure 4.2 shows a sample representation of one night’s data from one participant when the PSG was

fully synchronized.
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Figure 4.2 Raw EDA, Actigraphy (derived from 3-axis accelerometer data, red marks means
wakefulness), detected regions with EDA peaks, manually scored sleep stages from EEG(red marks mean
REM sleep), and two EEG channels for one night measured from a healthy adult.

We computed the following features for building a machine learning classifier.

a) EEG
We calculated power spectrum density of the frequency band (delta, theta, alpha, beta) of the quarters of
the night for electrode locations C3 and C4. We also computed the features using the average amplitude

of C3 and C4 over the whole night and per epoch.

b) EDA

The EDA was processed first by low-pass filtering (cutoff frequency 0.4 Hz, 32nd order FIR filter) before
computing the features. We normalized the amplitude of the EDA by dividing all values by the maximum
amplitude over the night, then obtained the first derivative of the filtered EDA, then determined where the
slope exceeds a value of 0.5 micro Siemens per second. We detected EDA “peaks” based on those that

exceeded this 0.5uS/s threshold and counted the number of peaks per each 30-second epoch. We also
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computed the mean, standard deviation, median of the normalized EDA amplitude (normalized by the
maximum EDA amplitude over the night) before sleep and during sleep. For EDA peaks we computed the
total number for the night, the mean, standard deviation, and median of the number of EDA peaks per 30 s
epoch over the night, the averaged number of peaks, the % of epochs with EDA peaks for each sleep stage
and the mean # of EDA peaks per epoch. Previously, we have shown that EDA peaks are related to SWS
or NREM 2 sleep [Sano, 2014a].

EDA data that corresponded to non-sleep epochs (as determined by actigraphy, see below) were

removed from the analysis before computing features related to sleep.

c) Actigraphy or Accelerometer (ACC)

Sleep and non-sleep epochs were determined using standard zero-crossing detection and Cole's function
applied to the accelerometer data [Cole, 1992]. From this motion information we further computed sleep
latency, sleep duration, the % of wake in each quarter of the night, and the mean and standard deviation of

the motion level.

d) Sleep stages

The sleep stages were scored by standard criteria [Rechtschaffen, 1968]. The features we used included
the % of each sleep stage over the night, the sleep efficiency derived from the EEG (the percentage except
wake and others during sleep), the time to first deep sleep, and the percentage of each sleep stage for each

quarter of the night.

C. Classification

Figure 4.3 shows the distribution of performance improvement across the 24 participants x 3 nights = 72

nights.
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Figure 4.3 VDT performance improvement (N=24, 3 nights)

We grouped the participants into the following three groups.
1) the highest and lowest 33% of VDT improvement
2) the highest and lowest 20% of VDT improvement

3) the highest and lowest 20 % of VDT improvement only in hospital and laboratory nights (because we

have PSG only for those nights).

For each of the three groups of data, we compared 6 methods:

A)  Support vector machine with linear kernal

B)  Support vector machine with Gaussian (radial basis function, RBF) kernel
C)  Principal component analysis (PCA) and linear discriminant analysis

D)  PCA and support vector machine with linear kernal

E)  PCA and support vector machine with Gaussian (RBF) kernel

F)  PCA and k nearest neighbors (k=1-5)

Each method was run with 4 variations of features (a-d) for the nights of hospital, laboratory and home and

run with 7 variations of features (a-g) for only the nights of hospital and laboratory,

a) All features
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b) EDA features only

c) ACC features only

d) EDA+ACC features

e) EEG features only

f) Sleep stage features only
g) EEG+EDA+ACC features

and compared classification accuracy with the 10-fold cross validation (trained the model with 90% of the

data, tested with the remaining 10% and repeated this procedure for 10 times)

4.1.3 Results

As a baseline, because of prior published findings on how SWS and REM interact with VDT improvement,
we examined the classification result using the percentage of SWS in the 1% quarter and percentage of REM
in the 4" quarter of the night (Figure 4.4). The accuracy of predicting VDT performance is mostly around
60% or below it.
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Figure 4.4.Accuracy of classification of VDT performance using the percentage of SWS in the 1 quarter
and REM in the 4" quarter of the night
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Figure 4.5 shows the comparison of classification accuracy using physiological features and classification
methods for the highest and lowest 33% of VDT performance improvement. The features from EDA alone
showed the highest accuracy, around 60-70% beating every one of the other three feature set combinations,
while being tested on all six machine learning systems (these results were quantitatively proven with 10-

fold cross validation even though we did not use statistical analysis).
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Figure 4.5.Accuracy of classification using the highest and lowest 33% of VDT performance
improvement

Figure 4.6 shows the comparison of classification accuracy with features and classification methods for the
highest and lowest 20% of VDT performance improvement. The features from EDA again showed the
highest accuracy, 74%, this time either by appearing solo as the top performer or in three cases appearing

in combination with accelerometer data.
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Figure 4.7 Accuracy of classification using the highest and lowest 20 % of VDT performance
improvement only in hospital and laboratory nights
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Figure 4.7 shows the comparison of classification accuracy with features and classification methods for the
highest and lowest 20% of VDT performance improvement for the nights where we also had PSG at the
hospital and laboratory. The features from EDA solo or EDA + ACC showed the highest accuracy, 67%,
followed by EEG + EDA + ACC. Thus, EDA was again a part of all the top performing features.

In all the comparisons here, overall, either solo EDA features or EDA + ACC features improved
the classification accuracy compared to use of sleep stages and to use of only EEG. In this paper, we applied
PCA to reduce feature dimensions, but as a next step, we will apply feature selection methods to investigate
relevant features in EDA and compare which features work better to predict the memory consolidation task.
Why would EDA changes play a significant role in prediction of performance on a VDT task? This cannot
be fully explained by the finding that EDA activity can show some signs of SWS or NREM2 sleep. While
this question remains unanswered, this phenomenon is intriguing to look into more, in part because it’s
known that EDA during wake is increased with greater engagement and arousal, which then is believed to
help predict memory. Now we also see that for sleep, the use of electrodermal physiology is showing

patterns that invite greater exploration.
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4.2 Comparison of Sleep-Wake Classification using
Electroencephalogram and Wrist-worn Multi-modal
Sensor Data

This study presents the comparison of sleep-wake classification using electroencephalogram (EEG) and
multi-modal data from a wrist wearable sensor. We collected physiological data while participants were in
bed: EEG, skin conductance (SC), skin temperature (ST), and acceleration (ACC) data, from 15 college
students, computed the features and compared the intra-/inter-subject classification results. As results, EEG
features showed 83% accuracy while features from a wrist wearable sensor showed 74%. The combination
of ACC and ST played a more important role in sleep/wake classification by 30-s epochs than other subsets

of the wearable sensor data.

4.2.1 Introduction

Sleep/wake identification has been used both in clinical fields and personal health/wellness fields.
Clinically, polysomnography (PSG) has been used to monitor sleep and identify sleep disorders in sleep
labs as a gold standard; however, it has disadvantages requiring the patient to stay one or more nights in the
lab wearing uncomfortable sensors and wires. Actigraphy has been used to monitor long-term sleep wake
cycles [Blackwell, 2011]. Cole et al. showed that sleep and wake are classified with an accuracy of 88%
using wrist-worn actigraphy and regression analysis comparing the wrist data to sleep stages from PSG in
bed with 1 min epoch data [Cole, 1992]. Some other researchers have applied machine learning or new
algorithms to improve the accuracy [Sadeh, 1994][ Tilmanne, 2009][Pollak, 2001] or used other data (heart
rate variability from electrocardiogram (ECG)) [Elsenbruch, 1999][Lewicke, 2008]. Recently, many
wearable devices have been on the market and most of them have multiple sensors (accelerometer,
photoplethysmogram, etc). Due to advances in device technology, more wearable devices will come to the

market with multi-modal sensors.

In this study, we compared the sleep/wake classification using physiological data taken while
participants were in bed, using polysomnography (PSG) as a gold standard and skin conductance (SC), skin
temperature (ST) and acceleration (ACC) data from a wristband sensor. We investigated which features

from which modality play the most important roles in the sleep/wake classification.

4.2.2 Methods

A. Data Collection
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Fifteen college students participated in sleep measurement in a hospital sleep laboratory. They wore
electrodes for electrooculogram (EOG), for EEG on C3 and C4 (International 10-20 system), and for
electromyogram (EMG) on their chin and a wrist sensor (Q Sensor by Affectiva) to measure SC, ST, and
ACC on their dominant hand. The EEG, ECG and EMG were sampled at 200 Hz and the wristband data
were sampled at 8 Hz. Sleep stages were scored for each 30-s epoch sleep data based on standard PSG
criteria measuring EEG, EOG and EMG [Rechtschaffen, 1968). Figure 4.8 shows a sample representation
of one night’s data from one participant. The experimental procedure was pre-approved by the Committee

on the Use of Humans as Experimental Subjects at the Massachusetts Institute of Technology.
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Figure 4.8 Raw skin conductance, 3-axis accelerometer data, skin temperature, manually scored sleep
stages from PSG (red marks mean wakefulness), and EEG spectrogram (channels C3 and C4) for one
night for a healthy college student

B. Feature Extraction

We computed the following features for building machine learning classifiers.

a) Electroencephalogram (EEG) (16 features were computed per epoch)

We calculated the z-score of the power spectrum density for the frequency bands (delta (0.5-4 Hz), theta
(4-8 Hz), alpha (8-12 Hz) and beta (12-30 Hz) over the night for averaged EEG at electrode locations C3
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and C4. We then computed the average, standard deviation, maximum and minimum of the z-scored power

spectrum density of averaged EEG at electrodes C3 and C4 per epoch.

b) Skin Conductance (SC) (7 features per epoch)

First, for de-noising, we low-pass filtered the SC data (cutoff frequency 0.4 Hz, 32nd order FIR filter)
before computing the features. We normalized the amplitude of the SC in a range between minimum and
maximum amplitude over the night, then obtained the first derivative of the filtered SC. We detected SC
“peaks” based on those that exceeded 0.02 uS/s threshold and counted the number of peaks per each 30-
second epoch. Our previous study has shown that SC peaks are much more likely to occur during SWS or
Non-REM (rapid eye movement) sleep [Sano, 2011]. We also computed the mean, standard deviation,
median, maximum and minimum of the normalized SC amplitude (normalized by the maximum and the
minimum SC amplitude over the night) and gradient from linear least square fitting for each 30-s epoch.
For SC peaks, we computed the total number for each 30-s epoch and the standard deviation of the number

of SC peaks per 30 s epoch over the night.

c) Acceleration data (ACC) (7 features for an epoch)

We applied a 2-3 Hz band pass filter to the accelerometer data and then counted the number of times of the
three axis amplitude root mean square (RMS) values crossed 0.01 (the number of zero-crossings) for each
30-s epoch. We then applied Cole’s “D” function to score “wake” or “sleep” for each 30-s epoch [Cole,
1992]. We also computed the mean, standard deviation, maximum and minimum of the root mean square

of three axis acceleration data for each 30-s epoch.

d) Skin Temperature (ST) (5 features for an epoch)
We normalized the temperature data using the maximum and minimum values over the night and computed
the average, standard deviation, maximum, minimum and gradient from linear least square fitting for each

30-s epoch.

B. Classification

We grouped SWS, non-REM2, non-REM1 and REM into sleep. As we have more sleep epochs than wake
epochs given all the data was from lying in bed, we extracted sleep epochs randomly to equalize the number
of sleep and wake samples.

We defined the following 6 methods (A-F), 2 datasets (1-2) and 15 feature combinations (a-o) for
systematic evaluation.

Classifiers:
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A)  Support vector machine with linear kernel (SVM linear)

B)  Support vector machine with Gaussian (radial basis function) kernel (SVM RBF)

C)  K-nearest neighbor (kNN, k=1-4)

D)  Feature selection (exhaustive feature selection by maximizing the J3 measure associated with
the scatter matrices (maximize separability of the features from 2 classes) [Theodoridis, 2010] to find
the best 2-6 features for EEG or data from the wrist sensor) and SVM linear

E)  Feature selection (exhaustive) and SVM RBF

F)  Feature selection (exhaustive) and kNN (k=1-4)

Data-sets
1) Intra-subject classification
Within each participant, we identified 11-98 epochs from each of wake and sleep. We trained the models
using 90% of the data, tested with the remaining 10% of the data and repeated this procedure 10 times, each
time leaving out a different 10% of the data (10-fold cross validation). Then, we reported the mean accuracy.
2) Inter-subject classification
We divided the data (total # of epochs = 661) into 10 sets, performed training with the one set from all
except one subject data, tested with one set of the remaining one subject data and repeated this procedure

10 times.

Feature sets
a)EEG, b)EEG+ACC, c)EEG+SC, d)EEG+ST, e) EEG+ACC+ST, f) EEG+SC+ACC, g)EEG+SC+ST,
h)EEG+ACC+SCHST, i)SC, j)ACC, K)ST, )ACC+SC, m)SC+ST, n)ACC+ST, 0)ACC+SC+ST

We compared the classification results for the following combinations.

1) Intra-subject + Feature sets a - 0 + Classifiers A - C

2) Inter-subject + Feature sets a - o + Classifiers A - C

3) Inter-subject + Feature sets a - o + Classifiers D - F

4.2.3 Results

A. Intra-subject classification
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Figure 4.9 shows the classification comparison for intra-subject data-sets. EEG showed 91% and EEG +
other features boosted the accuracy to 95% (EEG+SC+ACC) and 96% (EEG+ACC+SC+ST). The features
from only the wristband sensor showed 86% (ACC+SC+ST) and 84% (SC+ST, ACC+ST). Of the single
wristband features, ST was the best (79%) followed by SC (75%), with ACC the lowest (67%).
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Figure 4.9 Accuracy of intra-subject classification.

B. Inter-subject classification

Figure 4.10 shows the classification comparison for inter-subject data sets. All of the features
EEG+ACC+SC+ST and EEG+SC+ACC showed the best classification rates (85%). Of the wrist features,
ACCHSCHST and ACCHST showed 74%. Of the single wristband features, ACC was the best (68%),
followed by ST (67%) with SC the lowest (51%). Thus, we found ACC worked better when looking across
subjects than within subjects. Figure 4.11 shows the Receiver Operating Characteristic (ROC) curves of

EEG features vs wrist features. Of the wrist features, ST was dominant.
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Figure 4.11 Inter-subject ROC curves for sleep-wake classification with EEG+ACC+SC+ST,
EEG+SC+ACC, ACC+SC+ST and ACC+HST

C. Inter-subject classification with selected features

We applied exhaustive search over sets of sizes 2-6 features for each modality and compared the

classification rate. Table 4.1 shows the best feature subsets for each modality for each classifier with the
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highest classification rates. Some of the features were chosen multiple times by different classifiers. The
best EEG features and the best wrist features showed 83% (EEG features: mean (Z-score, theta), mean (Z-
score, alpha), SD(z-score, alpha), SD(z-score, beta), min(z-score, alpha)) and 73% (ACC: Coefficient from

the Cole's function and ST: mean, min and gradient (normalized ST)) respectively.

4.2.4 Discussion

In all of the classifications, as expected since EEG is part of the sleep/wake ground truth in PSG, the EEG
features showed the best accuracy - over 85%. The ACC features performed much lower, only 67-68%,
which is lower than Cole reported. This may be because we used 30s epochs and Cole et al used one minute
epochs. Furthermore, we did not apply Webster’s rescoring methods [Webster, 1982] which serve as a filter
that allows rescoring of sleep scores as wake scores when short periods scored as sleep are bounded by
longer waking intervals on either side. Jean-Louis et al used different actigraphy than the one Cole et al
used and showed that the rescoring rules can decrease the sensitivity of sleep detection but increase the
specificity and that they improved the accuracy in detecting sleep and wakefulness in 24-h recordings, but
not for in-bed recordings [Jean-Louis, 2001]. In addition, we did not use previous epochs to estimate current
state and we also used a different source of ACC. As next steps, we can customize and apply rescoring
methods for our dataset or test temporal machine learning models or features. SC was very person-
dependent, performing 75% when it had some training data from the subject it was testing on, but only 51%
when trained and tested on different people. Some SC features related to sleep that have been reported as
robust such as decrease in palm skin potential level after sleep onset [Hori, 1982] were not included in our
data. Also, SC storms in non-REM sleep [Sano, 2014a] are not represented in but 51% of the randomly
selected sleep data in our tests, while SC tends to be active in wake before and after sleep; thus, we are not
surprised that use of SC in only a 30-sec epoch is not a strong indicator of sleep vs. wake when judged by
the score of only epochs. Skin temperature showed an important role in epoch sleep/wake classification.
Kréduchi et al. indicated distal skin temperature increase at sleep onset and dramatic decrease at wake up
[Kréuchi, 2004]. Although we maintained the balance between the number of wake epochs and sleep epochs
for training and testing data, the quality of the dataset could improve if we collected more of the day’s data
over wake epochs, and used this larger set of data. Once again, in this chapter, we aimed to classify the
sleep/wake states using physiological data taken while participants were in bed. Sleep-wake detection from
24/7 wearable sensor data is another problem to solve, which our research group is also working on

separately from this thesis.
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4.2.5 Conclusion

We compared sleep-wake classification accuracy with EEG from the scalp, and ACC, SC and ST from a
wrist sensor, taken while participants were in bed. We applied three types of machine learning, paired with
feature selection methods, in order to identify features that best discriminated sleep and wake. We found
EEG features showed 83% accuracy while features from a wrist wearable sensor (the combination of ACC
and ST showed 74% in inter-subject classification. This result implies that the combination of ACC and ST

is better than ACC solo which is currently used in commercialized actiwatches.
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Table 4.1 Summary of the best features (Features with higher grand total are more robust

regardless of classifiers).

Modality Features computed for every 30sec SVM linear | SVM RBF kNN Grand Total
epoch.

EEG n(z-8) 1 1/3 0.33
wz-0) 1 1 1 3/3 |
wz-a) 1 1 1 3/3 1
wz-p) 1 1/3 0.33
o(z-8) 1 1 2/3 0.66
o(z-0) 1 1 2/3 0.66
o(z-a) 1 1 1 33 1
o(z-p) 1 1 1 3/3 1
max(z-9) 1 0/3 0
max (z-9) 0/3 0
max (z-a) 1 173 0.33
max (z-f3) 1 173 0.33
min(z-8) 1 1/3 033
min (z-0) 0/3 0
min (z-a) 1 1 1 3/3 1
min (z-f3) 1 1/3 0.33

ACC #of ZC 1 1/3 0.33
coefficient from the Cole’s function 1 1 1 3/3 1
W/S score from Cole’s function | 1 2/3 0.66
p (RMS of 3axis ACC) 0/3 0
o (RMS of 3axis ACC) 0/3 0
max (RMS of 3axis ACC) 1 1/3 0.33
min (RMS of 3axis ACC) 1 173 0.33

SC # of SC peaks 1 1/3 033
1t (normalized SC) 1 13 033
M (normalized SC) 1 1/3 0.33
o ( normalized SC) 1 1/3 033
max ( normalized SC) 1 173 0.33
min( normalized SC) 1 1/3 0.33
Gradient 1 1 2/3 0.66

ST u (normalized ST) 1 1 1 3/3 1
o ( normalized ST) 0/3 0
max ( normalized ST) 0/3 0
min( normalized ST) 1 1 1 3/3 1
Gradient 1 1 1 3/3 1
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Chapter 5
SNAPSHOT Study: Study Design and
Measurement

Now I have completed describing the introduction, related work and some of our previous projects related
to the new kinds of methods and measures developed in this thesis. In this chapter, I describe the design,
execution and high level research questions of the SNAPSHOT Study, a large new study that seeks to
measure: Sleep, Networks, Affect, Performance, Stress, and Health using Objective Techniques.

This study was initially designed to investigate how interactions in a social network influence sleep
behaviors. We also added measurement of other multi-modal factors to investigate how daily behaviors
influence sleep, stress, mood, and other wellbeing-related factors.

Each semester, we study N=50 MIT undergraduate students who are socially connected (calling or
texting at least once a week, with a minimum # of people in a group >=5) for about 30 days (Figure 5.1).
So far we have collected data from N= 168 over 3 semesters and a pilot study. We collected over 100,000
hours of continuous ambulatory measurements together with surveys and measurements in the laboratory
to obtain subjective and objective labels about sleep habit, stress, academic performance, social interactions,
mood, sickness and circadian phase (dim light melatonin onset) (Table 5.1). Details of recruitment (section

5.1) and measures (section 5.2) will be described in the following sections.
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Table 5.1 Our measurement (more details will be described in section 5.1.2)

Objective Wearable Sensor Skin conductance
measurement (continuous) Skin temperature
3-axis acceleration
Light Exposure
Mobile Phone Call, SMS logs (only timestamps and phone numbers),
(continuous) Screen on/off timing
Location
Application usage
Email Email logs (only timestamps, to, cc)
(continuous)
Lab measurement Melatonin
(once during 30 days) | Cognitive performance
Stress task responses
Subjective Pre-study 8 surveys about demographics, morningness-
measures (once) eveningness, sleep habit, personality, stress, mental and
(Surveys) physical health and social interactions
Daily survey 16 morning questions, 18 evening questions about

(every morning and

academic, exercise, extracurricular activity, sleep,

evening) caffeinated/alcoholic drink and drug intake, social
interactions, wellbeing-related measures (alertness,
happiness, energy, healthiness and calmness)
Post-study 5 surveys about stress, anxiety, mental and physical
(once) health and social interactions
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Figure 5.1 Study timeline

The Massachusetts Institute of Technology Committee On the Use of Humans as Experimental

Subjects (COUHES) approved this study and all participants gave informed consent.

5.1 Recruitment

We intentionally recruited a group of MIT undergraduate students who were socially connected. Our
definition of “socially connected” was “making a call or SMS at least once a week” and we recruited a
group of at least 5 people who knew each other and interacted socially. We posted our study advertisement
to undergraduate students’ mailing lists and the potential participants filled out the screening questionnaire.

Our exclusion criteria were the following

- Non-Android phone users

- People who have a problem wearing wrist sensors (e.g. irritated skin on wrist, etc).

- Pregnant women

- People who have traveled more than one time zone away one week prior to the study or have plans to
travel more than one time zone away during the study

- People under 18 years and over 60 years old

In our study, we targeted only Android phone users because other smart phones (e.g. iPhone) did
not allow us to monitor phone usage in detail. Specifically, our participants consented to let us know whom
they communicate with over calls and SMS, which we needed to create social network models for each

participant.
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After we screened the potential participants, we invited the screened participants to the
SNAPSHOT information and consent sessions. For each session, we invited about 15 participants and
explained about the study and tasks participants will do during the study period. After participants signed
a consent document on joining the study, they filled out pre-study questionnaires, started wearing devices,
and installed an Android application on their phone. Details of measurement will be explained in the next

section.

5.2 Data Collection

Since we started the SNAPSHOT study in fall 2013, we have recruited 169 participants (age: 18-25, 19.6
+ 1.5, male: 107). 7 participants dropped out before completing the study, leaving us with 162 who
completed the full 30-day SNAPSHOT. (See Appendix B and C for more details about demographics about
participants)

Pre-study Questionnaires

Prior to the study, participants completed the morningness-eveningness questionnaire [Horne, 1976], the
Pittsburgh sleep quality index test [Buysse, 1989] to determine their habitual sleep patterns, the Myers
Brigg Personality test and the Big Five Inventory Personality Test [John, 1999] to understand their
personality factors, the Perceived Stress Scale (PSS) to understand their stress level, SF-12 to understand
their physical and mental health condition, and a set of social network surveys to help us map their social
networks. We also collected age, sex, academic major and living situation (both living group name and

whether single or multiple occupancy room).

Ambulatory Monitoring

Throughout the 30 days, participants wore two.wrist band sensors: Q-sensor (Affectiva, USA) to measure
EDA, skin temperature, 3 axis acceleration on their dominant wrist and Motion Logger (AMI, USA) on
their non-dominant wrist to measure acceleration and ambient light data, taking them off only to shower,
swim, or when privacy was desired. In addition, an Android phone application that we modified based on
funf [Aharony, 2011] monitored location, receiver, sender and timing of calls and text messages, screen
on/off timings, and use of mobile phone applications on the mobile phone. Participants also kept daily

morning and evening diaries about sleep and wake times, nap, exercise, academic and extracurricular
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activity times, social interactions, caffeine, alcohol, and drug intake, overall health condition, sleep, mood,
and stress each day upon awakening and at bedtime (See Appendix). Participants also signed a certificate
of confidentiality when they consented on joining the study.

Acceleration was measured to estimate activity levels and sleep/wake patterns. Skin conductance
(SC) was measured because it represents autonomic arousal during the day and provides a stress index; its
responses during sleep are highly likely to occur in either non-REM Stage 2 sleep or Slow Wave Sleep, and
help to characterize sleep better than using only acceleration data from actigraphy in some cases [Sano,
2014a). Skin temperature also helps to understand sleep/wake patterns [Sano, 2014b], while acceleration
helps show activity and sleep patterns. We hypothesize that physiology combined with daily behavior data
can be used to predict aspects of sleep behaviors, academic performance, and self-reported stress and mental
health better than any of these measures alone.

Phone and email usage was measured for two main reasons: First, lighting from the interaction with
mobile phones or emailing late at night could disturb the biological circadian clock and increase alertness,
both of which can influence sleep patterns [Cajochen, 2011, Chang, 2014]. Second, phone and email usage
and location data give clues to sociability. The timing of calls, SMS, emails and “screen on” provide an
estimate of how often participants interact with their phone during the day and the night, while the number

of calls, SMS and emails and the number of people they interact with helps quantify their social interaction.

Melatonin Assessment of Circadian Phase

Circadian phase is a potent influence on human sleep timing and content. The dim light melatonin onset
(25% of the fitted nighttime peak), is a highly robust marker of circadian phase [Lewy, 2007]. Once in the
30 day study period, participants spent a night at the Brigham & Women’s Hospital. Saliva samples were
collected every 60 minutes from late afternoon to the next morning in dim light conditions, beginning 8

hours before normal bedtime to calculate circadian phase for each participant.

Post-study Questionnaires and Other Measures

In addition to the above measures, academic performance (overall GPA) in the previous and at the end of
the study semester were collected by self-report from each participant. Email usage during the experiment
(to, from, cc and timestamps) was collected through the MIT website Immersion
(https://immersion.media.mit.edu/) at the end of the study. In addition, based on their phone call, SMS and
email usage during the experiment, participants were asked to identify these most frequent contacts and

whether they had positive/neutral/negative interactions with these contacts and which category they belong
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to (family/social/work/others) as a whole over the month. At the end of the study, participants filled out the
PSS, SF-12 and social network surveys again and also the State-Trait Anxiety Index [Spielberger, 1983].
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Chapter 6
Data Cleaning, Pre-processing, Feature
Extraction and Data Characteristics

In this chapter, we describe data cleaning and pre-processing methods and characteristics of our data.

6.1 Data Cleaning and Pre-processing

6.1.1 Sleep/wake Scoring and Sleep Regularity

Sleep/wake onsets were determined by the Brigham & Women’s Hospital (BWH) team using a combination
of wrist actigraphy and sleep diaries and their written standard operation procedure. In addition to bed time,
wake time and regularity, BWH’s team defined and computed sleep regularity as a value of 0 - 1 based on
the likelihood of sleep/wake state being the same time-points 24 hours apart (equation 6.1). Sleep regularity
is another index to evaluate sleep wake patterns which is not evaluated with conventional sleep surveys
such as PSQI. Some studies have pointed out the importance of this sleep regularity measure [Clerx, 2014,

Clerx, 2015, Bei, 2015] in addition to sleep duration.

1+=2 [T s(t)s(t+7) dt
Sleep regularity index = =il SZ T (eq. 6.1)

,where s(t)=1 during wake and s(t)= -1 during sleep.
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Suppose data are collected for y=[0, T]. Choose t =24.

Figure 6.1 shows the examples of the most regular and irregular participant in the study.
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Figure 6.1 Raster plots of the most regular and the most irregular sleepers in our study
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6.1.2 Separation of Ambulatory Electrodermal Activity in Day and Sleep
Activities based on Activity Magnitude and Sleep-Wake Scoring

With ambulatory measurement systems, researchers have started measuring 24/7 EDA data in daily life and
identifying EDA features related to stress and sleep [Muaremi, 2014, Sano, 2015]. EDA responses can be
elicited from multiple processes, including thermoregulation, motor, and affective processes. In order to
understand long-term ambulatory EDA, we separate daytime and sleep EDA. Within the daytime, we also

separate exercise vs non-exercise-related EDA activity. A lot of research has been conducted to recognize
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activities [Chernbumroong, 2011]. In this work, we aim to obtain rough estimate of three activity levels
(sitting, walking and running) in a simple way and leverage it to compute EDA features under different
activity levels. We used wrist acceleration data (ACC) and identified activity magnitude thresholds to
separate daytime activity into sitting, walking and running levels. We compare ambulatory EDA amplitude

and peaks under sitting, walking, running level activities and 1st-4th quarters of sleep.

Methods

In order to train a classifier for sitting, walking and running, we collected non-dominant outer wrist 3-axis
ACC data from N=68 participants using the Q-sensor (Affective, USA) while participants went through the
following experimental procedure 1) sit still and watch a relaxing video for 5 minutes 2) sit and fill out
surveys 3) sit and perform a “counting backwards by 7°s” and stroop tasks for 5 minutes 4) walking 5)
running. We computed activity magnitude (AM) using the equation 6.2 and drew histograms of mean
activity magnitude under 5 different tasks. Then, we applied a maximum likelihood decision rule to identify
thresholds to separate sitting (1-3), walking and running distributions. We applied these thresholds and
sleep-wake scorings (from activity data and sleep-wake diaries) to ambulatory ACC and EDA data from
N=20 people collected over ~30 days per person, for a total of 600 days. We compared EDA amplitudes
and number of peaks per 30s epoch for sitting, walking and running and for the first through fourth quarters
(1Q-4Q) of each night’s sleep (see the detailed peak detection method in [Sano, 2014al)).

N
AM = E AM, + J(Rath — Rm,)? + (Raw,,, — Rm,)? + (Raw,; — Rm;)? (eq. 6.2)
t=0

where AM = Activity Magnitude, Raw = Raw accelerometer sample

Rm = running mean in a previous 5 seconds window, N = number of raw data samples received in one

second
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Figure 6.2 Boxplots of activity magnitude

Figure 6.2 shows boxplots of the activity magnitude from 5 activities. We obtained values 966 and 2059
for sitting-walking and walking-running thresholds. We compared the mean of EDA amplitude and # of
peaks (Figure 6.3). EDA amplitude and peaks increased as activity level got higher. For sleep, we found
the highest amplitude in 2Q sleep and the largest number of peaks in 1Q sleep (ANOVA, post-hoc).

42 m Amplitude m# of peaks
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Sitting  Walking Running Sleep 1QSleep 2Q Sleep 3QSleep 4Q
Figure 6.3 Comparison of ambulatory EDA amplitude

EDA artifact detection

We collected 24/7 EDA data except during times when they took a shower or were at risk of breaking their
sensor. We applied the EDA artifact detection algorithm developed by our research group at MIT [Taylor

and Jaques, 2015] to 5 second epochs of EDA data and obtained a label of clean/artifact/unknown output
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for each Ss epoch. Using these 5s labels, we defined 30s epochs as clean or artifact: if we had artifact epochs

for more than 15 seconds, that 30s epoch was defined as artifact.

6.2 Feature Extraction

Table 6.1 shows 183 features extracted from the collected data. We computed both monthly-averaged
features and daily features from 30 days of data. In this thesis, we computed only features we can interpret
relatively easily for physiology in contrast with more non intuitive features in our previous paper [Sano,
2015].

EDA was processed with the same method we used in chapter 3. For ACC data in wakefulness,
we separated the data into sit, walk and run episodes based on thresholds we computed in the previous
section and computed EDA features for sit, walk, and run episodes in order to separate EDA responses into
psychological and activity-related ones. Then, we extracted mean, median and SD of the whole day’s ACC,
EDA and TEMP patterns. In previous work, we tried very detailed features from histograms and power
spectrum density data of each signal [Sano, 2015]; however, in this thesis, we focused on simple features

that can be interpretable.

Table 6.1 shows the features we computed:
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Table 6.1 Features

Surveys

Sleep (11 features)

Pittsburg Sleep Quality Index score, Morningness Eveningness Score,
sleep time, wake time, sleep latency, sleep regularity, how they wake
up (alarm or spontaneously), # of awakenings, duration of

awakenings, # of naps, duration of naps

Stress

(2 features)

Perceived Stress Scale (PSS) (pre-study and post-study)

Anxiety (2 features)

State and Trait Anxiety Score

Personality Traits

(5 features)

Big Five Test (Openness, Conscientiousness, Extraversion,

Agreeableness, Neuroticism)

Physical and Mental Health
(4 features)

Physical and mental health composite scores (PCS and MCS) from
SF-12 (pre-study and post-study)

Academic Performance

(2 features)

Grade point average (GPA) (previous and current semesters)

Wellbeing-related measures

(10 features)

Alertness, happiness, sluggishness, healthiness and calmness when

wake up and before sleep (0-100 scales)

Social Interactions

(14 features)

Social interactions before sleep (with person in person or through
electronic devices), frequency of memorable positive and negative and
very negative social interactions, and social interactions in the past one

month (% of interactions through face to face, email, SMS and
phone, % people with positive, neutral and negative interactions, % of
family members, friends, work-related colleagues each participant

interacted frequently in the past one month)

Activities

(5 features)

Total hours of academic(including classes, e-classes, sections,
seminars, labs, study groups), study(studying alone), exercise
(including sports, gym, cycling, etc), and extracurricular activities, last

intake time of caffeinated drinks
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Table 6.1 Features (cont)

Monitoring using phones or wearable sensors

Email Total # of sent emails, mean and SD of # of daily received/sent emails,
(10 features) # of people emails were addressed to, mean and SD of timestamps of
received and sent emails
Phone (CALL) Mean, median, SD of timestamp of each call, duration for each call,

(6 features)

total # of people called, incoming call %

Phone (SMS)
(8 features)

Mean, median, SD of timestamp of each SMS message, total # of
SMS messages, total # of people SMS messaged, Incoming SMS %,
0-3am outgoing SMS%, 3-6am outgoing SMS%

Phone (Screen on/off)
(10 features)

Time of each screen on/off, total # of screen on/off, total duration % of
screen on between 0-3am, 3-6am, 6-9am, 9am-12pm, 12-3pm, 3-6pm,

6-9pm and 9pm-0am

Phone (MOB: mobility)
(3 features)

Total distance per day and median and standard deviation of the

distance per day

Wearable sensor (ACC)
(31 features)

Mean % of sit, walk and run activities per day, mean, median and SD
of RMS values for day time, sit, walk, run and entire and 1-4Q sleep

and mean objective sleep quality from actigraphy

Wearable sensor (EDA) Mean, median and SD of amplitude for day time, sit, walk, run and
(27 features) entire and 1-4Q sleep

Wearable sensor (ST) Mean, median and SD of amplitude for day time, sit, walk, run and
(27 features) entire and 1-4Q sleep

Wearable sensor (light)
(8 features)

Light exposure mean and SD for 0-6am, 6am-12pm, 12pm-6pm, 6pm-

Oam
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6.3 Characteristics of Our Population

In order to understand the characteristics of our population, we describe statistics of our measurement from
our population. Table 6.2 shows statistics of general parameters (N=168). Big five personality test results

showed that our participants are less open, more conscientious and less neurotic than the average (50).

Table 6.2 Characteristics of populations (N=168)
Parameters Mean Median SD
Age 19.63 19.00 1.53
BMI 23.78 22.54 4.67
Openness 42.48 41.00 27.20
Conscientiousness 53.27 58.00 28.53
Extraversion 49.64 48.00 30.03
Agreeableness 50.06 50.00 28.41
Neuroticism 35.17 27.00 27.73
GPA previous semester 4.39 4.50 0.62
GPA for the semester 4.30 4.40 0.56

6.3.1 Characteristics of Sleep Related Behaviors, Stress, and Health

Table 6.3 shows characteristics of sleep related behaviors, stress and health (N=168). The averaged bed
time was 02:24 AM and wake time was 09:42 AM. On average, they slept for 7.0 hours; however, if we
look at the distribution of their daily sleep duration (Figure 6.4), 23.5% of the nights were less than 6 hours,
3.4% was the average percentage of days each participant had no sleep, and the maximum days a participant
did not sleep was 16.7% = 5 days per month. Their averaged PSQI score was 4.55: 49 % of the participants
are considered to be a poor sleeper (PSQI >=5). The averaged Owl & lark score was 42.8 and it was still
within neutral type but towards evening type (extreme morning type 70-86, moderately morning type 59-
69, neutral type 42-58, moderately evening type 31-41, extreme evening type 16-30). Thus, 43% of the
population was evening type. Within 15 minutes before their bed time on 35% of their study days, they
interacted with people through electronic media and on 58% of their study days, they interacted with people
in person.

Their average PSS was 14.8 in the pre study survey and 17.3 in the post study survey. Thus, 45 %
of the population was more stressed than the average for their age at the beginning of the study and it raised

up to 60% at the end of the study (14.2 is the average PSS over this age group). The averaged PCS was
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slightly higher than 50; that means our population was slightly physically healthier than average; however
the averaged MCS was lower than 50, which means their mental health scores were lower than average.
Detailed answers in SF-12 related to MCS are illustrated in Table B.7. Fifty-seven % of our participants
answered they felt downhearted and blue during the past 4 weeks either “some of the time”, “most of the
time” or all of the time” at the end of the study. Forty-five % of our participants said either “some of the
time”, “most of the time”, or “all of the time” to the question “During the past 4 weeks, how much of the
time have you had a problem that you accomplished less than you would like with your work or other
regular daily activities as a result of any emotional problems (such as feeling depressed or anxious)?”. In
addition, the averaged MCS difference was smaller than the averaged PCS. That means more participants
experienced reduced mental health scores at the end of the study.

We showed the distributions of daily subjective measures in Figure 6.5-6.9. Most of the
distributions were skewed and not Gaussian. Mean alertness was lower in evenings than in mornings. The
distributions of alertness, happiness and energy were different in mornings and evenings (Kolmogorov-
Smirnov test, p= 8.27e-54, 0.0090, 5.54e-12). Both morning and evening healthiness and calm distributions

were from the same distributions.
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Table 6.3 Characteristics of sleep behaviors, stress and health (N=168)

Category Parameters Mean |  Median SD
sleep Regularity 0.85 0.87 0.11
PSQI Score 4.55 4.00 2.20
Owl & lark 42.76 43.00 9.05
DLMO 23.11 23.08 1.74
Sleep quality (from actiwatch) 94.86 95.64 2.70
Probability of pre_sleep_activity interacting with
people through electronic media (e.g. emails, calls,
SMS, skype, chat, online games) 0.35 0.27 0.27
Probability of pre_sleep activity interacting with
people in person 0.58 0.61 0.26
Spontaneously awoke 0.40 0.38 0.20
Awoken by an alarm 0.52 0.53 0.21
Awoken by disturbance 0.08 0.07 0.09
Bed time [hour] 26.4 26.3 1.9
Sleep latency [mins] 15.0 10 28.2
Wake try time [hour] 9.7 9.5 1.8
Sleep duration 7.0 7.2 2.3
# of awakening per night 0.72 0 1.2
Awakening duration [min] 6.0 0 35.1
Nap duration 22.5 0 59.8
Stress PSS Score pre 14.77 14.00 7.35
PSS Score post 17.32 17.00 7.12
Physical PCS pre 57.62 58.26 4.27
Health PCS post 57.52 58.20 4.91
delta PCS -0.01 0.00 4.31
Mental MCS pre 4433 46.47 8.20
Health MCS_post 40.33 42.05 9.14
delta MCS -4.25 -2.79 7.90
Subjective | Alertness_Morning 51.8 52 26.5
dmae]:;);ures Happiness Morning 62.3 63 22.2
Energy Morning 52.1 51 24.6
Health Morning 65.7 70 24.9
Calmness Morning 54.6 55 25.2
Alertness Evening 42.4 38 26.9
Happiness Evening 62.0 64 23.7
Energy Evening 48.0 48 24.2
Health Evening 65.7 70.5 24.9
Calmness Evening 54.5 55 26.1
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6.3.2 Characteristics of Social Interactions

Statistics about social interaction are shown in Table 6.4. The percentage of contacts reported as “social”

in the frequent contacts was more than 50% and the % of interactions reported as “family” was the smallest.

The majority of their interactions were positive (average 63%) and face-to-face interaction was the most

common followed by email, SMS and phone. During the 30 day study period, they had positive interactions

on 25% of the days and negative interactions on 11% of the days.

Table 6.4 Characteristics of social interactions (N=164)

Category Parameters : T Mean | Median SD
§ocial ) Family contacts /# of total frequent contacts 0.06 0.06 0.05
interaction [ g ocial contacts /# of total frequent contacts 0.52 0.54 0.18
Work contacts /# of total frequent contacts 0.14 0.10 0.12
Positive contacts /# of total frequent contacts 0.63 0.64 0.19
Neutral contacts /# of total frequent contacts 0.14 0.11 0.13
Negative contacts /# of total frequent contacts 0.02 0.00 0.03
Phone contacts /# of total frequent contacts 0.38 0.38 0.23
Email contacts /# of total frequent contacts 0.56 0.57 0.21
SMS contacts /# of total frequent contacts 0.47 0.52 0.21
Face-to-face contacts /# of total frequent contacts 0.62 0.65 0.21
Days with a memorable positive interaction / total
# of days in study 0.25 0.19 0.24
Days with a somewhat negative interaction/ total #
of days in study 0.08 0.03 0.12
Days with very negative interactions/ total # of
days in study 0.03 0.00 0.05
Days with neither positive nor negative interaction
/ total # of days in study 0.63 0.70 0.25

6.3.3 Characteristics of Mobile Phone Usage

Table 6.5 shows the statistics about phone calls, SMS and screen-on time on their mobile phones.

Participants turned on their phone screen 113 times on average for 126 minutes per day on average. Figure

6.10 shows the percentages of call, SMS and screen on every 3 hours. Screen-on, call and SMS percentages

for night time (9pm-3am) were 25.2 %, 26.7% and 21.3%.

100




Table 6.5 Characteristics of phone usage (N=152, 3065 days)

Category Parameters Mean |  Median SD
Phone call Total number of phone calls per day 4.6 3 6.1
Total number of people each participant interacted
with per day by calls 2.4 1 3.6
Total duration of phone calls per day [mins] 14.1 3.2 42.0
SMS Total number of SMS per day 40.7 26 45.5
Total number of people each participant interacted
with per day by SMS 4.9 4 3.8
Screen on Total number of times screen turned on 113.3 93 87.8
Total duration of screen on [mins] 125.8 110.2 87.8
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Figure 6.10 Phone usage distributions
6.3.4 Characteristics of Daily Activities

Table 6.6 shows the characteristics of daily activities. Participants reported spending 5 hours on average

per day for study including classes and studying by themselves. We also measured total amount of

caffeinated and alcoholic drinks and timing of drugs, but the analysis of these is saved for future work.
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Table 6.6 Characteristics of activities

Category Parameters Mean |  Median SD
Activities Total minutes of academic activities (including
classes, e-classes, sections, seminars, labs, study
roups) 132.9 120 136.8
Total minutes of study activities (studying alone) 178.7 180 166.9
Total minutes of exercise (including sports, gym,
cycling, etc) 26.4 0 70.9
Total minutes of extracurricular activities 59.7 0 607.9
14.3 16
Time of day of last caffeinated drink (2:18pm) (4pm) 6.9

6.3.5 Participant Behaviors on Days of Week

Next, we look at behavioral characteristics on days of the week (Figure 6.11-13). Bed time became later
from Monday to Saturday. Saturday bedtime (Saturday night) was significantly later than the ones from
Sunday to Thursday (p=6.79-11). Saturday and Sunday wake time were significantly later than the rest of
the days (p=5.57e-83). Like wake time, sleep duration from Friday to Saturday and from Saturday to Sunday
was significantly longer than the rest of the days (p=1.34e-12). Sleep duration from Thursday to Friday was
shortest of all and significantly shorter than duration on Sunday, Monday, Friday and Saturday nights. On
weekends, they did have much shorter academic activities such as classes. On Friday and Saturday, their

study time was significantly shorter than on other days (p=1.34e-12).
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Figure 6.13 Subjective wellbeing-related measures on days of week (N=165)

Figure 6.13 shows subjective measures on each day of week. Here, we show subjective measures right after
they woke up (morning) and right before they went to bed (evening). Alertness and energy in the mornings
were higher than in the evenings. Calmness was the scale which showed the largest difference between the
maximum and minimum, followed by happiness. Happiness on Saturday morning was the highest and
significantly higher than on Monday evening, Tuesday morning and Thursday morning and evening.
Calmness on Friday night, Saturday morning and evening was statistically significantly higher than on the
rest of the days (ANOVA, post-hoc test, p < 0.053).

6.3.6 Sensor Data

We have collected 4318 days of Q-sensor data from N=166 (total 103632 hours). We computed how much
data were within a normal range (Table 6.7). Also, 80% (& 23%) of the collected EDA data were classified
as clean data using the algorithm we described in the last chapter. Thus, among our collected EDA data, on
average, 64% (80% of the collected data within a normal range x 80% of the data was clean) can be used

for further analysis.
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Table 6.7 Statistics about our sensor data

Category Normal Range Percentage of the data within normal range

: Mean SD

EDA 0.01-30 microS 80 30
Skin temperature | 20-40 Celsius

degrees 99.7 2.6

Next, we computed mean and SD of EDA amplitude and number of peaks per 30-s epoch over sitting,
walking and running during daytime and 1-4 quarters of sleep (Figure 6.14). The EDA amplitude was higher
in day time than during sleep on average. EDA amplitude increased as activity magnitude became higher.
During sleep, the 2 quarter of sleep showed the highest amplitude. The number of EDA peaks was highest

during running, followed by walking, the 1*' and 2" quarters of sleep and when sitting.
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Chapter 7
SNAPSHOT Study: Data Validation,
Analysis and Results

In this chapter, we give examples of how the SNAPSHOT data is valid and useful for answering important
questions related to sleep, stress, mood and health. While the data and methodology enable hundreds of
questions to be addressed, we focus on only a few examples here.

As 1 described in the introduction chapter, the SNAPSHOT study is designed to collect rich daily
ambulatory data to understand interactions between sleep, and stress, mental health and other wellbeing-
related measures. In this validation, we focus on the following two things (1) the influence of sleep duration
and regularity, two different measures on sleep behaviors on stress, mental health and subjective wellbeing-

related measures (2) stress recognition using multi-modal data.

7.1 Influence of Sleep Regularity and Sleep Duration
on Academic Performance and Health

7.1.1 Methods

We analyzed the effect of sleep regularity and sleep duration on academic performance, physical/mental

health score (PCS, MCS), Perceived Stress Scale (PSS) and subjective wellbeing-related scores (alertness,
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happiness, sluggishness, healthiness and calmness). For the analysis, we used coarsened exact matching
[lacus, 2009] to control several covariates in two groups and then, we applied t-test or Man-Whitney U test
(for parameters with non-Gaussian distributions) to compare how these two groups are different.

In the following analysis, we tested several different coarsening methods to evaluate the consistency

of results.

(1) Sleep regularity

First, we analyzed the influence of sleep regularity on GPA for the semester, PCS, MCS, and PSS at the
end of the study, and the daily average subjective wellbeing-related measures. Sleep regularity was
computed from 30-day sleep diary (sleep and nap logs). We matched our samples with gender and with
monthly averaged sleep duration. For sleep regularity, we compared the following two criteria ((a) top and
bottom 40%, (b) >= 0.85 (mean), < 0.85). For coarsened matching of sleep duration, we used following
criteria, making sure these sets had the same representation in the two sleep regularity groups: Sleep
duration of (a) >= 6 hours, < 6 hours excluding naps; (b) >= 7hours, < 7 hours excluding naps; and (c) >=
7 hours, <7 hours including naps. We also controlled for gender, and stress level (PSS) at the beginning of

the study. Therefore, we compared the following:

(a) Sleep regularity (top 40% vs bottom 40 %) matched with gender and sleep duration (sans
naps, >=7 hours vs < 7 hours)

(b) Sleep regularity (top 40% vs bottom 40 %) matched with gender and sleep duration (sans
naps, >=6 hours vs < 6 hours)

© Sleep regularity (>=0.85 vs < 0.85) matched with gender, sleep duration (including naps, >=7
hours vs < 7 hours)

(d) Sleep regularity (top 40% vs bottom 40 %) matched with gender, sleep duration (sans naps,

>=T7 hours vs < 7 hours) and Perceived Stress Scale (post study, >=14 vs < 14)

(2) Sleep duration

Second, we analyzed the effect of sleep duration on GPA for the semester, PCS, MCS, and PSS at the end
of the study, and the daily average subjective wellbeing-related measures. We matched our samples with
gender and monthly sleep regularity. For sleep regularity, we compared the following two criteria ((a) top,
bottom 40% and mid 20%, (b) >= 0.85 (mean), < 0.85). For sleep duration, we compared the following
criteria (a) >= 7hours, < 7 hours for sleep duration excluding naps (b) top vs bottom 40% and (c) >= 7hours,

<7 hours including naps.
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7.1.2 Results

First, we show the comparison between regular and irregular sleepers with different coarsening in Tables
7.1,7.2,and 7.3.

Table 7.1 Comparison between regular and irregular sleepers (matched with gender (67%: male)
and 4 week average sleep duration sans naps (>=6 hours or <6 hours))

| Regular Irregular

(top 40% (bottom

N=19) 40% N=21) | p-value
GPA for the semester 4.38 4.35 0.87
PSS Score post 16.37 20.05 0.10
PCS post 55.16 57.35 0.12
MCS post 44.40 36.73 **0.01
Alertness_Morning 60.16 48.09 **0.01
Happiness Morning 67.02 55.96 *0.03
Energy Morning 62.15 47.45 | ***0.00
Health Morning 70.90 61.54 0.12
Calmness_Morning 57.96 49.90 0.14
Alertness_Evening 47.10 39.43 0.16
Happiness Evening 65.27 55.88 0.08
Energy Evening 52.13 43.50 0.08
Health Evening 69.13 61.84 0.24
Calmness Evening 57.07 48.98 0.17
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Table 7.2 Comparison between regular and irregular sleepers (matched with gender and 4 week
average sleep duration sans naps (>=7 hours or <7 hours))

Regular Irregular
(top 40% (bottom
| N=16) 40% N=16) | p-value

GPA for the semester 4.50 4.30 0.37
PSS Score post 16.19 18.50 0.28
PCS post 55.09 58.19 0.06
MCS _post 45.10 37.93 *0.02
Alertness_Morning 61.08 50.53 *0.05
Happiness Morning 68.01 59.75 0.09
Energy Morning 64.14 50.48 **0.01
Health Morning 73.31 65.92 0.24
Calmness Morning 58.72 53.30 0.31
Alertness Evening 51.25 42.13 0.11
Happiness Evening 66.83 59.56 0.15
Energy Evening 56.61 46.08 *0.04
Health Evening 71.98 65.63 0.32
Calmness_Evening 58.44 52.13 0.28

Table 7.3 Comparison between regular and irregular sleepers (matched with gender and 4 week
average sleep duration including nap (>=7 hours or < 7 hours))

Regular Irregular

(regularity>=0.85 | (regularity <

N=20) 0.85 N=34) p-value
GPA for the semester 4.35 4.35 0.95
PSS Score post 16.75 19.26 0.19
PCS post 55.56 57.89 0.08
MCS post 43.87 37.31 **0.01
Alertness Morning 59.58 48.05 **0.01
Happiness Morning 66.63 58.09 *0.05
Energy Morning 61.57 48.83 **0.01
Health Morning 69.81 61.17 0.09
Calmness Morning 57.97 52.06 0.23
Alertness_Evening 45.99 41.88 0.42
Happiness Evening 64.87 58.71 0.17
Energy Evening 51.33 45.90 0.25
Health Evening 68.07 62.26 0.28
Calmness Evening 56.96 51.51 0.31

With the three different coarsening methods, we found that regular sleepers have statistically significant

higher mental health score, higher alertness and energy level in the morning than irregular sleepers.
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Morning happiness was also either higher (p < 0.05) or trended toward being higher in the morning (p <
0.10) for regular sleepers.
In order to further examine the influence of sleep regularity on mental health score, we also

controlled for stress level using the perceived stress scale at the end of the study.

Table 7.4 Comparison between regular and irregular sleepers (matched with gender, average sleep
duration (>=7 hours or < 7 hours) and PSS (post) (>=14, < 14))

{ Regular Irregular

(top 40% | (bottom 40% |

N=18) N=21) /| p-value
GPA for the semester 4.38 4.32 0.83
PCS post 55.21 56.80 0.32
MCS post 44.06 36.31 *0.02
Alertness Morning 60.74 49.53 *0.05
Happiness Morning 67.13 54.71 *0.04
Energy Morning 62.17 46.44 **0.01
Health Morning 70.12 62.08 0.25
Calmness Morning 58.56 49.01 0.11
Alertness_Evening 47.06 38.35 0.14
Happiness Evening 65.31 54.76 0.09
Energy Evening 51.64 41.52 0.06
Health Evening 68.01 62.44 0.43
Calmness Evening 57.51 48.04 0.15

With stress level matching, gender matching and sleep duration matching, mental health was still
statistically higher in regular sleepers than irregular sleepers. Morning alertness, happiness, and energy

were also still higher in the regular than in the irregular sleepers (p<= 0.05).

Next, we analyzed the influence of sleep duration on mental health, stress and other health measures.

We also asked “how long do you need to sleep regularly for it to make a difference?” Thus, we analyzed
the influence of the most recent 4, 3, 2, and 1 weeks of sleep regularity on the mental health score at the
end of the study while matching for gender and sleep duration. We found that with 4 weeks and 3 weeks of
sleep regularity, regular sleepers showed higher mental health than irregular sleepers; however the

difference was not statistically significant when narrowed to only 2 and 1 weeks of sleep regularity.

To make sure that the test of the most recent “1 week of regularity” was not insignificant simply because 7

nights is not enough to provide statistical significance, we tested one other “single” week that we thought
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might be significant. We analyzed how the first 1 week of the 30 day period’s regularity influenced mental
health at the end of the study. The regular sleepers based on the first 1 week of sleep data showed higher
mental health than the irregular sleepers based on the first 1 week of sleep data. Thus, we see one week of
data is adequate to have statistical significance. In addition, we expected that sleep regularity got lower as
the semester went on; however, we did not find any statistically significant difference among the 1%, 2",
3" and 4" weeks of regularity. We also analyzed if those who were regular sleepers at the first week were
more likely to be regular sleepers in the later weeks. Sixty-five % of the first week’s regular sleepers were
regular sleepers at the following 2"-4" week and 56 % of the first week’s irregular sleepers were irregular
sleepers for the following 2™-4™ weeks; therefore, for the majority of our participants, sleep

regularity/irregularity was consistent over the semester.

Next, we considered the impact of sleep duration, while controlling for other factors. Tables 7.5-7.8 show
the comparison between short and long sleepers with different coarsening. Our results showed higher PCS
(physical health) scores at the end of the study (Table 7.6) and higher morning healthiness in long sleepers
(Table 7.7); however these results were not consistent over the different ways of coarsening the control

variables.

Table 7.5 Comparison between short and long sleepers (matched with gender and sleep regularity (top

40% or bottom 40%))
long (top
short (bottom | 40% p

: 40% N=15) | N=17) value
GPA for the semester 4.28 4.50| 0.35
PSS Score post 17.40 17.29 | 0.96
PCS post 55.49 57.65| 0.21
MCS post 40.70 42.23 | 0.64
Alertness Morning 53.29 58.02 | 0.39
Happiness Morning 61.69 65.82 | 0.40
Energy Morning 55.76 58.68 | 0.61
Health Morning 65.89 72.91 | 0.27
Calmness Morning 55.23 56.70 [ 0.78
Alertness_Evening 47.70 45.80 | 0.75
Happiness Evening 61.14 65.01 | 0.45
Energy Evening 51.51 51.20 [ 0.95
Health Evening 65.55 71.69 | 0.33
Calmness_Evening 54.24 56.21 | 0.74
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Table 7.6 Comparison between short and long sleepers (matched with gender and sleep regularity (top

40%, bottom 40% or mid 20%))

Short (<7 Long >=7 p

hours N=25) | hours N=29) | value
GPA for the semester 4.29 442 040
PSS Score post 18.90 17.68 | 0.54
PCS post 55.86 58.37 | *0.03
MCS post 39.29 40.26 | 0.71
Alertness Morning 51.05 53.79 | 0.54
Happiness Morning 58.49 64.46 | 0.16
Energy Morning 52.20 55.12 | 0.52
Health Morning 60.14 69.27 | 0.06
Calmness Morning 51.22 57.76 | 0.15
Alertness Evening 45.50 4097 | 034
Happiness Evening 57.84 64.65 | 0.12
Energy Evening 49.51 46.06 | 0.43
Health Evening 60.76 68.65 | 0.11
Calmness Evening 50.26 57.32 | 0.16

Table 7.7 Comparison between short and long sleepers (matched with gender and sleep regularity

(>=0.85 or <0.85))

Long (>=7

Short (<7 hours

hours N=26) | N=22) p value
GPA for the semester 4.35 4.46 0.31
PSS Score post 16.38 15.88 0.43
PCS post 56.53 58.14 0.10
MCS post 43.10 41.26 0.59
Alertness Morning 56.38 54.25 0.69
Happiness Morning 64.08 65.22 0.23
Energy Morning 58.12 54.93 0.58
Health Morning 64.97 73.19 *0.04
Calmness Morning 56.30 60.55 0.23
Alertness Evening 51.52 41.45 0.33
Happiness Evening 62.27 65.37 0.19
Energy Evening 55.65 45.00 0.53
Health Evening 63.79 72.78 *0.05
Calmness Evening 54.81 60.46 0.19

115




Table 7.8 Comparison between short and long sleepers (matched with gender and sleep regularity (>=0.85

or < 0.85))

Short (<7

hours Long (>=

including 7hours |

nap N=22) | N=32) p value
GPA for the semester 4.31 4.38 0.62
PSS Score post 16.27 19.75 0.07
PCS post 56.71 57.24 0.69
MCS post 42.10 38.12 0.11
Alertness Morning 56.09 49.72 0.17
Happiness Morning 65.23 58.52 0.12
Energy Morning 58.86 49.90 0.05
Health Morning 68.79 61.34 0.15
Calmness Morning 58.75 51.15 0.11
Alertness Evening 47.81 40.37 0.13
Happiness Evening 63.99 58.92 0.25
Energy Evening 52.92 44.47 0.07
Health Evening 68.39 61.68 0.19
Calmness Evening 58.06 50.41 0.14

Therefore, our results showed that sleep regularity in the 3-4 weeks preceding evaluation has a significant
influence on mental health scores and on morning alertness, happiness, and energy scores. Moreover, sleep
duration does not have a statistically significant influence on these factors after controlling for sleep
regularity. Sleep duration, after controlling for regularity and gender, does show a slight trend toward
possibly influencing some physical health measures, but this is not a strong result although it may become

significant as we collect more cohorts.

It is important to note that because of the matching on regularity/irregularity and gender, not all the
participants are in these comparisons. The average sleep duration in the short sleep group (after matching
on gender and regularity) was 6.2 hours (median: 6.3, SD: 0.34), while the average sleep duration in the
long sleep group was 7.9 hours (median: 7.7, SD: 0.55). Thus, we did not have hugely sleep deprived

people in this comparison.

Overall, in these college student data, sleep regularity appears to be more important for mental health than

sleep duration.
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7.2 Stress Recognition using Multi-modal Data

Next, we investigate physiological, behavioral and personality markers for stress and how accurately we
can classify stress level using surveys, personality types and objective measurement.

In order to understand which features from which modality work best in classifying high and low
stress groups (top and bottom 20%, each N=55) based on their PSS score at the end of the study and find
the classification accuracies, we applied sequential forward feature selection to find the best combinations
of 1-3 features and support vector machines (SVM) (linear) and SVM (radial basis function kernel)
classifiers. We compared the classification accuracies using the following modalities of features (Table 7.9).
For each classification, we examined the accuracy using a leave-one-participant-out approach. We selected
features and trained models from all except one participant’s data and tested the model against the left-out

participant’s data.
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Table 7.9 Features examined for influence

Personality type (5 features)

Openness, Conscientiousness, Extraversion,

Agreeableness, Neuroticism

Sleep parameters (10 features)

Regularity, PSQI Score, bed time, sleep latency,
wake time, sleep duration, nap duration, last

caffeine time, sleep quality, no sleep%

Activity (6 features)

Total academic duration, total study duration, total
exercise duration, total extra curricular activity

duration, %esit, %ewalk

Social (5 features)

% memorable positive interaction
% somewhat negative interaction

% very negative interaction

EDA (49 features)

Mean, median, SD of EDA amplitude and # of
EDA peaks (sitting, walking, running and 1-4Q
sleep), percentages of EDA epochs for sitting,

walking, running, and 1-4Q sleep

ACC (24 features) Mean, median, SD of ACC (day, sitting, walking,
running and 1-4Q sleep

ST (6 features) Mean, median, SD of day and sleep skin
temperature

Call (7 features) # of calls, total duration of calls, mean, median
and SD of timestamp, entropy, incoming %

SMS (7 features) # of SMS, mean, median and SD of timestamp,

entropy, % of # of outgoing SMS (0-3am), % of #
of outgoing SMS (3-6am), incoming %

Screen (11 features)

mean, median and SD of timestamp, total duration
of screen on, % of screen on (0-3am, 3-6am, 6-
9am, 9-12am, 12-15pm, 15-18pm and 18-21pm)
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Table 7.9 Features examined for influence (cont)

Location (4 features) Total travel, daily mean, median, SD

Email (16 features) median_daily_received, std_daily received,
median_daily_sent, std_daily sent, median_time,
stamp_sent, median_timestamp_received,
std_timestamp_sent (in seconds),
std_timestamp_received (in seconds), sent_Oa_3a
(%), sent_3a_6a (%), sent_6a 9a (%),
sent 9a 12p (%), sent_12p 3p (%), sent_3p_6p
(%), sent_6p 9p (%)

Light (8 features) Lux mean and SD for 0-6am, 6am-12pm, 12pm-
18pm, 18-24pm
Survey (10 features) GPA for the semester, BMI, PSQI Score, State

Score, Trait Score, PSS Score post (not for stress

recognition), PCS_post, MCS_post, delta PCS,

delta MCS
Wrist EDA, ACC, ST, light
Mobile phone Call, SMS, screen, location

Table 7.10 shows selected features and their accuracy discriminating the two groups. Since we used a leave-
one-participant-out approach, we sometimes observed a subset of features which worked for a certain
percentage of participants and another subset of features which worked for the rest of the participants.
Percentages in brackets show the percentages of people that the feature was selected for. For example, in
Table 7.10, we obtained 80.0 % accuracy with Extraversion, PCS (post) and percentage of sitting for 57%
of the participants and Extraversion, PCS (post) and MCS (post) for 43% of the participants.

The classification accuracy was highest (82.4%) with surveys (PSQI, PCS and MCS) and skin
temperature (but not its rhythmicity) showed the lowest accuracy of all modalities of features. Sleep features
(low sleep regularity, high PSQI (poor sleep) and long sleep duration (based from diary, but actiwatch based
sleep duration was shorter in the high stress group) contributed to the high stress group. Among objective
measures, features from an accelerometer worked best to classify high vs low stress group: the participants
who spent more time on walking-level activities or who had a higher SD of running-level activity
percentages over 30 days were more stressed. We also found a higher standard deviation of EDA amplitude

while sitting was related to higher stress level. Some of the objective features such as higher percentages
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of 3-6am outgoing SMS over the total number of outgoing SMS and 3-6am screen on were indicators for
the high stress group staying up late. Social interaction features worked more accurately than activity

features (total academic activity duration, not total exercise duration).

Table 7.10 Stress recognition: arrows (T |) show how each feature contributes to the high stress

group _ _

Modality Accuracy | Features

Survey 82.4 7 PSQI score 1 + PCS _post | + MCS_post |

ALL 80.0 Extraversion | + PCS_post |+ {median sit % | (57%) or MCS_post |}

Sleep 77.2 Regularity | + PSQI 1 + sleep duration 1

Personality 75.2 {Conscientiousness | or agreeableness | (52%)} + Extraversion |

ACC 72.8 Mean % walk T or SD % run 7 (51%)

Social 70.9 Very negative interaction % 1 + {family contact % | or positive
interaction | (54%)}

Phone + Wrist | 68.3 3-6 am SMS outgoing % 1 + lux SD (12-18pm) | + mobility SD 1

Email 67.3 Sent timestamp SD | + {sent 6p 9p (%)] or sent 9p 0a (%)T (49%)}
SD EDA sit T + median # of peaks walk | + {SD exposure (0-6am) 1

Wrist 67.0 orday ST SD [51%]]}

Screen 67.0 3-6am % T + 15-18pm % 1

EDA 64.7 SD EDA sit T + median # of peaks walk |

Light 57.3 SD exposure (0-6am) 1

SMS 56.8 Timestamp SD |

Call 56.4 # of calls 1

Location 55.6 Travel sum 1+ median T+ SD 1

ST 553 Day SD | + sleep mean 7+ sleep SD 1

Activity 54.8 Academic activity total duration 1
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Chapter 8
Discussions, Limitations and Contributions

This chapter provides discussion based on our results in the previous chapters, along with limitations and

contributions of this thesis.

8.1 Discussion

8.1.1 Characteristics of our population

How similar is our population to other college student populations? Here we discuss similarities based on
measures (mostly surveys) that have been conducted both inside and outside of MIT.

Our participants’ averaged sleep duration, based on a combination of daily self-report online diary
entries and daily actigraphy from their wrists, was 7.0 hours excluding naps (6.9 hours on weekdays and
7.3 hours on weekends). A total of 78% of the participants slept less than 8 hours on average over all nights.
Fifty-six % of the participants slept less than 7 hours on average on weeknights and 40% did on weekends.
The Healthy Minds Study [Massachusetts Institute of Technology, 2015], hosted out of the University of
Michigan and given to over 100 colleges and universities, was also run at MIT during the timeframe of our
study with nearly 3000 students responding, including asking what time they typically go to sleep on
weeknights and what time they typically wake up on weekdays. Based on these two self-reported typical
sleep/wake times, the study concluded that more than half (54%) of MIT respondents get 8 or more hours

of sleep, while 17% allow themselves to get less than 7 hours of sleep of weeknights. The same study,
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conducted in 201314, concluded that national respondents were able to sleep an average 7.4 hours on
weeknights. Another sleep survey done using self-reported bedtime and sleep duration on the MIT campus
in 2012 showed that MIT undergraduate students’ average typical weeknight sleep was 6.5 hours N=1441)
[Lin, 2012]. Thus, our use of daily sensor data and daily online diary data (with a smaller population) shows
lower sleep duration per weeknight than did Lin’s survey method that infers sleep duration by asking for a
single typical go-to-sleep time and single typical wake-up time in the Healthy Minds Study and also showed
longer sleep duration than did Lin’s survey done with bedtime and sleep duration (more than 10x our
population). While it is possible that our participants were an unusual subset compared to the rest of the
MIT population, it is also possible that the more precise methods we used, and the fact that people tend to
think that the time they looked at the clock to go to bed is the same time they typically “go to sleep”, could
also explain why we found lower durations of sleep.

About sleep quality, prior studies from an urban Midwestern university (N=1000) reported that
over 60% were categorized as poor quality sleepers by PSQI [Lund, 2010]. Our population showed a smaller
population of poor sleepers (49%) than this data (more than 7x our population).

About stress, the majority of college students feel stressed on a daily basis: 85% of students are
stressed on a daily basis from a single item in a survey of 2200 students at 40 randomly chose colleges in
the United States [The Associated Press and MTV, 2009]. In our daily subjective data, 42% of the daily
survey answers showed a bias toward being more stressed on the daily stress-calm scale. A previous study
done at Southern Illinois University at Carbondale showed that the average college student PSS score was
18.95 (N=559) [Olpin, 1996]. Another study at a Turkish university (N=508) showed the average freshmen
PSS score was 18.89 [Oriicti, 2009]. Our average PSS score at the end of the study was 17.3, so our
population was not extremely stressed compared to the other college student population.

Daily happiness was higher over weekends than during weekdays (Figure 6.13). While we don’t
know of studies of this self-reported data daily in college students, this pattern was consistent with previous
studies measuring happiness by monitoring smiles with cameras at the university campus [Hernandez,
2012] and by using a subjective happy scale (extremely-not at all) on the iphone app in the U.K. [MacKerron
2012] (sample size each day > 100000). Alertness was higher upon waketime than upon bedtime, consistent
with previous findings from laboratory alertness measurement using a visual analog scale [Van Dongen,
2010], although subjective alertness is influenced by various factors (circadian rhythm, naps, morningness
and eveningness).

As l already described in the previous chapter, the mean physical health scores (pre and post study)
in our population were higher than the average (53.0) for 18-24 year old populations in the U.S. [Utah
Department of Health, 2001]. On the other hand, our participants’ self-reported mental health scores (44.3
and 40.3 in the pre and post surveys) were slightly worse than the national average (46.0, 18-24 years old).
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Some previous studies about mobile phone usage among college students reported that female
college students spent about 10 hours/day on their phone [Roberts, 2014]; however that study was based on
a questionnaire. Our objectively-gathered data showed that our population used mobile phones for a much
shorter period of time (126 mins/ day on average) and we did not find any statistically significant difference
in daily phone usage duration between male and female students. This proved the importance of collecting

data using Objective Techniques.

8.1.2 The influence of sleep duration and sleep regularity on academic
performance, stress and wellbeing-related measures

Our results (section 7.1,2) showed that irregular sleepers had more negative outcomes (lower reports of
alertness, and energy in the morning and lower mental health) compared to regular sleepers, even after
controlling for sleep duration, gender and stress (PSS score) self-reported for the month. Moreover, this
difference between regular and irregular sleepers is associated with a much larger effect on mental health
than is a difference in sleep duration. Previous studies that monitored sleep patterns and stressful events
over 9 consecutive nights (N=184) showed a significant relationship between the variability of sleep
duration measured with actigraphy and stressful events (measured with a modified version of Psychiatric
Epidemiology Research Inventory Life Events Scale)) [Mezick, 2009]. Another previous study showed that
regularizing sleep-wake patterns reduced negative mood (e.g. tension-anxiety, anger-hostility, and fatigue)
and the reduction was gone after regulation was taken away [Takasu, 2012]. One study compared healthy
individuals and individuals with bipolar disorders and indicated the bipolar groups were more likely to have
irregular bed-rise time [Baek, 2014]. The BWH team has conducted a 30-day sleep study for Harvard
college students and reported the relationship between sleep irregularity, and poor sleep quality [Clerx,
2014, Clerx, 2015]. These previous studies implied negative health outcomes of irregular sleep similar to
our results.

Previous studies showed the negative relationship between stress level and sleep duration (negative
correlation in the StudentLife study [Wang, 2014] and daily stress recognition using sleep duration and
other measurement and personalized models, Muaremi, 2013); however, our comparison between short
sleepers and long sleepers did not show statistically significant difference in their stress levels. Wang’s and
Muaremi’s papers did not show the statistics about sleep durations on their dataset; therefore, it is hard to
compare their results to our dataset (short sleeper: 6.2 hours vs long sleepers: 7.9 hour sleep durations (one
month average)). However, once again, our results are based on monthly averaged durations because we
compare sleep duration to sleep regularity and we will analyze how daily sleep duration affects stress level

on the following day as the next step.
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Further causality effect analysis (e,g, [Bouwmans, 2015]) is required to understand for instance,
whether low mental health causes irregular sleep or irregular sleep causes low mental health; however, short
sleepers in our data showed weaker negative health impacts than irregular sleepers.

Some previous studies have shown an association between sleep and academic performance such
as GPA increasing with early bedtime and wake time [Eliasson, 2010], and with regular sleep patterns
[Medeiros, 2003, Clerx, 2014]). Our results did not show any statistically significant relationship between
sleep duration or regularity and GPA; however, if we tried the sleep behavioral difference between
weekdays and weekends as Medeiros, we might be able to find the association between the sleep behaviors

and academic performance.

8.1.3 Stress Recognition using Multi-modal Data

The features with the highest accuracy for recognition of high vs low PSS (82.4%) were the combination
of sleep quality, and physical and mental health. This is consistent with what previous stress studies showed
([National Institute of Mental Health, 2015], the relationship between high PSS and high PSQI (N= 187
community-dwelling adults) [Buysee, 2008], and high PSS and low MCS (N109, doctor of pharmacy
students) [Marshalil, 2008]).

Sleep parameters ranked 3™ place of all modalities. Low sleep regularity, high PSQI (poor sleep)
and long sleep duration (based from diary, but actiwatch based sleep duration was shorter in the high stress
group than in the low stress group) contributed to the high stress group. Sleep parameters, and physiological
responses were used in one study [Muaremi, 2013, 2014] to classify 3 stress levels and sleep duration was
one of the most important features.

Consistent with previous studies [Bogomolov, 2014][Sano, 2013b][Sano,2015], personality types
were one of the most influential factors for stress. The combination of low extraversion and low
conscientiousness or agreeableness contributed to the high stress group and these directions of the
associations were consistent with the prior work [Ebstrup, 2011] (N=3471).

Another study “Student Life” which collected college student daily life data (N=48) for 10 weeks
using smart phones investigated the relationship between the Perceived Stress Scale and mobile phone use
patterns [Wang, 2014]. Their results found associations between higher conversation frequency (day and
night) and longer conversation duration (day), and lower PSS, and longer sleep duration and lower PSS.
We found that our high PSS (high stress) group has higher PSQI (poor sleep quality), more frequent screen-
on between 0-3am and more phone calls in the high stress group. Higher percentages of 3-6am outgoing
SMS over the total number of outgoing SMS and 3-6am screen on were indicators for the high stress group

staying up late.
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Our data also showed that EDA features worked better than skin temperature for recognizing stress.
We found a higher standard deviation of EDA amplitude (but not the number of peaks) while sitting was
related to higher stress level, which means the high stress group has EDA responses rather than constant
low or high responses.

Even though we computed objective features that are relatively easy to interpret this time for this
thesis, it is still hard to interpret the implication of some of the selected objective features. In addition, these
results do not tell us the causality (e.g. sleep poorly because of high stress or high stress because of poor

sleep). We need to continue our further analysis to understand the meaning and the causal relationship.

8.2 Limitations

Here we describe some limitations in our study. First, our study was designed to get data to build models
and was not designed to be a randomized control trial to compare a control group and a treatment group;
therefore, we cannot clarify causality among parameters. Instead, we observe real world data over time and
find correlations and predictors in the complex datasets. For example we can obtain findings of correlations
among variables, and also we can use machine learning algorithms to train and test different mappings
between behaviors and outcomes. With results from one semester’s cohort, we can then hypothesize that
findings from that cohort will apply to an independent cohort from a future semester. Then we can test the
findings on that future semester to see if they are predictive of outcomes in that group.

Second, our observation and population are limited. We have collected multimodal and long-term
data; however, we have some factors we have not measured that could influence sleep, stress, mental health
and other wellbeing-related measures. Our population is also limited; we targeted MIT undergraduate
students who are Android users because of access to their mobile phone usage. We have a great number of
iphone users we were unable to include in our study. Our participants also have social interactions with
people outside the study. We collected who they spend time with in their daily lives; however, survey and
sensor measurement have been conducted only with the study participants. We do not know how people
outside the study influence the participants’ health. About the relationship between their behaviors and
GPA, we monitored a month of data in the middle of each semester, so the dataset does not necessarily
explain their behaviors in the entire semester such as a period when they have final exams.

Wrist band measurement could limit the ambulatory data. For example, light exposure measured
on the wrist might not be 100% accurate because the sensor can be covered by a sleeve. Physiology could
be noisy with wrist movements; however, we select devices that the participants can wear 24/7 in their daily

life with the hopes that substantial portions of the day provide valuable data.
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Lastly, findings from the datasets might be only limited to the datasets we collect and be hard to
generalize to other populations. However, more importantly, a key contribution of this thesis is its
comprehensive approach to collecting and analyzing real-world continuous 24/7 physiological, behavioral,

and social interaction dataset. The approach we developed and used here may be applied broadly.

8.3 Contributions

The contributions of this thesis are

e We presented the characterization of electrodermal activity (EDA) with dry wrist-worn electrodes
during natural and lab sleep.

e We compared thresholds for detecting EDA peaks and establish criteria for EDA storms in natural sleep.

e We found that more than 80% of the EDA peaks occurred during slow-wave and non-REM stage 2
sleep and that EDA amplitude is higher in SWS than in other sleep stages.

e We examined sleep-wake classification with multi-modal wrist wearable sensor features (acceleration,
skin temperature, and skin conductance), compared the accuracy for intra-subject and inter-subject
classification and identified the best subset of features.

e We examined predictors for sleep-related memory consolidation using multi-modal wrist wearable
sensor data and found that EDA features worked better than EEG and actigraphy features.

e We designed a long-term study for gathering rich multimodal data in daily life and established study
procedures from preparation, recruiting, data cleaning and analysis.

e We collected 30-day physiological, social, and behavioral data from 168 participants, building a
valuable dataset of over 100,000 hours of real world physiological and behavioral data.

e Our initial analysis revealed characteristics about sleep, stress, other wellbeing-related measures,
personality type, and mobile phone usage about our population.

e We showed that irregular sleep over several weeks has statistically significantly more bad health
outcomes (morning low alertness and energy, and low mental health) than regular sleepers, even after
controlling gender and stress. Moreover, we showed that sleep duration (after controlling for
irregularity) was not statistically significantly associated with these negative effects.

e We identified features useful for monthly reported perceived stress (high vs low): daily activities,

personality, sleep, physiology, social interactions, phone usage, and mobility
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8.4 Future Work

This study has a lot of future work and our analysis is being continued. Also, the SNAPSHOT study is
ongoing and we will keep collecting data and applying different analyses techniques.

We are planning to recruit populations who are early risers for their sport practice (such as rowers) and
analyze how their behaviors are different from other populations at MIT. One of our hypotheses is that early
risers have a more regular sleep schedule, and higher wellbeing-related scores.

We also plan to examine the following additional research questions with this dataset:

e How are late night mobile phone usage and light exposure related to stress and wellbeing-
related measures? (2.1.4)

e How is social interaction related to healthiness and happiness? (2.5)

e Can we find bio/behavioral/trait markers for mood and mental health? (2.4, 2.7)

This study focuses on collecting real world data and understanding the natural behaviors; however, we
are also interested in adding interventions to the protocol to investigate how we can change behaviors.
Visualization of the data or advice/feedback could help them to improve their sleep patterns, mental health
and stress.

Another aspect of future work is making this study more deployable. This study collects so many things
within one month. We are interested in scaling this type of study to collect long-term data in a larger scale
student population and in different populations such as employees to identify causal and predictive features,
especially for mood, stress and mental health.

Lastly, there are still different factors we have not measured, which could influence sleep, stress and
wellbeing-related measures such as food intake, face to face interaction, and weather. We can also measure
heart rate, respiration, blood data such as cortisol and blood sugar level, and even genome data to make our

understanding richer and deeper.

8.5 Conclusions

This thesis develops a methodology to measure and analyze ambulatory physiological, behavioral and
social data from wearable sensors and mobile phones with trait data such as personality types, for learning
about behaviors and traits that impact human health and wellbeing. This thesis describes the development
of software tools to measure and analyze ambulatory multi-modal data, study design and data collection
and validation. This thesis also validates the methodology and tools on a selected subset of the questions

that can be answered by the data collected.
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First, I characterized sleep wrist EDA by comparing it with sleep palm EDA and sleep stages
quantitatively. Next, I applied our EDA analysis methods to sleep-wake classification and sleep-related
memory consolidation using wrist sensor data including EDA and found the best subsets of features for
these tasks.

Lastly, with colleagues at MIT and the Brigham Women’s Hospital, I designed and ran “the
SNAPSHOT?” study. We measured one month of multi-modal data from each of 168 undergraduate students
including continuous physiology, behavioral and social data using wearable sensors and mobile phones as
well as measurement in the laboratory and standardized surveys. As a first step toward showing the value
of this new large datasets, I analyzed the effect of sleep regularity and sleep duration on academic
performance, physical/mental health score (Physical Component Score and Mental Component Score from
SF-12), Perceived Stress Scale and subjective daily wellbeing-related scores (alertness, happiness,
sluggishness, healthiness and calmness) using coarsened exact matching to control several covariates. Our
data showed that sleep irregularity was associated with low mental health and with negative health
outcomes (low energy level and low alertness in the morning), when controlling for sleep duration.
Moreover, sleep duration (after controlling for irregularity) was not statistically significantly associated
with these negative effects. Overall, our data suggest that emphasizing duration of sleep for improving
mental health is not as important as emphasizing keeping a regular sleep schedule. I also examined monthly
reported perceived stress (high vs low) recognition using multi-modal data from surveys, wearable sensors
and mobile phones and identified useful features: daily activities, personality, sleep, physiology, social

interactions, phone usage, and mobility.
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Appendix

A.Surveys

A.1 Pre-Study Screening Questionnaire

1) What is your full name?

Are you 18 years of age?
Yes
No

2) What is your date of birth?

((MM-DD-YYYY))

3) a) Please indicate your gender:
Male

Female

b) Are you currently pregnant?

Yes

No

4) Do you have a mobile/cell phone?
Yes

No

a) What is your mobile/cell phone number?
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b) Type of Phone:

Android

iPhone

Other

c) Please indicate the type of phone:

d) Operating System (OS) Version: Note: - OS Version for iPhone can be checked by going to
Settings-->General-->About-->Version - OS Version for Android can be checked by going to "About
Phone" in the

"Settings" section

€) Do you have a data plan on your mobile/cell phone?

Yes (unlimited)

Yes (limited)

No

) Do you feel restricted in the use of your mobile/cell phone because you have a limited data plan?
Yes

No

g) Do you use secondary calling/messaging services?

(Example: Google Voice, Skype, Whatsapp, etc...)

Yes

No

h) Please indicate...

- all secondary calling/messaging services you use.

- what you use these services for (example: texting, voice calls, video chatting, etc...)
- what percentage of your TOTAL communication is done on

EACH of the indicated applications (example: 5% google voice & 10% Skype)

i) Would you be willing to discontinue use of ALL indicated services for the 30 day duration of the
study?

Yes

No

5) Enter all email addresses you actively use.

6) a) Are you currently attending college?
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Yes

No

b) What year of college are you currently in?

Freshman

Sophomore

Junior

Senior

Graduate

c) Please indicate what college you are currently attending:
Harvard University

Massachusetts Institute of Technology (MIT)

Other

7) a) Have you been in another time zone in the last 7 days?
Yes

No

b) Where were you?

8) a) Are you planning to travel across more than one time zone between now and the end of the
semester?

Yes

No

projectredcap.org

Confidential

b) How many times will you be traveling across more than one time zone between now and the end of the
semester?

1

2-3

4 or more

Ist Location:

Where:

Start of travel:

End of travel:
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2nd Location:
Where:

Start of travel:

End of travel:

3rd Location:
Where:

Start of travel:

End of travel:

Please provide the location and dates for any traveling you will be doing across more than one time zone
between now and the end of the semester
AFTER the 3rd trip:

A.2 Start of Study Questionnaire

Background Information

1) Academic major:

Aerospace Engineering
Aerospace Engineering with Info. Tech.
Anthropology

Archaeology & Materials
Architecture

Biological Engineering

Biology

Brain & Cognitive Sciences
Chemical Biological Engineering

Chemical Engineering
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Chemistry

Civil & Environmental Engineering
Civil Engineering

Comparative Media Studies
Computer Science & Engineering
Computer Science & Molecular Biology
Atmospheric & Planetary Sciences
Economics

Electrical Engineering & Computer Science
Electrical Science & Engineering
ENG - Chemical Engineering

ENG — Engineering as recommended by the Dept of Mechanical Engineering
Environmental Engineering Science
Foreign Languages & Literatures
History

Humanities and Engineering
Humanities and Science
Interdisciplinary Major in Humanities
Linguistics & Philosophy

Literature

Management Science

Materials Science & Engineering
Mathematics

Mathematics with Computer Science
Mechanical & Ocean Engineering
Mechanical Engineering

Mechanical Engineering- Intern
Music

Nuclear Science & Engineering
Philosophy

Physics

Planning

Political Science

Writing
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Undesignated
Other

Please specify your major:

2) GPA for the last semester :

(Range (0.0 - 5.0))

3) Where do you live?

Dorm

Independent living group (if applicable)
Off campus

Name of dorm or independent living group:

4) Do you live alone or with roommates/flatmates?
Alone
With roommates/flatmates

How many roommates/flatmates do you live with?

5) Do you share your bedroom with someone?
Yes

No

Sometimes

How many people do you share your bedroom with?

6) What is the WIFI mac address (e.g.50:26:90:77:0d:67) on your smart phone?
Note: - For iPhone, go to Settings-->General-->About
- For Androids, go to Settings-->About Phone or About Device-->Status

- If you don't have a smart phone, enter "not applicable"”

Health Survey

This survey asks for your views about your health. This information will help you keep track of how you
feel and how well you are able to do your usual activities.

1) In general, would you say your health is:

Excellent
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Very good
Good

Fair

Poor

2) The following questions are about activities you might do during a typical day.

Does your health now limit you in these activities? If so, how much?

a) Moderate activities, such as moving a table, pushing a vacuum cleaner, bowling, or playing golf

Yes, limited a lot

Yes, limited a little

No, not limited at all

b) Climbing several flights of stairs

Yes, limited a lot

Yes, limited a little

No, not limited at all

3) During the past 4 weeks, how much of the time have you had any of the following problems with your
work or other regular daily activities as a result of your physical health?

a) Accomplished less than you would like

All of the time

Most of the time

Some of the time

A little of the time

None of the time

b) Were limited in the kind of work or other activities

All of the time

Most of the time

Some of the time

A little of the time

None of the time

4) During the past 4 weeks, how much of the time have you had any of the following problems with your
work or other regular daily activities as a result of any emotional problems (such as feeling depressed or
anxious)?

a) Accomplished less than you would like

All of the time
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Most of the time

Some of the time

A little of the time

None of the time

b) Did work or activities less carefully than usual

All of the time

Most of the time

Some of the time

A little of the time

None of the time

5) During the past 4 weeks, how much did pain interfere with your normal work (including both work
outside the home and housework)?

Not at all

A little bit

Moderately

Quite a bit

Extremely

6) These questions are about how you feel and how things have been with you during the past 4 weeks.

For each question, please give the one answer that comes closest to the way you have been feeling.

How much of the time during the past 4 weeks...
a) Have you felt calm and peaceful?
All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

b) Did you have a lot of energy?
All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time
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None of the time

c) Have you felt downhearted and blue?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

7) During the past 4 weeks, how much of the time has your physical health or emotional problems
interfered with your social activities (like visiting friends, relatives, etc.)?
All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

Question 8 is for females only.

Please choose the first day of bleeding and the last day of bleeding for each of your menstrual cycles in
the last 6 weeks.

Note: When selecting a date for the below questions, select the calendar icon and choose the month and

year FIRST. Then, pick the day of the month.

8) a) Menstrual Cycle 1: FIRST day of bleeding

a) Menstrual Cycle 1: LAST day of bleeding

b) Menstrual Cycle 2: FIRST day of bleeding

b) Menstrual Cycle 2: LAST day of bleeding

¢) Menstrual Cycle 3: FIRST day of bleeding

¢) Menstrual Cycle 3: LAST day of bleeding
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Munich Questionnaire

What is your height?
Feet:

Inches:

What is your weight (POUNDS)?

I have a regular school schedule:
Yes

No

If 'YES', how many days per week?

Instructions: Please complete all of the following sections, regardless of whether you are in school on a
regular basis or not. Use the 24 hour scale, for example 23:00 instead of 11:00PM!!!!

SCHOOL DAYS

On school days...

I go to bed at o'clock. Note: Please use military time.

Note that some people stay awake for some time when in bed! I actually get ready to fall asleep at

o'clock. Note: Please use military time.

[ need minutes to fall asleep.
I wake up at o'clock. Note: Please use military time.
I wake up...

with an alarm clock
without an alarm clock

After minutes, I get up.
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FREE DAYS
On free days...

I go to bed at o'clock. Note: Please use military time.

Note that some people stay awake for some time when in bed! I actually get ready to fall asleep at

o'clock. Note: Please use military time.

I need minutes to fall asleep.
I wake up at o'clock. Note: Please use military time.
I wake up....

with an alarm clock
without an alarm clock

After minutes, I get up.

Comment Field: Please leave a comment if you currently have NO possibility of freely choosing your
sleep times (e.g. because of pet(s), child(ren) etc.). Use this field also to provide additional information, if

the system asks for it:

DAYLIGHT EXPOSURE
On average, | spend the following amount of time outdoors in daylight (without a roof above my head):
On school days... HOURS:

MINUTES:

On free days... HOURS:

MINUTES:

PERSONAL DATA ON POTENTIAL RESEARCH SUBJECTS
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Date of birth: Note: When selecting a date for this question, select the calendar icon and choose the month

and year FIRST. Then, pick the day of the month.

Gender:

Male

Female

Ethnic Categories: Note: Hispanic or Latino: A person of Cuban, Mexican, Puerto Rican, South or
Central American, or other Spanish culture or origin regardless of race.
Hispanic or Latino

Not Hispanic or Latino

Race (please select one or more):

American Indian or Alaskan Native

Asian

Black or African American

Native Hawaiian or other Pacific Islander

White

Other

Please specify:

NOTE: The categories that most closely reflect the individual's recognition in the community should be
used for purposes of reporting mixed racial and/or ethnic origins. Definitions are as follows:

American Indian or Alaskan Native: A person having origins in any of the original peoples of North,
Central, or South America, and maintains tribal affiliations or community attachment.

Asian: A person having origins in any of the original peoples of the Far East, Southeast Asia, or the
Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan,
the Philippine Islands, Thailand, and Vietnam.

Black or African American: A person having origins in any of the black racial groups of Africa.

Native Hawaiian or Pacific Islander: A person having origins in any of the original peoples of Hawaii,
Guam, Samoa, or other Pacific Islands.

White: A person having origins in any of the original peoples of Europe, North Africa, or the Middle
East.

A.3 End of Study Questionnaire
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Health Survey

This survey asks for your views about your health. This information will help you keep track of how you
feel and how well you are able to do your usual activities.

Please answer every question by selecting the answer as indicated. Although it is hoped that you will
answer all of the questions in the survey, you may skip any question that you do not feel comfortable
answering. If you are unsure about how to answer a question, please give the best answer you can.

1) In general, would you say your health is:

Excellent

Very good

Good

Fair

Poor

2) The following questions are about activities you might do during a typical day. Does your health now
limit you in these activities? If so, how much? a) Moderate activities, such as moving a table, pushing a
vacuum cleaner, bowling, or playing golf

Yes, limited a lot

Yes, limited a little

No, not limited at all

b) Climbing several flights of stairs

Yes, limited a lot

Yes, limited a little

No, not limited at all

3) During the past 4 weeks, how much of the time have you had any of the following problems with your
work or other regular daily activities as a result of your physical health? a) Accomplished less than you
would like

All of the time

Most of the time

Some of the time

A little of the time

None of the time

b) Were limited in the kind of work or other activities

All of the time

Most of the time

Some of the time
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A little of the time

None of the time

4) During the past 4 weeks, how much of the time have you had any of the following problems with your
work or other regular daily activities as a result of any emotional problems (such as feeling depressed or
anxious)?
a) Accomplished less than you would like
All of the time
Most of the time
Some of the time
A little of the time
None of the time
b) Did work or activities less carefully than usual
All of the time
Most of the time
Some of the time
A little of the time
None of the time
5) During the past 4 weeks, how much did pain interfere with your normal work (including both work
outside the home and housework)?
Not at all
A little bit
Moderately
Quite a bit
Extremely
6) These questions are about how you feel and how things have been with you during the past 4 weeks.
For each question, please give the one answer that comes closest to the way you have been feeling. How
much of the time during the past 4 weeks...
a) Have you felt calm and peaceful?
All of the time
Most of the time
A good bit of the time
Some of the time

A little of the time
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None of the time

b) Did you have a lot of energy?

All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

¢) Have you felt downhearted and blue?
All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

7) During the past 4 weeks, how much of the time has your physical health or emotional problems
interfered with your social activities (like visiting friends, relatives, etc.)?
All of the time

Most of the time

A good bit of the time

Some of the time

A little of the time

None of the time

A.4 Perceived Stress Scale- 10 Item

Instructions: The questions in this scale ask you about your feelings and thoughts during the last month.

In each case, please indicate with a check how often you felt or thought a certain way.

* Required
Your User ID *

O=never, 1=almost never, 2=sometimes, 3=fairly often, 4=very often

In the last month, how often have you been upset because of something that happened unexpectedly?
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In the last month, how often have you felt that you were unable to control the important things in your

life?

In the last month, how often have you felt nervous and "stressed"?

In the last month, how often have you felt confident about your ability to handle your personal problems?

In the last month, how often have you felt that things were going your way?

In the last month, how often have you found that you could not cope with all the things that you had to

do?

In the last month, how often have you been able to control irritations in your life?

In the last month, how often have you felt that you were on top of things?

In the last month, how often have you been angered because of things that were outside of your control?

In the last month, how often have you felt difficulties were piling up so high that you could not overcome

them?

A.5 SNAPSHOT Pre- and Post-experimental survey - social network survey

Please provide FIRST NAME and LAST NAME (no more than 3 people) for each question.(e.g. Tom
Hedman).You can name the same people in more than one occasion, or none, if it’s really the answer.

This information is going to be used to help create a computer model of your social interactions.

* Required

1) Name your roommates/flatmates? (if any)

Roommate 1: First Name
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Roommate 1: Last Name
Roommate 2: First Name
Roommate 2: Last Name
Roommate 3: First Name

Roommate 3: Last Name

2) If a natural disaster/tragedy affects Boston, who would you call first? second?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

3) Who do you talk to about personal matters (love life, concerns, family matters, etc)?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

4) Who do you talk to about work/research/classes?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

5) Who do you talk to about friends and other people you know?
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Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

6) Who do you talk to about media/entertainment (sports, movies, tech gadgets, music, video

games)?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

7) If you have to move to a new apartment/house, who would you ask for help?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

8) Who do you study with?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name
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9) Who do you go shop, party or play with (incl. video games)?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

10) Who do you share ideas with?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

11) Who do you often disagree with (real person, not media character)?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name

12) Who spends the most time at your apartment/dorm excluding the people you live with?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name

Person 3: Last Name
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13) Do you hang out at someone else’s apartment/dorm? If yes, whose?

Person 1: First Name
Person 1: Last Name
Person 2: First Name
Person 2: Last Name
Person 3: First Name
Person 3: Last Name
Your ID *

A.5 Big Five personality test

Take this psychology test to find out about your personality! This test measures what many psychologists

consider to be the five fundamental dimensions of personality.

Learn more about the Big Five by reading answers to commonly asked questions.

Read our consent form, which explains the benefits of this free, anonymous test and your rights.

There are no "right" or "wrong" answers, but note that you will not obtain meaningful results unless you
answer the questions seriously.

These results are being used in scientific research, so please try to give accurate answers.

Your results will be displayed as soon as you submit your answers.

As you are rating yourself, you are encouraged to rate another person. By rating someone else you will
tend to receive a more accurate assessment of your own personality. Also, you will be given a personality
profile for the person you rate, which will allow you to compare yourself to this person on each of five
basic personality dimensions. Try to rate someone whom you know well, such as a close friend,
coworker, or family member.

If you would like to compare your personality to another person's, please select how you are related to the

other person.

Directions: The following statements concern your perception about yourself in a variety of situations.
Your task is to indicate the strength of your agreement with each statement, utilizing a scale in which 1
denotes strong disagreement, 5 denotes strong agreement, and 2, 3, and 4 represent intermediate

judgments. In the boxes after each statement, click a number from 1 to 5 from the following scale:
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Strongly disagree

Disagree

Neither disagree nor agree

Agree

Strongly agree

There are no "right" or "wrong" answers, so select the number that most closely reflects you on each
statement. Take your time and consider each statement carefully. Once you have completed all questions

click "Submit" at the bottom.

I see myself as someone who...

1. ...Is talkative

Strongly Disagree

1 2 3 4 5
Strongly Agree

2. ...Tends to find fault with others
Strongly Disagree

1 2 3 4 5
Strongly Agree

3. ...Does a thorough job
Strongly Disagree

1 2 3 4 5
Strongly Agree

4. ...Is depressed, blue

Strongly Disagree

1 2 3 4 5
Strongly Agree

5. ...Is original, comes up with new ideas
Strongly Disagree

1 2 3 4 5
Strongly Agree

6. ...Is reserved

Strongly Disagree
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1 2 3 4 5
Strongly Agree

7. ...Is helpful and unselfish with others
Strongly Disagree

1 2 3 4 5
Strongly Agree

8. ...Can be somewhat careless
Strongly Disagree

1 2 3 4 5
Strongly Agree

9. ...Is relaxed, handles stress well
Strongly Disagree

1 2 3 4 5
Strongly Agree

10. ...Is curious about many different things
Strongly Disagree

1 2 3 4 5
Strongly Agree

11. ...Is full of energy

Strongly Disagree

1 2 3 4 5
Strongly Agree

12. ...Starts quarrels with others
Strongly Disagree

1 2 3 4 5
Strongly Agree

13. ...Is a reliable worker
Strongly Disagree

1 2 3 4 5
Strongly Agree

14. ...Can be tense

Strongly Disagree

1 2 3 4 5
Strongly Agree
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15. ...Is ingenious, a deep thinker

Strongly Disagree
1 2 3 4
Strongly Agree

16. ...Generates a lot of enthusiasm

Strongly Disagree

1 2 3 4
Strongly Agree

17. ...Has a forgiving nature
Strongly Disagree

1 2 3 4
Strongly Agree

18. ...Tends to be disorganized

Strongly Disagree

1 2 3 4
Strongly Agree

19. ...Worries a lot
Strongly Disagree

1 2 3 4
Strongly Agree

20. ...Has an active imagination

Strongly Disagree

1 2 3 4
Strongly Agree

21. ...Tends to be quiet
Strongly Disagree

1 2 3 4
Strongly Agree

22. ...Is generally trusting
Strongly Disagree

1 2 3 4
Strongly Agree

23. ...Tends to be lazy
Strongly Disagree
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1 2 3 4 5
Strongly Agree

24. ...Is emotionally stable, not easily upset

Strongly Disagree

1 2 3 4 5
Strongly Agree

25. ...Is inventive

Strongly Disagree

1 2 3 4 5
Strongly Agree

26. ...Has an assertive personality
Strongly Disagree

1 2 3 4 5
Strongly Agree

27. ...Can be cold and aloof
Strongly Disagree

1 2 3 4 5
Strongly Agree

28. ...Perseveres until the task is finished
Strongly Disagree

1 2 3 4 5
Strongly Agree

29. ...Can be moody

Strongly Disagree

1 2 3 4 5
Strongly Agree

30. ...Values artistic, aesthetic experiences

Strongly Disagree

1 2 3 "4 5
Strongly Agree

31. ...Is sometimes shy, inhibited
Strongly Disagree

1 2 3 4 5
Strongly Agree
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32. ...Is considerate and kind to almost everyone

Strongly Disagree

1 2 3 4 5
Strongly Agree

33. ...Does things efficiently
Strongly Disagree

1 2 3 4 5
Strongly Agree

34. ...Remains calm in tense situations
Strongly Disagree

1 2 3 4 5
Strongly Agree

35. ...Prefers work that is routine

Strongly Disagree

1 2 3 4 5
Strongly Agree

36. ...Is outgoing, sociable
Strongly Disagree

1 2 3 4 5
Strongly Agree

37. ...Is sometimes rude to others
Strongly Disagree

1 2 3 4 5
Strongly Agree

38. ...Makes plans and follows through with them
Strongly Disagree

1 2 3 4 S
Strongly Agree

39. ...Gets nervous easily
Strongly Disagree

1 2 3 4 5
Strongly Agree

40. ...Likes to reflect, play with ideas
Strongly Disagree
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1 2 3 4 5
Strongly Agree

41. ...Has few artistic interests
Strongly Disagree

1 2 3 4 5
Strongly Agree

42. ...Likes to cooperate with others
Strongly Disagree

1 2 3 4 5
Strongly Agree

43. ..Is easily distracted

Strongly Disagree

1 2 3 4 5
Strongly Agree

44. ...Is sophisticated in art, music, or literature
Strongly Disagree

1 2 3 4 ]
Strongly Agree

45. ..Is politically liberal
Strongly Disagree

1 2 3 4 5
Strongly Agree

46. ...Has high self-esteem
Strongly Disagree

1 2 3 4 5
Strongly Agree

A.6 Morning daily diary

Please check if you did not sleep in the past 24 hours

What time did you try to fall asleep?
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How long did it take you to fall asleep?

In the 60 minutes before trying to fall asleep, did you spend at least 5 minutes doing any of the following?

Interacting with people in person
Interacting with people through electronic media (e.g. emails, calls, SMS, skype, chat, online games)

Did not interact with people

How did you finally wake up?

Spontaneously awoke

Awoken by an alarm

Awoken by another disturbance

What time did you finally wake up?

How many times did you awaken?

Not counting your final awakening / wake up.

List each: when you woke and for how long? [put extra awakenings under ‘Comments’]

Awakening 1 start

How long were you awake for?

Awakening 2 start

How long were you awake for?

Did you nap yesterday?

Yes/No
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How many times did you nap yesterday?

List each: when the nap started and for how long [put extra naps under ‘Comments’]
Nap 1 start

How long was the nap?

Did you remove your actiwatch?

Yes/No

When is your first scheduled academic or extracurricular event today, if any?

Check here for no scheduled activity

For each of the following, indicate how you feel right now by clicking on each line and adjusting the

sliders.

Sleepy-Alert

Sad-Happy
Sluggish-Energetic
Sick-Healthy

Stressed Out-Calm Relaxed

Please enter any comments for today

A.7 Evening daily diary

Did you attend any academic activities today (including classes, e-classes, sections, seminars, labs, study
groups)?
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Yes/No
How many?
List each: when the activity started and for how long? [put extra events under ‘Comments’]

Activity 1 start

For how long?
Activity 2 start

For how long?
Activity 3 start

For how long?

How many hours did you study by yourself today, not including any of the academic activities in the

previous question?

Did you engage in any exercise-based activities today (including sports, gym, cycling, etc.)?
Yes/No

How many times?

List each: when the activity started and for how long [put extra under ‘Comments’]

Activity 1 start

For how long?

Did you attend any other extracurricular activities today, besides academic activities and exercise-based

activities?

Yes/No
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Did you miss or were you late for any scheduled events (e.g., academic activities, exercise-based

activities, other extracurricular activities) because you overslept today?

Yes/No

How many total servings of caffeine did you have today?

When is the latest hour you consumed caffeine?

Please refer to this guide to help calculate servings

Cola 12 oz (1 can) 1/2 serving
Tea (1 cup) 1/2 serving
Home brew coffee 8 oz (1 cup) 1 serving
Energy drink 16 oz (1 large can) 2 servings
5 hour energy 2 servings
Large coffee 16 oz (large or grande) 2 servings
Caffeine pill - 100mg 1 serving
Caffeine pill - 200mg 2 servings

158



Besides caffeine, did you use any other medications, drugs, or alcohol today?
Yes/No

For each of the following, indicate how you feel right now by clicking on each line and adjusting the

sliders.

Sleepy-Alert

Sad-Happy

Sluggish-Energetic

Sick-Healthy

Stressed Out-Calm Relaxed

In addition, did you have an emotionally charged interaction with someone today?
No

Yes, a memorable positive interaction
Yes, a somewhat negative interaction
Yes, and it was very negative

Please enter any comments for today
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B. Participant Demographics
Here, we summarize demographic information of our population (Tables B.1-B.6)

Table B.1 Gender

Gender #

M 107

F 62

Table B.2 Age

Age #
17 1
18 41
19 51
20 26
21 34
22 8
23 3
24 1
25 1
26 0

Not
reported 3

Table B.3 School year

Year #
1 50
2 43
3 35
4 31
Not
reported 10
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Table B.4 Major

Major

Aerospace Engineering

Atmospheric & Planetary Sciences

Biology

Biological Engineering

Brain & Cognitive Sciences

Chemistry

Chemical Engineering

Chemical Biological Engineering

Civil & Environmental Engineering

W ([ |0 |= |[W |\ |00 [— |

Computer Science & Engineering

(=2

Computer Science & Molecular Biology

[—

Economics

[

Electrical Engineering & Computer Science

o
N

Electrical Science & Engineering

Management Science

Materials Science & Engineering

Mathematics with Computer Science

Mathematics

(SO I ST - T o5 S ]

Mechanical Engineering

34

Mechanical & Ocean Engineering

Nuclear Science & Engineering

Philosophy

Physics

10

Political Science

Undesignated

14

Not reported
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Table B.5 Self-Reported Ethnicity and Gender of All Enrolled Participants

Ethnic Category

Males

Females

Unknown

Total

Hispanic

32

10

43

Not Hispanic or
Latino

71

52

123

Unknown

3

0

Total of all
Enrolled
Participants

106

62

1

169

Table B.6 Self-Reported Race and Gender of All Enrolled Participants

Ethnic Category

Males

Females

Unknown

Total

American
Indian/Alaska
Native

Asian

16

14

30

Native Hawaiian
or Other Pacific
Islander

Black or African
American

16

23

White

51

85

More than one
race

15

Unknown or not
reported

15

Total of all
Enrolled
Participants

106

62

169
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Table B.7 Answers to questions in SF-12 related to MCS (Mental Component Score) (%)

During the past 4 weeks, how much of the time have you had any of the following problems with your work or other regular daily activities as a
result of any emotional problems (such as feeling depressed or anxious)?

[%] a) Accomplished less than you would like b) Did work or activities less carefully than usual

Pre None of the time 40.2 40.8
A little of the time 27.8 30.8

Some of the time 22.5 23.1

Most of the time 6.5 4.7

All of the time 3.0 0.6

Post None of the time 22.5 243
A little of the time 29.6 30.8

Some of the time 27.8 30.8

Most of the time 10.1 5.9

All of the time 4.7 3.0

How much of the time during the past 4 weeks... During the past 4 weeks, how much

of the time has your physical health

a) Have you felt c¢) Have you felt | or emotional problems interfered with

calmand | b) Did you have downhearted and your social activities (like visiting

peaceful? | alot of energy? blue? friends, relatives, etc.)?

Pre None of the time 0.6 0.0 10.8 51.5
A little of the time 10.2 7.7 52.1 28.1

Some of the time 35.3 37.5 24.6 14.4

Most of the time 52.1 53.0 12.6 6.0

All of the time 1.8 1.8 0.0 0.0

Post None of the time 1.8 1.2 7.8 317
A little of the time 23.4 14.9 335 31.1

Some of the time 29.3 44.0 34.1 23.4

Most of the time 39.5 32.7 19.8 8.4

All of the time 2.4 2.4 0.6 1.2
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C.Study Attrition and Completion Rate

As we mentioned in section 5.2, 169 participants consented to join the study and 7 participants dropped out.
The reasons the 7 participants dropped out were (1) one participant was under 18 (2) one participant crossed
more than one time zone (3) 5 participants decided not to continue the study because two participants were
too busy with school, one did not want to wear the sensors, one broke his android phone and the other one
concerned about the collected data security)

Our diary entry completion rate was 92% for the 2014 Spring cohort, 97% for the 2014 Fall cohort
and 95% for the 2015 Spring cohort. We obtained 71% and 85% of full datasets (Q-sensor, actiwatch,
overnight study, daily diaries, and phone application) for 2014 Fall and 2015 Spring. We obtained 82% of
30-day Q-sensor data (one day was counted if measurement was done for more than 18 hours per day) and
83% of 30-day phone data in 2014 Fall, and 85% for Q-sensor data and 91% for phone data in 2015 Spring
Study completion rate was 97% in 2014 Fall and 96% in 2015 Spring.
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