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Chapter 1

Introduction

1.1 History

Since the inception of microprocessors, the industry has put great efforts in improving

their performance. Traditionally, the focus was on shortening the length required for

a clock cycle so that the processors can run at higher clock speeds. This was done

primarily by improving the instruction set architectures or using techniques such

as pipelining. For example, the Alpha instruction set architecture was designed to

facilitate high clock speed [1]. NetBurst, the microarchitecture inside Intel's Pentium

4 processors, relied on very deep pipelining to achieve very high clock speeds [2].

However, the increase in clock speed is limited by the physical characteristics of

silicon, the semiconductor material used to manufacture microprocessors. As the

frequency increases, power consumption of microprocessors have grown exponentially,

and the resulting thermal energy dissipation becomes a significant limiting factor on

the maximum clock speed. For instance, Intel claimed that NetBurst would allow

CPU clock speeds of up to 10 GHz in future chips, but had to limited it to a much

lower 3.8 GHz in Prescott Pentium 4 due to severe heat dissipation.

While the increase in clock speed was shown to be limited by the physics in

the late 2000s, Moore's law still held as the number of transistors contained in a

processor continued to grow at an exponential rate. Technological development in

semiconductor device fabrication kept reducing the "process" of microprocessors, and
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a smaller process means that more transistors can be packed in a certain area of

silicon. With the ability to keep adding more transistors to a chip, the industry

sought the alternative to increasing clock speed for improving processor performance:

putting multiple cores on a single chip.

The invention of multiprocessor computing systems has called for innovations in

programming models and architectures. Many efforts have been made to improve the

performance of these systems, reduce energy consumption and widen the category of

target applications. These efforts span the fields of programming language research,

compiler construction and architecture design. However, a large number of design

decisions are still based on the dominant existing model of serial execution, resulting in

a big gap between actual performance and the theoretical limit imposed by Amdahl's

Law 13]. With this background and context, a radical redesign of a new multiprocessor

computing system, based on the assumption that many parts of the problem domain

contain high degree of parallelism, is of particular research interest.

1.2 The Fresh Breeze Project

The Fresh Breeze architecture [8] is an innovative multiprocessor system proposed by

Prof. Jack Dennis at MIT. The system is influenced by dataflow architectures and

represents several ideas significantly different from the mainstream processor design.

Fresh Breeze supports massively parallel simultaneous multithreading execution of

programs. Fresh Breeze makes use of a global shared 64-bit address space that aban-

dons the conventional distinction between memory and file system. Another major

principle in Fresh Breeze is the usage of a cycle-free heap with no memory update.

Data items can be created, used and released, but never modified. This prevents

pointer cycles and eliminates the cache coherence problem that is common to tradi-

tional multiprocessor systems.

The Fresh Breeze architecture uses a computation model that aims at exploiting

maximal parallelism within programs. It is well suited for high performance com-

putation, such as linear algebra applications, weather simulations and problems in
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computational biology. In addition, Fresh Breeze has been shown to have merits for

graph processing (BFS) and we believe it has tremendous potential for big data and

stream processing.

The Fresh Breeze architecture is accompanied by a compiler that converts a sub-

set of Java byte code to dataflow graphs, performs transformations on the dataflow

graphs, and emits codelets to be run on the Fresh Breeze processors. The subset of

Java that is accompanied by Fresh Breeze is called FunJava, a name indicating the

functional nature of the programming model [111.

1.3 Background

The Fresh Breeze project is a continuation of the works done in the area of dataflow

architecture. Jack Dennis pioneered the design of an architecture inspired by static

dataflow [10]. The static dataflow model was not general-purpose enough because

it did not support function calls and data structures. The dynamic dataflow model

was designed to solve these problems. The implementation of recursive procedures

and tree-based data structures in the Fresh Breeze architecture is derived from the

dynamic dataflow model [9].

Jack Dennis and Arvind et. al. developed a series of dynamic dataflow machines.

The MIT Tagged-Token architecture and the Monsoon architecture [6] were examples

of dynamic dataflow machines.

The Parallel Haskell (pH) project 15] created a compiler that takes a variant of

Haskell and produces machine code for the Monsoon architecture. Similarly, Fresh

Breeze provides a compiler that takes a subset of Java bytecode and produces machine

code for our architecture.

The fork-join pattern of task execution in Fresh Breeze is similar to the Cilk

project [4], which provides a general purpose programming language that supports

simultaneous multithreaded parallel programming on conventional architectures.
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1.4 Fresh Breeze System Three

The system is currently implemented as a software simulation using Kiva, a simulator

for packet communication architectures (PCA) [12]. Fresh Breeze is an example of a

PCA system and is an illustration of the general class of systems that can be simulated

with Kiva. It is planned that an FPGA version of System Three will be developed

using BlueDBM 171 once Fresh Breeze principles have been verified and simulation

extended to include an archive level of high density solid state devices.

This thesis describes an extension to the Fresh Breeze architecture. The goal was

to design and implement a cycle-accurate simulation of a massively parallel computer

system with a multi-level memory hierarchy.

1.5 Synopsis

The rest of this thesis is organized as follows. Chapter 2 gives an overview of the

Fresh Breeze architecture, focusing on the model of execution. Chapter 3 discusses

the design and simulation of Fresh Breeze System Three in detail, explaining each

level of the memory hierarchy and the principles of simulation with Kiva. Chapter

4 reports the results of the simulation and demonstrates that the architecture can

maintain high processor utilization by hiding memory access latency. Chapter 5

proposes planned future work and conclude this thesis.
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Chapter 2

The Fresh Breeze Model of Program

Execution

2.1 Chunks and Memory Model

The Fresh Breeze system operates in a 64-bit address space, where all the data for

CPU execution are in the form of chunks. A chunk is a fixed-size memory unit. Each

chunk possesses a 64-bit unique identifier called the chunk handle. Using the handle,

the system keeps track of which chunks are in use. In the current design, chunks

are 128 bytes in length, so each chunk can hold up to 16 elements of 64-bit data or

handles of other chunks, as shown in Figure 2-1. Structured data are represented as

a directed acyclic graph (DAG) in the Fresh Breeze system and thus form a cycle-free

heap.

An important characteristic of a chunk is that it is read-only. After a producer

task creates the chunk and writes to it, the chunk is sealed. The consumer tasks can

read the chunk using the handle, but not write to it. One major benefit of representing

data with an acyclic immutable graph is that the cache coherency problem, which

is common in conventional multiprocessor systems, vanishes. The consumer tasks,

possibly running on other cores, can access cached data without worrying that they

might be stale. The 64-bit handles form a globally valid address space that is available

to all processors and tasks. The existence of a global shared address space makes the
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distinction between different levels in the memory hierarchy obsolete, and facilitates

the creation of modular software programs.

5-

12

Figure 2-1: A Chunk holding data and references to other Chunks

2.2 Codelets and Tasks

The Fresh Breeze compiler attempts to exploit fine-grained parallelism in the input

program. The fine granularity, along with the small amount of information associated

with a task, makes it possible for a hardware task scheduler to perform task switch-

ing significantly faster than conventional methods such as message passing used on

architectures. FunJava programs are compiled into sequences of machine code called

codelets. A Fresh Breeze codelet is the combination of a block of instructions and

an integer stating the number of variables needed for execution of the instructions.

Variable number zero provides access to all input data objects for codelet execution.

It can either be a single data value or a handle pointing to an argument chunk whose

elements contain the input data. Because the current Fresh Breeze compiler has not

implemented register allocation and does not handle spilling, the variable numbers

are the same as machine register names, and the total number of variables in a codelet

is limited by the number of machine registers.

The basic unit of parallel execution is a task. The Fresh Breeze model of thread

execution is similar to the fork-join idiom of Cilk. A master task is allowed to spawn
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(fork) multiple worker tasks executing different functions independently (Figure 2-

2). The master task creates a sync chunk and spawns the workers. At this point,

the work of the master task is complete, and each worker task return the results of

computation to the master task by writing to the assigned element in the sync chunk

in a SyncUpdate operation. When all the worker tasks have completed, a continuation

task is spawn.

Master Task

SyncCreate

Iakpw n Worker 0 Worker n-1TaskSpawn (n)

TaskQuit SyncUpdate SyncUpdate

Sync Chunk

Continuation Task

Figure 2-2: A master task spawning multiple worker tasks

Running a task is similar to a method call in sequential programs in that fork

corresponds to call and join corresponds to return. However, a method in FunJava is

typically implemented by a master task and many subtasks.

Tasks are represented with TaskRecords in Fresh Breeze. A TaskRecord contains

three fields:

1. codelet index. An integer specifying the codelet executed for this task.

2. argument count. An integer specifying the number of arguments required by

this task.

3. argument handle / value. Null if the argument count is zero; the handle or value

of the single argument if argument count is one; and the handle of the argument

chunk otherwise.
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2.3 Instructions

Instructions of the Fresh Breeze ISA fall into three classes: compute instructions,

memory instructions and tasking instructions.

The compute instructions include all the register operations and control instruc-

tions. They are similar to the ones in conventional architectures.

The memory instructions include ChunkCreate, Read and Write.

" ChunkCreate. The ChunkCreate instruction returns the handle of a mem-

ory chunk to a destination register. All the 16 elements of the memory chunk

are uninitialized.

" Read. A Read instruction reads the data in an element of a chunk to a

destination register. It has the form:

Read(handle, offset) -> destination

Upon execution, it reads a value from the element specified by the of fset in

the chunk identified by the handle.

" Write. A Write instruction has the form:

Write(handle, offset, data)

Upon execution, it writes the data to the element specified by the of f set in

the chunk identified by the handle.

The tasking instructions include TaskSpawn, SyncCreate, SyncUpdate and

TaskQuit.

" TaskSpawn. The TaskSpawn instruction creates a Task Record of a subtask

and passes it to the scheduler, with codelet index set to the index of the worker

codelet. It performs the fork operation in the fork-join model.

" SyncCreate. The SyncCreate instruction creates a special kind of memory

chunk called a sync chunk. A sync chunk is the counterpart to a return address

in conventional sequential programs. It specifies the continuation task to be

executed when all subtasks have completed. The worker codelet of each subtask
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takes the handle of the sync chunk as one of its arguments, so that the worker

codelet can enter the result of its computation in its assigned eleement in the

sync chunk.

" SyncUpdate. The SyncUpdate instruction updates the sync chunk and

spawns the continuation task if all subtasks have completed. It performs the join

operation in the fork-join model and corresponds functionally to a conventional

procedure return instruction.

* TaskQuit. The TaskQuit instruction marks the termination of a task.

2.4 Dot Product Example

As an example, we will walk through the creation and running of a dot product

method:

long dotProduct(long[] a, long[] b, int length) {

long sum = 0;

for (int i = 0; i < length; i++) I

sum += a[i] * b[i];

}

return sum;

First, the vectors a and b need to be converted into trees of memory chunks.

Because each memory chunk holds 16 64-bit values, the vectors are partitioned into

16-element segments and organized as a tree structure, where the leaf chunks hold

the actual values and the non-leaf chunks hold the handles that point to the other

chunks. Three types of codelets are required to construct a tree-of-chunks: a master

codelet, a worker codelet and a continuation codelet. The master codelet creates

a sync chunk using the SyncCreate instruction and checks the depth of the tree

that needs to be built. If it is not at the leaf level yet, the master codelet spawns

more instances of itself with the input set to the depth of the next level using the

TaskSpawn instruction. If the tree is at the leaf level, the master codelet spawns a
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worker codelet that allocates the memory for one chunk and writes the chunk handle

back to the sync chunk using the SyncUpdate instruction. The continuation codelet

writes the handle of the sync chunk at the current level to the sync chunk one level

above. This process continues until the root level is reached.

After the tree-of-chunks for vectors a and b are constructed, the computation

codelets are scheduled. Again, three types of codelets are involved in the computation

step. The master codelet creates a sync chunk using SyncCreate and traverses the

vectors. It takes the roots of the two tree-of-chunks a and b as inputs, then checks

the depth of the tree to see if it is at the leaf level. If not, the master codelet spawns

more instances of itself with the inputs set to the handles of the next level in the

tree-of-chunks using TaskSpawn. If the tree is at the leaf level, the master codelet

spawns a worker codelet that computes the dot product of 16 elements and writes the

result sum to the sync chunk. The continuation codelet adds all results in the sync

chunk filled by lower level codelets and writes the handle of the sync chunk to the

sync chunk one level above. This process continues until the root level sync chunk is

reached, where the final result is stored.
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Chapter 3

Design and Simulation

3.1 Overview of the Fresh Breeze System

The Fresh Breeze project is composed of two parts: a novel architecture and a com-

piler. The compiler takes the bytecode of a program written in a subset of Java (called

FunJava for its functional nature), converts it to a dataflow graph, transforms the

graph to exploit the parallelism within the program, and outputs machine code in

the form of Fresh Breeze codelets. The architecture is a multiprocessor system that

executes the codelets and returns the results. The focus of this thesis is on extending

the architecture part.

The design and development of the Fresh Breeze has been done in phases, modeling

successively more complete versions of the architecture. Fresh Breeze System One

was a proof-of-concept single-core system with a task scheduler, a processing unit to

perform the computation, and two levels of memory to store the chunks: the cache

(called AutoBuffer) and the memory unit that was used to model either on-chip or

off-chip memory.

Fresh Breeze System Two (Figure 3-1) was structured as a multi-core chip that is

a combination of multiple System Ones. All cores have access to a single-level shared

memory through a routing interconnection network (Figure 3-2). The system also

has a load balancer that moves tasks across cores dynamically to keep the workload

evenly distributed. The hardware load balancer facilitates fast task switching and
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work stealing, which

of Fresh Breeze.

are essential to the massively parallel program execution model

Load Balancer

Processing Unit Processing Unit

AutoBuffer (LI) AutoBuffer (1)

Interconnection Network

Shared Memory (L2)

Figure 3-1: Structure of Fresh Breeze System Two

Source 0 2 Distributer Arbiter 0

Source i 1 Distributer Arbiter 1 +
" A

Dest
0

Dest
1

Figure 3-2: Structure of an interconnection network

Fresh Breeze System Three (Figure 3-3) is a combination of multiple copies of

System Two. Each copy is a fully functional multi-core system of its own. This

organization provides a large degree of flexibility for a hardware implementation.

The copies can either be arranged on a single chip, or spread out on multiple chips

connected with a routing interconnection network.

3.2 Memory Hierarchy

In Fresh Breeze System Three, the physical memory is a three-level hierarchy con-

sisting of the AutoBuffer, the L2 cache, and the shared DRAM.
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Master Load Balancer

System Two Load Balancer System Two Load Balancer

Processing Unit Processing Unit Processing Unit Processing Unit

AutoBuffer (L1) AutoBuffer (L1) AutoBuffer (L1) AutoBuffer (1)

Interconnection Network Interconnection Network

Cache (L2) Cache (L2)

Interconnection Network Interconnection Network

Shared DRAM (L3)

Figure 3-3: Structure of Fresh Breeze System Three

3.2.1 AutoBuffer

The first level of memory is the AutoBuffer. An AutoBuffer is similar to an Li cache in

conventional modern processors. It stores the memory chunks that are most recently

used by a processing unit. Fresh Breeze memory chunks are the unit of memory

allocation, the size of cache lines, and the unit of data transfer between levels of the

memory hierarchy. Memory chunks are used to represent data objects and function

activation records. A function activation record is the set of local variables used

by a task when executing -a codelet. Note that a function activation record may

require more than a single chunk, but this issue has not been addressed in the current

simulations. Each execution of a function call creates a activation with a record made

up of one or more memory chunks that represent data. Each function activation may

invoke additional activations that are initiated in other processing cores.

Each AutoBuffer holds memory chunks along with the metadata that indicates

the kind of each of the 16 elements of the chunk: whether it is data, code or a sync

chunk. An element of a chunk is accessed by the processing core using the handle

of the chunk and an offset up to 15. Each processor register has two auxiliary fields
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for accessing the AutoBuffer: a numeric bufferlndex and a boolean indexValid. If

indexValid is true for the register holding the handle, then bufferIndex is the index

of the buffer that holds the chunk, and the chunk can be accessed using this index

along with the offset value. If indexValid is false, we know that an AutoBuffer miss

has occurred and the AutoBuffer sends a ChunkLoad command containing the chunk

handle to the second level cache for further lookup. Note that unlike conventional

processors, AutoBuffer does not need to use a cache tag memory.

Fresh Breeze supports latency hiding for read instructions that cause misses in the

AutoBuffer. Each processing unit implements several execution slots. Each execution

slot has a private set of processor registers, a private reference to the codelet being

executed, and a private program counter. The task scheduler of a processing unit

tracks the status of each execution slot, which may be VACANT, DORMANT or ACTIVE.

When a read instruction causes an AutoBuffer miss, the current execution slot is

switched from ACTIVE to DORMANT. The task scheduler either makes a DORMANT

slot ACTIVE and resumes executing the task in that slot, or starts execution of a task

from the PendingTask Queue(PTQ) in a VACANT slot. If neither of these is possible,

the processing unit becomes idle until a slot resumes or the PTQ becomes non-empty

and a VACANT slot is available.

3.2.2 Cache

The second level of memory is the cache shared by the cores in each copy of System

Two. The cache is populated when the AutoBuffer fills up, or when a memory chunk

needs to be accessed by another core in the same System Two copy. The interac-

tion between the processing unit and the cache is done through memory commands

ChunkLoad and ChunkSave, which are issued by the processing unit when execut-

ing the Read and Write memory instructions. When a ChunkLoad is received, the

cache checks if the requested chunk is present by performing an associative lookup

on the chunk handle. The cache maps handles of memory chunks to their physical

addresses in the DRAM. If a chunk is present, it is returned to the processing unit.

If a chunk is not present, the memory command is forwarded to the DRAM. When
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the DRAM returns the chunk, it is saved in the cache so that further lookups can

be faster. The same procedure is performed when a ChunkSave is received. Since

Fresh Breeze chunks are read-only, we can guarantee that the same chunk will not be

updated by the same task. Therefore, we do not need to worry about coherence and

the cache does not need to be write-through.

In general, there are three approaches to implement such a cache: direct mapped,

fully associative and set associative, each with different tradeoffs. A direct mapped

cache would have the least number of comparators in hardware and thus the least

complexity, but cache misses are more likely. On the other hand, a fully associative

cache requires the most number of comparators and the highest hardware complexity,

but cache misses are reduced. A set associative cache is another type whose com-

plexity and speed are in between the other two variants. There is the possibility of

implementing a fully associative cache by exchanging more clock cycles for decreased

logic complexity. This can be achieved by implementing a more advanced data struc-

ture, such as a B-tree or a red-black tree in hardware. In the current system, we have

chosen to use a hash map for its simplicity of implementation.

When a new chunk needs to be cached while the cache is already full, an old chunk

needs to be evicted and saved to the DRAM. We considered different eviction policies

for the cache. The simplest eviction strategy would be First In First Out (FIFO),

which replaces the oldest memory chunk that is still in the cache. This would be very

easy to implement in hardware, but usually offers poor hit rate and performance.

The optimal strategy would be Least Recently Used (LRU), which tracks the relative

freshness of each memory chunk and replaces the one that is the least recently used.

However, LRU requires a priority queue, a data structure that is hard to implement

in hardware. In the current system, we implemented a strategy called the clock

algorithm, which is a more efficient version of FIFO that offers performance similar

to LRU, while remaining simple enough to be implemented in hardware easily. The

algorithm keeps a circular list of memory chunks, with the "clock hand" pointing to

the last examined chunk in the list. When a cache miss occurs and no empty slot

exists, the "referenced bit" of the chunk at the hand's position is inspected. If the bit
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is 0, the new chunk is put in place of the chunk the hand points to, otherwise the

referenced bit is cleared, the clock hand incremented and the process repeated until

a chunk is replaced.

3.2.3 DRAM

The third level of memory is the DRAM shared by multiple copies of System Two.

The DRAM is populated when the cache fills up, or when a memory chunk needs

to be accessed by another copy of System Two. Since any chunk handle is glob-

ally unique, the simulated DRAM can serve as an abstraction for different forms of

external storage, including hard disks such as SSDs.

3.3 Dynamic Hierarchical Load Balancer

The computation model of Fresh Breeze results in the common pattern that a task

may spawn many new tasks in a few cycles. Currently, the newly spawned tasks are

added to the pending task queue of each core. If there was no load balancer in place,

some cores will be much busier than others because they happen to hit instructions

that spawn many new tasks. This situation would be a large waste of computational

resource, and we would like to mitigate the uneven distribution of tasks to avoid such

situations.

Fresh Breeze System Two used a dynamic load balancer that gathers the number

of tasks from each core and signals the busiest core to send a task to the most vacant

core. We adopted a similar strategy when augmenting the load balancer to move

tasks across different copies of System Two. The top-level load balancer gathers load

information from each copy of System Two, and signal the busiest copy to redirect

tasks to the most vacant copy. This provides a simple hardware implementation of

work stealing.

Going forward, we might change how new tasks are spawned. Instead of adding

them to the pending task queue, we can directly send them to other cores or other

copies of System Two, and thus avoiding the sudden task accumulation in a single
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core.

3.4 Using Kiva for Simulation

The simulation is performed on the Kiva (Figure 3-4) engine. Kiva is a modular,

configurable, and flexible discrete event simulator for computer architectures. It is

designed and implemented based on modeling the target system as a Packet Commu-

nication Architecture (PCA). Kiva is implemented in Java, but with careful measures

to limit the memory usage of the host machine during the simulation. The system is

viewed as a collection of components which interact by exchanging packets over a net-

work. A target system is specified as a network of connections between components,

where each component specifies its input and output ports and its connections. Kiva

parses a description file specifying Fresh Breeze System Three and runs simulation

on the constructed network of components.

Target System Simulation
Description File Results

It m Component
Pasrseio Target Build Instance .. JPCASir I
Fil D escription yISystem Table and Engine
File Description W Connections

Figure 3-4: Workflow of PCASim

The description file specifies the types, behaviors, and interconnections of compo-

nents required for a target system. A sample description file for a 4-core Fresh Breeze

System Two is shown as follows:

system SysTwo4x4 {

// Declarations

set 4 => size; // Number of processing units

// Declarations of modules

// Node Specifications
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nodes {

component LoadBalancer(LoadBalancer);

// The four Processing units or cores

ensemble Cores(size, component, ProcessingUnit);

// The four Schedulers, one per processing unit

ensemble Scheds(size, component, CoreSched);

// The four Memory units

ensemble MemUnits(size, component, MemUnit);

// The two 4x4 routing networks

// CommandNetwork: processing units to memory units

module P2MNetwork(Command4x4RoutingNetwork);

// ResponseNetwork: memory units to processing units

module M2PNetwork(Response4x4RoutingNetwork);

// end of node specifications

// Connections between components

connections

for (0 .. size - 1) => core

Scheds[core][0] => Cores[core][1];

Cores[core][1 => Scheds[core][0];

Cores[core][2] => Cores[core][2];

// Connect the load balancer to the

// task schedulers

LoadBalancer[core] => Scheds[core][1];

Scheds[core][1] => LoadBalancer[core];

// Connect the cores to inputs of the 4x4 command

// network

Cores[core][0] => P2MNetwork[core];

P2MNetwork[core+size] => Cores[core][4];

// Connect the outputs of the 4x4 command network

// to memory units

P2MNetwork[core] => MemUnits[core][0];

MemUnits[core][0] => P2MNetwork[core+size];

// Connect the memory units to inputs of the 4x4

// response network

MemUnits[core][1] => M2PNetwork[core];

M2PNetwork[core+size] => MemUnits[core][1];
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// Connect the outputs of the 4x4 response network

// to the cores

M2PNetwork[core] => Cores[core][0];

Cores[core][4] => M2PNetwork[core+size];

}

// end of connections

// end SysTwo4x4 definition

The file has three sections: declarations of variables, components and modules;

specifications of nodes the target system; and a list of connections. The declarations

section includes the assignment of global constants and variables in the file and the

declarations of the nodes used in the system. For example, we defined a constant size

to be 4 in the 4-core system.

Following the declaration section, the nodes section specifies the various nodes in

the target system. There are two types of nodes: component and module. The basic

node type is a component, which is an instance of a component type implemented as

a Java class specifying the properties of the component, such as the number input

and output ports, whether it serves a merge component or a function component, and

its duration of activation in the number of cycles. Kiva requires that the class im-

plement two methods defining the behavior of the component: an voidinit() method

to initialize all the states, and a voidfire(portNumber) method to process the data

packets arriving at the input port specified by portNumber. To ensure that no extra

memory of the host machine is used, it is recommended that all memory allocation

should be done in the init method and not in the fire method.

The other node type module represents interconnected nodes. Each module de-

scription is structurally similar to the description file itself, with the nodes and con-

nections sections. The module construct provides convenient modularization of the

target system and allows hierarchical structures to be described easily. For example,

the routing network used in Fresh Breeze System Two and System Three are specified

as interconnections of the basic components Distributers and Arbiters.

Kiva allows nodes to form ensembles, which are one dimensional arrays of nodes

with the same component or module type. The elements of an ensemble can be
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indexed using the familiar syntax like Cores[0]. As is shown, ensembles make it easy

to describe multi-processor systems like Fresh Breeze with Kiva.

Following the nodes section, the connections section describes the interconnec-

tions. Each connection is written in a straightforward format of:

sourceNode[outputPort] => destinationNode[inputPort];

Kiva allows the use of for loops to iterate over indexes when specifying interconnec-

tions. This again makes the syntax more convenient to use.

A complete description file for Fresh Breeze System Three is included in Appendix

A.

30



Chapter 4

Experimental Results

We have tested the Fresh Breeze system on several linear algebra applications, in-

cluding dot product, matrix multiplication and LUD decomposition. These programs

are representative of the applications well suited for Fresh Breeze. They are also the

central pieces of many other real-world algorithms. The simulation results demon-

strate that the architecture can support memory access with DRAM latency and still

achieve high processor utilization.

In the current Fresh Breeze simulation on Kiva, each component is specified a du-

ration that indicates the number of cycles it takes to process a packet. The processing

unit takes 2 cycles. The cache takes 1 cycle. The DRAM takes 4 cycles. Each stage

of the interconnect network takes 1 cycle. These cycle counts are arbitrary and might

not represent actual numbers. For example, a floating point division operation can

take many more than 2 cycles. This is a current limitation of the Kiva simulation

engine.

4.1 Dot Product Speedup

We present the simulation results of the dot product application to verify our argu-

ment. We ran a dot product of tree depth 5, which corresponds to a data size of 165

floating point numbers. We varied both the number of cores and the execution slots,

and observed the speedup over a baseline Fresh Breeze system with a single processor
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core and a single execution slot. The results are shown in Figure 4-1.
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Figure 4-1: Speedup over a single-core, single-slot system

We observe that the speedup is generally proportional to the number of cores.

This because there are enough codelets that have high degree of parallelism to fully

utilize the system. For problem sizes that are large enough to saturate the cores, we

observed speedup that was close to linear in the number of cores. This demonstrates

the effectiveness of the task scheduler and the load balancer.

Note that the number of execution slots affect the speedup. When the number of

slots is insufficient, a processor core is forced to block on DRAM access and becomes

idle. We will provide more analysis on this issue in the next section.

4.2 Hiding DRAM Latency with Execution Slots

Note that as the number of cores increases, the memory access overhead through the

interconnect network also increases, which degrades performance and prevents linear
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speedup. The depth of an interconnect is determined by:

Depth of interconnect = log2 N

where N is the number of cores rounded up to the nearest power of 2. For example,

assume we have an 8-core system, then the number of processor-cache network stages

and the number of cache-DRAM network stages are both log2(8) = 3. If we have a

64-core system, then the network delay goes up to log2(64) = 6.

As stated in Chapter 3, Fresh Breeze supports latency hiding by switching among

multiple execution slots. When a slot is blocked on memory access, the processor

can switch to other execution slots and make progress. The choice of the number of

execution slots involves a compromise between the cost of transistors and the loss of

performance due to idle processing units. In the dot product simulation, two load

instructions are required for reading the two vectors. Assuming an 8-core system with

a cold cache, each read takes

processor + p2c + cache + c2m + memory + m2c + c2p

= 2+3+1+3+4+3+3 = 19

cycles. Here, we use p2c for the processor to cache command network, c2m the cache

to memory command network, m2c the memory to cache response network, and c2p

the cache to processor response network. If a warm cache is the more common case,

as in the matrix multiplication program, then each read takes

processor + p2c + cache + c2p

-2+3+1+3=9

cycles. In both cases, the number of stages in the interconnecting network dominates

the access time. Since most linear algebra applications have many more computation

instructions than memory access instructions, when the processor switches to a new

slot, it is very likely that a computation instruction will be scheduled and the processor
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can do work. Therefore, the number of slots does not need to be as high as the number

of cycles for a DRAM access.

From these observations, we can conclude that the number of stages in the in-

terconnecting networks is the deciding factor for determining the ideal number of

execution slots. The ideal number of execution slots does not need to be the number

of cycles for a DRAM access, but it should be proportional to the logarithm of the

number of cores so that the number of idle processors can be minified.

Figure 4-2 shows the percentage of processor idle time in each configuration.
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Figure 4-2: Percentage of processor idle time

We observe that the effect becomes more significant as the number of cores in-

creases. This is expected, because the logarithm of the number of cores is proportional

to the number of cycles in the network delay of a memory access. Up to a certain

limit, increasing the number of execution slots stops bringing additional speedup. The

cutoff limit varies with the number of cores, but it is roughly equal to the logarithm of

the number of cores, which again meets our expectation. Note the exact limit varies

among different applications, because it is dependent on the frequency and pattern of
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memory access. However, since dot product is the center piece of many linear algebra

applications, the memory access pattern is a good representative of real applications.

Therefore, we believe that the logarithm of the number of cores is a good choice for

the number of execution slots in a Fresh Breeze system.

In real systems, the DRAM access is often limited heavily by the bandwidth on the

connector pins. As a result, the effective latency can as high as hundreds of cycles.

Under the assumption that most instructions are compute instructions instead of

memory instructions in Fresh Breeze applications, we claim that the architecture can

still tolerate such a high latency with a few number of execution slots. We increased

the predefined cycle count of DRAM to 200 and measured processor idle time in an

8-core system. The result is shown in Figure 4-3.
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Figure 4-3: Percentage of processor idle time in an 8-core system with high DRAM
latency

Since we increased the DRAM latency significantly, the percentage of processor

idle time when the execution slot is insufficient became as high as 16%. However, this

percentage reduced dramatically as we increased the number of execution slots. We

observed the similar cutoff limit above which adding execution slots stopped affecting

processor idle time.
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Chapter 5

Future Work

5.1 Garbage Collection

Currently, Fresh Breeze System Two assumes that there is an infinite supply of mem-

ory. The software simulation throws an exception and halts when the Java virtual

machine runs out of heap space. Because of the way Fresh Breeze spawns tasks, we

frequently allocate a lot of memory space in a few cycles. These memory addresses

should be reclaimed once the tasks that use them have completed, otherwise we will

eventually run out of memory. As a result, a garbage collection implementation must

be provided. Over the years, garbage collection has been performed in software, and

little attention has been given to the possibility of building support for garbage collec-

tion in hardware. However, because any software garbage collection implementation

would require code to be executed by the processing units, the performance overhead

would be significant. On the contrary, a hardware implementation would have much

smaller impact on performance and energy consumption. Therefore, we would like to

use Fresh Breeze System Three as a target for such an experiment.

We have considered two approaches for garbage collection: reference counting and

mark-and-sweep [13].
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5.1.1 Reference Counting

A classic and efficient garbage collection strategy is reference counting. When a chunk

is created, the chunk is associated with a reference count of one. During system

operation, every event that creates of removes a copy of the handle of the chunk must

increment or decrement the reference count. The processing unit will send UpCount

and DownCount signals to the memory system to update the reference counts. These

signals propagate to the lowest memory level where the chunk is stored. When the

reference count of a handle becomes zero, the memory unit will send DownCount

signals for any data element that is referenced by the handle.

It is worth noting that for this scheme to work correctly, the order between

an UpCount signal and its corresponding DownCount signal must be maintained.

Specifically, the UpCount must arrive at the memory unit before the DownCount.

When passing a handle from one core to another, the UpCount sent by the sending

core must also arrive before the DownCount sent by the receiving core.

A significant drawback of the basic reference counting as described is that it will

fail to collect objects that have cyclic references. However, since Fresh Breeze adopts

a functional programming model, we will not encounter cyclic data structures.

Another drawback of reference counting is that the reference count themselves

might take up significant amount of storage space. Nevertheless, we estimate that

the storage overhead in real applications will not be too high.

The implementation of a reference counting garbage collection mechanism is cur-

rently in progress.

5.1.2 Mark-and-Sweep

An alternative garbage collection strategy is mark-and-sweep. In this scheme, we

would periodically stop all the computation, mark each handle and each data element

referenced by the handles as used, and then resume the computation. During the

computation, the memory unit can reclaim slots that contain unmarked chunks.

The mark-and-sweep scheme as described has the nature of "stopping the world",
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which might bring a significant performance impact. Pausing computation might also

be hard to implement in the current software simulation of Fresh Breeze. Therefore,

we decided to implement the reference counting garbage collection.

5.2 Conclusion

This research designed and implemented an extension to a massively parallel computer

system with multi-level memory hierarchies. A software simulation of the system

hasbeen be implemented. Fresh Breeze System Three has the potential to carry out

high performance computation tasks with good energy efficiency. The thesis research

will lay the groundwork for an FPGA implementation of the Fresh Breeze architecture.

39



40



Appendix A

Sample Description File for Fresh

Breeze System Three

This file specifies an instance of Fresh Breeze System Three as an interconnection of

components. The specified target system has one each of processing core, AutoBuffer,

L2 cache and DRAM. Different description files are used for other configurations,

shown as Figure A-1.

Load Balancer

Processing Unit

AutoBuffer (1)

Interconnection Network

Cache (L2)

Interconnection Network

DRAM (L3)

Figure A-1: Structure of the Described Single Core Fresh Breeze System Three
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systemthree SysThreelxlxlDotProduct

module CommandRouter (4, 4)

nodes {

// Distributers and arbiters for 2x2

ensemble dists (2, component, Distributer);

ensemble arbs (2, component, CommandArbiter);

} // End of CommandRouter nodes

connections

// Connect input ports of the router to distributers

// Input data ports are numbered 0 and 1

// Ack (output) ports for input data port i is number i+2

// Output data ports are numbered 0 and 1

// Ack (input) ports for output data port i is number i+2

for (0 .. 1) => i f

// Connect input ports of the router to the distributers

input[i] => dists[i][2]; // CommandRouter data input

port i

dists[i][2] => output[i+2]; // Port i+2 is ack port for

router input port 0

// Connect arbiters to output ports of the router

arbs[i][2] => output[i]; // CommandRouter data output

port i

input[i+2] => arbs[i][2]; // Port i+2 is ack port for

output port 0

// Interconnect the arbiters and distributers

// Interconnect the arbiters and distributers

dists[0][i%2] => arbs[i%2][0]; // Output port i%2 (data)

of distributer 0 to input port 0 (data) of arbiter i%2

arbs[i%2][0] => dists[0][i%2]; // Output port 0 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 0

dists[1][i%2] => arbs[i%2][1]; // Output port i%2 (data)

of distributer 1 to input port 1 (data) of arbiter i%2
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arbs[i%2][1] => dists[1][i%2]; // Output port 1 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 1

// End of CommandRouter connections

// End of CommandRouter module definition

// A column of 1 2x2 Command routers - 4 input and 4 output data

ports

module CommandRouterColumn (4, 4)

nodes {

// Ensemble of 2x2 CommandRouters

ensemble CommandRouters (1, module, CommandRouter);

} // End nodes

connections {

for (0 .. 1) => p

set p + 2 => ackPortNumber;

set p/2 => routerRowNumber;

set p % 2 => routerDataPortNumber;

set routerDataPortNumber + 2 => routerAckPortNumber;

input[p1 => CommandRouters[routerRowNumber][

routerDataPortNumber]; // Input data ports

CommandRouters[routerRowNumber][routerAckPortNumber] =>

output[ackPortNumberl; // Ack links for input data ports

CommandRouters[routerRowNumber][routerDataPortNumber] =>

output[p]; // Output data ports

input[ackPortNumber] => CommandRouters[routerRowNumber][

routerAckPortNumber]; // Ack links for input data ports

// End connections

// End of CommandRouterColumn module definition

module CommandNetwork (4, 4)

nodes {

ensemble CommandRouterStages (1, module, CommandRouterColumn);

// end of node declarations
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// Connections

connections {

input[O] => CommandRouterStages[O][0]; // Data

CommandRouterStages[0][2] => output[2]; // Ack

CommandRouterStages[O][0] => output[O]; // Data

input[2] => CommandRouterStages[0][2]; // Ack

input[l1] => CommandRouterStages[O][1]; // Data

CommandRouterStages[0][3] => output[3]; // Ack

CommandRouterStages[0][1] => output[l1]; // Data

input[3] => CommandRouterStages[0][3]; // Ack

// end connections

// end CommandNetwork module definition

module ResponseRouter (4, 4)

nodes {

// Distributers and arbiters for 2x2

ensemble dists (2, component, Distributer);

ensemble arbs (2, component, ResponseArbiter);

} // End of ResponseRouter nodes

connections {

// Connect input ports of the router to distributers

// Input data ports are numbered 0 and 1

// Ack (output) ports for input data port i is number i+2

// Output data ports are numbered 0 and 1

// Ack (input) ports for output data port i is number i+2

for (0 .. 1) => i {

// Connect input ports of the router to the distributers

input[i] => dists[i][2]; // ResponseRouter data input

port i

dists[i][2] => output[i+2]; // Port i+2 is ack port for

router input port 0

// Connect arbiters to output ports of the router

arbs[i][2] => output[i]; // ResponseRouter data output

port i
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input[i+2] => arbs[i][2]; // Port i+2 is ack port for

output port 0

// Interconnect the arbiters and distributers

// Interconnect the arbiters and distributers

dists[0][i%2] => arbs[i%2][0]; // Output port i%2 (data)

of distributer 0 to input port 0 (data) of arbiter i%2

arbs[i%2][0] => dists[0][i%2]; // Output port 0 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 0

dists[1][i%2] => arbs[i%2][1]; // Output port i%2 (data)

of distributer 1 to input port 1 (data) of arbiter i%2

arbs[i%2][1] => dists[l][i%2]; // Output port 1 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 1

// End of ResponseRouter connections

// End of ResponseRouter module definition

// A column of 1 2x2 Response routers - 4 input and 4 output data

ports

module ResponseRouterColumn (4, 4)

nodes {

// Ensemble of 2x2 ResponseRouters

ensemble ResponseRouters (1, module, ResponseRouter);

} // End nodes

connections I

for (0 .. 1) => p

set p + 2 => ackPortNumber;

set p/2 => routerRowNumber;

set p % 2 => routerDataPortNumber;

set routerDataPortNumber + 2 => routerAckPortNumber;

input[p] => ResponseRouters[routerRowNumber][

routerDataPortNumber]; // Input data ports

ResponseRouters[routerRowNumber][routerAckPortNumber] =>

output[ackPortNumber]; // Ack links for input data ports

45



ResponseRouters[routerRowNumber][routerDataPortNumber] =>

output[p]; // Output data ports

input[ackPortNumber] => ResponseRouters[routerRowNumber][

routerAckPortNumber]; // Ack links for input data ports

// End connections

// End of ResponseRouterColumn module definition

module ResponseNetwork (4, 4)

nodes {

ensemble ResponseRouterStages (1, module, ResponseRouterColumn);

// end of node declarations

// Connections

connections

input[G] => ResponseRouterStages[O][0]; // Data

ResponseRouterStages[0][2] => output[2]; // Ack

ResponseRouterStages[0][0] => output[0]; // Data

input[2] => ResponseRouterStages[0][2]; // Ack

input[1] => ResponseRouterStages[0][1]; // Data

ResponseRouterStages[G][3] => output[3]; // Ack

ResponseRouterStages[0][1] => output[l]; // Data

input[3] => ResponseRouterStages[G][3]; // Ack

// end connections

// end ResponseNetwork module definition

module TaskRecordRouter (4, 4)

nodes

// Distributers and arbiters for 2x2

ensemble dists (2, component, Distributer);

ensemble arbs (2, component, TaskRecordArbiter);

} // End of TaskRecordRouter nodes

connections {

//

//

//

//

//

Connect input ports of the router to distributers

Input data ports are numbered 0 and 1

Ack (output) ports for input data port i is number i+2

Output data ports are numbered 0 and 1

Ack (input) ports for output data port i is number i+2
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for (0 .. 1) => i {

// Connect input ports of the router to the distributers

input[i] => dists[i][2]; // TaskRecordRouter data

input port i

dists[i][2] => output[i+2]; // Port i+2 is ack port for

router input port 0

// Connect arbiters to output ports of the router

arbs[i][2] => output[i]; // TaskRecordRouter data

output port i

input[i+2] => arbs[i][2]; // Port i+2 is ack port for

output port 0

// Interconnect the arbiters and distributers

// Interconnect the arbiters and distributers

dists[0][i%2] => arbs[i%2][0]; // Output port i%2 (data)

of distributer 0 to input port 0 (data) of arbiter i%2

arbs[i%2][0] => dists[0][i%2]; // Output port 0 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 0

dists[1][i%2] => arbs[i%2][1]; // Output port i%2 (data)

of distributer 1 to input port 1 (data) of arbiter i%2

arbs[i%2][1] => dists[l][i%2]; // Output port 1 (ack) of

arbiter i%2 to input port i%2 (ack) of distributer 1

// End of TaskRecordRouter connections

// End of TaskRecordRouter module definition

// A column of 1 2x2 TaskRecord routers - 4 input and 4 output data

ports

module TaskRecordRouterColumn (4, 4)

nodes {

// Ensemble of 2x2 TaskRecordRouters

ensemble TaskRecordRouters (1, module, TaskRecordRouter);

} // End nodes
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connections {

for (0 .. 1) => p

set p + 2 => ackPortNumber;

set p/2 => routerRowNumber;

set p % 2 => routerDataPortNumber;

set routerDataPortNumber + 2 => routerAckPortNumber;

input[p] => TaskRecordRouters[routerRowNumber][

routerDataPortNumber]; // Input data ports

TaskRecordRouters[routerRowNumber][routerAckPortNumber] =>

output[ackPortNumber]; // Ack links for input data ports

TaskRecordRouters[routerRowNumber][routerDataPortNumber] =>

output[p]; // Output data ports

input[ackPortNumber] => TaskRecordRouters[routerRowNumber][

routerAckPortNumber]; // Ack links for input data ports

// End connections

// End of TaskRecordRouterColumn module definition

module TaskRecordNetwork (4, 4)

nodes {

ensemble TaskRecordRouterStages (1, module,

TaskRecordRouterColumn);

// end of node declarations

// Connections

connections {

input[O] => TaskRecordRouterStages[0][0]; // Data

TaskRecordRouterStages[0][2] => output[2]; // Ack

TaskRecordRouterStages[O][0] => output[0]; // Data

input[2] => TaskRecordRouterStages[O][2]; // Ack

input[l] => TaskRecordRouterStages[0][1]; // Data

TaskRecordRouterStages[0][3] => output[3]; // Ack

TaskRecordRouterStages[0][1] => output[1]; // Data

input[3] => TaskRecordRouterStages[0][3]; // Ack

// end connections

// end TaskRecordNetwork module definition
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end;

nodes

// Node Declarations (Component Instances) (componentClass,

optional coreIndex)

component Start (Start);

component Initializer (Initializer, 0, 1, 1); // set dummy coreidx to

0, input/ouput data port count to size);

// 1 (= size) Processing Units

ensemble Cores (1, component, ProcessingUnit); // (number of

components, component or module, className, optional-coreIndex)

ensemble Schedulers (1, component, CoreSched);

component LoadBalancer (LoadBalancer, 0, 1, 1); // set dummy coreidx

to 0, input/ouput data port count to size);

// 0 columns of 1 2x2 routers, one for each stage of the routing

network

// Processing units to caches (memory commands) direction lxi (0

stages of 1 2x2 routers)

module P2CNetwork (CommandNetwork);

// Caches to processing units (memory responses) direction lxl (0

stages of 1 2x2 routers)

module C2PNetwork (ResponseNetwork);

// Caches to DRAMs (memory commands) direction lxl (0 stages of 1 2x2

routers)

module C2DNetwork (CommandNetwork);

// Memory units to Caches (memory responses) direction lx1 (0 stages

of 1 2x2 routers)

module D2CNetwork (ResponseNetwork);
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// TaskRecordNetwork: interconnecting the core schedulers

module BalancingNetwork(TaskRecordNetwork);

// 1 (= size) Caches

ensemble Caches (1, component, Cache);

// 1 (= size) Memory Banks

ensemble DRAMs (1, component, DRAM);

// end of node specifications

// Connections

connections {

// Processing Units

Start[] => Initializer[O]; // StartSim

// Connection to initiate load balancing from Start (shared with

LB continue port)

Start[l] => LoadBalancer[l];

// Connection to stop load balancing from the Initializer

Initializer[l] => LoadBalancer[l + 3]; // BalancerStop

// Connection to continue load balancing

LoadBalancer[ 2 * 1] => LoadBalancer[l];

for (0 .. 1 - 1) => c {

Initializer[c] => Cores[c][3];

Cores[c][3] => Initializer[c];

// SimInit,

// InitDone

LoadBalancer[1 + c] => Schedulers[c][5]; // Ack for

SchedLoad
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Schedulers[c][0] => Cores[c][1]; // SchedDataItem

Cores[c][1] => Schedulers[c][0]; // SchedDataItem

Cores[c][2] => Cores[c][2]; // ProcDataItem

// Connect the LoadBalancer to the CoreSchedulers

LoadBalancer[c] => Schedulers[c][1]; // SchedTake

Schedulers[c][1] => LoadBalancer[l + 1]; // SendToAck

Schedulers[c][4] => LoadBalancer[c]; // SchedLoad

// Connections for the Task Record Network

// To the Task Record Network from Core Schedulers

Schedulers[c][2] => BalancingNetwork[c]; //

TaskRecord

BalancingNetwork[c+1] => Schedulers[c][2]; /

Acknowledgement

// Connect Cores to CoreSchedulers RESUME ports

Cores[c][6] => Schedulers[c][4]; // RESUME command

// To the Core Schedulers from the Task Record Network

BalancingNetwork[c] => Schedulers[c][3]; //

TaskRecord

Schedulers[c][3] => BalancingNetwork[c+1]; //

Acknowledgement

// The BalancingStop signal from the cores to the LoadBalancer

Cores[c][5] => LoadBalancer[1 + 2];

// Connect the processors to the inputs of the forward lxi

processors to caches, stage 0 or input stage)

Cores[c][0] => P2CNetwork[c]; // Data

P2CNetwork[c+2] => Cores[c][4]; // Ack
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// Connect the outputs of the forward lxi (processors to

caches, stage 2 or output stage) to the caches

P2CNetwork[c] => Caches[c][0]; // Data

Caches[c][0] => P2CNetwork[c+2]; // Ack

// Connect the caches to the second forward lxi

Caches[c][2] => C2DNetwork[c]; // Data

C2DNetwork[c+2] => Caches[c][2]; // Ack

// Connect the second forward lxi to DRAM

C2DNetwork[c] => DRAMs[c][0]; // Data

DRAMs[c][0] => C2DNetwork[c+2]; // Ack

// Connect the DRAM to the inputs of the reverse lxl (memory

units to processors, stage 0 or input stage)

DRAMs[c][1] => D2CNetwork[c]; // Data

D2CNetwork[c+2] => DRAMs[c][1]; // Ack

// Connect the outputs of the reverse lxi (memory units to

processors, stage 2 or output stage) to the processors'

inputs

D2CNetwork[c] => Caches[c][3]; // Data

Caches[c][3] => D2CNetwork[c+2]; // Ack

Caches[c][1] => C2PNetwork[c]; // Data

C2PNetwork[c+2] => Caches[c][1]; // Ack

C2PNetwork[c] => Cores[c][0]; // Data

Cores[c][4] => C2PNetwork[c+2]; // Ack

}/ end of connections

// end systemthree SysThreeixixlDotProduct
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